
Vivado Design Suite
User Guide

Logic Simulation

UG900 (v2018.2) June 6, 2018

Logic Simulation 2
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Revision History
The following table shows the revision history for this document.

Section Revision Summary
06/06/2018 Version 2018.2

Library Mapping File (xsim.ini) Added a note supporting two init files (xsim.ini and
xsim_legacy.ini) from current release.

export_simulation • Updated information in export_simulation Options
table.

• Added Riviera Pro and Active HDL for supported simulators
• Updated the argument for -lib_map_path

04/04/2018 Version 2018.1
General Updates • Updated File and Tools menu commands

• Added Cadence Xcelium Simulator support Information
Subprogram Call-Stack Support Added Subprogram Call-Stack support feature
Table D-3: Data Types Allowed on the
C-SystemVerilog Boundary

Added SV open array support information for DPI

Table 7-2: xelab, xvhd, and xvlog Command
Options

Added Standalone support for Vivado Simulator in the -a
command description as a note.

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=2

Table of Contents
Revision History . 2

Chapter 1: Logic Simulation Overview
Introduction . 7
Supported Simulators . 7
Simulation Flow . 8
Language and Encryption Support . 11

Chapter 2: Preparing for Simulation
Overview . 12
Using Test Benches and Stimulus Files . 12
Pointing to the Simulator Install Location . 13
Compiling Simulation Libraries . 15
Using Xilinx Simulation Libraries. 19
Using Simulation Settings . 29
Adding or Creating Simulation Source Files . 34
Generating a Netlist. 36

Chapter 3: Simulating with Third-Party Simulators
Introduction . 39
Running Simulation Using Third Party Simulators with Vivado IDE . 40
Dumping SAIF for Power Analysis. 43
Dumping VCD for Power Analysis . 44
Simulating IP. 46
Using a Custom DO File During an Integrated Simulation Run . 46
Running Third-Party Simulators in Batch Mode . 47

Chapter 4: Simulating with Vivado Simulator
Introduction . 49
Running the Vivado Simulator . 49
Running Functional and Timing Simulation . 67
Saving Simulation Results . 71
Distinguishing Between Multiple Simulation Runs . 71
Logic Simulation 3
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=3

Closing a Simulation. 71
Adding a Simulation Start-up Script File. 72
Viewing Simulation Messages. 73
Using the launch_simulation Command . 75
Re-running the Simulation After Design Changes (relaunch) . 76
Using the Saved Simulator User Interface Settings . 77

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
Introduction . 79
Using Wave Configurations and Windows . 79
Opening a Previously Saved Simulation Run . 81
Understanding HDL Objects in Waveform Configurations . 82
Customizing the Waveform. 85
Controlling the Waveform Display . 92
Organizing Waveforms . 96
Analyzing Waveforms . 98

Chapter 6: Debugging a Design with Vivado Simulator
Introduction . 103
Debugging at the Source Level . 103
Forcing Objects to Specific Values . 108
Power Analysis Using Vivado Simulator. 116
Using the report_drivers Tcl Command . 118
Using the Value Change Dump Feature . 119
Using the log_wave Tcl Command . 120
Cross Probing Signals in the Object, Wave, and Text Editor Windows . 121

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
Introduction . 126
Exporting Simulation Files and Scripts . 126
Running the Vivado Simulator in Batch Mode. 132
Elaborating and Generating a Design Snapshot, xelab . 135
Simulating the Design Snapshot, xsim . 146
Example of Running Vivado Simulator in Standalone Mode . 148
Project File (.prj) Syntax . 149
Predefined Macros. 150
Library Mapping File (xsim.ini) . 150
Running Simulation Modes . 151
Using Tcl Commands and Scripts . 154
export_simulation . 155
Logic Simulation 4
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=4

export_ip_user_files . 158

Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced
Options
Introduction . 160
Compilation Options . 160
Elaboration Options. 163
Simulation Options . 165
Netlist Options . 168
Advanced Simulation Options. 168

Appendix B: SystemVerilog Support in Vivado Simulator
Introduction . 170
Testbench Feature . 178

Appendix C: VHDL 2008 Support in Vivado Simulator
Introduction . 185
Compiling and Simulating . 185
Supported Features . 187

Appendix D: Direct Programming Interface (DPI) in Vivado Simulator
Introduction . 190
Compiling C Code . 190
xsc Compiler . 191
Binding Compiled C Code to SystemVerilog Using xelab. 193
Data Types Allowed on the Boundary of C and SystemVerilog . 193
Mapping for User-Defined Types . 194
Support for svdpi.h functions . 196
DPI Examples Shipped with the Vivado Design Suite . 205

Appendix E: Handling Special Cases
Using Global Reset and 3-State. 206
Delta Cycles and Race Conditions . 208
Using the ASYNC_REG Constraint . 209
Simulating Configuration Interfaces . 211
Disabling Block RAM Collision Checks for Simulation . 215
Dumping the Switching Activity Interchange Format File for Power Analysis 216
Skipping Compilation or Simulation . 216
Logic Simulation 5
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=5

Appendix F: Value Rules in Vivado Simulator Tcl Commands
Introduction . 217
String Value Interpretation . 217
Vivado Design Suite Simulation Logic. 218

Appendix G: Vivado Simulator Mixed Language Support and Language
Exceptions
Introduction . 219
Using Mixed Language Simulation . 219
VHDL Language Support Exceptions . 225
Verilog Language Support Exceptions . 227

Appendix H: Vivado Simulator Quick Reference Guide
Introduction . 230

Appendix I: Using Xilinx Simulator Interface
Introduction . 234
Preparing the XSI Functions for Dynamic Linking . 234
Writing the Test Bench Code. 236
Compiling Your C/C++ Program. 237
Preparing the Design Shared Library . 237
XSI Function Reference . 238
Vivado Simulator VHDL Data Format . 243
Vivado Simulator Verilog Data Format. 246

Appendix J: Additional Resources and Legal Notices
Xilinx Resources . 249
Solution Centers. 249
Documentation Navigator and Design Hubs . 249
References . 250
Links to Additional Information on Third-Party Simulators . 250
Links to Language and Encryption Support Standards . 251
Links to OS Support and Release Changes . 251
Training Resources. 251
Please Read: Important Legal Notices . 252
Logic Simulation 6
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=6

Chapter 1

Logic Simulation Overview

Introduction
Simulation is a process of emulating real design behavior in a software environment.
Simulation helps verify the functionality of a design by injecting stimulus and observing the
design outputs.

This chapter provides an overview of the simulation process, and the simulation options in
the Vivado® Design Suite.

The process of simulation includes:

• Creating test benches, setting up libraries and specifying the simulation settings for
Simulation

• Generating a Netlist (if performing post-synthesis or post-implementation simulation)
• Running a Simulation using Vivado Simulator or Third Party Simulators. See Supported

Simulators for more information on supported simulators.

Supported Simulators
The Vivado Design Suite supports the following simulators:

• Vivado simulator: Tightly integrated into the Vivado IDE, where each simulation launch
appears as a framework of windows within the IDE.

• Mentor Graphics Questa Advanced Simulator: Integrated in the Vivado IDE.
• Mentor Graphics ModelSim Simulator: Integrated in the Vivado IDE
• Cadence Incisive Enterprise Simulator (IES): Integrated in the Vivado IDE
• Synopsys Verilog Compiler Simulator (VCS) and VCS MX: Integrated in the Vivado IDE
• Aldec Rivera-PRO Simulator: Supported in the Vivado IDE
• Aldec Active-HDL: Supported in the Vivado IDE
• Cadence Xcelium Parallel Simulator: Integrated in the Vivado IDE
Logic Simulation 7
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=7

Chapter 1: Logic Simulation Overview
See the Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)
[Ref 20] for the supported versions of third-party simulators.

For more information about the Vivado IDE and the Vivado Design Suite flow, see:

• Vivado Design Suite User Guide: Using the Vivado IDE (UG893) [Ref 3]
• Vivado Design Suite User Guide: Design Flows Overview (UG892) [Ref 11]

Simulation Flow
Simulation can be applied at several points in the design flow. It is one of the first steps
after design entry and one of the last steps after implementation as part of verifying the end
functionality and performance of the design.

Simulation is an iterative process and is typically repeated until both the design
functionality and timing requirements are satisfied.
Logic Simulation 8
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=8

Chapter 1: Logic Simulation Overview
Figure 1-1 illustrates the simulation flow for a typical design:
X-Ref Target - Figure 1-1

Figure 1-1: Simulation Flow

RTL Design

Post Synthesis Simulation

Post Implementation Simulation
(Close to Emulating HW)

Synthesize

Implement (Place and Route)

Debug the Design

Behavioral Simulation
(Verify Design Behaves as Intended)
Logic Simulation 9
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=9

Chapter 1: Logic Simulation Overview
Behavioral Simulation at the Register Transfer Level
Register Transfer Level (RTL) behavioral simulation can include:

• RTL Code
• Instantiated UNISIM library components
• Instantiated UNIMACRO components
• UNISIM gate-level model (for the Vivado logic analyzer)
• SECUREIP Library

RTL-level simulation lets you simulate and verify your design prior to any translation made
by synthesis or implementation tools. You can verify your designs as a module or an entity,
a block, a device, or a system.

RTL simulation is typically performed to verify code syntax, and to confirm that the code is
functioning as intended. In this step, the design is primarily described in RTL and
consequently, no timing information is required.

RTL simulation is not architecture-specific unless the design contains an instantiated device
library component. To support instantiation, Xilinx® provides the UNISIM library.

When you verify your design at the behavioral RTL you can fix design issues earlier and save
design cycles.

Keeping the initial design creation limited to behavioral code allows for:

• More readable code
• Faster and simpler simulation
• Code portability (the ability to migrate to different device families)
• Code reuse (the ability to use the same code in future designs)

Post-Synthesis Simulation
You can simulate a synthesized netlist to verify that the synthesized design meets the
functional requirements and behaves as expected. Although it is not typical, you can
perform timing simulation with estimated timing numbers at this simulation point.

The functional simulation netlist is a hierarchical, folded netlist expanded to the primitive
module and entity level; the lowest level of hierarchy consists of primitives and macro
primitives.

These primitives are contained in the UNISIMS_VER library for Verilog, and the UNISIM
library for VHDL. See UNISIM Library, page 21 for more information.
Logic Simulation 10
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=10

Chapter 1: Logic Simulation Overview
Post-Implementation Simulation
You can perform functional or timing simulation after implementation. Timing simulation is
the closest emulation to actually downloading a design to a device. It allows you to ensure
that the implemented design meets functional and timing requirements and has the
expected behavior in the device.

IMPORTANT: Performing a thorough timing simulation ensures that the completed design is free of
defects that could otherwise be missed, such as:

• Post-synthesis and post-implementation functionality changes that are caused by:

° Synthesis properties or constraints that create mismatches (such as full_case and
parallel_case)

° UNISIM properties applied in the Xilinx Design Constraints (XDC) file

° The interpretation of language during simulation by different simulators
• Dual port RAM collisions
• Missing, or improperly applied timing constraints
• Operation of asynchronous paths
• Functional issues due to optimization techniques

Language and Encryption Support
The Vivado simulator supports:

• VHDL, see IEEE Standard VHDL Language Reference Manual (IEEE-STD-1076-1993)
[Ref 15]

• Verilog, see IEEE Standard Verilog Hardware Description Language
(IEEE-STD-1364-2001) [Ref 16]

• SystemVerilog Synthesizable subset. See IEEE Standard Verilog Hardware Description
Language (IEEE-STD-1800-2009) [Ref 17]

• IEEE P1735 encryption, see Recommended Practice for Encryption and Management of
Electronic Design Intellectual Property (IP) (IEEE-STD-P1735) [Ref 19]
Logic Simulation 11
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=11

Chapter 2

Preparing for Simulation

Overview
This chapter describes the components that you need when you simulate a Xilinx® device in
the Vivado® Integrated Design Environment (IDE).

Setup the following before performing the simulation:

• Create a test bench that reflects the simulation actions you want to run.
• Setup an install location in Vivado IDE (if not using the Vivado simulator).
• Compile your libraries (if not using the Vivado simulator).
• Select and declare the libraries you need to use.
• Specify the simulation settings such as target simulator, the simulation top module

name, top module (design under test), display the simulation set, and define the
compilation, elaboration, simulation, netlist, and advanced options.

• Generate a Netlist (if performing post-synthesis or post-implementation simulation).

Using Test Benches and Stimulus Files
A test bench is Hardware Description Language (HDL) code written for the simulator that:

• Instantiates and initializes the design.
• Generates and applies stimulus to the design.
• Monitors the design output result and checks for functional correctness (optional).

You can also set up the test bench to display the simulation output to a file, a waveform, or
to a display screen. A test bench can be simple in structure and can sequentially apply
stimulus to specific inputs.
Logic Simulation 12
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=12

Chapter 2: Preparing for Simulation
A test bench can also be complex, and can include:

• Subroutine calls
• Stimulus that is read in from external files
• Conditional stimulus
• Other more complex structures

The advantages of a test bench over interactive simulation are that it:

• Allows repeatable simulation throughout the design process
• Provides documentation of the test conditions

The following bullets are recommendations for creating an effective test bench.

• Always specify the `timescale in Verilog test bench files. For example:
‘timescale 1ns/1ps

• Initialize all inputs to the design within the test bench at simulation time zero to
properly begin simulation with known values.

• Apply stimulus data after 100 ns to account for the default Global Set/Reset (GSR) pulse
used in functional and timing-based simulation.

• Begin the clock source before the Global Set/Reset (GSR) is released. For more
information, see Using Global Reset and 3-State, page 206.

For more information about test benches, see Writing Efficient TestBenches (XAPP199)
[Ref 5].

TIP: When you create a test bench, remember that the GSR pulse occurs automatically in the
post-synthesis and post-implementation timing simulation. This holds all registers in reset for the first
100 ns of the simulation.

Pointing to the Simulator Install Location
To define the installation path:

1. Select Tools > Settings > Tool Settings > 3rd Party Simulators.
2. In the 3rd Party Simulators tab of the Settings dialog box, select the simulator under the

Install Paths as shown in Figure 2-1, and browse to the installation path.
3. Select the appropriate simulator under Default Compiled Library Paths and browse to

the relevant compiled library paths. You can set the library paths at a later point of time.
Logic Simulation 13
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=13

Chapter 2: Preparing for Simulation
See Compiling Simulation Libraries for more information on how to compile libraries for
your simulator.

Note: Installing Vivado Simulator is part of Vivado IDE Installation.Hence, you do not need to setup
an install location for Vivado simulator.

X-Ref Target - Figure 2-1

Figure 2-1: Vivado Design Suite 3rd Party Simulators Install Path
Logic Simulation 14
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=14

Chapter 2: Preparing for Simulation
Compiling Simulation Libraries
IMPORTANT: With Vivado simulator, there is no need to compile the simulation libraries. However, you
must compile the libraries when using a third-party simulator.

The Vivado Design Suite provides simulation models as a set of files and libraries. Your
simulation tool must compile these files prior to design simulation. The simulation libraries
contain the device and IP behavioral and timing models. The compiled libraries can be used
by multiple design projects.

During the compilation process, Vivado creates a default initialization file that the simulator
uses to reference the compiled libraries. The compile_simlib command creates the file
in the library output directory specified during library compilation. The default initialization
file contains control variables that specify reference library paths, optimization, compiler,
and simulator settings. If the correct initialization file is not found in the path, you cannot
run simulation on designs that include Xilinx primitives.

The name of the initialization file varies depending on the simulator you are using, as
follows:

• Questa Advanced Simulator/ModelSim: modelsim.ini

• IES and Xcelium: cds.lib

• VCS: synopsys_sim.setup

For more information on the simulator-specific compiled library file, see the third-party
simulation tool documentation.

IMPORTANT: Compilation of the libraries is typically a one-time operation, as long as you are using the
same version of tools. However, any change to the Vivado tools or the simulator versions requires that
libraries be recompiled.

You can compile libraries using the Vivado IDE or using Tcl commands, as described in the
following sections.
Logic Simulation 15
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=15

Chapter 2: Preparing for Simulation
Compiling Simulation Libraries Using Vivado IDE
1. Select Tools > Compile Simulation Libraries to open the dialog box shown in

Figure 2-2.

Set the following options:

• Simulator: From the Simulator drop-down menu, select a Simulator.
• Language: Compiles libraries for the specified language. If this option is not specified,

then the language is set to correspond with the selected simulator (above). For
multi-language simulators, both Verilog and VHDL libraries are compiled.

X-Ref Target - Figure 2-2

Figure 2-2: Compile Simulation Libraries Dialog Box
Logic Simulation 16
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=16

Chapter 2: Preparing for Simulation
• Library: Specifies the simulation library to compile. By default, the compile_simlib
command compiles all simulation libraries.

• Family: Compiles selected libraries to the specified device family. All device families are
generated by default.

• Compiled library location: Specifies the directory path for saving the compiled library
results. By default, the libraries are saved in the current working directory in
Non-Project mode, and the libraries are saved in the
<project>/<project>.cache/compile_simlib directory in Project mode. See
the Vivado Design Suite User Guide: Design Flows Overview (UG892) [Ref 11] for more
information on Project and Non-Project modes.

TIP: Because the Vivado simulator has precompiled libraries, it is not necessary to identify the library
location.

• Simulator executable path: Specifies the directory to locate the simulator executable.
This option is required if the target simulator is not specified in the $PATH or %PATH%
environment variable, or to override the path from the $PATH or %PATH% environment
variable.

• Miscellaneous Options: Specify additional options for the compile_simlib Tcl
command.

• Compile Xilinx IP: Enable or disable compiling simulation libraries for Xilinx IP.
• Overwrite current pre-compiled libraries: Overwrites the current pre-compiled

libraries.
• Compile 32-bit libraries: Performs simulator compilation in 32-bit mode instead of

the default 64-bit compilation.
• Verbose: Temporarily overrides any message limits and return all messages from this

command.
• Command: Shows the Tcl command equivalent for the options you enter in the dialog

box.

TIP: You can use the value of the Command field to generate a simulation library in Tcl/non-project
mode.

Compiling Simulation Libraries Using Tcl Commands
Alternatively, you can compile simulation libraries using the compile_simlib Tcl
command. For details, see compile_simlib in the Vivado Design Suite Tcl Command
Reference Guide (UG835) [Ref 7], or type compile_simlib -help.
Logic Simulation 17
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=17

Chapter 2: Preparing for Simulation
Following are example commands for each third-party simulator:

• Questa Advanced Simulator: Generating a simulation library for Questa for all
languages and for all libraries and all families in the current directory.
compile_simlib -language all -simulator questa -library all -family all

• ModelSim: Generating simulation library for ModelSim at /a/b/c, where the
ModelSim executable path is <simulator_installation_path>.
compile_simlib -language all -dir {/a/b/c} -simulator modelsim -simulator_exec_path
{<simulator_installation_path>} -library all -family all

• IES: Generating a simulation library for IES for the Verilog language, for the UNISIM
library at /a/b/c.
compile_simlib -language verilog -dir {/a/b/c} -simulator ies -library unisim
-family all

• VCS: Generating a simulation library for VCS for the Verilog language, for the UNISIM
library at /a/b/c.
compile_simlib -language verilog -dir {/a/b/c} -simulator vcs_mx -library unisim
-family all

• Xcelium: Generating a simulation library for Xcelium for the Verilog language, for the
UNISIM library at /a/b/c.
compile_simlib -language verilog -dir {/a/b/c} -simulator xcelium -library unisim
-family all

Changing compile_simlib Defaults
The config_compile_simlib Tcl command lets you configure third-party simulator
options for use by the compile_simlib command.

Tcl Command
config_compile_simlib [-cfgopt <arg>] [-simulator <arg>] [-reset] [-quiet] [-verbose]

Where:

• -cfgopt <arg>: Configuration option in form of
simulator:language:library:options

• -simulator: The name of the simulator whose configuration you want
• -reset: Lets you reset all previous configurations for the specified simulator
• -quiet: Executes the command without any display to the Tcl Console.
• -verbose: Executes the command with all command output to the Tcl Console.

For example, to change the option used to compile the UNISIM VHDL library, type:

config_compile_simlib {cxl.modelsim.vhdl.unisim:-source -93 -novopt}
Logic Simulation 18
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=18

Chapter 2: Preparing for Simulation
IMPORTANT: The compile_simlib command compiles Xilinx primitives and Simulation models of
Xilinx Vivado IP. Xilinx Vivado IP cores are not delivered as an output product when the IP is generated;
consequently they are included in the pre-compiled libraries created using compile_simlib.

Compiling Patched IP Repository in a New Output Directory using MYVIVADO

Let us assume that the patched IP repository is at the following location:

'/test/patched_ip_repo/data/ip/xilinx'

To compile the default installed IP repository and the repository that is pointed to by
MYVIVADO in a new output directory, set the MYVIVADO environment (env) variable to
point to this patched IP repository and run compile_simlib. compile_simlib will
process the IP library sources from the default installed repository and the one set by
MYVIVADO.

% setenv MYVIVADO /test/patched_ip_repo
% compile_simlib -simulator <simulator> -directory <new_clibs_dir>

Compiling Patched IP Repository in an Existing Output Directory using
MYVIVADO

Let us assume that the patched IP repository is at the following location:

'/test/patched_ip_repo/data/ip/xilinx'

To compile the repository pointed to by MYVIVADO in an existing output directory where
the library was already compiled for the default installed IP repository, set the MYVIVADO
env variable to point to this patched IP repository and run compile_simlib.
compile_simlib will process the IP library sources from the repository set by MYVIVADO
in the existing output directory.

% setenv MYVIVADO /test/patched_ip_repo
% compile_simlib -simulator <simulator> -directory <existing_clibs_dir>

Using Xilinx Simulation Libraries
You can use Xilinx simulation libraries with any simulator that supports the VHDL-93 and
Verilog-2001 language standards. Certain delay and modeling information is built into the
libraries; this is required to simulate the Xilinx hardware devices correctly.
Logic Simulation 19
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=19

Chapter 2: Preparing for Simulation
Use non-blocking assignments for blocks within clocking edges. Otherwise, write code
using blocking assignments in Verilog. Similarly, use variable assignments for local
computations within a process, and use signal assignments when you want data-flow across
processes.

If the data changes at the same time as a clock, it is possible that the simulator will schedule
the data input to occur after the clock edge. The data does not go through until the next
clock edge, although it is possible that the intent was to have the data clocked in before the
first clock edge.

RECOMMENDED: To avoid such unintended simulation results, do not switch data signals and clock
signals simultaneously.

When you instantiate a component in your design, the simulator must reference a library
that describes the functionality of the component to ensure proper simulation. The Xilinx
libraries are divided into categories based on the function of the model.

Table 2-1 lists the Xilinx-provided simulation libraries:

1. The SIMPRIMS_VER is the logical library name to which the Verilog SIMPRIM physical library is mapped.
2. XPM is supported as a pre-compiled IP. Hence, you need not add the source file to the project. For third party

simulators, the Vivado tools will map to pre-compiled IP generated with compile_simlib.

IMPORTANT:
- You must specify different simulation libraries according to the simulation points.
- There are different gate-level cells in pre- and post-implementation netlists.

Table 2-2 lists the required simulation libraries at each simulation point.

Table 2-1: Simulation Libraries

Library Name Description VHDL Library
Name

Verilog Library
Name

UNISIM Functional simulation of Xilinx primitives. UNISIM UNISIMS_VER

UNIMACRO Functional simulation of Xilinx macros. UNIMACRO UNIMACRO_VER
UNIFAST Fast simulation library. UNIFAST UNIFAST_VER
SIMPRIM Timing simulation of Xilinx primitives. N/A SIMPRIMS_VER(1)

SECUREIP Simulation library for both functional
and timing simulation of Xilinx device
features, such as the PCIe® IP, Gigabit
Transceiver etc.,
You can find the list of IP’s under
SECUREIP at the following
location:

<Vivado_Install_Dir>/data/secu
reip

SECUREIP SECUREIP

XPM Functional simulation of Xilinx primitives XPM XPM(2)
Logic Simulation 20
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=20

Chapter 2: Preparing for Simulation
IMPORTANT: The Vivado simulator uses precompiled simulation device libraries. When updates to
libraries are installed the precompiled libraries are automatically updated.

Note: Verilog SIMPRIMS_VER uses the same source as UNISIM with the addition of specify blocks for
timing annotation. SIMPRIMS_VER is the logical library name to which the Verilog physical SIMPRIM
is mapped.

Table 2-3 lists the library locations.

The following subsections describe the libraries in more detail.

UNISIM Library
Functional simulation uses the UNISIM library and contains descriptions for device
primitives or lowest-level building blocks.

IMPORTANT: By default, the compile_simlib command compiles the static simulation files for all
the IP’s in the IP Catalog.

Table 2-2: Simulation Points and Relevant Libraries

Simulation Point UNISIM UNIFAST UNIMACRO SECUREIP SIMPRIM
(Verilog Only) SDF

1. Register Transfer Level
(RTL) (Behavioral) Yes Yes Yes Yes N/A No

2. Post-Synthesis
Simulation (Functional) Yes Yes N/A Yes N/A N/A

3. Post-Synthesis
Simulation (Timing) N/A N/A N/A Yes Yes Yes

4. Post-Implementation
Simulation (Functional) Yes Yes N/A Yes N/A N/A

5. Post-Implementation
Simulation (Timing) N/A N/A N/A Yes Yes Yes

Table 2-3: Simulation Library Locations

Library HDL
Type Location

 UNISIM Verilog <Vivado_Install_Dir>/data/verilog/src/unisims

 VHDL <Vivado_Install_Dir>/data/vhdl/src/unisims

 UNIFAST Verilog <Vivado_Install_Dir>/data/verilog/src/unifast

 VHDL <Vivado_Install_Dir>/data/vhdl/src/unifast

 UNIMACRO Verilog <Vivado_Install_Dir>/data/verilog/src/unimacro

 VHDL <Vivado_Install_Dir>/data/vhdl/src/unimacro

 SECUREIP Verilog <Vivado_Install_Dir>/data/secureip/
Logic Simulation 21
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=21

Chapter 2: Preparing for Simulation
Encrypted Component Files

Table 2-4 lists the UNISIM library component files that let you call precompiled, encrypted
library files when you include IP in a design. Include the path you require in your library
search path.

IMPORTANT: Verilog module names and file names are uppercase. For example, module BUFG is
BUFG.v, and module IBUF is IBUF.v. Ensure that UNISIM primitive instantiations adhere to an
uppercase naming convention.

VHDL UNISIM Library

The VHDL UNISIM library is divided into the following files, which specify the primitives for
the Xilinx device families:

• The component declarations (unisim_VCOMP.vhd)
• Package files (unisim_VPKG.vhd)

To use these primitives, place the following two lines at the beginning of each file:

library UNISIM;
use UNISIM.VCOMPONENTS.all;

IMPORTANT: You must also compile the library and map the library to the simulator. The method
depends on the simulator.

Note: For Vivado simulator, the library compilation and mapping is an integrated feature with no
further user compilation or mapping required.

Verilog UNISIM Library

In Verilog, the individual library modules are specified in separate HDL files. This allows the
-y library specification switch to search the specified directory for all components and
automatically expand the library.

The Verilog UNISIM library cannot be specified in the HDL file prior to using the module. To
use the library module, specify the module name using all uppercase letters.

Table 2-4: Component Files
Component File Description

<Vivado_Install_Dir>/data/verilog/src/unisim_retarget_comp.vp Encrypted
Verilog file

<Vivado_Install_Dir>/data/vhdl/src/unisims/unisim_retarget_VCOMP.vhdp Encrypted
VHDL file
Logic Simulation 22
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=22

Chapter 2: Preparing for Simulation
The following example shows the instantiated module name as well as the file name
associated with that module:

• Module BUFG is BUFG.v

• Module IBUF is IBUF.v

Verilog is case-sensitive, ensure that UNISIM primitive instantiations adhere to an
uppercase naming convention.

If you use precompiled libraries, use the correct simulator command-line switch to point to
the precompiled libraries. The following is an example for the Vivado simulator:

-L unisims_ver

Where:

-L is the library specification command.

UNIMACRO Library
The UNIMACRO library is used during functional simulation and contains macro
descriptions for selected device primitives.

IMPORTANT: You must specify the UNIMACRO library anytime you include a device macro listed in the
Vivado Design Suite 7 Series FPGA and Zynq-7000 SoC Libraries Guide (UG953) [Ref 6].

VHDL UNIMACRO Library

To use these primitives, place the following two lines at the beginning of each file:

library UNIMACRO;
use UNIMACRO.Vcomponents.all;

Verilog UNIMACRO Library

In Verilog, the individual library modules are specified in separate HDL files. This allows the
-y library specification switch to search the specified directory for all components and
automatically expand the library.

The Verilog UNIMACRO library does not need to be specified in the HDL file prior to using
the modules as is required in VHDL. To use the library module, specify the module name
using all uppercase letters. You must also compile and map the library; the method you use
depends on the simulator you choose.

IMPORTANT: Verilog module names and file names are uppercase. For example, module BUFG is
BUFG.v. Ensure that UNIMACRO primitive instantiations adhere to an uppercase naming convention.
Logic Simulation 23
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=23

Chapter 2: Preparing for Simulation
SIMPRIM Library
Use the SIMPRIM library for simulating timing simulation netlists produced after synthesis
or implementation.

IMPORTANT: Timing simulation is supported in Verilog only; there is no VHDL version of the SIMPRIM
library.

TIP: If you are a VHDL user, you can run post synthesis and post implementation functional simulation
(in which case no standard default format (SDF) annotation is required and the simulation netlist uses
the UNISIM library). You can create the netlist using the write_vhdl Tcl command. For usage
information, refer to the Vivado Design Suite Tcl Command Reference Guide (UG835) [Ref 7].

Following is an example for specifying the library for Vivado Simulator:

-L SIMPRIMS_VER

Where:

° -L is the library specification command.

° SIMPRIMS_VER is the logical library name to which the Verilog SIMPRIM has been
mapped.

SECUREIP Simulation Library
Use the SECUREIP library for functional and timing simulation of complex device
components, such as GT.

Note: Secure IP Blocks are fully supported in the Vivado simulator without additional setup.

Xilinx leverages the encryption methodology as specified in the IEEE standard
Recommended Practice for Encryption and Management of Electronic Design Intellectual
Property (IP) (IEEE-STD-P1735) [Ref 19]. The library compilation process automatically
handles encryption.

Note: See the simulator documentation for the command line switch to use with your simulator to
specify libraries.

Table 2-5 lists special considerations that must be arranged with your simulator vendor for
using these libraries.
Logic Simulation 24
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug835-vivado-tcl-commands.pdf;a=xwrite_vhdl
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=24

Chapter 2: Preparing for Simulation
IMPORTANT: See Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)
[Ref 20] for the supported version of third-party simulators.

VHDL SECUREIP Library

The UNISIM library contains the wrappers for VHDL SECUREIP. Place the following two lines
at the beginning of each file so that the simulator can bind to the entity:

Library UNISIM;
UNISIM.VCOMPONENTS.all;

Verilog SECUREIP Library

When running a simulation using Verilog code, you must reference the SECUREIP library for
most simulators.

If you use the precompiled libraries, use the correct directive to point to the precompiled
libraries. The following is an example for the Vivado simulator:

-L SECUREIP

IMPORTANT: You can use the Verilog SECUREIP library at compile time by using -f switch. The file list
is available in the following path:
<Vivado_Install_Dir>/data/secureip/secureip_cell.list.f.

UNIFAST Library
The UNIFAST library is an optional library that you can use during RTL behavioral simulation
to speed up simulation run time.

Table 2-5: Special Considerations for Using SECUREIP Libraries
Simulator Name Vendor Requirements

ModelSim SE Mentor Graphics If design entry is in VHDL, a mixed language license or
a SECUREIP OP is required. Contact the vendor for more
information. ModelSim PE

ModelSim DE
Questa Advanced
Simulator
VCS and VCS MX Synopsys
Active-HDL Aldec If design entry is VHDL only, a SECUREIP

language-neutral license is required. Contact the
vendor for more information. Riviera-PRO*
Logic Simulation 25
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=25

Chapter 2: Preparing for Simulation
IMPORTANT:
The UNIFAST library is an optional library that you can use during functional simulation to speed up
simulation runtime. UNIFAST libraries are supported for 7 series devices only. UltraScale and later
device architectures do not support UNIFAST libraries, as all the optimizations are incorporated in the
UNISIM libraries by default.
UNIFAST libraries cannot be used for sign-off simulations because the library components do not have
all the checks/features that are available in a full model.

RECOMMENDED: Use the UNIFAST library for initial verification of the design and then run a complete
verification using the UNISIM library.

The simulation run time improvement is achieved by supporting a subset of the primitive
features in the simulation mode.

Note: The simulation models check for unsupported attribute values only.

MMCME2

To reduce the simulation runtimes, the fast MMCME2 simulation model has the following
changes from the full model:

1. The fast simulation model provides only basic clock generation functions. Other
functions, such as DRP, fine phase shifting, clock stopped, and clock cascade are not
supported.

2. It assumes that input clock is stable without frequency and phase change. The input
clock frequency sampling stops after LOCKED signal is asserted HIGH.

3. The output clock frequency, phase, duty cycle, and other features are directly calculated
from input clock frequency and parameter settings.
Note: The output clock frequency is not generated from input-to-VCO clock.

4. The standard and the fast MMCME2 simulation model LOCKED signal assertion times
differ.

° Standard Model LOCKED assertion time depends on the M and D setting. For large
M and D values, the lock time is relatively long for a standard MMCME2 simulation
model.

° In the fast simulation model, the LOCKED assertion time is shortened.
Logic Simulation 26
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=26

Chapter 2: Preparing for Simulation
DSP48E1

To reduce the simulation runtimes, the fast DSP48E1 simulation model has the following
features removed from the full model.

• Pattern Detection
• OverFlow/UnderFlow
• DRP interface support

GTHE2_CHANNEL/GTHE2_COMMON

To reduce the simulation runtimes, the fast GTHE2 simulation model has the following
feature differences:

• GTH links must be synchronous with no Parts Per Million (PPM) rate differences
between the near and far end link partners.

• Latency through the GTH is not cycle accurate with the hardware operation.
• You cannot simulate the DRP production reset sequence. Bypass it when using the

UNIFAST model.

Using Verilog UNIFAST Library
To reduce the simulation runtimes, the fast GTXE2 simulation model has the following
feature differences:

• GTX links must be of synchronous with no Parts Per Million (PPM) rate differences
between the near and far end link partners.

• Latency through the GTX is not cycle accurate with the hardware operation.

Method 1: Using the complete Verilog UNIFAST library (Recommended)

Method 1 is the recommended method whereby you simulate with all the UNIFAST models.

Use the following Tcl command in Tcl console to enable UNIFAST support (fast simulation
models) in a Vivado project environment for the Vivado simulator, ModelSim, IES, or VCS:

set_property unifast true [current_fileset –simset]

See the Encrypted Component Files, page 22 for more information regarding component
files.

For more information, see the appropriate third-party simulation user guide.
Logic Simulation 27
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=27

Chapter 2: Preparing for Simulation
Method 2: Using specific UNIFAST modules

Recommended for more advanced users who want to specify which modules to simulate
with the UNIFAST models.

To specify individual library components, Verilog configuration statements are used.
Specify the following in the config.v file:

• The name of the top-level module or configuration (for example: config
cfg_xilinx;)

• The name to which the design configuration applies (for example: design test
bench;)

• The library search order for cells or instances that are not explicitly called out (for
example: default liblist unisims_ver unifast_ver;)

• The map for a particular CELL or INSTANCE to a particular library
(For example: instance testbench.inst.O1 use unifast_ver.MMCME2;)

Note: For ModelSim (vsim) only -genblk is added to hierarchy name.
(For example: instance testbench.genblk1.inst.genblk1.O1 use
unifast_ver.MMCME2; - VSIM)

Example config.v

config cfg_xilinx;
design testbench;
default liblist unisims_ver unifast_ver;
//Use fast MMCM for all MMCM blocks in design
cell MMCME2 use unifast_ver.MMCME2;
//use fast dSO48E1for only this specific instance in the design
instance testbench.inst.O1 use unifast_ver.DSP48E1;
//If using ModelSim or Questa, add in the genblk to the name
(instance testbench.genblk1.inst.genblk1.O1 use unifast_ver.DSP48E1)
endconfig
Logic Simulation 28
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=28

Chapter 2: Preparing for Simulation
Using VHDL UNIFAST Library
The VHDL UNIFAST library has the same basic structure as Verilog and can be used with
architectures or libraries. You can include the library in the test bench file.

The following example uses a drill-down hierarchy with a for call:

library unisim;
library unifast;
configuration cfg_xilinx of testbench
is for xilinx
.. for inst:netlist
. . . use entity work.netlist(inst);
.......for inst
.........for all:MMCME2
..........use entity unifast.MMCME2;
.........end for;
.......for O1 inst:DSP48E1;
.........use entity unifast.DSP48E1;
.......end for;
...end for;
..end for;
end for;
end cfg_xilinx;

Note: If you want to use a VHDL unifast model, you have to use a configuration to bind the unifast
library during elaboration.

Using Simulation Settings
You can use the simulation settings to specify the target simulator, display the simulation
set, the simulation top module name, top module (design under test), and a tabbed listing
of compilation, elaboration, simulation, netlist, and advanced options. From the Vivado IDE
Flow Navigator, right-click on Simulation and select Simulation Settings to open the
Simulation Settings in the Settings dialog box, as shown in Figure 2-3.
Logic Simulation 29
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=29

Chapter 2: Preparing for Simulation
The Settings dialog box includes the following simulation settings:

• Target Simulator: From the Simulator drop-down menu, select a simulator. Vivado®
simulator is the default simulator. However, many third-party simulators are also
supported.

• Simulator language: Select the simulator language mode. The simulation model used
for various IPs in your design varies depending on what language the IP supports.

• Simulation set: Select the simulation set that the simulation commands use by default.

IMPORTANT: The compilation and simulation settings for a previously defined simulation set are not
applied to a newly-defined simulation set.

• Simulation top module name: Enter an alternate top module to use during simulation.

X-Ref Target - Figure 2-3

Figure 2-3: Settings Dialog Box
Logic Simulation 30
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=30

Chapter 2: Preparing for Simulation
• Compiled library location: This option is displayed when you select a third party
simulator. This is a directory path for saving the compiled library results. By default, the
libraries are saved in the current working directory in Non-Project mode. The libraries
are saved in the <project>/<project>.cache/compile_simlib directory in
project mode.

• Compilation tab: This tab defines and manages compiler directives, which are stored
as properties on the simulation fileset and used by the xvlog and xvhdl utilities to
compile Verilog and VHDL source files for simulation.

Note: xvlog and xvhdl are Vivado Simulator specific commands. The applicable utilities will change
based on the target simulator.
• Elaboration tab: This tab defines and manages elaboration directives, which are stored

as properties on the simulation fileset and used by the xelab utility for elaborating and
generating a simulation snapshot. Select a property in the table to display a description
of the property and edit the value.

Note: xelab is a Vivado Simulator specific command. The applicable utilities will change based on
the target Simulator.
• Simulation tab: This tab defines and manages simulation directives, which are stored

as properties on the simulation fileset and used by the xsim application for simulating
the current project. Select a property in the table to display a description of the
property and edit the value.

• Netlist tab: This tab provides access to netlist configuration options related to SDF
annotation of the Verilog netlist and the process corner captured by SDF delays. These
options are stored as properties on the simulation fileset and are used while writing the
netlist for simulation.

• Advanced tab: This tab contains two options.

° Enable incremental compilation option: This option enables the incremental
compilation and preserves the simulation files during successive run.

° Include all design sources for simulation option: By default, this option is
enabled. Selecting this option ensures that all the files from design sources along
with the files from the current simulation set will be used for simulation. Even if you
change the design sources, the same changes will be updated when you launch
behavioral simulation.

CAUTION! Changing the settings in the Advanced tab should be done only if necessary. The Include
all design sources for simulation check box is selected by default. Deselecting the box could produce
unexpected results. As long as the check box is selected, the simulation set includes Out-of-Context
(OOC) IP, IP Integrator files, and DCP.

Note: For detailed information on the properties in the Compilation, Elaboration, Simulation,
Netlist, and Advanced tabs, see Appendix A, Compilation, Elaboration, Simulation, Netlist, and
Advanced Options.
Logic Simulation 31
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=31

Chapter 2: Preparing for Simulation
Understanding the Simulator Language Option
Most Xilinx IP deliver behavioral simulation models for a single language only, effectively
disabling simulation for language-locked simulators if you are not licensed for the
appropriate language. The simulator_language property ensures that an IP delivers a
simulation model for any given language. (Figure 2-3, above, shows the location at which
you can set the simulator language). For example, if you are using a single language
simulator, you set the simulator_language property to match the language of the
simulator.

The Vivado Design Suite ensures the availability of a simulation model by using the
available synthesis files of an IP to generate a language-specific structural simulation
model on demand. For cases in which a behavioral model is missing or does not match the
licensed simulation language, the Vivado tools automatically generate a structural
simulation model to enable simulation. Otherwise, the existing behavioral simulation model
for the IP is used. If no synthesis or simulation files exist, simulation is not supported.

Note: The simulator_language property cannot deliver a language-specific simulation netlist
file if the generated Synthesized checkpoint (.dcp) is disabled.
1. In the Flow Navigator, click IP Catalog to open the IP Catalog.
2. Right-click the appropriate IP and select Customize IP from the popup menu.
3. In the Customize IP dialog box, click OK.

The Generate Output Products dialog box (shown in Figure 2-4) opens.
Logic Simulation 32
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=32

Chapter 2: Preparing for Simulation
Table 2-6 illustrates the function of the simulator_language property.

X-Ref Target - Figure 2-4

Figure 2-4: Generate Output Products Dialog Box

Table 2-6: Function of simulator_language Property
IP Delivered Simulation

Model simulator_language Value Simulation Model Used

IP delivers VHDL and Verilog
behavioral models

Mixed Behavioral model (target_language)
Verilog Verilog behavioral model
VHDL VHDL behavioral model

IP delivers Verilog behavioral
model only

Mixed Verilog behavioral model
Verilog Verilog behavioral model
VHDL VHDL simulation netlist generated from

DCP
IP delivers VHDL behavioral
model only

Mixed VHDL behavioral model
Verilog Verilog simulation netlist generated from

DCP
VHDL VHDL behavioral model
Logic Simulation 33
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=33

Chapter 2: Preparing for Simulation
Setting the Simulation Runtime Resolution
Set the simulation runtime resolution using 'timescale in test bench. There is no
simulator performance gain achieved through use of coarser resolution with the Xilinx
simulation models. (In Xilinx simulation models, most simulation time is spent in delta
cycles, and delta cycles are not affected by simulator resolution.)

IMPORTANT: Run simulations using a time resolution of 1 fs. Some Xilinx primitive components, such
as GT, require a 1 fs resolution to work properly in either functional or timing simulation.

See Simulation Options in Appendix A for detailed information on Simulation Options in
Settings dialog box.

IMPORTANT: Picoseconds are used as the minimum resolution because testing equipment can measure
timing only to the nearest picosecond resolution.

Adding or Creating Simulation Source Files
To add simulation sources to a Vivado Design Suite project:

1. Select File > Add Sources, or click Add Sources in the Flow Navigator.

The Add Sources wizard opens.

2. Select Add or Create Simulation Sources, and click Next.

The Add or Create Simulation Sources dialog box opens. The options are:

° Add Files: Invokes a file browser so you can select simulation source files to add to
the project.

IP delivers no behavioral
models

Mixed, Verilog, VHDL Netlist generated from DCP
(target_language)

Notes:
1. Where available, behavioral simulation models always take precedence over structural simulation models. The

Vivado tools select behavioral or structural models automatically, based on model availability. It is not possible to
override the automated selection.

2. Use the target_language property when either language can be used for simulation
Tcl: set_property target_language VHDL [current_project]

Table 2-6: Function of simulator_language Property (Cont’d)

IP Delivered Simulation
Model simulator_language Value Simulation Model Used
Logic Simulation 34
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=34

Chapter 2: Preparing for Simulation
° Add Directories: Invokes directory browser to add all simulation source files from
the selected directories. Files in the specified directory with valid source file
extensions are added to the project.

° Create File: Invokes the Create Source File dialog box where you can create new
simulation source files. See this link in the Vivado Design Suite User Guide:
System-Level Design Entry (UG895) [Ref 1] for more information about project
source files.

° Buttons on the side of the dialog box let you do the following:
- Remove: Removes the selected source files from the list of files to be added.
- Move Up: Moves the file up in the list order.
- Move Down: Moves the file down in the list order.

° Check boxes in the wizard provide the following options:
- Scan and add RTL include files into project: Scans the added RTL file and adds

any referenced include files.
- Copy sources into project: Copies the original source files into the project and

uses the local copied version of the file in the project.

If you elected to add directories of source files using the Add Directories
command, the directory structure is maintained when the files are copied locally
into the project.

- Add sources from subdirectories: Adds source files from the subdirectories of
directories specified in the Add Directories option.

- Include all design sources for simulation: Includes all the design sources for
simulation.

VIDEO: For a demonstration of this feature, see the Vivado Design Suite QuickTake Video: Logic
Simulation.

Working with Simulation Sets
The Vivado IDE stores simulation source files in simulation sets that display in folders in the
Sources window, and are either remotely referenced or stored in the local project directory.

The simulation set lets you define different sources for different stages of the design. For
example, there can be one test bench source to provide stimulus for behavioral simulation
of the elaborated design or a module of the design, and a different test bench to provide
stimulus for timing simulation of the implemented design.

When adding simulation sources to the project, you can specify which simulation source set
to use.
Logic Simulation 35
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/logic-simulation.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/logic-simulation.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug895-vivado-system-level-design-entry.pdf;a=xWorkingWithSourceFiles
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=35

Chapter 2: Preparing for Simulation
To edit a simulation set:

1. In the Sources window popup menu, select Simulation Sources > Edit Simulation
Sets, as shown in Figure 2-5.

The Add or Create Simulation Sources wizard opens.

2. From the Add or Create Simulation Sources wizard, select Add Sources.

This adds the sources associated with the project to the newly-created simulation set.

3. Add additional files as needed.

The selected simulation set is used for the active design run.

Generating a Netlist
To run simulation of a synthesized or implemented design run the netlist generation
process. The netlist generation Tcl commands can take a synthesized or implemented
design database and write out a single netlist for the entire design.

The Vivado Design Suite generates a netlist automatically when you launch the simulator
using the IDE or the launch_simulation command.

X-Ref Target - Figure 2-5

Figure 2-5: Edit Simulation Sets Option
Logic Simulation 36
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=36

Chapter 2: Preparing for Simulation
Netlist generation Tcl commands can write SDF and the design netlist. The Vivado Design
Suite provides the following:

• Tcl Commands:

° write_verilog: Verilog netlist

° write_vhdl: VHDL netlist

° write_sdf: SDF generation

TIP: The SDF values are only estimates early in the design process (for example, during synthesis) As
the design process progresses, the accuracy of the timing numbers also progress when there is more
information available in the database.

Generating a Functional Netlist
The Vivado Design Suite supports writing out a Verilog or VHDL structural netlist for
functional simulation. The purpose of this netlist is to run simulation (without timing) to
check that the behavior of the structural netlist matches the expected behavioral model
(RTL) simulation.

The functional simulation netlist is a hierarchical, folded netlist that is expanded to the
primitive module or entity level; the lowest level of hierarchy consists of primitives and
macro primitives.

These primitives are contained in the following libraries:

• UNISIMS_VER simulation library for Verilog simulation
• UNISIMS simulation library for VHDL simulation

In many cases, you can use the same test bench that you used for behavioral simulation to
perform a more accurate simulation.

The following Tcl commands generate Verilog and VHDL functional simulation netlist,
respectively:

write_verilog -mode funcsim <Verilog_Netlist_Name.v>

write_vhdl -mode funcsim <VHDL_Netlist_Name.vhd>

Generating a Timing Netlist
You can use a Verilog timing simulation to verify circuit operation after the Vivado tools
have calculated the worst-case placed and routed delays.

In many cases, you can use the same test bench that you used for functional simulation to
perform a more accurate simulation.
Logic Simulation 37
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=37

Chapter 2: Preparing for Simulation
Compare the results from the two simulations to verify that your design is performing as
initially specified.

There are two steps to generating a timing simulation netlist:

1. Generate a simulation netlist file for the design.
2. Generate an SDF delay file with all the timing delays annotated.

IMPORTANT: Vivado IDE supports Verilog timing simulation only.

TIP: If you are a VHDL user, you can run post synthesis and post implementation functional simulation
(in which case no standard default format (SDF) annotation is required and the simulation netlist uses
the UNISIM library). You can create the netlist using the write_vhdl Tcl command. For usage
information, see the Vivado Design Suite Tcl Command Reference Guide (UG835) [Ref 7].

The following is the Tcl syntax for generating a timing simulation netlist:

write_verilog -mode timesim -sdf_anno true <Verilog_Netlist_Name>
Logic Simulation 38
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug835-vivado-tcl-commands.pdf;a=xwrite_vhdl
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=38

Chapter 3

Simulating with Third-Party Simulators

Introduction
The Vivado® Design Suite supports simulation using third-party tools. Simulation with
third-party tools can be performed directly from within the Vivado Integrated Design
Environment (IDE) or using a custom external simulation environment.

The following third-party tools are supported:

• Mentor Graphics Questa Advanced Simulator/ModelSim: Integrated in the Vivado IDE.
• Cadence Incisive Enterprise Simulator (IES): Integrated in the Vivado IDE.
• Synopsys VCS and VCS MX: Integrated in the Vivado IDE.
• Aldec Active-HDL and Rivera-PRO

Aldec offers support for these simulators.
• Cadence Xcelium Parallel Simulator: Integrated in the Vivado IDE

The Vivado Design Suite User Guide: Using the Vivado IDE (UG893) [Ref 3] describes the use
of the Vivado IDE.

For links to more information on your third party simulator, see [Ref 14].

IMPORTANT: Use only supported versions of third-party simulators. For more information on
supported Simulators and Operating Systems, see the Compatible Third-Party Tools table in the Vivado
Design Suite User Guide: Release Notes, Installation, and Licensing (UG973) [Ref 20].
Logic Simulation 39
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=39

Chapter 3: Simulating with Third-Party Simulators
Running Simulation Using Third Party Simulators
with Vivado IDE
IMPORTANT: Confirm the compiled library location (the path at which compile_simlib was invoked
or the one you specified with the -directory option) before running a third-party simulation.

From the Vivado IDE, you can compile, elaborate, and simulate the design based on the
simulation settings and launch the simulator in a separate window.

When you run simulation prior to synthesizing the design, the simulator runs a behavioral
simulation. Following each successful design step (synthesis and implementation), the
option to run a functional or timing simulation becomes available. You can initiate a
simulation run from the Flow Navigator or by typing in a Tcl command.

From the Flow Navigator, click Run Simulation, and select the type of simulation you want
to run, as shown in the following figure:

To use the corresponding Tcl command, type: launch_simulation

TIP: This command provides a -scripts_only option that can be used to write a DO or SH file,
depending on the target simulator. Use the DO or SH file to run simulations outside the IDE.

Note: If you are running VCS simulator outside of Vivado, make sure to use -full64 switch.
Otherwise, the simulator will not run if the design contains Xilinx IP.

IMPORTANT: Use the following command to run the 32-bit Simulator:
set_property 32bit 1 [current_fileset -simset]

Note: Xilinx Verification IP (VIP) uses System Verilog construct. If you are using any IP which
instantiates VIP, make sure that your Simulator supports System Verilog.

X-Ref Target - Figure 3-1

Figure 3-1: Types of Simulation
Logic Simulation 40
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=40

Chapter 3: Simulating with Third-Party Simulators
Running Timing Simulation Using Third-Party Tools
TIP: Post-Synthesis timing simulation uses the estimated timing delay from the synthesized netlist.
Post-Implementation timing simulation uses actual timing delays.

When you run Post-Synthesis and Post-Implementation timing simulation, the simulators
include:

• Gate-level netlist containing SIMPRIMS library components
• SECUREIP
• Standard Delay Format (SDF) files

You define the overall design functionality in the beginning. When the design is
implemented, accurate timing information is available.

To create the netlist and SDF, the Vivado Design Suite:

• Calls the netlist writer, write_verilog with the -mode timesim switch and
write_sdf (SDF annotator)

• Sends the generated netlist to the target simulator

You control these options using Simulation Settings as described in Using Simulation
Settings, page 29.

IMPORTANT: Post-Synthesis and Post-Implementation timing simulations are supported for Verilog
only. There is no support for VHDL timing simulation. If you are a VHDL user, you can run post synthesis
and post implementation functional simulation (in which case no SDF annotation is required and the
simulation netlist uses the UNISIM library). You can create the netlist using the write_vhdl Tcl
command. For usage information, refer to the Vivado Design Suite Tcl Command Reference Guide
(UG835) [Ref 7]

Post-Synthesis Timing Simulation

When synthesis runs successfully, the Run Simulation > Post-Synthesis Timing
Simulation option becomes available.

After you select a post-synthesis timing simulation, the timing netlist and the SDF file are
generated. The netlist files includes $sdf_annotate command so that the generated SDF
file is picked up.

Post-Implementation Timing Simulations

When post-implementation is successful, the Run Simulation > Post-Implementation
Timing Simulation option becomes available.
Logic Simulation 41
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=41

Chapter 3: Simulating with Third-Party Simulators
After you select a post-implementation timing simulation, the timing netlist and the SDF file
are generated. The netlist files includes $sdf_annotate command so that the generated
SDF file is picked up.

Annotating the SDF File for Timing Simulation

When you specified simulation settings, you specified whether or not to create an SDF file
and whether the process corner would be set to fast or slow.

TIP: To find the SDF file options settings, in the Vivado IDE Flow Navigator, right-click Simulation and
select Simulation Settings. In the Settings dialog box, select Simulation category and click Netlist
tab.

Based on the specified process corner, the SDF file contains different min and max
numbers.

RECOMMENDED: Run two separate simulations to check for setup and hold violations.

To run a setup check, create an SDF file with -process_corner slow, and use the max column
from the SDF file.

To run a hold check, create an SDF file with the -process_corner fast, and use the min
column from the SDF file. The method for specifying which SDF delay field to use is
dependent on the simulation tool you are using. Refer to the specific simulation tool
documentation for information on how to set this option.

To get full coverage run all four timing simulations, specify as follows:

° Slow corner: SDFMIN and SDFMAX

° Fast corner: SDFMIN and SDFMAX

Running Standalone Timing Simulation

If you are running timing simulation from Vivado IDE, it will add the timing simulation
related switches to simulator. If you run standalone timing simulation, make sure to pass the
following switch to simulators during elaboration:

For IUS:

-PULSE_R/0 -PULSE_E/0

During elaboration (with ncelab)
Logic Simulation 42
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=42

Chapter 3: Simulating with Third-Party Simulators
For VCS:
+pulse_e/<number> and +pulse_r/<number> +transport_int_delays

During elaboration (with VCS)

For ModelSim/Questa Advanced Simulator:
+transport_int_delays +pulse_int_e/0 +pulse_int_r/0

During elaboration (With vsim)

IMPORTANT: The Vivado simulator models use interconnect delays; consequently, additional switches
are required for proper timing simulation, as follows: -transport_int_delays -pulse_r 0
-pulse_int_r 0. Table 7-2, page 141 provides descriptions for the these commands.

Dumping SAIF for Power Analysis
The Switching Activity Interchange Format (SAIF) is an ASCII report that assists in extracting
and storing switching activity information generated by simulator tools. This switching
activity can be back-annotated into the Xilinx® power analysis and optimization tools for
the power measurements and estimations.

Dumping SAIF in Questa Advanced Simulator/ModelSim
Questa Advanced Simulator/ModelSim uses explicit power commands to dump an SAIF file,
as follows:

1. Specify the scope or signals to dump, by typing:
power add <hdl_objects>

2. Run simulation for specific time (or run -all).
3. Dump out the power report, by typing:

power report -all filename.saif

For more detailed usage or information about each commands, see the ModelSim
documentation [Ref 14].

Example DO File

power add tb/fpga/*
run 500us
power report -all -bsaif routed.saif
quit
Logic Simulation 43
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=43

Chapter 3: Simulating with Third-Party Simulators
Dumping SAIF in IES
IES provides power commands to generate SAIF with specific requirements.

1. Specify the scope to be dumped and the output SAIF file name, using the following Tcl
command:
dumpsaif -scope hdl_objects -output filename.saif

2. Run the simulation.
3. End the SAIF dump by typing the following Tcl command:

dumpsaif -end

For more detailed usage or information on IES commands, see the Cadence IES
documentation [Ref 14].

Dumping SAIF in VCS
VCS provides power commands to generate SAIF with specific requirements.

1. Specify the scope and signals to be generated, by typing:
power <hdl_objects>

2. Enable SAIF dumping. You can use the command line in the simulator workspace:
power -enable

3. Run simulation for a specific time.
4. Disable power dumping and report the SAIF, by typing:

power -disable
power -report filename.saif

For more detailed usage or information about each command, see the Synopsys VCS
documentation.

See Power Analysis Using Vivado Simulator for more information about Switching Activity
Interchange Format (SAIF).

Dumping VCD for Power Analysis
You can use a Value Change Dump (VCD) file to capture simulation output. The Tcl
commands are based on Verilog system tasks related to dumping values.
Logic Simulation 44
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=44

Chapter 3: Simulating with Third-Party Simulators
Dumping VCD in Questa Advanced Simulator/ModelSim
Questa Advanced Simulator/ModelSim uses explicit VCD commands to dump a VCS file, as
follows:

1. Open the VCD file:
vcd file my_vcdfile.vcd

2. Specify the scope or signals to dump:
vcd add <hdl_objects>

3. Run simulation for a specified period of time (or run -all).

For more detailed usage or information about each commands, see the ModelSim
documentation [Ref 14].

Example DO File:

vcd file my_vcdfile.vcd
vcd add -r tb/fpga/*
run 500us
quit

Dumping VCD in IES
1. The following command opens a VCD database named vcddb. The filename is

verilog.dump. The -timescale option sets the $timescale value in the VCD file
to 1 ns. Value changes in the VCD file are scaled to 1 ns.
database -open -vcd vcddb -into verilog.dump -default -timescale ns

2. The following probe command creates a probe on all ports in the scope top.counter.
Data is sent to the default VCD database.
probe -create -vcd top.counter -ports

3. Run the simulation.

Dumping VCD in VCS
In VCS, you can generate a VCD file using the dumpvar command. Specify the file name
and instance name (by default its complete hierarchy).

vcs +vcs+dumpvars+test.vcd
Logic Simulation 45
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=45

Chapter 3: Simulating with Third-Party Simulators
Simulating IP
In the following example, the accum_0.xci file is the IP you generated from the Vivado IP
catalog. Use the following commands to simulate this IP in VCS:

set_property target_simulator VCS [current_project]
set_property compxlib.vcs_compiled_library_dir
<compiled_library_location>[current_project]
launch_simulation -noclean_dir -of_objects [get_files accum_0.xci]

Using a Custom DO File During an Integrated
Simulation Run
If you have some specific set of commands (custom DO file) that you want to invoke just
before running the simulation, add those commands in a file and pass that using the
appropriate command, as shown below:

In Questa Advanced Simulator
set_property -name {questa.simulate.tcl.post} -value {<AbsolutePathOfFileLocation>}
-objects [get_filesets sim_1]

In Modelsim
set_property -name {modelsim.simulate.tcl.post} -value {<AbsolutePathOfFileLocation>}
-objects [get_filesets sim_1]

In IES
set_property -name {ies.simulate.tcl.post} -value {<AbsolutePathOfFileLocation>} -objects
[get_filesets sim_1]

In VCS
set_property -name {vcs.simulate.tcl.post} -value {<AbsolutePathOfFileLocation>} -objects
[get_filesets sim_1]

In Xcelium
set_property -name {xcelium.simulate.tcl.post} -value {<AbsolutePathOfFileLocation>}
-objects
[get_filesets sim_1]
Logic Simulation 46
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=46

Chapter 3: Simulating with Third-Party Simulators
Simulation Step Control Constructs for ModelSim and Questa
The following tables outline the constructs used for controlling the step execution based on
the do file format:

Native do file: In native do file format, the compile and elaborate shell scripts calls
“source <tb>_compile/elaborate.do”. The simulate script calls ”vsim -c -do “do
{<tb>_simulate.do}"“.

The following is the default format for native do file:
(project.writeNativeScriptForUnifiedSimulation is 1)

Classic do file: In classic do file format, the compile and elaborate shell script calls ”vsim
-c -do "do {<tb>_compile/elaborate.do}"“. The simulate shell script calls vsim -c -do "do
{<tb>_simulate.do}".

The following is the default format for classic do file:
(project.writeNativeScriptForUnifiedSimulation is 0)

Running Third-Party Simulators in Batch Mode
The Vivado Design Suite supports batch or scripted simulation for third party verification.
With the design files gathered, and the scripts generated to support your target simulator,
you can inspect the scripts and incorporate them into your verification environment. Xilinx
recommends that you use the export_simulation scripts as a starting point for your
simulation flow rather than building a custom API to generate scripts. See Exporting
Simulation Files and Scripts, page 126 for more information on exporting simulation scripts.

Table 3-1: Simulation Step Control Construct Parameters
Parameter Description Default

project.writeNativeScriptForUnifiedSimulation write a pure .do file with simulator command
only (no Tcl or Shell constructs)

0 (false)

simulator.quitOnSimulationComplete Quit simulator on simulator completion for
ModelSim/Questa Advanced Simulator
simulation. To disable quit, set this parameter to
false.

1 (true)

simulator.modelsimNoQuitOnError Do not quit on error or break by default for
ModelSim/Questa Advanced Simulator
simulation. To quit simulation on error or break,
set this parameter to false.

1 (true)

project.enable2StepFlowForModelSim Execute 2-step simulation flow for
ModelSim-PE/DE/SE editions for Unified
Simulation.

1 (true)
Logic Simulation 47
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=47

Chapter 3: Simulating with Third-Party Simulators
Make sure that you have the correct environment setup for the simulator before running
the scripts. See Using Simulation Settings, page 29 for more information on configuring
your simulator. See the User Guide of your specific simulator for the details of running
batch or scripted mode.
Logic Simulation 48
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=48

Chapter 4

Simulating with Vivado Simulator

Introduction
The Vivado simulator is a Hardware Description Language (HDL) event-driven simulator that
supports functional and timing simulations for VHDL, Verilog, SystemVerilog (SV), and
mixed VHDL/Verilog or VHDL/SV designs.

The Vivado simulator supports the following features:

• Source code debugging (step, breakpoint, current value display)
• SDF annotation for timing simulation
• VCD dumping
• SAIF dumping for power analysis and optimization
• Native support for HardIP blocks (such as serial transceivers and PCIe®)
• Multi-threaded compilation
• Mixed language (VHDL, Verilog, or SystemVerilog design constructs)
• Single-click simulation re-compile and re-launch
• One-click compilation and simulation
• Built-in support for Xilinx® simulation libraries
• Real-time waveform update

See the Vivado Design Suite Tutorial: Logic Simulation (UG937) [Ref 10] for a step-by-step
demonstration of how to run Vivado simulation.

Running the Vivado Simulator
IMPORTANT: If you are using the Vivado simulator, be sure to specify all appropriate project settings
for your design before running simulation. For supported third-party simulators, see Chapter 3,
Simulating with Third-Party Simulators.
Logic Simulation 49
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=49

Chapter 4: Simulating with Vivado Simulator
From the Flow Navigator, click Run Simulation and select a simulation type to invoke the
Vivado simulator workspace, shown in the figure below.

Main Toolbar
The main toolbar provides one-click access to the most commonly used commands in the
Vivado IDE. When you hover over an option, a tool tip appears that provides more
information.

Run Menu
The menus provide the same options as the Vivado IDE with the addition of a Run menu
after you have run a simulation.

The Run menu for simulation is shown in Figure 4-2.

X-Ref Target - Figure 4-1

Figure 4-1: Vivado Simulator Workspace
Logic Simulation 50
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=50

Chapter 4: Simulating with Vivado Simulator
The Vivado simulator Run menu options:

• Restart: Lets you restart an existing simulation from time 0.
Tcl Command: restart

• Run All: Lets you run an open simulation to completion.
Tcl Command: run -all

• Run For: Lets you specify a time for the simulation to run.
Tcl Command: run <time>

TIP: While you can always specify time units in the run command such as run 100 ns, you can also
omit the time unit. If you omit the time unit, the Vivado Simulator will assume the time unit of the
TIME_UNIT Tcl property. To view the TIME_UNIT property use the Tcl command get_property
time_unit [current_sim]. To change the TIME_UNIT property use the Tcl command
set_property time_unit <unit> [current_sim], where <unit> is one of the following: fs, ps,
ns, us, ms, and s.

• Step: Runs the simulation up to the next HDL source line.
• Break: Lets you pause a running simulation.
• Delete All Breakpoints: Deletes all breakpoints.
• Relaunch Simulation: Recompiles the simulation files and restarts the simulation. See

Re-running the Simulation After Design Changes (relaunch) for more information.

X-Ref Target - Figure 4-2

Figure 4-2: Simulation Run Menu Options
Logic Simulation 51
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=51

Chapter 4: Simulating with Vivado Simulator
Simulation Toolbar
When you run the Vivado simulator, the simulation-specific toolbar (shown in the figure
below) opens to the right of the main toolbar.

These are the same buttons labeled in Figure 4-2, page 51, above (without the Delete All
Breakpoints option), and they are provided for ease of use.

Simulation Toolbar Button Descriptions

Hover over the toolbar buttons for tool-tip descriptions.

• Restart: resets the simulation time to zero.
• Run all: runs the simulation until it completes all events or until an HDL statement

indicates that the simulation should stop.
• Run For: runs for a specified period of time.
• Step: runs the simulation until the next HDL statement.
• Break: Pauses the current simulation.
• Relaunch: Recompiles the simulation sources and restarts the simulation (after making

code changes, for example). See Re-running the Simulation After Design Changes
(relaunch) for more information.

X-Ref Target - Figure 4-3

Figure 4-3: Simulation Toolbar
Logic Simulation 52
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=52

Chapter 4: Simulating with Vivado Simulator
Sources Window
The Sources window displays the simulation sources in a hierarchical tree, with views that
show Hierarchy, IP Sources, Libraries, and Compile Order, as shown in Figure 4-4.

The Sources buttons are described by tool tips when you hover the mouse over them. The
buttons let you examine, expand, collapse, add to, open, filter and scroll through files.

You can also open or add a source file by right-clicking on the source object and selecting
the Open File or Add Sources options.

Scopes Window
A scope is a hierarchical partition of an HDL design. Whenever you instantiate a design unit
or define a process, block, package, or subprogram, you create a scope.

In the scopes window (shown in the figure below), you can see the design hierarchy. When
you select a scope in the Scopes hierarchy, all HDL objects visible from that scope appear in
the Objects window. You can select HDL objects in the Objects window and add them to the
waveform viewer.

X-Ref Target - Figure 4-4

Figure 4-4: Sources Window
Logic Simulation 53
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=53

Chapter 4: Simulating with Vivado Simulator
Filtering Scopes

• Click Settings option on the scopes sub-menu to toggle between showing or hiding
(check or uncheck) the corresponding scope type.

TIP: When you hide a scope using Setting option, all scopes inside that scope are also hidden regardless
of type. For example, in the figure above, clicking the Verilog Module button to hide all Verilog module
scopes would hide not only the bft_tb scope but also uut (even though uut is a VHDL entity scope).

• To limit the display to scopes containing a specified string, click the Search button
and type the string in the text box.

The objects displayed in the Objects window change (or are filtered) based on the current
scope. Select the current scope to change the objects in the Objects window.

X-Ref Target - Figure 4-5

Figure 4-5: Scopes Window
Logic Simulation 54
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=54

Chapter 4: Simulating with Vivado Simulator
When you right-click a scope, a popup menu (shown in Figure 4-6) provides the following
options:

• Add to Wave Window: Adds all viewable HDL objects of the selected scope to the
waveform configuration.

TIP: HDL objects of large bit width can slow down the display of the waveform viewer. You can filter out
such objects by setting a “display limit” on the wave configuration before issuing the Add to Wave
Window command. To set a display limit, use the Tcl command set_property DISPLAY_LIMIT
<maximum bit width> [current_wave_config].

The Add to Wave Window command might add a different set of HDL objects from the
set displayed in the Objects window. When you select a scope in the Scopes window, the
Objects window might display HDL objects from enclosing scopes in addition to objects
defined directly in the selected scope. The Add to Wave Window command, on the
other hand, adds objects from the selected scope only.

Alternately, you can drag and drop items in the Objects window into the Name column
of the Wave window.

IMPORTANT: The Wave window displays the value changes of an object over time, starting from the
simulation time at which the object was added.

TIP: To display object values prior to the time of insertion, the simulation must be restarted. To avoid
having to restart the simulation because of missing value changes: issue the log_wave -r / Tcl

X-Ref Target - Figure 4-6
Logic Simulation 55
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=55

Chapter 4: Simulating with Vivado Simulator
command at the start of a simulation run to capture value changes for all display-able HDL objects in
your design. For more information, see Using the log_wave Tcl Command, page 120.

Changes to the waveform configuration, including creating the waveform configuration
or adding HDL objects, do not become permanent until you save the WCFG file.

• Go To Source Code: Opens the source code at the definition of the selected scope.
• Go To Instantiation Source Code: For Verilog modules and VHDL entity instances,

opens the source code at the point of instantiation for the selected instance.
• Set Current Scope to Active: Set the current scope to selected scope. The selected

scope becomes the active simulation scope (i.e. get_property active_scope
[current_sim]). Active simulation scope is the HDL process scope, where the
simulation is currently paused. When used by disabling the follow active scope in
setting, Vivado Simulator will remember the last current_scope selection even when
simulation proceeds. When a break-point is hit, current_scope will still point to last
scope which is set as active scope

• Log to Wave Database: You can log either of the following:

° The objects of current scope

° The objects of the current scope and all scope below the current scope.

TIP: By default, the Vivado Simulator suppresses the logging of large HDL objects. To change the size
limit of logged objects, use the set_property trace_limit <size> [current_sim] Tcl
command, where <size> is the number of scalar elements in the HDL object.

In the source code text editor, you can hover over an identifier in the code get the value,
as shown in Figure 4-7.

IMPORTANT: For this feature to work, be sure you have the scope associated with the source code
selected in the Scopes window.

TIP: Because the top module is not instantiated, the “Go to Instantiation Source Code” right-click
option (shown in the figure above) is grayed out when the top module is selected.

TIP: Use log_wave to log the objects of current scope or below. Post simulation, you can add any objects
on waveform and see the plot starting from time 0 till current simulation.
Logic Simulation 56
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=56

Chapter 4: Simulating with Vivado Simulator
Additional Scopes and Sources Options

In either the Scopes or the Sources window, a search field displays when you select the
Show Search button .

As an equivalent to using the Scopes and Objects windows, you can navigate the HDL
design by typing the following in the Tcl Console:

get_scopes
current_scope
report_scopes
report_values

TIP: To access source files for editing, you can open files from the Scopes or Objects window by
selecting Go to Source Code, as shown in Figure 4-8.

X-Ref Target - Figure 4-7

Figure 4-7: Source Code with Identifier Value Displayed
Logic Simulation 57
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=57

Chapter 4: Simulating with Vivado Simulator
TIP: After you have edited source code and saved the file, you can click the Relaunch button to
recompile and relaunch simulation without having to close and reopen the simulation.

Objects Window
The Objects window displays the HDL simulation objects associated with the scope selected
in the Scopes window, as shown in Figure 4-9.

X-Ref Target - Figure 4-8

Figure 4-8: Context Menu in Scopes Window
Logic Simulation 58
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=58

Chapter 4: Simulating with Vivado Simulator
Icons beside the HDL objects show the type or port mode of each object. This view lists the
Name, Value, and Data Type of the simulation objects.

You can obtain the current value of an object by typing the following in the Tcl Console.

get_value <hdl_object>

TIP: To limit the number of digits to display for vectors, use the set_property
array_display_limit <bits> [current_sim] command, where <bits> is the number of bits
to display.

Table 4-1 briefly describes the options available at the top of the Objects window. Click
Settings to view the selected objects in the Object window. Use this to filter or limit the
contents of the Objects window.

X-Ref Target - Figure 4-9

Figure 4-9: Objects Window

Table 4-1: HDL Object Options
Button Description

The Search button, when selected, opens a field in which you can
enter an object name on which to search.
The Settings button, when selected, allows you to display or hide
various kinds of HDL objects in Objects window.
Logic Simulation 59
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=59

Chapter 4: Simulating with Vivado Simulator
Objects Context Menu

When you right-click an object in the Objects window, a context menu (shown in
Figure 4-10) appears. The options in the context menu are described below.

• Add to Wave Window: Add the selected object to the waveform configuration.
Alternately, you can drag and drop the objects from the Objects window to the Name
column of the Wave window.

• Log to Wave Database: Logs events of the selected object to the waveform database
(WDB) for later viewing in the wave window.

TIP: By default, the Vivado Simulator suppresses the logging of large HDL objects. To change the size
limit of logged objects, use the set_property trace_limit <size> [current_sim] Tcl
command, where <size> is the number of scalar elements in the HDL object.

• Show in Wave Window: Highlights the selected object in the Wave window.
• Default Radix: Set the default radix for all objects in the objects window and text

editor. The default radix is Hexadecimal. You can change this option from the context
menu.

Tcl command:

set_property radix <new radix> [current_sim]

where <new radix> is any of the following:

• bin
• unsigned (for unsigned decimal)
• hex
• dec (for signed decimal)
• ascii

X-Ref Target - Figure 4-10

Figure 4-10: Context Menu in Objects Window
Logic Simulation 60
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=60

Chapter 4: Simulating with Vivado Simulator
• oct
• smag (for signed magnitude)
Note: If you need to change the radix of an individual signal, use radix option from the context
menu.
• Radix: Select the numerical format to use when displaying the value of the selected

object in the Objects window and in the source code window.

You can change the radix of an individual object as follows:

a. Right-click an item in the Objects window.
b. From the context menu, select Radix and the format you want to use:

- Default
- Binary
- Hexadecimal
- Octal
- ASCII
- Unsigned Decimal
- Signed Decimal
- Signed Magnitude

TIP: If you change the radix in the Objects window, it will not be reflected in the Wave window.

• Show as Enumeration: Select to display the values of a SystemVerilog enumeration
signal or variable using enumeration labels.
Note: This menu item is enabled only for SystemVerilog enumerations. If unchecked, all values
of the enumeration object display numerically according to the radix set for the object. If
checked, those values for which the enumeration declaration defines a label display the label
text, and all other values display numerically.

• Report Drivers: Display in the Tcl Console a report of the HDL processes that assign
values to the selected object.

• Go To Source Code: Open the source code at the definition of the selected object.
• Force Constant: Forces the selected object to a constant value. For more information

on forcing objects, see the section Force Constant in Chapter 6.
• Force Clock: Forces the selected object to an oscillating value. For more information,

see the section Force Clock in Chapter 6.
• Remove Force: Removes any force on the selected object. For more information, see

the section Remove Force in Chapter 6.
Logic Simulation 61
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=61

Chapter 4: Simulating with Vivado Simulator
TIP: If you notice that some HDL objects do not appear in the Waveform Viewer, it is because Vivado
simulator does not support waveform tracing of some HDL objects, such as named events in Verilog
and local variables.

Wave Window
When you invoke the simulator it opens a Wave window by default. The Wave window
displays a new wave configuration consisting of the traceable HDL objects from the top
module of the simulation, as shown in Figure 4-11.

TIP: On closing and reopening a project, you must rerun simulation to view the Wave window. If,
however, you unintentionally close the default Wave window while a simulation is active, you can
restore it by selecting Window > Waveform from the main menu.

To add an individual HDL object or set of objects to the Wave window: in the Objects
window, right-click an object or objects and select the Add to Wave Window option from
the context menu (shown in Figure 4-9, page 59).

To add an object using the Tcl command type: add_wave <HDL_objects>.

Using the add_wave command, you can specify full or relative paths to HDL objects.

For example, if the current scope is /bft_tb/uut, the full path to the reset register under
uut is /bft_tb/uut/reset: the relative path is reset.

X-Ref Target - Figure 4-11

Figure 4-11: Wave Window
Logic Simulation 62
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=62

Chapter 4: Simulating with Vivado Simulator
TIP:

The add_wave command accepts HDL scopes as well as HDL objects. Using add_wave with a scope is
equivalent to the Add To Wave Window command in the Scopes window.

HDL objects of large bit width can slow down the display of the waveform viewer. You can filter out such
objects by setting a “display limit” on the wave configuration before issuing the Add to Wave Window
command. To set a display limit, use the Tcl command set_property DISPLAY_LIMIT <maximum
bit width> [current_wave_config].

Wave Objects
The Vivado IDE Wave window is common across a number of Vivado Design Suite tools. An
example of the wave objects in a waveform configuration is shown in Figure 4-12.

The Wave window displays HDL objects, their values, and their waveforms, together with
items for organizing the HDL objects, such as: groups, dividers, and virtual buses.

X-Ref Target - Figure 4-12

Figure 4-12: HDL Objects in Waveform
Logic Simulation 63
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=63

Chapter 4: Simulating with Vivado Simulator
Collectively, the HDL objects and organizational items are called a wave configuration. The
waveform portion of the Wave window displays additional items for time measurement,
that include: cursors, markers, and timescale rulers.

The Vivado IDE traces the value changes of the HDL object in the Wave window during
simulation, and you use the wave configuration to examine the simulation results.

The design hierarchy and the simulation waveforms are not part of the wave configuration,
and are stored in a separate wave database (WDB) file.

Context Menu in Waveform Window

When you right-click an object in the Waveform window, a context menu (shown in
Figure 4-13) appears. See Understanding HDL Objects in Waveform Configurations for
more information on HDL objects in Waveforms. The options in the context menu are
described below

• Go To Source Code: Opens the source code at the definition of the selected design
wave object.

• Show in Object Window: Displays the HDL objects for a design wave object in the
Objects window.

• Report Drivers: Display in the Tcl Console a report of the HDL processes that assign
values to the selected wave object.

• Force Constant: Forces the selected object to a constant value. For more information
on forcing objects, see Force Constant in Chapter 6.

• Force Clock: Forces the selected object to an oscillating value. See Force Clock in
Chapter 6 for more information.

• Remove Force: Removes any force on the selected object. See Remove Force in
Chapter 6 for more information.

• Find: Opens the Find Toolbar in the Waveform window to search for a wave object by
name.

• Find Value: Opens the Find Toolbar in the Waveform window to search a waveform for
a value. See Searching a Value in Waveform Configuration in Chapter 5 for more
information.

• Select All: Selects all the wave objects in the Waveform window.
• Expand: Shows the sub-objects of the selected wave object.
• Collapse: Hides the sub-objects of the selected wave object.
• Ungroup: Unpacks the selected group or virtual bus. See Grouping Signals and Objects

in Chapter 5 for more information.
• Rename: Changes the displayed name of the selected wave object. See Renaming

Objects in Chapter 5 for more information.
Logic Simulation 64
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=64

Chapter 4: Simulating with Vivado Simulator
• Name: Changes the display of the name of the selected wave object to show the full
hierarchical name (long name), the simple signal or bus name (short name), or a
custom name. See Changing the Object Name Display in Chapter 5 for more
information.

• Waveform Style: Changes the waveform of the selected design wave object to digital
or analog format. See Customizing the Appearance of Analog Waveforms in Chapter 5
for more information.

• Signal Color: Sets the waveform color of the selected design wave object.
• Divider Color: Sets the bar color of the selected divider.
• Radix: Sets the radix in which to display values of the selected design wave objects. See

About Radixes in Chapter 5 for more information.
• Show as Enumeration: Shows values of the selected SystemVerilog enumeration wave

object as enumerator labels in place of numbers, whenever possible. See Changing the
Format of SystemVerilog Enumerations in Chapter 5 for more information.

• Reverse Bit Order: Reverses the bit order of values displayed for the selected array
wave object. See Reversing the Bus Bit Order in Chapter 5 for more information.

• New Group: Packs the selected wave objects into a folder-like group wave object. See
Organizing Waveforms in Chapter 5 for more information.

• New Divider: Creates a horizontal separator in the list of the Waveform window's wave
objects. See Organizing Waveforms in Chapter 5 for more information.

• New Virtual Bus: Creates a new logic vector wave object consisting of the bits of the
selected design wave objects. See Organizing Waveforms in Chapter 5 for more
information.

• Cut: Allows you to cut a signal in the Waveform window.
• Copy: Allows you to copy a signal in the Waveform window.
• Paste: Allows you to paste a signal in the Waveform window.
• Delete: Allows you to delete a signal in the Waveform window.
Logic Simulation 65
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=65

Chapter 4: Simulating with Vivado Simulator
See Chapter 5, Analyzing Simulation Waveforms with Vivado Simulator for more
information about using the Wave window.

Saving a Waveform Configuration

The new wave configuration is not saved to disk automatically. Select File > Simulation
Waveform > Save Configuration As and supply a file name to save a WCFG file.

To save a wave configuration to a WCFG file, type the Tcl command save_wave_config
<filename.wcfg>.

The specified command argument names and saves the WCFG file.

X-Ref Target - Figure 4-13

Figure 4-13: Context Menu of Waveform Objects Window
Logic Simulation 66
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=66

Chapter 4: Simulating with Vivado Simulator
IMPORTANT: Zoom settings are not saved with the wave configuration.

Creating and Using Multiple Waveform Configurations
In a simulation session you can create and use multiple wave configurations, each in its own
Wave window. When you have more than one Wave window displayed, the most
recently-created or recently-used window is the active window. The active window, in
addition to being the window currently visible, is the Wave window upon which commands
external to the window apply. For example: HDL Objects > Add to Wave Window.

You can set a different Wave window to be the active window by clicking the title of the
window. See Distinguishing Between Multiple Simulation Runs, page 71 and Creating a New
Wave Configuration, page 80 for more information.

Running Functional and Timing Simulation
As soon as your project is created in the Vivado Design Suite, you can run behavioral
simulation. You can run functional and timing simulations on your design after successfully
running synthesis and/or implementation. To run simulation: in the Flow Navigator, select
Run Simulation and choose the appropriate option from the popup menu shown in the
figure below.

TIP: Availability of popup menu options is dependent on the design development stage. For example, if
you have run synthesis but have not yet run implementation, the implementation options in the popup
menu are grayed out.

X-Ref Target - Figure 4-14

Figure 4-14: Simulation Run Options
Logic Simulation 67
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=67

Chapter 4: Simulating with Vivado Simulator
Running Functional Simulation

Post-Synthesis Functional Simulation

You can view Run Simulation > Post-Synthesis Functional Simulation option (shown in
Figure 4-14) after completing a successful Synthesis run.

After synthesis, the general logic design has been synthesized into device-specific
primitives. Performing a post-synthesis functional simulation ensures that any synthesis
optimizations have not affected the functionality of the design. After you select a
post-synthesis functional simulation, the functional netlist is generated, and the UNISIM
libraries are used for simulation.

Post-Implementation Functional Simulations

The Run Simulation > Post-Implementation Functional Simulation option (shown in
Figure 4-14) becomes available after completing implementation run.

After implementation, the design has been placed and routed in hardware. A functional
verification at this stage is useful in determining if any physical optimizations during
implementation have affected the functionality of your design.

After you select a post-implementation functional simulation, the functional netlist is
generated and the UNISIM libraries are used for simulation.

Running Timing Simulation
TIP: Post-Synthesis timing simulation uses the estimated timing delay from the device models and does
not include interconnect delay. Post-Implementation timing simulation uses actual timing delays.

When you run Post-Synthesis and Post-Implementation timing simulation the simulator
tools include:

• Gate-level netlist containing SIMPRIMS library components
• SECUREIP

• Standard Delay Format (SDF) files

You defined the overall functionality of the design in the beginning. When the design is
implemented, accurate timing information is available.

To create the netlist and SDF, the Vivado Design Suite:

• Calls the netlist writer, write_verilog with the -mode timesim switch and
write_sdf (SDF annotator)

• Sends the generated netlist to the target simulator
Logic Simulation 68
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=68

Chapter 4: Simulating with Vivado Simulator
You control these options using Simulation Settings as described in Using Simulation
Settings, page 29.

IMPORTANT: Post-Synthesis and Post-Implementation timing simulations are supported for Verilog
only. There is no support for VHDL timing simulation. If you are a VHDL user, you can run post synthesis
and post implementation functional simulation (in which case no SDF annotation is required and the
simulation netlist uses the UNISIM library). You can create the netlist using the write_vhdl Tcl
command. For usage information, refer to the Vivado Design Suite Tcl Command Reference Guide
(UG835) [Ref 7].

IMPORTANT: The Vivado simulator models use interconnect delays; consequently, additional switches
are required for proper timing simulation, as follows: -transport_int_delays -pulse_r 0
-pulse_int_r 0

Post-Synthesis Timing Simulation

The Run Simulation > Post-Synthesis Timing Simulation option (shown in Figure 4-14)
becomes available after completing a successful synthesis run.

After synthesis, the general logic design has been synthesized into device-specific
primitives, and the estimated routing and component delays are available. Performing a
post-synthesis timing simulation allows you to see potential timing-critical paths prior to
investing in implementation. After you select a post-synthesis timing simulation, the timing
netlist and the estimated delays in the SDF file are generated. The netlist files includes
$sdf_annotate command so that the simulation tool includes the generated SDF file.
Logic Simulation 69
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug835-vivado-tcl-commands.pdf;a=xwrite_vhdl
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=69

Chapter 4: Simulating with Vivado Simulator
Post-Implementation Timing Simulations

The Run Simulation > Post-Implementation Timing Simulation option (shown in
Figure 4-14) becomes available after completing implementation run.

After implementation, the design has been implemented and routed in hardware. A timing
simulation at this stage helps determine whether or not the design functionally operates at
the specified speed using accurate timing delays. This simulation is useful for detecting
unconstrained paths, or asynchronous path timing errors, for example, on resets. After you
select a post-implementation timing simulation, the timing netlist and the SDF file are
generated. The netlist files includes $sdf_annotate command so that the generated SDF
file is picked up.

Annotating the SDF File for Timing Simulation

When you specified simulation settings, you specified whether or not to create an SDF file
and whether the process corner would be set to fast or slow.

TIP: To find the SDF file optional settings, in the Vivado IDE Flow Navigator, right click Simulation and
select Simulation Settings. In the Settings dialog box, select Simulation category and click Netlist
tab.

Based on the specified process corner, the SDF file contains different min and max
numbers.

RECOMMENDED: Run two separate simulations to check for setup and hold violations.

To run a setup check, create an SDF file with -process_corner slow, and use the max column
from the SDF file.

To run a hold check, create an SDF file with the -process_corner fast, and use the min
column from the SDF file. The method for specifying which SDF delay field to use is
dependent on the simulation tool you are using. Refer to the specific simulation tool
documentation for information on how to set this option.

To get full coverage run all four timing simulations, specify as follows:

° Slow corner: SDFMIN and SDFMAX

° Fast corner: SDFMIN and SDFMAX
Logic Simulation 70
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=70

Chapter 4: Simulating with Vivado Simulator
Saving Simulation Results
The Vivado simulator saves the simulation results of the objects (VHDL signals, or Verilog
reg or wire) being traced to the Waveform Database (WDB) file (<filename>.wdb) in the
<project>.sim/<simset> directory.

If you add objects to the Wave window and run the simulation, the design hierarchy for the
complete design and the transitions for the added objects are automatically saved to the
WDB file. You can also add objects to the waveform database that are not displayed in the
Wave window using the log_wave command. For information about the log_wave
command, see Using the log_wave Tcl Command in Chapter 6.

Distinguishing Between Multiple Simulation Runs
When you have run several simulations against a design, the Vivado simulator displays
named tabs at the top of the workspace with the simulation type that is currently in the
window highlighted, as shown in Figure 4-15.

Closing a Simulation
To close a simulation, in the Vivado IDE:

Select File > Exit or click the X at the top-right corner of the project window.

CAUTION! When there are multiple simulations running, clicking the X on the blue title bar closes all
simulations. To close a single simulation, click the X on the small gray or white tab under the blue title
bar.

To close a simulation from the Tcl Console, type:

close_sim

X-Ref Target - Figure 4-15

Figure 4-15: Active Simulation Type
Logic Simulation 71
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=71

Chapter 4: Simulating with Vivado Simulator
The Tcl command first checks for unsaved wave configurations. If any exist, the command
issues an error. Close or save unsaved wave configurations before issuing the close_sim
command, or add the -force option to the Tcl command.

Note: It is always recommended to use close_sim command to completely close the simulation
before using close_project command to close the current project.

Adding a Simulation Start-up Script File
You can add custom Tcl commands in a batch file to the project so that they are run with the
simulation. These commands are run after simulation begins. An example of this process is
described in the steps below.

1. Create a Tcl script with the simulation commands you want to add to the simulation
source files. For example, if you have a simulation that runs for 1,000 ns, and you want
it to run longer, create a file that includes:
run 5us

Or, if you want to monitor signals that are not at the top level (because, by default, only
top-level signals are added to the waveform), you can add them to the post.tcl script.
For example:

add_wave/top/I1/<signalName>

2. Name the file post.tcl and save it.
3. Use the Add Sources option in Flow Navigator to invoke the Add Sources wizard, and

select Add or Create Simulation Sources.
4. Add the post.tcl file to your Vivado Design Suite project as a simulation source. The

post.tcl file displays in the Simulation Sources folder, as shown in Figure 4-16.
Logic Simulation 72
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=72

Chapter 4: Simulating with Vivado Simulator
5. From the Simulation toolbar, click the Relaunch button.

Simulation runs again, with the additional time you specified in the post.tcl file
added to the originally specified time. Notice that the Vivado simulator automatically
sources the post.tcl file after invoking all its commands.

Viewing Simulation Messages
The Vivado IDE contains a message area where you can view informational, warning, and
error messages. As shown in Figure 4-17, some messages from the Vivado simulator
contain an issue description and a suggested resolution.

To see the same detail in the Tcl Console, type:

help -message {message_number}

X-Ref Target - Figure 4-16

Figure 4-16: Using the post.tcl File in a Design
Logic Simulation 73
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=73

Chapter 4: Simulating with Vivado Simulator
An example of such a command is as follows:

help -message {simulator 43-3120}

Managing Message Output
If your HDL design produces a large number of messages (for example, via the $display
Verilog system task or report VHDL statement), you can limit the amount of text output
sent to the Tcl Console and log file. This saves computer memory and disk space. To
accomplish this, use the -maxlogsize command line option:

1. In the Flow Navigator, right-click on SIMULATION and select Simulation Settings.
2. In the Settings dialog box:

a. Add -maxlogsize <size> next to xsim.simulate.xsim.more_options,
where <size> is the maximum amount of text output in megabytes.

X-Ref Target - Figure 4-17

Figure 4-17: Simulator Message Description and Resolution Information
Logic Simulation 74
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=74

Chapter 4: Simulating with Vivado Simulator
Using the launch_simulation Command
The launch_simulation command lets you run any supported simulator in script mode.

The syntax of launch_simulation is as follows:

launch_simulation [-step <arg>] [-simset <arg>] [-mode <arg>] [-type <arg>]
[-scripts_only] [-of_objects <args>] [-absolute_path]
[-install_path <arg>] [-noclean_dir] [-quiet] [-verbose]

Table 4-2 describes the options of launch_simulation.

Note: The -scripts_only switch has been deprecated and scheduled to be removed from future
versions of Vivado. Xilinx recommends you to use export_simulation Tcl command.

Examples
• Running behavioral simulation using Vivado simulator

create_project project_1 project_1 -part xc7vx485tffg1157-1
add_files -norecurse tmp.v
add_files -fileset sim_1 -norecurse testbench.v
import_files -force -norecurse
update_compile_order -fileset sources_1
update_compile_order -fileset sim_1
launch_simulation

Table 4-2: launch_simulation Options
Option Description

[-step] Launch a simulation step. Values: all, compile, elaborate, simulate. Default: all
(launch all steps).

[-simset] Name of the simulation fileset.
[-mode] Simulation mode. Values: behavioral, post-synthesis, post-implementation

Default: behavioral.
 [-type] Netlist type. Values: functional, timing. This is only applicable when the mode is

set to post-synthesis or post-implementation.
[-scripts_only] Only generate scripts.
[-of_objects] Generate compile order file for this object (applicable with -scripts_only

option only)
[-absolute_path] Make all file paths absolute with respect to the reference directory.
[-install_path] Custom installation directory path.
[-noclean_dir] Do not remove simulation run directory files.
[-quiet] Ignore command errors.
[-verbose] Suspend message limits during command execution.
Logic Simulation 75
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=75

Chapter 4: Simulating with Vivado Simulator
• Generating script for behavioral simulation with Questa Advanced Simulator.
create_project project_1 project_1 -part xc7vx485tffg1157-1
add_files -norecurse tmp.v
add_files -fileset sim_1 -norecurse testbench.v
import_files -force -norecurse
update_compile_order -fileset sources_1
update_compile_order -fileset sim_1
set_property target_simulator Questa [current_project]
set_property compxlib.questa_compiled_library_dir <compiled_library_location>
[current_project]
launch_simulation -scripts_only

• Launching post-synthesis functional simulation using Synopsys VCS
set_property target_simulator VCS [current_project]
set_property compxlib.vcs_compiled_library_dir <compiled_library_location>
[current_project]
launch_simulation -mode post-synthesis -type functional

• Running post-implementation timing simulation using Cadence IES
set_property target_simulator IES [current_project]
set_property compxlib.ies_compiled_library_dir <compiled_library_location>
[current_project]
launch_simulation -mode post-implementation -type timing

Re-running the Simulation After Design Changes
(relaunch)
While debugging your HDL design with the Vivado Simulator, you may determine that your
HDL source code needs correction.

Use the following steps to modify your design and re-run the simulation:

1. Use the Vivado code editor or other text editor to update and save any necessary source
code changes.

2. Use the Relaunch button on the Vivado IDE toolbar to re-compile and re-launch the
simulation as shown in Figure 4-18. You may alternatively use the relaunch_sim Tcl
command to re-compile and re-launch the simulation.

3. If the modified design fails to compile, an error box appears displaying the reason for
failure. The Vivado IDE continues to display the results of the previous run of the
simulation in a disabled state. Return to step 1 to correct the errors and re-launch the
simulation again.

X-Ref Target - Figure 4-18

Figure 4-18: relaunch sim option
Logic Simulation 76
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=76

Chapter 4: Simulating with Vivado Simulator
After the design successfully re-compiles, the simulation starts again.

IMPORTANT: Relaunching may fail for reasons other than compilation errors, such as in the case of a
file system error. If the Run buttons on the Simulation toolbar are grayed out after a re-launch,
indicating that the simulation is disabled, check the contents of the Tcl Console for possible errors that
have prevented the re-launch from succeeding.

CAUTION! You may also re-launch the simulation using Run Simulation in the Flow Navigator or using
launch_simulation Tcl command. However, using these options may fully close the simulation,
discarding waveform changes and simulation settings such as radix customization.

Note: The Relaunch Simulation button will be active only after one successful run of Vivado
Simulator using launch_simulation. The Relaunch Simulation button would be grayed out if
the simulation is run in a Batch/Scripted mode.

Using the Saved Simulator User Interface Settings
By default, the Vivado Simulator saves your configuration changes to a file under the
simulation's working directory as you work with the user interface controls and Tcl
commands of the Vivado Simulator. The settings that are saved include the following:

• The state of the filter buttons and column widths of the Scopes and Objects windows.
• Tcl properties of the simulation, including array display limit, default radix, default time

unit for the run command, and trace limit.
• Radixes and the Show as Enumeration state that you set on HDL objects in the Objects

window.

After you shut down the simulation, the Vivado Simulator restores your settings when you
reopen and run the Vivado Simulator.

IMPORTANT: Turn off the Clean Up Simulation Files checkbox in Vivado's Simulation Settings to
ensure that the settings file does not get erased when you relaunch the simulation.

TIP: To revert the settings to their defaults, delete the settings file. You can find the settings file under
the Vivado project directory at
<project>.sim/<simset>/<simtype>/xsim.dir/<snapshot>/xsimSettings.ini. For
example, the settings file for the default behavioral simulation run of the BFT example design would
reside at bft.sim/sim_1/behav/xsim.dir/bft_tb_behav/xsimSettings.ini.
Alternatively, turn on the Clean Up Simulation Files check-box in the Simulation Settings.
Logic Simulation 77
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=77

Chapter 4: Simulating with Vivado Simulator
Default Settings
A Vivado project Tcl object supports a few properties that allows you to supply default
settings for cleaned-up or newly created simulations. These simulations do not already have
a settings file. The following list shows the default settings properties of the project:

• XSIM.ARRAY_DISPLAY_LIMIT
• XSIM.RADIX
• XSIM.TIME_UNIT
• XSIM.TRACE_LIMIT

You can view the current values of the properties with the report_property
[current_project] Tcl command and set the values of the properties with the
set_property <property name> <property value> [current_project] Tcl
command. For example, to set the array display limit to 16, use the following command.

set_property xsim.array_display_limit 16 [current_project]

When you launch the new or cleaned-up simulation, the simulation Tcl object inherits your
project properties. You can verify it with the following Tcl command:

report_property [current_sim]

IMPORTANT: The project properties apply only to cleaned-up or newly created simulations. After you
have run a simulation of a particular run type and sim set such as sim_1/behav, that simulation retains
a separate copy of the settings for all subsequent launches. The changes to the project properties can
no longer take effect for that simulation. The project properties take effect again only if the simulation
is cleaned up or the settings file is deleted.
Logic Simulation 78
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=78

Chapter 5

Analyzing Simulation Waveforms with
Vivado Simulator

Introduction
In the Vivado® simulator, you can use the waveform to analyze your design and debug your
code. The simulator populates design signal data in other areas of the workspace, such as
the Objects and the Scopes windows.

Typically, simulation is set up in a test bench where you define the HDL objects you want to
simulate. For more information about test benches see Writing Efficient Testbenches
(XAPP199) [Ref 5].

When you launch the Vivado simulator, a wave configuration displays with top-level HDL
objects. The Vivado simulator populates design data in other areas of the workspace, such
as the Scopes and Objects windows. You can then add additional HDL objects, or run the
simulation. See Using Wave Configurations and Windows, below.

Using Wave Configurations and Windows
Vivado simulator allows customization of the wave display. The current state of the display
is called the wave configuration. This configuration can be saved for future use in a WCFG
file.

A wave configuration can have a name or be untitled. The name shows on the title bar of
the wave configuration window. A wave configuration is untitled when it has never been
saved to a file.
Logic Simulation 79
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=79

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
Creating a New Wave Configuration
Create a new waveform configuration for displaying waveforms as follows:

1. Select File > Simulation Waveform > New Configuration.

A new Wave window opens and displays a new, untitled waveform configuration.
Tcl command: create_wave_config <waveform_name>.

2. Add HDL objects to the waveform configuration using the steps listed in Understanding
HDL Objects in Waveform Configurations, page 82.

See Chapter 4, Simulating with Vivado Simulator for more information about creating new
waveform configurations. Also see Creating and Using Multiple Waveform Configurations,
page 67 for information on multiple waveforms.

Opening a WCFG File
Open a WCFG file to use with the simulation as follows:

1. Select File > Simulation Waveform > Open Configuration.

The Open Waveform Configuration dialog box opens.

2. Locate and select a WCFG file.
Note: When you open a WCFG file that contains references to HDL objects that are not present
in a static simulation HDL design hierarchy, the Vivado simulator ignores those HDL objects and
omits them from the loaded waveform configuration.

A Wave window opens, displaying waveform data that the simulator finds for the listed
wave objects of the WCFG file.

Tcl command: open_wave_config <waveform_name>

Saving a Wave Configuration
After editing, to save a wave configuration to a WCFG file, select File > Simulation
Waveform > Save Configuration As, and type a name for the waveform configuration.

Tcl command: save_wave_config <waveform_name>
Logic Simulation 80
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=80

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
Opening a Previously Saved Simulation Run
There are three methods for opening a previously saved simulation using the Vivado Design
Suite: an interactive method and a programmatic method.

Standalone mode

You can open WDB file outside Vivado using the following command:

xsim <name>.wdb -gui

TIP: You can open a WCFG file together with the WDB file by adding -view <WCFG file> to the
xsim command.

Interactive Method

° If a Vivado Design Suite project is loaded, click Flow > Open Static Simulation and
select the WDB file containing the waveform from the previously run simulation.

TIP: A static simulation is a mode of the Vivado simulator in which the simulator displays data from a
WDB file in its windows in place of data from a running simulation.

° Alternatively, in the Tcl Console, run: open_wave_database <name>.wdb.

Programmatic Method

Create a Tcl file (for example, design.tcl) with contents:

current_fileset
open_wave_database <name>.wdb

Then run it as:

vivado -source design.tcl

IMPORTANT: Vivado simulator can open WDB files created on any supported operating system. It can
also open WDB files created in Vivado Design Suite versions 2014.3 and later. Vivado simulator cannot
open WDB files created in versions earlier than 2014.3 of the Vivado Design Suite.

When you run a simulation and display HDL objects in a Wave window, the running
simulation produces a waveform database (WDB) file containing the waveform activity of
the displayed HDL objects. The WDB file also stores information about all the HDL scopes
and objects in the simulated design. In this mode you cannot use commands that control or
monitor a simulation, such as run commands, as there is no underlying ‘live’ simulation
model to control.

However, you can view waveforms and the HDL design hierarchy in a static simulation.
Logic Simulation 81
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=81

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
Understanding HDL Objects in Waveform
Configurations
When you add an HDL object to a waveform configuration, the waveform viewer creates a
wave object of the HDL object. The wave object is linked to, but distinct from, the associated
HDL object.

You can create multiple wave objects from the same HDL object, and set the display
properties of each wave object separately.

For example, you can set one wave object for an HDL object named myBus to display values
in hexadecimal and another wave object for myBus to display values in decimal.

There are other kinds of wave objects available for display in a waveform configuration,
such as: dividers, groups, and virtual buses.

Wave objects created from HDL objects are specifically called design wave objects. These
objects display with a corresponding icon. For design wave objects, the icon indicates
whether the object is a scalar or a compound such as a Verilog vector or VHDL record.

TIP: To view the HDL object for a design wave object in the Objects window, right-click the name of the
design wave object and choose Show in Object Window.

Figure 5-1 shows an example of HDL objects in the waveform configuration window. The
design objects display Name and Value.

• Name: By default, shows the short name of the HDL object: the name alone, without
the hierarchical path of the object. You can change the Name to display a long name
with full hierarchical path or assign it a custom name.

• Value: Displays the value of the object at the time indicated in the main cursor of the
Wave window. You can change the formatting, or radix, of the value independent of the
formatting of other design wave objects linked to the same HDL object and
independent of the formatting of values displayed in the Objects window and source
code window.
Logic Simulation 82
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=82

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
The Scopes window provides the ability to add all viewable HDL objects for a selected scope
to the Wave window. For information on using the Scopes window, see Scopes Window in
Chapter 4.

About Radixes
Understanding the type of data on your bus is important, and to use the digital and analog
waveform options effectively, you need to recognize the relationship between the radix
setting and the data type.

IMPORTANT: Make a change to the radix setting in the window in which you wish to see the change. A
change to the radix of an item in the Objects window does not apply to values in the Wave window or
the Tcl Console. For example, the item wbOutputData[31:0] can be set to Signed Decimal in the objects
window, but it remains set to Binary in the Wave window.

X-Ref Target - Figure 5-1

Figure 5-1: Waveform HDL Objects
Logic Simulation 83
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=83

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
Changing the Default Radix

The default waveform radix controls the numerical format of values for all wave objects
whose radix you did not explicitly set. The waveform radix defaults to Hexadecimal.

To change the default waveform radix:

1. In the Waveform window, click the Settings button to open the Waveform Settings.
2. On the General page, click the Default Radix drop-down menu.
3. From the drop-down list, select a radix.

Changing the Radix on Individual Objects

To change the radix of a wave object in the Wave window:

1. Right-click the wave object name.
2. Select Radix and the format you want from the drop-down

menu:

° Default

° Binary

° Hexadecimal

° Octal

° ASCII

° Unsigned Decimal

° Signed Decimal

° Signed Magnitude

° Real
Note: For a description of the usage for Real and Real Settings see Using Radixes and Analog
Waveforms, page 85

From the Tcl Console, to change the numerical format of the displayed values, type the
following Tcl command:

set_property radix <radix> <wave_object>

Where <radix> is one the following: bin, unsigned, hex, dec, ascii, or oct
and where <wave_object> is an object returned by the add_wave command.

TIP: If you change the radix in the Wave window, it will not be reflected in the Objects window.
Logic Simulation 84
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=84

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
Customizing the Waveform
Using Analog Waveforms

Using Radixes and Analog Waveforms

Bus values are interpreted as numeric values, which are determined by the radix setting on
the bus wave object, as follows:

• Binary, octal, hexadecimal, ASCII, and unsigned decimal radixes cause the bus values to
be interpreted as unsigned integers.

• If any bit in the bus is neither 0 nor 1, the entire bus value is interpreted as 0.
• The signed decimal and signed magnitude radixes cause the bus values to be

interpreted as signed integers.
• Real radixes cause bus values to be interpreted as fixed point or floating point real

numbers, based on settings of the Real Settings dialog box.

To set a wave object to the Real radix:

1. In the waveform configuration window, select an HDL object, and right-click to open the
popup menu.

2. Select Radix > Real Settings to open the Real Settings dialog box, shown in Figure 5-2.
Logic Simulation 85
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=85

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
You can set the radix of a wave to Real to display the values of the object as real numbers.
Before selecting this radix, you must choose settings to instruct the waveform viewer how
to interpret the bits of the values.

The Real Setting dialog box options are:

• Fixed Point: Specifies that the bits of the selected bus wave object(s) is interpreted as
a fixed point, signed, or unsigned real number.

• Binary Point: Specifies how many bits to interpret as being to the right of the binary
point. If Binary Point is larger than the bit width of the wave object, wave object values
cannot be interpreted as fixed point, and when the wave object is shown in Digital
waveform style, all values show as <Bad Radix>. When shown as analog, all values are
interpreted as 0.

• Floating Point: Specifies that the bits of the selected bus wave object(s) should be
interpreted as an IEEE floating point real number.
Note: Only single precision and double precision (and custom precision with values set to those
of single and double precision) are supported.

Other values result in <Bad Radix> values as in Fixed Point.
Exponent Width and Fraction Width must add up to the bit width of the wave object, or
else <Bad Radix> values result.

X-Ref Target - Figure 5-2

Figure 5-2: Real Settings Dialog Box
Logic Simulation 86
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=86

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
TIP: If the row indices separator lines are not visible, you can turn them on in the Using the Waveform
Settings Dialog Box, page 94, to make them visible.

Displaying Waveforms as Analog

IMPORTANT: When viewing an HDL bus object as an analog waveform—to produce the expected
waveform, select a radix that matches the nature of the data in the HDL object.
For example:
- If the data encoded on the bus is a 2's-compliment signed integer, you must choose a signed radix.
- If the data is floating point encoded in IEEE format, you must choose a real radix.

Customizing the Appearance of Analog Waveforms

To customize the appearance of an analog waveform:

1. Right-click an HDL object in the Name column of the waveform configuration window
and select Waveform Style from the drop-down menu. A popup menu appears,
showing the following options:

° Analog: Sets the waveform to Analog.

° Digital: Sets the waveform object to Digital.

° Analog Settings: Opens the Analog Settings dialog box (shown in Figure 5-3),
which provides options for the analog waveform display.

IMPORTANT: The Wave window can display analog waveforms only for buses that are 64 bits wide or
smaller.
Logic Simulation 87
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=87

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
Analog Settings Dialog Box Option Descriptions

• Row Height: Specifies how tall to make the select wave object(s), in pixels. Changing
the row height does not change how much of a waveform is exposed or hidden
vertically, but rather stretches or contracts the height of the waveform.

When switching between Analog and Digital waveform styles, the row height is set to an
appropriate default for the style (20 for digital, 100 for analog).

TIP: If the row indices separator lines are not visible, enable the checkbox in the Waveform Settings to
turn them on. Using the Waveform Settings Dialog Box, page 94 for information on how to change the
options settings. You can also change the row height by dragging the row index separator line to the
left and below the waveform name.

X-Ref Target - Figure 5-3

Figure 5-3: Analog Settings Dialog Box
Logic Simulation 88
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=88

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
• Y Range: Specifies the range of numeric values to be shown in the waveform area.

° Auto: Specifies that the range should continually expand whenever values in the
visible time range of the window are discovered to lie outside the current range.

° Fixed: Specifies that the time range is to remain at a constant interval.
- Min: Specifies the value displays at the bottom of the waveform area.
- Max: Specifies the value displays at the top.
Note: Both values can be specified as floating point; however, if the wave object radix is
integer, the values are truncated to integers.

• Interpolation Style: Specifies how the line connecting data points is to be drawn.

° Linear: Specifies a straight line between two data points.

° Hold: Specifies that of two data points, a horizontal line is drawn from the left point
to the X-coordinate of the right point, then another line is drawn connecting that
line to the right data point, in an L shape.

• Off Scale: Specifies how to draw waveform values that lie outside the Y range of the
waveform area.

° Hide: Specifies that outlying values are not shown, such that a waveform that
reaches the upper or lower bound of the waveform area disappears until values are
again within the range.

° Clip: Specifies that outlying values be altered so that they are at the top or bottom
of the waveform area, so a waveform that reaches the upper- or lower-bound of the
waveform area follows the bound as a horizontal line until values are once again
within the range.

° Overlap: Specifies that the waveform be drawn wherever its values are, even if they
lie outside the bounds of the waveform area and overlap other waveforms, up to
the limits of the Wave window itself.

• Horizontal Line: Specifies whether to draw a horizontal rule at the given value. If the
check-box is on, a horizontal grid line is drawn at the vertical position of the specified Y
value, if that value is within the Y range of the waveform.

As with Min and Max, the Y value accepts a floating point number but truncates it to an
integer if the radix of the selected wave objects is an integer.
Logic Simulation 89
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=89

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
Waveform Object Naming Styles
There are options for renaming objects, viewing object names, and changing name displays.

Renaming Objects

You can rename any wave object in the waveform configuration, such as design wave
objects, dividers, groups, and virtual buses.

1. Select the object name in the Name column.
2. Right-click and select Rename from the popup menu.

The Rename dialog box opens.

3. Type the new name in the Rename dialog box, and click OK.
Note: Changing the name of a design wave object in the wave configuration does not affect the
name of the underlying HDL object.

Changing the Object Name Display

You can display the full hierarchical name (long name), the simple signal or bus name (short
name), or a custom name for each design wave object. The object name displays in the
Name column of the wave configuration. If the name is hidden:

1. Expand the Name column until you see the entire name.
2. In the Name column, use the scroll bar to view the name.

To change the display name:

1. Select one or more signal or bus names. Use Shift+click or Ctrl+click to select many
signal names.

2. Right-click and select Name from the drop-down menu. A popup menu appears,
showing the following options:

° Long to display the full hierarchical name of the design object.

° Short to display the name of the signal or bus only.

° Custom to display the custom name given to the object when renamed. See
Renaming Objects, page 90.

TIP: Renaming a wave object changes the name display mode to Custom. To restore the original name
display mode, change the display mode to Long or Short, as described above.
Long and Short names are meaningful only to design wave objects. Other wave objects (dividers,
groups, and virtual buses) display their Custom names by default and display an ID string for their
Long and Short names.
Logic Simulation 90
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=90

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
Reversing the Bus Bit Order
You can reverse the bus bit order in the wave configuration to switch between MSB-first
(big endian) and LSB-first (little endian) bit order for the display of bus values.

To reverse the bit order:

1. Select a bus.
2. Right-click and select Reverse Bit Order.

The bus bit order reverses. The Reverse Bit Order command is marked to show that this
is the current behavior.

IMPORTANT: The Reverse Bit Order command operates only on the values displayed on the bus. The
command does not reverse the list of bus elements that appears below the bus when you expand the
bus wave object.

TIP: The index ranges displayed on Long and Short names of buses indicate the bit order in bus
elements. For example, after applying Reverse Bit Order on a bus bus[0:7], the bus displays
bus[7:0].

Changing the Format of SystemVerilog Enumerations
A SystemVerilog enumeration is an HDL object with numerical values for which text labels
are defined to represent specific values. For example, an enumeration might define LABEL1
to represent the value 1 and LABEL2 to represent the value 5. The Show As Enumeration
option on the context menu lets you specify whether to show enumeration values using
their given labels or numerically. In the previous example, if Show As Enumeration is on, a
value of 5 appears as LABEL2. If the option is off, the value 5 appears as in whatever radix
is set for the enumeration, as shown in the Radix menu.

To display enumerations using labels:

1. Select an enumeration
2. Right-click and check Display As Enumeration

To display enumerations numerically:

1. Select an enumeration
2. Right-click and uncheck Display As Enumeration
Note: Enumeration values for which there is no defined label always display numerically, regardless
of the Display As Enumeration setting. The Display As Enumeration option is enabled only for
SystemVerilog enumeration objects.
Logic Simulation 91
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=91

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
Controlling the Waveform Display
You can control the waveform display using:

• Resizing handles between the Name, Value, and waveform columns of the wave window
• Scroll combinations with the mouse wheel
• Zoom feature buttons in the Wave window sidebar
• Zoom combinations with the mouse wheel
• Vivado IDE Y-Axis zoom gestures
• Vivado simulation X-Axis zoom gestures. See the Vivado Design Suite User Guide: Using

the Vivado IDE (UG893) [Ref 3] for more information about using the mouse to pan and
zoom.

Note: In contrast to other Vivado Design Suite graphic windows, zooming in a Wave window applies
to the X (time) axis independent of the Y axis. As a result, the Zoom Range X gesture, which specifies
a range of time to which to zoom the window, replaces the Zoom to Area gesture of other Vivado
Design Suite windows.

TIP: Saving a WCFG file records wave window settings in addition to wave objects and markers. Wave
window settings include the Name and Value column widths, zoom level, scroll position, expansion
state of groups and buses, and the position of the main cursor.

Using the Column Resizing Handles
To change the width of the Name or Value column, position the mouse over the vertical bar
to the right of the column until the mouse cursor changes shape, then drag the mouse left
or right to narrow or widen the column as desired.

Note: You may need to widen the Value column first to widen the Name column, if the Value
column's width is already at its minimum.

Scrolling with the Mouse Wheel
Click within the wave window to scroll up and down with the mouse wheel. You can also
scroll the waveform left and right with the mouse wheel in combination with the Shift key.

Using the Zoom Feature Buttons
There are zoom functions such as Zoom in, Zoom Out, and Zoom Fit as menu
buttons in the Wave window that let you zoom in and out of a wave
configuration as needed.
Logic Simulation 92
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=92

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
Zooming with the Mouse Wheel
Click within the waveform area and use the mouse wheel in combination with the Ctrl key to
zoom in and out, emulating the operation of the dials on an oscilloscope.

Y-Axis Zoom Gestures for Analog Waveforms
In addition to the zoom gestures supported for zooming in the X dimension, when over an
analog waveform, additional zoom gestures are available, as shown in Figure 5-4.

To invoke a zoom gesture, hold down the left mouse button and drag in the direction
indicated in the diagram, where the starting mouse position is the center of the diagram.

The additional zoom gestures are:

• Zoom Out Y: Zooms out in the Y dimension by a power of 2 determined by how far
away the mouse button is released from the starting point. The zoom is performed
such that the Y value of the starting mouse position remains stationary.

• Zoom Y Range: Draws a vertical curtain which specifies the Y range to display when the
mouse is released.

X-Ref Target - Figure 5-4

Figure 5-4: Analog Zoom Options

Zoom
Out
Y

Zoom
Y

Range

Zoom
In
X

Zoom
X

Range

Zoom
Fit
X

Reset
Zoom

Y

Zoom
Out
X

Zoom
In
Y

Logic Simulation 93
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=93

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
• Zoom In Y: Zooms in toward the Y dimension by a power of 2 determined by how far
away the mouse button is released from the starting point. The zoom is performed
such that the Y value of the starting mouse position remains stationary.

• Reset Zoom Y: Resets the Y range to that of the values currently displayed in the Wave
window and sets the Y Range mode to Auto.

All zoom gestures in the Y dimension set the Y Range analog settings. Reset Zoom Y sets
the Y Range to Auto, whereas the other gestures set Y Range to Fixed.

Using the Waveform Settings Dialog Box
Click the Settings button to open the Waveform Settings as shown in Figure 5-5.

From the General tab, you can configure the following Waveform Settings:

• Radix: Sets the numerical format to use for newly-created design wave objects.
• Elide Setting: Controls truncation of signal names that are too long for the Wave

window.

° Left truncates the left end of long names.

° Right truncates the right end of long names.

° Middle preserves both the left and right ends, omitting the middle part of long
names.

• Draw Waveform Shadow: Creates a shaded representation of the waveform.

X-Ref Target - Figure 5-5

Figure 5-5: Waveform Settings
Logic Simulation 94
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=94

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
• Show signal indices: Displays the row numbers to the left of each wave object name.
You can drag the lines separating the row numbers to change the height of a wave
object.

• Show grid lines: Displays the wave window with grid lines.
• Snap to Transition: When selected, causes dragged cursors and markers to gravitate to

waveform transitions near the mouse cursor. See Moving Cursors for more information.
• Floating Ruler: Displays the floating ruler whenever the secondary cursor is visible or a

marker is selected. See Using the Floating Ruler for more information.

TIP: If Floating Ruler option appears disabled (unchecked) in the Settings dialog box, use Shift+Click
on the Wave window to make the secondary cursor visible. This action results in enabling the Floating
Ruler option in the Settings dialog box.

• From the Colors tab, you can set colors of items within the waveform.

Changing the Display of the Time Scale
Right-click above the ruler to display the time scale menu. This menu lets you select how
you want to display time values on the time scale.

The following are the options on the timescale menu:

• Auto: The timescale choses time units suitable for the wave window's zoom level.
• Default: Displays the time units corresponding to the precision of the simulation that

was determined when the HDL design was compiled.
• Samples: Displays the time in discrete sample numbers instead of fractions of a second

(not available for HDL simulation).
• User: User-defined time units (not available for HDL simulation).
• fs: Displays time units in femtoseconds.
• ps: Displays time units in picoseconds.
• ns: Displays time units in nanoseconds.
• us: Displays time units in microseconds.
• ms: Displays time units in milliseconds.
• s: Displays time units in seconds
Logic Simulation 95
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=95

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
Organizing Waveforms
The following subsections describe the options that let you organize information within a
waveform.

Grouping Signals and Objects
A Group is an expandable and collapsible container for organizing related sets of wave
objects. The Group itself displays no waveform data but can be expanded to show its
contents or collapsed to hide them. You can add, change, and remove groups.

To add a Group:

1. In a Wave window, select one or more wave objects to add to a group.
Note: A group can include dividers, virtual buses, and other groups.

2. Right-click and select New Group from the context menu.

This adds a Group that contains the selected wave object to the wave configuration.

In the Tcl Console, type add_wave_group to add a new group.

A Group is represented with the Group button . You can move other HDL objects to the
group by dragging and dropping the signal or bus name.

The new Group and its nested wave objects saves when you save the waveform
configuration file.

You can move or remove Groups as follows:

• Move Groups to another location in the Name column by dragging and dropping the
group name.

• Remove a Group by highlighting it, right-click and select Ungroup from the popup
menu. Wave objects formerly in the Group are placed at the top-level hierarchy in the
wave configuration.

Groups can be renamed also; see Renaming Objects, page 90.

CAUTION! The Delete key removes a selected group and its nested wave objects from the wave
configuration.
Logic Simulation 96
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=96

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
Using Dividers
Dividers create a visual separator between HDL objects to make certain signals or objects
easier to see. You can add a divider to your wave configuration to create a visual separator
of HDL objects, as follows:

1. In a Name column of the Wave window, click a signal to add a divider below that signal.
2. Right-click and select New Divider.

The new divider is saved with the wave configuration file when you save the file.

Tcl command: add_wave_divider

You can move or delete Dividers as follows:

• To move a Divider to another location in the waveform, drag and drop the divider
name.

• To delete a Divider, highlight the divider, and click the Delete key, or right-click and
select Delete from the context menu.

Dividers can be renamed also; see Renaming Objects, page 90.

Defining Virtual Buses
You define a virtual bus to the wave configuration, which is a grouping to which you can
add logic scalars and vectors.

The virtual bus displays a bus waveform, whose values are composed by taking the
corresponding values from the added scalars and arrays in the vertical order that they
appear under the virtual bus and flattening the values to a one-dimensional vector.

To add a virtual bus:

1. In a wave configuration, select one or more wave objects to add to a virtual bus.
2. Right-click and select New Virtual Bus from the popup menu.

The virtual bus is represented with the Virtual Bus button .

Tcl Command: add_wave_virtual_bus

You can move other logical scalars and arrays to the virtual bus by dragging and dropping
the signal or bus name.

The new virtual bus and its nested items save when you save the wave configuration file.
You can also move it to another location in the waveform by dragging and dropping the
virtual bus name.
Logic Simulation 97
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=97

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
You can rename a virtual bus; see Renaming Objects, page 90.

To remove a virtual bus, and ungroup its contents, highlight the virtual bus, right-click, and
select Ungroup from the popup menu.

CAUTION! The Delete key removes the virtual bus and nested HDL objects within the bus from the
wave configuration.

Analyzing Waveforms
The following subsections describe available features that help you analyze the data within
the waveform.

Using Cursors
Cursors are temporary time markers that can be moved frequently for measuring the time
between two waveform edges.

Placing Main and Secondary Cursors

You can place the main cursor with a single left-click in the Wave window.

To place a secondary cursor, Ctrl+Click, hold the waveform, and drag either left or right. You
can see a flag that labels the location at the top of the cursor. Alternatively, you can hold the
Shift key and click a point in the waveform.

If the secondary cursor is not already on, this action sets the secondary cursor to the
present location of the main cursor and places the main cursor at the location of the mouse
click.

Note: To preserve the location of the secondary cursor while positioning the main cursor, hold the
Shift key while clicking. When placing the secondary cursor by dragging, you must drag a minimum
distance before the secondary cursor appears.

Moving Cursors

To move a cursor, hover over the cursor until you see the grab symbol, and click and drag
the cursor to the new location.

As you drag the cursor in the Wave window, you see a hollow or filled-in circle if the Snap
to Transition waveform setting is selected, which is the default behavior.

• A hollow circle under the mouse indicates that you are between transitions in the
waveform of the selected signal.
Logic Simulation 98
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=98

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
• A filled-in circle under the mouse indicates that the cursor is locked in on a
transition of the waveform under the mouse or on a marker.

A secondary cursor can be hidden by clicking anywhere in the Wave window where there is
no cursor, marker, or floating ruler.

Finding the Next or Previous Transition on a Waveform

The Waveform window contains buttons for jumping the main cursor to the next or
previous transition of selected waveform or from the current position of the cursor.

To move the main cursor to the next or previous transition of a waveform:

1. Ensure the wave object in the waveform is active by clicking the name.

This selects the wave object, and the waveform display of the object displays with a
thicker line than usual.

2. Click the Next Transition or Previous Transition buttons in the waveform
toolbar (?), or use the right or left keyboard arrow key to move to the next or previous
transition, respectively.

TIP: You can jump to the nearest transition of a set of waveforms by selecting multiple wave objects
together.

Using Markers
Use a marker when you want to mark a significant event within your waveform in a
permanent fashion. Markers let you measure times relevant to that marked event.

You can add, move, and delete markers as follows:

• You add markers to the wave configuration at the location of the main cursor.
a. Place the main cursor at the time where you want to add the marker by clicking in

the Wave window at the time or on the transition.
b. Right-click Markers > Add Marker.

A marker is placed at the cursor, or slightly offset if a marker already exists at the
location of the cursor. The time of the marker displays at the top of the line.

To create a new wave marker, use the Tcl command:

add_wave_marker <-filename> <-line_number>

• You can move the marker to another location in the Wave window using the drag and
drop method. Click the marker label (at the top of the marker or marker line) and drag
it to the location.
Logic Simulation 99
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=99

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
° As you drag the marker in the Wave window, you see a hollow or filled-in circle if
the Snap to Transition option is selected in Waveform Settings window, which is
the default behavior.

° A filled-in circle indicates that you are hovering over a transition of the
waveform for the selected signal or over another marker.

° For markers, the filled-in circle is white.

° A hollow circle indicates that the marker is locked in on a transition of the
waveform under the mouse or on another marker.

Release the mouse key to drop the marker to the new location.

• You can delete one or all markers with one command. Right-click over a marker, and do
one of the following:

° Select Delete Marker from the popup menu to delete a single marker.

° Select Delete All Markers from the popup menu to delete all markers.
Note: You can also use the Delete key to delete a selected marker.

See the Vivado Design Suite help or the Vivado Design Suite Tcl Command Reference Guide
(UG835) [Ref 7] for command usage.

Using the Floating Ruler
The floating ruler assists with time measurements using a time base other than the absolute
simulation time shown on the standard ruler at the top of the Wave window.

You can display (or hide) the floating ruler and drag it to change the vertical position in the
Wave window. The time base (time 0) of the floating ruler is the secondary cursor, or, if there
is no secondary cursor, the selected marker.

The floating ruler is visible only when the secondary cursor or a marker is present.

1. Do either of the following to display or hide a floating ruler:

° Place the secondary cursor.

° Select a marker.
2. In the Waveform Settings window, enable (check) the Floating Ruler option.

You only need to follow this procedure the first time. The floating ruler displays each
time you place the secondary cursor or select a marker.

Uncheck/disable the Floating Ruler option to hide the floating ruler.
Logic Simulation 100
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=100

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
Searching a Value in Waveform Configuration
The Find Toolbar allows you to search one or more waveforms for a specified value. You can
search for either an exact value, such as 23FF, or a pattern that matches a set of values, such
as “any value whose first two digits are 23 and whose fourth digit is F.”

IMPORTANT: This search feature supports only scalar and vector (1-D) wave objects of a “logic” type.
Logic types include 2-state and 4-state types of Verilog/SystemVerilog and bit and std_logic of VHDL.

To perform the search:

1. In the Name column, select one or more design wave objects (wave objects that have
waveforms).

2. Right-click one of the selected wave objects in either the Name column or Value column
and choose the Find Value option to activate the Find Toolbar.

X-Ref Target - Figure 5-6

Figure 5-6: Find Value option and Find Toolbar
Logic Simulation 101
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=101

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
3. On the Find Toolbar, choose a radix for your search value from the Radix drop down list.
The search feature supports the following radixes:

° Binary

° Hexadecimal

° Octal

° Unsigned Decimal

° Signed Decimal
4. In the blank text box on the Find Toolbar, enter a value pattern consisting of a string of

digits valid for the radix you chose. Valid digits include numeric digits, VHDL MVL 9
literals (U, X, 0, 1, Z, W, L, H, -), and Verilog literals (0, 1, x, z).

Note: If you enter an invalid digit, the text box turns red, and an error message appears at the right
side of the toolbar. The set of valid numeric digits depends on the radix. For example, if you chose the
Octal radix, numeric digits are those between 0 and 7. Numeric digits for hexadecimal include 0
through 9 and A through F (or a through f). You may enter the special digit '.' to specify a match with
any digit value. For example, the Octal value pattern “12.4” matches occurrences of 1234, 1204, and
12X4 encountered in the waveform.
5. Choose a match style from the following options in the Match drop down list:

° Exact: Waveform values must contain the same number of digits as in the value
pattern in order to be considered a match. For example, a value pattern of "1234"
matches occurrences of 1234 encountered in the waveform but not 123 or 12345.

TIP: With the Exact match style you may omit leading zeros from the value pattern. For example, to
find the value 0023 in the waveform, you may specify a value pattern of “0023” or simply “23”.

° Beginning: Any waveform value whose beginning digits match the value pattern is
considered a match. For example, a value pattern of “1234” matches occurrences of
1234 and 12345 encountered in the waveform but not 1235 or 123. This option is
available only for radixes binary, octal, and hexadecimal.

° End: Any waveform value whose ending digits match the value pattern is considered
a match. For example, a value pattern of “1234” matches occurrences of 1234 and
91234 encountered in the waveform but not 1235 or 234. This option is available
only for radixes binary, octal, and hexadecimal.

6. Click the Next button or press the Enter key to move the main cursor forward to the
nearest match, or click the Previous button to move the main cursor backward to the
nearest match. With multiple wave objects selected, the cursor stops on the nearest
match of any of the selected wave objects.

TIP: If there are no matches in the requested direction, the cursor remains stationary and a “Value not
found” message appears on the right side of the toolbar.
Logic Simulation 102
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=102

Chapter 6

Debugging a Design with Vivado
Simulator

Introduction
The Vivado® Design Suite simulator provides you with the ability to:

• Examine source code
• Set breakpoints and run simulation until a breakpoint is reached
• Step over sections of code
• Force waveform objects to specific values

This chapter describes debugging methods and includes Tcl commands that are valuable in
the debug process. There is also a flow description on debugging with third-party
simulators.

Debugging at the Source Level
You can debug your HDL source code to track down unexpected behavior in the design.
Debugging is accomplished through controlled execution of the source code to determine
where issues might be occurring. Available strategies for debugging are:

• Step through the code line by line: For any design at any point in development, you can
use the step command to debug your HDL source code one line at a time to verify that
the design is working as expected. After each line of code, run the step command
again to continue the analysis. For more information, see Stepping Through a
Simulation.

• Set breakpoints on the specific lines of HDL code, and run the simulation until a
breakpoint is reached: In larger designs, it can be cumbersome to stop after each line
of HDL source code is run. Breakpoints can be set at any predetermined points in your
HDL source code, and the simulation is run (either from the beginning of the test bench
or from where you currently are in the design) and stops are made at each breakpoint.
Logic Simulation 103
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=103

Chapter 6: Debugging a Design with Vivado Simulator
You can use the Step, Run All, or Run For command to advance the simulation after a
stop. For more information, see the section, Using Breakpoints, below.

• Set conditions. The tools evaluate each condition and execute Tcl commands when the
condition is true. Use the Tcl command:
add_condition <condition> <instruction>

See Adding Conditions, page 106 for more information.

Stepping Through a Simulation
You can use the step command, which executes your HDL source code one line of source
code at a time, to verify that the design is working as expected.

The line of code is highlighted and an arrow points to the currently executing line of code.

You can also create breakpoints for additional stops while stepping through your
simulation. For more information on debugging strategies in the simulator, seethe section,
Using Breakpoints, below.

1. To step through a simulation:

° From the current running time, select Run > Step, or click the Step button.

The HDL associated with the top design unit opens as a new view in the Wave
window.

° From the start (0 ns), restart the simulation. Use the Restart command to reset time
to the beginning of the test bench. See Chapter 4, Simulating with Vivado
Simulator.

2. In the waveform configuration window, right-click the waveform or HDL tab and select
Tile Horizontally see the waveform and the HDL code simultaneously.

3. Repeat the Step action until debugging is complete.

As each line is executed, you can see the arrow moving down the code. If the simulator is
executing lines in another file, the new file opens, and the arrow steps through the code. It
is common in most simulations for multiple files to be opened when running the Step
command. The Tcl Console also indicates how far along the HDL code the step command
has progressed.
Logic Simulation 104
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=104

Chapter 6: Debugging a Design with Vivado Simulator
Using Breakpoints
A breakpoint is a user-determined stopping point in the source code that you can use for
debugging the design.

TIP: Breakpoints are particularly helpful when debugging larger designs for which debugging with the
Step command (stopping the simulation for every line of code) might be too cumbersome and time
consuming.

You can set breakpoints in executable lines in your HDL file so you can run your code
continuously until the simulator encounters the breakpoint.

Note: You can set breakpoints on lines with executable code only. If you place a breakpoint on a line
of code that is not executable, the breakpoint is not added.

To set a breakpoint in the workspace (GUI):

1. Run a simulation.
2. Go to your source file and click the hollow circle to the left of the source line of

interest. A red dot confirms the breakpoint is set correctly.

After the procedure completes, a simulation breakpoint button opens next to the line of
code.

To set a breakpoint in the Tcl Console:

1. Type the Tcl Command: add_bp <file_name> <line_number>

This command adds a breakpoint at <line_number> of <file_name>. See the Vivado
Design Suite help or the Vivado Design Suite Tcl Command Reference Guide (UG835)
[Ref 7] for command usage.

To debug a design using breakpoints:

1. Open the HDL source file.
2. Set breakpoints on executable lines in the HDL source file.
3. Repeat steps 1 and 2 until all breakpoints are set.
4. Run the simulation, using a Run option:

° To run from the beginning, use the Run > Restart command.

° Use the Run > Run All or Run > Run For command.

The simulation runs until a breakpoint is reached, then stops.

The HDL source file displays an arrow, indicating the breakpoint stopping point.
Logic Simulation 105
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=105

Chapter 6: Debugging a Design with Vivado Simulator
5. Repeat Step 4 to advance the simulation, breakpoint by breakpoint, until you are
satisfied with the results.

A controlled simulation runs, stopping at each breakpoint set in your HDL source files.

During design debugging, you can also run the Run > Step command to advance the
simulation line by line to debug the design at a more detailed level.

You can delete a single breakpoint or all breakpoints from your HDL source code.

To delete a single breakpoint, click the Breakpoint button .

To remove all breakpoints, either select Run> Delete All Breakpoints
or click the Delete All Breakpoints button .

To delete all breakpoints:

• Type the Tcl command remove_bps -all

To get breakpoint information on the specified list of breakpoint objects:

• Type the Tcl command report_bps

Adding Conditions
To add breakpoints based on a condition and output a diagnostic message, use the
following commands:

add_condition <condition> <message>

Using the Vivado IDE BFT example design, to stop when the wbClk signal and the reset
are both active-High, issue the following command at start of simulation to print a
diagnostic message and pause simulation when reset goes to 1 and wbClk goes to 1:

add_condition {reset == 1 && wbClk == 1} {puts "Reset went to high"; stop}

In the BFT example, the added condition causes the simulation to pause at 5 ns when the
condition is met and "Reset went to high" is printed to the console. The simulator
waits for the next step or run command to resume simulation.

-notrace Option

Normally, when you execute the add_condition command, the specified Tcl commands
also echo to the console, log file, and journal file. The -notrace switch causes those
commands to execute silently, suppressing the commands (but not their output) from
appearing in those three places.
Logic Simulation 106
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=106

Chapter 6: Debugging a Design with Vivado Simulator
For Example, If you execute the following example command:

puts ‘Hello’

The normal behavior of the above command would be to emit the following output in the
console, log file, and journal file:

puts ‘Hello’
Hello

When you execute -notrace switch, it would produce only the following output:

Hello

Pausing a Simulation
While running a simulation for any length of time, you can pause a simulation using the
Break command, which leaves the simulation session open.

To pause a running simulation, select Simulation > Break or click the Break button .

The simulator stops at the next executable HDL line. The line at which the simulation
stopped is displayed in the text editor.

Note: This behavior applies to designs that are compiled with the -debug <kind> switch.

Resume the simulation any time using the Run All, Run, or Step commands. See Stepping
Through a Simulation, page 104 for more information.

Tracing the Execution of a Simulation
You can display a note on the Tcl console for every source line that the simulation
encounters while running. This continuous display of encountered lines is called line
tracing.

To turn on line tracing, use one of the following Tcl commands:

ltrace on

set_property line_tracing true [current_sim]

To turn off line tracing use one of the following Tcl commands:

ltrace off

set_property line_tracing false [current_sim]

You can display a note on the Tcl console for every process that the simulation encounters
while running. This continuous display of encountered processes is called process tracing.
Logic Simulation 107
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=107

Chapter 6: Debugging a Design with Vivado Simulator
To turn on process tracing, use one of the following Tcl commands:

ptrace on

set_property process_tracing true [current_sim]

To turn off process tracing, use one of the following Tcl commands:

ptrace off

set_property process_tracing false [current_sim]

Forcing Objects to Specific Values
Using Force Commands
The Vivado simulator provides an interactive mechanism to force a signal, wire, or register
to a specified value at a specified time or period of time. You can also force values on
objects to change over a period of time.

TIP: A ‘force’ is both an action (that is, the overriding of HDL-defined behavior on a signal) and also a
Tcl first-class object, something you can hold in a Tcl variable.

You can use force commands on an HDL signal to override the behavior for that signal as
defined in your HDL design. You might, for example, choose to override the behavior of a
signal to:

• Supply a stimulus to a test bench signal that the HDL test bench itself is not driving
• Correct a bad value temporarily during debugging (allowing you to continue analyzing

a problem)

The available force commands are:

• Force Constant
• Force Clock
• Remove Force

IMPORTANT: Running the restart command preserves all forces that have not been cleared with the
remove_force command. When the simulation runs again, the preserved forces take effect at the
same absolute simulation time as in the previous simulation run.
Logic Simulation 108
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=108

Chapter 6: Debugging a Design with Vivado Simulator
Figure 6-1 illustrates how the add_force functionality is applied given the following
command:

add_force mySig {0 t1} {1 t2} {0 t3} {1 t4} {0 t5} -repeat_every tr -cancel_after tc

You can get more detail on the command by typing the following in the Tcl Console:

add_force -help

Force Constant

The Force Constant option lets you fix a signal to a constant value, overriding the
assignments made within the HDL code or another previously applied constant or clock
force.

Force Constant and Force Clock are options in the Objects or Wave window right-click
menu (as shown in Figure 6-2), or in the text editor (source code).

TIP: Double-click an item in the Objects, Sources, or Scopes window to open it in the text editor. For
additional information about the text editor, see the Vivado Design Suite User Guide: Using the Vivado
IDE (UG893) [Ref 3].

X-Ref Target - Figure 6-1

Figure 6-1: Illustration of -add_force Functionality

tc

tr

t1

t2

t3
t4

t5

Current Time
Logic Simulation 109
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=109

Chapter 6: Debugging a Design with Vivado Simulator
The Force options are disabled for the objects for which the Vivado simulator does not
support forcing. The type of object or limitations in the Vivado simulator's modeling for
those objects may be the cause for not supporting such objects.

TIP: To force a module or entity port whose Force options are disabled, try forcing its connected actual
signal one scope level up. Use the add_force Tcl command (for example, add_force myObj 0) to view
the reason why the options are disabled.

When you select the Force Constant option, the Force Constant dialog box opens so you
can enter the relevant values, as shown in Figure 6-3.

X-Ref Target - Figure 6-2

Figure 6-2: Force Options
Logic Simulation 110
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=110

Chapter 6: Debugging a Design with Vivado Simulator
The following are Force Constant option descriptions:

• Signal name: Displays the default signal name, that is, the full path name of the
selected object.

• Value radix: Displays the current radix setting of the selected signal. You can choose
one of the supported radix types: Binary, Hexadecimal, Unsigned Decimal, Signed
Decimal, Signed Magnitude, Octal, and ASCII. The GUI then disallows entry of the
values based on the Radix setting. For example: if you choose Binary, no numerical
values other than 0 and 1 are allowed.

• Force value: Specifies a force constant value using the defined radix value. (For more
information about radixes, see About Radixes, page 83 and Using Radixes and Analog
Waveforms, page 85.)

• Starting after time offset: Starts after the specified time. The default starting time is 0.
Time can be a string, such as 10 or 10 ns. When you enter a number without a unit, the
Vivado simulator uses the default (ns).

• Cancel after time offset: Cancels after the specified time. Time can be a string such as
10 or 10 ns. If you enter a number without a unit, the default simulation time unit is
used.

Tcl command:

add_force /testbench/TENSOUT 1 200 -cancel_after 500

X-Ref Target - Figure 6-3

Figure 6-3: Force Selected Signal Dialog Box
Logic Simulation 111
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=111

Chapter 6: Debugging a Design with Vivado Simulator
Force Clock

The Force Clock command lets you assign a signal a value that toggles at a specified rate
between two states, in the manner of a clock signal, for a specified length of time. When
you select the Force Clock option in the Objects window menu, the Force Clock dialog box
opens, as shown in Figure 6-4.

The options in the Force Clock dialog box are shown below.

• Signal name: Displays the default signal name; the full path name of the item selected
in the Objects window or waveform.

TIP: The Force Clock command can be applied to any signal (not just clock signals) to define an
oscillating value.

• Value radix: Displays the current radix setting of the selected signal. Select one of the
displayed radix types from the drop-down menu: Binary, Hexadecimal, Unsigned
Decimal, Signed Decimal, Signed Magnitude, Octal, or ASCII.

• Leading edge value: Specifies the first edge of the clock pattern. The leading edge
value uses the radix defined in Value radix field.

• Trailing edge value: Specifies the second edge of the clock pattern. The trailing edge
value uses the radix defined in the Value radix field.

X-Ref Target - Figure 6-4

Figure 6-4: Force Clock Dialog Box
Logic Simulation 112
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=112

Chapter 6: Debugging a Design with Vivado Simulator
• Starting after time offset: Starts the force command after the specified time from the
current simulation. The default starting time is 0. Time can be a string, such as 10 or 10
ns. If you enter a number without a unit, the Vivado simulator uses the default user
unit.

• Cancel after time offset: Cancels the force command after the specified time from the
current simulation time. Time can be a string, such as 10 or 10 ns. When you enter a
number without a unit, the Vivado simulator uses the default simulation time unit.

• Duty cycle (%): Specifies the percentage of time that the clock pulse is in an active
state. The acceptable value is a range from 0 to 100 (default is 50%).

• Period: Specifies the length of the clock pulse, defined as a time value. Time can be a
string, such as 10 or 10 ns.

Note: For more information about radixes, see About Radixes, page 83 and Using Radixes and
Analog Waveforms, page 85.)

Example Tcl command:

add_force /testbench/TENSOUT -radix bin {0} {1} -repeat_every 10ns -cancel_after 3us

Remove Force

To remove any specified force from an object use the following Tcl command:

remove_forces <force object>
remove_forces <HDL object>

Using Force in Batch Mode
The code examples below show how to force a signal to a specified value using the
add_force command. A simple verilog circuit is provided. The first example shows the
interactive use of the add_force command and the second example shows the scripted
use.

Example 1: Adding Force

Verilog Code (tmp.v)

The following code snippet is a Verilog circuit:

module bot(input in1, in2,output out1);
reg sel;
assign out1 = sel? in1: in2;
endmodule

module top;
reg in1, in2;
wire out1;
bot I1(in1, in2, out1);
initial
Logic Simulation 113
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=113

Chapter 6: Debugging a Design with Vivado Simulator
begin
 #10 in1 = 1'b1; in2 = 1'b0;
 #10 in1 = 1'b0; in2 = 1'b1;
end
initial
 $monitor("out1 = %b\n", out1);
endmodule

Command Examples

You can invoke the following commands to observe the effect of add_force:

xelab -vlog tmp.v -debug all
xsim work.top

At the command prompt, type:

add_force /top/I1/sel 1
run 10
add_force /top/I1/sel 0
run all

Tcl Commands

You can use the add_force Tcl command to force a signal, wire, or register to a specified
value:

add_force [-radix <arg>] [-repeat_every <arg>] [-cancel_after <arg>] [-quiet]
[-verbose] <hdl_object> <values>...

For more info on this and other Tcl commands, see the Vivado Design Suite Tcl Command
Reference Guide (UG835) [Ref 7].

Example 2: Scripted Use of add_force with remove_forces

Verilog Code (top.v)

The following is an example Verilog file, top.v, which instantiates a counter. You can use
this file in the following command example.

module counter(input clk,reset,updown,output [4:0] out1);

reg [4:0] r1;

always@(posedge clk)
begin
 if(reset)
 r1 <= 0;
 else
 if(updown)
 r1 <= r1 + 1;
 else
 r1 <= r1 - 1;
end
Logic Simulation 114
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=114

Chapter 6: Debugging a Design with Vivado Simulator
assign out1 = r1;
endmodule

module top;
reg clk;
reg reset;
reg updown;
wire [4:0] out1;

counter I1(clk, reset, updown, out1);

initial
begin
 reset = 1;
 #20 reset = 0;
end

initial
begin
 updown = 1; clk = 0;
end

initial
 #500 $finish;

initial
 $monitor("out1 = %b\n", out1);
endmodule

Command Example

1. Create a file called add_force.tcl with following command:
create_project add_force -force
add_files top.v
set_property top top [get_filesets sim_1]
set_property -name xelab.more_options -value {-debug all} -objects [get_filesets
sim_1]
set_property runtime {0} [get_filesets sim_1]
launch_simulation -simset sim_1 -mode behavioral
add_wave /top/*

2. Invoke the Vivado Design Suite in Tcl mode, and source the add_force.tcl file.
3. In the Tcl Console, type:

set force1 [add_force clk {0 1} {1 2} -repeat_every 3 -cancel_after 500]
set force2 [add_force updown {0 10} {1 20} -repeat_every 30]
run 100

Observe that the value of out1 increments as well as decrements in the Wave window.
You can observe the waveforms in the Vivado IDE using the start_gui command.

Observe the value of updown signal in the Wave window.
Logic Simulation 115
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=115

Chapter 6: Debugging a Design with Vivado Simulator
4. In the Tcl Console, type:
remove_forces $force2
run 100

Observe that only the value of out1 increments.

5. In the Tcl Console, type:
remove_forces $force1
run 100

Observe that the value of out1 is not changing because the clk signal is not toggling.

Power Analysis Using Vivado Simulator
The Switching Activity Interchange Format (SAIF) is an ASCII report that assists in extracting
and storing switching activity information generated by simulator tools. This switching
activity can be back-annotated into the Xilinx® power analysis and optimization tools for
the power measurements and estimations.

Switching Activity Interchange Format (SAIF) dumping is optimized for Xilinx power tools
and for use by the report_power Tcl command. The Vivado simulator writes the following
HDL types to the SAIF file. Refer to this link in the Vivado Design Suite User Guide: Power
Analysis and Optimization (UG907) [Ref 8] for additional information.

• Verilog:

° Input, Output, and Inout ports

° Internal wire declarations
• VHDL:

° Input, Output, and Inout ports of type std_logic, std_ulogic, and bit (scalar,
vector, and arrays).

Note: A VHDL netlist is not generated in the Vivado Design Suite for timing simulations;
consequently, the VHDL sources are for RTL-level code only, and not for netlist simulation.

For RTL-level simulations, only block-level ports are generated and not the internal signals.

For information about power analysis using third-party simulation tools, see Dumping SAIF
for Power Analysis, Dumping SAIF in IES, and Dumping SAIF in VCS in Chapter 3, Simulating
with Third-Party Simulators.
Logic Simulation 116
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug907-vivado-power-analysis-optimization.pdf;a=xSpecifyingSwitchingActivityForTheAnalysis
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=116

Chapter 6: Debugging a Design with Vivado Simulator
Generating SAIF Dumping
Before you use the log_saif command, you must call open_saif. The log_saif
command does not return any object or value.

1. Compile your RTL code with the -debug typical option to enable SAIF dumping:
xelab -debug typical top -s mysim

2. Use the following Tcl command to start SAIF dumping:
open_saif <saif_file_name>

3. Add the scopes and signals to be generated by typing one of the following Tcl
commands:
log_saif [get_objects]

To recursively log all instances, use the Tcl command:

log_saif [get_objects -r *]

4. Run the simulation (use any of the run commands).
5. Import simulation data into an SAIF format using the following Tcl command:

close_saif

Example SAIF Tcl Commands
To log SAIF for:

• All signals in the scope: /tb: log_saif /tb/*

• All the ports of the scope: /tb/UUT
• Those objects having names that start with a and end in b and have digits in between:

log_saif [get_objects -regexp {^a[0-9]+b$}]

• The objects in the current_scope and children_scope:
log_saif [get_objects -r *]

• The objects in the current_scope:
log_saif * or log_saif [get_objects]

• Only the ports of the scope /tb/UUT, use the command:
log_saif [get_objects -filter {type == in_port || type == out_port || type ==
inout_port || type == port } /tb/UUT/*]

• Only the internal signals of the scope /tb/UUT, use the command:
log_saif [get_objects -filter { type == signal } /tb/UUT/*]

TIP: This filtering is applicable to all Tcl commands that require HDL objects.
Logic Simulation 117
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=117

Chapter 6: Debugging a Design with Vivado Simulator
Dumping SAIF using a Tcl Simulation Batch File
sim.tcl:
open_saif xsim_dump.saif
log_saif /tb/dut/*
run all
close_saif
quit

Using the report_drivers Tcl Command
You can use the report_drivers Tcl command to determine what signal is driving a value
on an HDL object. The syntax is as follows:

report_drivers <hdl_object>

The command prints drivers (HDL statements doing the assignment) to the Tcl Console
along with current driving values on the right side of the assignment to a wire or signal-type
HDL object.

You can also call the report_drivers command from the Object or Wave window context
menu or text editor. To open the context menu (shown in the figure below), right-click any
signal and click Report Drivers. The result appears in the Tcl console.
X-Ref Target - Figure 6-5

Figure 6-5: Context Menu with Report Drivers Command Option
Logic Simulation 118
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=118

Chapter 6: Debugging a Design with Vivado Simulator
Using the Value Change Dump Feature
You can use a Value Change Dump (VCD) file to capture simulation output. The Tcl
commands are based on Verilog system tasks related to dumping values.

For the VCD feature, the Tcl commands listed in the table below model the Verilog system
tasks.

See the Vivado Design Suite Tcl Command Reference Guide (UG835) [Ref 7], or type the
following in the Tcl Console:

<command> -help

Example:

open_vcd xsim_dump.vcd
log_vcd /tb/dut/*
run all
close_vcd
quit

See Verilog Language Support Exceptions in Appendix G for more information.

You can use the VCD data to validate the output of the simulator to debug simulation
failures.

Table 6-1: Tcl Commands for VCD
Tcl Command Description

open_vcd Opens a VCD file for capturing simulation output. This Tcl command
models the behavior of $dumpfile Verilog system task.

checkpoint_vcd Models the behavior of the $dumpall Verilog system task.
start_vcd Models the behavior of the $dumpon Verilog system task.
log_vcd Logs VCD for the specified HDL objects. This command models behavior of

the $dumpvars Verilog system task.
flush_vcd Models behavior of the $dumpflush Verilog system task.
limit_vcd Models behavior of the $dumplimit Verilog system task.
stop_vcd Models behavior of the $dumpoff Verilog system task.
close_vcd Closes the VCD generation.
Logic Simulation 119
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=119

Chapter 6: Debugging a Design with Vivado Simulator
Using the log_wave Tcl Command
The log_wave command logs simulation output for viewing specified HDL objects with the
Vivado simulator waveform viewer. Unlike add_wave, the log_wave command does not
add the HDL object to the waveform viewer (that is, the Waveform Configuration). It simply
enables the logging of output to the Vivado Simulator Waveform Database (WDB).

TIP: To display object values prior to the time of insertion, the simulation must be restarted. To avoid
having to restart the simulation because of missing value changes: issue the log_wave -r / Tcl command
at the start of a simulation run to capture value changes for all display-able HDL objects in your
design.

Syntax:

log_wave [-recursive] [-r] [-quiet] [-verbose] <hdl_objects>...

Example log_wave TCL Command Usage

To log the waveform output for:

• All signals in the design (excluding those of alternate top modules):
log_wave -r /

• All signals in a scope: /tb:
log_wave /tb/*

• Those objects having names that start with a and end in b and have digits in between:
log_wave [get_objects -regexp {^a[0-9]+b$}]

• All objects in the current scope and all child scopes, recursively:
log_wave -r *

• Temporarily overriding any message limits and return all messages from the following
command:
log_wave -v

• The objects in the current scope:
log_wave *

• Only the ports of the scope /tb/UUT, use the command:
log_wave [get_objects -filter {type == in_port || type == out_port || type ==
inout_port || type == port} /tb/UUT/*]

• Only the internal signals of the scope /tb/UUT, use the command:
log_wave [get_objects -filter {type == signal} /tb/UUT/*]
Logic Simulation 120
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=120

Chapter 6: Debugging a Design with Vivado Simulator
The wave configuration settings; which include the signal order, name style, radix, and
color; are saved to the wave configuration (WCFG) file upon demand. See Chapter 5,
Analyzing Simulation Waveforms with Vivado Simulator.

Cross Probing Signals in the Object, Wave, and Text
Editor Windows
In Vivado simulator, you can do cross probing on signals present in the Objects, Wave, and
text editor windows.

From the Objects window, you can check to see if a signal is present in the Wave window
and vice versa. Right-click the signal to open the context menu shown in Figure 6-6. Click
Show in Wave Window or Add to Wave Window (if signal is not yet present in the Wave
window).
X-Ref Target - Figure 6-6

Figure 6-6: Objects Window Context Menu Options
Logic Simulation 121
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=121

Chapter 6: Debugging a Design with Vivado Simulator
You can also cross probe a signal from the text editor. Right-click a signal to open the
context menu shown in the figure below. Select Add to Wave Window, Show in
Waveform or Show in Objects. The signal then appears highlighted in the Wave or Objects
window.
X-Ref Target - Figure 6-7

Figure 6-7: Text Editor Right-Click (Context) Menu
Logic Simulation 122
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=122

Chapter 6: Debugging a Design with Vivado Simulator
Tool Specific init.tcl
During execution of simulation, Vivado Simulator sources the init file present at the
following location:

$HOME/.xilinx/xsim/xsim_init.tcl

It is useful, if you want to set a property across multiple runs. In such a scenario, you can
write these inside a tcl file and Vivado Simulator will source this tcl file before time 0' during
execution.

Subprogram Call-Stack Support
You can now step-through subprogram calls and access automatic (as well as static)
variables inside subprogram using get_value/set_value options.

Currently, you can only access these variables if the subprogram is at the top of the
call-stack.

Use the following options to support access to variables at any level of the call-stack:

• Call Stacks Window
• Stack Frames Window
• Locals Tab in Object Window

Call Stacks Window

Call Stacks window shows HDL scopes for all the VHDL/Verilog processes in a design which
are waiting inside a subprogram at the current simulation time. This is similar to
get_stacks Tcl command.

By default, the current process in which simulation is stopped (inside a subprogram) will be
selected in the Call Stacks Window. However, you can select any other processes waiting in
a subprogram. The effect of selecting a process on the call-stack window is same as
selecting a process scope from the Scope Window or using current_scope Tcl command.
When you select a process on the call-stack window, the updated process appears in the
Scope Window, Object Window, Stack Frames Window and Locals tab. The process name
with absolute path and its type of the selected process is shown in the Call Stacks Window.
Logic Simulation 123
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=123

Chapter 6: Debugging a Design with Vivado Simulator
Stack Frames Window

Stack Frames Window shows the current HDL process that is waiting inside a subprogram
and the subprograms in its call-stack. This is similar to report_frames and
current_frame Tcl commands. In the Stack Frames Windows, the most recent
subprogram in the current hierarchy is shown at the top, followed by caller subprograms.
The caller HDL process is shown the bottom. You can select other frames to be current and
the effect is same as the current_frame –set <selected_frame_index> Tcl
command. The Locals tab in the Object window follows the subprogram frame selection and
shows the static and automatic variables local to the selected subprogram frame. The frame
number, subprogram/process name, source file and current line for the selected HDL
process is shown in the Stack Frames Window.

X-Ref Target - Figure 6-8

Figure 6-8: Call-Stack Window
Logic Simulation 124
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=124

Chapter 6: Debugging a Design with Vivado Simulator
Locals Tab in Object Window

The Locals Tab in Object Window shows the name, value and type of static and automatic
variables local to the currently executing (or selected) subprogram. This is similar to
get_objects –local Tcl command. This window follows the frame selected in the
Stack-frame Window. For every variable/argument, its name, value and type would be
shown in the locals Tab.

X-Ref Target - Figure 6-9

Figure 6-9: Stack Frames Window

X-Ref Target - Figure 6-10

Figure 6-10: Local Tab in Object Window
Logic Simulation 125
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=125

Chapter 7

Simulating in Batch or Scripted Mode in
Vivado Simulator

Introduction
This chapter describes the command line compilation and simulation process.

Vivado supports an integrated simulation flow where the tool can launch Vivado simulator,
or a third party simulator from the IDE. However, many users also want to run simulation in
batch or scripted mode in their verification environment, which may include system-level
simulation, or advanced verification such as UVM. The Vivado Design Suite supports batch
or scripted simulation in the Vivado simulator.

This chapter describes a process to gather the needed design files, to generate simulation
scripts for your target simulator, and to run simulation in batch mode. The simulation scripts
can be generated for a top-level HDL design, or for hierarchical modules, managed IP
projects, or block designs from Vivado IP integrator. Batch simulation is supported in both
project and non-project script-based flow.

Exporting Simulation Files and Scripts
Running a simulation from the command line for either a behavioral or timing simulation
requires you to perform the following steps:

1. Identifying and parsing design files.
2. Elaborating and generating an executable simulation snapshot of the design.
3. Running simulation using the executable snapshot.

The Vivado Design Suite provides an Export Simulation command to let you quickly gather
the design files required for simulation, and generate the simulation scripts for the
top-level RTL design, or a sub-design. The export_simulation command will generate
scripts for all of the supported third-party simulators, or for the target simulator of your
choice.
Logic Simulation 126
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=126

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
From within the Vivado IDE, use the File> Export > Export Simulation command to open
the Export Simulation dialog box as shown in Figure 7-1, page 127.

The Export Simulation command writes a simulation script file for all supported simulators,
or for the specified Target simulator. The generated scripts will contain simulator
commands for compiling, elaborating, and simulating the design.

The features of the Export Simulation dialog box include the following:

• Target simulator: Specifies all simulators, or a specific simulator to generate
command line scripts for. Target simulators include Vivado simulator as well as various
supported third-party simulators. Refer to Chapter 3, Simulating with Third-Party
Simulators for more information.
Note: On the Windows operating system, scripts will only be generated for those simulators
that run on Windows.

• Compiled library location: In order to perform simulation with the script generated by
Export Simulation, your simulation libraries must first be compiled with the
compile_simlib Tcl command. The generated scripts will automatically include the setup
files needed for the target simulator from the compiled library directory. Refer to
Compiling Simulation Libraries, page 15 for more information.

X-Ref Target - Figure 7-1

Figure 7-1: Export Simulation dialog box
Logic Simulation 127
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug835-vivado-tcl-commands.pdf;a=xcompile_simlib
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=127

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
TIP: It is recommended to provide the path to the Compile library location whenever running Export
Simulation. This insures that the scripts will always point to the correct simulation libraries.

• Export directory: Specifies the output directory for the scripts written by Export
Simulation. By default, the simulation scripts are written to the local directory of the
current project.

• Overwrite files: Overwrites the files of the same name that already exist in the export
directory.

• Use absolute paths: By default, source files and directory paths in the generated
scripts will be relative to a reference directory that is defined in the scripts. Use this
switch to make file paths in the script absolute rather than relative.

• Copy source files to export directory: Copy design files to the output directory. This
copies the simulation source files as well as the generated scripts to make the entire
simulation folder more portable.

• Command: This field provides the Tcl command syntax for the export_simulation
command that will be run as a result of the various options and settings that you have
specified in the Export Simulation dialog box.

• Help: For detailed information on various options in Export Simulation files dialog,
click on help button.

The Export Simulation command supports both project and non-project designs. It does
not read properties from the current project except to query for Verilog ‘defines and
‘include directories. Instead, the Export Simulation command gets directives from the
dialog box or from export_simulation command options. You must specify the
appropriate options to get the results you want. In addition, you must have output products
generated for all IP and BD that are used in the top-level design.

IMPORTANT: The export_simulation command will not generate output products for IP and BD if
they do not exist. Instead it will return an error and exit.

When you click OK on the Export Simulation dialog box, the command gets the simulation
compile order of all design files required for simulating the specified design object: the
top-level design, a hierarchical module, IP core, a block design from Vivado IP integrator, or
a Managed IP project with multiple IP. The simulation compile order of the required design
files is exported to a shell script with compiler commands and options for the target
simulator.

The simulation scripts are written to separate folders in the Export directory as specified in
the Export Simulation dialog box. A separate folder is created for each specified simulator,
and compile, elaborate, and simulate scripts are written for the simulator.

The scripts generated by the Export Simulation command uses a 3-step process,
analyze/compile, elaborate and simulate, that is common to many simulators including the
Logic Simulation 128
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=128

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
Vivado simulator. However, for ModelSim the generated scripts use the two-step process of
compile and simulate that the tool requires.

TIP: To use the two-step process in the Questa or Aldec simulators, you can start with the scripts
generated for ModelSim and modify them as needed.

The Export Simulation command will also copy data files (if any) from the fileset, or from an
IP, to the specified export directory. If the design contains Verilog sources, then the
generated script will also copy the "glbl.v" file from the Vivado software installation path to
the output directory.

Tcl Command Example for Export Simulation

export_ip_user_files -no_script -force
export_simulation -directory "C:/Data/project_wave1" -simulator all

When you run the Export Simulation command from the dialog box, the Vivado IDE actually
runs a sequence of commands that defines the base directory (or location) for the exported
scripts, exports the IP user files, and then runs the export_simulation command.

The export_ip_user_files command is run automatically by the Vivado IDE to ensure
that all required files needed to support simulation for both core container and non-core
container IP, as well as block designs, are available. See this link in the Vivado Design Suite
User Guide: Designing with IP (UG896) [Ref 2] for more information. While
export_ip_user_files is run automatically when working with the Export Simulation
dialog box, you must be sure to run it manually before running the export_simulation
command.

TIP: Notice the -no_script option is specified when export_ip_user_files is run
automatically by the Vivado IDE. This is to prevent the generation of simulation scripts for the
individual IP and BDs that are used in the top-level design since it can add significant run time to the
command. However, you can generate these simulation scripts for individual IP and BD by running
export_ip_user_files on specified objects (-of_objects), or without the -no_script option.

The export_ip_user_files command sets up the user file environment for IP and block
design needed for simulation and synthesis. The command creates a folder called
ip_user_files which contains instantiation templates, stub files for use with 3rd party
synthesis tools, wrapper files, memory initialization files, and simulation scripts.

The export_ip_user_files command also consolidates static simulation files that are
shared across all IP and block designs in the project and copies them to an ipstatic
folder. Many of the IP files that are shared across multiple IP and BDs in a project do not
change for specific IP customizations. These static files are copied into the ipstatic
directory. The scripts created for simulation reference the shared files in this directory as
needed. The dynamic simulation files that are specific to an IP customization are copied to
the IP folder. See this link, or “Understanding IP User Files” in Vivado Design Suite User
Guide: Designing with IP (UG896) [Ref 2] for more information.
Logic Simulation 129
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug835-vivado-tcl-commands.pdf;a=xexport_ip_user_files
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug835-vivado-tcl-commands.pdf;a=xexport_simulation
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug896-vivado-ip.pdf;a=xUsingACoreContainerForCommonFiles
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug896-vivado-ip.pdf;a=xUnderstandingTheIPUserFilesIpUserFiles
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=129

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
IMPORTANT: The scripts and files generated by the export_simulation command point to the files
in the ip_user_files directory. You must run the export_ip_user_files command before you
run export_simulation or simulation errors may occur.

Exporting the Top level design
To create simulation scripts for the top-level RTL design use export_simulation and
provide the simulation fileset object. In the following example sim_1 is the simulation
fileset, and export simulation will create simulation scripts for all the RTL entities, IP, and BD
objects in the design.

export_ip_user_files -no_script
export_simulation -of_objects [get_filesets sim_1] -directory C:/test_sim \
-simulator questa

Exporting IP from the Xilinx Catalog and Block Designs
To generate scripts for an IP, or a Vivado IP integrator block design, you can simply run the
command on the IP or block design object:

export_ip_user_files -of_objects [get_ips blk_mem_gen_0] -no_script -force
export_simulation -simulator ies -directory ./export_script \
-of_objects [get_ips blk_mem_gen_0]

Or, export the ip_user_files for all IP and BDs in the design:

export_ip_user_files -no_script -force
export_simulation -simulator ies -directory ./export_script

You can also generate simulation scripts for block design objects:

export_ip_user_files -of_objects [get_files base_microblaze_design.bd] \
-no_script -force
export_simulation -of_objects [get_files base_microblaze_design.bd] \
-directory ./sim_scripts

IMPORTANT: You must have output products generated for all IP and BD that are used in the top-level
design. The export_simulation command will not generate output products for IP and BD if they
do not exist. Instead it will return an error and exit.

Exporting a Manage IP Project
Manage IP project provides users an ability to create and manage a centralized repository
of customized IPs. See this link in the Vivado Design Suite User Guide: Designing with IP
(UG896) [Ref 2] for more information on Manage IP projects. When generating the IP
output products for Manage IP projects, the Vivado tool also generates simulation scripts
for each IP using the export_ip_user_files command as previously discussed.
Logic Simulation 130
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug896-vivado-ip.pdf;a=xUsingManageIPProjects
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=130

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
The Managed IP Project shown above features four different customized IP:
blk_mem_gen_0, c_addsub_0, fifo_generator_0, xdma_0. For this project the
Vivado Design Suite creates an ip_user_files folder as shown in the following figure.

The ip_user_files folder is generated by the export_ip_user_files command as
previously described. When this command is run on a Manage IP project, it will recursively
process all the IP in the project and generate the scripts and other files needed for synthesis
and simulation of the IP. The ip_user_files folder contains the scripts used for batch
simulation, as well as the dynamic and static IP files needed to support simulation.

X-Ref Target - Figure 7-2

Figure 7-2: Managed IP Project

X-Ref Target - Figure 7-3

Figure 7-3: Managed IP Directory Structure
Logic Simulation 131
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=131

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
The simulation scripts for your target simulator, or for all supported simulators, are located
in the ./sim_scripts folder as seen in Figure 7-3, page 131. You can go to the folder of
your target simulator and incorporate the compile, elaborate, and simulate scripts
into your simulation flow.

The Vivado tool consolidates all the shared simulation files, used by multiple IP and BD in
the design, into a folder called ./ipstatic. The dynamic files that vary depending on the
specifics of an IP customization are located in the ./ip folder.

TIP: In addition to exporting all the IP in a Manage IP project, you can use the steps outlined in
Exporting IP from the Xilinx Catalog and Block Designs, page 130 to generate scripts for individual IP
in the project.

Running the Vivado Simulator in Batch Mode
To run in batch or scripted mode, the Vivado simulator relies on three processes which are
supported by the files generated by the export_simulation command.

• Parsing Design Files, xvhdl and xvlog
• Elaborating and Generating a Design Snapshot, xelab
• Simulating the Design Snapshot, xsim

For timing simulation, there are additional steps and data required to complete the
simulation, as described in the following:

• Generating a Timing Netlist in Chapter 2
• Running Post-Synthesis and Post-Implementation Simulations, page 152

Parsing Design Files, xvhdl and xvlog
The xvhdl and xvlog commands parse VHDL and Verilog files, respectively. Descriptions
for each option are available in Table 7-2, page 141.
Logic Simulation 132
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=132

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
xvhdl

The xvhdl command is the VHDL analyzer (parser).

xvhdl Syntax

xvhdl
[-encryptdumps]
[-f [-file] <filename>]
[-h [-help]
[-initfile <init_filename>]
[-L [-lib] <library_name> [=<library_dir>]]
[-log <filename>]
[-nolog]
[-prj <filename>]
[-relax]
[-v [verbose] [0|1|2]]
[-version]
[-work <library_name> [=<library_dir>]
[-incr]
[-2008]
[-93_mode]
[-nosignalhandlers]

This command parses the VHDL source file(s) and stores the parsed dump into a HDL library
on disk.

xvhdl Examples

xvhdl file1.vhd file2.vhd
xvhdl -work worklib file1.vhd file2.vhd
xvhdl -prj files.prj
Logic Simulation 133
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=133

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
xvlog

The xvlog command is the Verilog parser. The xvlog command parses the Verilog source
file(s) and stores the parsed dump into a HDL library on disk.

xvlog Syntax

xvlog
[-d [define] <name>[=<val>]]
[-encryptdumps]
[-f [-file] <filename>]
[-h [-help]]
[-i [include] <directory_name>]
[-initfile <init_filename>]
[-L [-lib] <library_name> [=<library_dir>]]
[-log <filename>]
[-nolog]
[-noname_unamed_generate]
[-relax]
[-prj <filename>]
[-sourcelibdir <sourcelib_dirname>]
[-sourcelibext <file_extension>]
[-sourcelibfile <filename>]
[-sv]
[-v [verbose] [0|1|2]]
[-version]
[-work <library_name> [=<library_dir>]
[-incr]
[-nosignalhandlers]

xvlog Examples

xvlog file1.v file2.v
xvlog -work worklib file1.v file2.v
xvlog -prj files.prj

Note: xelab, xvlog and xvhdl are not Tcl commands. The xvlog, xvhdl, xelab are Vivado-independent
compiler executables. Hence, there is no Tcl command for them.

The simulation launching is Vivado dependent and hence is done through xsim Tcl
command.

For usage of simulation outside Vivado, an executable by the same name as xsim is
provided. The xsim executable launches Vivado in project less mode and executes xsim Tcl
command to launch simulation. Hence, to get help on xvlog, xvhdl, xelab form within
Vivado IDE, please precede the command with exec.

Example: exec xvlog –help.

To get help on xsim, use xsim –help.
Logic Simulation 134
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=134

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
Elaborating and Generating a Design Snapshot,
xelab
Simulation with the Vivado simulator happens in two phases:

• In the first phase, the simulator compiler xelab, compiles your HDL model into a
snapshot, which is a representation of the model in a form that the simulator can
execute.

• In the second phase, the simulator loads and executes (using the xsim command) the
snapshot to simulate the model. In Non-Project Mode, you can reuse the snapshot by
skipping the first phase and repeating the second.

When the simulator creates a snapshot, it assigns the snapshot a name based on the names
of the top modules in the model. You can, however, override the default by specifying a
snapshot name as an option to the compiler. Snapshot names must be unique in a directory
or SIMSET; reusing a snapshot name, whether default or custom, results in overwriting a
previously-built snapshot with that name.

IMPORTANT: you cannot run two simulations with the same snapshot name in the same directory or
SIMSET.

xelab
The xelab command, for given top-level units, does the following:

• Loads children design units using language binding rules or the -L <library>
command line specified HDL libraries

• Performs a static elaboration of the design (sets parameters, generics, puts generate
statements into effect, and so forth)

• Generates executable code
• Links the generated executable code with the simulation kernel library to create an

executable simulation snapshot

You then use the produced executable simulation snapshot name as an option to the xsim
command along with other options to effect HDL simulation.

TIP: xelab can implicitly call the parsing commands, xvlog and xvhdl. You can incorporate the
parsing step by using the xelab -prj option. See Project File (.prj) Syntax, page 149 for more
information about project files.

Note: xelab, xvlog and xvhdl are not Tcl commands. The xvlog, xvhdl, xelab are Vivado-independent
compiler executables. Hence, there is no Tcl command for them.
Logic Simulation 135
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=135

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
xelab Command Syntax Options

Descriptions for each option are available in Table 7-2, page 141.

xelab
[-d [define] <name>[=<val>]
[-debug <kind>]
[-f [-file] <filename>]
[-generic_top <value>]
[-h [-help]
[-i [include] <directory_name>]
[-initfile <init_filename>]
[-log <filename>]
[-L [-lib] <library_name> [=<library_dir>]
[-maxdesigndepth arg]
[-mindelay]
[-typdelay]
[-maxarraysize arg]
[-maxdelay]
[-mt arg]
[-nolog]
[-noname_unnamed_generate]
[-notimingchecks]
[-nosdfinterconnectdelays]
[-nospecify]
[-O arg]
[-Odisable_acceleration arg]
[-Odisable_always_combine]
[-Odisable_pass_through_elimination]
[-Odisable_process_opt]
[-Odisable_unused_removal]
[-Oenable_cdfg]
[-Odisable_cdfg]
[-Oenable_always_combine]
[-Oenable_pass_through_elimination]
[-Oenable_unused_removal]
[-override_timeunit]
[-override_timeprecision]
[-prj <filename>]
[-pulse_e arg]
[-pulse_r arg]
[-pulse_int_e arg]
[-pulse_int_r arg]
[-pulse_e_style arg]
[-r [-run]]
[-R [-runall]]
[-rangecheck]
[-relax]
[-s [-snapshot] arg]
[-sdfnowarn]
[-sdfnoerror]
[-sdfroot <root_path>]
[-sdfmin arg]
[-sdftyp arg]
[-sdfmax arg]
[-sourcelibdir <sourcelib_dirname>]
[-sourcelibext <file_extension>]
[-sourcelibfile <filename>]
Logic Simulation 136
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=136

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
[-stats]
[-timescale]
[-timeprecision_vhdl arg]
[-transport_int_delays]
[-v [verbose] [0|1|2]]
[-version]
[-sv_root arg]
[-sv_lib arg]
[-sv_liblist arg]
[-dpiheader arg]
[-driver_display_limit arg]
[-dpi_absolute]
[-incr]
[-93_mode]
[-nosignalhandlers]
[-dpi_stacksize arg]
[-transform_timing_checkers]
[-a[--standalone]

xelab Examples
xelab work.top1 work.top2 -s cpusim
xelab lib1.top1 lib2.top2 -s fftsim
xelab work.top1 work.top2 -prj files.prj -s pciesim
xelab lib1.top1 lib2.top2 -prj files.prj -s ethernetsim

Verilog Search Order
The xelab command uses the following search order to search and bind instantiated
Verilog design units:

1. A library specified by the ‘uselib directive in the Verilog code. For example:
module
full_adder(c_in, c_out, a, b, sum)
input c_in,a,b;
output c_out,sum;
wire carry1,carry2,sum1;
`uselib lib = adder_lib
half_adder adder1(.a(a),.b(b),.c(carry1),.s(sum1));
half_adder adder1(.a(sum1),.b(c_in),.c(carry2),.s(sum));
c_out = carry1 | carry2;
endmodule

2. Libraries specified on the command line with -lib|-L switch.
3. A library of the parent design unit.
4. The work library.
Logic Simulation 137
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=137

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
Verilog Instantiation Unit
When a Verilog design instantiates a component, the xelab command treats the
component name as a Verilog unit and searches for a Verilog module in the user-specified
list of unified logical libraries in the user-specified order.

• If found, xelab binds the unit and the search stops.
• If the case-sensitive search is not successful, xelab performs a case-insensitive search

for a VHDL design unit name constructed as an extended identifier in the
user-specified list and order of unified logical libraries, selects the first one matching
name, then stops the search.

• If xelab finds a unique binding for any one library, it selects that name and stops the
search.

Note: For a mixed language design, the port names used in a named association to a VHDL entity
instantiated by a Verilog module are always treated as case insensitive. Also note that you cannot use
a defparam statement to modify a VHDL generic. See Using Mixed Language Simulation in
Appendix G, for more information.

IMPORTANT: Connecting a whole VHDL record object to a Verilog object is unsupported.

VHDL Instantiation Unit
When a VHDL design instantiates a component, the xelab command treats the component
name as a VHDL unit and searches for it in the logical work library.

• If a VHDL unit is found, the xelab command binds it and the search stops.
• If xelab does not find a VHDL unit, it treats the case-preserved component name as a

Verilog module name and continues a case-sensitive search in the user-specified list
and order of unified logical libraries. The command selects the first matching the name,
then stops the search.

• If case sensitive search is not successful, xelab performs a case-insensitive search for a
Verilog module in the user-specified list and order of unified logical libraries. If a
unique binding is found for any one library, the search stops.
Logic Simulation 138
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=138

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
`uselib Verilog Directive
The Verilog `uselib directive is supported, and sets the library search order.

`uselib Syntax

<uselib compiler directive> ::= `uselib [<Verilog-XL uselib directives>|<lib
directive>]
<Verilog-XL uselib directives> :== dir = <library_directory> | file = <library_file>
| libext = <file_extension>
<lib directive>::= <library reference> {<library reference>}
<library reference> ::= lib = <logical library name>

`uselib Lib Semantics

The `uselib lib directive cannot be used with any of the Verilog-XL `uselib directives.
For example, the following code is illegal:

`uselib dir=./ file=f.v lib=newlib

Multiple libraries can be specified in one `uselib directive.

The order in which libraries are specified determines the search order. For example:

`uselib lib=mylib lib=yourlib

Specifies that the search for an instantiated module is made in mylib first, followed by
yourlib.

Like the directives, such as `uselib dir, `uselib file, and `uselib libext, the
`uselib lib directive is persistent across HDL files in a given invocation of parsing and
analyzing, just like an invocation of parsing is persistent. Unless another `uselib directive
is encountered, a `uselib (including any Verilog XL `uselib) directive in the HDL source
remains in effect. A `uselib without any argument removes the effect of any currently
active `uselib <lib|file|dir|libext>.

The following module search mechanism is used for resolving an instantiated module or
UDP by the Verific Verilog elaboration algorithm:

• First, search for the instantiated module in the ordered list of logical libraries of the
currently active `uselib lib (if any).

• If not found, search for the instantiated module in the ordered list of libraries provided
as search libraries in xelab command line.

• If not found, search for the instantiated module in the library of the parent module. For
example, if module A in library work instantiated module B of library mylib and B
instantiated module C, then search for module C in the /mylib, library, which is the
library of B (parent of C).
Logic Simulation 139
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=139

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
• If not found, search for the instantiated module in the work library, which is one of the
following:

° The library into which HDL source is being compiled

° The library explicitly set as work library

° The default work library is named as work

`uselib Examples

xelab, xvhdl, and xvlog xsim Command Options
Table 7-2 lists the command options for the xelab, xvhdl, and xvlog xsim commands.

Table 7-1: ‘uselib Examples
File half_adder.v compiled into logical
library named adder_lib File full_adder.v compiled into logical library named work

module half_adder(a,b,c,s);

input a,b;

output c,s;

s = a ^ b;

c = a & b;

endmodule

module

full_adder(c_in, c_out, a, b, sum)

input c_in,a,b;

output c_out,sum;

wire carry1,carry2,sum1;

`uselib lib = adder_lib

half_adder

adder1(.a(a),.b(b),.
c(carry1),.s(sum1));
half_adder
adder1(.a(sum1),.b(c_in),.c
(carry2),.s(sum));
c_out = carry1 | carry2;
endmodule
Logic Simulation 140
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=140

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
Table 7-2: xelab, xvhd, and xvlog Command Options
Command Option Description Used by Command

-d [define] <name>[=<val>] Define Verilog macros. Use -d|--define for
each Verilog macro. The format of the macro is
<name>[=<val>] where <name> is name of the
macro and <value> is an optional value of the
macro.

xelab
xvlog

-debug <kind> Compile with specified debugging ability turned
on. The <kind> options are:
• typical: Most commonly used abilities,

including: line and wave.
• line: HDL breakpoint.
• wave: Waveform generation, conditional

execution, force value.
• xlibs: Visibility into Xilinx® precompiled

libraries. This option is only available on the
command line.

• off: Turn off all debugging abilities (Default).
• all: Uses all the debug options.

xelab

-encryptdumps Encrypt parsed dump of design units being
compiled.

xvhdl
xvlog

-f [-file] <filename> Read additional options from the specified file. xelab
xsim
xvhdl
xvlog

-generic_top <value> Override generic or parameter of a top-level
design unit with specified value. Example:
-generic_top "P1=10"

xelab

-h [-help] Print this help message. xelab
xsim
xvhdl
xvlog

-i [include]
<directory_name>

Specify directories to be searched for files
included using Verilog `include. Use
-i|--include for each specified search
directory.

xelab
xvlog

-initfile <init_filename> User-defined simulator initialization file to add to
or override settings provided by the default
xsim.ini file.

xelab
xvhdl
xvlog

-L [-lib] <library_name>
[=<library_dir>]

Specify search libraries for the instantiated
non-VHDL design units; for example, a Verilog
design unit.
Use -L|--lib for each search library. The format
of the argument is <name>[=<dir>] where
<name> is the logical name of the library and
<library_dir> is an optional physical directory
of the library.

xelab
xvhdl
xvlog
Logic Simulation 141
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=141

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
-log <filename> Specify the log file name. Default:
<xvlog|xvhdl|xelab|xsim>.log.

xelab
xsim
xvhdl
xvlog

-maxarraysize arg Set maximum vhdl array size to be 2**n (Default: n =
28, which is 2**28)

xelab

-maxdelay Compile Verilog design units with maximum delays. xelab
-maxdesigndepth arg Override maximum design hierarchy depth

allowed by the elaborator (Default: 5000).
xelab

-maxlogsize arg (=-1) Set the maximum size a log file can reach in MB. The
default setting is unlimited.

xsim

-mindelay Compile Verilog design units with minimum delays. xelab
-mt arg Specifies the number of sub-compilation jobs

which can be run in parallel. Possible values are
auto, off, or an integer greater than 1.
If auto is specified, xelab selects the number of
parallel jobs based on the number of CPUs on the
host machine. (Default = auto).
Advanced usage: to further control the -mt
option, you can set the Tcl property as follows:

set_property XELAB.MT_LEVEL off|N
[get_filesets sim_1]

xelab

-nolog Suppress log file generation. xelab
xsim
xvhdl
xvlog

-noieeewarnings Disable warnings from VHDL IEEE functions. xelab
-noname_unnamed_generate Do not generate name for an unnamed generate

block.
xelab
xvlog

-notimingchecks Ignore timing check constructs in Verilog specify
block(s).

xelab

-nosdfinterconnectdelays Ignore SDF port and interconnect delay constructs
in SDF.

xelab

-nospecify Ignore Verilog path delays and timing checks. xelab
-O arg Enable or disable optimizations.

-O 0 = Disable optimizations
-O 1 = Enable basic optimizations
-O 2 = Enable most commonly desired
optimizations (Default)
-O 3 = Enable advanced optimizations
Note: A lower value speeds compilation at
expense of slower simulation: a higher value
slows compilation but simulation runs faster.

xelab

Table 7-2: xelab, xvhd, and xvlog Command Options (Cont’d)

Command Option Description Used by Command
Logic Simulation 142
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=142

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
-Odisable_acceleration arg Turn off acceleration for the specified HDL
package. Choices are: all, math_real,
math_complex, numeric_std,
std_logic_signed, std_logic_unsigned
(default: acceleration is on)

xelab

-Odisable_process_opt Turn off the process-level optimization (default
on)

xelab

-Oenable_cdfg

-Odisable_cdfg

Turn on (enable) or off (disable) the building of the
control+data flow graph (default: on)

xelab

-Oenable_unused_removal

-Odisable_unused_removal

Turn on (enable or off (disable) the optimization to
remove unused signals and statements (default:
on)

xelab

-override_timeunit Override timeunit for all Verilog modules, with the
specified time unit in -timescale option.

xelab

-override_timeprecision Override time precision for all Verilog modules,
with the specified time precision in -timescale
option.

xelab

-pulse_e arg Path pulse error limit as percentage of path delay.
Allowed values are 0 to 100 (Default is 100).

xelab

-pulse_r arg Path pulse reject limit as percentage of path delay.
Allowed values are 0 to 100 (Default is 100).

xelab

-pulse_int_e arg Interconnect pulse reject limit as percentage of
delay. Allowed values are 0 to 100 (Default is 100).

xelab

-pulse_int_r arg Interconnect pulse reject limit as percentage of
delay. Allowed values are 0 to 100 (Default is 100).

xelab

-pulse_e_style arg Specify when error about pulse being shorter than
module path delay should be handled. Choices
are:
ondetect: report error right when violation is
detected
onevent: report error after the module path
delay.
Default: onevent

xelab

-prj <filename> Specify the Vivado simulator project file
containing one or more entries of vhdl|verilog
<work lib> <HDL file name>.

xelab
xvhdl
xvlog

-r [-run] Run the generated executable snapshot in
command-line interactive mode.

xelab

-rangecheck Enable run time value range check for VHDL. xelab
-R [-runall] Run the generated executable snapshot until the

end of simulation.
xelab
xsim

-relax Relax strict language rules. xelab
xvhdl
xvlog

Table 7-2: xelab, xvhd, and xvlog Command Options (Cont’d)

Command Option Description Used by Command
Logic Simulation 143
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=143

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
-s [-snapshot] arg Specify the name of output simulation snapshot.
Default is <worklib>.<unit>; for example:
work.top. Additional unit names are
concatenated using #; for example:
work.t1#work.t2.

xelab

-sdfnowarn Do not emit SDF warnings. xelab
-sdfnoerror Treat errors found in SDF file as warning. xelab
-sdfmin arg <root=file> SDF annotate <file> at <root>

with minimum delay.
xelab

-sdftyp arg <root=file> SDF annotate <file> at <root>
with typical delay.

xelab

-sdfmax arg <root=file> SDF annotate <file> at <root>
with maximum delay.

xelab

-sdfroot <root_path> Default design hierarchy at which SDF annotation
is applied.

xelab

-sourcelibdir
<sourcelib_dirname>

Directory for Verilog source files of uncompiled
modules.
Use -sourcelibdir <sourcelib_dirname>
for each source directory.

xelab
xvlog

-sourcelibext
<file_extension>

File extension for Verilog source files of
uncompiled modules.
Use -sourcelibext <file extension> for
source file extension

xelab
xvlog

-sourcelibfile <filename> File name of a Verilog source file with uncompiled
modules.

xelab
xvlog

-stat Print tool CPU and memory usages, and design
statistics.

xelab

-sv Compile input files in SystemVerilog mode. xvlog
-timescale Specify default timescale for Verilog modules.

Default: 1ns/1ps.
xelab

-timeprecision_vhdl arg Specify time precision for vhdl designs.
Default: 1ps.

xelab

-transport_int_delays Use transport model for interconnect delays. xelab
-typdelay Compile Verilog design units with typical delays

(Default).
xelab

-v [verbose] [0|1|2] Specify verbosity level for printing messages.
Default = 0.

xelab
xvhdl
xvlog

-version Print the compiler version to screen. xelab
xsim
xvhdl
xvlog

Table 7-2: xelab, xvhd, and xvlog Command Options (Cont’d)

Command Option Description Used by Command
Logic Simulation 144
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=144

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
-work <library_name>
[=<library_dir>]

Specify the work library. The format of the
argument is <name>[=<dir>] where:
• <name> is the logical name of the library.
• <library_dir> is an optional physical

directory of the library.

xvhdl
xvlog

-sv_root arg Root directory off which DPI libraries are to be
found.
Default:
<current_directory/xsim.dir/xsc>

xelab

-sv_lib arg Shared library name for DPI imported functions
(.dll/.so) without the file extension.

xelab

-sv_liblist arg Bootstrap file pointing to DPI shared libraries. xelab
-dpiheader arg Header filename for the exported and imported

functions.
xelab

-driver_display_limit arg Enable driver debugging for signals with
maximum size (Default: n = 65536).

xelab

-dpi_absolute Use absolute paths instead of LD_LIBRARY_PATH
on Linux for DPI libraries that are formatted as
lib<libname>.so.

xelab

-incr Enable incremental analysis/elaboration in
simulation.

xvlog
xvhdl
xelab

-93_mode Compile VHDL in pure 93 mode. xvhdl
xelab

-2008 Compile VHDL file in 2008 mode. xvhdl
-nosignalhandlers Don't allow compiler to trap Antivirus, firewall

signal
xvlog
xvhdl
xelab

-dpi_stacksize arg User defined stack size for DPI task xelab
-transform_timing_checkers Transform timing checker to Verilog process xelab
-a Generate a standalone non-interactive simulation

executable that performs run-all
Always use with ‘-R’
Note: To run the simulation faster without any debug
capability, use -standalone with '-R'. It will invoke the
Simulation standalone without invoking Vivado IDE. This
option will save the license loading time.

xelab

Table 7-2: xelab, xvhd, and xvlog Command Options (Cont’d)

Command Option Description Used by Command
Logic Simulation 145
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=145

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
Simulating the Design Snapshot, xsim
The xsim command loads a simulation snapshot to effect a batch mode simulation or
provides a workspace (GUI) and/or a Tcl-based interactive simulation environment.

xsim Executable Syntax
The command syntax is as follows:

xsim <options> <snapshot>

Where:

• xsim is the command.
• <options> are the options specified in Table 7-3.
• <snapshot> is the simulation snapshot.

xsim Executable Options
Table 7-3: xsim Executable Command Options

xsim Option Description
-f [-file] <filename> Load the command line options from a file.
-g [-gui] Run with interactive workspace.
-h [-help] Print help message to screen.
-log <filename> Specify the log file name.
-maxdeltaid arg (=-1) Specify the maximum delta number. Report an error if it exceeds maximum

simulation loops at the same time.
-maxlogsize arg (=-1) Set the maximum size a log file can reach in MB. The default setting is

unlimited.
-ieeewarnings Enable warnings from VHDL IEEE functions.
-nolog Suppresses log file generation.
Logic Simulation 146
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=146

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
TIP: When running the xelab, xsc, xsim, xvhdl, or xvlog commands in batch files or scripts, it might also
be necessary to define the XILINX_VIVADO environment variable to point to the installation hierarchy
of the Vivado Design Suite. To set the XILINX_VIVADO variable, add one of the following to your script
or batch file:
On Windows: set XILINX_VIVADO=<vivado_install_area>/Vivado/<version>
On Linux: setenv XILINX_VIVADO vivado_install_area>/Vivado/<version>
(where <version> is the version of Vivado tools you are using: 2014.3, 2014.4, 2015.1, etc.)

-nosignalhandlers Disables the installation of OS-level signal handlers in the simulation. For
performance reasons, the simulator does not check explicitly for certain
conditions, such as an integer division by zero, that could generate an
OS-level fatal run time error. Instead, the simulator installs signal handlers
to catch those errors and generates a report.
With the signal handlers disabled, the simulator can run in the presence of
such security software, but OS-level fatal errors could crash the simulation
abruptly with little indication of the nature of the failure.

CAUTION! Use this option only if your security software prevents the simulator
from running successfully.

-onfinish <quit|stop> Specify the behavior at end of simulation.
-onerror <quit|stop> Specify the behavior upon simulation run time error.
-R [-runall] Runs simulation till end (such as do 'run all;quit’).
-stats Display memory and CPU stats upon exiting.
-testplusarg <arg> Specify plusargs to be used by $test$plusargs and

$value$plusargs system functions.
-t [-tclbatch]
<filename>

Specify the Tcl file for batch mode execution.

-tp Enable printing to screen of hierarchical names of process being executed.
-tl Enable printing to screen of file name and line number of statements being

executed.
-wdb <filename.wdb> Specify the waveform database output file.
-version Print the compiler version to screen.
-view <wavefile.wcfg> Open a wave configuration file. Use this switch together with -gui switch.

Table 7-3: xsim Executable Command Options (Cont’d)

xsim Option Description
Logic Simulation 147
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=147

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
Example of Running Vivado Simulator in
Standalone Mode
When running the Vivado simulator in standalone mode, you can execute commands to:

• Analyze the design file
• Elaborate the design and create a snapshot
• Open the Vivado simulator workspace and wave configuration file(s) and run

simulation

Step1: Analyzing the Design File
To begin, analyze your HDL source files by type, as shown in the table below. Each
command can take multiple files.

Step2: Elaborating and Creating a Snapshot
After analysis, elaborate the design and create a snapshot for simulation using the xelab
command:

xelab <topDesignUnitName> -debug typical

IMPORTANT: You can provide multiple top-level design unit names with xelab. To use the Vivado
simulator workspace for purposes similar to those used during launch_simulation, you must set
debug level to typical.

Table 7-4: File Types and Associated Commands for Design File Analysis
File Type Command
Verilog xvlog <VerilogFileName(s)>

SystemVerilog xvlog -sv <SystemVerlilogFileName(s)>

VHDL xvhdl <VhdlFileName(s)>
Logic Simulation 148
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=148

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
Step 3: Running Simulation
After successful completion of the xelab phase, the Vivado simulator creates a snapshot
used for running simulation.

To invoke the Vivado simulator workspace, use the following command:

xsim <SnapShotName> -gui

To open the wave config file:

xsim <SnapShotName> -view <wcfg FileName> -gui

You can provide multiple wcfg files using multiple -view flags. For example:

xsim <SnapShotName> -view <wcfg FileName> -view <wcfg FileName>

Project File (.prj) Syntax
Note: The project file discussed here is a Vivado simulator text-based project file. It is not the same
as the project file (.xpr) created by the Vivado Design Suite.

To parse design files using a project file, create a text file called <proj_name>.prj, and
use the syntax shown below inside the project file.

verilog <work_library> <file_names>... [-d <macro>]...[-i <include_path>]...
vhdl <work_library> <file_name>
sv <work_library> <file_name>
vhdl2008 <work_library> <file_name>

Where:

<work_library>: Is the library into which the HDL files on the given line are to be
compiled.

<file_names>: Are Verilog source files. You can specify multiple Verilog files per line.

<file_name>: Is a VHDL source file; specify only one VHDL file per line.

° For Verilog or SystemVerilog: [-d <macro>] provides you the option to define
one or more macros.

° For Verilog or SystemVerilog: [-i <include_path>] provides you the option to
define one or more <include_path> directories.
Logic Simulation 149
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=149

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
Predefined Macros
XILINX_SIMULATOR is a Verilog predefined-macro. The value of this macro is 1.
Predefined macros perform tool-specific functions, or identify which tool to use in a design
flow. The following is an example usage:

`ifdef VCS
 // VCS specific code
`endif
`ifdef INCA
 // NCSIM specific code
`endif
`ifdef MODEL_TECH
 // MODELSIM specific code
`endif
`ifdef XILINX_ISIM
 // ISE Simulator (ISim) specific code
`endif
`ifdef XILINX_SIMULATOR
 // Vivado Simulator (XSim) specific code
`endif

Library Mapping File (xsim.ini)
The HDL compile programs, xvhdl, xvlog, and xelab, use the xsim.ini configuration
file to find the definitions and physical locations of VHDL and Verilog logical libraries.

The compilers attempt to read xsim.ini from these locations in the following order:

1. <Vivado_Install_Dir>/data/xsim
2. User-file specified through the -initfile switch. If -initfile is not specified, the

program searches for xsim.ini in the current working directory.

The xsim.ini file has the following syntax:

<logical_library1> = <physical_dir_path1>
<logical_library2> = <physical_dir_path2>

The following is an example xsim.ini file:

std=<Vivado_Install_Area>/xsim/vhdl/std
ieee=<Vivado_Install_Area>/xsim/vhdl/ieee
vl=<Vivado_Install_Area>/xsim/vhdl/vl
ieee_proposed=$RDI_DATADIR/xsim/vhdl/ieee_proposed
synopsys=<Vivado_Install_Area>/xsim/vhdl/synopsys
unisim=<Vivado_Install_Area>/xsim/vhdl/unisim
unimacro=<Vivado_Install_Area>/xsim/vhdl/unimacro
unifast=<Vivado_Install_Area>/xsim/vhdl/unifast
simprims_ver=<Vivado_Install_Area>/xsim/verilog/simprims_ver
Logic Simulation 150
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=150

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
unisims_ver=<Vivado_Install_Area>/xsim/verilog/unisims_ver
unimacro_ver=<Vivado_Install_Area>/xsim/verilog/unimacro_ver
unifast_ver=<Vivado_Install_Area>/xsim/verilog/unifast_ver
secureip=<Vivado_Install_Area>/xsim/verilog/secureip
work=./work

The xsim.ini file has the following features and limitations:

• There must be no more than one library path per line inside the xsim.ini file.
• If the directory corresponding to the physical path does not exist, xvhd or xvlog

creates it when the compiler first tries to write to that path.
• You can describe the physical path in terms of environment variables. The environment

variable must start with the $ character.
• The default physical directory for a logical library is

xsim/<language>/<logical_library_name>, for example, a logical library name
of:
<Vivado_Install_Area>/xsim/vhdl/unisim

• File comments must start with --
Note: From 2018.2 release onwards, xilinx provides two init files named as xsim.ini and
xsim_legacy.ini. The xsim_legacy.ini file is similar to xsim.ini of older version. It
contains mapping for unisim library while the new xsim.ini file contains mapping for all the files
of unisim library along with the mapping for pre-compiled IP.

Running Simulation Modes
You can run any mode of simulation from the command line. The following subsections
illustrate and describe the simulation modes when run from the command line.

Behavioral Simulation
Figure 7-4 illustrates the behavioral simulation process:
Logic Simulation 151
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=151

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
To run behavioral simulation from within the Vivado Design Suite, use the Tcl command:
launch_simulation -mode behavioral.

Running Post-Synthesis and Post-Implementation Simulations
At post-synthesis and post-implementation, you can run a functional or a Verilog timing
simulation. Figure 7-5 illustrates the post-synthesis and post-implementation simulation
process:

X-Ref Target - Figure 7-4

Figure 7-4: Behavioral Simulation Process

Gather Files

Compile and Elaborate Using
XELAB (Create Snapshot)

Execute Using
 XSIM <snapshot>

Parse Using XVLOG/XVHDL

Debug on Waveform
Logic Simulation 152
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=152

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
The following is an example of running a post-synthesis functional simulation from the
command line:

synth_design -top top -part xc7k70tfbg676-2
open_run synth_1 -name netlist_1
write_verilog -mode funcsim test_synth.v
launch_simulation

TIP: When you run a post-synthesis or post-implementation timing simulation, you must run the
write_sdf command after the write_verilog command, and the appropriate annotate command
is needed for elaboration and simulation.

X-Ref Target - Figure 7-5

Figure 7-5: Post-Synthesis and Post-Implementation Simulation

Run Synthesis or Implementation

Parse Using xvlog/xvhdl

Simulation Using
xsim <snapshot>

Create Netlist
write_verilog or write_vhdl

Post-Synthesis
Post-Implementation

Simulation

Gather Files
(Create Project File)

Compile and Elaborate
Using xelab

Debug in Waveform
Or Self-checking Test Bench

X12985

For Timing Simulation
write_sdf
Logic Simulation 153
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=153

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
Using Tcl Commands and Scripts
You can run Tcl commands on the Tcl Console individually, or batch the commands into a Tcl
script to run simulation.

Using a -tclbatch File
You can type simulation commands into a Tcl file, and reference the Tcl file with the
following command: -tclbatch <filename>

Use the -tclbatch option to contain commands within a file and execute those command
as simulation starts. For example, you can have a file named run.tcl that contains the
following:

run 20ns
current_time
quit

Then launch simulation as follows:

xsim <snapshot> -tclbatch run.tcl

You can set a variable to represent a simulation command to quickly run frequently used
simulation commands.

Launching Vivado Simulator from the Tcl Console
The following is an example of Tcl commands that create a project, read in source files,
launch the Vivado simulator, do placing and routing, write out an SDF file, and re-launch
simulation.

Vivado -mode Tcl
Vivado% create_project prj1
Vivado% read_verilog dut.v
Vivado% synth_design -top dut
Vivado% launch_simulation -simset sim_1 -mode post-synthesis -type functional
Vivado% place_design
Vivado% route_design
Vivado% write_verilog -mode timesim -sdf_anno true -sdf_file postRoute.sdf
postRoute_netlist.v
Vivado% write_sdf postRoute.sdf
Vivado% launch_simulation -simset sim_1 -mode post-implementation -type timing
Vivado% close_project
Logic Simulation 154
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=154

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
export_simulation
Export a simulation script file for the target simulator. The generated script will contain
simulator commands for compiling, elaborating and simulating the design.

This command will retrieve the simulation compile order of specified objects, and export
this information in a shell script with the compiler commands and default options for the
target simulator. The specified object can be either a simulation fileset or an IP. If you want
to run simulation outside Vivado IDE, use export_simulation in place of
launch_simulation -scripts_only to generate scripts file.

export_simulation [-simulator <arg>] [-of_objects <arg>] [-lib_map_path <arg>]
[-script_name <arg>] [-directory <arg>] [-runtime <arg>] [-absolute_path]
[-export_source_files] [-32bit] [-force] [-quiet] [-verbose]
[-ip_user_files_dir <arg>] [-ipstatic_source_dir <arg>] [-define <arg>] [-generic
<arg>] [-include <arg>] [-use_ip_compiled_libs]

Usage:

Table 7-5: export_simulation Options
Name Description

[-simulator] Simulator for which the simulation script will be created
value=all|xsim|modelsim|questa|ies|vcs|xcelium|riviera|activehdl (Default:
all)

[-of_objects] Export simulation script for the specified object (Default: None)
[-lib_map_path] Precompiled simulation library directory path. If not specified, then please

follow the instructions in the generated script header to manually provide
the simulation library mapping information. (Default: Empty)

[-script_name] Output shell script filename. If not specified, then file with a default name
will be created. (Default: top_module.sh)

[-directory] Directory where the simulation script will be exported (Default:
export_sim)

[-runtime] Run simulation for this time (default: full simulation run or until a logical
break or finish condition)

[-absolute_path] Make all file paths absolute wrt the reference directory
[-export_source_files] Copy IP/BD design files to output directory
[-32bit] Perform 32bit compilation
[-force] Overwrite previous files
[-quiet] Ignore command errors
[-verbose] Suspend message limits during command execution
[-ip_user_files_dir] Directory path to exported IP/BD user files (for static, dynamic and data

files)
Default: Empty
Logic Simulation 155
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=155

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
Categories

simulation, xilinxtclstore, user-written

Description:

Export a simulation script file for the target simulator (please see the list of supported
simulators below). The generated script will contain simulator commands for compiling,
elaborating and simulating the design.

The command will retrieve the simulation compile order of specified objects, and export
this information in a shell script with the compiler commands and default options for the
target simulator. The specified object can be either a simulation fileset or an IP.

If the object is not specified, then this command will generate the script for the active
simulation top. Any verilog include directories or file paths for the files containing verilog
define statements will be added to the compiler command line.

By default, the design source file and include directory paths in the compiler command line
will be set relative to the reference_dir variable that is set in the generated script. To
make these paths absolute, specify the -absolute_path switch.

The command will also copy data files (if any) from the fileset, or from an IP, to the output
directory. If the design contains Verilog sources, then the generated script will also copy the
glbl.v file from the software installation path to the output directory.

A default .do file that is used in the compiler commands in the simulation script for the
target simulator, will be written to the output directory.

Note: In order to perform simulation with the generated script, the simulation libraries must be
compiled first using the compile_simlib Tcl command with the compiled library directory path
specified, when generating this script. The generated script will automatically include the setup files
for the target simulator from the compiled library directory. The option provided in Simulation
Settings will not have any impact on export_simulation scripts.

[-ip_static_source_dir] Directory path to the exported IP/BD static files
Default: Empty

[-define] Read Verilog defines from the list specified with this switch
Default: Empty

[-generic] Read VHDL generics from the list specified with this switch
Default: Empty

[-include] Read include directory paths from the list specified with this switch
Default: Empty

[-use_ip_compiled_libs] Reference pre-compiled IP static library during compilation. This switch
requires -ip_user_files_dir and -ipstatic_source_dir
switches also for generating scripts using pre-compiled IP library

Table 7-5: export_simulation Options (Cont’d)

Name Description
Logic Simulation 156
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=156

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
Supported simulators

• Vivado simulator (xsim)
• ModelSim Simulator (modelsim)
• Questa Advanced Simulator (questa)
• Incisive Enterprise Simulator (ies)
• Verilog Compiler Simulator (vcs)
• Riviera-PRO Simulator (riviera)
• Active-HDL Simulator (activehdl)
• Cadence Xcelium Parallel Simulator (xcelium)

Arguments

-of_objects - (Optional) Specify the target object for which the simulation script file
needs to be generated. The target object can be either a simulation fileset (simset) or an IP.
If this option is not specified then this command will generate file for the current simulation
fileset.

-lib_map_path - (Optional) Specify path to the Xilinx pre-compiled simulation library for
the selected simulator. The simulation library is compiled using compile_simlib. See the
header section in the generated script for more information. If this switch is not specified,
then the generated script will not reference the pre-compiled simulation library and the
static IP files will be locally compiled.

-script_name - (Optional) Specify the name of the shell script. If this option is not
specified then the filename with the following syntax will be generated based on the object
type selected with -of_objects switch:

<simulation_top_name>_sim_<simulator>.sh
<ip_name>_sim_<simulator>.sh

-absolute_path - (Optional) Specify this option to make source and include directory
paths used in the script absolute. By default, all paths are written as relative to the directory
path that is specified with the -directory switch. A reference_dir variable will be set
in the script to the directory path that is specified with the -directory switch.

-32bit - (Optional) Specify this option to perform 32bit simulation. If this option is not
specified then by default 64bit option will be added to the simulation command line.

-force - (Optional) Overwrite an existing script file of the same name. If the script file
already exists, the tool returns an error unless the -force argument is specified.

-directory - (Required) Specify the directory path where the script file will be exported.
Logic Simulation 157
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=157

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
-simulator - (Required) Specify the target simulator name for the simulation script. The
valid simulators names are xsim, modelsim, questa, ies, and vcs (or vcs_mx).

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors
encountered during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages
from this command.

export_ip_user_files
Generate and export IP/IP integrator user files from a project. This can be scoped to work
on one or more IPs.

Syntax:

export_ip_user_files [-of_objects <arg>] [-ip_user_files_dir <arg>]
 [-ipstatic_source_dir <arg>] [-lib_map_path <arg>]
 [-no_script] [-sync] [-reset] [-force] [-quiet]
 [-verbose]

Returns: list of files that were exported

Usage

Table 7-6: export_ip_user_files
Name Description

[-of_objects] IP,IPI or a fileset (Default: None)
[-ip_user_files_dir] Directory path to simulation base directory (for dynamic and other IP

non static files)(Default: None)
[-ipstatic_source_dir] Directory path to the static IP files (Default: None)
[-lib_map_path] Compiled simulation library directory path

Default: Empty
[-no_script] Do not export simulation scripts (Default: 1)
[-sync] Delete IP/IPI dynamic and simulation script files
 [-reset] Delete all IP/IPI static, dynamic and simulation script files
[-force] Overwrite files
[-quiet] Ignore command errors
[-verbose] Suspend message limits during command execution
Logic Simulation 158
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=158

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator
Description

Export IP user files repository with static, dynamic, netlist, Verilog/VHDL stubs and memory
initialization files.

Arguments

-of_objects - (Optional) Specify the target object for which the IP static and dynamic
files needs to be exported.

-ip_user_files_dir - (Optional) Directory path to IP user files base directory (for
dynamic and other IP non static files). By default, if this switch is not specified then this
command will use the path specified with the IP.USER_FILES_DIR project property
value.

-ipstatic_source_dir - (Optional) Directory path to the static IP files. By default, if this
switch is not specified then this command will use the path specified with the
SIM.IPSTATIC_SOURCE_DIR project property value.

Note: If the -ip_user_files_dir switch is specified, by default the IP static files will be exported under
the sub-directory with the name ipstatic. If this switch is specified in conjunction with
-ipstatic_source_dir, then the IP static files will be exported in the path specified with the
-ipstatic_source_dir switch.

-clean_dir - (Optional) Delete all files from central directory (including static, dynamic
and other files)

Examples:

The following command will export, char_fifo IP dynamic files to
<project>/<project>.ip_user_files/ip/char_fifo directory char_fifo IP
static files to <project>/<project>.ip_user_files/ipstatic directory

% export_ip_user_files -of_objects [get_ips char_fifo]
Logic Simulation 159
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=159

Appendix A

Compilation, Elaboration, Simulation,
Netlist, and Advanced Options

Introduction
From the Vivado IDE Flow Navigator, you can right-click Simulation, and select Simulation
Settings to open the simulation settings in the Settings dialog box. From the Simulation
settings, you can set various compilation, elaboration, simulation, netlist, and advanced
options.

Compilation Options
The Compilation tab defines and manages compiler directives, which are stored as
properties on the simulation fileset and used by the xvlog and xvhdl utilities to compile
Verilog and VHDL source files for simulation.

Vivado Simulator Compilation Options
Table A-1: Vivado Simulator Compilation Options

Option Description
Verilog options Browse to set Verilog include path and to define macro
Generics/Parameters options Specify or browse to set the generic/parameter value
xsim.compile.tcl.pre Tcl file containing set of commands that should be invoked before

launch of compilation
xsim.compile.xvlog.nosort Do not sort Verilog file during compilation
xsim.compile.xvhdl.nosort Do not sort VHDL file during compilation
xsim.compile.xvlog.relax Relax strict HDL language checking rules
xsim.compile.xvhdl.relax Relax strict HDL language checking rules
xsim.compile.incremental Perform incremental compilation
xsim.compile.xvlog.more_options More XVLOG compilation options
xsim.compile.xvhdl.more_options More XVHDL compilation options
Logic Simulation 160
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=160

Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options
Questa Advanced Simulator Compilation Options

ModelSim Simulator Compilation Options

IES Simulator Compilation Options

Table A-2: Questa Advanced Simulator Compilation Options
Option Description

Verilog options Browse to set Verilog include path and to define macro
Generics/Parameters options Specify or browse to set the generic/parameter value
questasim.compile.tcl.pre TCL file containing set of commands that should be invoked

before launch of compilation
questasim.compile.vhdl_syntax Specify VHDL syntax
questasim.compile.use_explicit_decl Log all signals
questasim.compile.load_glbl Load GLBL module
questasim.compile.incremental Perform incremental compilation
questasim.compile.vlog.more_options More VLOG compilation options
questasim.compile.vcom.more_options More VCOM compilation options

Table A-3: ModelSim Compilation Options
Option Description

Verilog options Browse to set Verilog include path and to define macro
Generics/Parameters options Specify or browse to set the generic/parameter value
modelsim.compile.tcl.pre TCL file containing set of commands that should be invoked

before launch of compilation
modelsim.compile.vhdl_syntax Specify VHDL syntax
modelsim.compile.use_explicit_decl Log all signals
modelsim.compile.load_glbl Load GLBL module
modelsim.compile.incremental Perform incremental compilation
modelsim.compile.vlog.more_options More VLOG compilation options
modelsim.compile.vcom.more_options More VCOM compilation options

Table A-4: IES Compilation Options
Option Description

Verilog options Browse to set Verilog include path and to define macro
Generics/Parameters options Specify or browse to set the generic/parameter value
ies.compile.tcl.pre TCL file containing set of commands that should be invoked before

launch of compilation
ies.compile.v93 Enable VHDL-93 features
Logic Simulation 161
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=161

Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options
VCS Simulator Compilation Options

ies.compile.relax Enable relaxed VHDL interpretation
ies.compile.load_glbl Load GLBL module
ies.compile.update Check if unit is up-to-date before writing
ies.compile.ncvhdlmore_options More NCVHDL compilation options
ies.compile.ncvlog.more_options More NCVLOG compilation options

Table A-5: VCS Compilation Options
Option Description

Verilog options Browse to set the Verilog include path and to define macro
Generics/Parameters options Specify or browse to set the generic/parameter values
vcs.compile.tcl.pre TCL file containing set of commands that should be invoked before

launch of compilation
vcs.compile.load_glbl Load GLBL module
vcs.compile.vhdlan.more_options More VHDLAN compilation options
vcs.compile.vlogan.more_options Extra VLOGAN compilation options

Table A-4: IES Compilation Options (Cont’d)

Option Description
Logic Simulation 162
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=162

Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options
Xcelium Simulator Compilation Options

Elaboration Options
The Elaboration tab defines and manages elaboration directives, which are stored as
properties on the simulation fileset and used by the xelab utility for elaborating and
generating a simulation snapshot. Select a property in the table to display a description of
the property and edit the value.

Vivado Simulator Elaboration Options

Table A-6: Xcelium Compilation Options
Options Description

Verilog Options Browse to set Verilog include path and to define macro
Generics/Parameters options Specify or browse to set the generic/parameter value
xcelium.compile.tcl.pre TCL file containing set of commands that should be invoked

before the launch of a compilation
xcelium.compile.v93 Enable VHDL-93 features
xcelium.compile.relax Enable relaxed VHDL interpretation
xcelium.compile.load_glbl Load GLBL module
xcelium.compile.xmvhdl.more_options More XMVHDL compilation options
xcelium.compile.xmvlog.more_options More XMVLOG compilation options

Table A-7: Vivado Simulator Elaboration Options
Option Description

xsim.elaborate.snapshot Specifies the simulation snapshot name
xsim.elaborate.debug_level Choose simulation debug visibility level. By default it is “typical”
xsim.elaborate.relax Relax strict HDL Language checking rules
xsim.elaborate.mt_level Specify number of sub-compilation jobs to run in parallel
xsim.elaborate.load_glbl Load GLBL module
xsim.elaborate.rangecheck Enables run time value range check for VHDL
xsim.elaborate.sdf_delay Specifies sdf timing delay type to be read for use in timing

simulation
xsim.elaborate.xelab.more_option More XELAB elaboration options
xsim.elaborate.xsc.more_option More options for XSC during elaboration
Logic Simulation 163
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=163

Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options
Questa Advanced Simulator Elaboration Options

ModelSim Simulator Elaboration Options

IES Simulator Elaboration Options

VCS Simulator Elaboration Options

Table A-8: Questa Advanced Simulator Elaboration Options
Option Description

questasim.elaborate.acc Enables access to simulation objects that might be
optimized by default (default: npr)

questasim.elaborate.vopt.more_options More VOPT elaboration options
questasim.elaborate.sccom.more_options More options for sccom during elaboration

Table A-9: ModelSim Elaboration Options
Option Description

modelsim.elaborate.acc Enables access to simulation objects that might be
optimized by default

modelsim.elaborate.vopt.more_options More VOPT elaboration options

Table A-10: IES Elaboration Options
Option Description

ies.elaborate.update Checks if unit is up-to-date before writing
ies.elaborate.ncelab.more_options More ncelab elaboration options

Table A-11: VCS Elaboration Options
Option Description

vcs.elaborate.debug_pp Enable post-process debug access
vcs.elaborate.vcs.more_options More VCS elaboration options
Logic Simulation 164
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=164

Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options
Xcelium Simulator Elaboration Options

Simulation Options
The Simulation tab defines and manages simulation directives, which are stored as
properties on the simulation fileset and used by the xsim application for simulating the
current project. Select a property in the table to display a description of the property and
edit the value.

Vivado Simulator Simulation Options

Questa Advanced Simulator Simulation Options

Table A-12: Xcelium Elaboration Options
Option Description

xcelium.elaborate.update Checks if unit is up-to-date before writing
xcelium.elaborate.xmelab.more_options More xmelab elaboration options

Table A-13: Vivado Simulator Simulation Options
Option Description

xsim.simulate.runtime Specifies simulation run time for the Vivado simulator. Enter blank to
load just the simulation snapshot and wait for user input.

xsim.simulate.tcl.post TCL file containing set of commands that you want to invoke at end
of simulation.

xsim.simulate.log_all_signals Logs all object signals
xsim.simulate.wdb Specifies simulation waveform database file
xsim.simulate.saif Specifies SAIF file name
xsim.simulate.saif_scope Specify design hierarchy instance name for which power estimation

is desired.
xsim.simulate.saif_all_signals Logs all object signals for the design under test for SAIF file

generation
xsim.simulate.xsim.more_option More Vivado simulator simulation options
xsim.simulate.custom_tcl Specify the name of a custom tcl file which will be the source during

simulation in place of a regular TCL file generated by Vivado

Table A-14: Questa Advanced Simulator Simulation Options
Option Description

questasim.simulate.runtime Specify simulation run time
questasim.simulate.tcl.post TCL file containing set of commands that you want to invoke at

end of simulation.
Logic Simulation 165
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=165

Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options
ModelSim Simulator Simulation Options

IES Simulator Simulation Options

questasim.simulate.log_all_signals Log all signals
questasim.simulate.custom_do Specify the name of custom do file
questasim.simulate.custom_udo Specify the name of custom user do file
questa.simulate.ieee_warning Suppresses IEEE warnings
questasim.simulate.sdf_delay Specify the delay type for sdf annotation
questasim.simulate.saif Specify SAIF file
questasim.simulate.saif_scope Specify design hierarchy instance name for which power

estimation is desired
questasim.simulate.vsim.more_option More VSIM simulation options
questa.simulate.custom_wave_do Name of the custom wave.do file which is used in place of a

regular Vivado generated wave.do file

Table A-15: ModelSim Simulation Options
Option Description

modelsim.simulate.runtime Specify simulation run time
modelsim.simulate.tcl.post TCL file containing set of commands that you want to invoke at

end of simulation.
modelsim.simulate.log_all_signals Log all signals
modelsim.simulate.custom_do Specify the name of custom do file
modelsim.simulate.custom_udo Specify the name of custom user do file
modelsim.simulate.sdf_delay Specify the delay type for sdf annotation
modelsim.simulate.ieee_warning Suppresses IEEE warnings
modelsim.simulate.saif Specify SAIF file
modelsim.simulate.saif_scope Specify design hierarchy instance name for which power

estimation is desired
modelsim.simulate.vsim.more_option More VSIM simulation options
modelsim.simulate.custom_wave_do Name of the custom wave.do file which is used in place of a

regular Vivado generated wave.do file

Table A-16: IES Simulation Options
Option Description

ies.simulate.runtime Specify simulation run time
ies.simulate.tcl.post TCL file containing set of commands that you want to invoke at end

of simulation

Table A-14: Questa Advanced Simulator Simulation Options
Option Description
Logic Simulation 166
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=166

Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options
VCS Simulator Simulation Options

ies.simulate.log_all_signals Log all signals
ies.simulate.update Check if unit is up-to-date before writing
ies.simulate.ieee_warning Suppress IEEE warnings
ies.simulate.saif SAIF file name
ies.simulate.saif_scope Specify design hierarchy instance name for which power estimation is

desired
ies.simulate.ncsim.more_option More NCSIM simulation option

Table A-17: VCS Simulation Options
Option Description

vcs.simulate.runtime Specify simulation run time
vcs.simulate.tcl.post TCL file containing set of commands that you want to invoke at end of

simulation.
vcs.simulate.log_all_signals Log all signals
vcs.simulate.saif SAIF file name
vcs.simulate.saif_scope Specify design hierarchy instance name for which power estimation is

desired
vcs.simulate.vcs.more_option More VCS simulation options

Table A-16: IES Simulation Options
Option Description
Logic Simulation 167
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=167

Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options
Xcelium Simulator Simulation Options

Netlist Options
The Netlist tab provides access to netlist configuration options related to SDF annotation of
the Verilog netlist and the process corner captured by SDF delays. These options are stored
as properties on the simulation fileset and are used while writing the netlist for simulation.

Vivado Simulator Netlist Options

Note: The Netlist Options of all the third-party simulators (Questa Advanced Simulator, ModelSim
Simulator, IES, VCS and Xcelium Simulators) are similar to the options of Vivado Simulator Netlist
Options.

Advanced Simulation Options
Advanced tab contains two options.

• Enable incremental compilation option: This option enables the incremental
compilation and preserves the simulation files during successive run.

Table A-18: Xcelium Simulator Simulation Options
Option Description

xcelium.simulate.tcl.post TCL file containing set of commands that you want to invoke at
end of simulation

xcelium.simulate.runtime Specify simulation run time
xcelium.simulate.log_all_signals Log all signals
xcelium.simulate.update Check if unit is up-to-date before writing
xcelium.simulate.ieee_warnings Suppress IEEE warnings
xcelium.simulate.saif_scope SAIF file name
xcelium.simulate.saif Specify design hierarchy instance name for which power

estimation is desired
xcelium.simulate.xmsim.more_options More XMSIM simulation options

Table A-19: Vivado Simulator Netlist Options
Option Description

-sdf_anno A check box is available to select the -sdf_anno option. This option is enabled
by default

-process_corner You can specify the -process_corner as fast or slow
Logic Simulation 168
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=168

Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options
• Include all design sources for simulation option: By default, this option is enabled.
Selecting this option ensures that all the files from design sources along with the files
from the current simulation set will be used for simulation. Even if you change the
design sources, the same changes will be updated when you launch behavioral
simulation.

IMPORTANT: This is an advanced user feature. Unchecking the box could produce unexpected results.
The Include all design sources for simulation check box is selected by default. As long as the check
box is selected, the simulation set includes Out-of-Context (OOC) IP, IP Integrator files, and DCP.

Unchecking the box gives you the flexibility to include only the files you want to simulate,
but, as stated above, you might experience unexpected results.

Note: The Advanced Simulation Options are the same for all simulators.
Logic Simulation 169
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=169

Appendix B

SystemVerilog Support in Vivado
Simulator

Introduction
The Vivado® simulator supports the subset of SystemVerilog. The synthesizable set of
SystemVerilog is listed in Table B-1. The supported testbench features are listed in
Table B-2.

Targeting SystemVerilog for a Specific File
By default, the Vivado IDE compiles .v files with the Verilog 2001 syntax and .sv files with
the SystemVerilog syntax.

To target SystemVerilog for a specific .v file in the Vivado IDE:

1. Right-click the file and select Set file type as shown in the figure below.
Logic Simulation 170
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=170

Appendix B: SystemVerilog Support in Vivado Simulator
2. In the Set Type dialog box, shown in the figure below, change the file type from Verilog
to SystemVerilog and click OK.

X-Ref Target - Figure B-1

Figure B-1: Context Menu with Set File Type Command
Logic Simulation 171
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=171

Appendix B: SystemVerilog Support in Vivado Simulator
Alternatively, you can use the following command in the Tcl Console:

 set_property file_type SystemVerilog [get_files <filename>.v]

Running SystemVerilog in Standalone or prj Mode

Standalone Mode

A new -sv flag has been introduced to xvlog, so if you want to read any SystemVerilog file,
you can use following command:

 xvlog -sv <Design file list>
 xvlog -sv -work <LibraryName> <Design File List>
 xvlog -sv -f <FileName> [Where FileName contain path of test cases]

prj Mode

If you want to run the Vivado simulator in the prj-based flow, use sv as the file type, as you
would verilog or vhdl.

xvlog -prj <prj File>
xelab -prj <prj File> <topModuleName> <other options>

Where the entry in prj file appears as follows:

X-Ref Target - Figure B-2

Figure B-2: Set File Type
Logic Simulation 172
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=172

Appendix B: SystemVerilog Support in Vivado Simulator
verilog library1 <FileName>
sv library1 <FileName> [File parsed in SystemVerilog mode]
vhdl library2 <FileName>
sv library3 <FileName> [File parsed in SystemVerilog mode]

Table B-1: Synthesizable Set of SystemVerilog 1800-2009
Primary construct Secondary construct LRM section Status

Data type 6
 Singular and aggregate

types
6.4 Supported

 Nets and variables 6.5 Supported
 Variable declarations 6.8 Supported
 Vector declarations 6.9 Supported
 2-state (two-value) and

4-state (four-value) data
types

6.11.2 Supported

 Signed and unsigned
integer types

6.11.3 Supported

 Real, shortreal and realtime
data types

6.12 Supported

 User-defined types 6.18 Supported
 Enumerations 6.19 Supported
 Defining new data types as

enumerated types
6.19.1 Supported

 Enumerated type ranges 6.19.2 Supported
 Type checking 6.19.3 Supported
 Enumerated types in

numerical expressions
6.19.4 Supported

 Enumerated type methods 6.19.5 Supported
 Type parameters 6.20.3 Supported
 Const constants 6.20.6 Supported
 Type operator 6.23 Supported
 Cast operator 6.24.1 Supported
 $cast dynamic casting 6.24.2 Supported
 Bitstream casting 6.24.3 Supported
Aggregate data types 7
 Structures 7.2 Supported
 Packed/Unpacked

structures
7.2.1 Supported

 Assigning to structures 7.2.2 Supported
 Unions 7.3 Supported
 Packed/Unpacked unions 7.3.1 Supported
Logic Simulation 173
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=173

Appendix B: SystemVerilog Support in Vivado Simulator
 Tagged unions 7.3.2 Not Supported
 Packed arrays 7.4.1 Supported
 Unpacked arrays 7.4.2 Supported
 Operations on arrays 7.4.3 Supported
 Multidimensional arrays 7.4.5 Supported
 Indexing and slicing of

arrays
7.4.6 Supported

 Array assignments 7.6 Supported
 Arrays as arguments to

subroutines
7.7 Supported

 Array querying functions 7.11 Supported
 Array manipulation

methods
7.12 Supported

Processes 9
 Combinational logic

always_comb procedure
9.2.2 Supported

 Implicit always_comb
sensitivities

9.2.2.1 Supported

 Latched logic
always_latch procedure

9.2.2.3 Supported

 Sequential logic
always_ff procedure

9.2.2.4 Supported

 Sequential blocks 9.3.1 Supported
 Parallel blocks 9.3.2 Supported
 Procedural timing controls 9.4 Supported
 Conditional event controls 9.4.2.3 Supported
 Sequence events 9.4.2.4 Not Supported
Assignment statement 10
 The continuous assignment

statement
10.3.2 Supported

 Variable declaration
assignment (variable
initialization)

10.5 Supported

 Assignment-like contexts 10.8 Supported
 Array assignment patterns 10.9.1 Supported
 Structure assignment

patterns
10.9.2 Supported

 Unpacked array
concatenation

10.10 Supported

Table B-1: Synthesizable Set of SystemVerilog 1800-2009 (Cont’d)

Primary construct Secondary construct LRM section Status
Logic Simulation 174
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=174

Appendix B: SystemVerilog Support in Vivado Simulator
 Net aliasing 10.11 Not Supported
Operators and
expressions

 11

 Constant expressions 11.2.1 Supported
 Aggregate expressions 11.2.2 Supported
 Operators with real

operands
11.3.1 Supported

 Operations on logic
(4-state) and bit (2-state)
types

11.3.4 Supported

 Assignment within an
expression

11.3.6 Supported

 Assignment operators 11.4.1 Supported
 Increment and decrement

operators
11.4.2 Supported

 Arithmetic expressions with
unsigned and signed types

11.4.3.1 Supported

 Wildcard equality
operators

11.4.6 Supported

 Concatenation operators 11.4.12 Supported
 Set membership operator 11.4.13 Supported
 Concatenation of

stream_expressions
11.4.14.1 Supported

 Re-ordering of the generic
stream

11.4.14.2 Supported

 Streaming concatenation
as an assignment target
(unpack)

11.4.14.3 Not Supported

 Streaming dynamically
sized data

11.4.14.4 Supported

Procedural
programming
statement

 12

 Unique-if, unique0-if
and priority-if

12.4.2 Supported

 Violation reports
generated by B-if,
unique0-if, and
priority-if constructs

12.4.2.1 Supported

Table B-1: Synthesizable Set of SystemVerilog 1800-2009 (Cont’d)

Primary construct Secondary construct LRM section Status
Logic Simulation 175
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=175

Appendix B: SystemVerilog Support in Vivado Simulator
 If statement violation
reports and multiple
processes

12.4.2.2 Supported

 unique-case,
unique0-case, and
priority-case

12.5.3 Supported

 Violation reports
generated by
unique-case,
unique0-case, and
priority-case
construct

12.5.3.1 Supported

 Case statement violation
reports and multiple
processes

12.5.3.2 Supported

 Set membership case
statement

12.5.4 Supported

 Pattern matching
conditional statements

12.6 Not Supported

 Loop statements 12.7 Supported
 Jump statement 12.8 Supported
Tasks 13.3
 Static and Automatic task 13.3.1 Supported
 Tasks memory usage and

concurrent activation
13.3.2 Supported

Function 13.4
 Return values and void

functions
13.4.1 Supported

 Static and Automatic
function

13.4.2 Supported

 Constant function 13.4.3 Supported
 Background process

spawned by function call
13.4.4 Supported

Subroutine calls and
argument passing

 13.5

 Pass by value 13.5.1 Supported
 Pass by reference 13.5.2 Supported
 Default argument value 13.5.3 Supported
 Argument binding by name 13.5.4 Supported
 Optional argument list 13.5.5 Supported

Table B-1: Synthesizable Set of SystemVerilog 1800-2009 (Cont’d)

Primary construct Secondary construct LRM section Status
Logic Simulation 176
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=176

Appendix B: SystemVerilog Support in Vivado Simulator
 Import and Export function 13.6 Supported
 Task and function name 13.7 Supported
Utility system tasks
and system functions
(only synthesizable
set)

 20 Supported

I/O system tasks and
system functions (only
synthesizable set)

 21 Supported

Compiler directives 22 Supported
Modules and hierarchy 23
 Default port values 23.2.2.4 Supported
 Top-level modules and

$root
23.3.1 Supported

 Module instantiation
syntax

23.3.2 Supported

 Nested modules 23.4 Supported
 Extern modules 23.5 Supported
 Hierarchical names 23.6 Supported
 Member selects and

hierarchical names
23.7 Supported

 Upwards name referencing 23.8 Supported
 Overriding module

parameters
23.10 Supported

 Binding auxiliary code to
scopes or instances

23.11 Not Supported

Interfaces 25
 Interface syntax 25.3 Supported

Nested interface 25.3 Supported
 Ports in interfaces 25.4 Supported
 Example of named port

bundle
25.5.1 Supported

 Example of connecting port
bundle

25.5.2 Supported

 Example of connecting port
bundle to generic interface

25.5.3 Supported

 Modport expressions 25.5.4 Supported
 Clocking blocks and

modports
25.5.5 Not Supported

Table B-1: Synthesizable Set of SystemVerilog 1800-2009 (Cont’d)

Primary construct Secondary construct LRM section Status
Logic Simulation 177
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=177

Appendix B: SystemVerilog Support in Vivado Simulator
Testbench Feature
In Vivado simulator, support for some of the commonly used testbench features have been
added, as shown in the table below.

 Interfaces and specify
blocks

25.6 Supported

 Example of using tasks in
interface

25.7.1 Supported

 Example of using tasks in
modports

25.7.2 Supported

 Example of exporting tasks
and functions

25.7.3 Supported

 Example of multiple task
exports

25.7.4 Supported

 Parameterized interfaces 25.8 Supported
 Virtual interfaces 25.9 Supported
Packages 26
 Package declarations 26.2 Supported
 Referencing data in

packages
26.3 Supported

 Using packages in module
headers

26.4 Supported

 Exporting imported names
from packages

26.6 Supported

 The std built-in package 26.7 Supported
Generate constructs 27 Supported

Table B-1: Synthesizable Set of SystemVerilog 1800-2009 (Cont’d)

Primary construct Secondary construct LRM section Status

Table B-2: Supported Dynamic Type Constructs
Primary Construct Secondary Construct LRM Section Status

String data type 6.16 Supported
String operators (table 6-9 of
IEEE 1800-2009)[Ref 17]

6.16 Supported

Len() 6.16.1 Supported
Putc() 6.16.2 Supported
Getc() 6.16.3 Supported
Toupper() 6.16.4 Supported
Tolower() 6.16.5 Supported
Logic Simulation 178
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=178

Appendix B: SystemVerilog Support in Vivado Simulator
Compare 6.16.6 Supported
Icompare() 6.16.7 Supported
Substr() 6.16.8 Supported
Atoi(), atohex(), atooct(),
atobin()

6.16.9 Supported

Atoreal() 6.16.10 Supported
Itoa() 6.16.11 Supported
Hextoa() 6.16.12 Supported
Octtoa() 6.16.13 Supported
Bintoa() 6.16.14 Supported
Realtoa() 6.16.15 Supported

Dynamic Array 7.5 Supported
Dynamic array new 7.5.1 Supported
Size 7.5.2 Supported
Delete 7.5.3 Supported

Associative Array 7.8 Supported
Wildcard index 7.8.1 Supported
String index 7.8.2 Supported
Class index 7.8.3 Supported
Integral index 7.8.4 Supported
Other user-defined types 7.8.5 Supported
Accessing invalid index 7.8.6 Supported
Associative array methods 7.9 Supported
Num() and Size() 7.9.1 Supported
Delete() 7.9.2 Supported
Exists() 7.9.3 Supported
First() 7.9.4 Supported
Last() 7.9.5 Supported
Next() 7.9.6 Supported
Prev() 7.9.7 Supported
Arguments to traversal
Method

7.9.8 Supported

Associative array assignment 7.9.9 Supported
Associative array arguments 7.9.10 Supported
Associative Array literals 7.9.11 Supported

Table B-2: Supported Dynamic Type Constructs (Cont’d)

Primary Construct Secondary Construct LRM Section Status
Logic Simulation 179
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=179

Appendix B: SystemVerilog Support in Vivado Simulator
Queue 7.10 Supported
Queue operators 7.10.1 Supported
Queue methods 7.10.2 Supported
Size() 7.10.2.1 Supported
Insert() 7.10.2.2 Supported
Delete() 7.10.2.3 Supported
Pop_front() 7.10.2.4 Supported
Pop_back() 7.10.2.5 Supported
Push_front() 7.10.2.6 Supported
Push_back() 7.10.2.7 Supported
Persistence of references to
elements of a queue

7.10.3 Supported

Updating a queue using
assignment and unpacked
array concatenation

7.10.4
Supported

Bounded queues 7.10.5 Supported
Class 8 Supported

Class General 8.1 Supported
Overviews 8.2 Supported
Syntax 8.3 Supported
Objects(Class instance) 8.4 Supported
Object properties and object
parameter data

8.5 Supported

Object methods 8.6 Supported
Constructors 8.7 Supported
Static class properties 8.8 Supported
Static methods 8.9 Supported
This 8.10 Supported
Assignment, renaming, and
copying

8.11 Supported

Inheritance and subclasses 8.12 Supported
Overridden members 8.13 Supported
Super 8.14 Supported
Casting 8.15 Supported
Chaining constructors 8.16 Supported
Data hiding and
encapsulation

8.17 Supported

Table B-2: Supported Dynamic Type Constructs (Cont’d)

Primary Construct Secondary Construct LRM Section Status
Logic Simulation 180
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=180

Appendix B: SystemVerilog Support in Vivado Simulator
Constant class properties 8.18 Supported
Virtual methods 8.19 Supported
Abstract classes and pure
virtual methods

8.20 Supported

Polymorphism: dynamic
method lookup

8.21 Supported

Class scope resolution
operator ::

8.22 Supported

Out-of-block declarations 8.23 Supported
Parameterized classes 8.24 Supported
Class resolution operator for
parameterized classes

8.24.1 Supported

Typedef class 8.25 Supported
Classes and structures 8.26 Supported
Memory management 8.27 Supported

Processes 9 Supported
Parallel Process - Fork
Join_Any and Fork Join_None

9.3 Supported

Wait fork 9.6 Supported
Disable Fork 9.6 Supported
Fine grain process control 9.7 Supported

Clocking Block 14 Supported
General 14.1 Supported
Overview 14.2 Supported
Clocking block declaration 14.3 Supported
Input and output Skew 14.4 Supported
Hierarchical Expressions 14.5 Not Supported
Signals in multiple clocking
block

14.6 Supported

Clocking block scope and
lifetime

14.7 Supported

Multiple clocking block
example

14.8 Supported

Interface and clocking block 14.9 Supported
Clocking block event 14.10 Supported
Cycle Delay 14.11 Supported
Default clocking 14.12 Supported

Table B-2: Supported Dynamic Type Constructs (Cont’d)

Primary Construct Secondary Construct LRM Section Status
Logic Simulation 181
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=181

Appendix B: SystemVerilog Support in Vivado Simulator
Input Sampling 14.13 Supported
Global clocking 14.14 Not Supported
Synchronous events 14.15 Supported
Synchronous drives 14.16 Supported
Drives and nonblocking
assignments

14.16.1 Supported

Driving clocking output
signals

14.16.2 Supported

Semaphore 15.3 Supported
Semaphore method new() 15.3.1 Supported
Semaphore method put() 15.3.2 Supported
Semaphore method get() 15.3.3 Supported
Semaphore method try_get() 15.3.4 Supported

Mailbox 15.4 Supported
Mailbox method new() 15.4.1 Supported
Mailbox method num() 15.4.2 Supported
Mailbox method put() 15.4.3 Supported
Mailbox method try_put() 15.4.4 Supported
Mailbox method get() 15.4.5 Supported
Mailbox method try_get() 15.4.6 Supported
Mailbox method peek() 15.4.7 Supported
Mailbox method try_peek() 15.4.8 Supported
Parameterized mailbox 15.4.9 Supported

Named Event 15.5 Supported
Triggering an event 15.5.1 Supported
Waiting on event 15.5.2 Supported
Persistent trigger 15.5.3 Not Supported
Event Sequence 15.5.4 Not Supported
Operation on named event
variable

15.5.5 Supported

Merging Events 15.5.5.1 Supported
Reclaiming event 15.5.5.2 Supported
Event comparison 15.5.5.3 Supported

Random Constraint 18 Supported
Concepts and Usage 18.3 Supported
Random Variable 18.4 Supported

Table B-2: Supported Dynamic Type Constructs (Cont’d)

Primary Construct Secondary Construct LRM Section Status
Logic Simulation 182
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=182

Appendix B: SystemVerilog Support in Vivado Simulator
Rand modifier 18.4.1 Supported
Randc modifier 18.4.2 Supported
Constraint block 18.5 Supported
External constraint block 18.5.1 Supported
Constraint inheritance 18.5.2 Supported
Set membership 18.5.3 Supported
Distribution 18.5.4 Supported
Implication 18.5.5 Supported
If-else constraint 18.5.6 Supported
Iterative constraint 18.5.7 Supported
Foreach iterative constraint 18.5.7.1 Supported
Array reduction iterative
constraint

18.5.7.2 Supported

Global constraint 18.5.8 Supported
Variable Ordering 18.5.9 Supported
Static constraint block 18.5.10 Supported
Function in constraint 18.5.11 Supported
Constraint Guards 18.5.12 Supported
Method Randomize 18.6.1 Supported
Pre_randomize and
post_randomize

18.6.2 Supported

Behavior of randomization
method

18.6.3 Supported

In-line constraints 18.7 Supported
Local scope resolution 18.7.1 Supported
Disabling random variable
with rand_mode

18.8 Supported

Controlling constraints with
constraint_mode

18.9 Supported

Dynamic constraint
modification

18.10 Supported

In-line random variable
control

18.11 Supported

In-line constraint checker 18.11.1 Supported
Randomize of a scope
variable std::randomize

18.12 Supported

Adding constraint to scope
variables std::randomize with

18.12.1 Supported

Table B-2: Supported Dynamic Type Constructs (Cont’d)

Primary Construct Secondary Construct LRM Section Status
Logic Simulation 183
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=183

Appendix B: SystemVerilog Support in Vivado Simulator
Random number system
functions and method

18.13 Supported

$urandom 18.13.1 Supported
$urandom_range 18.13.2 Supported
srandom 18.13.3 Supported
Get_randstate 18.13.4 Not Supported
Set_randstate 18.13.5 Supported
Random stability 18.14 Supported
Manually seeding
randomization

18.15 Supported

Randcase 18.16 Supported
Randsequence 18.17 Not Supported

Programs 24 Supported
The Program construct 24.3 Supported
Scheduling semantic of code
in program construct

24.3.1 Supported

Program port connection 24.3.2 Supported
Eliminating test bench race 24.4 Supported
Blocking task in cycle/event
mode

24.5 Supported

Anonymous Programs 24.6 Not Supported
Program control task 24.7 Supported

Table B-2: Supported Dynamic Type Constructs (Cont’d)

Primary Construct Secondary Construct LRM Section Status
Logic Simulation 184
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=184

Appendix C

VHDL 2008 Support in Vivado Simulator

Introduction
The Vivado® simulator supports the subset of VHDL 2008(IEEE 1076-2008). The complete
list is given in Table C-1.

Compiling and Simulating
The Vivado Simulator executable xvhdl is used to convert a VHDL design unit into parser
dump (.vdb). By default, Vivado Simulator uses mixed 93 and 2008 standard (STD) and IEEE
packages to freely allow mixing of 93 and 2008 features. If you want to force only the
VHDL-93 standard (STD) and IEEE package, pass -93_mode to xvhdl. To compile a file only
with VHDL 2008 mode, you need to pass -2008 switch to xvhdl.

For example, to compile a design called top.vhdl in VHDL-2008, following command line
can be used:

xvhdl -2008 -work mywork top.vhdl

The Vivado Simulator executable xelab is used to elaborate a design and produce an
executable image for simulation.

xelab can do either of the following:

• Elaborate on parser dumps produced by xvhdl

• Directly use vhdl source files.

No switch is needed to elaborate on parser dumps produced by xvhdl. You can pass
-vhdl2008 to xelab to directly use vhdl source files.

Example 1:

xelab top -s mysim; xsim mysim -R

Example 2:

xelab -vhdl2008 top.vhdl top -s mysim; xsim mysim -R
Logic Simulation 185
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=185

Appendix C: VHDL 2008 Support in Vivado Simulator
Instead of specifying VHDL files in the command line for xvhdl and xelab, a .prj file can be
used. If you have two files for a design called top.vhdl (2008 mode) and bot.vhdl (93
mode), you can create a project file named example.prj as follows:

In the project file, each line starts with the language type of the file, followed by the library
name such as xil_defaultlib and one or more file names with a space separator. For
VHDL 93, one should use vhdl as the language type. For VHDL 2008, use vhdl2008
instead.

A .prj file can be used as shown in the example below:

xelab -prj example.prj xil_defaultlib.top -s mysim; xsim mysim -R

Alternatively, to mix VHDL 93 and VHDL 2008 design units, compile the files separately with
a proper language mode specified to xvhdl. Then, elaborate on top(s) of the design. For
example, if we have a VHDL 93 module called bot in file bot.vhdl, and a VHDL-2008
module called top in file top.vhdl, you can compile them as shown in the example below:

xvhdl bot.vhdl
xvhdl -2008 top.vhdl
xelab -debug typical top -s mysim

Once the executable is produced by xelab, you can run the simulation as usual.

Example 1:

xsim mysim -gui

Example 2:

xsim mysim -R

vhdl xil_defaultlib bot.vhdl

vhdl2008 xil_defaultlib top.vhdl
Logic Simulation 186
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=186

Appendix C: VHDL 2008 Support in Vivado Simulator
Fixed and Floating Point Packages
Fixed and floating point packages used by the Vivado simulator are the new enhanced IEEE
standard packages introduced in VHDL-2008. If you are using the VHDL-93 standard fixed
or floating package, that may work in Vivado synthesis, however you must edit your VHDL
source file for simulation.

For example:

If you are using the following syntax for the fixed package in Vivado synthesis:

library ieee;
use ieee.fixed_pkg.all;

Change this to the following syntax in VHDL-2008 for use in the Vivado simulator:

library ieee_proposed;
use ieee_proposed.fixed_pkg.all;

See this link in the Vivado Design Suite User Guide: Synthesis (UG901) [Ref 13] for more
information about fixed and floating packages in Vivado Synthesis.

Similar changes will apply for floating package too.

Supported Features
Table C-1: Supported features of VHDL 2008 (IEEE1076-2008)

Features Example/Comment
VHDL-2008 STD and IEEE packages
precompiled, including new fixed and float
packages, unsigned bit etc.

Limited by other language features such as generic
package which XSIM does not yet support. Not all
newly added std functions are supported.
Notably, stop and finish are supported.

Simplified sensitivity list process(all)
Matching Relational Operators ?=, ?/=, ?>, ?>=, ?<, ?<=

x ?= y
Unary Reduction Logic Operators signal x: std_logic_vector(0 to 31);

signal x_and : std:logic;
...
x_and <= and x;

Simplified Case Statement case x and y is
 when '1' => report "1";
 when '0' => report "0";
 end case;
Instead of an intermediate variable or signal, we can
use an expression directly in the case statement.
Logic Simulation 187
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug901-vivado-synthesis.pdf;a=xFixedPointSupport
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=187

Appendix C: VHDL 2008 Support in Vivado Simulator
Array / Bit Logic Operators signal s : std_logic;
signal v, r : std_logic_vector(0 to 7);
...
r <= s and v;

Array / Bit Addition Operators Library functions
Enhanced Bit String Literals 16SX”FF” = “1111_1111_1111_1111”

16UX”FF” = “0000_0000_1111_1111”
Conditional and selected sequential statements process(clk)

...
 with x select
 y := "111" when "110",
 "000" when others;

 a := '1' when b = '1' else
 '0' when b = '0';
...

Protected type type areaOfSquare is protected
 procedure setx(newx : real);
 impure function area return real;
end protected;

type areaOfSquare is protected body
 variable x : real = 0.0;
...
Note: Protected type shared variable is supported in
HDL simulation, but Tcl and GUI does not allow
examining value of protected type shared variables
yet.

Keyword ‘parameter’ in procedure declaration procedure proc parameter (a : in std_logic)
Array element resolution function in subtype
definition

type bit_word is array (natural range <>) of bit;
function resolve_array (s : bit_word) return bit;
subtype resolved_array is (resolve_array) bit_word;

Block comments /*
X <= 1;
Process(all)
...
*/

Predefined array types boolean_vector, integer_vector etc.

Table C-1: Supported features of VHDL 2008 (IEEE1076-2008) (Cont’d)
Features Example/Comment
Logic Simulation 188
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=188

Appendix C: VHDL 2008 Support in Vivado Simulator
Type passed as Generic Sentity test is
 generic (type data_type);
 port (
 x : in data_type;
 s : out data_type);
end entity test;

Hierarchical references to signal <<signal .top.dut_inst.sig1 : std_logic_vector(3 downto
0)>>

Expression in port map
Reading output port
Note: Other features that are not mentioned in the above table, are not supported by Vivado Simulator.

Table C-1: Supported features of VHDL 2008 (IEEE1076-2008) (Cont’d)
Features Example/Comment
Logic Simulation 189
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=189

Appendix D

Direct Programming Interface (DPI) in
Vivado Simulator

Introduction
You can use the SystemVerilog Direct Programming Interface (DPI) to bind C code to
SystemVerilog code. Using DPI, SystemVerilog code can call a C function, which in turn can
call back a SystemVerilog task or function. Vivado® simulator supports all the constructs as
DPI task/function, as described below.

Compiling C Code
A new compiler executable, xsc, is provided to convert C code into an object code file and
to link multiple object code files into a shared library (.a on Windows and .so on Linux).
The xsc compiler is available in the <Vivado installation>/bin directory. You can use
-sv_lib to pass the shared library containing your C code to the Vivado
simulator/elaborator executable. The xsc compiler works in the same way as a C compiler,
such as gcc. The xsc compiler:

• Calls the LLVM clang compiler to convert C code into object code
• Calls the GNU linker to create a shared library (.a on Windows and .so on Linux) from

one or more object files corresponding to the C files

The shared library generated by the xsc compiler is linked with the Vivado simulator kernel
using one or more newly added switches in xelab, as described below. The simulation
snapshot created by xelab thus has ability to connect the compiled C code with compiled
SystemVerilog code and effect communication between C and SystemVerilog.
Logic Simulation 190
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=190

Appendix D: Direct Programming Interface (DPI) in Vivado Simulator
xsc Compiler
The xsc compiler helps you to create a shared library (.a on Windows or .so on Linux) from
one or more C files. Use xelab to bind the shared library generated by xsc into the rest of
your design. You can create a shared library using the following processes:

One-step process

Pass all C files to xsc without using the -compile or -link switch.

Two-step process
xsc -compile <C files>
xsc -link <object files>

Usage

xsc [options] <files...>

Switches

You can use a double dash (--) or a single dash (-) for switches.

Table D-1: XSC Compiler Switches
Switch Description

-compile Generate the object files only from the source C files. The link
stage is not run.

-f [-file] arg Read additional options from the specified file.
-h [-help] Print this help message.
-i [-input_file] arg List of input files (one file per switch) for compiling or linking.
-link Run only the linking stage to generate the shared library (.a or

.so) from the object files.
-mt arg (=auto) Specifies the number of sub-compilation jobs that can be run

in parallel. Choices are:
auto: automatic
n: where n is an integer greater than 1
off: turn off multi-threading
(Default: auto)

-o [-output] arg Specify the name of output shared library. Works with the
-link option only.

-work arg Specify the work directory in which to place the outputs.
(Default: <current_directory>/xsim.dir/xsc)

-v [-verbose] arg Specify verbosity level for printing messages.
Allowed values are: 0, 1
(Default: 0)
Logic Simulation 191
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=191

Appendix D: Direct Programming Interface (DPI) in Vivado Simulator
Examples

xsc function1.c function2.c
xelab -svlog file.sv -sv_lib dpi

xsc -compile function1.c function2.c -work abc
xsc -link abc/function1.lnx64.o abc/function2.lnx64.o -work abc

Note: By default, Linux uses the LD_LIBRARY_PATH for searching the DPI libraries. Hence, provide
-dpi_absolute flag to xelab on Linux if library name start with lib*.
Note: You can use -additional_option to the compiler to pass extra switch.

Example:

xsc t1.c --additional_option "-I<path>"

Example to pass multiple paths:

xsc t1.c --additional_option "-I<path>" --additional_option "-I<path>"

-additional_option arg Provide an additional option to the compiler. You can use
multiple -additional_option switches.

--gcc_compile_options arg Supply an additional option to the compiler. You can use
multiple -gcc_compile_options switches.

--gcc_link_options arg Supply an additional option to the linker. You can use multiple
-gcc_link_options switches.

--shared Run only the linking stage to generate the shared library
(.dll|.so) from the object files.

--gcc_version Print version of the C compiler used internally
--gcc_path Print path of the C compiler used internally
--lib arg Specify the logical library directories that will be read. Default

is <current_directory>/xsim.dir/xs

--cppversion arg Set the CPP version; currently CPP 11 and 14. supported.
Default is 11.

Table D-1: XSC Compiler Switches (Cont’d)

Switch Description
Logic Simulation 192
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=192

Appendix D: Direct Programming Interface (DPI) in Vivado Simulator
Binding Compiled C Code to SystemVerilog Using
xelab
The DPI-related switches for xelab that bind the compiled C code to SystemVerilog are as
follows:

For more information on r-sv_liblist arg, refer to the IEEE Standard for
SystemVerilog—Unified Hardware Design, Specification, and Verification Language [Ref 17],
Appendix J.4.1, page 1228.

Data Types Allowed on the Boundary of C and
SystemVerilog
The IEEE Standard for SystemVerilog [Ref 17] allows only subsets of C and SystemVerilog data
types on the C and SystemVerilog boundary. Provided below are (1) details on data types
supported in Vivado simulator and (2) descriptions of mapping between the C and
SystemVerilog data types.

Supported Data Types
The following table describes data types allowed on the boundary of C and SystemVerilog,
along with mapping of data types from SystemVerilog to C and vice versa.

Table D-2: DPI-Related Switches for xelab
Switch Description

-sv_root arg Root directory relative to which a DPI shared library should be searched. (Default:
<current_directory>/xsim.dir/xsc)

-sv_lib arg Name of the DPI shared library without the file extension defining C function
imported in SystemVerilog.

-sv_liblist
arg

Bootstrap file pointing to DPI shared libraries.

-dpiheader
arg

Generate a DPI C header file containing C declaration of imported and exported
functions.

Table D-3: Data Types Allowed on the C-SystemVerilog Boundary
SystemVerilog C Supported Comments

byte char Yes None
shortint short int Yes None
int int Yes None
Logic Simulation 193
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=193

Appendix D: Direct Programming Interface (DPI) in Vivado Simulator
To generate a C header file that provides details on how SystemVerilog data types are
mapped to C data types: pass the parameter -dpiheader <file name> to xelab.
Additional details on data type mapping are available in the The IEEE Standard for
SystemVerilog [Ref 17].

Mapping for User-Defined Types
Enum
You can define an enumerated type (enum) for conversion to the equivalent SystemVerilog
types, svLogicVecVal or svBitVecVal, depending on the base type of enum. For
enumerated arrays, equivalent SystemVerilog arrays are created.

longint long long Yes None
real double Yes None
shortreal float Yes None
chandle void * Yes None
string const char* Yes None
bit unsigned char Yes sv_0, sv_1

Available on C side using svdpi.h
logic, reg unsigned char Yes sv_0, sv_1, sv_z, sv_x:

Array (packed) of bits svBitVecVal Yes Defined in svdpi.h

Array (packed) of logic/reg svLogicVecVal Yes Defined in svdpi.h

enum Underlying enum type Yes None
Packed structs, unions Passed as array Yes None
Unpacked arrays of bit,
logic

Passed as array Yes C can call SystemVerilog

Unpacked structs, Passed as struct Yes None
Unpacked unions Passed as struct No None
Open arrays svOpenArrayHandle Yes None

Table D-3: Data Types Allowed on the C-SystemVerilog Boundary (Cont’d)

SystemVerilog C Supported Comments
Logic Simulation 194
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=194

Appendix D: Direct Programming Interface (DPI) in Vivado Simulator
Examples

SystemVerilog types:

typedef enum reg [3:0] { a = 0, b = 1, c} eType;
eType e;
eType e1[4:3];
typedef enum bit { a = 0, b = 1} eTypeBit;
eTypeBit e3;
eTypeBit e4[3:1] ;

C types:

svLogicVecVal e[SV_PACKED_DATA_NELEMS(4)];
svLogicVecVal e1[2][SV_PACKED_DATA_NELEMS(4)];
svBit e3;
svBit e4[3];

TIP: The C argument types depend on the base type of the enum and the direction.

Packed Struct/Union
When using a packed struct or union type, an equivalent SystemVerilog type,
svLogicVecVal or svBitVecVal, is created on the DPI C side.

Examples

SystemVerilog type:

typedef struct packed {
 int i;
 bit b;
 reg [3:0]r;
 logic [2:0] [4:8][9:1] l;
 } sType;
 sType c_obj;
 sType [3:2] c_obj1[5];

C type:

svLogicVecVal c_obj[SV_PACKED_DATA_NELEMS(172)];
svLogicVecVal c_obj1[5][SV_PACKED_DATA_NELEMS(344)];

Arrays, both packed and unpacked, are represented as arrays of svLogicVecVal or
svBitVecVal.

Unpacked Struct
An equivalent unpacked type is created on the C side, in which all the members are
converted to the equivalent C representation.
Logic Simulation 195
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=195

Appendix D: Direct Programming Interface (DPI) in Vivado Simulator
Examples

SystemVerilog type:

typedef struct {
 int i;
 bit b;
 reg r[3:0];
 logic [2:0] l[4:8][9:1];
 } sType;

C type:

typedef struct {
 int i;
 svBit b;
 svLogic r[4];
 svLogicVecVal l[5][9][SV_PACKED_DATA_NELEMS(3)];
} sType;

Support for svdpi.h functions
The svdpi.h header file is provided in this directory:
<vivado installation>/data/xsim/include.

The following svdpi.h functions are supported:

svBit svGetBitselBit(const svBitVecVal* s, int i);

svLogic svGetBitselLogic(const svLogicVecVal* s, int i);

void svPutBitselBit(svBitVecVal* d, int i, svBit s);

void svPutBitselLogic(svLogicVecVal* d, int i, svLogic s);

void svGetPartselBit(svBitVecVal* d, const svBitVecVal* s, int i, int w);

void svGetPartselLogic(svLogicVecVal* d, const svLogicVecVal* s, int i, int w);

void svPutPartselBit(svBitVecVal* d, const svBitVecVal s, int i, int w);

void svPutPartselLogic(svLogicVecVal* d, const svLogicVecVal s, int i, int w);

const char* svDpiVersion();
 svScope svGetScope();
 svScope svSetScope(const svScope scope);
 const char* svGetNameFromScope(const svScope);
 int svPutUserData(const svScope scope, void*userKey, void* userData);
 void* svGetUserData(const svScope scope, void* userKey);
Logic Simulation 196
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=196

Appendix D: Direct Programming Interface (DPI) in Vivado Simulator
Open arrays in DPI
When declaring an import function in system Verilog, you may specify formal argument as
open arrays. By specifying certain dimension(s) of formal array arguments as blank (open),
it will allow passing actual arguments of different size, which facilitates more general C
code. At C side, the open arrays are represented as SVOpenArrayHandle. By passing this
handle to provided functions, you may query the information of open array, e.g. the size of
opened dimension, and access the actual data.

Declaration

Open arrays may only appear in import function/task declaration in System Verilog code. By
leaving the dimension(s) open, you must specify an open array and the size of blank
dimension will be determined with respect to actual argument.

Examples

SystemVerilog function declaration:

import "DPI-C" function int myFunction1(input bit[] v);
import "DPI-C" function void myFunction2(input int v1[], input int v2[], output int
v3[]);

At C side, the open array(s) may only be accessed by the handle and provided APIs:

int myFunction1(const SVOpenArrayHandle v);
void myFunction2(const SVOpenArrayHandle v1, const SVOpenArrayHandle v2, const
SVOpenArrayHandle v3);

svdpi.h Support

The following open array related functions are supported in svdpi.h:

int svLeft(const svOpenArrayHandle h, int d);
int svRight(const svOpenArrayHandle h, int d);
int svLow(const svOpenArrayHandle h, int d);
int svHigh(const svOpenArrayHandle h, int d);
int svIncrement(const svOpenArrayHandle h, int d);
int svSize(const svOpenArrayHandle h, int d);
int svDimensions(const svOpenArrayHandle h);
void *svGetArrayPtr(const svOpenArrayHandle);
int svSizeOfArray(const svOpenArrayHandle);
void *svGetArrElemPtr(const svOpenArrayHandle, int indx1, ...);
void *svGetArrElemPtr1(const svOpenArrayHandle, int indx1);
void *svGetArrElemPtr2(const svOpenArrayHandle, int indx1, int indx2);
void *svGetArrElemPtr3(const svOpenArrayHandle, int indx1, int indx2,
int indx3);
void svPutBitArrElemVecVal(const svOpenArrayHandle d, const svBitVecVal* s,
int indx1, ...);
void svPutBitArrElem1VecVal(const svOpenArrayHandle d, const svBitVecVal* s,
int indx1);
void svPutBitArrElem2VecVal(const svOpenArrayHandle d, const svBitVecVal* s,
Logic Simulation 197
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=197

Appendix D: Direct Programming Interface (DPI) in Vivado Simulator
int indx1, int indx2);
void svPutBitArrElem3VecVal(const svOpenArrayHandle d, const svBitVecVal* s,
int indx1, int indx2, int indx3);
void svPutLogicArrElemVecVal(const svOpenArrayHandle d, const svLogicVecVal*
s, int indx1, ...);
void svPutLogicArrElem1VecVal(const svOpenArrayHandle d, const svLogicVecVal*
s, int indx1);
void svPutLogicArrElem2VecVal(const svOpenArrayHandle d, const svLogicVecVal*
s, int indx1, int indx2);
void svPutLogicArrElem3VecVal(const svOpenArrayHandle d, const svLogicVecVal*
s, int indx1, int indx2, int indx3);
void svGetBitArrElemVecVal(svBitVecVal* d, const svOpenArrayHandle s,
int indx1, ...);
void svGetBitArrElem1VecVal(svBitVecVal* d, const svOpenArrayHandle s,
int indx1);
void svGetBitArrElem2VecVal(svBitVecVal* d, const svOpenArrayHandle s,
int indx1, int indx2);
void svGetBitArrElem3VecVal(svBitVecVal* d, const svOpenArrayHandle s,
int indx1, int indx2, int indx3);
void svGetLogicArrElemVecVal(svLogicVecVal* d, const svOpenArrayHandle s,
int indx1, ...);
void svGetLogicArrElem1VecVal(svLogicVecVal* d, const svOpenArrayHandle s, int
indx1);
void svGetLogicArrElem2VecVal(svLogicVecVal* d, const svOpenArrayHandle s,
int indx1, int indx2);
void svGetLogicArrElem3VecVal(svLogicVecVal* d, const svOpenArrayHandle s,
int indx1, int indx2, int indx3);
svBit svGetBitArrElem(const svOpenArrayHandle s, int indx1, ...);
svBit svGetBitArrElem1(const svOpenArrayHandle s, int indx1);
svBit svGetBitArrElem2(const svOpenArrayHandle s, int indx1, int indx2);
svBit svGetBitArrElem3(const svOpenArrayHandle s, int indx1, int indx2, int indx3);
svLogic svGetLogicArrElem(const svOpenArrayHandle s, int indx1, ...);
svLogic svGetLogicArrElem1(const svOpenArrayHandle s, int indx1);
svLogic svGetLogicArrElem2(const svOpenArrayHandle s, int indx1, int indx2);
svLogic svGetLogicArrElem3(const svOpenArrayHandle s, int indx1, int indx2, int
indx3);
void svPutLogicArrElem(const svOpenArrayHandle d, svLogic value, int indx1, ...);
void svPutLogicArrElem1(const svOpenArrayHandle d, svLogic value, int indx1);
void svPutLogicArrElem2(const svOpenArrayHandle d, svLogic value, int indx1, int
indx2);
void svPutLogicArrElem3(const svOpenArrayHandle d, svLogic value, int indx1,
int indx2, int indx3);
void svPutBitArrElem(const svOpenArrayHandle d, svBit value, int indx1, ...);
void svPutBitArrElem1(const svOpenArrayHandle d, svBit value, int indx1);
void svPutBitArrElem2(const svOpenArrayHandle d, svBit value, int indx1, int indx2);
void svPutBitArrElem3(const svOpenArrayHandle d, svBit value, int indx1,
int indx2, int indx3);

Usage Example

SystemVerilog code:

module m();
import "DPI-C" function void myFunction1(input int v[]);

int arr[4];
int dynArr[];
Logic Simulation 198
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=198

Appendix D: Direct Programming Interface (DPI) in Vivado Simulator
initial begin
arr = '{4, 5, 6, 7};
myFunction1(arr);

dynArr = new[6];
dynArr = '{8, 9, 10, 11, 12, 13};
myFunction1(dynArr);
end

endmodule
C code:
#include "svdpi.h"
void myFunction1(const svOpenArrayHandle v)
{
int l1 = svLow(v, 1);
int h1 = svHigh(v, 1);
for(int i = l1; i<= h1; i++) {
 printf("\t%d", *((char*)svGetArrElemPtr1(v, i)));
}
printf("\n");
 }

Examples
Note: All the examples below print PASSED for a successful run.

Examples include:

• Import example using -sv_lib, -sv_liblist, and -sv_root: A function import example that
illustrates different ways to use the -sv_lib, -sv_liblist and -sv_root options.

• Function with Output: A function that has output arguments.
• Simple Import-Export Flow (illustrates xelab -dpiheader flow): Shows a simple

import>export flow (illustrates xelab -dpiheader <filename> flow).

Import example using -sv_lib, -sv_liblist, and -sv_root

Code

Assume that there are:

• Two files each containing a C function
• A SystemVerilog file that uses the following functions:

° function1.c

° function2.c

° file.sv

°

Logic Simulation 199
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=199

Appendix D: Direct Programming Interface (DPI) in Vivado Simulator
function1.c

#include "svdpi.h"

DPI_DLLESPEC
int myFunction1()
{
 return 5;
}

function2.c

#include <svdpi.h>
DPI_DLLESPEC
int myFunction2()
{
 return 10;
}

file.sv

module m();

import "DPI-C" pure function int myFunction1 ();
import "DPI-C" pure function int myFunction2 ();

integer i, j;

initial
begin
#1;
 i = myFunction1();
 j = myFunction2();
 $display(i, j);
 if(i == 5 && j == 10)
 $display("PASSED");
 else
 $display("FAILED");
end

endmodule

Usage

Methods for compiling and linking the C files into the Vivado simulator are described below.

Single-step flow (simplest flow)

xsc function1.c function2.c
xelab -svlog file.sv -sv_lib dpi
Logic Simulation 200
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=200

Appendix D: Direct Programming Interface (DPI) in Vivado Simulator
Flow description:

The xsc compiler compiles and links the C code to create the shared library
xsim.dir/xsc/dpi.so, and xelab references the shared library through the switch
-sv_lib.

Two-step flow

xsc -compile function1.c function2.c -work abc
xsc -link abc/function1.lnx64.o abc/function2.lnx64.o -work abc
xelab -svlog file.sv -sv_root abc -sv_lib dpi -R

Flow description:

° Compile the two C files into corresponding object code in the work directory abc.

° Link these two files together to create the shared library dpi.so.

° Make sure that this library is picked up from the work library abc via the -sv_root
switch.

TIP: -sv_root specifies where to look for the shared library specified through the switch -sv_lib.

TIP: On Linux, if -sv_root is not specified and the DPI library is named with the prefix lib and the
suffix .so, then use the LD_LIBRARY_PATH environment variable for the location of shared library.

Two-step flow (same as above with few extra options)

xsc -compile function1.c function2.c -work "abc" -v 1
xsc -link "abc/function1.lnx64.o" "abc/function2.lnx64.o" -work "abc" -o final -v 1
xelab -svlog file.sv -sv_root "abc" -sv_lib final -R

Flow description:

If you want to do your own compilation and linking, you can use the -verbose switch to
see the path and the options with which the compiler was invoked. You can then tailor those
to suit your needs. In the example above, a distinct shared library final is created. This
example also demonstrates how spaces in file path work.
Logic Simulation 201
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=201

Appendix D: Direct Programming Interface (DPI) in Vivado Simulator
Function with Output

Code

file.sv

/*- - - -*/
package pack1;
import "DPI-C" function int myFunction1(input int v, output int o);
import "DPI-C" function void myFunction2 (input int v1, input int v2, output int o);
endpackage

/*-- ---*/
module m();
int i, j;
int o1 ,o2, o3;

initial
begin
#1;

j = 10;
o3 =pack1:: myFunction1(j, o1);//should be 10/2 = 5
pack1::myFunction2(j, 2+3, o2); // 5 += 10 + 2+3
$display(o1, o2);
if(o1 == 5 && o2 == 15)

$display("PASSED");
else

$display("FAILED");
end

endmodule

function.c

#include "svdpi.h"

DPI_DLLESPEC
int myFunction1(int j, int* o)
{

*o = j /2;
return 0;

}

DPI_DLLESPEC
void myFunction2(int i, int j, int* o)
{

*o = i+j;
return;

}

Logic Simulation 202
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=202

Appendix D: Direct Programming Interface (DPI) in Vivado Simulator
run.ksh

xsc function.c
xelab -vlog file.sv -sv -sv_lib dpi -R

Simple Import-Export Flow (illustrates xelab -dpiheader flow)
In this flow:

• You run xelab with the -dpiheader switch to create the header file, file.h.
• Your code in file.c then includes the xelab-generated header file (file.h), which is

listed at the end.
• Compile the code in file.c and test.sv as before to generate the simulation

executable.

file.c

#include "file.h"
/* NOTE: This file is generated by xelab -dpiheader <filename> flow */

int cfunc (int a, int b) {
//Call the function exported from SV.
return c_exported_func (a,b);

}

test.sv

module m();
export "DPI-C" c_exported_func = function func;
import "DPI-C" pure function int cfunc (input int a ,b);

/*This function can be called from both SV or C side. */
function int func(input int x, y);
begin

func = x + y;
end
endfunction

int z;

initial
begin

#5;
z = cfunc(2, 3);
if(z == 5)

$display("PASSED");
else

$display("FAILED");

end
endmodule
Logic Simulation 203
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=203

Appendix D: Direct Programming Interface (DPI) in Vivado Simulator
run.ksh

xelab -dpiheader file.h -svlog test.sv
xsc file.c
xelab -svlog test.sv -sv_lib dpi -R

file.h
/**/
/* ____ ____ */
/* / /\/ / */
/* /___/ \ / */
/* \ \ \/ */
/* \ \ Copyright (c) 2003-2013 Xilinx, Inc. */
/* / / All Right Reserved. */
/* /---/ /\ */
/* \ \ / \ */
/* ___\/___\ */
/**/

/* NOTE: DO NOT EDIT. AUTOMATICALLY GENERATED FILE. CHANGES WILL BE LOST. */

#ifndef DPI_H
#define DPI_H
#ifdef __cplusplus
#define DPI_LINKER_DECL extern "C"
#else
#define DPI_LINKER_DECL
#endif

#include "svdpi.h"

/* Exported (from SV) function */
DPI_LINKER_DECL DPI_DLLISPEC
int c_exported_func(

int x, int y);

/* Imported (by SV) function */
DPI_LINKER_DECL DPI_DLLESPEC
int cfunc(

int a, int b);

#endif
Logic Simulation 204
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=204

Appendix D: Direct Programming Interface (DPI) in Vivado Simulator
DPI Examples Shipped with the Vivado Design Suite
There are two examples shipped with the Vivado Design Suite that can help you understand
how to use DPI in Vivado simulator. Locate these in your installation directory,
<vivado installation dir>/examples/xsim/systemverilog/dpi. Each includes
a README file that can help you get started. The examples include:

• simple_import: simple import of pure function
• simple_export: simple export of pure function

TIP: When the return value of a function is computed solely on the value of its inputs, it is called a “pure
function.”
Logic Simulation 205
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=205

Appendix E

Handling Special Cases

Using Global Reset and 3-State
Xilinx® devices have dedicated routing and circuitry that connect to every register in the
device.

Global Set and Reset Net
During configuration, the dedicated Global Set/Reset (GSR) signal is asserted. The GSR
signal is deasserted upon completion of device configuration. All the flip-flops and latches
receive this reset, and are set or reset depending on how the registers are defined.

RECOMMENDED: Although you can access the GSR net after configuration, avoid use of the GSR
circuitry in place of a manual reset. This is because the FPGA devices offer high-speed backbone
routing for high fanout signals such as a system reset. This backbone route is faster than the dedicated
GSR circuitry, and is easier to analyze than the dedicated global routing that transports the GSR signal.

In post-synthesis and post-implementation simulations, the GSR signal is automatically
asserted for the first 100 ns to simulate the reset that occurs after configuration.

A GSR pulse can optionally be supplied in pre-synthesis functional simulations, but is not
necessary if the design has a local reset that resets all registers.

TIP: When you create a test bench, remember that the GSR pulse occurs automatically in the
post-synthesis and post-implementation simulation. This holds all registers in reset for the first 100 ns
of the simulation.

Note: If a design uses ICAP primitive, GSR will last for 1.281 us at that time.

Global 3-State Net
In addition to the dedicated global GSR, output buffers are set to a high impedance state
during configuration mode with the dedicated Global 3-state (GTS) net. All
general-purpose outputs are affected whether they are regular, 3-state, or bidirectional
outputs during normal operation. This ensures that the outputs do not erroneously drive
other devices as the FPGA is configured.
Logic Simulation 206
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=206

Appendix E: Handling Special Cases
In simulation, the GTS signal is usually not driven. The circuitry for driving GTS is available in
the post-synthesis and post-implementation simulations and can be optionally added for
the pre-synthesis functional simulation, but the GTS pulse width is set to 0 by default.

Using Global 3-State and Global Set and Reset Signals
Figure E-1 shows how Global 3-State (GTS) and Global Set/Reset (GSR) signals are used in an
FPGA.

Global Set and Reset and Global 3-State Signals in Verilog
The GSR and GTS signals are defined in the
<Vivado_Install_Dir>/data/verilog/src/glbl.v module.

In most cases, GSR and GTS need not be defined in the test bench.

The glbl.v file declares the global GSR and GTS signals and automatically pulses GSR for
100 ns.

Global Set and Reset and Global 3-State Signals in VHDL
The GSR and GTS signals are defined in the file:
<Vivado_Install_Dir>/data/vhdl/src/unisims/primitive/GLBL_VHD.vhd.

To use the GLBL_VHD component you must instantiate it into the test bench.

The GLBL_VHD component declares the global GSR and GTS signals and automatically
pulses GSR for 100 ns.

X-Ref Target - Figure E-1

Figure E-1: Built-in FPGA Initialization Circuitry Diagram

X8352

User
Programmable
Latch/Register

Global Tri-State
(GTS)

User OutputI/O
Pad

Output Buffer

Input Buffer

User Input

User Tri-State
Enable

General Purpose

I/Os Used for
Initialization

GTS
GSR

User
Async.
Reset Global

Set/Reset
(GSR)

Initialization
Controller

User
Programmable

Logic
Resources

QD

CLR
C

CE
Logic Simulation 207
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=207

Appendix E: Handling Special Cases
The following code snippet shows an example of instantiating the GLBL_VHD component in
the test bench and changing the assertion pulse width of the Reset on Configuration (ROC)
to 90 ns:

GLBL_VHD inst:GLBL_VHD generic map (ROC_WIDTH => 90000);

Delta Cycles and Race Conditions
This user guide describes event-based simulators. Event-based simulators can process
multiple events at a given simulation time. While these events are being processed, the
simulator cannot advance the simulation time. This event processing time is commonly
referred to as delta cycles. There can be multiple delta cycles in a given simulation time step.

Simulation time is advanced only when there are no more transactions to process for the
current simulation time. For this reason, simulators can give unexpected results, depending
on when the events are scheduled within a time step. The following VHDL coding example
shows how an unexpected result can occur.

VHDL Coding Example With Unexpected Results
clk_b <= clk;
clk_prcs : process (clk)
begin
if (clk'event and clk='1') then
result <= data;

end if;
end process;

clk_b_prcs : process (clk_b)
begin
if (clk_b'event and clk_b='1') then
result1 <= result;

end if;
end process;

In this example, there are two synchronous processes:

• clk_prcs

• clk_b_prcs

The simulator performs the clk_b <= clk assignment before advancing the simulation
time. As a result, events that should occur in two clock edges occur in one clock edge
instead, causing a race condition.

Recommended ways to introduce causality in simulators for such cases include:

• Do not change clock and data at the same time. Insert a delay at every output.
• Use the same clock.
Logic Simulation 208
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=208

Appendix E: Handling Special Cases
• Force a delta delay by using a temporary signal, as shown in the following example:
clk_b <= clk;
clk_prcs : process (clk)
begin
if (clk'event and clk='1') then
result <= data;

end if;
end process;

result_temp <= result;
clk_b_prcs : process (clk_b)
begin
if (clk_b'event and clk_b='1') then

result1 <= result_temp;
end if;

end process;

Most event-based simulators can display delta cycles. Use this to your advantage when
debugging simulation issues.

Using the ASYNC_REG Constraint
The ASYNC_REG constraint:

• Identifies asynchronous registers in the design
• Disables X propagation for those registers

The ASYNC_REG constraint can be attached to a register in the front-end design by using
either:

• An attribute in the HDL code
• A constraint in the Xilinx Design Constraints (XDC)

The registers to which ASYNC_REG are attached retain the previous value during timing
simulation, and do not output an X to simulation. Use care; a new value might have been
clocked in as well.

The ASYNC_REG constraint is applicable to CLB and Input Output Block (IOB) registers and
latches only. For more information, see ASYNC_REG constraint at this link in the Vivado
Design Suite Properties Reference Guide (UG912) [Ref 12].
Logic Simulation 209
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug912-vivado-properties.pdf;a=xAsyncReg
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=209

Appendix E: Handling Special Cases
RECOMMENDED: If you cannot avoid clocking in asynchronous data, do so for IOB or CLB registers only.
Clocking in asynchronous signals to RAM, Shift Register LUT (SRL), or other synchronous elements has
less deterministic results; therefore, should be avoided. Xilinx highly recommends that you first properly
synchronize any asynchronous signal in a register, latch, or FIFO before writing to a RAM, Shift Register
LUT (SRL), or any other synchronous element. For more information, see the Vivado Design Suite User
Guide: Using Constraints (UG903) [Ref 9].

Disabling X Propagation for Synchronous Elements
When a timing violation occurs during a timing simulation, the default behavior of a latch,
register, RAM, or other synchronous elements is to output an X to the simulator. This occurs
because the actual output value is not known. The output of the register could:

• Retain its previous value
• Update to the new value
• Go metastable, in which a definite value is not settled upon until some time after the

clocking of the synchronous element

Because this value cannot be determined, and accurate simulation results cannot be
guaranteed, the element outputs an X to represent an unknown value. The X output remains
until the next clock cycle in which the next clocked value updates the output if another
violation does not occur.

The presence of an X output can significantly affect simulation. For example, an X generated
by one register can be propagated to others on subsequent clock cycles. This can cause
large portions of the design under test to become unknown.

To correct X-generation:

• On a synchronous path, analyze the path and fix any timing problems associated with
this or other paths to ensure a properly operating circuit.

• On an asynchronous path, if you cannot otherwise avoid timing violations, disable the X
propagation on synchronous elements during timing violations by using the
ASYNC_REG property.

When X propagation is disabled, the previous value is retained at the output of the register.
In the actual silicon, the register might have changed to the 'new' value. Disabling X
propagation might yield simulation results that do not match the silicon behavior.

CAUTION! Exercise care when using this option. Use it only if you cannot otherwise avoid timing
violations.
Logic Simulation 210
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=210

Appendix E: Handling Special Cases
Simulating Configuration Interfaces
This section describes the simulation of the following configuration interfaces:

• JTAG simulation
• SelectMAP simulation

JTAG Simulation
BSCAN component simulation is supported on all devices.

The simulation supports the interaction of the JTAG ports and some of the JTAG operation
commands. The JTAG interface, including interface to the scan chain, is not fully supported.
To simulate this interface:

1. Instantiate the BSCANE2 component and connect it to the design.
2. Instantiate the JTAG_SIME2 component into the test bench (not the design).

This becomes:

• The interface to the external JTAG signals (such as TDI, TDO, and TCK)
• The communication channel to the BSCAN component

The communication between the components takes place in the VPKG VHDL package file or
the glbl Verilog global module. Accordingly, no implicit connections are necessary
between the specific JTAG_SIME2 component and the design, or the specific BSCANE2
symbol.

Stimulus can be driven and viewed from the specific JTAG_SIME2 component within the
test bench to understand the operation of the JTAG/BSCAN function. Instantiation
templates for both of these components are available in both the Vivado® Design Suite
templates and the specific-device libraries guides.

SelectMAP Simulation
The configuration simulation models (SIM_CONFIGE2 and SIM_CONFIGE3) with an
instantiation template allow supported configuration interfaces to be simulated to
ultimately show the DONE pin going HIGH. This is a model of how the supported devices
react to stimulus on the supported configuration interface.
Logic Simulation 211
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=211

Appendix E: Handling Special Cases
Table E-1 lists the supported interfaces and devices.

The models handle control signal activity as well as bit file downloading. Internal register
settings such as the CRC, IDCODE, and status registers are included. You can monitor the
Sync Word as it enters the device and the start-up sequence as it progresses. Figure E-2,
below, illustrates how the system should map from the hardware to the simulation
environment.

The configuration process is specifically outlined in the configuration user guides for each
device. These guides contain information on the configuration sequence, as well as the
configuration interfaces.

Table E-1: Supported Configuration Devices and Modes
Devices SelectMAP Serial SPI BPI

7 Series and
Zynq®-7000 SoC
Devices

Yes Yes No No

UltraScale™ Devices Yes Yes No No
UltraScale+™ Devices Yes Yes No No

X-Ref Target - Figure E-2

Figure E-2: Block Diagram of Model Interaction

Host Controller - Input Stimulus to Model Configuration Simulation Model

IDCODE Parameter
Memory

Controller

Target FPGABit File

User
Memory

SelectMAP
Control
Logic

CCLK
Data [0-n]

RDWR

PROG_B
INIT_B

CS

Mode Pins [2:0]

1 1 0
X10194
Logic Simulation 212
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=212

Appendix E: Handling Special Cases
System Level Description

The configuration models allow the configuration interface control logic to be tested before
the hardware is available. It simulates the entire device, and is used at a system level for:

• Applications using a processor to control the configuration logic to ensure proper
wiring, control signal handling, and data input alignment.

• Applications that control the data loading process with the CS (SelectMAP Chip Select)
or CLK signal to ensure proper data alignment.

• Systems that need to perform a SelectMAP ABORT or Readback.

The config_test_bench.zip file has sample test benches that simulate a processor
running the SelectMAP logic. These test benches have control logic to emulate a processor
controlling the SelectMAP interface, and include features such as a full configuration,
ABORT, and Readback of the IDCODE and status registers.

For the ZIP files associated with this model, see Xilinx Answer 53632.

The simulated host system must have a method for file delivery as well as control signal
management. These control systems should be designed as set forth in the device
configuration user guides.

The configuration models also demonstrate what is occurring inside the device during the
configuration procedure when a BIT file is loaded into the device.

During the BIT file download, the model processes each command and changes registers
settings that mirror the hardware changes.

You can monitor the CRC register as it actively accumulates a CRC value. The model also
shows the Status Register bits being set as the device progresses through the different
states of configuration.

Debugging with the Model

Each configuration model provides an example of a correct configuration. You can leverage
this example to assist in the debug procedure if you encounter device programming issues.

You can read the Status Register through JTAG using the Vivado Device Programmer tool.
This register contains information relating to the current status of the device and is a useful
debugging resource. If you encounter issues on the board, reading the Status Register in
Vivado Device Programmer is one of the first debugging steps to take.

After the status register is read, you can map it to the simulation to pinpoint the
configuration stage of the device.
Logic Simulation 213
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=answers;d=53632.html
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=213

Appendix E: Handling Special Cases
For example, the GHIGH bit is set HIGH after the data load process completes successfully;
if this bit is not set, then the data loading operation did not complete. You can also monitor
the GTW, GWE, and DONE signals set in BitGen that are released in the start-up sequence.

The configuration models also allow for error injection. The active CRC logic detects any
issue if the data load is paused and started again with any problems. It also detects bit flips
manually inserted in the BIT file, and handles them just as the device would handle this
error.

Feature Support

Each device-specific configuration user guide outlines the supported methods of
interacting with each configuration interface.The table below shows which features
discussed in the configuration user guides are supported.

The SIM_CONFIGE2 model:

• Does not support Readback of configuration data.
• Does not store configuration data provided, although it does calculate a CRC value.
• Can perform Readback on specific registers only to ensure that a valid command

sequence and signal handling is provided to the device.
• Is not intended to allow Readback data files to be produced.
Table E-2: Model-Supported Slave SelectMAP and Serial Features

Slave SelectMAP and Serial Features Supported
Master mode No
Daisy chain - slave parallel daisy chains No
SelectMAP data loading Yes
Continuous SelectMAP data loading Yes
Non-continuous SelectMAP data loading Yes
SelectMAP ABORT Yes
SelectMAP reconfiguration No
SelectMAP data ordering Yes
Reconfiguration and MultiBoot No
Configuration CRC—CRC checking during configuration Yes
Configuration CRC—post-configuration CRC No
Logic Simulation 214
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=214

Appendix E: Handling Special Cases
Disabling Block RAM Collision Checks for
Simulation
Xilinx block RAM memory is a true dual-port RAM where both ports can access any memory
location at any time. Be sure that the same address space is not accessed for reading and
writing at the same time. This causes a block RAM address collision. These are valid
collisions, because the data that is being read from the read port is not valid.

In the hardware, the value that is read might be the old data, the new data, or a combination
of the old data and the new data.

In simulation, this is modeled by outputting X because the value read is unknown. For more
information on block RAM collisions, see the user guide for the device.

In certain applications, this situation cannot be avoided or designed around. In these cases,
the block RAM can be configured not to look for these violations. This is controlled by the
generic (VHDL) or parameter (Verilog) SIM_COLLISION_CHECK string in block RAM
primitives.

Table E-3 shows the string options you can use with SIM_COLLISION_CHECK to control
simulation behavior in the event of a collision.

Apply the SIM_COLLISION_CHECK at an instance level so you can change the setting for
each block RAM instance.

Table E-3: SIM_COLLISION_CHECK Strings

String Write Collision
Messages Write Xs on the Output

ALL Yes Yes
WARNING_ONLY Yes No. Applies only at the time of collision.

Subsequent reads of the same address space could
produce Xs on the output.

GENERATE_X_ONLY No Yes
None No No. Applies only at the time of collision.

Subsequent reads of the same address space could
produce Xs on the output.
Logic Simulation 215
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=215

Appendix E: Handling Special Cases
Dumping the Switching Activity Interchange Format
File for Power Analysis
• Vivado simulator: Power Analysis Using Vivado Simulator, page 116
• Dumping SAIF for Power Analysis, Dumping SAIF in IES, and Dumping SAIF in VCS in

Chapter 3, Simulating with Third-Party Simulators

Skipping Compilation or Simulation
Skipping Compilation
You can run simulation on an existing snapshot and skip the compilation (or recompilation)
of the design by setting the SKIP_COMPILATION property on the simulation fileset:

set_property SKIP_COMPILATION 1 [get_filesets sim_1]
Note: Any change to design files after the last compilation is not reflected in simulation when you
set this property.

Skipping Simulation
To perform a semantic check on the design HDL files, by elaborating and compiling the
simulation snapshot without running simulation, you can set the SKIP_SIMULATION
property on the simulation fileset:

set_property SKIP_SIMULATION true [get_filesets sim_1]

IMPORTANT: If you elect to use one of the properties above, disable the Clean up simulation files
checkbox in the simulations settings or, if you are running in batch/Tcl mode, call
launch_simulation with -noclean_dir.
Logic Simulation 216
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=216

Appendix F

Value Rules in Vivado Simulator Tcl
Commands

Introduction
This appendix contains the value rules that apply to both the add_force and the
set_value Tcl commands.

String Value Interpretation
The interpretation of the value string is determined by the declared type of the HDL object
and the -radix command line option. The -radix always overrides the default radix
determined by the HDL object type.

• For HDL objects of type logic, the value is a one-dimensional array of the logic type
or the value is a string of digits of the specified radix.

° If the string specifies less bits than the type expects, the string is implicitly
zero-extended (not sign-extended) to match the length of the type.

° If the string specifies more bits than the type expects, the extra bits on the MSB side
must be zero; otherwise the command generates a size mismatch error.

For example: The value 3F specifies 8 bits (4 per hex digit) with radix hex and a 6 bit
logic array, equivalent to binary 0011 1111. But, because the upper two bits of 3
are zero, the value can be assigned to the HDL object. In contrast, the value 7F would
generate an error, because the upper two bits are not zero.

° A scalar (not array or record) logic HDL object has an implicit length of 1 bit.

° For a logic array declared as a [left:right] (Verilog) or a(left TO/DOWNTO
right), the left-most value bit (after extension/truncation) is assigned to a[left]
and the right-most value bit is assigned to a[right].
Logic Simulation 217
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=217

Appendix F: Value Rules in Vivado Simulator Tcl Commands
Vivado Design Suite Simulation Logic
The logic is not a concept defined in HDL but is a heuristic introduced by the Vivado®
simulator.

• A Verilog object is considered to be of logic type if it is of the implicit Verilog bit type,
which includes wire and reg objects, as well as integer and time.

• A VHDL object is considered to be of logic type if the objects type is bit, std_logic,
or any enumeration type whose enumerators are a subset of those of std_logic and
include at least 0 and 1, or type of the object is a one-dimensional array of such a type.

• For HDL objects, which are of VHDL enumeration type, the value can be one of the
enumerator literals, without single quotes if the enumerator is a character literal. Radix
is ignored.

• For VHDL objects, of integral type, the value can be a signed decimal integer in the
range of the type. Radix is ignored.

• For VHDL and Verilog floating point types the value can be a floating point value. Radix
is ignored.

• For all other types of HDL objects, the Tcl command set does not support setting values.
Logic Simulation 218
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=218

Appendix G

Vivado Simulator Mixed Language
Support and Language Exceptions

Introduction
The Vivado® Integrated Design Environment (IDE) supports the following languages:

• VHDL, see IEEE Standard VHDL Language Reference Manual (IEEE-STD-1076-1993)
[Ref 15]

• Verilog, see IEEE Standard Verilog Hardware Description Language
(IEEE-STD-1364-2001) [Ref 16]

• SystemVerilog Synthesizable subset. See IEEE Standard Verilog Hardware Description
Language (IEEE-STD-1800-2009) [Ref 17]

• IEEE P1735 encryption, see Recommended Practice for Encryption and Management of
Electronic Design Intellectual Property (IP) (IEEE-STD-P1735) [Ref 19]

This appendix lists the application of Mixed Language in the Vivado simulator, and the
exceptions to Verilog, SystemVerilog, and VHDL support.

Using Mixed Language Simulation
The Vivado simulator supports mixed language project files and mixed language
simulation. This lets you include Verilog/SystemVerilog (SV) modules in a VHDL design, and
vice versa.

Restrictions on Mixed Language in Simulation
• A VHDL design can instantiate Verilog/SystemVerilog (SV) modules and a Verilog/SV

design can instantiate VHDL components. Component instantiation-based default
binding is used for binding a Verilog/SV module to a VHDL component. Any other kind
of mixed use of VHDL and Verilog, such as VHDL process calling a Verilog function, is
not supported.
Logic Simulation 219
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=219

Appendix G: Vivado Simulator Mixed Language Support and Language Exceptions
• A subset of VHDL types, generics, and ports are allowed on the boundary to a
Verilog/SV module. Similarly, a subset of Verilog/SV types, parameters and ports are
allowed on the boundary to VHDL components. See Table G-2, page 222.

IMPORTANT: Connecting whole VHDL record object to a Verilog object is unsupported; however, VHDL
record elements of a supported type can be connected to a compatible Verilog port.

• A Verilog/SV hierarchical reference cannot refer to a VHDL unit nor can a VHDL
expanded or selected name refer to a Verilog/SV unit.

Key Steps in a Mixed Language Simulation
1. Optionally, specify the search order for VHDL components or Verilog/SV modules in the

design libraries of a mixed language project.
2. Use xelab -L to specify the binding order of a VHDL component or a Verilog/SV

module in the design libraries of a mixed language project.
Note: The library search order specified by -L is used for binding Verilog modules to other
Verilog modules as well.

Mixed Language Binding and Searching
When you instantiate a VHDL component in a Verilog/SV module or a Verilog/SV module in
a VHDL architecture, the xelab command:

• First searches for a unit of the same language as that of the instantiating design unit.
• If a unit of the same language is not found, xelab searches for a cross-language

design unit in the libraries specified by the -L option.

The search order is the same as the order of appearance of libraries on the xelab command
line. See Verilog Search Order, page 137 for more information.

Note: When using the Vivado IDE, the library search order is specified automatically. No user
intervention is necessary or possible.

Instantiating Mixed Language Components
In a mixed language design, you can instantiate a Verilog/SV module in a VHDL architecture
or a VHDL component in a Verilog/SV module as described in the following subsections.

To ensure that you are correctly matching port types, review the Port Mapping and
Supported Port Types, page 221.
Logic Simulation 220
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=220

Appendix G: Vivado Simulator Mixed Language Support and Language Exceptions
Instantiating a Verilog Module in a VHDL Design Unit

1. Declare a VHDL component with the same name and in the same case as the Verilog
module that you want to instantiate. For example:
COMPONENT MY_VHDL_UNIT PORT (

Q : out STD_ULOGIC;
D : in STD_ULOGIC;
C : in STD_ULOGIC);

END COMPONENT;

2. Use named or positional association to instantiate the Verilog module. For example:
UUT : MY_VHDL_UNIT PORT MAP(

Q => O,
D => I,
C => CLK);

Instantiating a VHDL Component in a Verilog/SV Design Unit

To instantiate a VHDL component in a Verilog/SV design unit, instantiate the VHDL
component as if it were a Verilog/SV module.

For example:

module testbench ;
wire in, clk;
wire out;
FD FD1(
.Q(Q_OUT),
.C(CLK);
.D(A);

);

Port Mapping and Supported Port Types
Table G-1 lists the supported port types.

Table G-2 shows the supported VHDL and Verilog data types for ports on the mixed
language design boundary.

Table G-1: Supported Port Types
VHDL (1) Verilog/SV(2)

IN INPUT
OUT OUTPUT
INOUT INOUT

1. Buffer and linkage ports of VHDL are not supported.
2. Connection to bi-directional pass switches in Verilog are not supported. Unnamed Verilog ports are not allowed on

mixed design boundary.
Logic Simulation 221
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=221

Appendix G: Vivado Simulator Mixed Language Support and Language Exceptions
Note: Verilog output port of type reg is supported on the mixed language boundary. On the
boundary, an output reg port is treated as if it were an output net (wire) port. Any other type found
on mixed language boundary is considered an error.
Note: The Vivado simulator supports the record element as an actual in the port map of a Verilog
module that is instantiated in the mixed domain. All those types that are supported as VHDL port
(listed in Table G-2) are also supported as a record element.

Table G-2: Supported VHDL and Verilog Data Types
VHDL Port Verilog Port

bit net
std_logic net
bit_vector vector net
signed vector net
unsigned vector net
std_ulogic_vector vector net
std_logic_vector vector net

Table G-3: Supported SV and VHDL Data Types
SV Data type VHDL Data type

Int
 bit_vector

 std_logic_Vector

 std_ulogic_vector

 signed

 unsigned

byte

 bit_vector

 std_logic_Vector

 std_ulogic_vector

 signed

 unsigned

shortint

 bit_vector

 std_logic_Vector

 std_ulogic_vector

 signed

 unsigned

longint

 bit_vector
Logic Simulation 222
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=222

Appendix G: Vivado Simulator Mixed Language Support and Language Exceptions
 std_logic_Vector

 std_ulogic_vector

 signed

 unsigned

integer

 bit_vector

 std_logic_Vector

 std_ulogic_vector

 signed

 unsigned

vector of bit(1D)

 bit_vector

 std_logic_Vector

 std_ulogic_vector

 signed

 unsigned

vector of logic(1D)

 bit_vector

 std_logic_Vector

 std_ulogic_vector

 signed

 unsigned

vector of reg(1D)

 bit_vector

 std_logic_Vector

 std_ulogic_vector

 signed

 unsigned

logic/bit

 bit

 std_logic

 std_ulogic

 bit_vector

 std_logic_Vector

 std_ulogic_vector

Table G-3: Supported SV and VHDL Data Types (Cont’d)

SV Data type VHDL Data type
Logic Simulation 223
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=223

Appendix G: Vivado Simulator Mixed Language Support and Language Exceptions
Note: VHDL entity instantiating Verilog Module having real port is supported.

Generics (Parameters) Mapping
The Vivado simulator supports the following VHDL generic types (and their Verilog/SV
equivalents):

• integer
• real
• string
• boolean
Note: Any other generic type found on mixed language boundary is considered an error.

VHDL and Verilog Values Mapping
Table G-4 lists the Verilog states mappings to std_logic and bit.

Note: Verilog strength is ignored. There is no corresponding mapping to strength in VHDL.

Table G-5 lists the VHDL type bit mapping to Verilog states.

Table G-6 lists the VHDL type std_logic mappings to Verilog states.

 signed

 unsigned

Table G-4: Verilog States mapped to std_logic and bit
Verilog std_logic bit

 Z Z 0
 0 0 0
 1 1 1
 X X 0

Table G-5: VHDL bit Mapping to Verilog States
bit Verilog
0 0
1 1

Table G-3: Supported SV and VHDL Data Types (Cont’d)

SV Data type VHDL Data type
Logic Simulation 224
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=224

Appendix G: Vivado Simulator Mixed Language Support and Language Exceptions
Because Verilog is case sensitive, named associations and the local port names that you use
in the component declaration must match the case of the corresponding Verilog port
names.

VHDL Language Support Exceptions
Certain language constructs are not supported by the Vivado simulator. Table G-7 lists the
VHDL language support exceptions.
.

Table G-6: VHDL std_logic mapping to Verilog States
std_logic Verilog

U X
X X
0 0
1 1
Z Z
W X
L 0
H 1
- X

Table G-7: VHDL Language Support Exceptions
Supported VHDL Construct Exceptions

abstract_literal Floating point expressed as based literals are not
supported.

alias_declaration Alias to non-objects are in general not supported;
particularly the following:
• Alias of an alias
• Alias declaration without subtype_indication
• Signature on alias declarations
• Operator symbol as alias_designator
• Alias of an operator symbol
• Character literals as alias designators

alias_designator Operator_symbol as alias_designator
Character_literal as alias_designator

association_element Globally, locally static range is acceptable for taking
slice of an actual in an association element.

attribute_name Signature after prefix is not supported.
binding_indication Binding_indication without use of entity_aspect is not

supported.
Logic Simulation 225
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=225

Appendix G: Vivado Simulator Mixed Language Support and Language Exceptions
bit_string_literal. Empty bit_string_literal (" ") is not supported
block_statement Guard_expression is not supported; for example,

guarded blocks, guarded signals, guarded targets,
and guarded assignments are not supported.

choice Aggregate used as choice in case statement is not
supported.

concurrent_assertion_statement Postponed is not supported.
concurrent_signal_assignment_statement Postponed is not supported.
concurrent_statement Concurrent procedure call containing wait statement

is not supported.
conditional_signal_assignment Keyword guarded as part of options is not supported

as there is no supported for guarded signal
assignment.

configuration_declaration Non locally static for generate index used in
configuration is not supported.

entity_class Literals, unit, file, and group as entity class are not
supported.

entity_class_entry Optional <> intended for use with group templates is
not supported.

file_logical_name Although file_logical_name is allowed to be any
wild expression evaluating to a string value, only
string literal and identifier is acceptable as file name.

function_call Slicing, indexing, and selection of formals is not
supported in a named parameter association within a
function_call.

instantiated_unit Direct configuration instantiation is not supported.
mode Linkage and Buffer ports are not supported

completely.
options Guarded is not supported.
primary At places where primary is used, allocator is

expanded there.
procedure_call Slicing, indexing, and selection of formals is not

supported in a named parameter association within a
procedure_call.

process_statement Postponed processes are not supported.
selected_signal_assignment The guarded keyword as part of options is not

supported as there is no support for guarded signal
assignment.

signal_declaration The signal_kind is not supported. The
signal_kind is used for declaring guarded signals,
which are not supported.

Table G-7: VHDL Language Support Exceptions (Cont’d)
Supported VHDL Construct Exceptions
Logic Simulation 226
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=226

Appendix G: Vivado Simulator Mixed Language Support and Language Exceptions
Verilog Language Support Exceptions
Table G-8 lists the exceptions to supported Verilog language support.

subtype_indication Resolved subtype of composites (arrays and records)
is not supported

waveform Unaffected is not supported.
waveform_element Null waveform element is not supported as it only has

relevance in the context of guarded signals.

Table G-7: VHDL Language Support Exceptions (Cont’d)
Supported VHDL Construct Exceptions

Table G-8: Verilog Language Support Exceptions
Verilog Construct Exception

Compiler Directive Constructs
`unconnected_drive not supported
`nounconnected_drive not supported
Attributes
attribute_instance not supported
attr_spec not supported
attr_name not supported
Primitive Gate and Switch Types
cmos_switchtype not supported
mos_switchtype not supported
pass_en_switchtype not supported
Generated Instantiation
Logic Simulation 227
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=227

Appendix G: Vivado Simulator Mixed Language Support and Language Exceptions
generated_instantiation The module_or_generate_item alternative is not
supported.
Production from IEEE standard (see IEEE Standard Verilog
Hardware Description Language (IEEE 1364-2001) section 13.2
[Ref 16]):
generate_item_or_null ::=

generate_conditonal_statement |
generate_case_statement |
generate_loop_statement |
generate_block |
module_or_generate_item

Production supported by Simulator:

generate_item_or_null ::=
generate_conditional_statement|
generate_case_statement |
generate_loop_statement |
generate_blockgenerate_condition

genvar_assignment Partially supported.
All generate blocks must be named.
Production from standard (see IEEE Standard Verilog Hardware
Description Language (IEEE 1364-2001) section 13.2 [Ref 16]:
generate_block ::=
begin
[: generate_block_identifier]
{ generate_item }
end

Production supported by Simulator:

generate_block ::=
begin:
generate_block_identifier {
generate_item }
end

Source Text Constructs

Library Source Text
library_text not supported
library_descriptions not supported
library_declaration not supported
include_statement This refers to include statements within library map files (See

IEEE Standard Verilog Hardware Description Language (IEEE
1364-2001) section 13.2 [Ref 16]. This does not refer to the
`include compiler directive.

System Timing Check Commands
$skew_timing_check not supported
$timeskew_timing_check not supported

Table G-8: Verilog Language Support Exceptions (Cont’d)
Verilog Construct Exception
Logic Simulation 228
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=228

Appendix G: Vivado Simulator Mixed Language Support and Language Exceptions
$fullskew_timing_check not supported
$nochange_timing_check not supported
System Timing Check Command Argument
checktime_condition not supported
PLA Modeling Tasks
$async$nand$array not supported
$async$nor$array not supported
$async$or$array not supported
$sync$and$array not supported
$sync$nand$array not supported
$sync$nor$array not supported
$sync$or$array not supported
$async$and$plane not supported
$async$nand$plane not supported
$async$nor$plane not supported
$async$or$plane not supported
$sync$and$plane not supported
$sync$nand$plane not supported
$sync$nor$plane not supported
$sync$or$plane not supported
Value Change Dump (VCD) Files
$dumpportson

$dumpports

$dumpportsoff

$dumpportsflush

$dumpportslimit

$vcdplus

not supported

Table G-8: Verilog Language Support Exceptions (Cont’d)
Verilog Construct Exception
Logic Simulation 229
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=229

Appendix H

Vivado Simulator Quick Reference Guide

Introduction
Table H-1 provides a quick reference and examples for common Vivado® simulator
commands.
.

Table H-1: Standalone Mode: Parsing, Elaborating, and Running Simulation from a Command Line
Parsing HDL Files
Vivado Simulator supports three HDL file types: Verilog, SystemVerilog and VHDL. You can parse the supported
files using XVHDL and XVLOG commands.

Parsing VHDL
files

xvhdl file1.vhd file2.vhd

xvhdl -work worklib file1.vhd file2.vhd

xvhdl -prj files.prj

Parsing
Verilog files

xvlog file1.v file2.v

xvlog -work worklib file1.v file2.v

xvlog -prj files.prj

Parsing
SystemVerilog
files

xvlog -sv file1.v file2.v

xvlog -work worklib -sv file1.v file2.v

xvlog -prj files.prj

Note: For information about the PRJ file format, see Project File (.prj) Syntax in Chapter 7.
Logic Simulation 230
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=230

Appendix H: Vivado Simulator Quick Reference Guide
Additional xvlog and xvhdl Options

xvlog and
xvhdl Key
Options

See Table 7-2, page 141 for a complete list of command options.
The following are key options for xvlog and xvhdl:
Key Option Applies to:
-d [define]
<name>[=<val>]

xvlog

-h [-help] xvlog, xvhdl

-i [include]
<directory_name>

xvlog

-initfile
<init_filename>

xvlog, xvhdl

-L [-lib]
<library_name>
[=<library_dir>]

xvlog, xvhdl

-log <filename> xvlog, xvhdl

-prj <filename> xvlog, xvhdl

-relax xvhdl, vlog

-work <library_name>
[=<library_dir>]

xvlog, xvhdl

Elaborating and Generating an Executable Snapshot
After parsing, you can elaborate the design in Vivado simulator using the XELAB command. XELAB generates an
executable snapshot.
Note: You can skip the parser stage, directly invoke the XELAB command, and pass the PRJ file. XELAB calls XVLOG and XVHDL
for parsing the files.

Usage

xelab top1 top2 Elaborates a design that has two top design units: top1 and
top2. In this example, the design units are compiled in the
work library.

xelab lib1.top1
lib2.top2

Elaborates a design that has two top design units: top1 and
top2. In this example, the design units have are compiled in
lib1 and lib2, respectively

xelab top1 top2 -prj
files.prj

Elaborates a design that has two top design units: top1 and
top2. In this example, the design units are compiled in the
work library. The file files.prj contains entries such as:

verilog <libraryName> <VerilogDesignFileName>
vhdl <libraryName> <VHDLDesignFileName>
sv <libraryName> <SystemVerilogDesignFileName>

xelab top1 top2 -s top Elaborates a design that has two top design units: top1 and
top2. In this example, the design units are compiled in the
work library. After compilation, xelab generates an
executable snapshot with the name top. Without the -s top
switch, xelab creates the snapshot by concatenating the unit
names.

Table H-1: Standalone Mode: Parsing, Elaborating, and Running Simulation from a Command Line
Logic Simulation 231
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=231

Appendix H: Vivado Simulator Quick Reference Guide
Command
Line Help and
xelab Options

xelab -help

xelab, xvhd, and xvlog Command Options, page 141

Running Simulation
After parsing, elaboration and compilation stages are successful; xsim generates an executable snapshot to run
simulation.

Usage

xsim top -R Simulates the design to through completion.
xsim top -gui Opens the Vivado simulator workspace (GUI).
xsim top Opens the Vivado Design Suite command prompt in Tcl mode.

From there, you can invoke such options as:
run -all
run 100 ns

Important Shortcuts
You can invoke the parsing, elaboration, and executable generation and simulation in one, two, or three stages.

Three Stage xvlog bot.v

xvhdl top.vhd

xelab work.top -s top

xsim top -R

Two Stage xelab -prj my_prj.prj work.top -s top

xsim top -R

where my_prj.prj file contains:

verilog work bot.v

vhdl work top.vhd

Single Stage xelab -prj my_prj.prj work.top -s top -R

where my_prj.prj file contains:

verilog work bot.v
vhdl work top.vhd

Vivado Simulation Tcl Commands
The following are commonly used Tcl commands. For a complete list, invoke following commands in the Tcl
Console:
• load_features simulator

• help -category simulation

For information on any Tcl Command, type: -help <Tcl_command>

Table H-1: Standalone Mode: Parsing, Elaborating, and Running Simulation from a Command Line
Logic Simulation 232
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=232

Appendix H: Vivado Simulator Quick Reference Guide
Common
Vivado
Simulator Tcl
Commands:

add_bp Add break point at a line of HDL source. A Tcl command
example is provided on page 106.

add_force Force the value of a signal, wire, or register to a specified value.
Tcl command exampled are provided on page 111.

current_time

now

Report current simulation time. See current_time, page 154 for
an example of this command within a Tcl script.

current_scope Report or set the current, working HDL scope. See Additional
Scopes and Sources Options, page 57 for more information.

get_objects Get a list of HDL objects in one or more HDL scopes, per the
specified pattern. For example command usage refer to:
page 117.

get_scopes Get a list of child HDL scopes. See Additional Scopes and
Sources Options, page 57 for more information.

get_value Get the current value of the selected HDL object (variable,
signal, wire, register). Type get_value -help in Tcl Console
for more information.

launch_simulation Launch simulation using the Vivado simulator.
remove_bps Remove breakpoints from a simulation. A Tcl command

example is provided on page 106.
report_drivers Print drivers along with current driving values for an HDL wire

or signal object. Reference for more information: Using the
report_drivers Tcl Command, page 118.

report_values Print current simulated value of given HDL objects (variables,
signals, wires, or registers). For example Tcl command usage,
see page 57.

restart Rewind simulation to post loading state (as though the design
was reloaded); time is set to 0. For additional information, see
page 51.

set_value Set the HDL object (variable, signal, wire, or register) to a
specified value. Reference for more information: Appendix F,
Value Rules in Vivado Simulator Tcl Commands.

step Step simulation to the next statement. See Stepping Through a
Simulation, page 104.

Table H-1: Standalone Mode: Parsing, Elaborating, and Running Simulation from a Command Line
Logic Simulation 233
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=233

Appendix I

Using Xilinx Simulator Interface

Introduction
The Xilinx® Simulator Interface (XSI) is a C/C++ application programming interface (API) to
the Xilinx Vivado Simulator (xsim) that enables a C/C++ program to serve as the test bench
for a HDL design. Using XSI, the C/C++ program controls the activity of the Vivado
Simulator which hosts the HDL design.

The C/C++ program controls the simulation in the following methods:

• Setting the values of the top-level input ports of the HDL design
• Instructing the Vivado Simulator to run the simulation for a certain amount of

simulation time

Additionally, the C/C++ program can read the values of the top-level output ports of the
HDL design.

Perform the following steps to use XSI in your C/C++ program:

1. Prepare the XSI API functions to be called through dynamic linking
2. Write your C/C++ test bench code using the API functions
3. Compile and link your C/C++ program
4. Package the Vivado Simulator and the HDL design together into a shared library

Preparing the XSI Functions for Dynamic Linking
Xilinx recommends the usage of dynamic linking for indirectly calling the XSI functions.
While this technique involves more steps than simply calling XSI functions directly, dynamic
linking allows you to keep the compilation of your HDL design independent of the
compilation of your C/C++ program. You can compile and load your HDL design at any
time, even while your C/C++ program continues to run.
Logic Simulation 234
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=234

Appendix I: Using Xilinx Simulator Interface
To call a function through dynamic linking requires your program to perform the following
steps:

1. Open the shared library containing the function
2. Look up the function by name to get a pointer to the function
3. Call the function using the function pointer
4. Close the shared library (optional)

Steps 1, 2, and 4 require the use of OS-specific library calls, as shown in Table I-1. See your
operating system documentation for details about these functions.

XSI requires you to call functions from two shared libraries: the kernel shared library and
your design shared library. The kernel shared library ships with the Vivado Simulator and is
called librdi_simulator_kernel.so (Linux) or librdi_simulator_kernel.dll
(Windows). It resides in the following directory:

<Vivado Installation Root>/lib/<platform>

where <platform> is lnx64.o or win64.o. Make sure to include this directory in your
library path while running your program. On Linux, include the directory in the environment
variable LD_LIBRARY_PATH, and on Windows, in the environment variable PATH.

Your design shared library, which the Vivado Simulator creates in the course of compiling
your HDL design, as described in Preparing the Design Shared Library, is called xsimk.so
(Linux) or xsimk.dll (Windows) and typically resides at the following location:

<HDL design directory>/xsim.dir/<snapshot name>

where <HDL design directory> is the directory from which your design shared library
was created, and <snapshot name> is the name of the snapshot that you specify during
the creation of the library.

Table I-1: Operating System Specific Library Calls
Function Linux Windows

Open shared library void *dlopen(const char
*filename, int flag);

HMODULE WINAPI
LoadLibrary(_In_ LPCTSTR
lpFileName
);

Look up function by name void *dlsym(void
*handle, const char
*symbol);

FARPROC WINAPI
GetProcAddress(_In_
HMODULE hModule,_In_
LPCSTR lpProcName
);

Close shared library int dlclose(void
*handle);

BOOL WINAPI
FreeLibrary(_In_ HMODULE
hModule
);
Logic Simulation 235
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=235

Appendix I: Using Xilinx Simulator Interface
Your C/C++ program will call the XSI function xsi_open() residing in your design shared
library and all other XSI functions from the kernel shared library.

The XSI code examples that ship with the Vivado Simulator consolidate the XSI functions
into a C++ class called Xsi::Loader. The class accepts the names of the two shared
libraries, internally executes the necessary dynamic linking steps, and exposes all the XSI
functions as member functions of the class. Wrapping the XSI functions in this manner
eliminates the necessity of calling the dynamic linking OS functions directly. You can find
the source code for the class that can be copied into your own program at the following
location under your Vivado installation:

<Vivado Installation Root>/examples/xsim/verilog/xsi/counter/xsi_loader.h
<Vivado Installation Root>/examples/xsim/verilog/xsi/counter/xsi_loader.cpp

To use Xsi::Loader, simply instantiate it by passing the names of the two shared libraries
as shown in the following example:

#include "xsi_loader.h"
...
Xsi::Loader loader("xsim.dir/mySnapshot/xsimk.so", "librdi_simulator_kernel.so");

Writing the Test Bench Code
A C/C++ test bench using XSI typically uses the following steps:

1. Open the design
2. Fetch the IDs of each top-level port
3. Repeat the following until the simulation is finished:

a. Set values on top-level input ports
b. Run the simulation for a specific amount of time
c. Fetch the values of top-level output ports

4. Close the design

The following table lists the XSI functions and their Xsi::Loader member function
equivalents to use for each step. You can find the usage details for each XSI function in the
XSI Function Reference section.

Table I-2: Xsi::Loader member functions
Activity XSI Function Xsi::Loader Member Function

Open the design xsi_open open
Fetch a port ID xsi_get_port_number get_port_number
Logic Simulation 236
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=236

Appendix I: Using Xilinx Simulator Interface
You can find the example C++ programs that use XSI in your Vivado Simulator installation
at the following location:

<Vivado Installation Root>/examples/xsim/<HDL language>/xsi

Compiling Your C/C++ Program
You can use the XSI example programs as a guideline. Each example supplies one or two
scripts for compiling and running the example. Refer to your compiler's documentation for
details on compiling a program. On Linux, compiling and running is a two-step process.

1. In a C shell, source set_env.csh
2. Invoke run.csh

On Windows, simply run the batch file run.bat.

Note the following from the scripts:

1. The compilation lines specify (via -I) the inclusion of the directory containing the
xsi.h include file.

2. There is no mention of the design shared library or kernel shared library during the
compilation of a C++ program.

The XSI include file resides at the following location:

<Vivado Installation Root>/data/xsim/include/xsi.h

Preparing the Design Shared Library
The last step for producing a working XSI-based C/C++ program involves the compilation of
a HDL design and packaging it together with the Vivado Simulator to become your design
shared library. You may repeat this step whenever there is a change in HDL designs source
code.

Set an input port
value

xsi_put_value put_value

Run the simulation xsi_run run
Fetch an output port
value

xsi_get_value get_value

Close the design xsi_close close

Table I-2: Xsi::Loader member functions (Cont’d)

Activity XSI Function Xsi::Loader Member Function
Logic Simulation 237
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=237

Appendix I: Using Xilinx Simulator Interface
CAUTION! If you intend to rebuild the design shared library for your C/C++ program while your
program continues to run, be sure to close the design in your program before executing this step.

Create your design shared library by invoking xelab on the HDL design and including the
-dll switch to instruct xelab to produce a shared library instead of the usual snapshot for use
with the Vivado Simulator's user interface.

For example:

Type the following in the Linux command line to create a design shared library at
./xsim.dir/design/xsimk.so:

xelab work.top1 work.top2 -dll -s design

where work.top1 and work.top2 are the top module names and design is the snapshot
name.

See xelab, xvhdl, and xvlog xsim Command Options for more details on compiling an HDL
design.

XSI Function Reference
This section presents each of the XSI API functions in plain (direct C call) and Xsi::Loader
member function forms. The plain form functions take an xsiHandle argument, whereas
the member functions do not take this argument. The xsiHandle contains state
information about the opened HDL design. The plain form xsi_open produces the
xsiHandle. Xsi::Loader contains an xsiHandle internally.

xsi_close
void xsi_close(xsiHandle design_handle);
void Xsi::Loader::close();

This function closes an HDL design, freeing the memory associated with the design. Call this
function to end the simulation.

xsi_get_error_info
const char* xsi_get_error_info(xsiHandle design_handle);
const char* Xsi::Loader::get_error_info();

This function returns a string description of the last error encountered.
Logic Simulation 238
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=238

Appendix I: Using Xilinx Simulator Interface
xsi_get_port_number
XSI_INT32 xsi_get_port_number(xsiHandle design_handle, const char* port_name);
int Xsi::Loader::get_port_number(const char* port_name);

This function returns an integer ID for the requested top-level port of the HDL design. You
may subsequently use the ID to specify the port in xsi_get_value and xsi_put_value
calls. port_name is the name of the port and is case sensitive for Verilog and case
insensitive for VHDL. The function returns -1 if no port of the specified name exists.

Example code:

#include "xsi.h"
#include "xsi_loader.h"
...
Xsi::Loader loader("xsim.dir/mySnapshot/xsimk.so","librdi_simulator_kernel.so");
...
int count = loader.get_port_number("count");

xsi_get_status
XSI_INT32 xsi_get_status(xsiHandle design_handle);
int Xsi::Loader::get_status();

This function returns the status of the simulation. The status may be equal to one of the
following identifiers:

Example code:

#include "xsi.h"
#include "xsi_loader.h"
...
Xsi::Loader loader("xsim.dir/mySnapshot/xsimk.so","librdi_simulator_kernel.so");
...
if (loader.get_status() == xsiError)
 printf("HDL run-time error encountered.\n");

xsi_get_value
void xsi_get_value(xsiHandle design_handle, XSI_INT32 port_number, void* value);
int Xsi::Loader::get_value(int port_number, void* value);

Table I-3: Xsi Simulation Status Identifiers
Status code Identifiers Description

xsiNormal No error
xsiError The simulation has encountered an HDL run-time error
xsiFatalError The simulation has encountered an error condition for

which the Vivado Simulator cannot continue.
Logic Simulation 239
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=239

Appendix I: Using Xilinx Simulator Interface
This function fetches the value of the port indicated by port ID port_number. The value is
placed in the memory buffer to which value points. See xsi_get_port_number for
information on obtaining an ID for a port.

IMPORTANT: Your program must allocate sufficient memory for the buffer before calling the function.
See Vivado Simulator VHDL Data Format and Vivado Simulator Verilog Data Format to determine the
necessary size of the buffer.

Example code:

#include "xsi.h"
#include "xsi_loader.h"
...
// Buffer for value of port "count"
s_xsi_vlog_logicval count_val = {0X00000000, 0X00000000};
Xsi::Loader loader("xsim.dir/mySnapshot/xsimk.so","librdi_simulator_kernel.so");
...
int count = loader.get_port_number("count");
loader.get_value(count, &count_val);

xsi_open
typedef struct t_xsi_setup_info {
 char* logFileName;
 char* wdbFileName;
} s_xsi_setup_info, *p_xsi_setup_info;

xsiHandle xsi_open(p_xsi_setup_info setup_info);
void Xsi::Loader::open(p_xsi_setup_info setup_info);
bool Xsi::Loader::isopen() const;

This function opens an HDL design for simulation. To use this function, you must first
initialize an s_xsi_setup_info struct to pass to the function. Use logFileName for the
name of the simulation log file, or NULL to disable logging. If waveform tracing is on (see
xsi_trace_all), wdbFileName is the name of the output WDB (waveform database) file. Use
NULL for the default name of xsim.wdb. If the waveform tracing is off, the Vivado Simulator
ignores the wdbFileName field.

TIP: To protect your program from future changes to the XSI API, Xilinx recommends that you zero out
the s_xsi_setup_info struct before filling in the fields, as shown in the Example.

The plain (non-loader) form of the function returns an xsiHandle, a C object containing
process state information about the design, to be used with all other plain-form XSI
functions. The loader form of the function has no return value. However, you may check
whether the loader has opened a design by querying the isopen member function, which
returns true if the open member function had been invoked.
Logic Simulation 240
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=240

Appendix I: Using Xilinx Simulator Interface
Example

#include "xsi.h"
#include "xsi_loader.h"
...
Xsi::Loader loader("xsim.dir/mySnapshot/xsimk.so","librdi_simulator_kernel.so");
s_xsi_setup_info info;
memset(&info, 0, sizeof(info));
info.logFileName = NULL;
char wdbName[] = "test.wdb"; // make a buffer for holding the string "test.wdb"
info.wdbFileName = wdbName;
loader.open(&info);

xsi_put_value
void xsi_put_value(xsiHandle design_handle, XSI_INT32 port_number, void* value);
void Xsi::Loader::put_value(int port_number, const void* value);

This function deposits the value stored in value onto the port specified by port ID
port_number. See xsi_get_port_number for information on obtaining an ID for a port.
value is a pointer to a memory buffer that your program must allocate and fill. See the
Vivado Simulator VHDL Data Format and Vivado Simulator Verilog Data Format for
information on the proper format of value.

CAUTION! For maximum performance, the Vivado Simulator performs no checking on the size or type
of the value you pass to xsi_put_value. Passing a value to xsi_put_value which does not match
the size and type of the port may result in unpredictable behavior of your program and the Vivado
Simulator.

Example code:

#include "xsi.h"
#include "xsi_loader.h"
...
// Hard-coded Buffer for a 1-bit "1" Verilog 4-state value
const s_xsi_vlog_logicval one_val = {0X00000001, 0X00000000};

Xsi::Loader loader("xsim.dir/mySnapshot/xsimk.so","librdi_simulator_kernel.so");
...
int clk = loader.get_port_number("clk");
loader.put_value(clk, &one_val); // set clk to 1

xsi_restart
void xsi_restart(xsiHandle design_handle);
void Xsi::Loader:: restart();

This function resets the simulation to simulation time 0.
Logic Simulation 241
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=241

Appendix I: Using Xilinx Simulator Interface
xsi_run
void xsi_run(xsiHandle design_handle, XSI_UINT64 time_ticks);
void Xsi::Loader::run(XSI_INT64 step);

This function runs the simulation for the given amount of time specified in kernel precision
units. A kernel precision unit is the smallest unit of time precision specified among all HDL
source files of the design. For example, if a design has two source files, one of which that
specifies a precision of 1 ns and the other specifies a precision of 1 ps, the kernel precision
unit becomes 1 ps, as that time unit is the smaller of the two.

A Verilog source file may specify the time precision using the `timescale directive.

Example:

`timescale 1ns/1ps

In this example, the time unit after the / (1 ps) is the time precision. VHDL has no equivalent
of `timescale.

You may additionally adjust the kernel precision unit through the use of the xelab
command-line options --timescale, --override_timeprecision, and
--timeprecision_vhdl. See xelab, xvhdl, and xvlog xsim Command Options for
information on the use of these command-line options.

Note: xsi_run blocks until the specified simulation run time has elapsed. Your program and the
Vivado Simulator share a single thread of execution.

xsi_trace_all
void xsi_trace_all(xsiHandle design_handle);
void Xsi::Loader:: trace_all();

Call this function after xsi_open to turn on waveform tracing for all signals of the HDL
design. Running the simulation with waveform tracing on causes the Vivado Simulator to
produce a waveform database (WDB) file containing all events for every signal in the design.
The default name of the WDB file is xsim.wdb. To specify a different WDB file name, set the
wdbFileName field of the s_xsi_setup_info struct when calling xsi_open, as shown
in the example code.

Example code:

#include "xsi.h"
#include "xsi_loader.h"
...
Xsi::Loader loader("xsim.dir/mySnapshot/xsimk.so","librdi_simulator_kernel.so");
s_xsi_setup_info info;
memset(&info, 0, sizeof(info));
char wdbName[] = "test.wdb"; // make a buffer for holding the string "test.wdb"
info.wdbFileName = wdbName;
loader.open(&info);
loader.trace_all();
Logic Simulation 242
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=242

Appendix I: Using Xilinx Simulator Interface
After the simulation completes, you can open the WDB file in Vivado to examine the
waveforms of the signals. See Opening a Previously Saved Simulation Run for more
information on how to view WDB files in Vivado.

IMPORTANT: When compiling the HDL design, you must specify -debug all or -debug typical on
the xelab command line. The Vivado Simulator will not record the waveform data without the -debug
command line option.

Vivado Simulator VHDL Data Format
This section describes how to convert between VHDL values and the format of the memory
buffers to use with the XSI functions xsi_get_value and xsi_put_value.

IEEE std_logic Type
A single bit of VHDL std_logic and std_ulogic is represented in C/C++ as a single byte
(char or unsigned char). Table I-4 shows the values of std_logic/std_ulogic and their
C/C++ equivalents.

Example code:

// Put a '1' on signal "clk," where "clk" is defined as
// signal clk : std_logic;
const char one_val = 3; // C encoding for std_logic '1'...
int clk = loader.get_port_number("clk");
loader.put_value(clk, &one_val); // set clk to 1

Table I-4: std_logic/std_ulogic values and their C/C++ Equivalents
std_logic Value C/C++ Byte Value (Decimal)

‘U’ 0
‘X’ 1
‘0’ 2
‘1’ 3
‘Z’ 4
‘W’ 5
‘L’ 6
‘H’ 7
‘_’ 8
Logic Simulation 243
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=243

Appendix I: Using Xilinx Simulator Interface
VHDL bit Type
A single bit of VHDL bit type is represented in C/C++ as a single byte. Table I-5 shows the
values of bit and their C/C++ equivalents.

Example code:

// Put a '1' on signal "clk," where "clk" is defined as
// signal clk : bit;
const char one_val = 1; // C encoding for bit '1'...
int clk = loader.get_port_number("clk");
loader.put_value(clk, &one_val); // set clk to 1

VHDL character Type
A single VHDL character value is represented in C/C++ as a single byte. VHDL
character values are exactly identical to C/C++ char literals and are also equal to their
ASCII numeric values. For example, the VHDL character value ’m’ is equivalent to the C/C++
char literal ‘m’ or decimal value 109.

Example code:

// Put a 'T' on signal "myChar," where "myChar" is defined as
// signal myChar : character;
const char tVal = 'T';
int myChar = loader.get_port_number("myChar");
loader.put_value(myChar, &tVal);

VHDL integer Type
A single VHDL integer value is represented in C/C++ as an int.

Example code:

// Put 1234 (decimal) on signal "myInt," where "myInt" is defined as
// signal myInt : integer;
const int intVal = 1234;
int myInt = loader.get_port_number("myInt");
loader.put_value(myInt, &intVal);

VHDL real Type
A single VHDL real value is represented in C/C++ as a double.

Table I-5: Values of bit and their C/C++ equivalents
bit Value C/C++ Byte Value (Decimal)

‘0’ 0
‘1’ 1
Logic Simulation 244
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=244

Appendix I: Using Xilinx Simulator Interface
Example code:

// Put 3.14 on signal "myReal," where "myReal" is defined as
// signal myReal : real;
const double doubleVal = 3.14;
int myReal = loader.get_port_number("myReal");
loader.put_value(myReal, &doubleVal);

VHDL Array Types
A VHDL array is represented in C/C++ as an array of whatever C/C++ type represents the
element type of the VHDL array. Table I-6 shows the examples of VHDL arrays and their
C/C++ equivalent types.

VHDL arrays are organized in C/C++ with the left index of the VHDL array mapped to C/C++
array element 0 and the right index mapped to C/C++ element <array size> - 1.

Example code:

// For the following VHDL definitions

// signal slv : std_logic_vector(7 downto 0);
// signal bv : bit_vector(3 downto 0);
// signal s : string(1 to 11);
// type IntArray is array(natural range <>) of integer;
// signal iv : IntArray(0 to 3);

// do the following assignments
//
// slv <= "11001010";
// bv <= B"1000";
// s <= "Hello world";
// iv <= (33, 44, 55, 66);

Table I-6: VHDL Arrays and their C/C++ Equivalent Types
VHDL Array Type C/C++ Array Type

std_logic_vector (array of std_logic) char []

bit_vector (array of bit) char []

string (array of character) char []

array of integer int []

array of real double []

Table I-7: VHDL Array mapping to C/C++

C/C++ Array Index 0 1 2 … <array size>
- 1

VHDL array(left TO right)
Index left left + 1 left + 2 … right

VHDL array(left DOWNTO
right) Index left left – 1 left – 2 … right
Logic Simulation 245
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=245

Appendix I: Using Xilinx Simulator Interface
const unsigned char slvVal[] = {3, 3, 2, 2, 3, 2, 3, 2}; // 3 = '1', 2 = '0'
loader.put_value(slv, slvVal);
const unsigned char bvVal[] = {1, 0, 0, 0};
loader.put_value(bv, bvVal);
const char sVal[] = "Hello world"; // ends with extra '\0' that XSI ignores
loader.put_value(s, sVal);
const int ivVal[] = {33, 44, 55, 66};
loader.put_value(iv, ivVal);

Vivado Simulator Verilog Data Format
Verilog logic data is encoded in C/C++ using the following struct, defined in xsi.h:

typedef struct t_xsi_vlog_logicval {
 XSI_UINT32 aVal;
 XSI_UINT32 bVal;
} s_xsi_vlog_logicval, *p_xsi_vlog_logicval;

Each four-state bit of Verilog value occupies one bit position in aVal and the corresponding
bit position in bVal.

For two-state SystemVerilog bit values, an aVal bit holds the bit value, and the
corresponding bVal bit is unused. Xilinx recommends that you zero out bVal when
composing two-state values for xsi_put_value.

Table I-8: Verilog Value Mapping
Verilog Value aVal Bit Value bVal Bit Value

0 0 0
1 1 0
X 1 1
Z 0 1
Logic Simulation 246
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=246

Appendix I: Using Xilinx Simulator Interface
Verilog vectors are organized in C/C++ with the right index of the Verilog vector mapped to
aVal/bVal bit position 0 and the left index mapped to aVal/bVal bit position <vector
size> - 1

For example, Table I-10 shows the Verilog and C/C++ equivalents of the following Verilog
vector.

wire [7:4] w = 4'bXX01;

The C/C++ representation of a Verilog vector with more than 32 elements is an array of
s_xsi_vlog_logicval, for which the right-most 32 bits of the Verilog vector maps to
element 0 of the C/C++ array. The next 32 bits of the Verilog vector maps to element 1 of
the C/C++ array, and so forth. For example, Table I-11 shows the mapping of Verilog vector

wire [2:69] vec;

to the C/C++ array

s_xsi_vlog_logicval val[3];

Hence, vec[2] maps to val[3] bit position 3, and vec[69] maps to val[0] bit position
0.

Table I-9: Verilog Vectors

aVal/bVal Bit Position <vector size>
to 31

<vector
size> - 1

<vector
size> - 2 … 1 0

Index of
wire [left:right]
vec

(where left > right)

unused left left - 1 … right + 1 right

Index of
wire [left:right]
vec

(where left < right)

unused left left + 1 … right - 1 right

Table I-10: Verilog and C/C++ Equivalents of the Verilog Vector
Verilog Bit Index 7 6 5 4
Verilog Bit Value X X 0 1
C/C++ Bit Position 31 ... 4 3 2 1 0
aVal Bit Value unused ... unused 1 1 0 1
bVal Bit Value unused ... unused 1 1 0 0

Table I-11: Verilog Index Range
Verilog Index Range C/C++ Array Element

vec[38:69] val[0]
vec[6:37] val[1]
vec[2:5] val[3]
Logic Simulation 247
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=247

Appendix I: Using Xilinx Simulator Interface
A multi-dimensional Verilog array maps to the bits of a s_xsi_vlog_logicval or
s_xsi_vlog_logicval array as if the Verilog array were flattened in row-major order
before mapping to C/C++.

For example, the two-dimensional array

reg [7:0] mem[0:1];

is treated as if copied to a vector before mapping to C/C++:

reg [15:0] vec;
vec[7:0] = mem[1];
vec[8:15] = mem[0];
Logic Simulation 248
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=248

Appendix J

Additional Resources and Legal Notices

Xilinx Resources
For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers
See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs
Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

• From the Vivado IDE, select Help > Documentation and Tutorials.
• On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.
• At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

• In the Xilinx Documentation Navigator, click the Design Hubs View tab.
• On the Xilinx website, see the Design Hubs page.
Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.
Logic Simulation 249
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=249

Appendix J: Additional Resources and Legal Notices
References
1. Vivado Design Suite User Guide: System-Level Design Entry (UG895)
2. Vivado Design Suite User Guide: Designing with IP (UG896)
3. Vivado Design Suite User Guide: Using the Vivado IDE (UG893)
4. Vivado Design Suite User Guide: Using the Tcl Scripting Capabilities (UG894)
5. Writing Efficient Testbenches (XAPP199)
6. Vivado Design Suite 7 Series FPGA and Zynq-7000 SoC Libraries Guide (UG953)
7. Vivado Design Suite Tcl Command Reference Guide (UG835)
8. Vivado Design Suite User Guide: Power Analysis and Optimization (UG907)
9. Vivado Design Suite User Guide: Using Constraints (UG903)
10. Vivado Design Suite Tutorial: Simulation (UG937)
11. Vivado Design Suite User Guide: Design Flows Overview (UG892)
12. Vivado Design Suite Properties Reference Guide (UG912)
13. Vivado Design Suite User Guide: Synthesis (UG901)

Links to Additional Information on Third-Party
Simulators
14. For more information on:

° Questa Advanced Simulator/ModelSim simulators:
- www.mentor.com/products/fv/questa/
- www.mentor.com/products/fv/modelsim/

° Cadence IES simulators:
- www.cadence.com/products/fv/enterprise_simulator/pages/default.aspx

° Synopsys VCS simulators:
- www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/VCS.aspx

° Active-HDL Simulators:
- https://www.aldec.com/support/resources/documentation/articles/1579
Logic Simulation 250
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug937-vivado-design-suite-simulation-tutorial.pdf
https://www.aldec.com/en/support/resources/documentation/articles/1579
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp199.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug953-vivado-7series-libraries.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug835-vivado-tcl-commands.pdf
http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/VCS.aspx
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug912-vivado-properties.pdf
http://www.mentor.com/products/fv/questa/
http://www.mentor.com/products/fv/modelsim/
http://www.cadence.com/products/fv/enterprise_simulator/pages/default.aspx
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=250

Appendix J: Additional Resources and Legal Notices
° Riviera PRO Simulators:
- https://www.aldec.com/support/resources/documentation/articles/1525

Links to Language and Encryption Support
Standards
15. IEEE Standard VHDL Language Reference Manual (IEEE-STD-1076-1993)
16. IEEE Standard Verilog Hardware Description Language (IEEE-STD-1364-2001)
17. IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and Verification

Language (IEEE-STD-1800-2009)
18. Standard Delay Format Specification (SDF) (IEEE-STD-1497-2004)
19. Recommended Practice for Encryption and Management of Electronic Design Intellectual

Property (IP) (IEEE-STD-P1735).

Links to OS Support and Release Changes
The following guide provides information about the most recent release changes, operating
systems support and licensing requirements:

20. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)

Training Resources
Xilinx provides a variety of training courses and QuickTake videos to help you learn more
about the concepts presented in this document. Use these links to explore related training
resources:

1. Designing FPGAs Using the Vivado Design Suite 1 Training Course
2. Designing FPGAs Using the Vivado Design Suite 2 Training Course
3. Designing FPGAs Using the Vivado Design Suite 3 Training Course
4. Vivado Design Suite Quick Take Video: How to use the Zynq-7000 Verification IP to verify

and debug using simulation
5. Vivado Design Suite Quick Take Video: Logic Simulation
6. Vivado Design Suite QuickTake Video Tutorials
Logic Simulation 251
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-3.html
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=soc/how-to-use-zynq-7000-verification-ip-to-verify-debug.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/logic-simulation.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/logic-simulation.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.aldec.com/en/support/resources/documentation/articles/1525
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;t=vivado+release+notes
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=soc/how-to-use-the-zynq-7000-verification-ip-verify-debug-simulation.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=soc/how-to-use-the-zynq-7000-verification-ip-verify-debug-simulation.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=soc/how-to-use-zynq-7000-verification-ip-to-verify-debug.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-1.html
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=392561
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1406532
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5354441
http://ieeexplore.ieee.org/servlet/opac?punumber=9647
http://standards.ieee.org/develop/project/1735.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-3.html
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=251

Appendix J: Additional Resources and Legal Notices
Please Read: Important Legal Notices
The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx’s limited warranty, please refer to
Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx’s Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.
AUTOMOTIVE APPLICATIONS DISCLAIMER
AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA” IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION”) UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN”). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.
© Copyright 2012-2018 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. PCI, PCIe and PCI Express are trademarks
of PCI-SIG and used under license. All other trademarks are the property of their respective owners.
Logic Simulation 252
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Send Feedback

https://www.xilinx.com
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=252

	Vivado Design Suite User Guide: Logic Simulation
	Revision History
	Table of Contents
	Ch. 1: Logic Simulation Overview
	Introduction
	Supported Simulators
	Simulation Flow
	Behavioral Simulation at the Register Transfer Level
	Post-Synthesis Simulation
	Post-Implementation Simulation

	Language and Encryption Support

	Ch. 2: Preparing for Simulation
	Overview
	Using Test Benches and Stimulus Files
	Pointing to the Simulator Install Location
	Compiling Simulation Libraries
	Compiling Simulation Libraries Using Vivado IDE
	Compiling Simulation Libraries Using Tcl Commands
	Changing compile_simlib Defaults
	Compiling Patched IP Repository in a New Output Directory using MYVIVADO
	Compiling Patched IP Repository in an Existing Output Directory using MYVIVADO

	Using Xilinx Simulation Libraries
	UNISIM Library
	Encrypted Component Files
	VHDL UNISIM Library
	Verilog UNISIM Library

	UNIMACRO Library
	VHDL UNIMACRO Library
	Verilog UNIMACRO Library

	SIMPRIM Library
	SECUREIP Simulation Library
	VHDL SECUREIP Library
	Verilog SECUREIP Library

	UNIFAST Library
	MMCME2
	DSP48E1
	GTHE2_CHANNEL/GTHE2_COMMON

	Using Verilog UNIFAST Library
	Method 1: Using the complete Verilog UNIFAST library (Recommended)
	Method 2: Using specific UNIFAST modules

	Using VHDL UNIFAST Library

	Using Simulation Settings
	Understanding the Simulator Language Option
	Setting the Simulation Runtime Resolution

	Adding or Creating Simulation Source Files
	Working with Simulation Sets

	Generating a Netlist
	Generating a Functional Netlist
	Generating a Timing Netlist

	Ch. 3: Simulating with Third-Party Simulators
	Introduction
	Running Simulation Using Third Party Simulators with Vivado IDE
	Running Timing Simulation Using Third-Party Tools
	Post-Synthesis Timing Simulation
	Post-Implementation Timing Simulations
	Annotating the SDF File for Timing Simulation
	Running Standalone Timing Simulation

	Dumping SAIF for Power Analysis
	Dumping SAIF in Questa Advanced Simulator/ModelSim
	Example DO File

	Dumping SAIF in IES
	Dumping SAIF in VCS

	Dumping VCD for Power Analysis
	Dumping VCD in Questa Advanced Simulator/ModelSim
	Dumping VCD in IES
	Dumping VCD in VCS

	Simulating IP
	Using a Custom DO File During an Integrated Simulation Run
	In Questa Advanced Simulator
	In Modelsim
	In IES
	In VCS
	In Xcelium
	Simulation Step Control Constructs for ModelSim and Questa

	Running Third-Party Simulators in Batch Mode

	Ch. 4: Simulating with Vivado Simulator
	Introduction
	Running the Vivado Simulator
	Main Toolbar
	Run Menu
	Simulation Toolbar
	Simulation Toolbar Button Descriptions

	Sources Window
	Scopes Window
	Filtering Scopes
	Additional Scopes and Sources Options

	Objects Window
	Objects Context Menu

	Wave Window
	Wave Objects
	Context Menu in Waveform Window
	Saving a Waveform Configuration

	Creating and Using Multiple Waveform Configurations

	Running Functional and Timing Simulation
	Running Functional Simulation
	Post-Synthesis Functional Simulation
	Post-Implementation Functional Simulations

	Running Timing Simulation
	Post-Synthesis Timing Simulation
	Post-Implementation Timing Simulations
	Annotating the SDF File for Timing Simulation

	Saving Simulation Results
	Distinguishing Between Multiple Simulation Runs
	Closing a Simulation
	Adding a Simulation Start-up Script File
	Viewing Simulation Messages
	Managing Message Output

	Using the launch_simulation Command
	Examples

	Re-running the Simulation After Design Changes (relaunch)
	Using the Saved Simulator User Interface Settings
	Default Settings

	Ch. 5: Analyzing Simulation Waveforms with Vivado Simulator
	Introduction
	Using Wave Configurations and Windows
	Creating a New Wave Configuration
	Opening a WCFG File
	Saving a Wave Configuration

	Opening a Previously Saved Simulation Run
	Understanding HDL Objects in Waveform Configurations
	About Radixes
	Changing the Default Radix
	Changing the Radix on Individual Objects

	Customizing the Waveform
	Using Analog Waveforms
	Using Radixes and Analog Waveforms
	Displaying Waveforms as Analog
	Customizing the Appearance of Analog Waveforms
	Analog Settings Dialog Box Option Descriptions

	Waveform Object Naming Styles
	Renaming Objects
	Changing the Object Name Display

	Reversing the Bus Bit Order
	Changing the Format of SystemVerilog Enumerations

	Controlling the Waveform Display
	Using the Column Resizing Handles
	Scrolling with the Mouse Wheel
	Using the Zoom Feature Buttons
	Zooming with the Mouse Wheel
	Y-Axis Zoom Gestures for Analog Waveforms
	Using the Waveform Settings Dialog Box
	Changing the Display of the Time Scale

	Organizing Waveforms
	Grouping Signals and Objects
	Using Dividers
	Defining Virtual Buses

	Analyzing Waveforms
	Using Cursors
	Placing Main and Secondary Cursors
	Moving Cursors
	Finding the Next or Previous Transition on a Waveform

	Using Markers
	Using the Floating Ruler
	Searching a Value in Waveform Configuration

	Ch. 6: Debugging a Design with Vivado Simulator
	Introduction
	Debugging at the Source Level
	Stepping Through a Simulation
	Using Breakpoints
	To set a breakpoint in the workspace (GUI):
	To set a breakpoint in the Tcl Console:
	To debug a design using breakpoints:

	Adding Conditions
	-notrace Option

	Pausing a Simulation
	Tracing the Execution of a Simulation

	Forcing Objects to Specific Values
	Using Force Commands
	Force Constant
	Force Clock
	Remove Force

	Using Force in Batch Mode
	Example 1: Adding Force
	Verilog Code (tmp.v)
	Command Examples
	Tcl Commands

	Example 2: Scripted Use of add_force with remove_forces
	Verilog Code (top.v)
	Command Example

	Power Analysis Using Vivado Simulator
	Generating SAIF Dumping
	Example SAIF Tcl Commands
	Dumping SAIF using a Tcl Simulation Batch File

	Using the report_drivers Tcl Command
	Using the Value Change Dump Feature
	Using the log_wave Tcl Command
	Example log_wave TCL Command Usage

	Cross Probing Signals in the Object, Wave, and Text Editor Windows
	Tool Specific init.tcl
	Subprogram Call-Stack Support
	Call Stacks Window
	Stack Frames Window
	Locals Tab in Object Window

	Ch. 7: Simulating in Batch or Scripted Mode in Vivado Simulator
	Introduction
	Exporting Simulation Files and Scripts
	Tcl Command Example for Export Simulation
	Exporting the Top level design
	Exporting IP from the Xilinx Catalog and Block Designs
	Exporting a Manage IP Project

	Running the Vivado Simulator in Batch Mode
	Parsing Design Files, xvhdl and xvlog
	xvhdl
	xvhdl Syntax
	xvhdl Examples
	xvlog
	xvlog Syntax
	xvlog Examples

	Elaborating and Generating a Design Snapshot, xelab
	xelab
	xelab Command Syntax Options

	xelab Examples
	Verilog Search Order
	Verilog Instantiation Unit
	VHDL Instantiation Unit
	`uselib Verilog Directive
	`uselib Syntax
	`uselib Lib Semantics
	`uselib Examples

	xelab, xvhdl, and xvlog xsim Command Options

	Simulating the Design Snapshot, xsim
	xsim Executable Syntax
	xsim Executable Options

	Example of Running Vivado Simulator in Standalone Mode
	Step1: Analyzing the Design File
	Step2: Elaborating and Creating a Snapshot
	Step 3: Running Simulation

	Project File (.prj) Syntax
	Predefined Macros
	Library Mapping File (xsim.ini)
	Running Simulation Modes
	Behavioral Simulation
	Running Post-Synthesis and Post-Implementation Simulations

	Using Tcl Commands and Scripts
	Using a -tclbatch File
	Launching Vivado Simulator from the Tcl Console

	export_simulation
	Usage:
	Categories
	Description:
	Supported simulators
	Arguments

	export_ip_user_files
	Syntax:
	Usage
	Description
	Arguments
	Examples:

	Appx. A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options
	Introduction
	Compilation Options
	Vivado Simulator Compilation Options
	Questa Advanced Simulator Compilation Options
	ModelSim Simulator Compilation Options
	IES Simulator Compilation Options
	VCS Simulator Compilation Options
	Xcelium Simulator Compilation Options

	Elaboration Options
	Vivado Simulator Elaboration Options
	Questa Advanced Simulator Elaboration Options
	ModelSim Simulator Elaboration Options
	IES Simulator Elaboration Options
	VCS Simulator Elaboration Options
	Xcelium Simulator Elaboration Options

	Simulation Options
	Vivado Simulator Simulation Options
	Questa Advanced Simulator Simulation Options
	ModelSim Simulator Simulation Options
	IES Simulator Simulation Options
	VCS Simulator Simulation Options
	Xcelium Simulator Simulation Options

	Netlist Options
	Vivado Simulator Netlist Options

	Advanced Simulation Options

	Appx. B: SystemVerilog Support in Vivado Simulator
	Introduction
	Targeting SystemVerilog for a Specific File
	Running SystemVerilog in Standalone or prj Mode
	Standalone Mode
	prj Mode

	Testbench Feature

	Appx. C: VHDL 2008 Support in Vivado Simulator
	Introduction
	Compiling and Simulating
	Fixed and Floating Point Packages

	Supported Features

	Appx. D: Direct Programming Interface (DPI) in Vivado Simulator
	Introduction
	Compiling C Code
	xsc Compiler
	Usage
	Switches
	Examples
	Example:
	Example to pass multiple paths:

	Binding Compiled C Code to SystemVerilog Using xelab
	Data Types Allowed on the Boundary of C and SystemVerilog
	Supported Data Types

	Mapping for User-Defined Types
	Enum
	Examples
	SystemVerilog types:
	C types:

	Packed Struct/Union
	Examples

	Unpacked Struct
	Examples

	Support for svdpi.h functions
	Open arrays in DPI
	Declaration
	Examples
	svdpi.h Support
	Usage Example
	SystemVerilog code:

	Examples
	Import example using -sv_lib, -sv_liblist, and -sv_root
	Code
	function1.c
	function2.c
	file.sv

	Usage
	Single-step flow (simplest flow)
	Two-step flow
	Two-step flow (same as above with few extra options)

	Function with Output
	Code
	file.sv
	function.c
	run.ksh

	Simple Import-Export Flow (illustrates xelab -dpiheader flow)
	file.c
	test.sv
	run.ksh

	DPI Examples Shipped with the Vivado Design Suite

	Appx. E: Handling Special Cases
	Using Global Reset and 3-State
	Global Set and Reset Net
	Global 3-State Net
	Using Global 3-State and Global Set and Reset Signals
	Global Set and Reset and Global 3-State Signals in Verilog
	Global Set and Reset and Global 3-State Signals in VHDL

	Delta Cycles and Race Conditions
	VHDL Coding Example With Unexpected Results

	Using the ASYNC_REG Constraint
	Disabling X Propagation for Synchronous Elements

	Simulating Configuration Interfaces
	JTAG Simulation
	SelectMAP Simulation
	System Level Description
	Debugging with the Model
	Feature Support

	Disabling Block RAM Collision Checks for Simulation
	Dumping the Switching Activity Interchange Format File for Power Analysis
	Skipping Compilation or Simulation
	Skipping Compilation
	Skipping Simulation

	Appx. F: Value Rules in Vivado Simulator Tcl Commands
	Introduction
	String Value Interpretation
	Vivado Design Suite Simulation Logic

	Appx. G: Vivado Simulator Mixed Language Support and Language Exceptions
	Introduction
	Using Mixed Language Simulation
	Restrictions on Mixed Language in Simulation
	Key Steps in a Mixed Language Simulation
	Mixed Language Binding and Searching
	Instantiating Mixed Language Components
	Instantiating a Verilog Module in a VHDL Design Unit
	Instantiating a VHDL Component in a Verilog/SV Design Unit

	Port Mapping and Supported Port Types
	Generics (Parameters) Mapping
	VHDL and Verilog Values Mapping

	VHDL Language Support Exceptions
	Verilog Language Support Exceptions

	Appx. H: Vivado Simulator Quick Reference Guide
	Introduction

	Appx. I: Using Xilinx Simulator Interface
	Introduction
	Preparing the XSI Functions for Dynamic Linking
	Writing the Test Bench Code
	Compiling Your C/C++ Program
	Preparing the Design Shared Library
	XSI Function Reference
	xsi_close
	xsi_get_error_info
	xsi_get_port_number
	xsi_get_status
	xsi_get_value
	xsi_open
	Example

	xsi_put_value
	xsi_restart
	xsi_run
	xsi_trace_all

	Vivado Simulator VHDL Data Format
	IEEE std_logic Type
	VHDL bit Type
	VHDL character Type
	VHDL integer Type
	VHDL real Type
	VHDL Array Types

	Vivado Simulator Verilog Data Format

	Appx. J: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Links to Additional Information on Third-Party Simulators
	Links to Language and Encryption Support Standards
	Links to OS Support and Release Changes
	Training Resources
	Please Read: Important Legal Notices

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

