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Abstract: With its abundance of renewable energy potentials, not only for hydropower and bioenergy,
but also for wind and solar, Brazil provides good prospects for a carbon neutral energy system.
The role of an enhanced coupling of the power, heat and transport sectors in such systems is not yet
fully understood. This paper analyses the least-cost composition and operation of a fully renewable
power supply system as part of a carbon neutral energy supply in Brazil. It relies on the application
of the high-resolution energy system model REMix. Our analysis reveals that the expansion of wind
and solar power is more cost-efficient than the construction of additional hydroelectric plants. This is
favoured because the existing hydroelectric plants offer large capacity of dispatchable power to
compensate for fluctuations, and thus no additional storage is necessary. Furthermore, the REMix
analysis indicates that varying shares of solar and wind power technologies as well as the spatial
distribution of power generation have only a small influence on supply costs. This implies that
the transformation strategy in Brazil can be primarily based on other criteria such as regional
development, public acceptance, environmental impact or industrial policy without major impacts
on system costs.

Keywords: energy scenario; renewable energy; Brazil; REMix; demand response; sector coupling;
energy system modelling; power system

1. Introduction

Renewable energy (RE) sources are a proven option to reduce greenhouse gas (GHG) emissions.
However, it is still a major challenge to integrate large shares of variable renewable energy (VRE) into
the power system. This is specifically the case for strongly developing countries, which additionally
have to cope with a strong increase in energy and power demand in the future. Brazil is a typical
newly industrialized country, featuring a large population and considerable economic growth. Today,
Brazil already covers 60% of its power demand by hydro and another 10% by biomass and wind
power (Figure 1) [1,2]. However, its primary energy supply is dominated by fossil fuels, mainly oil
(36%) and gas (14%). Biomass is another main pillar, covering a broad range from traditional biomass
use in the residential sector to modern biofuel applications for power generation and transport fuels.
However, the future increase in energy demand is expected to be covered also by an expansion of
fossil fuel installations and the dependency on hydropower leads to a high vulnerability with regard
to droughts [3,4], which have recently heavily disturbed the Brazilian power supply [5].
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Figure 1. Shares of renewable and fossil energy in primary energy and power production in Brazil in
2014 based on statistics from [1,2].

Nevertheless, the abundance of RE potentials, not only for hydropower and energy production
from biomass, but also for wind and solar energy provides good prospects for a completely
renewable supply of power, heat, and transport fuels. Biofuels and the large scale use of sugar
cane residues, including second generation technologies have long been one major focus of technology
development [6–9]. Agricultural and agro-industrial residues also have a large energetic potential
in Brazil [10]. Wind power and solar power not only have large potentials in Brazil [11,12], but are
also considered to be cost efficient [13]. Resource assessments in high spatial resolution have been
provided for solar global horizontal irradiation [14,15], direct normal irradiation [16] and wind
speed [17], revealing that particularly good potentials are located in the western and northwestern
part of the country. With reservoir hydro stations as a source of flexibility, the power system is
expected to easily balance substantial shares of VRE generation without increasing demand for fossil
backup power plants [5,18–20]. Nevertheless, Saporta [21] mentioned that the flexibility provided
by hydropower plants with reservoirs in Brazil can be constrained by the multiple uses of water for
environmental, social and economic purposes. Additional benefits are expected for the stability of the
power system through a diversification with wind and solar [5,15,20]. Several studies have investigated
the future role of RE across the whole energy system and identified considerable potential for their
implementation [22–26]. Nevertheless, according to [27], high wind penetration (65%) in the Northeast
power system of Brazil might not happen without curtailment, mainly due to inflexibility constraints in
Brazilian power plants and also to transmission limits. While reference [15] explore a 100% renewable
power sector, the scenarios for the whole energy system eventually require a backup from fossil
resources especially for heat and transport. Their scenario is dominated by solar photovoltaic (PV),
and also evaluates the potential role of a production of synthetic methane for industrial purpose from
renewable electricity. Different alternatives to a hydropower expansion have been assessed by [28].
Their scenarios particularly focus on wind power and natural gas, and are also limited to the power
sector. An integrated energy system model for Brazil has been applied in [26,29,30]. Their model
provides a very detailed representation of sectoral energy demands, but is limited in its temporal
resolution. The role of enhanced sector coupling has also been studied to some degree in [25,31].

A transformation beyond 80% RE in the overall energy system is specifically challenging: in the
power sector, seasonal storage becomes almost unavoidable at high VRE shares [32]. Furthermore,
a replacement of all fossil fuels for combustion engines must be provided at reasonable costs for
passenger as well as freight transport vehicles [33]. Additionally, options to replace high temperature
industrial process heat are essential [34]. Previous works have shown that an increased sector coupling
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is a prerequisite to efficiently address these challenges and that renewable power can play an increasing
role in both transportation and heating, either directly or via the production of hydrogen or synthetic
fuels [35,36]. Despite the high amount of model based scenario studies already available, the role of
regional power exchange, sector coupling, and industrial demand response (DR) in a completely RE
system is not yet fully understood for Brazil. This is particularly important as the consideration of
the usage of electricity for heating, transportation and fuel production has a high impact on power
demand and supply.

This paper assesses the effect of sector coupling on the power system in Brazil, both concerning the
challenges arising from an additional power demand for electric mobility and hydrogen production,
and the opportunities offered by the flexibility of these loads. Applying the high-resolution energy
model REMix, we identify the least cost composition of different generation, grid, and storage
technologies and assess the potential contribution of sector coupling and DR to a fully renewable
power supply. We present a case study of four scenarios that provide insight into the impact of RE
technology choice, regional distribution of generation capacities and future drought risks on the supply
costs. The case study relies on a scenario assessment for a 100% renewable supply considering the
whole energy system across the power, heat, and transport sectors.

2. Materials and Methods

2.1. Optimization Model REMix

The case study relies on the application of the REMix energy system model [32]. It combines an
assessment of wind and solar power generation potentials in high temporal and spatial resolution
with an energy system optimization (Figure 2). REMix is focused on a detailed representation of the
power system, but also considers all relevant links to the heat and transport sectors, including electric
heating, electric mobility and production of synthetic fuels [37]. The model optimizes the capacity
installation and hourly operation of all system components in a perfect foresight approach over one
typical year. Its objective function comprises annuities of endogenously added assets and operational
costs of all assets. In the case study presented here, REMix is applied in a partial greenfield approach.
This implies that some power generation and transmission capacities are exogenously defined, for
example considering existing infrastructures, whereas others are endogenously determined by REMix
(Section 2.2). A detailed description of REMix appears in [32]. In contrast to previous studies [37,38],
we use a simplified model representation of DR, which is described in Appendix A and documented
in Equations (A1)–(A9) and Table A1. For countries with abundance of dispatchable renewable
potentials, such as Brazil, the contribution of DR to load balancing is rather limited. This justifies the
application of a simplified model, which significantly reduces the model complexity and solution
time. Furthermore, it requires less input data and is thus more easily transferrable to other countries.
The model representation contains the main features of DR, which are load shedding and shifting to
an earlier as well as later time. Load shifting is modelled as fictitious energy storage whose storage
costs increase with the period between charging and discharging. In contrast to the more detailed
representation, it does not explicitly consider the duration between a load reduction and subsequent
increase. Furthermore, the duration of load interventions is not directly limited. However, both these
durations can be limited to reasonable values of a few hours by the approach chosen.
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Figure 2. Overview of the REMix model structure.

2.2. Data and Assumptions

The REMix model input includes hourly time series of demand and VRE power generation,
RE technology potentials, existing power generation and transmission capacities, and techno-economic
parameters of all technologies. The model configuration applied in this case study is introduced in the
following paragraph as well as the data used and assumptions made.

In our analysis of least-cost configurations of future power supply systems for Brazil, we consider
a broad range of technologies (Table 1). The optimization focuses on the potential future role of
wind and solar power as well as the need for transmission lines, storage and flexible sector coupling.
It assesses how solar photovoltaic (PV), concentrated solar power (CSP), wind onshore and wind
offshore compete with each other and the expansion of hydropower. Alternating current (AC) and
direct current (DC) transmission are treated separately in the model. Our partial greenfield approach
considers existing hydropower plants and transmission lines, some biomass combined heat and power
(CHP) stations, and small capacities of wave power as well as stationary fuel cells as exogenous model
input (Table 1). Furthermore, we consider flexible electric heating, hydrogen electrolysis and industrial
DR as part of an enhanced sector coupling.

Table 1. Overview of considered technologies.

Use of Technology Exogenously Defined Capacities Endogenously Calculated Capacities

Generation

Run-of-river hydro
(existent/under construction)
Reservoir hydro
(existent/under construction)
Biomass CHP
Fuel cell CHP
Wave power

Run-of-river hydro (investment options)
Reservoir hydro (investment options)
Photovoltaic
Wind onshore
Wind offshore
CSP
Hydrogen gas turbine
Hydrogen combined cycle gas turbine

Grid Existing AC and DC lines Additional AC and DC lines

Storage and
demand flexibility

Demand response Battery storage
Flexible electric heating Hydrogen storage
Flexible hydrogen electrolysis Pumps in reservoir hydro stations
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To reflect restrictions in power transmission and evaluate the demand for new power lines,
we subdivide Brazil into seven model regions (Figure 3), based on [39,40]. Given their remoteness
and large capacity, the major hydro dams at Belo Monte, Teles Pires and Itaipu are considered as
additional grid nodes without power demand. Furthermore, we include three network junction points
with neither generation nor demand in the model. Existing transmission capacities are considered
according to Table A2 and rely on [39].
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Figure 3. Map showing model regions, net transfer capacities of existing grid connections in GW,
and major hydroelectric plants Belo Monte, Teles Pires and Itaipu. Connections marked with an asterisk
(*) have different transfer capacities depending on the direction of power flows (Table A2).

The total electricity demand considered in the case study is based on a comprehensive scenario
of the future development of the Brazilian energy system [41]. This scenario represents a pathway to
a fully RE supply across all sectors by 2050. According to [41], we assume that heat production and
transport will increasingly rely on electricity and synthetic hydrogen, causing almost a doubling in
power demand by 2050. Final energy demand in electricity increases to 325 TWh/year in industry,
and to 412 TWh/year in the residential and service sector. This includes power for direct heating
and heat pumps. For transport 126 TWh/year in electricity are projected in the scenario, with a
comparatively low share of 26% battery electric vehicles (BEV) in passenger cars and 12% in heavy
duty vehicles. Additional power demand arises from the electrolytic production of 8 PJ and 77 PJ of
hydrogen for transport and industry, respectively. Regional power demand values are summarized in
Table A3. They reflect the concentration of population and industry to the Sudeste region [42,43]. In the
case study presented here, we consider the energy demand and technology data for 2050, which is
used as target year for a fully renewable supply in [41].

Hourly load profiles are obtained using metered data of dispatchable power generation.
The national operator of the power system provides hourly values of electricity generation supplied
by centralized power plants [44]. By the time of the modelling phase, the most recent data available
were that of 2013. These data allow capturing the hourly demand behaviour by region. The resulting
hourly load has an annual peak of 100 GW. The new loads—electric vehicle charging, heating and
hydrogen demand—are disaggregated to hourly values according to the methodology presented
in [45]. It considers representative profiles of uncontrolled electric vehicle charging, hydrogen car
fuelling and industrial process heat demand. The inflexible share of the new loads accounts for an
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additional hourly demand of at least 15 GW, resulting in a total peak load of about 115 GW, which
occurs in the beginning of December. As most of the new loads are assumed to be flexible in their
operation, the endogenously determined peak load can be up to 55 GW higher.

Today’s existing hydropower plants are expected to be available in the future, just like the existing
facilities already under construction [46,47]. They account for 65 GW and 43 GW of run-of-river
and reservoir hydro capacities, respectively (Tables A4 and A5 in Appendix B). Those hydro stations
listed as mid-term (MT) and long-term (LT) investment options in [39] are considered as upper
limit for the model endogenous installation of additional run-of-river and reservoir hydro capacity
(Table A6). They amount to additional 25 GW and 30 GW, respectively. We allow for an endogenous
installation of pumps in all reservoir hydro stations as an additional source of flexibility and storage.
To consider different availabilities and costs, we subdivide existing hydropower stations and future
installations into three size classes each for reservoir hydro and run-of-the-river hydro stations. Electric
capacities below 30 MW are classified as small, between 30 MW and 300 MW as medium and above
300 MW as large. Maps of all existing major hydro dams are available in [39,48,49]. Based on the
comprehensive scenario development presented in [41], we furthermore assume the existence of wave
power plants, biomass CHP plants, and stationary fuel cells with overall electric capacities of 4.6 GW,
19.4 GW, and 0.8 GW, respectively. Both biomass CHP and fuel cell systems contribute to the supply
of renewable heat to residential, commercial and industrial consumers. They dispose of a thermal
storage dimensioned to store up to four hours of peak heat demand. The resulting regional capacities
are displayed in Figure 4 and detailed in Tables A4 and A5 in Appendix B.
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Figure 4. Exogenously defined power generation capacities for 100% renewable power supply in 2050.
S, M, and L abbreviate the considered size classes of hydropower stations (see main text).

We quantify the maximum installable capacities for PV, Wind and CSP power plants applying the
global resource assessment tool REMix-EnDAT [50]. We find that the considered average minimum
wind speed has significant impact on the regional capacity limits and annual capacity factors. In order
to find a reasonable balance between both, we use regionally different values (see Tables A7 and A8 in
Appendix C). The overall wind power potentials considered in the case study amount to 138 GW and
470 GW of onshore and offshore capacity, respectively (Table 2). CSP can be used almost exclusively in
the regions Nordeste, Centro-Oeste and Sudeste, with installable capacities exceeding practical limits.
The same applies to the maximum PV capacity across all regions. Based on historic weather data
of 2002, we calculate hourly profiles of wind and PV power generation as well as CSP heat input
using the REMix-EnDAT tool. The daily water inflow to hydropower plants is considered according
to long-term averages over 1931–2013 [51]. As no measured data are available for wave power, we
approximate monthly average output values based on [52], using an annual capacity factor of 0.3.
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Table 2. Potentials for solar and wind power generation based on REMix-EnDAT [50] considered in the
optimization. Note that installable capacities are displayed in GW and annual full load hours in h/year.

Region
Name

Wind Offshore Wind Onshore Photovoltaic CSP

GW (el) h/Year GW (el) h/Year GW (el) h/Year GW (th) h/Year

Nordeste 79 3922 71 3384 >1000 1659 >1000 2007
Norte 1 16 2757 253 914 >1000 1580 5 2027
Norte 2 13 2155 26 892 >1000 1481 0 0
Norte 3 0 0 0 0 313 1411 0 0

Centro-Oeste 0 0 44 2371 >1000 1546 576 1997
Sudeste 16 2639 48 1639 >1000 1568 >1000 1959

Sul 14 3468 28 2852 >1000 1286 0 0

In addition to retrofitting reservoir hydro stations by pumps, the model endogenous installation
of storage can also include batteries and hydrogen storage. These are represented by Vanadium redox
flow batteries and a combination of proton exchange membrane (PEM) electrolyser, tank storage and
single or combined cycle gas turbine. The model accounts for DR in energy-intensive production
processes and large scale cooling. Load shedding can be realized in the electrolytic production of
aluminium, steel and copper, load shifting in the production of cement, pulp and chlorine as well
as cooling in the food industry, gastronomy and retail. Potentials are based on Brazilian industry
statistics [53–55], Brazilian electricity demand statistics [56], and previous studies for Europe [57].
We assume that these potentials are available also in the future, implicitly assuming that increases in
production capacity and efficiency cancel each other out. Overall potentials are summarized in Table A9
in Appendix D. Additional load shifting is assumed to be available from a delayed charging of 60% of
the BEV fleet by up to eight hours. We also assume a partially flexible operation of electric heating
enabled by thermal energy storage designed to store four hours of peak heat demand. The hydrogen
for the transport sector and industry is produced in electrolysers dimensioned to produce the annual
demand in 3000 full load hours and equipped with tank storage for 12 h of full load production.

The techno-economic parameters of the considered generation and storage technologies are
presented in Table 3. Considerable cost reductions until 2050 are assumed for most technologies,
including those that are so far deployed only with small capacities but might become important
at higher VRE supply shares, such as CSP, wave power or hydrogen storage. For hydropower,
no significant cost reductions are assumed, as the best potentials are already exploited and increasing
sustainability concerns lead to additional costs. Cost assumptions for DR and transmission technologies
are summarized in Tables A9 and A10 in Appendix D. All investments are subject to an interest rate of
10%. Biomass is considered with an average fuel cost of 10 €/MWh.

Table 3. Techno-economical parameters of considered RE technologies.

Technology Efficiency Availability Specific
Investment

Specific Invest.
Storage

Amortization
Time

Fixed O & M
Costs References

% % of Time k€/MW k€/MWh Years % of Invest/

VRE

Photovoltaic – 95% 520 – 20 1% [58–60]
Wind onshore – 92% 900 – 20 4% [59–61]
Wind offshore – 92% 1800 – 20 6% [59–61]
Wave power – 92% 2000 – 20 6% [60,61]

Dispatchable
RE

Hydro S < 30 MW – 91% 2450 – 40 2% [39,59]
Hydro M 30-300 MW – 92% 2090 – 40 3% [39,59]
Hydro L > 300 MW – 89% 1730 – 40 2% [39,59]

Single cycle gas turbine 47% 95% 400 – 25 4% [60,61]
Combined cycle gas turbine 67% 96% 700 – 25 4% [60,61]

CSP 37%/95% 1 95% 970/250/25 2 – 25 3% [61]
Fuel cell 27%/53% 3 98% 2000 – 20 2% [60,61]

Biomass CHP 34%/53% 3 98% 1950 – 20 2% [60,61]

Storage

Vanadium redox battery 81% 98% 300 100 20 3% [62]
Hydrogen storage tanks 96% 100% n.a. 24 30 2% [63]
Pumped reservoir hydro 80% 90% 640 n.a. 20 3% [61]

PEM Electrolyser 71% 100% 321 n.a. 20 2% [63]

1 power block/thermal energy storage; 2 power block/solar field/thermal energy storage; 3 electric/thermal.
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2.3. Scenarios

The case study includes four scenarios focused on regional RE deployment and hydropower
availability. In the Base scenario, generation capacities of solar and wind power are optimized without
any minimum target. In contrast, the scenarios PV-Plan and CSP-Plan assess the impact of pre-defined
PV and CSP capacities, respectively. They consider the installation of PV currently planned by the
Brazilian government [64] on the one hand, and the proposal of deploying CSP in northeast Brazil on
the other [65]. In scenario PV-Plan, we predefine PV capacities of 50 GW in region Sudeste, 25 GW in
Nordeste, 12 GW in Centro-Oeste, 10 GW in Sul and 3 GW in Norte 1. In scenario CSP-Plan, we consider
an electric CSP capacity of 10 GW in Nordeste. Finally, scenario Red-Inflow evaluates how a reduced
water inflow to hydropower plants, for example caused by climate change, influences the system
set-up and supply costs. We assume an inflow reduction of 25% at any hydro station and during every
hour of the year compared to the historic averages applied in all other scenarios.

3. Results

The overall installed power generation capacity identified by REMix reaches about 310 GW in
the scenarios Base and CSP-Plan, and about 335 GW in PV-Plan and Red-Inflow (see Tables S1–S14 in
the Supplementary Material for detailed results). In all scenarios, it includes 109 GW of exogenously
defined hydropower stations and 25 GW of other RE technologies (see Section 2.2). The model
endogenous installation of additional hydropower plants is very limited, reaching 3.3 GW in all
scenarios. It includes 2.3 GW of large and 0.2 GW of medium run-of-the-river power stations in
the region Sul as well as 0.6 GW and 0.3 GW of medium reservoir hydro stations in Itaipu and Sul,
respectively. A model endogenous installation of hydrogen reconversion power plants is not realized
in any of the scenarios. Instead, all other capacity expansion concentrates on wind and solar power
technologies. Reaching almost 32 GW, the overall CSP capacity is found to be highest in scenario
Red-Inflow (Figure 5). This reflects the need for additional dispatchable capacity in the case of a
reduced water inflow to hydropower stations. Model endogenous installation of CSP is strongly
concentrated to the region Sudeste, with only small amounts placed in Norte 1. Despite the high
quality potentials located there, no endogenous installation in Nordeste is realized. The exogenously
defined 10 GW of CSP considered in scenario CSP-Plan lead to a substitution of 1.7 GW of wind
power by 1.3 of CSP and 1 GW of PV capacity as well as some shift in the regional distribution.
The endogenous installation of PV remains significantly below the amount defined in scenario PV-Plan.
Its capacity is distributed over five model regions, with regional shares notably influenced by the
scenario assumptions. The highest amounts of endogenously added capacities are found for onshore
wind power. The available potential of 71 GW in region Nordeste is exploited across all scenarios,
and complemented by further 6 to 18 GW in Sul. This regional concentration arises from the big
differences in annual capacity factors (Table 2). Offshore wind power is not used in any scenario,
which implies that the slightly higher capacity factors compared to onshore wind cannot compensate
for the higher costs of this technology.

The power generation structure in the different scenarios in 2050 reflects the corresponding
composition of the power plant park (Figure 6). Generally, a broad mix of different technologies is used.
Most important power source is still hydropower: its supply share reaches 37% in Red-Inflow and
47% in all other scenarios. Wind power contributes between 24% and 27%, solar power between 18%
and 26%, biomass between 7% and 8%, and wave and hydrogen CHP the remaining 1%. The lower
hydropower generation in scenario Red-Inflow is mostly compensated by additional CSP generation
(60%), but also by PV (15%), wind (10%) as well as biomass (5%) power, and a reduction of curtailments
and losses (10%). Despite the high supply share of VRE technologies, curtailments occur only to a very
limited extent. They range between 21 TWh in scenario Red-Inflow and 34 TWh in scenario PV-Plan,
equivalent to 2.0% and 3.2% of the overall annual power generation, respectively.
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Figure 6. Scenario comparison of the resulting power generation structure in 2050.

The high VRE share in power supply as well as the location of wind and PV generation far
from the demand centres cause a significant increase in power transmission capacities (Figure 7 and
Table S10). The model endogenously installs additional interconnectors between 54 GW in scenario
Red-Inflow and 59 GW in CSP-Plan, equivalent to around half of today’s existing capacity. About
80% of the endogenously added transmission lines are built using DC technology. Almost half of
the added transmission capacity connects the regions Nordeste and Sudeste, another 20% the regions
Centro-Oeste and Sudeste. This concentration is clearly related to the regional distribution of VRE
generation and demand.

Accordingly, more than 35% of the annual power generation is transmitted over at least one
region border (Figure 8 and Table S11). Almost all net imports are directed to the Sudeste region, where
more than half of the national power demand occurs. Across all scenarios, the region imports at least
295 TWh/year, equivalent to about 55% of the regional demand. Most important net exporting regions
are Nordeste, Centro-Oeste, exceeding the still significant large hydro stations at Itaipu and Belo Monte.
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The water reservoirs available in the existing hydropower stations theoretically allow for storing
almost 200 TWh/year of electricity, or 20% of the annual demand. This large storage capacity strongly
limits the demand for and potential of alternative balancing options. According to the REMix results,
no model endogenous installation of electricity storage takes place in any of the scenarios. This
includes pump retrofitting of existing reservoir hydropower plants, battery as well as hydrogen
storage. Not even in the Red-Inflow scenario, pump retrofitting proves to be necessary to enhance
storage capacity of water dams.

In contrast, the exogenously defined flexibility is adequate for load balancing. The predefined
hydrogen storage capacity is used to store between 1.6% and 1.9% of the annual hydrogen production
(Table S12). This corresponds to around 12 TWh/year of electric energy. Annual full load hours of
hydrogen storage range between 42 and 74 h. They are highest in scenario PV-Plan and lowest in
CSP-Plan. Particularly high values are found in the regions Nordeste and Norte 1, lowest values in Norte
2 and Sul. A higher utilization is observed for the predefined thermal energy storage capacities in
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CHP and electric heating systems. Depending on the region and scenario, annual full load hours reach
between 56 and 161 h. They are highest for fuel cell CHP and lowest for biomass CHP. On a national
level, the annual storage energy input varies only by 15% between the scenarios, with lowest value in
PV-Plan and highest in Red-Inflow. It reaches between 7% and 9% of the corresponding annual heat
demand (Table S13). The stored energy is equivalent to a power demand of around 6 TWh/year in
case of electric heating, and a power generation of 8 TWh/year in case of CHP. Controlled charging of
BEV is also used to balance VRE fluctuations. Between 7% and 9% of the annual charging demand
are shifted to a later time, equivalent to between 8 and 10 TWh/year (Table S14). The highest value
occurs in scenario CSP-Plan, the lowest in Red-Inflow. Generally, longer shifting times of six to eight
hours are preferred to shorter ones. The REMix results show that the annual shares of shifted BEV
charging are the highest in the regions Sudeste and Sul. Regional values can be as low as 3% and as
high as 11% of the annual charging demand. Other, more expensive DR is used to a much lower
extent. The annual amount of the considered industrial and commercial load shifting and shedding
does not exceed 0.4 TWh or 0.04% of the total annual power demand. Despite this low amount of
energy, DR provides peak load reductions by more than 3.3 GW, according to the available potential.
The maximum load increase reaches 0.9 GW. The amount of shifted and shedded energy differs by
up to 6% between the scenarios, whereas peak reduction and increase are identical. This implies that
the implementation of DR is only to a very limited extent influenced by the scenario assumptions.
In terms of electric energy, the overall load shifting of electric heating, CHP, hydrogen electrolysis, BEV,
and other DR reaches around 33 TWh/year, which is about 3% of the annual power demand, and less
than 20% of the available hydro reservoir capacity. Table S14 sums up regional power transport.

Under the assumptions for investment and operational cost applied, the scenarios Base, PV-Plan
and CSP-Plan show only slight differences of less than 1% in specific electricity costs (Figure 9).
A clearer difference can be found in scenario Red-Inflow, where additional generation capacity is
required. Here costs of power production are about 6 €/MWh (8%) higher than in the other scenarios.
These costs account for fixed as well as variable operation and maintenance costs on the one hand,
and the annual depreciation of capital expenditure on the other. Both are here considered for all
assets included in the model, thus exogenously defined and endogenously added power stations,
power transmission and all considered storage and balancing technologies. This can be considered a
conservative approach, as it implies that annuities still have to be paid for hydro and grid capacities
available today. The resulting specific generation costs are dominated by hydro and biomass power,
whereas grid, storage and DR do not have a significant share in any of the scenarios. If no annuities are
considered for existing hydro stations, grid capacities and the predefined biomass CHP plants, specific
electricity costs are lower by 20 €/MWh, 1 €/MWh and 7 €/MWh, respectively. Note that all costs are
calculated in €2015.Energies 2017, 10, 1859  12 of 23 
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4. Discussion and Conclusions

This paper analyses the least-cost composition and operation of a fully renewable power supply
system as part of a 100% RE system in Brazil. It relies on the application of the high-resolution energy
system model REMix, which considers the power sector as well as all linkages to the heat and transport
sectors. The methodology applied is easily transferrable to other countries. The modelling results
show that the Brazilian power system is able to equally address the challenges of providing sufficient
electricity and eliminating direct GHG emissions. With regard to affordability, our results indicate that
a completely renewable power system in Brazil will not lead to significantly increased costs, despite
the additional transmission and generation capacity [41].

Our analysis reveals that the expansion of wind, PV and CSP is cheaper than the construction of
additional hydroelectric power stations. This is favoured because the existing hydroelectric power
plants already offer large capacity of dispatchable power to compensate for fluctuations, and thus no
additional storage is necessary. Furthermore, the existing hydropower capacity limits the contribution
of wind and solar to around half of the generation. This makes a fundamental difference to other
countries and world regions, where a fully renewable power supply relying on domestic sources can
only be realized relying on much higher wind and solar shares. Nonetheless, our analysis shows that
wind, PV and CSP are major pillars of a cost-efficient fully renewable power supply in Brazil. Previous
analyses for Europe have shown that higher VRE shares require the installation of significant amounts
of storage and grid capacity [32,66–72]. In contrast to that, there is no demand for additional short-term
or long-term electricity storage in our scenarios for Brazil, as the available hydropower reservoirs
and biomass stations can balance the intermittent generation. However, storage is used as thermal
energy storage in CSP, CHP as well as electric heating (with hot water storage), and as decentralized
hydrogen storage. According to our scenarios, the Brazilian high-voltage power grid would have to
be expanded by around half of its current capacity. Its main driver is the installation of wind power
and CSP in regions far from the demand centres. Even though the need for additional power lines
is significant, it is comparatively much lower than in systems with higher solar and especially wind
shares. However, the implementation of a wind and solar share of close to 50% represents a significant
transformation of the Brazilian power system.

The REMix analysis also shows that varying shares of new supply technologies (wind, PV, CSP)
as well as the spatial distribution of power plants have only a small influence on the supply costs.
This implies that the transformation strategy in Brazil can be primarily based on other criteria such as
regional development, public acceptance, environmental impact or industrial policy without major
impacts on system costs. Furthermore, the model results indicate an enhanced coupling of power,
heat and transport sectors through flexible electric heating, electric mobility and hydrogen electrolysis
can significantly contribute to the balancing of intermittent power generation. By concentrating these
loads to the hours of high solar, wind and hydropower availability, the demand for dispatchable
generation can be reduced. The same applies to industrial load shifting and shedding, which helps to
cut load peaks that occur only in few hours. Even though the flexibility of enhanced sector coupling
and DR is used for a temporal shift of only around 3% of the annual power demand, the utilization of
the considered thermal and hydrogen storage as well as controlled BEV charging is comparable to
that identified for other countries in previous REMix analyses [37,45]. Nonetheless, their balancing
potential might become even more important, if biomass resources are increasingly exploited or
exported, thus requiring the use of other energy carriers also in Brazil. The abundance of good quality
solar and wind energy potentials is a chance for a further electrification of transport and heating,
as well as for the production of synthetic fuels without significant increase in specific power generation
costs. Both could potentially substitute the usage of biomass in the heat and transport sectors, which
was considered in the underlying energy system transformation pathway considered in this work [41].
The limits and system impact of this option must analysed by future studies.

Our modelling approach potentially overestimates the flexibility of reservoir hydro stations, as it
does not account for other uses of water for environmental, social and economic purposes [21]. For this
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reason, the potential impact of a lower flexibility of hydro stations was studied in a REMix sensitivity
run with the storage capacity of all water reservoirs cut by half. Despite this strong reduction of water
storage availability, the results only show a slight shift in generation capacity from PV (−4.5 GW,
7%) to CSP (2.5 GW, 10%) compared to the Base scenario. This small change can be explained by
the dispatchable operation of CSP, as was also highlighted by [65]. The corresponding change in the
power generation structure reaches only 7 TWh, and is rather insignificant. There is no change in the
investment in hydro capacity, and the differences in hydropower generation, grid expansion, annual
power transmission and overall system costs are below 1%. The increase in the flexible operation of
sector coupling technologies reaches around 3%, and is most notable for the electrolyser operation.
This first assessment must be supplemented by a comprehensive analysis of the real flexibility of
hydropower plants in Brazil considering a detailed modelling of hydro stations operating in cascade.

Scenario Red-Inflow gives some indication on the possible response to a reduction in water inflow
to hydropower plants—due to either droughts or other water demands. Due to the abundance of high
quality potentials, such a reduction could be relatively easily compensated by additional solar and
wind power generation. Particularly the CSP supply share increases notably in this scenario, as it can
provide firm generation capacity through its thermal storage. Future studies must assess the role of a
reduced water inflow on the Brazilian power supply system in more detail, considering also regionally
different values and especially seasonal effects. Concerning the impact of a lower water inflow to
hydropower stations, e.g., as a consequence of climate change, our results show that a reduction of
25% in hydropower generation can be easily balanced by wind and solar power, increasing the specific
power generation costs by about 8%.

The results of the case study are to a high degree influenced by the REMix modelling approach
and the data used. The spatial and temporal resolution of REMix limits the validity of the results to the
hourly balancing of demand and generation and the power exchange between the considered model
regions. Possibly, additional grid or generation capacity might be required to supply all demand
also on shorter timescales and within these regions. Furthermore, the model relies on numerous
approximations concerning the technical characteristics and restrictions of all modelled technologies.
These aspects have been discussed in detail in [32].

The hourly availability of VRE power generation is mainly driven by weather conditions and
is typically different between the years. The results presented here rely on measured data of 2002.
The consideration of different weather years might have significant impact on the results [32]. Adding
up the minimum availability of the power generation capacities during the afternoon load peak, the
firm capacity in the system can be estimated. Depending on the scenario it reaches around 75% to 80%
of the annual peak load. Sensitivity analyses with REMix show that around 33 GW of hydrogen-fired
gas turbines are needed to enhance the relative firm capacity to 115%. However, these units would
have average annual full load hours of less than 10 h/year. The required investment increases the
overall power system costs by about 3%.

The case study relies on assumptions concerning technology and cost developments, which can
have substantial impact on the results. This is particularly the case for the future costs of wind, solar
and hydropower, but also energy storage. Our results show that predefined PV and CSP capacities
have only a very small impact on the specific generation costs. From this follows that minor changes
in investment costs of solar and wind technologies would not lead to significant changes in the supply
costs, even though the least-cost supply structure is likely to be different. The sensitivity of the results
to a 50% increase in investment costs of CSP and onshore wind technology, respectively, was tested in
two additional REMix runs. The consideration of higher CSP costs leads to a reduction of CSP capacity
by around 16.5 GW compared to the Base scenario, equivalent to around one third. It is compensated
by additional 25 GW of PV, 10 GW of onshore wind, 2 GW of hydropower, and 0.8 GW of hydrogen
gas turbines capacity. CSP generation is reduced even by half, and substituted to 60% by PV and 40%
by wind. The additional wind and solar capacity is located in the regions Sul and Centro-Oeste, most or
the additional PV capacity in Nordeste and Centro-Oeste. The different generation structure causes an



Energies 2017, 10, 1859 14 of 22

increase in grid capacity expansion by 30% and in supply costs by 4%. With less dispatchable capacity
available, other balancing technologies are used to a much higher extent: power transmission increases
by 20%, hydrogen storage charging by 30%, thermal energy storage and shifted BEV charging by about
40% each, and other DR by 250%. The consideration of higher onshore wind investment costs reduces
the wind power capacity in Nordeste by 33 GW, which is more than half of the value determined in
the Base scenario. Wind power generation decreases even more, by almost 60%. On the contrary, CSP
generation doubles, even though the increase in capacity amounts to only 13 GW or 50%. PV capacity
and generation are by 25 GW (40%) and 35 TWh (35%) higher than in the Base scenario, respectively.
As most of the additional solar power generation capacity is located in Sudeste, the need to expand
the power grid is reduced almost by half. The annual power transmission is by more than 30% lower,
whereas the overall usage of other balancing technologies remains unchanged. System costs are by
about 8% higher than in the Base scenario, and close to those in Red-Inflow. Concerning energy storage,
a sensitivity run with REMix reveals that battery storage is not used, even if investment costs are
reduced by half.

Across all scenarios, CSP is found to be an important element of a 100% renewable power supply
in Brazil. This is in line with previous works particularly dedicated to the future role of CSP in the
northeast of the country [65,73]. For the region here labelled Nordeste, they find that CSP plants
hybridized with local biomass would play an important role in the Brazilian power system from 2040
on. Such systems would contribute to the power system by regularizing the energy imbalance that
result from the large-scale wind and PV expansion along with conventional inflexible power plants.
Furthermore, they would be able to increase frequency response and operational reserve services and
can provide the required additional flexibility that will be required in the future.

In our case study, we assume a favourable development of VRE technology costs. To some degree,
these costs reductions depend on the future global market development. We implicitly assume a
significant increase in globally installed capacity, which enables cost reductions through technology
learning in a global market. This is particularly relevant for the technologies with currently low
installed capacities, including wave power, hydrogen fuel cells, battery storage and CSP. In this, we
rely on the cited data sources for technology costs.

By integrating our detailed power optimization approach with the detailed transformation
pathways in [41] we provide an easily adaptable methodology for the assessment of energy
transformation. Our scenarios help to identify, which technologies might be essential for a fully
decarbonized energy system as well as critical investment decisions for the future capacity structure.
Applying this methodology before, we have identified such decisive investments for an island system
with regard to costs [37]. With this paper, we provide evidence of an easy transferability of our
approach. For Brazil, we identified that all considered scenarios with varying generation systems lead
to similar costs. We therefore highlight the necessity to further assess other sustainability dimensions
for an optimal transformation of the power system.

Supplementary Materials: The following are available online at www.mdpi.com/1996-1073/10/11/1859/s1,
Table S1: Model-endogenous capacity installation of wind onshore, PV and CSP capacity, Table S2: Annual
hydropower generation in scenario Base, Table S3: Annual other power generation in scenario Base, Table S4:
Annual hydropower generation in scenario PV-Plan, Table S5: Annual other power generation in scenario PV-Plan,
Table S6: Annual hydropower generation in scenario CSP-Plan, Table S7: Annual other power generation in
scenario CSP-Plan, Table S8: Annual hydropower generation in scenario Red-Inflow, Table S9: Annual other
power generation in scenario Red-Inflow, Table S10: Model-endogenous installation of grid connections, Table S11:
Annual power export and import by model region, Table S12: Annual energy input to decentralized hydrogen
storage for industry and transport, Table S13: Annual energy input to thermal energy storage in electric heating
and CHP, Table S14: Annual amount of BEV charging power shifted to a later time.
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Appendix A. Demand Response Model

This work makes use of a simplified model representation of demand response (DR), compared to
that used in previous publications of REMix results [37,38]. Here, load shifting is modelled as fictitious
energy storage for preponing and postponing demand. If load is shifted to an earlier time, it operates
equivalent to a physical energy storage, which is charged when the load is increased, and subsequently
discharged when it is decreased. Load shifting to a later time represents the inverse process, where
the storage is charged at load reduction and later discharge at load increase. Equations (A1) and (A2)
show the storage balance for load shifting to an earlier or later time, respectively. It includes two
efficiency values η1 and η2, representing additional demand caused by DR. In this work, model
equations and inequalities are presented in simplified denotation. For a better readability, sets that
parameters and variables are dependent on are not included here. These are generally model nodes
and technologies. Parameters and variables are displayed differently: variables are always written in
bold font, and parameters appear in normal font. All model variables used here can have only positive
values. All variables and parameters used in the equations are defined in Table A1.

∆t ×
(

Pred(t)
η1

− PbalRed(t)
)
+ (WlevelRed(t) + WlevelRed(t − 1))× 1−η2

2 = WlevelRed(t)− WlevelRed(t − 1) (A1)

∆t ×
(

Pinc(t)− PbalInc(t)
η1

)
+ (WleveInc(t) + WleveInc(t − 1))× 1−η2

2 = WleveInc(t)− WleveInc(t − 1) (A2)

In the case that loads cannot be moved to both an earlier and later time for a certain technology,
the corresponding variables are set to zero. For load shedding, Equation (A1) is modified such that
PbalRed is set to zero for all time steps.

The overall load reduction must be smaller or equal than the available flexible capacity given
by the overall capacity of DR loads and the time-dependent availability factor sflex (Equation (A3)).
Equivalently, the overall load increase must be smaller or equal than the available unused capacity
given dependent on the availability factor sfree (Equation (A4)). The overall capacity of DR loads
can be composed of an exogenously defined contribution PexistCap and an endogenously optimized
contribution PaddedCap. Its sum cannot exceed the overall available potential PmaxCap (Equation (A5)).

Pred(t) + PbalInc(t)
!
≤ (PaddedCap + PexistCap)× s f lex(t) (A3)

Pinc(t) + PbalRed(t)
!
≤ (PaddedCap + PexistCap)× s f ree(t) (A4)

PaddedCap + PexistCap
!
≤ PmaxCap (A5)

The annual depreciation of capital expenditure is calculated as the product of added DR capacity
PaddedCap, specific investment costs cspecInv and the annuity factor. The latter is obtained according to
Equation (A3) in [32]. The operation and maintenance costs Coperation are composed of three elements:
the fixed costs calculated as a constant share cOMFix of the investment costs, and two variable elements
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scaling with the shifted or shedded load on the one hand, and the levels of the fictitious storage
(Equation (A6)) on the other with specific costs values cOMVar1 and cOMVar2.

Coperation = PaddedCap × cspecInv × cOMFix + ∑
t
(Pred(t) + Pinc(t))× cOMVar1+

∑
t
(WlevelRed(t) + WlevelInc(t))× cOMVar2

(A6)

Table A1. Variables and parameters used in the model description.

Symbol Unit Variable/Parameter

Coperation k€/year Operation and maintenance costs
PaddedCap (t) GW Installed electric capacity of additionally DR consumers

PbalInc (t) GW Balancing of earlier load increase
PbalRed (t) GW Balancing of earlier load reduction

Pinc (t) GW Demand response load increase
Pred (t) GW Demand response load reduction

WlevelInc (t) GWh Amount of increased and not yet balanced energy
WlevelRed (t) GWh Amount of reduced and not yet balanced energy

∆t h Calculation time interval
η1 % Efficiency describing additional demand caused by DR, independent of shifting time
η2 %/h Efficiency describing additional demand caused by DR, dependent of shifting time

cOMFix %/year Operation and maintenance fix costs
cOMVar1 k€/MW Operation and maintenance variable costs, independent of shifting time
cOMVar2 k€/MWh Operation and maintenance variable costs, dependent of shifting time
cspecInv k€/MW Specific investment cost
sflex (t) % Share of load reduction potential available in time step t
sfree (t) % Share of load increase potential available in time step t

PexistCap GW Already accessed capacity of DR loads
PmaxCap GW Maximum accessible capacity of DR loads

Appendix B. Power Demand, Hydro Power, Biomass Power, and Grid Capacities

Table A2 includes the existing grid connections considered in REMix according to [39].
Regionalized power demand values from [41] are summarized in Table A3. Tables A4 and A5
provide the considered run-of-river, reservoir hydro, wave power, and biomass CHP capacities as
well as hydropower full load hours considered in all scenarios. The model endogenous installation of
additional hydropower plants is limited by the potentials summarized in Table A6. The hydropower
capacities are taken from [46,47], while the biomass and wave power capacities were part of the
scenario development in [41].

Table A2. Considered existing grid connections and transfer capacities in MW based on [39].

Start (S) End (E) Techn. S → E in MW E → S in MW

XIN IMP AC 4115 4115
XIN Norte 1 AC 2700 2700
XIN Norte 2 AC 2700 2700
XIN Belo Monte AC 11,000 11,000
XIN Sudeste DC 8000 8000
IMP Nordeste AC 8200 4849
IMP Norte 1 AC 8518 8518
IMP Centro-Oeste AC 5380 5598
IV Sudeste AC 6800 6800
IV Itaipu AC 6300 6300
IV Sul AC 2426 2317
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Table A2. Cont.

Start (S) End (E) Techn. S → E in MW E → S in MW

Sudeste Nordeste AC 6500 6936
Centro-Oeste Norte 3 DC 7092 7092
Centro-Oeste Teles Pires AC 10,500 10,500

Sudeste Itaipu DC 5500 5500
Sudeste Sul AC 9420 9108
Itaipu Sul AC 2112 192
Sudeste Centro-Oeste AC 15,000 15,000

Table A3. Considered regional annual power demand based on [41].

Technology
Region

Transport Electric Heating Hydrogen Electrolysis Other

TWh/year TWh/year TWh/year TWh/year

Nordeste 17.6 33.0 4.0 98.9
Norte 1 1.9 10.2 1.2 35.3
Norte 2 0.8 4.2 0.7 9.0
Norte 3 0.5 3.1 0.7 4.5

Centro-Oeste 10.1 12.4 1.3 49.2
Sudeste 72.3 89.0 15.5 360.6

Sul 23.4 28.7 4.8 117.8

Table A4. Considered run-of-river hydro and wave power capacities and annual full load hours
based on [46,47].

Technology
Region

Run-of-River Hydro S Run-of-River Hydro M Run-of-River Hydro L Wave Power

MW (el) h/Year MW (el) h/Year MW (el) h/Year MW (el) h/Year

Nordeste 165 3256 0 6139 7895 4270 888 2628
Norte 1 235 4799 243 5548 2440 5156 1089 2628
Norte 2 0 4799 810 4880 1070 4596 0 0

Belo Monte 0 0 233 5790 11,000 4446 0 0
Norte 3 165 4799 74 5264 4308 6061 0 0

Teles Pires 0 0 0 0 1820 4410 0 0
Centro-Oeste 1752 4611 1729 5320 8710 4620 0 0

Sudeste 1869 4611 2340 5033 1044 6146 1211 2628
Itaipu 0 0 0 0 8800 6148 0 0

Sul 1663 4779 1584 5214 5473 4977 1412 2628

Table A5. Considered reservoir hydro and biomass power capacities and annual full load hours
based on [41,46,47].

Technology
Region

Reservoir Hydro S Reservoir Hydro M Reservoir Hydro L Biomass CHP Fuel Cells

MW (el) h/Year MW (el) h/Year MW (el) h/Year MW (el) MW (el)

Nordeste 0 0 397 4292 2550 4292 2743 113
Norte 1 0 0 0 0 1727 5519 809 33
Norte 2 30 6745 250 4030 8370 4993 503 21
Norte 3 0 0 217 3854 0 6044 503 21

Centro-Oeste 28 2803 1550 4292 18,368 4468 902 37
Sudeste 0 0 1526 4292 399 6132 10,627 438

Sul 0 0 795 4468 7437 4993 3260 134
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Table A6. Considered potential for additional hydropower installation based on [46,47].

Technology
Region

Run-of-River S Run-of-River M Run-of-River L Reservoir S Reservoir M Reservoir L

MW (el) MW (el) MW (el) MW (el) MW (el) MW (el)

Nordeste 45 593 0 0 483 0
Norte 1 0 0 14,953 0 95 16,418
Norte 2 9 0 708 0 0 0
Norte 3 84 350 0 0 0 0

Centro-Oeste 481 764 1260 0 280 330
Sudeste 862 1499 0 0 3367 8063
Itaipu 0 0 0 0 608 0

Sul 997 158 2275 0 292 0

Appendix C. Evaluation of Wind and Solar Power Potentials in Brazil

The global renewable energy assessment tool REMix-EnDAT provides maximum installable
capacities and hourly power generation profiles for wind offshore, wind onshore, and solar PV as
well as the thermal output of solar fields in CSP plants [50]. Installable capacities and annual capacity
factors are highly dependent on the considered lower bound for the average annual wind speed (vmin).
To assess this effect on the regional wind power potentials in Brazil, different values between 4 km/h
and 7.5 km/h are considered in this work. The resulting capacities and full load hours are summarized
in Tables A7 and A8 for onshore and offshore wind power, respectively. It appears that both extent
and quality of wind power potentials differ vastly among different regions. To find a reasonable
balance between installable capacity and annual full load hours, the regional potentials used in the
optimization consider different average annual wind speeds (Table 2). In contrast to wind power,
annual full load hours for solar power generation are similar in most regions. However, CSP potentials
are only available in four out of seven regions (Table 2). Using the methodology and site selection
criteria introduced in [50], installable capacities for both PV and CSP exceed 1000 GW in most regions
and are thus practically unlimited.

Table A7. Available onshore wind potentials at different average annual wind speeds, evaluated
using REMix-EnDAT. Note that installable capacities are displayed in GW and annual full load hours
in h/year.

Region Nordeste Norte 1 Norte 2 Centro-Oeste Sudeste Sul

Parameter Cap. FLH Cap. FLH Cap. FLH Cap. FLH Cap. FLH Cap. FLH

Min. Wind Speed GW (el) h/Year GW (el) h/Year GW (el) h/Year GW (el) h/Year GW (el) h/Year GW (el) h/Year

vmin = 4 km/h 3246 1892 253 914 26 892 1410 953 1599 1009 396 1437
vmin = 5 km/h 2122 2221 0 0 0 0 92 2086 420 1262 174 1888

vmin = 5.5 km/h 1552 2357 0 0 0 0 44 2371 48 1639 79 2256
vmin = 6 km/h 823 2568 0 0 0 0 0 0 1 2738 28 2852

vmin = 6.5 km/h 225 2935 0 0 0 0 0 0 1 2776 27 2879
vmin = 7 km/h 71 3384 0 0 0 0 0 0 0 0 8 3206

Table A8. Available offshore wind potentials at different average annual wind speeds, evaluated
using REMix-EnDAT. Note that installable capacities are displayed in GW and annual full load hours
in h/year.

Region Nordeste Norte 1 Norte 2 Sudeste Sul

Parameter Cap. FLH Cap. FLH Cap. FLH Cap. FLH Cap. FLH

Min. Wind Speed GW (el) h/Year GW (el) h/Year GW (el) h/Year GW (el) h/Year GW (el) h/Year

vmin = 4 km/h 417 2636 237 1942 56 1526 183 1446 200 2694
vmin = 5 km/h 378 2810 160 2213 33 1929 89 1837 181 2866

vmin = 5.5 km/h 330 2975 137 2282 32 1936 45 2289 172 2938
vmin = 6 km/h 293 3107 133 2290 13 2155 16 2639 160 3003

vmin = 6.5 km/h 222 3305 16 2757 0 0 13 2770 143 3083
vmin = 7 km/h 128 3626 1 3367 0 0 0 0 82 3305

vmin = 7.5 km/h 79 3922 1 3527 0 0 0 0 14 3468



Energies 2017, 10, 1859 19 of 22

Appendix D. Technology Parameter

The following tables contain techno-economic parameters considered in the REMix application
for DR technologies in Table A9, and for grid technologies in Table A10.

Table A9. Techno-economic parameters of demand response technologies.

Technology
Installed
Capacity

Average
Reduction

Average
Increase Efficiency Variable O

& M Costs Ref.

MW MW MW % €/MWh

Process industry shifting 1601 603 286 99% 50 [53–55,57]
Process industry shedding 3849 2210 n.a. 100% 1000 [53–55,57]

Cooling 1666 500 600 95% 10 [56,57]

Table A10. Techno-economic parameters of grid technologies.

Technology
Rated Investment Losses Amort. Fixed O & M

Ref.Power Line Converter Line Converter Time Costs

MW k€/km Unit Cost %/100 km % Years % of Invest/year

HVDC 4000 226 150,000 0.45% 0.70% 40 1.00% [74,75]
HVAC 5500 480 n.a. 1% n.a. 40 0.30% [74,76]
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