Vivado Design Suite
User Guide

Logic Simulation

UG900 (v2018.2) June 6, 2018

& XILINX

& XILINX.

Revision History

The following table shows the revision history for this document.

Section

Revision Summary

06/06/2018 Version 2018.2

Library Mapping File (xsim.ini)

Added a note supporting two init files (xsim.ini and
xsim_legacy.ini) from current release.

export_simulation

table.

» Updated information in export_simulation Options

« Added Riviera Pro and Active HDL for supported simulators
» Updated the argument for -1ib_map_path

04/04/2018 Version 2018.1

General Updates

» Updated File and Tools menu commands
» Added Cadence Xcelium Simulator support Information

Subprogram Call-Stack Support

Added Subprogram Call-Stack support feature

Table D-3: Data Types Allowed on the
C-SystemVerilog Boundary

Added SV open array support information for DPI

Table 7-2: xelab, xvhd, and xvlog Command
Options

Added Standalone support for Vivado Simulator in the -a
command description as a note.

Logic Simulation
UG900 (v2018.2) June 6, 2018

www.Xxilinx.com

| Send Feedback I

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=2

& XILINX.

Table of Contents

ReVISION HiStOry oottt i it it ittt ettt e tenaeennetanesanssannsannnes 2

Chapter 1: Logic Simulation Overview

Y e o 11 o1 4 oY o 7
Supported SIMUlatorsottt it it it it it et e et ettt e 7
SIMUIAtION FIOW . .. oot i i i ittt ittt ittt et asasassaaensasanannnsans 8
Language and Encryption SUPPOrtottt iiiiii ittt retnarantaossonasannanss 11

Chapter 2: Preparing for Simulation

L0 T T 12
Using Test Benchesand Stimulus Files. i ittt it iiiettieennannnns 12
Pointing to the Simulator Install Locationttt i e iieinenannnn 13
Compiling Simulation Libraries oottt it it ittt teateetatantannnns 15
Using Xilinx Simulation Libraries. i i i it ittt et iietnarnaeanas 19
Using Simulation Settingsottt i i i ettt eiernaranrnennenananns 29
Adding or Creating Simulation Source Files.o ittt ittt iiiiiiennnnnns 34
Generatinga Netlist. ittt il it ittt ttnetnnaesnnssnansannnes 36

Chapter 3: Simulating with Third-Party Simulators

Y o o 11 o1 4o Y R 39
Running Simulation Using Third Party Simulators with VivadoIDE. 40
Dumping SAIF for Power Analysis. ... c.vviiiiiiiiiintietnereenasessentasssssassnsanss 43
Dumping VCD for Power Analysis. cciiiiii ittt ittt ieeiaenarannnennenananns 44
L] 113 UL T =2 | 46
Using a Custom DO File During an Integrated SimulationRun.................... .. 00t 46
Running Third-Party SimulatorsinBatchModec ittt iiieiiinnnnns 47

Chapter 4: Simulating with Vivado Simulator

Y o o 11 o1 4o Y o 5 49
Runningthe Vivado Simulator ittt ittt tietierenrnenaenananns 49
Running Functional and Timing Simulation.......... .. o it ittt ittt eieinnnnnss 67
Saving Simulation Results ittt it i it it i ittt e ettt 71
Distinguishing Between Multiple SimulationRuns it iiiinennnnnn. 71

Logic Simulation N Send Feedback 3
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=3

& XILINX.

Closinga Simulation.ttt i i ettt teereesaeensansansasaneannnns 71
Adding a Simulation Start-up Script File. oo it i i i i i ittt e 72
Viewing Simulation Messages. iii ittt iieeiiettenerenerenassanesasnsannsananss 73
Using the launch_simulationCommand ittt iiiiiennennnnnnn 75
Re-running the Simulation After Design Changes (relaunch) i, 76
Using the Saved Simulator User Interface Settings.ttt iiennennnnnn. 77

Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

Y o o 11 o1 4o Y o R 79
Using Wave Configurationsand Windows.ci it iiiiieiiernernennenannnns 79
Opening a Previously Saved Simulation Runttt ittt iietienenenanns 81
Understanding HDL Objects in Waveform Configurationscciuann.. 82
Customizingthe Waveform. ittt i i ittt terearnnraennnannans 85
Controllingthe Waveform Displayo iii ittt ittt it e tieetinaerenerenanenanns 92
Organizing Waveformsiiiiiiiiiiiiit it tentenreerneeneensansansasaneannans 96
Analyzing Waveformsoiiiiiiiiiiii ittt tee e eereneensansaneaseneaneannas 98

Chapter 6: Debugging a Design with Vivado Simulator

3T 0T LT 4 o T 103
Debugging atthe Source Levelcciiiiiiiiiiiiiit ittt eenereneeenneennnens 103
Forcing Objects to SpecificValuesciiiiiiiiiiiiiiiiiiiintenrnnrnnrenennans 108
Power Analysis Using Vivado Simulator. ittt it ieieennenns 116
Using the report_drivers TclCommandoiiiiiiiiiiiineiinerennrenneennnnns 118
Using the Value Change Dump Featureciiiiiiiiiiiineinrentenranrsnsosennans 119
Usingthelog_wave TclCommandc. ittt iiiiieinirneenrnnrnnrnnnnnans 120
Cross Probing Signals in the Object, Wave, and Text Editor Windows 121

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

4T oY LT 4 o T 126
Exporting Simulation Filesand Scripts cii ittt ittt i i it i it e e 126
Running the Vivado SimulatorinBatchMode. ittt iieiiennens 132
Elaborating and Generating a Design Snapshot,xelab i, 135
Simulating the Design Snapshot, Xsimciiiiiiiiiiiiiiiiiiiinnrinrnernennennns 146
Example of Running Vivado Simulator in StandaloneModeoot.. 148
Project File (Pr) SYNtaXveiitiin ittt it e ietententeareeeneeneenseasenensnns 149
Predefined Macros. . .. oot iiiii ittt ittt ittt it e ietentantaatesensensansassasennans 150
Library Mapping File (Xsim.ini)cc ittt i i i e it ittt e seeraennnans 150
Running Simulation Modes ittt ittt ittt tiietenaeeenesenesennsannnnns 151
Using Tcl Commands and SCriptsoviiiiiiiiiiniinineieernresrenranrssssssnnans 154
eXport_SimuUlation i i i i ittt i re i et e e e e, 155

Logic Simulation N Send Feedback 4
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=4

& XILINX.

export_ip_user_files i i i i i it r e e e et 158

Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced

Options

3T oY LT 4 o T 160
Compilation OptioNs ... oo iiiiiiiiii ittt ittt iententantsseneansonsansossnsanens 160
Elaboration Options.ttt ittt it et et ieeetenasenassnnesannssansannnans 163
SIMUIatioN OPtIoNS ittt ittt it it titettneereneeenseennsenaseanssannnanns 165
Netlist OptioNnsottt ittt ittt ittt tentantansossosensanssssosansans 168
Advanced Simulation Options.ttt it i i ittt e et 168

Appendix B: SystemVerilog Support in Vivado Simulator

Lo Yo 11 ot 4o o XS 170
TestbenCh FEatUre v ittt ittt i et ittt eeeeerennnaeeseennenesenennnnnns 178

Appendix C: VHDL 2008 Support in Vivado Simulator

3T 0T LT 4 o T 185
Compilingand Simulatingttt i it iiiitteneentantaseneannns 185
Supported FEatures oottt i iii ittt it itietteaetaatsaassanasenassanssannsanns 187

Appendix D: Direct Programming Interface (DPI) in Vivado Simulator

Y o o 11 o 4o Y o 5P 190
Compiling CCode.iiiiii ittt it e ittt e teaeeasansanenennsaneansanenennnns 190
Yo 0o T4 1T 11 =T 191
Binding Compiled C Code to SystemVerilogUsingxelab. oo, 193
Data Types Allowed on the Boundary of C and SystemVerilog 193
Mapping for User-Defined Typesoviiiiiiiiiinieninntnereressentanrsassssnsans 194
Supportforsvdpi.hfunctions i i i it it i ie it e 196
DPI Examples Shipped with the Vivado DesignSuitettt iiiiiiiinnnnnn 205

Appendix E: Handling Special Cases

Using Global Reset and 3-State.ttt i ettt teenranransnnannnns 206
Delta Cyclesand Race Conditions.coiiiiiiiiiininninerierenrenrenrsosasennans 208
Usingthe ASYNC_REG Constraint..........cciitiiiiinerennrenneennesansssnnsannnans 209
Simulating Configuration Interfaces. ..ottt ittt etnenerannnannns 211
Disabling Block RAM Collision Checks for Simulation................ .. i ittt 215
Dumping the Switching Activity Interchange Format File for Power Analysis 216
Skipping CompilationorSimulation. i ittt ittt et i 216

Logic Simulation N Send Feedback 5
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=5

& XILINX.

Appendix F: Value Rules in Vivado Simulator Tcl Commands

Y8 oY 1F T 4 o o 217
String Value Interpretationottt ittt ittt nennennenanensnennennns 217
Vivado Design Suite Simulation Logic.o ittt it ittt ittt it tetaeennaeranananns 218

Appendix G: Vivado Simulator Mixed Language Support and Language

Exceptions

Y e o 11 o1 4o T o 5P 219
Using Mixed Language Simulation ittt iiieeiieerennsennnans 219
VHDL Language SUpport EXCeptions.ot iiiiiiiii it iiiieeetteenneneseennnanannas 225
Verilog Language SUpPpOrt EXCeptionsciitiiiiniiiineenennennsansessnonnsnnss 227

Appendix H: Vivado Simulator Quick Reference Guide
Y oY 1¥ T 4 o A 230

Appendix I: Using Xilinx Simulator Interface

Y e o 11 o1 4o T o P 234
Preparing the XSI Functions for DynamicLinkingiiiiiiiiiinrnrnennnnns 234
Writingthe TestBench Code.ttt i et ittt ernrnarannnennannns 236
Compiling YOUr C/C++ Program. . .o vv it ittee e e e teeneeeeeeaeasnseensesesenennans 237
Preparingthe Design Shared Libraryc. it iiiiiiiiiiiiiiinerinernnnsennnans 237
XSIFuNction Referenceovviiiiiiiiii it ittt tetneerennnsasosnsssssssasensnsans 238
Vivado Simulator VHDLDataFormatciitiiiiiiiii ittt inniinennransnennennns 243
Vivado Simulator VerilogDataFormat.ttt ittt it tiiatnnnernnennnns 246

Appendix J: Additional Resources and Legal Notices

XiliNX RESOUINCES . . i vt i ittt ittt ittt tenenesneansansonssssnssnssnssnsnssnssnss 249
LY o] [T 4o T N 0 =T =Y 249
Documentation Navigatorand Design Hubsttt iininninernnennans 249
RE OIENCES .« ittt ittt ittt tiittntetatasesassssnsnsasasosssssasessnsasasasnnns 250
Links to Additional Information on Third-Party Simulators 250
Links to Language and Encryption SupportStandardsottt it 251
Links to OS Supportand Release Changescciiiiiiiiiiitiinetnnnrennnennnnns 251
TrainiNg RESOUICES. . oottt ittt iinetinntonnessosssassssssosasossssonsssanssnnsons 251
Please Read: ImportantLegal Noticesciitiiiiiiiiiniintnrennnnrsnsosennans 252

Logic Simulation N Send Feedback 6
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=6

& XILINX

Chapter 1

Logic Simulation Overview

Introduction

Simulation is a process of emulating real design behavior in a software environment.
Simulation helps verify the functionality of a design by injecting stimulus and observing the
design outputs.

This chapter provides an overview of the simulation process, and the simulation options in
the Vivado® Design Suite.

The process of simulation includes:

Creating test benches, setting up libraries and specifying the simulation settings for
Simulation

Generating a Netlist (if performing post-synthesis or post-implementation simulation)

Running a Simulation using Vivado Simulator or Third Party Simulators. See Supported
Simulators for more information on supported simulators.

Supported Simulators

The Vivado Design Suite supports the following simulators:

Logic Simulation

o l Send Feedback I
UG900 (v2018.2) June 6, 2018 www.xilinx.com

Vivado simulator: Tightly integrated into the Vivado IDE, where each simulation launch
appears as a framework of windows within the IDE.

Mentor Graphics Questa Advanced Simulator: Integrated in the Vivado IDE.

Mentor Graphics ModelSim Simulator: Integrated in the Vivado IDE

Cadence Incisive Enterprise Simulator (IES): Integrated in the Vivado IDE

Synopsys Verilog Compiler Simulator (VCS) and VCS MX: Integrated in the Vivado IDE
Aldec Rivera-PRO Simulator: Supported in the Vivado IDE

Aldec Active-HDL: Supported in the Vivado IDE

Cadence Xcelium Parallel Simulator: Integrated in the Vivado IDE

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=7

2: XI LI NX® Chapter 1: Logic Simulation Overview

See the Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)
[Ref 20] for the supported versions of third-party simulators.

For more information about the Vivado IDE and the Vivado Design Suite flow, see:

« Vivado Design Suite User Guide: Using the Vivado IDE (UG893) [Ref 3]
« Vivado Design Suite User Guide: Design Flows Overview (UG892) [Ref 11]

Simulation Flow

Simulation can be applied at several points in the design flow. It is one of the first steps
after design entry and one of the last steps after implementation as part of verifying the end
functionality and performance of the design.

Simulation is an iterative process and is typically repeated until both the design
functionality and timing requirements are satisfied.

Logic Simulation N Send Feedback 8
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=8

2: XI LI NX® Chapter 1: Logic Simulation Overview

Figure 1-1 illustrates the simulation flow for a typical design:

RTL Design

'

Behavioral Simulation
(Verify Design Behaves as Intended)

'

Synthesize

'

Post Synthesis Simulation

¢

Implement (Place and Route)

'

Post Implementation Simulation
(Close to Emulating HW)

¢

Debug the Design

Figure 1-1: Simulation Flow

Logic Simulation N Send Feedback 9
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=9

2: XI LI NX® Chapter 1: Logic Simulation Overview

Behavioral Simulation at the Register Transfer Level
Register Transfer Level (RTL) behavioral simulation can include:

* RTL Code

» Instantiated UNISIM library components

« Instantiated UNIMACRO components

« UNISIM gate-level model (for the Vivado logic analyzer)
» SECUREIP Library

RTL-level simulation lets you simulate and verify your design prior to any translation made
by synthesis or implementation tools. You can verify your designs as a module or an entity,
a block, a device, or a system.

RTL simulation is typically performed to verify code syntax, and to confirm that the code is
functioning as intended. In this step, the design is primarily described in RTL and
consequently, no timing information is required.

RTL simulation is not architecture-specific unless the design contains an instantiated device
library component. To support instantiation, Xilinx® provides the UNISIM library.

When you verify your design at the behavioral RTL you can fix design issues earlier and save
design cycles.

Keeping the initial design creation limited to behavioral code allows for:

* More readable code
« Faster and simpler simulation
« Code portability (the ability to migrate to different device families)

» Code reuse (the ability to use the same code in future designs)

Post-Synthesis Simulation

You can simulate a synthesized netlist to verify that the synthesized design meets the
functional requirements and behaves as expected. Although it is not typical, you can
perform timing simulation with estimated timing numbers at this simulation point.

The functional simulation netlist is a hierarchical, folded netlist expanded to the primitive
module and entity level; the lowest level of hierarchy consists of primitives and macro
primitives.

These primitives are contained in the UNISIMS_VER library for Verilog, and the UNISIM
library for VHDL. See UNISIM Library, page 21 for more information.

Logic Simulation N Send Feedback 10
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=10

2: XI LI NX® Chapter 1: Logic Simulation Overview

Post-Implementation Simulation

You can perform functional or timing simulation after implementation. Timing simulation is
the closest emulation to actually downloading a design to a device. It allows you to ensure
that the implemented design meets functional and timing requirements and has the
expected behavior in the device.

f IMPORTANT: Performing a thorough timing simulation ensures that the completed design is free of
defects that could otherwise be missed, such as:

« Post-synthesis and post-implementation functionality changes that are caused by:

Synthesis properties or constraints that create mismatches (such as full case and
parallel case)

UNISIM properties applied in the Xilinx Design Constraints (XDC) file
The interpretation of language during simulation by different simulators
e Dual port RAM collisions
e Missing, or improperly applied timing constraints
e Operation of asynchronous paths
« Functional issues due to optimization techniques

Language and Encryption Support

The Vivado simulator supports:

« VHDL, see IEEE Standard VHDL Language Reference Manual (IEEE-STD-1076-1993)
[Ref 15]

» Verilog, see IEEE Standard Verilog Hardware Description Language
(IEEE-STD-1364-2001) [Ref 16]

« SystemVerilog Synthesizable subset. See IEEE Standard Verilog Hardware Description
Language (IEEE-STD-1800-2009) [Ref 17]

« |EEE P1735 encryption, see Recommended Practice for Encryption and Management of
Electronic Design Intellectual Property (IP) (IEEE-STD-P1735) [Ref 19]

Logic Simulation N Send Feedback 11
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=11

& XILINX

Chapter 2

Preparing for Simulation

Overview

This chapter describes the components that you need when you simulate a Xilinx® device in
the Vivado® Integrated Design Environment (IDE).

Setup the following before performing the simulation:

» Create a test bench that reflects the simulation actions you want to run.

« Setup an install location in Vivado IDE (if not using the Vivado simulator).
« Compile your libraries (if not using the Vivado simulator).

« Select and declare the libraries you need to use.

« Specify the simulation settings such as target simulator, the simulation top module
name, top module (design under test), display the simulation set, and define the
compilation, elaboration, simulation, netlist, and advanced options.

« Generate a Netlist (if performing post-synthesis or post-implementation simulation).

Using Test Benches and Stimulus Files

A test bench is Hardware Description Language (HDL) code written for the simulator that:

« Instantiates and initializes the design.
* Generates and applies stimulus to the design.

« Monitors the design output result and checks for functional correctness (optional).
You can also set up the test bench to display the simulation output to a file, a waveform, or

to a display screen. A test bench can be simple in structure and can sequentially apply
stimulus to specific inputs.

Logic Simulation N Send Feedback 12
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=12

2: XI LI NX® Chapter 2: Preparing for Simulation

A test bench can also be complex, and can include:

e Subroutine calls
o Stimulus that is read in from external files
« Conditional stimulus

« Other more complex structures
The advantages of a test bench over interactive simulation are that it:

« Allows repeatable simulation throughout the design process

» Provides documentation of the test conditions
The following bullets are recommendations for creating an effective test bench.

« Always specify the * timescale in Verilog test bench files. For example:
‘“tinescal e 1ns/ 1ps

« Initialize all inputs to the design within the test bench at simulation time zero to
properly begin simulation with known values.

« Apply stimulus data after 100 ns to account for the default Global Set/Reset (GSR) pulse
used in functional and timing-based simulation.

« Begin the clock source before the Global Set/Reset (GSR) is released. For more
information, see Using Global Reset and 3-State, page 206.

For more information about test benches, see Writing Efficient TestBenches (XAPP199)
[Ref 5].

TIP: When you create a test bench, remember that the GSR pulse occurs automatically in the
O post-synthesis and post-implementation timing simulation. This holds all registers in reset for the first
100 ns of the simulation.

Pointing to the Simulator Install Location

To define the installation path:

1. Select Tools > Settings > Tool Settings > 3rd Party Simulators.

2. Inthe 3rd Party Simulators tab of the Settings dialog box, select the simulator under the
Install Paths as shown in Figure 2-1, and browse to the installation path.

3. Select the appropriate simulator under Default Compiled Library Paths and browse to
the relevant compiled library paths. You can set the library paths at a later point of time.

Logic Simulation N Send Feedback 13
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=13

& XILINX.

Chapter 2: Preparing for Simulation

See Compiling Simulation Libraries for more information on how to compile libraries for
your simulator.

Note: Installing Vivado Simulator is part of Vivado IDE Installation.Hence, you do not need to setup
an install location for Vivado simulator.

Settings

Project Settings
General
Simulation
Elaboration
Synthesis
Implementation
Bitstream

P

Tool Settings
Project

IP Defaults
Source File
Display
WebTalk
Help

Text Editor

W

Colors

L

Selection Rules
Shortcuts

Strategies

b

‘Window Behavior

L

3rd Party Simulators

3rd Party Simulators
Specify install paths and default compiled library paths.

Install Paths

MaodelSim:

QuestaSim:

IES:

Xeelium:

VCS:

Riviera:

ActiveHDL:

Default Compiled Library Paths

ModelSim:

Questa:

IES!

Keelium:

VCs:

Riviera:

ActiveHDL:

CIETEIEIEIEED BRI BT E]

€ MNote: Default compiled library path will be applied only at new project

creation.

| Cancel | | Apply ‘ | Restore. .

Logic Simulation

Figure 2-1:

UG900 (v2018.2) June 6, 2018

www.Xxilinx.com

Vivado Design Suite 3rd Party Simulators Install Path

| Send Feedback I

14

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=14

2: XI LI NX® Chapter 2: Preparing for Simulation

Compiling Simulation Libraries

f IMPORTANT: With Vivado simulator, there is no need to compile the simulation libraries. However, you
must compile the libraries when using a third-party simulator.

The Vivado Design Suite provides simulation models as a set of files and libraries. Your
simulation tool must compile these files prior to design simulation. The simulation libraries
contain the device and IP behavioral and timing models. The compiled libraries can be used
by multiple design projects.

During the compilation process, Vivado creates a default initialization file that the simulator
uses to reference the compiled libraries. The compile_simlib command creates the file
in the library output directory specified during library compilation. The default initialization
file contains control variables that specify reference library paths, optimization, compiler,

and simulator settings. If the correct initialization file is not found in the path, you cannot
run simulation on designs that include Xilinx primitives.

The name of the initialization file varies depending on the simulator you are using, as
follows:

 Questa Advanced Simulator/ModelSim: modelsim.ini
* |ES and Xcelium: cds.1lib

* VCS: synopsys_sim.setup

For more information on the simulator-specific compiled library file, see the third-party
simulation tool documentation.

ﬁ IMPORTANT: Compilation of the libraries is typically a one-time operation, as long as you are using the
same version of tools. However, any change to the Vivado tools or the simulator versions requires that
libraries be recompiled.

You can compile libraries using the Vivado IDE or using Tcl commands, as described in the
following sections.

Logic Simulation N Send Feedback 15
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=15

(: XI LI NX® Chapter 2: Preparing for Simulation

Compiling Simulation Libraries Using Vivado IDE

1. Select Tools > Compile Simulation Libraries to open the dialog box shown in
Figure 2-2.

- "

¢ Compile Simulation Libraries [(E3 |

Specify the options for compile_simlib command.

Simulator; | ModelSim Simulator w
Language: Al w
Library: All

Eamily: All

Advanced

Wt
-]
Compiled library location: | project_sim.cachefcompile_simlib |I|
Simulator executable path: |I|
Miscellaneous oplions:
+ | Compile Xiling [P

Owverwrite the current pre-compiled libraries

Compile 32-bit libraries

Yerbose

Command: ot simiproject_sim.cachefcompile_simlib} -library all -family all

Compile Cancel

Figure 2-2: Compile Simulation Libraries Dialog Box

Set the following options:

« Simulator: From the Simulator drop-down menu, select a Simulator.

« Language: Compiles libraries for the specified language. If this option is not specified,
then the language is set to correspond with the selected simulator (above). For
multi-language simulators, both Verilog and VHDL libraries are compiled.

Logic Simulation N Send Feedback 16
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=16

2: XI LI NX® Chapter 2: Preparing for Simulation

« Library: Specifies the simulation library to compile. By default, the compile_simlib
command compiles all simulation libraries.

« Family: Compiles selected libraries to the specified device family. All device families are
generated by default.

« Compiled library location: Specifies the directory path for saving the compiled library
results. By default, the libraries are saved in the current working directory in
Non-Project mode, and the libraries are saved in the
<project>/<project>.cache/compile_simlib directory in Project mode. See
the Vivado Design Suite User Guide: Design Flows Overview (UG892) [Ref 11] for more
information on Project and Non-Project modes.

O TIP: Because the Vivado simulator has precompiled libraries, it is not necessary to identify the library
location.

« Simulator executable path: Specifies the directory to locate the simulator executable.
This option is required if the target simulator is not specified in the SPATH or $PATH%
environment variable, or to override the path from the $PATH or %PATH% environment
variable.

« Miscellaneous Options: Specify additional options for the compile_simlib Tcl
command.

+ Compile Xilinx IP: Enable or disable compiling simulation libraries for Xilinx IP.

« Overwrite current pre-compiled libraries: Overwrites the current pre-compiled
libraries.

« Compile 32-bit libraries: Performs simulator compilation in 32-bit mode instead of
the default 64-bit compilation.

« Verbose: Temporarily overrides any message limits and return all messages from this
command.

+ Command: Shows the Tcl command equivalent for the options you enter in the dialog
box.

O TIP: You can use the value of the Command field to generate a simulation library in Tcl/non-project
mode.

Compiling Simulation Libraries Using Tcl Commands

Alternatively, you can compile simulation libraries using the compile_simlib Tcl
command. For details, see compile_simlib in the Vivado Design Suite Tcl Command
Reference Guide (UG835) [Ref 7], or type compile_simlib -help.

Logic Simulation N Send Feedback 17
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=17

2: XI LI NX® Chapter 2: Preparing for Simulation

Following are example commands for each third-party simulator:

Questa Advanced Simulator: Generating a simulation library for Questa for all
languages and for all libraries and all families in the current directory.

conpile_simib -language all -sinulator questa -library all -fanmly al

ModelSim: Generating simulation library for ModelSim at /a/b/c, where the
ModelSim executable path is <simulator_installation_path>.

conpile_simib -language all -dir {/a/b/c} -simulator nodel si m-sinul ator_exec_path
{<sinulator_installation_path>} -library all -famly al

IES: Generating a simulation library for IES for the Verilog language, for the UNISIM
library at /a/b/c.

conpile_sinmib -language verilog -dir {/a/b/c} -simulator ies -library unisim
-famly all

VCS: Generating a simulation library for VCS for the Verilog language, for the UNISIM
library at /a/b/c.

conpile_sinmib -language verilog -dir {/a/b/c} -simulator vcs_nx -library unisim
-famly all

Xcelium: Generating a simulation library for Xcelium for the Verilog language, for the
UNISIM library at /a/b/c.

conpile_simib -language verilog -dir {/a/b/c} -sinulator xcelium-library unisim
-famly all

Changing compile_simlib Defaults

The config_compile_simlib Tcl command lets you configure third-party simulator
options for use by the compile_simlib command.

Tcl Command

config_conpile_simib [-cfgopt <arg>] [-sinulator <arg>] [-reset] [-quiet] [-verbose]

Where:

-cfgopt <arg»>: Configuration option in form of
simulator:language:library:options

-simulator: The name of the simulator whose configuration you want
-reset: Lets you reset all previous configurations for the specified simulator
-quiet: Executes the command without any display to the Tcl Console.

-verbose: Executes the command with all command output to the Tcl Console.

For example, to change the option used to compile the UNISIM VHDL library, type:

Logic Simulation

config_conpile_simib {cxl.nodel si mvhdl . unisim-source -93 -novopt}

o l Send Feedback I 18
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=18

2: XI LI NX® Chapter 2: Preparing for Simulation

)

Logic Simulation

IMPORTANT: The compile simlib command compiles Xilinx primitives and Simulation models of
Xilinx Vivado IP. Xilinx Vivado IP cores are not delivered as an output product when the IP is generated,
consequently they are included in the pre-compiled libraries created using compile simlib.

Compiling Patched IP Repository in a New Output Directory using MYVIVADO

Let us assume that the patched IP repository is at the following location:
‘/test/patched_i p_repo/datal/ip/xilinx'

To compile the default installed IP repository and the repository that is pointed to by
MYVIVADO in a new output directory, set the MYVIVADO environment (env) variable to
point to this patched IP repository and run compile_simlib. compile_simlib will
process the IP library sources from the default installed repository and the one set by
MYVIVADO.

% set env. MYVI VADO /t est/ patched_i p_repo
% conpile_simib -sinulator <sinulator> -directory <new clibs_dir>

Compiling Patched IP Repository in an Existing Output Directory using
MYVIVADO

Let us assume that the patched IP repository is at the following location:
"/test/patched_i p_repo/datal/ip/xilinx'

To compile the repository pointed to by MYVIVADO in an existing output directory where
the library was already compiled for the default installed IP repository, set the MYVIVADO
env variable to point to this patched IP repository and run compile_simlib.
compile_simlib will process the IP library sources from the repository set by MYVIVADO
in the existing output directory.

% set env. MyVI VADO /t est/ patched_i p_repo
% conpile_simib -sinulator <sinmulator> -directory <existing_clibs_dir>

Using Xilinx Simulation Libraries

You can use Xilinx simulation libraries with any simulator that supports the VHDL-93 and
Verilog-2001 language standards. Certain delay and modeling information is built into the
libraries; this is required to simulate the Xilinx hardware devices correctly.

o l Send Feedback I 19
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=19

& XILINX.

Chapter 2: Preparing for Simulation

Use non-blocking assignments for blocks within clocking edges. Otherwise, write code
using blocking assignments in Verilog. Similarly, use variable assignments for local
computations within a process, and use signal assignments when you want data-flow across
processes.

If the data changes at the same time as a clock, it is possible that the simulator will schedule
the data input to occur after the clock edge. The data does not go through until the next
clock edge, although it is possible that the intent was to have the data clocked in before the
first clock edge.

RECOMMENDED: To avoid such unintended simulation results, do not switch data signals and clock
signals simultaneously.

When you instantiate a component in your design, the simulator must reference a library
that describes the functionality of the component to ensure proper simulation. The Xilinx
libraries are divided into categories based on the function of the model.

Table 2-1 lists the Xilinx-provided simulation libraries:

Table 2-1: Simulation Libraries
. i VHDL Library Verilog Library
Library Name Description
y P Name Name

UNISIM Functional simulation of Xilinx primitives. | UNISIM UNISIMS_VER
UNIMACRO Functional simulation of Xilinx macros. UNIMACRO UNIMACRO_VER
UNIFAST Fast simulation library. UNIFAST UNIFAST_VER
SIMPRIM Timing simulation of Xilinx primitives. N/A SIMPRIMS VER(D
SECUREIP Simulation library for both functional SECUREIP SECUREIP

and timing simulation of Xilinx device

features, such as the PCle® IP, Gigabit

Transceiver etc.,

You can find the list of IP's under

SECUREIP at the following

location:

<Vivado_Install Dir>/data/secu

reip
XPM Functional simulation of Xilinx primitives | XpM xpM(2)

1. The SIMPRIMS_VER is the logical library name to which the Verilog SIMPRIM physical library is mapped.

2. XPM is supported as a pre-compiled IP. Hence, you need not add the source file to the project. For third party

simulators, the Vivado tools will map to pre-compiled IP generated with compile_simlib.

IMPORTANT:
- You must specify different simulation libraries according to the simulation points.

- There are different gate-level cells in pre- and post-implementation netlists.

Table 2-2 lists the required simulation libraries at each simulation point.

Logic Simulation

UG900 (v2018.2) June 6, 2018

www.Xxilinx.com

l Send Feedback I

20

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=20

(: XI LI NX® Chapter 2: Preparing for Simulation

Table 2-2: Simulation Points and Relevant Libraries

Simulation Point UNISIM | UNIFAST = UNIMACRO |SECUREIP (V:::‘I’LZR(;"SIV) SDF
ngRLe)g(i;;i;Iirg:\;f)er Level Yes Yes Yes Yes N/A No
éimpﬁls;isoyr?iziiistional) ves ves N/A ves N/A N/A
gir:‘jf;;fg:t(??;iisng) N/A N/A N/A Yes Yes Yes
gommesie || e | e | v | e
girsﬁf;;i';“npﬁ?nﬁz;“o” N/A N/A N/A Yes Yes Yes

f IMPORTANT: The Vivado simulator uses precompiled simulation device libraries. When updates to
libraries are installed the precompiled libraries are automatically updated.

Note: Verilog SIMPRIMS_VER uses the same source as UNISIM with the addition of specify blocks for
timing annotation. SIMPRIMS_VER is the logical library name to which the Verilog physical SIMPRIM
is mapped.

Table 2-3 lists the library locations.

Table 2-3: Simulation Library Locations

HDL
Type

UNISIM Verilog | <Vivado_Install_Dir»>/data/verilog/src/unisims

Library Location

VHDL <Vivado_Install_Dir>/data/vhdl/src/unisims

UNIFAST Verilog | <Vivado_Install_Dir>/data/verilog/src/unifast

VHDL <Vivado_Install_Dir»>/data/vhdl/src/unifast

UNIMACRO Verilog | <Vivado_Install_Dir>/data/verilog/src/unimacro

VHDL <Vivado_Install_Dir>/data/vhdl/src/unimacro

SECUREIP Verilog | <Vivado_Install_Dir>/data/secureip/

The following subsections describe the libraries in more detail.

UNISIM Library

Functional simulation uses the UNISIM library and contains descriptions for device
primitives or lowest-level building blocks.

IMPORTANT: By default, the compile simlib command compiles the static simulation files for all
ﬁ the IP’s in the IP Catalog.

Logic Simulation N Send Feedback 21
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=21

2: XI LI NX® Chapter 2: Preparing for Simulation

Encrypted Component Files

Table 2-4 lists the UNISIM library component files that let you call precompiled, encrypted
library files when you include IP in a design. Include the path you require in your library
search path.

Table 2-4: Component Files

Component File Description
<Vivado_Install_Dir»>/data/verilog/src/unisim_retarget_comp.vp Encrypted
Verilog file

<Vivado_TInstall_Dir»>/data/vhdl/src/unisims/unisim_retarget_VCOMP.vhdp Enaypted

VHDL file

)

Logic Simulation

IMPORTANT: Verilog module names and file names are uppercase. For example, module BUFG is
BUFG. v, and module IBUF is IBUF . v. Ensure that UNISIM primitive instantiations adhere to an
uppercase naming convention.

VHDL UNISIM Library

The VHDL UNISIM library is divided into the following files, which specify the primitives for
the Xilinx device families:

« The component declarations (unisim_VCOMP.vhd)
« Package files (unisim_VPKG.vhd)
To use these primitives, place the following two lines at the beginning of each file:

library UNI SI M
use UNI SI M VCOVPONENTS. al | ;

IMPORTANT: You must also compile the library and map the library to the simulator. The method
depends on the simulator.

Note: For Vivado simulator, the library compilation and mapping is an integrated feature with no
further user compilation or mapping required.

Verilog UNISIM Library

In Verilog, the individual library modules are specified in separate HDL files. This allows the
-y library specification switch to search the specified directory for all components and
automatically expand the library.

The Verilog UNISIM library cannot be specified in the HDL file prior to using the module. To
use the library module, specify the module name using all uppercase letters.

o l Send Feedback I 22
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=22

2: XI LI NX® Chapter 2: Preparing for Simulation

W

Logic Simulation

The following example shows the instantiated module name as well as the file name
associated with that module:

» Module BUFG is BUFG.v

e Module IBUF is IBUF.v

Verilog is case-sensitive, ensure that UNISIM primitive instantiations adhere to an
uppercase naming convention.

If you use precompiled libraries, use the correct simulator command-line switch to point to
the precompiled libraries. The following is an example for the Vivado simulator:

-L uni sims_ver
Where:

-L is the library specification command.

UNIMACRO Library

The UNIMACRO library is used during functional simulation and contains macro
descriptions for selected device primitives.

IMPORTANT: You must specify the UNIMACRO library anytime you include a device macro listed in the
Vivado Design Suite 7 Series FPGA and Zynq-7000 SoC Libraries Guide (UG953) [Ref 6].

VHDL UNIMACRO Library

To use these primitives, place the following two lines at the beginning of each file:

I'i brary UNI MACRO,
use UNI MACRO. Vconponents. al | ;

Verilog UNIMACRO Library

In Verilog, the individual library modules are specified in separate HDL files. This allows the
-y library specification switch to search the specified directory for all components and
automatically expand the library.

The Verilog UNIMACRO library does not need to be specified in the HDL file prior to using
the modules as is required in VHDL. To use the library module, specify the module name
using all uppercase letters. You must also compile and map the library; the method you use
depends on the simulator you choose.

IMPORTANT: Verilog module names and file names are uppercase. For example, module BUFG is
BUFG. v. Ensure that UNIMACRO primitive instantiations adhere to an uppercase naming convention.

o l Send Feedback I 23
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=23

2: XI LI NX® Chapter 2: Preparing for Simulation

SIMPRIM Library

Use the SIMPRIM library for simulating timing simulation netlists produced after synthesis
or implementation.

i? IMPORTANT: Timing simulation is supported in Verilog only; there is no VHDL version of the SIMPRIM
library.

TIP: If you are a VHDL user, you can run post synthesis and post implementation functional simulation
O (in which case no standard default format (SDF) annotation is required and the simulation netlist uses

the UNISIM library). You can create the netlist using the write_vhdl Tcl command. For usage

information, refer to the Vivado Design Suite Tcl Command Reference Guide (UG835) [Ref 7].

Following is an example for specifying the library for Vivado Simulator:
-L SI MPRI M5_VER
Where:

o -Lis the library specification command.

- SIMPRIMS_VER is the logical library name to which the Verilog SIMPRIM has been
mapped.

SECUREIP Simulation Library

Use the SECUREIP library for functional and timing simulation of complex device
components, such as GT.

Note: Secure IP Blocks are fully supported in the Vivado simulator without additional setup.

Xilinx leverages the encryption methodology as specified in the IEEE standard
Recommended Practice for Encryption and Management of Electronic Design Intellectual
Property (IP) (IEEE-STD-P1735) [Ref 19]. The library compilation process automatically
handles encryption.

Note: See the simulator documentation for the command line switch to use with your simulator to
specify libraries.

Table 2-5 lists special considerations that must be arranged with your simulator vendor for
using these libraries.

Logic Simulation N Send Feedback 24
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug835-vivado-tcl-commands.pdf;a=xwrite_vhdl
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=24

2: XI LI NX® Chapter 2: Preparing for Simulation

Table 2-5: Special Considerations for Using SECUREIP Libraries

Simulator Name Vendor Requirements

ModelSim SE Mentor Graphics | If design entry is in VHDL, a mixed language license or

- a SECUREIP OP is required. Contact the vendor for more
ModelSim PE . .

information.

ModelSim DE
Questa Advanced
Simulator
VCS and VCS MX Synopsys
Active-HDL Aldec If design entry is VHDL only, a SECUREIP
Riviera-PRO* language-neutral license is required. Contact the

vendor for more information.

ﬁ IMPORTANT: See Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)
[Ref 20] for the supported version of third-party simulators.

VHDL SECUREIP Library

The UNISIM library contains the wrappers for VHDL SECUREIP. Place the following two lines
at the beginning of each file so that the simulator can bind to the entity:

Li brary UNI SI M
UNI SI M VCOVPONENTS. al | ;

Verilog SECUREIP Library

When running a simulation using Verilog code, you must reference the SECUREIP library for
most simulators.

If you use the precompiled libraries, use the correct directive to point to the precompiled
libraries. The following is an example for the Vivado simulator:

-L SECUREI P

ﬁ IMPORTANT: You can use the Verilog SECUREIP library at compile time by using - £ switch. The file list
is available in the following path:
<Vivado Install Dirs/data/secureip/secureip cell.list.f.

UNIFAST Library

The UNIFAST library is an optional library that you can use during RTL behavioral simulation
to speed up simulation run time.

Logic Simulation N Send Feedback 25
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=25

2: XI LI NX® Chapter 2: Preparing for Simulation

)

Logic Simulation

IMPORTANT:

The UNIFAST library is an optional library that you can use during functional simulation to speed up
simulation runtime. UNIFAST libraries are supported for 7 series devices only. UltraScale and later
device architectures do not support UNIFAST libraries, as all the optimizations are incorporated in the
UNISIM libraries by default.

UNIFAST libraries cannot be used for sign-off simulations because the library components do not have
all the checks/features that are available in a full model.

RECOMMENDED: Use the UNIFAST library for initial verification of the design and then run a complete
verification using the UNISIM library.

The simulation run time improvement is achieved by supporting a subset of the primitive
features in the simulation mode.

Note: The simulation models check for unsupported attribute values only.

MMCME2

To reduce the simulation runtimes, the fast MMCME2 simulation model has the following
changes from the full model:

1. The fast simulation model provides only basic clock generation functions. Other
functions, such as DRP, fine phase shifting, clock stopped, and clock cascade are not
supported.

2. It assumes that input clock is stable without frequency and phase change. The input
clock frequency sampling stops after LOCKED signal is asserted HIGH.

3. The output clock frequency, phase, duty cycle, and other features are directly calculated
from input clock frequency and parameter settings.

Note: The output clock frequency is not generated from input-to-VCO clock.

4. The standard and the fast MMCME2 simulation model LOCKED signal assertion times
differ.

- Standard Model LOCKED assertion time depends on the M and D setting. For large
M and D values, the lock time is relatively long for a standard MMCME2 simulation
model.

o In the fast simulation model, the LOCKED assertion time is shortened.

o l Send Feedback I 26
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=26

2: XI LI NX® Chapter 2: Preparing for Simulation

DSP48E1

To reduce the simulation runtimes, the fast DSP48E1 simulation model has the following
features removed from the full model.

« Pattern Detection
» OverFlow/UnderFlow

+ DRP interface support

GTHE2_CHANNEL/GTHE2_COMMON

To reduce the simulation runtimes, the fast GTHE2 simulation model has the following
feature differences:

« GTH links must be synchronous with no Parts Per Million (PPM) rate differences
between the near and far end link partners.

« Latency through the GTH is not cycle accurate with the hardware operation.

* You cannot simulate the DRP production reset sequence. Bypass it when using the
UNIFAST model.

Using Verilog UNIFAST Library

To reduce the simulation runtimes, the fast GTXE2 simulation model has the following
feature differences:

¢ GTX links must be of synchronous with no Parts Per Million (PPM) rate differences
between the near and far end link partners.

« Latency through the GTX is not cycle accurate with the hardware operation.
Method 1: Using the complete Verilog UNIFAST library (Recommended)
Method 1 is the recommended method whereby you simulate with all the UNIFAST models.

Use the following Tcl command in Tcl console to enable UNIFAST support (fast simulation
models) in a Vivado project environment for the Vivado simulator, ModelSim, IES, or VCS:

set _property unifast true [current_fil eset —sinset]

See the Encrypted Component Files, page 22 for more information regarding component
files.

For more information, see the appropriate third-party simulation user guide.

Logic Simulation N Send Feedback 27
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=27

2: XI LI NX® Chapter 2: Preparing for Simulation

Method 2: Using specific UNIFAST modules

Recommended for more advanced users who want to specify which modules to simulate
with the UNIFAST models.

To specify individual library components, Verilog configuration statements are used.
Specify the following in the config.v file:

« The name of the top-level module or configuration (for example: config
cfg_xilinx;)

« The name to which the design configuration applies (for example: design test
bench;)

« The library search order for cells or instances that are not explicitly called out (for
example: default liblist unisims_ver unifast_ver;)

» The map for a particular CELL or INSTANCE to a particular library
(For example: instance testbench.inst.01 use unifast_ver.MMCME2;)

Note: For ModelSim (vsim) only -genblk is added to hierarchy name.
(For example: instance testbench.genblkl.inst.genblkl.01 use
unifast_ver .MMCME2; - VSIM)

Example config.v

config cfg xilinx;

desi gn testbench;

default liblist unisins_ver unifast_ver;

//Use fast WMCM for all MMVCM bl ocks in design

cell MMCME2 use unifast_ver. MMCMEZ;

//use fast dSO48Elfor only this specific instance in the design

i nstance testbench.inst. Ol use unifast_ver. DSP48E1l;

//1f using Mbdel Simor Questa, add in the genblk to the nane

(i nstance testbench. genbl k1.inst.genbl k1. Ol use unifast_ver. DSP48El)
endconfi g

Logic Simulation N Send Feedback 28
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=28

2: XI LI NX® Chapter 2: Preparing for Simulation

Using VHDL UNIFAST Library

The VHDL UNIFAST library has the same basic structure as Verilog and can be used with
architectures or libraries. You can include the library in the test bench file.

The following example uses a drill-down hierarchy with a for call:

library unisim
l'ibrary unifast;
configuration cfg_xilinx of testbench
is for xilinx
. for inst:netlist

use entity work.netlist(inst);
....... for inst
......... for all:MVCME2
.......... use entity unifast. MMCVE2;
......... end for;
....... for Ol inst:DSP48E]1;
......... use entity unifast. DSP48EL;
....... end for;
...end for;
..end for;
end for;
end cfg_xilinx;

Note: If you want to use a VHDL unifast model, you have to use a configuration to bind the unifast
library during elaboration.

Using Simulation Settings

You can use the simulation settings to specify the target simulator, display the simulation
set, the simulation top module name, top module (design under test), and a tabbed listing
of compilation, elaboration, simulation, netlist, and advanced options. From the Vivado IDE
Flow Navigator, right-click on Simulation and select Simulation Settings to open the
Simulation Settings in the Settings dialog box, as shown in Figure 2-3.

Logic Simulation N Send Feedback 29
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=29

& XILINX.

Chapter 2: Preparing for Simulation

P

Settings

Project Settings

>

General
Simulation
Elaboration
Synthesis
Implementation
Bitstream

IP

Tool Settings

W

W

W

v

Project

IP Defaults
Source File
Display

WebTalk

Help

Text Editor

3rd Party Simulators
Colors

Selection Rules
Shortcuts
Strategies
Window Behavior

Simulation

Specify various settings associated to Simulation

Target simulator:
Simulator language:

Simulation set:

Vivado Simulator
Mixed

= sim_1

Simulation top module name: tb_wave_gen

Compilation Elaborat

Verilog options:

mn Simulation Netlist

Generics/Parameters options

xsim.compile tcl.pre

xsim.compile xvhdl.nosort

xsim.compile xvlog.nosort

xsim.compile xvlog.relax

xsim.compilexvhdl.relax

xsim.compile xsc.more_options

xsim.compile xvlog.more_options

xsim.compile xvhdl. more_options

Select an optio

Figure 2-3:

0]

IR AN

Cancel Restore...

Settings Dialog Box

The Settings dialog box includes the following simulation settings:

« Target Simulator: From the Simulator drop-down menu, select a simulator. Vivado®
simulator is the default simulator. However, many third-party simulators are also

supported.

« Simulator language: Select the simulator language mode. The simulation model used
for various IPs in your design varies depending on what language the IP supports.

« Simulation set: Select the simulation set that the simulation commands use by default.

IMPORTANT: The compilation and simulation settings for a previously defined simulation set are not

applied to a newly-defined simulation set.

« Simulation top module name: Enter an alternate top module to use during simulation.

Logic Simulation

UG900 (v2018.2) June 6, 2018

www.Xxilinx.com

| Send Feedback I 30

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=30

2: XI LI NX® Chapter 2: Preparing for Simulation

Compiled library location: This option is displayed when you select a third party
simulator. This is a directory path for saving the compiled library results. By default, the
libraries are saved in the current working directory in Non-Project mode. The libraries
are saved in the <project>/<project>.cache/compile_simlib directory in
project mode.

Compilation tab: This tab defines and manages compiler directives, which are stored
as properties on the simulation fileset and used by the xvlog and xvhdl utilities to
compile Verilog and VHDL source files for simulation.

Note: xvlog and xvhdl are Vivado Simulator specific commands. The applicable utilities will change
based on the target simulator.

Elaboration tab: This tab defines and manages elaboration directives, which are stored
as properties on the simulation fileset and used by the xelab utility for elaborating and
generating a simulation snapshot. Select a property in the table to display a description
of the property and edit the value.

Note: xelab is a Vivado Simulator specific command. The applicable utilities will change based on
the target Simulator.

Simulation tab: This tab defines and manages simulation directives, which are stored
as properties on the simulation fileset and used by the xsim application for simulating
the current project. Select a property in the table to display a description of the
property and edit the value.

Netlist tab: This tab provides access to netlist configuration options related to SDF
annotation of the Verilog netlist and the process corner captured by SDF delays. These
options are stored as properties on the simulation fileset and are used while writing the
netlist for simulation.

Advanced tab: This tab contains two options.

- Enable incremental compilation option: This option enables the incremental
compilation and preserves the simulation files during successive run.

o Include all design sources for simulation option: By default, this option is
enabled. Selecting this option ensures that all the files from design sources along
with the files from the current simulation set will be used for simulation. Even if you
change the design sources, the same changes will be updated when you launch
behavioral simulation.

CAUTION! Changing the settings in the Advanced tab should be done only if necessary. The Include
all design sources for simulation check box is selected by default. Deselecting the box could produce

unexpected results. As long as the check box is selected, the simulation set includes Out-of-Context
(00C) IP, IP Integrator files, and DCP.

Note: For detailed information on the properties in the Compilation, Elaboration, Simulation,
Netlist, and Advanced tabs, see Appendix A, Compilation, Elaboration, Simulation, Netlist, and
Advanced Options.

Logic Simulation

o l Send Feedback I 31
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=31

2: XI LI NX® Chapter 2: Preparing for Simulation

Understanding the Simulator Language Option

Most Xilinx IP deliver behavioral simulation models for a single language only, effectively
disabling simulation for language-locked simulators if you are not licensed for the
appropriate language. The simulator_language property ensures that an IP delivers a
simulation model for any given language. (Figure 2-3, above, shows the location at which
you can set the simulator language). For example, if you are using a single language
simulator, you set the simulator_language property to match the language of the
simulator.

The Vivado Design Suite ensures the availability of a simulation model by using the
available synthesis files of an IP to generate a language-specific structural simulation
model on demand. For cases in which a behavioral model is missing or does not match the
licensed simulation language, the Vivado tools automatically generate a structural
simulation model to enable simulation. Otherwise, the existing behavioral simulation model
for the IP is used. If no synthesis or simulation files exist, simulation is not supported.

Note: The simulator_language property cannot deliver a language-specific simulation netlist
file if the generated Synthesized checkpoint (.dcp) is disabled.

1. In the Flow Navigator, click IP Catalog to open the IP Catalog.
2. Right-click the appropriate IP and select Customize IP from the popup menu.

3. In the Customize IP dialog box, click OK.

The Generate Output Products dialog box (shown in Figure 2-4) opens.

Logic Simulation N Send Feedback 32
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=32

& XILINX.

Chapter 2: Preparing for Simulation

W

¢ Generate Output Products

The following output products will be generated.

Preview

Q

- .
. -

axi_fifo_mm_s_0.xci (O0C perIP)
(I Instantiation Template
U Bynthesized Checkpoint {.dcp)
(1 Structural Simulation
[l Change Log

Synthesis Options

Global

® Qut of context per IP

Run Settings
Mumber of jobs: | 2 4
@
Figure 2-4: Generate Output Products Dialog Box

Table 2-6 illustrates the function of the simulator_language property.

Table 2-6:

Function of simulator_language Property

IP Delivered Simulation
Model

simulator_language Value

Simulation Model Used

IP delivers VHDL and Verilog Mixed Behavioral model (target_language)
behavioral models Verilog Verilog behavioral model
VHDL VHDL behavioral model
IP delivers Verilog behavioral | Mixed Verilog behavioral model
model only Verilog Verilog behavioral model
VHDL VHDL simulation netlist generated from
DCP
IP delivers VHDL behavioral Mixed VHDL behavioral model
model only Verilog Verilog simulation netlist generated from
DCP
VHDL VHDL behavioral model

Logic Simulation
UG900 (v2018.2) June 6, 2018

www.Xxilinx.com

33

| Send Feedback I

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=33

2: XI LI NX® Chapter 2: Preparing for Simulation

Table 2-6: Function of simulator_language Property (Cont’d)

P Dellvelclegdst;rulatlon simulator_language Value Simulation Model Used
IP delivers no behavioral Mixed, Verilog, VHDL Netlist generated from DCP
models (target_language)

Notes:

1. Where available, behavioral simulation models always take precedence over structural simulation models. The
Vivado tools select behavioral or structural models automatically, based on model availability. It is not possible to
override the automated selection.

2. Use the target_language property when either language can be used for simulation
Tcl: set_property target_language VHDL [current_project]

Setting the Simulation Runtime Resolution

Set the simulation runtime resolution using 'timescale in test bench. There is no
simulator performance gain achieved through use of coarser resolution with the Xilinx
simulation models. (In Xilinx simulation models, most simulation time is spent in delta
cycles, and delta cycles are not affected by simulator resolution.)

f IMPORTANT: Run simulations using a time resolution of 1 fs. Some Xilinx primitive components, such
as GT, require a 1 fs resolution to work properly in either functional or timing simulation.

See Simulation Options in Appendix A for detailed information on Simulation Options in
Settings dialog box.

f IMPORTANT: Picoseconds are used as the minimum resolution because testing equipment can measure
timing only to the nearest picosecond resolution.

Adding or Creating Simulation Source Files

To add simulation sources to a Vivado Design Suite project:

1. Select File > Add Sources, or click Add Sources in the Flow Navigator.
The Add Sources wizard opens.

2. Select Add or Create Simulation Sources, and click Next.
The Add or Create Simulation Sources dialog box opens. The options are:

- Add Files: Invokes a file browser so you can select simulation source files to add to
the project.

Logic Simulation N Send Feedback 34
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=34

2: XI LI NX® Chapter 2: Preparing for Simulation

- Add Directories: Invokes directory browser to add all simulation source files from
the selected directories. Files in the specified directory with valid source file
extensions are added to the project.

- Create File: Invokes the Create Source File dialog box where you can create new
simulation source files. See this link in the Vivado Design Suite User Guide:
System-Level Design Entry (UG895) [Ref 1] for more information about project
source files.

- Buttons on the side of the dialog box let you do the following:
- Remove: Removes the selected source files from the list of files to be added.ms=
- Move Up: Moves the file up in the list order.
- Move Down: Moves the file down in the list order.

o Check boxes in the wizard provide the following options:

- Scan and add RTL include files into project: Scans the added RTL file and adds
any referenced include files.

- Copy sources into project: Copies the original source files into the project and
uses the local copied version of the file in the project.

If you elected to add directories of source files using the Add Directories
command, the directory structure is maintained when the files are copied locally
into the project.

- Add sources from subdirectories: Adds source files from the subdirectories of
directories specified in the Add Directories option.

- Include all design sources for simulation: Includes all the design sources for
simulation.

VIDEO: For a demonstration of this feature, see the Vivado Design Suite QuickTake Video: Logic

m Simulation.

Working with Simulation Sets

The Vivado IDE stores simulation source files in simulation sets that display in folders in the
Sources window, and are either remotely referenced or stored in the local project directory.

The simulation set lets you define different sources for different stages of the design. For
example, there can be one test bench source to provide stimulus for behavioral simulation
of the elaborated design or a module of the design, and a different test bench to provide
stimulus for timing simulation of the implemented design.

When adding simulation sources to the project, you can specify which simulation source set
to use.

Logic Simulation N Send Feedback 35
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/logic-simulation.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/logic-simulation.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug895-vivado-system-level-design-entry.pdf;a=xWorkingWithSourceFiles
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=35

(: XI LI NX® Chapter 2: Preparing for Simulation

To edit a simulation set:

1. In the Sources window popup menu, select Simulation Sources > Edit Simulation
Sets, as shown in Figure 2-5.

PROJECT MANAGER - project_2

Sources ? 00 X
Q = = + o
~ Design Sources (1
T axi_fifo_mm_s_0 (axi_fifo_mm_s_0.xci
> Constraints
v Simulation Sources
> sim_101
Hierarchy Update 3
Hierarchy IP Sources | (' Refresh Hierarchy

IP Hierarchy 3

IP Properties Edit Constraints Sets. .

¥ AXl-Stream FIFO CE_dit Simulation Sets...)

Version: 4.1 (Rev. 9 + Add Sources...

Interfaces: AXl4, AXI4- Report IP Status

o T e

Figure 2-5: Edit Simulation Sets Option

The Add or Create Simulation Sources wizard opens.
2. From the Add or Create Simulation Sources wizard, select 4+ Add Sources.

This adds the sources associated with the project to the newly-created simulation set.
3. Add additional files as needed.

The selected simulation set is used for the active design run.

Generating a Netlist

To run simulation of a synthesized or implemented design run the netlist generation
process. The netlist generation Tcl commands can take a synthesized or implemented
design database and write out a single netlist for the entire design.

The Vivado Design Suite generates a netlist automatically when you launch the simulator
using the IDE or the launch_simulation command.

Logic Simulation N Send Feedback 36
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=36

2: XI LI NX® Chapter 2: Preparing for Simulation

Netlist generation Tcl commands can write SDF and the design netlist. The Vivado Design
Suite provides the following:

 Tcl Commands:
o write_verilog: Verilog netlist
« write_vhdl: VHDL netlist

- write_sdf: SDF generation

TIP: The SDF values are only estimates early in the design process (for example, during synthesis) As
O the design process progresses, the accuracy of the timing numbers also progress when there is more
information available in the database.

Generating a Functional Netlist

The Vivado Design Suite supports writing out a Verilog or VHDL structural netlist for
functional simulation. The purpose of this netlist is to run simulation (without timing) to
check that the behavior of the structural netlist matches the expected behavioral model
(RTL) simulation.

The functional simulation netlist is a hierarchical, folded netlist that is expanded to the
primitive module or entity level; the lowest level of hierarchy consists of primitives and
macro primitives.

These primitives are contained in the following libraries:

» UNISIMS_VER simulation library for Verilog simulation
« UNISIMS simulation library for VHDL simulation

In many cases, you can use the same test bench that you used for behavioral simulation to
perform a more accurate simulation.

The following Tcl commands generate Verilog and VHDL functional simulation netlist,
respectively:

wite_verilog -node funcsi m<Verilog_Netlist_Nane.v>

wite_vhdl -npde funcsim<VHDL_Netlist_Nane. vhd>

Generating a Timing Netlist

You can use a Verilog timing simulation to verify circuit operation after the Vivado tools
have calculated the worst-case placed and routed delays.

In many cases, you can use the same test bench that you used for functional simulation to
perform a more accurate simulation.

Logic Simulation N Send Feedback 37
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=37

2: XI LI NX® Chapter 2: Preparing for Simulation

Compare the results from the two simulations to verify that your design is performing as
initially specified.

There are two steps to generating a timing simulation netlist:

1. Generate a simulation netlist file for the design.

2. Generate an SDF delay file with all the timing delays annotated.

ﬁ IMPORTANT: Vivado IDE supports Verilog timing simulation only.

TIP: If you are a VHDL user, you can run post synthesis and post implementation functional simulation
(in which case no standard default format (SDF) annotation is required and the simulation netlist uses
the UNISIM library). You can create the netlist using the write_vhdl Tcl command. For usage
information, see the Vivado Design Suite Tcl Command Reference Guide (UG835) [Ref 7].

<D

The following is the Tcl syntax for generating a timing simulation netlist:

wite verilog -node tinesim-sdf_anno true <Verilog_Netlist_Name>

Logic Simulation N Send Feedback 38
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug835-vivado-tcl-commands.pdf;a=xwrite_vhdl
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=38

& XILINX

Chapter 3

Simulating with Third-Party Simulators

Introduction

The Vivado® Design Suite supports simulation using third-party tools. Simulation with
third-party tools can be performed directly from within the Vivado Integrated Design
Environment (IDE) or using a custom external simulation environment.

The following third-party tools are supported:

* Mentor Graphics Questa Advanced Simulator/ModelSim: Integrated in the Vivado IDE.
« Cadence Incisive Enterprise Simulator (IES): Integrated in the Vivado IDE.
« Synopsys VCS and VCS MX: Integrated in the Vivado IDE.

« Aldec Active-HDL and Rivera-PRO
Aldec offers support for these simulators.

« Cadence Xcelium Parallel Simulator: Integrated in the Vivado IDE

The Vivado Design Suite User Guide: Using the Vivado IDE (UG893) [Ref 3] describes the use
of the Vivado IDE.

For links to more information on your third party simulator, see [Ref 14].

ﬁ IMPORTANT: Use only supported versions of third-party simulators. For more information on
supported Simulators and Operating Systems, see the Compatible Third-Party Tools table in the Vivado
Design Suite User Guide: Release Notes, Installation, and Licensing (UG973) [Ref 20].

Logic Simulation N Send Feedback 39
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=39

2: XI LI NX® Chapter 3: Simulating with Third-Party Simulators

Running Simulation Using Third Party Simulators
with Vivado IDE

f IMPORTANT: Confirm the compiled library location (the path at which compile simlib was invoked
or the one you specified with the -directory option) before running a third-party simulation.

From the Vivado IDE, you can compile, elaborate, and simulate the design based on the
simulation settings and launch the simulator in a separate window.

When you run simulation prior to synthesizing the design, the simulator runs a behavioral
simulation. Following each successful design step (synthesis and implementation), the
option to run a functional or timing simulation becomes available. You can initiate a
simulation run from the Flow Navigator or by typing in a Tcl command.

From the Flow Navigator, click Run Simulation, and select the type of simulation you want
to run, as shown in the following figure:

~ SIMULATION
Run Simulation

Run Behavioral Simulation

~ RTL ANALYSIS
Run Post-Synthesis Functional Simulation

2 Open Elaborate Run Post-Synthesis Timing Simulation

Run Postmplementation Functional Simulation
» SYNTHESIS P

Run Post-lmplementation Timing Simulation y

P Run Synthesis

Figure 3-1: Types of Simulation

To use the corresponding Tcl command, type: launch_simulation

TIP: This command provides a -scripts_only option that can be used to write a DO or SH file,
O depending on the target simulator. Use the DO or SH file to run simulations outside the IDE.

Note: If you are running VCS simulator outside of Vivado, make sure to use -full64 switch.
Otherwise, the simulator will not run if the design contains Xilinx IP.

f IMPORTANT: Use the following command to run the 32-bit Simulator:
set property 32bit 1 [current fileset -simset]

Note: Xilinx Verification IP (VIP) uses System Verilog construct. If you are using any IP which
instantiates VIP, make sure that your Simulator supports System Verilog.

Logic Simulation N Send Feedback 40
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=40

2: XI LI NX® Chapter 3: Simulating with Third-Party Simulators

Running Timing Simulation Using Third-Party Tools

TIP: Post-Synthesis timing simulation uses the estimated timing delay from the synthesized netlist.
O Post-Implementation timing simulation uses actual timing delays.

When you run Post-Synthesis and Post-Implementation timing simulation, the simulators
include:

+ Gate-level netlist containing SIMPRIMS library components
« SECUREIP
« Standard Delay Format (SDF) files

You define the overall design functionality in the beginning. When the design is
implemented, accurate timing information is available.

To create the netlist and SDF, the Vivado Design Suite:

» Calls the netlist writer, write_verilog with the -mode timesim switch and
write_sdf (SDF annotator)

« Sends the generated netlist to the target simulator

You control these options using Simulation Settings as described in Using Simulation
Settings, page 29.

ﬁ IMPORTANT: Post-Synthesis and Post-Implementation timing simulations are supported for Verilog
only. There is no support for VHDL timing simulation. If you are a VHDL user, you can run post synthesis
and post implementation functional simulation (in which case no SDF annotation is required and the
simulation netlist uses the UNISIM library). You can create the netlist using the write vhdl Tcl
command. For usage information, refer to the Vivado Design Suite Tcl Command Reference Guide
(UG835) [Ref 7]

Post-Synthesis Timing Simulation

When synthesis runs successfully, the Run Simulation > Post-Synthesis Timing
Simulation option becomes available.

After you select a post-synthesis timing simulation, the timing netlist and the SDF file are
generated. The netlist files includes $sdf_annotate command so that the generated SDF
file is picked up.

Post-Implementation Timing Simulations

When post-implementation is successful, the Run Simulation > Post-Implementation
Timing Simulation option becomes available.

Logic Simulation N Send Feedback 41
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=41

2: XI LI NX® Chapter 3: Simulating with Third-Party Simulators

After you select a post-implementation timing simulation, the timing netlist and the SDF file
are generated. The netlist files includes $sdf_annotate command so that the generated
SDF file is picked up.

Annotating the SDF File for Timing Simulation

When you specified simulation settings, you specified whether or not to create an SDF file
and whether the process corner would be set to fast or slow.

TIP: To find the SDF file options settings, in the Vivado IDE Flow Navigator, right-click Simulation and
O select Simulation Settings. In the Settings dialog box, select Simulation category and click Netlist
tab.

Based on the specified process corner, the SDF file contains different min and max
numbers.

O RECOMMENDED: Run two separate simulations to check for setup and hold violations.

To run a setup check, create an SDF file with -process_corner slow, and use the max column
from the SDF file.

To run a hold check, create an SDF file with the -process_corner fast, and use the min
column from the SDF file. The method for specifying which SDF delay field to use is
dependent on the simulation tool you are using. Refer to the specific simulation tool
documentation for information on how to set this option.

To get full coverage run all four timing simulations, specify as follows:

o Slow corner: SDFMIN and SDFMAX
o Fast corner: SDFMIN and SDFMAX

Running Standalone Timing Simulation

If you are running timing simulation from Vivado IDE, it will add the timing simulation
related switches to simulator. If you run standalone timing simulation, make sure to pass the
following switch to simulators during elaboration:

For IUS:
-PULSE R0 -PULSE E/O

During elaboration (with ncelab)

Logic Simulation N Send Feedback 42
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=42

2: XI LI NX® Chapter 3: Simulating with Third-Party Simulators

For VCS:
+pul se_e/ <nunmber > and +pul se_r/ <nunber > +transport _i nt _del ays
During elaboration (with VCS)

For ModelSim/Questa Advanced Simulator:
+transport _i nt _del ays +pulse_int_e/0 +pulse_int_r/0

During elaboration (With vsim)

f IMPORTANT: The Vivado simulator models use interconnect delays; consequently, additional switches
are required for proper timing simulation, as follows: -transport int delays -pulse r 0
-pulse int r 0. Table 7-2, page 141 provides descriptions for the these commands.

Dumping SAIF for Power Analysis

The Switching Activity Interchange Format (SAIF) is an ASCII report that assists in extracting
and storing switching activity information generated by simulator tools. This switching
activity can be back-annotated into the Xilinx® power analysis and optimization tools for
the power measurements and estimations.

Dumping SAIF in Questa Advanced Simulator/ModelSim

Questa Advanced Simulator/ModelSim uses explicit power commands to dump an SAIF file,
as follows:
1. Specify the scope or signals to dump, by typing:
power add <hdl _objects>
2. Run simulation for specific time (or run -all).
3. Dump out the power report, by typing:

power report -all filenane.saif

For more detailed usage or information about each commands, see the ModelSim
documentation [Ref 14].

Example DO File

power add tb/fpgal*

run 500us

power report -all -bsaif routed.saif
quit

Logic Simulation N Send Feedback 43
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=43

2: XI LI NX® Chapter 3: Simulating with Third-Party Simulators

Dumping SAIF in IES
IES provides power commands to generate SAIF with specific requirements.

1. Specify the scope to be dumped and the output SAIF file name, using the following Tcl
command:

dunpsai f -scope hdl _objects -output filenane. saif
2. Run the simulation.
3. End the SAIF dump by typing the following Tcl command:

dunpsai f -end

For more detailed usage or information on IES commands, see the Cadence IES
documentation [Ref 14].

Dumping SAIF in VCS
VCS provides power commands to generate SAIF with specific requirements.

1. Specify the scope and signals to be generated, by typing:
power <hdl _objects>

2. Enable SAIF dumping. You can use the command line in the simulator workspace:
power -enable

3. Run simulation for a specific time.

4. Disable power dumping and report the SAIF, by typing:

power -disable
power -report filenane.saif

For more detailed usage or information about each command, see the Synopsys VCS
documentation.

See Power Analysis Using Vivado Simulator for more information about Switching Activity
Interchange Format (SAIF).

Dumping VCD for Power Analysis

You can use a Value Change Dump (VCD) file to capture simulation output. The Tcl
commands are based on Verilog system tasks related to dumping values.

Logic Simulation N Send Feedback a4
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=44

2: XI LI NX® Chapter 3: Simulating with Third-Party Simulators

Dumping VCD in Questa Advanced Simulator/ModelSim

Questa Advanced Simulator/ModelSim uses explicit VCD commands to dump a VCS file, as
follows:
1. Open the VCD file:
vced file ny_vcdfile.ved
2. Specify the scope or signals to dump:
vcd add <hdl _obj ects>
3. Run simulation for a specified period of time (or run -all).

For more detailed usage or information about each commands, see the ModelSim
documentation [Ref 14].

Example DO File:

ved file ny_vcedfile.ved
vcd add -r tb/fpgal*
run 500us

quit

Dumping VCD in IES

1. The following command opens a VCD database named vcddb. The filename is
verilog.dump. The -timescale option sets the Stimescale value in the VCD file
to 1 ns. Value changes in the VCD file are scaled to 1 ns.

dat abase -open -vcd vcddb -into verilog.dunp -default -tinescale ns

2. The following probe command creates a probe on all ports in the scope top.counter.
Data is sent to the default VCD database.

probe -create -vcd top.counter -ports

3. Run the simulation.

Dumping VCD in VCS

In VCS, you can generate a VCD file using the dumpvar command. Specify the file name
and instance name (by default its complete hierarchy).

vcs +vcs+dunpvar s+t est. ved

Logic Simulation N Send Feedback 45
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=45

2: XI LI NX® Chapter 3: Simulating with Third-Party Simulators

Simulating IP

In the following example, the accum_0.xci file is the IP you generated from the Vivado IP
catalog. Use the following commands to simulate this IP in VCS:

set_property target_simulator VCS [current_project]

set _property conpxlib.vcs_compiled_library_dir

<conpi led_library_l ocation>[current_project]

l aunch_simul ati on -noclean_dir -of_objects [get_files accum 0. xci]

Using a Custom DO File During an Integrated
Simulation Run

If you have some specific set of commands (custom DO file) that you want to invoke just
before running the simulation, add those commands in a file and pass that using the
appropriate command, as shown below:

In Questa Advanced Simulator

set _property -name {questa.sinulate.tcl.post} -value {<Absol utePat hOrFil eLocati on>}
-objects [get_filesets sim1]

In Modelsim

set_property -name {nodelsimsinulate.tcl.post} -value {<Absol utePat hO Fil eLocati on>}
-objects [get_filesets sim1]

In IES

set_property -nane {ies.simulate.tcl.post} -value {<Absol utePathO Fil eLocati on>} -objects
[get _filesets sim1]

In VCS

set_property -nane {vcs.simulate.tcl.post} -value {<Absol utePat hOf Fil eLocati on>} -objects
[get _filesets sim1]

In Xcelium

set _property -name {xceliumsimnulate.tcl.post} -value {<Absol utePat hOf Fil eLocati on>}
- obj ects
[get _filesets sim1]

Logic Simulation N Send Feedback 46
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=46

2: XI LI NX® Chapter 3: Simulating with Third-Party Simulators

Simulation Step Control Constructs for ModelSim and Questa

The following tables outline the constructs used for controlling the step execution based on
the do file format:

Native do file: In native do file format, the compile and elaborate shell scripts calls
“source <tb>_compile/elaborate.do”. The simulate script calls "vsim -c¢ -do “do
{<tb>_simulate.do}"".

The following is the default format for native do file:
(project.writeNativeScriptForUnifiedSimulation is 1)

Classic do file: In classic do file format, the compile and elaborate shell script calls “vsim
-c -do "do {<tb>_compile/elaborate.do}"”. The simulate shell script calls vsim -c -do "do
{<tb>_simulate.do}".

The following is the default format for classic do file:
(project.writeNativeScriptForUnifiedSimulation is 0)

Table 3-1: Simulation Step Control Construct Parameters

Parameter Description Default

project.writeNativeScriptForUnifiedSimulation write a pure .do file with simulator command 0 (false)

only (no Tcl or Shell constructs)

simulator.quitOnSimulationComplete Quit simulator on simulator completion for 1 (true)

ModelSim/Questa Advanced Simulator
simulation. To disable quit, set this parameter to
false.

simulator.modelsimNoQuitOnError Do not quit on error or break by default for 1 (true)

ModelSim/Questa Advanced Simulator
simulation. To quit simulation on error or break,
set this parameter to false.

project.enable2StepFlowForModelSim Execute 2-step simulation flow for 1 (true)

ModelSim-PE/DE/SE editions for Unified
Simulation.

Logic Simulation

Running Third-Party Simulators in Batch Mode

The Vivado Design Suite supports batch or scripted simulation for third party verification.
With the design files gathered, and the scripts generated to support your target simulator,
you can inspect the scripts and incorporate them into your verification environment. Xilinx
recommends that you use the export_simulation scripts as a starting point for your
simulation flow rather than building a custom API to generate scripts. See Exporting
Simulation Files and Scripts, page 126 for more information on exporting simulation scripts.

o l Send Feedback I 47
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=47

2: XI LI NX® Chapter 3: Simulating with Third-Party Simulators

Make sure that you have the correct environment setup for the simulator before running
the scripts. See Using Simulation Settings, page 29 for more information on configuring
your simulator. See the User Guide of your specific simulator for the details of running

batch or scripted mode.

Logic Simulation N l Send Feedback I 48
www.Xxilinx.com

UG900 (v2018.2) June 6, 2018

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=48

& XILINX

Chapter 4

Simulating with Vivado Simulator

Introduction

The Vivado simulator is a Hardware Description Language (HDL) event-driven simulator that
supports functional and timing simulations for VHDL, Verilog, SystemVerilog (SV), and
mixed VHDL/Verilog or VHDL/SV designs.

The Vivado simulator supports the following features:

« Source code debugging (step, breakpoint, current value display)

« SDF annotation for timing simulation

+ VCD dumping

« SAIF dumping for power analysis and optimization

« Native support for HardIP blocks (such as serial transceivers and PCle®)
« Multi-threaded compilation

+ Mixed language (VHDL, Verilog, or SystemVerilog design constructs)

« Single-click simulation re-compile and re-launch

* One-click compilation and simulation

« Built-in support for Xilinx® simulation libraries

+ Real-time waveform update

See the Vivado Design Suite Tutorial: Logic Simulation (UG937) [Ref 10] for a step-by-step
demonstration of how to run Vivado simulation.

Running the Vivado Simulator

ﬁ IMPORTANT: /f you are using the Vivado simulator, be sure to specify all appropriate project settings
for your design before running simulation. For supported third-party simulators, see Chapter 3,
Simulating with Third-Party Simulators.

Logic Simulation N Send Feedback 49
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=49

(: XI LI NX® Chapter 4: Simulating with Vivado Simulator

From the Flow Navigator, click Run Simulation and select a simulation type to invoke the
Vivado simulator workspace, shown in the figure below.

SIMULATION - Behavioral Simulation - Functional - sim_1 - bft_to

Scope Objects Untitled 1
a = & s Q # |a W aa: s KM T b
Name Design Unit Name Value Dat” .
1 bft_th bi_th 14 wbClk 0 Log
uut bf(aBFT) W ofiClk 1 Log
4 wbClk
@ giol glol U reset 0 Log
W DRCIKk
14 wbDataForin.. 0 Log
4 reset
14 wbWriteOut 0 Loc
DataForinput
woinputData... fiffific Arrz
. teOut
| woDataFor0... 1 Log
W wbinputData[31:0] fiiiftc
wbOutputDat.. 00000000 Arre
© wbDataF orQutput
I eror 0 Log
¥ wbOutputData[31:0] 00000000
¥ READ_PERI. 10 Arre o
& error 0
%' WRITE_PER 5 Arre - o
®* READ_PERIOD[31:0} 00000003
® WRITE_PERIOD[31:0] 00000005
Tcl Console
' loaded.
. Memory (MB): peak = 845.926 ; gain = 14.270

Figure 4-1: Vivado Simulator Workspace

Main Toolbar

The main toolbar provides one-click access to the most commonly used commands in the
Vivado IDE. When you hover over an option, a tool tip appears that provides more
information.

Run Menu

The menus provide the same options as the Vivado IDE with the addition of a Run menu
after you have run a simulation.

The Run menu for simulation is shown in Figure 4-2.

Logic Simulation N Send Feedback 50
UG900 (v2018.2) June 6, 2018 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=50

2: XI LI NX® Chapter 4: Simulating with Vivado Simulator

Run Help Juick Access
|4 Restar.

P RunAll

». RunFor.. |
* Step

¥ Relaunch Simulation

Figure 4-2: Simulation Run Menu Options

The Vivado simulator Run menu options:

Restart: Lets you restart an existing simulation from time 0.
Tcl Command: restart

Run All: Lets you run an open simulation to completion.
Tcl Command: run -all

Run For: Lets you specify a time for the simulation to run.
Tcl Command: run <time>

TIP: While you can always specify time units in the run command such as run 100 ns, you can also
O omit the time unit. If you omit the time unit, the Vivado Simulator will assume the time unit of the

TIME_UNIT Tcl property. To view the TIME_UNIT property use the Tcl command get_property

time unit [current sim]. To change the TIME_UNIT property use the Tcl command

set property time unit <units> [current sim], where <unit> is one of the following: fs, ps,

ns, us, ms, and s.

Logic Simulation

Step: Runs the simulation up to the next HDL source line.
Break: Lets you pause a running simulation.
Delete All Breakpoints: Deletes all breakpoints.

Relaunch Simulation: Recompiles the simulation files and restarts the simulation. See
Re-running the Simulation After Design Changes (relaunch) for more information.

o l Send Feedback I 51
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=51

2: XI LI NX® Chapter 4: Simulating with Vivado Simulator

Simulation Toolbar

When you run the Vivado simulator, the simulation-specific toolbar (shown in the figure
below) opens to the right of the main toolbar.

I" * Tl 10 LS il i c

Figure 4-3: Simulation Toolbar

These are the same buttons labeled in Figure 4-2, page 51, above (without the Delete All
Breakpoints option), and they are provided for ease of use.

Simulation Toolbar Button Descriptions

Hover over the toolbar buttons for tool-tip descriptions.

Logic Simulation

Restart: resets the simulation time to zero.

Run all: runs the simulation until it completes all events or until an HDL statement
indicates that the simulation should stop.

Run For: runs for a specified period of time.
Step: runs the simulation until the next HDL statement.
Break: Pauses the current simulation.

Relaunch: Recompiles the simulation sources and restarts the simulation (after making
code changes, for example). See Re-running the Simulation After Design Changes
(relaunch) for more information.

o l Send Feedback I 52
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=52

(: XI LI NX® Chapter 4: Simulating with Vivado Simulator

Sources Window

The Sources window displays the simulation sources in a hierarchical tree, with views that
show Hierarchy, IP Sources, Libraries, and Compile Order, as shown in Figure 4-4.

Scope Sources X ? 00
Q T 2 + ﬂ
e Design Sources (1)

> @& bRaBFT) (bt vhdl) (20)

v Constraints (1)
e constrs_11(1)
B bft_full xdc
v Simulation Sources (1)
e sim_11(1)
v B bft_th (bft_thv) (1)
> @ uut: bR(aBFT) (bftvhdl) (20)

Hierarchy Libraries Compile Order

Figure 4-4: Sources Window

The Sources buttons are described by tool tips when you hover the mouse over them. The
buttons let you examine, expand, collapse, add to, open, filter and scroll through files.

You can also open or add a source file by right-clicking on the source object and selecting
the Open File or Add Sources options.

Scopes Window

A scope is a hierarchical partition of an HDL design. Whenever you instantiate a design unit
or define a process, block, package, or subprogram, you create a scope.

In the scopes window (shown in the figure below), you can see the design hierarchy. When
you select a scope in the Scopes hierarchy, all HDL objects visible from that scope appear in
the Objects window. You can select HDL objects in the Objects window and add them to the
waveform viewer.

Logic Simulation N Send Feedback 53
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=53

(: XI LI NX® Chapter 4: Simulating with Vivado Simulator

Scope ¥ Sources S i
Q = = o
MName Design Unit Block Type
~ 0 bft_tb bft_tb VerilogM... ~
w0 uut bft(aBFT) VHDOL Entity
» O amnd1 round_1(aR... VHDL Entity
» O armnd2 round_2(aR... VHDL Entity
» O armnd3 round_3(aR.. VHDL Entity
» O amnd4 round_4(aR... VHDL Entity
> Zl\ingressLo.. DR(aBFT) VHDL Block
> Zl\ingressLo.. DR(aBFT) VHDL Block
> Zl\ingressLo.. DR(aBFT) VHDL Block
> Zl\ingressLo.. DR(aBFT) VHDL Block
> Zl\ingressLo.. DR(aBFT) VHDL Block
> Zl\ingressLo.. DR(aBFT) VHDL Block
> Zl\ingressLo.. DR(aBFT) VHDL Block
> Zl\ingressLo.. DR(aBFT) VHDL Block
Zlingressloop bfi(aBFT) VHDL Block
> CllegressLo.. DR(aBFT) VHDL Block
> CllegressLo.. DR(aBFT) VHDL Block
Llanracel o nftiaBET YHML _Black R

Figure 4-5: Scopes Window
Filtering Scopes

« Click Settings option on the scopes sub-menu to toggle between showing or hiding
(check or uncheck) the corresponding scope type.

TIP: When you hide a scope using Setting option, all scopes inside that scope are also hidden regardless
O of type. For example, in the figure above, clicking the Verilog Module button to hide all Verilog module
scopes would hide not only the bft_tb scope but also uut (even though uut is a VHDL entity scope).

« To limit the display to scopes containing a specified string, click the Search button =

and type the string in the text box.

The objects displayed in the Objects window change (or are filtered) based on the current
scope. Select the current scope to change the objects in the Objects window.

Logic Simulation N Send Feedback 54
UG900 (v2018.2) June 6, 2018 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=54

2: XI LI NX® Chapter 4: Simulating with Vivado Simulator

When you right-click a scope, a popup menu (shown in Figure 4-6) provides the following
options:

SIMULATION - Behavioral Simulation - Functional - sim_1 - bft_ib

Scope X Sources Oy Objects ? 00 X
Q = = o Q &
MName Design Unit Block Type MName Value Data Type -~
~ I bit_t~ hift_th vnsrilgg Module Wwh. 0 Logic
5 3 Add to Wave Window | Entite 1 kit 1 Logic
£ gl Log to Wave Database 4 Objects in Scope 0 Logic
Goto Source Code Objects in Scope and below Logic
| m Wwh. 0 Logic
Set Current Scope To Active » B wbl.. e Array

Wwb.. 1 Logic
> Wlwb.. 00000000 Array

Exportto Spreadsheet...

14 error 0 Logic
> WRE. 10 Array
> W 5 Array

« Add to Wave Window: Adds all viewable HDL objects of the selected scope to the
waveform configuration.

TIP: HDL objects of large bit width can slow down the display of the waveform viewer. You can filter out
O such objects by setting a “display limit” on the wave configuration before issuing the Add to Wave
Window command. To set a display limit, use the Tcl command set property DISPLAY LIMIT

<maximum bit width> [current wave config].

The Add to Wave Window command might add a different set of HDL objects from the
set displayed in the Objects window. When you select a scope in the Scopes window, the
Objects window might display HDL objects from enclosing scopes in addition to objects
defined directly in the selected scope. The Add to Wave Window command, on the
other hand, adds objects from the selected scope only.

Alternately, you can drag and drop items in the Objects window into the Name column
of the Wave window.

f IMPORTANT: The Wave window displays the value changes of an object over time, starting from the
simulation time at which the object was added.

TIP: To display object values prior to the time of insertion, the simulation must be restarted. To avoid
O having to restart the simulation because of missing value changes: issue the 1og wave -r / Tcl

Logic Simulation N Send Feedback 55
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=55

2: XI LI NX® Chapter 4: Simulating with Vivado Simulator

command at the start of a simulation run to capture value changes for all display-able HDL objects in
your design. For more information, see Using the log_wave Tcl Command, page 120.

Changes to the waveform configuration, including creating the waveform configuration
or adding HDL objects, do not become permanent until you save the WCFG file.

« Go To Source Code: Opens the source code at the definition of the selected scope.

* Go To Instantiation Source Code: For Verilog modules and VHDL entity instances,
opens the source code at the point of instantiation for the selected instance.

+ Set Current Scope to Active: Set the current scope to selected scope. The selected
scope becomes the active simulation scope (i.e. get_property active_scope
[current_sim]). Active simulation scope is the HDL process scope, where the
simulation is currently paused. When used by disabling the follow active scope in
setting, Vivado Simulator will remember the last current_scope selection even when
simulation proceeds. When a break-point is hit, current_scope will still point to last
scope which is set as active scope

* Log to Wave Database: You can log either of the following:
o The objects of current scope

- The objects of the current scope and all scope below the current scope.

TIP: By default, the Vivado Simulator suppresses the logging of large HDL objects. To change the size
O limit of logged objects, use the set property trace limit <size> [current sim] Tcl
command, where <size> is the number of scalar elements in the HDL object.

In the source code text editor, you can hover over an identifier in the code get the value,
as shown in Figure 4-7.

f IMPORTANT: For this feature to work, be sure you have the scope associated with the source code
selected in the Scopes window.

TIP: Because the top module is not instantiated, the "Go to Instantiation Source Code” right-click
O option (shown in the figure above) is grayed out when the top module is selected.

TIP: Use log_wave to log the objects of current scope or below. Post simulation, you can add any objects
O on waveform and see the plot starting from time 0 till current simulation.

Logic Simulation N Send Feedback 56
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=56

(: XI LI NX® Chapter 4: Simulating with Vivado Simulator

Q - s B B N/ E Q
1 ; I_-_- $Header: /devl/xcs/repo/env/Databases/CAEInterfaces/verunilibs/datas/qglbl 1.14 ™
2, Cifndef GLEL
3 "define GLEL
4 Ctimescale 1 p3 /1 p3
g module glbl ():

: parameter ROC_WIDTH = 1000007
9, . parameter TOC_WIDTH = 0;
12 . | wire GSE:
13 ! ! wire GIS;
14 | : wire GWE:
15 ' wire FRLD;
16 . tril p up tmp;
17 . 9] . tri (weakl, strong0l) PFLL LOCKG = p_up tmp;
19 . : wire PROGB_GLBL:
20 ! wire CCLED GLBL;
21 | wire FCSBO GLBL;
22 ! wire [3:0] DO _GLBL;
23 | wire [3:0] DI_GLBL;
25 . req G5B _int;
26 reg GI5_int;
27 reg PFELD int;

Tt

Figure 4-7: Source Code with Identifier Value Displayed
Additional Scopes and Sources Options

In either the Scopes or the Sources window, a search field displays when you select the
Show Search button ¢ .

As an equivalent to using the Scopes and Objects windows, you can navigate the HDL
design by typing the following in the Tcl Console:

get _scopes

current_scope
report_scopes
report_val ues

TIP: To access source files for editing, you can open files from the Scopes or Objects window by
O selecting Go to Source Code, as shown in Figure 4-8.

Logic Simulation N Send Feedback 57
UG900 (v2018.2) June 6, 2018 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=57

Chapter 4: Simulating with Vivado Simulator

& XILINX.

Scope < Sources —0On

Q = = &

Mame Design Unit Block Type

~ 11 bft_tb hft th Warilnn Madyle
5 38 uut Add to Wave Window ty
i1 glbl Log to Wave Database F ldule

Goto Source Code

Set Current Scope To Active

Exportto Spreadsheet...

Figure 4-8: Context Menu in Scopes Window

TIP: After you have edited source code and saved the file, you can click the Relaunch button to
O recompile and relaunch simulation without having to close and reopen the simulation.

Objects Window

The Objects window displays the HDL simulation objects associated with the scope selected
in the Scopes window, as shown in Figure 4-9.

Logic Simulation
UG900 (v2018.2) June 6, 2018 www.xilinx.com

l Send Feedback I 58

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=58

& XILINX.

Chapter 4: Simulating with Vivado Simulator

> 9§ wbOQutputD... 00000000 Array

% error 0 Lagic
> “@§ READ_PE.. 10 Array
> W WRITE_FPE.. 5 Array
< Bl

Objects ? 008 X
Q Li=t=Pp ./ CheckAll
MName Value DataT. ™ /| 8 Input
% whClk 0 Logic
:) v @Dutput
W bRClk 1 Logic
i reset 0 Logic /' [l Inout
) i m
c.;wbDataForI... 0 Logic /! & intemal signal
W wbWriteQut 0 Logic
<
> & wblnputDat.. ffffc Array @ Constant
% wbDataFor.. 1 Logic 7 B variable

Figure 4-9: Objects Window

Icons beside the HDL objects show the type or port mode of each object. This view lists the
Name, Value, and Data Type of the simulation objects.

You can obtain the current value of an object by typing the following in the Tcl Console.

get _val ue <hdl _object>

TIP: To limit the number of digits to display for vectors, use the set _property
O array display limit <bits> [current sim] command, where <bits> is the number of bits

to display.

Table 4-1 briefly describes the options available at the top of the Objects window. Click
Settings to view the selected objects in the Object window. Use this to filter or limit the

contents of the Objects window.

Table 4-1: HDL Object Options
Button Description
Q The Search button, when selected, opens a field in which you can
enter an object name on which to search.
o The Settings button, when selected, allows you to display or hide
various kinds of HDL objects in Objects window.

Logic Simulation

UG900 (v2018.2) June 6, 2018 www.xilinx.com

| Send Feedback I

59

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=59

2: XI LI NX® Chapter 4: Simulating with Vivado Simulator

Objects Context Menu

When you right-click an object in the Objects window, a context menu (shown in
Figure 4-10) appears. The options in the context menu are described below.

Add to Wave Window
Log to Wave Database
Show in Wave Window
Go to Source Code

Report Drivers
Force Constant...
Force Clock...
Remove Force

Default Radix 3

Figure 4-10: Context Menu in Objects Window

« Add to Wave Window: Add the selected object to the waveform configuration.
Alternately, you can drag and drop the objects from the Objects window to the Name
column of the Wave window.

+ Log to Wave Database: Logs events of the selected object to the waveform database
(WDB) for later viewing in the wave window.

TIP: By default, the Vivado Simulator suppresses the logging of large HDL objects. To change the size
O limit of logged objects, use the set_property trace limit <size> [current_sim] Tcl
command, where <size> is the number of scalar elements in the HDL object.

« Show in Wave Window: Highlights the selected object in the Wave window.

« Default Radix: Set the default radix for all objects in the objects window and text
editor. The default radix is Hexadecimal. You can change this option from the context
menu.

Tcl command:
set _property radi x <new radi x> [current_sinj
where <new radix> is any of the following:
e bin
« unsigned (for unsigned decimal)
* hex

« dec (for signed decimal)

e ascii

Logic Simulation N Send Feedback 60
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=60

2: XI LI NX® Chapter 4: Simulating with Vivado Simulator

« oct
« smag (for signed magnitude)

Note: If you need to change the radix of an individual signal, use radix option from the context
menu.

« Radix: Select the numerical format to use when displaying the value of the selected
object in the Objects window and in the source code window.

You can change the radix of an individual object as follows:

a. Right-click an item in the Objects window.
b. From the context menu, select Radix and the format you want to use:
- Default
- Binary
- Hexadecimal
- Octal
- ASCl
- Unsigned Decimal
- Signed Decimal

- Signed Magnitude

O TIP: If you change the radix in the Objects window, it will not be reflected in the Wave window.

« Show as Enumeration: Select to display the values of a SystemVerilog enumeration
signal or variable using enumeration labels.

Note: This menu item is enabled only for SystemVerilog enumerations. If unchecked, all values
of the enumeration object display numerically according to the radix set for the object. If
checked, those values for which the enumeration declaration defines a label display the label
text, and all other values display numerically.

« Report Drivers: Display in the Tcl Console a report of the HDL processes that assign
values to the selected object.

* Go To Source Code: Open the source code at the definition of the selected object.

« Force Constant: Forces the selected object to a constant value. For more information
on forcing objects, see the section Force Constant in Chapter 6.

« Force Clock: Forces the selected object to an oscillating value. For more information,
see the section Force Clock in Chapter 6.

« Remove Force: Removes any force on the selected object. For more information, see
the section Remove Force in Chapter 6.

Logic Simulation N Send Feedback 61
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=61

& XILINX.

Chapter 4: Simulating with Vivado Simulator

TIP: If you notice that some HDL objects do not appear in the Waveform Viewer, it is because Vivado
O simulator does not support waveform tracing of some HDL objects, such as named events in Verilog

and local variables.

Wave Window

When you invoke the simulator it opens a Wave window by default. The Wave window
displays a new wave configuration consisting of the traceable HDL objects from the top

module of the simulation, as shown in Figure 4-11.

TIP: On closing and reopening a project, you must rerun simulation to view the Wave window. If,
O however, you unintentionally close the default Wave window while a simulation is active, you can

restore it by selecting Window > Waveform from the main menu.

SIMULATION - Behavioral Simulation - Functional - sim_1 - bft_to

Untitied 2*

Q M Q@ Q|3 (|10 =2 ||

400 ns

0 s 500 ns |=’w 0 ns 700 ns 20
4 wbClk JUULL LLLARULLAULASULPLF UL UL LA ULAULRULRUL LI

4 bCIk T AT Ay

- reset
4 wbDataForlnput |

4 wbWriteOut
W wbinputData[31:0]

¥ wbOutputData[31:0] 00000000
& error 0

%% READ_PERIOD[31:0] 0000000a
®* WRITE_PERIOD[31:0] 00000005

Figure 4-11: Wave Window

900 ns
JUULITULURLUUULILE

I
e Sk [

To add an individual HDL object or set of objects to the Wave window: in the Objects
window, right-click an object or objects and select the Add to Wave Window option from

the context menu (shown in Figure 4-9, page 59).

To add an object using the Tcl command type: add_wave <HDL_objects>.

Using the add_wave command, you can specify full or relative paths to HDL objects.

For example, if the current scope is /bft_tb/uut, the full path to the reset register under

uut is /bft_tb/uut/reset: the relative path is reset.

Logic Simulation

UG900 (v2018.2) June 6, 2018 www.xilinx.com

| Send Feedback I 62

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=62

(: XI LI NX® Chapter 4: Simulating with Vivado Simulator

O TIP:

The add_wave command accepts HDL scopes as well as HDL objects. Using add_wave with a scope (s
equivalent to the Add To Wave Window command in the Scopes window.

HDL objects of large bit width can slow down the display of the waveform viewer. You can filter out such
objects by setting a “display limit” on the wave configuration before issuing the Add to Wave Window
command. To set a display limit, use the Tcl command set property DISPLAY LIMIT <maximum

bit width> [current wave config].

Wave Objects

The Vivado IDE Wave window is common across a number of Vivado Design Suite tools. An
example of the wave objects in a waveform configuration is shown in Figure 4-12.

Untitled 2*
Q W @ Q & « | M = = [Te &
Valug w hd Radix: Hexadecimal A4 Match: | Exact A4 Next

547 893 ns

200 ns

%5 wblnputData[31:0]

1 whDataForQutput

™ wbOutputData[31:0
& error

® READ_PER

™ WRITE_P...D[31:0

Figure 4-12: HDL Objects in Waveform

The Wave window displays HDL objects, their values, and their waveforms, together with
items for organizing the HDL objects, such as: groups, dividers, and virtual buses.

Logic Simulation Send Feedback 63

UG900 (v2018.2) June 6, 2018 www.Xxilinx.com

{

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=63

2: XI LI NX® Chapter 4: Simulating with Vivado Simulator

Collectively, the HDL objects and organizational items are called a wave configuration. The
waveform portion of the Wave window displays additional items for time measurement,
that include: cursors, markers, and timescale rulers.

The Vivado IDE traces the value changes of the HDL object in the Wave window during
simulation, and you use the wave configuration to examine the simulation results.

The design hierarchy and the simulation waveforms are not part of the wave configuration,
and are stored in a separate wave database (WDB) file.

Context Menu in Waveform Window

When you right-click an object in the Waveform window, a context menu (shown in
Figure 4-13) appears. See Understanding HDL Objects in Waveform Configurations for
more information on HDL objects in Waveforms. The options in the context menu are
described below

* Go To Source Code: Opens the source code at the definition of the selected design
wave object.

« Show in Object Window: Displays the HDL objects for a design wave object in the
Objects window.

« Report Drivers: Display in the Tcl Console a report of the HDL processes that assign
values to the selected wave object.

« Force Constant: Forces the selected object to a constant value. For more information
on forcing objects, see Force Constant in Chapter 6.

« Force Clock: Forces the selected object to an oscillating value. See Force Clock in
Chapter 6 for more information.

+ Remove Force: Removes any force on the selected object. See Remove Force in
Chapter 6 for more information.

« Find: Opens the Find Toolbar in the Waveform window to search for a wave object by
name.

« Find Value: Opens the Find Toolbar in the Waveform window to search a waveform for
a value. See Searching a Value in Waveform Configuration in Chapter 5 for more
information.

« Select All: Selects all the wave objects in the Waveform window.
« Expand: Shows the sub-objects of the selected wave object.
« Collapse: Hides the sub-objects of the selected wave object.

« Ungroup: Unpacks the selected group or virtual bus. See Grouping Signals and Objects
in Chapter 5 for more information.

« Rename: Changes the displayed name of the selected wave object. See Renaming
Objects in Chapter 5 for more information.

Logic Simulation N Send Feedback 64
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=64

2: XI LI NX® Chapter 4: Simulating with Vivado Simulator

« Name: Changes the display of the name of the selected wave object to show the full
hierarchical name (long name), the simple signal or bus name (short name), or a
custom name. See Changing the Object Name Display in Chapter 5 for more
information.

« Waveform Style: Changes the waveform of the selected design wave object to digital
or analog format. See Customizing the Appearance of Analog Waveforms in Chapter 5
for more information.

« Signal Color: Sets the waveform color of the selected design wave object.
« Divider Color: Sets the bar color of the selected divider.

« Radix: Sets the radix in which to display values of the selected design wave objects. See
About Radixes in Chapter 5 for more information.

« Show as Enumeration: Shows values of the selected SystemVerilog enumeration wave
object as enumerator labels in place of numbers, whenever possible. See Changing the
Format of SystemVerilog Enumerations in Chapter 5 for more information.

« Reverse Bit Order: Reverses the bit order of values displayed for the selected array
wave object. See Reversing the Bus Bit Order in Chapter 5 for more information.

* New Group: Packs the selected wave objects into a folder-like group wave object. See
Organizing Waveforms in Chapter 5 for more information.

« New Divider: Creates a horizontal separator in the list of the Waveform window's wave
objects. See Organizing Waveforms in Chapter 5 for more information.

« New Virtual Bus: Creates a new logic vector wave object consisting of the bits of the
selected design wave objects. See Organizing Waveforms in Chapter 5 for more
information.

« Cut: Allows you to cut a signal in the Waveform window.
« Copy: Allows you to copy a signal in the Waveform window.
« Paste: Allows you to paste a signal in the Waveform window.

« Delete: Allows you to delete a signal in the Waveform window.

Logic Simulation N Send Feedback 65
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=65

& XILINX.

Figure 4-13:

Chapter 4: Simulating with Vivado Simulator

Go To Source Code

Show in Object Window

Force Constant...
Farce Clock. .
Remove Force
Cut

Copy

Delete
Find...

Find Value. ..
Select All

Rename

Mame

Signal Color

Mew Group
Mew Divider

Mew Virtual Bus

Context Menu of Waveform Objects Window

See Chapter 5, Analyzing Simulation Waveforms with Vivado Simulator for more
information about using the Wave window.

Saving a Waveform Configuration

The new wave configuration is not saved to disk automatically. Select File > Simulation
Waveform > Save Configuration As and supply a file name to save a WCFG file.

To save a wave configuration to a WCFG file, type the Tcl command save_wave_config

<filename.wcfg>.

The specified command argument names and saves the WCFG file.

Logic Simulation

UG900 (v2018.2) June 6, 2018

www.Xxilinx.com

l Send Feedback I 66

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=66

2: XI LI NX® Chapter 4: Simulating with Vivado Simulator

)

Logic Simulation

IMPORTANT: Zoom settings are not saved with the wave configuration.

Creating and Using Multiple Waveform Configurations

In a simulation session you can create and use multiple wave configurations, each in its own
Wave window. When you have more than one Wave window displayed, the most
recently-created or recently-used window is the active window. The active window, in
addition to being the window currently visible, is the Wave window upon which commands
external to the window apply. For example: HDL Objects > Add to Wave Window.

You can set a different Wave window to be the active window by clicking the title of the
window. See Distinguishing Between Multiple Simulation Runs, page 71 and Creating a New
Wave Configuration, page 80 for more information.

Running Functional and Timing Simulation

As soon as your project is created in the Vivado Design Suite, you can run behavioral
simulation. You can run functional and timing simulations on your design after successfully
running synthesis and/or implementation. To run simulation: in the Flow Navigator, select
Run Simulation and choose the appropriate option from the popup menu shown in the
figure below.

TIP: Availability of popup menu options is dependent on the design development stage. For example, if
you have run synthesis but have not yet run implementation, the implementation options in the popup
menu are grayed out.

Run Behavioral Simulation

Run Post-Synthesis Functional Simulation
Run Post-Synthesis Timing Simulation

Run Post-Implementation Functional Simulation
Run Post-Implementation Timing Simulation

Figure 4-14: Simulation Run Options

o l Send Feedback I 67
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=67

2: XI LI NX® Chapter 4: Simulating with Vivado Simulator

Running Functional Simulation

Post-Synthesis Functional Simulation

You can view Run Simulation > Post-Synthesis Functional Simulation option (shown in
Figure 4-14) after completing a successful Synthesis run.

After synthesis, the general logic design has been synthesized into device-specific
primitives. Performing a post-synthesis functional simulation ensures that any synthesis
optimizations have not affected the functionality of the design. After you select a
post-synthesis functional simulation, the functional netlist is generated, and the UNISIM
libraries are used for simulation.

Post-Implementation Functional Simulations

The Run Simulation > Post-Implementation Functional Simulation option (shown in
Figure 4-14) becomes available after completing implementation run.

After implementation, the design has been placed and routed in hardware. A functional
verification at this stage is useful in determining if any physical optimizations during
implementation have affected the functionality of your design.

After you select a post-implementation functional simulation, the functional netlist is
generated and the UNISIM libraries are used for simulation.

Running Timing Simulation

TIP: Post-Synthesis timing simulation uses the estimated timing delay from the device models and does
O not include interconnect delay. Post-Implementation timing simulation uses actual timing delays.

When you run Post-Synthesis and Post-Implementation timing simulation the simulator
tools include:

» Gate-level netlist containing SIMPRIMS library components
¢+ SECUREIP

« Standard Delay Format (SDF) files

You defined the overall functionality of the design in the beginning. When the design is
implemented, accurate timing information is available.

To create the netlist and SDF, the Vivado Design Suite:

» Calls the netlist writer, write_verilog with the -mode timesim switch and
write_ sdf (SDF annotator)

« Sends the generated netlist to the target simulator

Logic Simulation N Send Feedback 68
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=68

2: XI LI NX® Chapter 4: Simulating with Vivado Simulator

You control these options using Simulation Settings as described in Using Simulation
Settings, page 29.

ﬁ IMPORTANT: Post-Synthesis and Post-Implementation timing simulations are supported for Verilog
only. There is no support for VHDL timing simulation. If you are a VHDL user, you can run post synthesis
and post implementation functional simulation (in which case no SDF annotation is required and the
simulation netlist uses the UNISIM library). You can create the netlist using the write_vhdl Tcl
command. For usage information, refer to the Vivado Design Suite Tcl Command Reference Guide
(UG835) [Ref 7].

f IMPORTANT: The Vivado simulator models use interconnect delays; consequently, additional switches
are required for proper timing simulation, as follows: -transport int delays -pulse r 0
-pulse _int r 0

Post-Synthesis Timing Simulation

The Run Simulation > Post-Synthesis Timing Simulation option (shown in Figure 4-14)
becomes available after completing a successful synthesis run.

After synthesis, the general logic design has been synthesized into device-specific
primitives, and the estimated routing and component delays are available. Performing a
post-synthesis timing simulation allows you to see potential timing-critical paths prior to
investing in implementation. After you select a post-synthesis timing simulation, the timing
netlist and the estimated delays in the SDF file are generated. The netlist files includes
$sdf_annotate command so that the simulation tool includes the generated SDF file.

Logic Simulation N Send Feedback 69
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug835-vivado-tcl-commands.pdf;a=xwrite_vhdl
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=69

2: XI LI NX® Chapter 4: Simulating with Vivado Simulator

Post-Implementation Timing Simulations

The Run Simulation > Post-Implementation Timing Simulation option (shown in
Figure 4-14) becomes available after completing implementation run.

After implementation, the design has been implemented and routed in hardware. A timing
simulation at this stage helps determine whether or not the design functionally operates at
the specified speed using accurate timing delays. This simulation is useful for detecting
unconstrained paths, or asynchronous path timing errors, for example, on resets. After you
select a post-implementation timing simulation, the timing netlist and the SDF file are
generated. The netlist files includes $sdf_annotate command so that the generated SDF
file is picked up.

Annotating the SDF File for Timing Simulation

When you specified simulation settings, you specified whether or not to create an SDF file
and whether the process corner would be set to fast or slow.

TIP: To find the SDF file optional settings, in the Vivado IDE Flow Navigator, right click Simulation and
O select Simulation Settings. In the Settings dialog box, select Simulation category and click Netlist
tab.

Based on the specified process corner, the SDF file contains different min and max
numbers.

O RECOMMENDED: Run two separate simulations to check for setup and hold violations.

To run a setup check, create an SDF file with -process_corner slow, and use the max column
from the SDF file.

To run a hold check, create an SDF file with the -process_corner fast, and use the min
column from the SDF file. The method for specifying which SDF delay field to use is
dependent on the simulation tool you are using. Refer to the specific simulation tool
documentation for information on how to set this option.

To get full coverage run all four timing simulations, specify as follows:

o Slow corner: SDFMIN and SDFMAX
o Fast corner: SDFMIN and SDFMAX

Logic Simulation N Send Feedback 70
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=70

2: XI LI NX® Chapter 4: Simulating with Vivado Simulator

Saving Simulation Results

The Vivado simulator saves the simulation results of the objects (VHDL signals, or Verilog
reg or wire) being traced to the Waveform Database (WDB) file (<filename>.wdb) in the
<project>.sim/<simset> directory.

If you add objects to the Wave window and run the simulation, the design hierarchy for the
complete design and the transitions for the added objects are automatically saved to the
WDB file. You can also add objects to the waveform database that are not displayed in the
Wave window using the 1og_wave command. For information about the 1og_wave
command, see Using the log_wave Tcl Command in Chapter 6.

Distinguishing Between Multiple Simulation Runs

When you have run several simulations against a design, the Vivado simulator displays
named tabs at the top of the workspace with the simulation type that is currently in the
window highlighted, as shown in Figure 4-15.

Window Layout View Run Help
P, B o X 4« » & 10us ~ X c
SIMULATION Behavioral Simulation - Functional - sim_1 - bft_tb =~ | Post-Synthesis Simulation - Functional - sim_1 - bft_tb

Logic Simulation

Figure 4-15: Active Simulation Type

Closing a Simulation

To close a simulation, in the Vivado IDE:

Select File > Exit or click the X at the top-right corner of the project window.

CAUTION! When there are multiple simulations running, clicking the X on the blue title bar closes all
simulations. To close a single simulation, click the X on the small gray or white tab under the blue title
bar.

To close a simulation from the Tcl Console, type:

close_sim

o l Send Feedback I 71
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=71

2: XI LI NX® Chapter 4: Simulating with Vivado Simulator

The Tcl command first checks for unsaved wave configurations. If any exist, the command
issues an error. Close or save unsaved wave configurations before issuing the close_sim
command, or add the -force option to the Tcl command.

Note: It is always recommended to use close_sim command to completely close the simulation
before using close_project command to close the current project.

Adding a Simulation Start-up Script File

You can add custom Tcl commands in a batch file to the project so that they are run with the
simulation. These commands are run after simulation begins. An example of this process is
described in the steps below.

1. Create a Tcl script with the simulation commands you want to add to the simulation
source files. For example, if you have a simulation that runs for 1,000 ns, and you want
it to run longer, create a file that includes:

run 5us

Or, if you want to monitor signals that are not at the top level (because, by default, only
top-level signals are added to the waveform), you can add them to the post . tcl script.
For example:

add_wave/ t op/ | 1/ <si gnal Nanme>

2. Name the file post.tcl and save it.

3. Use the Add Sources option in Flow Navigator to invoke the Add Sources wizard, and
select Add or Create Simulation Sources.

4. Add the post.tcl file to your Vivado Design Suite project as a simulation source. The
post.tcl file displays in the Simulation Sources folder, as shown in Figure 4-16.

Logic Simulation N Send Feedback 72
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=72

2: XI LI NX® Chapter 4: Simulating with Vivado Simulator

Scope | Sources X 2 _Onm
- e
aQ =z s |+ o
4 Design Sources (1
» Whaw bRt(aBFT) (bftvhdl) (20

M Constraints (1
4 Simulation Sources (2
bed sim_1(2
~ @& bft_th (bft_tbv) (1
> @ uut: bR(aBFT) (bftvhdl) (20
w TCL (1
% posttcl

Cimerarchy | Livaes: Compieonds
Figure 4-16: Using the post.tcl File in a Design
5. From the Simulation toolbar, click the Relaunch button. €

Simulation runs again, with the additional time you specified in the post. tcl file
added to the originally specified time. Notice that the Vivado simulator automatically
sources the post.tcl file after invoking all its commands.

Viewing Simulation Messages

The Vivado IDE contains a message area where you can view informational, warning, and
error messages. As shown in Figure 4-17, some messages from the Vivado simulator

contain an issue description and a suggested resolution.
To see the same detail in the Tcl Console, type:

hel p -message {nessage_nunber}

Logic Simulation N Send Feedback 73
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=73

8 XI LI NX® Chapter 4: Simulating with Vivado Simulator

Tcl Console ? 0 a X

Q

= ¢ Il B B @
launch simulation: Time (s): cpu = 00:00:04 ; elapsed = 00:00:06 . Memory (MB): peak = 1442.203 ; gain = 0.000 ©
help -message {[simulatcr 43-3120}

Description:
IEEE LEM 1800-200%9, section 31.4.4, states that the first argument of system task "$width' must contaln event '

module top():

wire clk;

specify
swidth{clk,5,2);

endspecify

endmodule

Besolution:

Rewrite your code by adding an event to the first argument as shown in the following example:
module top():

wire clk:

specify

swidth {posedge clk,5,2);
endspecify

Figure 4-17: Simulator Message Description and Resolution Information

An example of such a command is as follows:

hel p -nmessage {simul ator 43-3120}

Managing Message Output

If your HDL design produces a large number of messages (for example, via the $display
Verilog system task or report VHDL statement), you can limit the amount of text output
sent to the Tcl Console and log file. This saves computer memory and disk space. To
accomplish this, use the -maxlogsize command line option:

1. In the Flow Navigator, right-click on SIMULATION and select Simulation Settings.
2. In the Settings dialog box:

a. Add -maxlogsize <size> nexttoxsim.simulate.xsim.more_options,
where <size> is the maximum amount of text output in megabytes.

Logic Simulation N Send Feedback 74
UG900 (v2018.2) June 6, 2018 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=74

(: XI LI NX® Chapter 4: Simulating with Vivado Simulator

Using the launch_simulation Command

The launch_simulation command lets you run any supported simulator in script mode.
The syntax of launch_simulation is as follows:
| aunch_sinulation [-step <arg>] [-sinmset <arg>] [-npde <arg>] [-type <arg>]
[-scripts_only] [-of _objects <args>] [-absol ute_path]

[-install _path <arg>] [-noclean_dir] [-quiet] [-verbose]

Table 4-2 describes the options of launch_simulation.

Table 4-2: launch_simulation Options

Option Description
[-step] Launch a simulation step. Values: all, compile, elaborate, simulate. Default: all
(launch all steps).
[-simset] Name of the simulation fileset.
[-mode] Simulation mode. Values: behavioral, post-synthesis, post-implementation

Default: behavioral.

[-type] Netlist type. Values: functional, timing. This is only applicable when the mode is
set to post-synthesis or post-implementation.

[-scripts_only] | Only generate scripts.

[-of_objects] Generate compile order file for this object (applicable with -scripts_only
option only)

[-absolute_path] | Make all file paths absolute with respect to the reference directory.

[-install_path] Custom installation directory path.

[-noclean_dir] Do not remove simulation run directory files.
[-quiet] Ignore command errors.
[-verbose] Suspend message limits during command execution.

Note: The -scripts_only switch has been deprecated and scheduled to be removed from future
versions of Vivado. Xilinx recommends you to use export_simulation Tcl command.

Examples

* Running behavioral simulation using Vivado simulator

create_project project_1 project_1 -part xc7vx485tffgll57-1
add_files -norecurse tnp.v

add _files -fileset sim1 -norecurse testbench.v
import_files -force -norecurse

updat e_conpi l e_order -fileset sources_1

update_conpil e_order -fileset sim1l

| aunch_si mul ati on

Logic Simulation N Send Feedback 75
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=75

2: XI LI NX® Chapter 4: Simulating with Vivado Simulator

Generating script for behavioral simulation with Questa Advanced Simulator.

create_project project_1 project_1 -part xc7vx485tffgll57-1

add_files -norecurse tnp.v

add _files -fileset sim1 -norecurse testbench.v

import_files -force -norecurse

updat e_conpi |l e_order -fileset sources_1

updat e_conpi |l e_order -fileset sim1l

set_property target_simulator Questa [current_project]

set _property conpxlib.questa_conpiled_library_dir <conpiled_library_| ocation>
[current _project]

| aunch_simul ation -scripts_only

Launching post-synthesis functional simulation using Synopsys VCS

set_property target_simulator VCS [current _project]

set _property conpxlib.vcs_conpiled_library_dir <conpiled_library_location>
[current _project]

I aunch_si mul ati on -nmpde post-synthesis -type functiona

Running post-implementation timing simulation using Cadence IES

set_property target_simulator | ES [current _project]

set _property conpxlib.ies_conpiled_library_dir <conpiled_library_location>
[current _project]

I aunch_si mul ati on -nmode post-inplementation -type tining

Re-running the Simulation After Design Changes
(relaunch)

While debugging your HDL design with the Vivado Simulator, you may determine that your
HDL source code needs correction.

Use the following steps to modify your design and re-run the simulation:

1.

Use the Vivado code editor or other text editor to update and save any necessary source
code changes.

Use the Relaunch € button on the Vivado IDE toolbar to re-compile and re-launch the
simulation as shown in Figure 4-18. You may alternatively use the relaunch_sim Tcl
command to re-compile and re-launch the simulation.

File Edit Flow Tools Window Layout View Run Help
= B PoE O X ¥ |4 » r 10 us w

Figure 4-18: relaunch sim option

I+

If the modified design fails to compile, an error box appears displaying the reason for
failure. The Vivado IDE continues to display the results of the previous run of the
simulation in a disabled state. Return to step 1 to correct the errors and re-launch the
simulation again.

Logic Simulation N Send Feedback 76
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=76

2: XI LI NX® Chapter 4: Simulating with Vivado Simulator

W

Logic Simulation

After the design successfully re-compiles, the simulation starts again.

IMPORTANT: Relaunching may fail for reasons other than compilation errors, such as in the case of a
file system error. If the Run buttons on the Simulation toolbar are grayed out after a re-launch,
indicating that the simulation is disabled, check the contents of the Tcl Console for possible errors that
have prevented the re-launch from succeeding.

CAUTION! You may also re-launch the simulation using Run Simulation in the Flow Navigator or using
launch simulation Tcl command. However, using these options may fully close the simulation,
discarding waveform changes and simulation settings such as radix customization.

Note: The Relaunch Simulation button € will be active only after one successful run of Vivado
Simulator using launch_simulation. The Relaunch Simulation button would be grayed out if
the simulation is run in a Batch/Scripted mode.

Using the Saved Simulator User Interface Settings

By default, the Vivado Simulator saves your configuration changes to a file under the
simulation's working directory as you work with the user interface controls and Tcl
commands of the Vivado Simulator. The settings that are saved include the following:

« The state of the filter buttons and column widths of the Scopes and Objects windows.

« Tcl properties of the simulation, including array display limit, default radix, default time
unit for the run command, and trace limit.

+ Radixes and the Show as Enumeration state that you set on HDL objects in the Objects
window.

After you shut down the simulation, the Vivado Simulator restores your settings when you
reopen and run the Vivado Simulator.

IMPORTANT: Turn off the Clean Up Simulation Files checkbox in Vivado's Simulation Settings to
ensure that the settings file does not get erased when you relaunch the simulation.

TIP: To revert the settings to their defaults, delete the settings file. You can find the settings file under
the Vivado project directory at
<project>.sim/<simset>/<simtype>/xsim.dir/<snapshot>/xsimSettings.ini. For
example, the settings file for the default behavioral simulation run of the BFT example design would
reside at bft.sim/sim_1/behav/xsim.dir/bft tb behav/xsimSettings.ini.
Alternatively, turn on the Clean Up Simulation Files check-box in the Simulation Settings.

o l Send Feedback I 77
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=77

2: XI LI NX® Chapter 4: Simulating with Vivado Simulator

Default Settings

A Vivado project Tcl object supports a few properties that allows you to supply default
settings for cleaned-up or newly created simulations. These simulations do not already have
a settings file. The following list shows the default settings properties of the project:

+ XSIM.ARRAY_DISPLAY_LIMIT
+ XSIM.RADIX

« XSIM.TIME_UNIT

* XSIM.TRACE_LIMIT

You can view the current values of the properties with the report_property
[current_project] Tcl command and set the values of the properties with the
set_property <property name> <property value> [current_project] Tcl
command. For example, to set the array display limit to 16, use the following command.

set _property xsimarray_display_limt 16 [current_project]

When you launch the new or cleaned-up simulation, the simulation Tcl object inherits your
project properties. You can verify it with the following Tcl command:

report_property [current_sinj

i? IMPORTANT: The project properties apply only to cleaned-up or newly created simulations. After you
have run a simulation of a particular run type and sim set such as sim_1/behav, that simulation retains
a separate copy of the settings for all subsequent launches. The changes to the project properties can
no longer take effect for that simulation. The project properties take effect again only if the simulation
is cleaned up or the settings file is deleted.

Logic Simulation N Send Feedback 78
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=78

& XILINX

Chapter 5

Analyzing Simulation Waveforms with
Vivado Simulator

Introduction

In the Vivado® simulator, you can use the waveform to analyze your design and debug your
code. The simulator populates design signal data in other areas of the workspace, such as
the Objects and the Scopes windows.

Typically, simulation is set up in a test bench where you define the HDL objects you want to
simulate. For more information about test benches see Writing Efficient Testbenches
(XAPP199) [Ref 5].

When you launch the Vivado simulator, a wave configuration displays with top-level HDL

objects. The Vivado simulator populates design data in other areas of the workspace, such
as the Scopes and Objects windows. You can then add additional HDL objects, or run the

simulation. See Using Wave Configurations and Windows, below.

Using Wave Configurations and Windows

Vivado simulator allows customization of the wave display. The current state of the display
is called the wave configuration. This configuration can be saved for future use in a WCFG
file.

A wave configuration can have a name or be untitled. The name shows on the title bar of
the wave configuration window. A wave configuration is untitled when it has never been
saved to a file.

Logic Simulation N Send Feedback 79
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=79

2: XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

Creating a New Wave Configuration

Create a new waveform configuration for displaying waveforms as follows:

1.

Select File > Simulation Waveform > New Configuration.

A new Wave window opens and displays a new, untitled waveform configuration.
Tcl command: create_wave_config <waveform_name>.

Add HDL objects to the waveform configuration using the steps listed in Understanding
HDL Objects in Waveform Configurations, page 82.

See Chapter 4, Simulating with Vivado Simulator for more information about creating new
waveform configurations. Also see Creating and Using Multiple Waveform Configurations,
page 67 for information on multiple waveforms.

Opening a WCFG File

Open a WCFG file to use with the simulation as follows:

1.

Select File > Simulation Waveform > Open Configuration.
The Open Waveform Configuration dialog box opens.

Locate and select a WCFG file.

Note: When you open a WCFG file that contains references to HDL objects that are not present
in a static simulation HDL design hierarchy, the Vivado simulator ignores those HDL objects and
omits them from the loaded waveform configuration.

A Wave window opens, displaying waveform data that the simulator finds for the listed
wave objects of the WCFG file.

Tcl command: open_wave_config <waveform_name>

Saving a Wave Configuration

After editing, to save a wave configuration to a WCFG file, select File > Simulation
Waveform > Save Configuration As, and type a name for the waveform configuration.

Logic Simulation

Tcl command: save_wave_config <waveform_name>

o l Send Feedback I 80
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=80

2: XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

Opening a Previously Saved Simulation Run

There are three methods for opening a previously saved simulation using the Vivado Design
Suite: an interactive method and a programmatic method.

Standalone mode

You can open WDB file outside Vivado using the following command:

xsi m <name>. wdb - gui

TIP: You can open a WCFG file together with the WDB file by adding -view <WCFG file> to the
O xsim command.

Interactive Method

- If a Vivado Design Suite project is loaded, click Flow > Open Static Simulation and
select the WDB file containing the waveform from the previously run simulation.

TIP: A static simulation is a mode of the Vivado simulator in which the simulator displays data from a
O WDB file in its windows in place of data from a running simulation.

- Alternatively, in the Tcl Console, run: open_wave_database <name>.wdb.
Programmatic Method
Create a Tcl file (for example, design.tcl) with contents:

current_fileset
open_wave_database <name>.wdb

Then run it as:

vivado -source design.tcl

ﬁ IMPORTANT: Vivado simulator can open WDB files created on any supported operating system. It can
also open WDB files created in Vivado Design Suite versions 2014.3 and later. Vivado simulator cannot
open WDB files created in versions earlier than 2014.3 of the Vivado Design Suite.

When you run a simulation and display HDL objects in a Wave window, the running
simulation produces a waveform database (WDB) file containing the waveform activity of
the displayed HDL objects. The WDB file also stores information about all the HDL scopes
and objects in the simulated design. In this mode you cannot use commands that control or
monitor a simulation, such as run commands, as there is no underlying ‘live’ simulation
model to control.

However, you can view waveforms and the HDL design hierarchy in a static simulation.

Logic Simulation N Send Feedback 81
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=81

2: XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

Understanding HDL Objects in Waveform
Configurations

When you add an HDL object to a waveform configuration, the waveform viewer creates a
wave object of the HDL object. The wave object is linked to, but distinct from, the associated
HDL object.

You can create multiple wave objects from the same HDL object, and set the display
properties of each wave object separately.

For example, you can set one wave object for an HDL object named myBus to display values
in hexadecimal and another wave object for myBus to display values in decimal.

There are other kinds of wave objects available for display in a waveform configuration,
such as: dividers, groups, and virtual buses.

Wave objects created from HDL objects are specifically called design wave objects. These
objects display with a corresponding icon. For design wave objects, the icon indicates
whether the object is a scalar g ora compound &j such as a Verilog vector or VHDL record.

TIP: To view the HDL object for a design wave object in the Objects window, right-click the name of the
O design wave object and choose Show in Object Window.

Figure 5-1 shows an example of HDL objects in the waveform configuration window. The
design objects display Name and Value.

« Name: By default, shows the short name of the HDL object: the name alone, without
the hierarchical path of the object. You can change the Name to display a long name
with full hierarchical path or assign it a custom name.

« Value: Displays the value of the object at the time indicated in the main cursor of the
Wave window. You can change the formatting, or radix, of the value independent of the
formatting of other design wave objects linked to the same HDL object and
independent of the formatting of values displayed in the Objects window and source
code window.

Logic Simulation N Send Feedback 82
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=82

(: XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

Untitled 1

Q W a 9

Iy wbClk
I bRCIK

Forinput
1% wbWriteOut

1% wbDataForQutput
™ wbOutputData[31:0]
1 error

B READ_PERIC

B WRITE_PER

Figure 5-1: Waveform HDL Objects

The Scopes window provides the ability to add all viewable HDL objects for a selected scope
to the Wave window. For information on using the Scopes window, see Scopes Window in
Chapter 4.

About Radixes

Understanding the type of data on your bus is important, and to use the digital and analog
waveform options effectively, you need to recognize the relationship between the radix
setting and the data type.

i? IMPORTANT: Make a change to the radix setting in the window in which you wish to see the change. A

change to the radix of an item in the Objects window does not apply to values in the Wave window or

the Tcl Console. For example, the item wbOutputData[31:0] can be set to Signed Decimal in the objects
window, but it remains set to Binary in the Wave window.

Logic Simulation N Send Feedback 83
UG900 (v2018.2) June 6, 2018 www.xilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=83

2: XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

Changing the Default Radix

The default waveform radix controls the numerical format of values for all wave objects
whose radix you did not explicitly set. The waveform radix defaults to Hexadecimal.

To change the default waveform radix:

1. In the Waveform window, click the Settings button # to open the Waveform Settings.
2. On the General page, click the Default Radix drop-down menu.

3. From the drop-down list, select a radix.

Changing the Radix on Individual Objects

To change the radix of a wave object in the Wave window: + | Dot

1. Right-click the wave object name. Binary

Hexadecimal

2. Select Radix and the format you want from the drop-down Octal
menu: ASC
° Default Unsigned Decimal

Signed Decimal

o Binary Signed Magnitude
- Hexadecimal
Real Settings...
o Octal
- ASCII
- Unsigned Decimal
- Signed Decimal
- Signed Magnitude
- Real

Note: For a description of the usage for Real and Real Settings see Using Radixes and Analog
Waveforms, page 85

From the Tcl Console, to change the numerical format of the displayed values, type the
following Tcl command:

set _property radi x <radi x> <wave_obj ect >

Where <radix> is one the following: bin, unsigned, hex, dec, ascii, or oct
and where <wave_object> is an object returned by the add_wave command.

O TIP: If you change the radix in the Wave window, it will not be reflected in the Objects window.

Logic Simulation N Send Feedback 84
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=84

2: XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

Customizing the Waveform

Using Analog Waveforms

Using Radixes and Analog Waveforms

Bus values are interpreted as numeric values, which are determined by the radix setting on
the bus wave object, as follows:

« Binary, octal, hexadecimal, ASCIl, and unsigned decimal radixes cause the bus values to
be interpreted as unsigned integers.

« If any bit in the bus is neither 0 nor 1, the entire bus value is interpreted as 0.

« The signed decimal and signed magnitude radixes cause the bus values to be
interpreted as signed integers.

« Real radixes cause bus values to be interpreted as fixed point or floating point real
numbers, based on settings of the Real Settings dialog box.

To set a wave object to the Real radix:

1. In the waveform configuration window, select an HDL object, and right-click to open the
popup menu.

2. Select Radix > Real Settings to open the Real Settings dialog box, shown in Figure 5-2.

Logic Simulation N Send Feedback 85
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=85

2: XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

¢ Real Settings @

Please specify how a multiple-bit object is to be interpreted
as areal numbervalue.

Fixed point

#* Floating point

Single precision
Double precision

* Custom precision

Exponent width: 1 2 Fraction width: .

o] (o

Figure 5-2: Real Settings Dialog Box

r'_-"|
| w))

You can set the radix of a wave to Real to display the values of the object as real numbers.
Before selecting this radix, you must choose settings to instruct the waveform viewer how
to interpret the bits of the values.

The Real Setting dialog box options are:

« Fixed Point: Specifies that the bits of the selected bus wave object(s) is interpreted as
a fixed point, signed, or unsigned real number.

« Binary Point: Specifies how many bits to interpret as being to the right of the binary
point. If Binary Point is larger than the bit width of the wave object, wave object values
cannot be interpreted as fixed point, and when the wave object is shown in Digital
waveform style, all values show as <Bad Radix>. When shown as analog, all values are
interpreted as 0.

« Floating Point: Specifies that the bits of the selected bus wave object(s) should be
interpreted as an IEEE floating point real number.

Note: Only single precision and double precision (and custom precision with values set to those
of single and double precision) are supported.

Other values result in <Bad Radix> values as in Fixed Point.
Exponent Width and Fraction Width must add up to the bit width of the wave object, or
else <Bad Radix> values result.

Logic Simulation N Send Feedback 86
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=86

2: XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

TIP: If the row indices separator lines are not visible, you can turn them on in the Using the Waveform
O Settings Dialog Box, page 94, to make them visible.

Displaying Waveforms as Analog

ﬁ IMPORTANT: When viewing an HDL bus object as an analog waveform—to produce the expected
waveform, select a radix that matches the nature of the data in the HDL object.
For example:
- If the data encoded on the bus is a 2's-compliment signed integer, you must choose a signed radix.
- If the data is floating point encoded in IEEE format, you must choose a real radix.

Customizing the Appearance of Analog Waveforms
To customize the appearance of an analog waveform:

1. Right-click an HDL object in the Name column of the waveform configuration window
and select Waveform Style from the drop-down menu. A popup menu appears,
showing the following options:

- Analog: Sets the waveform to Analog.
- Digital: Sets the waveform object to Digital.

- Analog Settings: Opens the Analog Settings dialog box (shown in Figure 5-3),
which provides options for the analog waveform display.

ﬁ IMPORTANT: The Wave window can display analog waveforms only for buses that are 64 bits wide or
smaller.

Logic Simulation N Send Feedback 87
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=87

(: XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

¢ Analog Settings

Please specify the display settings forviewing the selected
objects as analog waveforms. ’

Row height = 100 = pixels

-

Y Range
® Auto
Fixed
Interpolation style: '® Linear Hold
Off scale: * Hide Clip Overlap

¥ Horizontal line i‘u'alue:l 0 |

[omar | [oo |

Figure 5-3: Analog Settings Dialog Box
Analog Settings Dialog Box Option Descriptions

» Row Height: Specifies how tall to make the select wave object(s), in pixels. Changing
the row height does not change how much of a waveform is exposed or hidden
vertically, but rather stretches or contracts the height of the waveform.

When switching between Analog and Digital waveform styles, the row height is set to an
appropriate default for the style (20 for digital, 100 for analog).

TIP: If the row indices separator lines are not visible, enable the checkbox in the Waveform Settings to

O turn them on. Using the Waveform Settings Dialog Box, page 94 for information on how to change the
options settings. You can also change the row height by dragging the row index separator line to the
left and below the waveform name.

Logic Simulation N Send Feedback 88
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=88

2: XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

« Y Range: Specifies the range of numeric values to be shown in the waveform area.

o

Auto: Specifies that the range should continually expand whenever values in the
visible time range of the window are discovered to lie outside the current range.

Fixed: Specifies that the time range is to remain at a constant interval.
- Min: Specifies the value displays at the bottom of the waveform area.
- Max: Specifies the value displays at the top.

Note: Both values can be specified as floating point; however, if the wave object radix is
integer, the values are truncated to integers.

« Interpolation Style: Specifies how the line connecting data points is to be drawn.

o

Linear: Specifies a straight line between two data points.

Hold: Specifies that of two data points, a horizontal line is drawn from the left point
to the X-coordinate of the right point, then another line is drawn connecting that
line to the right data point, in an L shape.

« Off Scale: Specifies how to draw waveform values that lie outside the Y range of the
waveform area.

o

Hide: Specifies that outlying values are not shown, such that a waveform that
reaches the upper or lower bound of the waveform area disappears until values are
again within the range.

Clip: Specifies that outlying values be altered so that they are at the top or bottom
of the waveform area, so a waveform that reaches the upper- or lower-bound of the
waveform area follows the bound as a horizontal line until values are once again
within the range.

Overlap: Specifies that the waveform be drawn wherever its values are, even if they
lie outside the bounds of the waveform area and overlap other waveforms, up to
the limits of the Wave window itself.

« Horizontal Line: Specifies whether to draw a horizontal rule at the given value. If the
check-box is on, a horizontal grid line is drawn at the vertical position of the specified Y
value, if that value is within the Y range of the waveform.

As with Min and Max, the Y value accepts a floating point number but truncates it to an
integer if the radix of the selected wave objects is an integer.

Logic Simulation

o l Send Feedback I 89
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=89

2: XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

Waveform Object Naming Styles

There are options for renaming objects, viewing object names, and changing name displays.

Renaming Objects

You can rename any wave object in the waveform configuration, such as design wave
objects, dividers, groups, and virtual buses.

1. Select the object name in the Name column.

2. Right-click and select Rename from the popup menu.
The Rename dialog box opens.

3. Type the new name in the Rename dialog box, and click OK.
Note: Changing the name of a design wave object in the wave configuration does not affect the
name of the underlying HDL object.

Changing the Object Name Display

You can display the full hierarchical name (long name), the simple signal or bus name (short
name), or a custom name for each design wave object. The object name displays in the
Name column of the wave configuration. If the name is hidden:

1. Expand the Name column until you see the entire name.

2. In the Name column, use the scroll bar to view the name.
To change the display name:

1. Select one or more signal or bus names. Use Shift+click or Ctrl+click to select many
signal names.

2. Right-click and select Name from the drop-down menu. A popup menu appears,
showing the following options:

- Long to display the full hierarchical name of the design object.
- Short to display the name of the signal or bus only.

- Custom to display the custom name given to the object when renamed. See
Renaming Objects, page 90.

TIP: Renaming a wave object changes the name display mode to Custom. To restore the original name
O display mode, change the display mode to Long or Short, as described above.
Long and Short names are meaningful only to design wave objects. Other wave objects (dividers,
groups, and virtual buses) display their Custom names by default and display an ID string for their
Long and Short names.

Logic Simulation N Send Feedback 90
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=90

2: XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

Reversing the Bus Bit Order

You can reverse the bus bit order in the wave configuration to switch between MSB-first
(big endian) and LSB-first (little endian) bit order for the display of bus values.

To reverse the bit order:

1. Select a bus.

2. Right-click and select Reverse Bit Order.

The bus bit order reverses. The Reverse Bit Order command is marked to show that this
is the current behavior.

ﬁ IMPORTANT: The Reverse Bit Order command operates only on the values displayed on the bus. The
command does not reverse the list of bus elements that appears below the bus when you expand the
bus wave object.

TIP: The index ranges displayed on Long and Short names of buses indicate the bit order in bus
O elements. For example, after applying Reverse Bit Order on a bus bus [0: 7], the bus displays
bus[7:0].

Changing the Format of SystemVerilog Enumerations

A SystemVerilog enumeration is an HDL object with numerical values for which text labels
are defined to represent specific values. For example, an enumeration might define LABEL1
to represent the value 1 and LABEL2 to represent the value 5. The Show As Enumeration
option on the context menu lets you specify whether to show enumeration values using
their given labels or numerically. In the previous example, if Show As Enumeration is on, a
value of 5 appears as LABEL?2. If the option is off, the value 5 appears as in whatever radix
is set for the enumeration, as shown in the Radix menu.

To display enumerations using labels:

1. Select an enumeration

2. Right-click and check Display As Enumeration
To display enumerations numerically:

1. Select an enumeration
2. Right-click and uncheck Display As Enumeration

Note: Enumeration values for which there is no defined label always display numerically, regardless
of the Display As Enumeration setting. The Display As Enumeration option is enabled only for
SystemVerilog enumeration objects.

Logic Simulation N Send Feedback 91
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=91

2: XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

Controlling the Waveform Display

You can control the waveform display using:

« Resizing handles between the Name, Value, and waveform columns of the wave window
« Scroll combinations with the mouse wheel

« Zoom feature buttons in the Wave window sidebar

e Zoom combinations with the mouse wheel

« Vivado IDE Y-Axis zoom gestures

« Vivado simulation X-Axis zoom gestures. See the Vivado Design Suite User Guide: Using
the Vivado IDE (UG893) [Ref 3] for more information about using the mouse to pan and
zoom.

Note: In contrast to other Vivado Design Suite graphic windows, zooming in a Wave window applies
to the X (time) axis independent of the Y axis. As a result, the Zoom Range X gesture, which specifies
a range of time to which to zoom the window, replaces the Zoom to Area gesture of other Vivado
Design Suite windows.

TIP: Saving a WCFG file records wave window settings in addition to wave objects and markers. Wave
O window settings include the Name and Value column widths, zoom level, scroll position, expansion
state of groups and buses, and the position of the main cursor.

Using the Column Resizing Handles

To change the width of the Name or Value column, position the mouse over the vertical bar
to the right of the column until the mouse cursor changes shape, then drag the mouse left
or right to narrow or widen the column as desired.

Note: You may need to widen the Value column first to widen the Name column, if the Value
column's width is already at its minimum.

Scrolling with the Mouse Wheel

Click within the wave window to scroll up and down with the mouse wheel. You can also
scroll the waveform left and right with the mouse wheel in combination with the Shift key.
Using the Zoom Feature Buttons

There are zoom functions such as Zoom in, Zoom Out, and Zoom Fit as menu
buttons in the Wave window that let you zoom in and out of a wave
configuration as needed.

@ a x

Logic Simulation N Send Feedback 92
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=92

2: XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

Zooming with the Mouse Wheel

Click within the waveform area and use the mouse wheel in combination with the Ctrl key to
zoom in and out, emulating the operation of the dials on an oscilloscope.

Y-Axis Zoom Gestures for Analog Waveforms

In addition to the zoom gestures supported for zooming in the X dimension, when over an
analog waveform, additional zoom gestures are available, as shown in Figure 5-4.

Figure 5-4: Analog Zoom Options

To invoke a zoom gesture, hold down the left mouse button and drag in the direction
indicated in the diagram, where the starting mouse position is the center of the diagram.

The additional zoom gestures are:

e Zoom Out Y: Zooms out in the Y dimension by a power of 2 determined by how far
away the mouse button is released from the starting point. The zoom is performed
such that the Y value of the starting mouse position remains stationary.

« Zoom Y Range: Draws a vertical curtain which specifies the Y range to display when the
mouse is released.

Logic Simulation N Send Feedback 93
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=93

2: XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

« Zoom InY: Zooms in toward the Y dimension by a power of 2 determined by how far
away the mouse button is released from the starting point. The zoom is performed
such that the Y value of the starting mouse position remains stationary.

« Reset Zoom Y: Resets the Y range to that of the values currently displayed in the Wave
window and sets the Y Range mode to Auto.

All zoom gestures in the Y dimension set the Y Range analog settings. Reset Zoom Y sets
the Y Range to Auto, whereas the other gestures set Y Range to Fixed.

Using the Waveform Settings Dialog Box

Click the Settings button # to open the Waveform Settings as shown in Figure 5-5.

General | Colors C x

Radix: Hexadecimal v

Elide Setting: | Middle w
v Draw waveform shadow
Show signal indices

| Show grid lines

+| Snap to Transition

Figure 5-5: Waveform Settings

From the General tab, you can configure the following Waveform Settings:

« Radix: Sets the numerical format to use for newly-created design wave objects.

« Elide Setting: Controls truncation of signal names that are too long for the Wave
window.

o Left truncates the left end of long names.
- Right truncates the right end of long names.

- Middle preserves both the left and right ends, omitting the middle part of long
names.

« Draw Waveform Shadow: Creates a shaded representation of the waveform.

Logic Simulation N Send Feedback 94
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=94

2: XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

Show signal indices: Displays the row numbers to the left of each wave object name.
You can drag the lines separating the row numbers to change the height of a wave
object.

Show grid lines: Displays the wave window with grid lines.

Snap to Transition: When selected, causes dragged cursors and markers to gravitate to
waveform transitions near the mouse cursor. See Moving Cursors for more information.

Floating Ruler: Displays the floating ruler whenever the secondary cursor is visible or a
marker is selected. See Using the Floating Ruler for more information.

TIP: If Floating Ruler option appears disabled (unchecked) in the Settings dialog box, use Shift+Click
O on the Wave window to make the secondary cursor visible. This action results in enabling the Floating
Ruler option in the Settings dialog box.

From the Colors tab, you can set colors of items within the waveform.

Changing the Display of the Time Scale

Right-click above the ruler to display the time scale menu. This menu lets you select how
you want to display time values on the time scale.

The following are the options on the timescale menu:

Logic Simulation

Auto: The timescale choses time units suitable for the wave window's zoom level.

Default: Displays the time units corresponding to the precision of the simulation that
was determined when the HDL design was compiled.

Samples: Displays the time in discrete sample numbers instead of fractions of a second
(not available for HDL simulation).

User: User-defined time units (not available for HDL simulation).
fs: Displays time units in femtoseconds.

ps: Displays time units in picoseconds.

ns: Displays time units in nanoseconds.

us: Displays time units in microseconds.

ms: Displays time units in milliseconds.

s: Displays time units in seconds

o l Send Feedback I 95
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=95

2: XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

Organizing Waveforms

The following subsections describe the options that let you organize information within a
waveform.

Grouping Signals and Objects

A Group is an expandable and collapsible container for organizing related sets of wave
objects. The Group itself displays no waveform data but can be expanded to show its
contents or collapsed to hide them. You can add, change, and remove groups.

To add a Group:

1. In a Wave window, select one or more wave objects to add to a group.
Note: A group can include dividers, virtual buses, and other groups.

2. Right-click and select New Group from the context menu.
This adds a Group that contains the selected wave object to the wave configuration.

In the Tcl Console, type add_wave_group to add a new group.

-]

A Group is represented with the Group button -“+. You can move other HDL objects to the
group by dragging and dropping the signal or bus name.

The new Group and its nested wave objects saves when you save the waveform
configuration file.

You can move or remove Groups as follows:

* Move Groups to another location in the Name column by dragging and dropping the
group name.

« Remove a Group by highlighting it, right-click and select Ungroup from the popup
menu. Wave objects formerly in the Group are placed at the top-level hierarchy in the
wave configuration.

Groups can be renamed also; see Renaming Objects, page 90.

C CAUTION! The Delete key removes a selected group and its nested wave objects from the wave
configuration.

Logic Simulation N Send Feedback 96
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=96

2: XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

Using Dividers

Dividers create a visual separator between HDL objects to make certain signals or objects
easier to see. You can add a divider to your wave configuration to create a visual separator
of HDL objects, as follows:

1. In a Name column of the Wave window, click a signal to add a divider below that signal.

2. Right-click and select New Divider.
The new divider is saved with the wave configuration file when you save the file.
Tcl command: add_wave_divider

You can move or delete Dividers as follows:

« To move a Divider to another location in the waveform, drag and drop the divider
name.

« To delete a Divider, highlight the divider, and click the Delete key, or right-click and
select Delete from the context menu.

Dividers can be renamed also; see Renaming Objects, page 90.

Defining Virtual Buses

You define a virtual bus to the wave configuration, which is a grouping to which you can
add logic scalars and vectors.

The virtual bus displays a bus waveform, whose values are composed by taking the
corresponding values from the added scalars and arrays in the vertical order that they
appear under the virtual bus and flattening the values to a one-dimensional vector.

To add a virtual bus:

1. In a wave configuration, select one or more wave objects to add to a virtual bus.

2. Right-click and select New Virtual Bus from the popup menu.
The virtual bus is represented with the Virtual Bus button “ .
Tcl Command: add_wave_virtual_bus

You can move other logical scalars and arrays to the virtual bus by dragging and dropping
the signal or bus name.

The new virtual bus and its nested items save when you save the wave configuration file.
You can also move it to another location in the waveform by dragging and dropping the
virtual bus name.

Logic Simulation N Send Feedback 97
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=97

2: XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

You can rename a virtual bus; see Renaming Objects, page 90.

To remove a virtual bus, and ungroup its contents, highlight the virtual bus, right-click, and
select Ungroup from the popup menu.

& CAUTION! The Delete key removes the virtual bus and nested HDL objects within the bus from the
wave configuration.

Analyzing Waveforms

The following subsections describe available features that help you analyze the data within
the waveform.
Using Cursors

Cursors are temporary time markers that can be moved frequently for measuring the time
between two waveform edges.

Placing Main and Secondary Cursors
You can place the main cursor with a single left-click in the Wave window.

To place a secondary cursor, Ctrl+Click, hold the waveform, and drag either left or right. You
can see a flag that labels the location at the top of the cursor. Alternatively, you can hold the
Shift key and click a point in the waveform.

If the secondary cursor is not already on, this action sets the secondary cursor to the
present location of the main cursor and places the main cursor at the location of the mouse
click.

Note: To preserve the location of the secondary cursor while positioning the main cursor, hold the

Shift key while clicking. When placing the secondary cursor by dragging, you must drag a minimum
distance before the secondary cursor appears.

Moving Cursors

To move a cursor, hover over the cursor until you see the grab symbol, and click and drag
the cursor to the new location.

As you drag the cursor in the Wave window, you see a hollow or filled-in circle if the Snap
to Transition waveform setting is selected, which is the default behavior.

« A hollow circle © under the mouse indicates that you are between transitions in the
waveform of the selected signal.

Logic Simulation N Send Feedback 98
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=98

2A XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator
« A filled-in circle ® under the mouse indicates that the cursor is locked in on a
transition of the waveform under the mouse or on a marker.

A secondary cursor can be hidden by clicking anywhere in the Wave window where there is
no cursor, marker, or floating ruler.

Finding the Next or Previous Transition on a Waveform

The Waveform window contains buttons for jumping the main cursor to the next or
previous transition of selected waveform or from the current position of the cursor.

To move the main cursor to the next or previous transition of a waveform:
1. Ensure the wave object in the waveform is active by clicking the name.

This selects the wave object, and the waveform display of the object displays with a
thicker line than usual.

2. Click the Next Transition or Previous Transition = %' buttons in the waveform
toolbar (?), or use the right or left keyboard arrow key to move to the next or previous
transition, respectively.

O TIP: You can jump to the nearest transition of a set of waveforms by selecting multiple wave objects
together.

Using Markers

Use a marker when you want to mark a significant event within your waveform in a
permanent fashion. Markers let you measure times relevant to that marked event.

You can add, move, and delete markers as follows:

« You add markers to the wave configuration at the location of the main cursor.

a. Place the main cursor at the time where you want to add the marker by clicking in
the Wave window at the time or on the transition.

b. Right-click Markers > Add Marker. -l

A marker is placed at the cursor, or slightly offset if a marker already exists at the
location of the cursor. The time of the marker displays at the top of the line.

To create a new wave marker, use the Tcl command:

add_wave_marker <-fil enane> <-1ine_nunber>

* You can move the marker to another location in the Wave window using the drag and
drop method. Click the marker label (at the top of the marker or marker line) and drag
it to the location.

Logic Simulation N Send Feedback 99
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=99

2: XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

o As you drag the marker in the Wave window, you see a hollow or filled-in circle if
the Snap to Transition option is selected in Waveform Settings window, which is
the default behavior.

- Afilled-in circle @ indicates that you are hovering over a transition of the
waveform for the selected signal or over another marker.

o For markers, the filled-in circle is white.

- A hollow circle O indicates that the marker is locked in on a transition of the
waveform under the mouse or on another marker.

Release the mouse key to drop the marker to the new location.

* You can delete one or all markers with one command. Right-click over a marker, and do
one of the following:

o Select Delete Marker from the popup menu to delete a single marker.
- Select Delete All Markers from the popup menu to delete all markers.

Note: You can also use the Delete key to delete a selected marker.

See the Vivado Design Suite help or the Vivado Design Suite Tcl Command Reference Guide
(UG835) [Ref 7] for command usage.

Using the Floating Ruler

The floating ruler assists with time measurements using a time base other than the absolute
simulation time shown on the standard ruler at the top of the Wave window.

You can display (or hide) the floating ruler and drag it to change the vertical position in the
Wave window. The time base (time 0) of the floating ruler is the secondary cursor, or, if there
is no secondary cursor, the selected marker.

The floating ruler is visible only when the secondary cursor or a marker is present.

1. Do either of the following to display or hide a floating ruler:
- Place the secondary cursor.
o Select a marker.

2. In the Waveform Settings window, enable (check) the Floating Ruler option.

You only need to follow this procedure the first time. The floating ruler displays each
time you place the secondary cursor or select a marker.

Uncheck/disable the Floating Ruler option to hide the floating ruler.

Logic Simulation N Send Feedback 100
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=100

(: XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

Searching a Value in Waveform Configuration

The Find Toolbar allows you to search one or more waveforms for a specified value. You can
search for either an exact value, such as 23FF, or a pattern that matches a set of values, such
as "any value whose first two digits are 23 and whose fourth digit is F.”

QW & Q| o 4 M 2 2r + [e

Value w b Radix: = Hexadecimal bd Match: | Exact v Previous Next

547.833 ns

155876 n=] Ta7.

0 ns=s 200 ns 400 ns 15 200 ns|

I wbClk : UMALLARMLLAAR AR AR T

I bftClk
& reset 0

whbDataForinput -
I wbWriteOut Cut
Copy
Copy Value
» B wbinputData[21:0]
Paste
Delete

1% whDataForQutput | - Eind._

» B whOutputDatal31:04 0 ;
- i Find Value. ..
W error 0 ()

» ™ READ_PER..D[31:
B WRITE_P..D{31:

Signal Color

Mew Divider

|—40|:| n= |—20|:| ns 0 n=s
1 1 I 1 1 1 L] L 1 L I L L 1 L L L 1 L | 1 L 1 1 1 1 1 1 I 1 1 1 1

Figure 5-6: Find Value option and Find Toolbar

i? IMPORTANT: This search feature supports only scalar and vector (1-D) wave objects of a “logic” type.
Logic types include 2-state and 4-state types of Verilog/SystemVerilog and bit and std_logic of VHDL.

To perform the search:

1. In the Name column, select one or more design wave objects (wave objects that have
waveforms).

2. Right-click one of the selected wave objects in either the Name column or Value column
and choose the Find Value option to activate the Find Toolbar.

Logic Simulation N Send Feedback 101
UG900 (v2018.2) June 6, 2018 www.Xxilinx.com L\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=101

2: XI LI NX® Chapter 5: Analyzing Simulation Waveforms with Vivado Simulator

3. On the Find Toolbar, choose a radix for your search value from the Radix drop down list.
The search feature supports the following radixes:

o Binary

- Hexadecimal

o Octal

- Unsigned Decimal
- Signed Decimal

4. In the blank text box on the Find Toolbar, enter a value pattern consisting of a string of
digits valid for the radix you chose. Valid digits include numeric digits, VHDL MVL 9
literals (U, X, 0, 1, Z, W, L, H, -), and Verilog literals (0, 1, x, z).

Note: If you enter an invalid digit, the text box turns red, and an error message appears at the right
side of the toolbar. The set of valid numeric digits depends on the radix. For example, if you chose the
Octal radix, numeric digits are those between 0 and 7. Numeric digits for hexadecimal include 0
through 9 and A through F (or a through f). You may enter the special digit .' to specify a match with
any digit value. For example, the Octal value pattern “12.4" matches occurrences of 1234, 1204, and
12X4 encountered in the waveform.

5. Choose a match style from the following options in the Match drop down list:

o Exact: Waveform values must contain the same number of digits as in the value
pattern in order to be considered a match. For example, a value pattern of "1234"
matches occurrences of 1234 encountered in the waveform but not 123 or 12345.

TIP: With the Exact match style you may omit leading zeros from the value pattern. For example, to
O find the value 0023 in the waveform, you may specify a value pattern of “0023" or simply “23".

- Beginning: Any waveform value whose beginning digits match the value pattern is
considered a match. For example, a value pattern of “1234" matches occurrences of
1234 and 12345 encountered in the waveform but not 1235 or 123. This option is
available only for radixes binary, octal, and hexadecimal.

- End: Any waveform value whose ending digits match the value pattern is considered
a match. For example, a value pattern of “1234" matches occurrences of 1234 and
91234 encountered in the waveform but not 1235 or 234. This option is available
only for radixes binary, octal, and hexadecimal.

6. Click the Next button or press the Enter key to move the main cursor forward to the
nearest match, or click the Previous button to move the main cursor backward to the
nearest match. With multiple wave objects selected, the cursor stops on the nearest
match of any of the selected wave objects.

TIP: If there are no matches in the requested direction, the cursor remains stationary and a “Value not
O found” message appears on the right side of the toolbar.

Logic Simulation N Send Feedback 102
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=102

& XILINX

Chapter 6

Debugging a Design with Vivado
Simulator

Introduction

The Vivado® Design Suite simulator provides you with the ability to:

Examine source code
Set breakpoints and run simulation until a breakpoint is reached
Step over sections of code

Force waveform objects to specific values

This chapter describes debugging methods and includes Tcl commands that are valuable in
the debug process. There is also a flow description on debugging with third-party
simulators.

Debugging at the Source Level

You can debug your HDL source code to track down unexpected behavior in the design.
Debugging is accomplished through controlled execution of the source code to determine
where issues might be occurring. Available strategies for debugging are:

Logic Simulation

Step through the code line by line: For any design at any point in development, you can
use the step command to debug your HDL source code one line at a time to verify that
the design is working as expected. After each line of code, run the step command
again to continue the analysis. For more information, see Stepping Through a
Simulation.

Set breakpoints on the specific lines of HDL code, and run the simulation until a
breakpoint is reached: In larger designs, it can be cumbersome to stop after each line
of HDL source code is run. Breakpoints can be set at any predetermined points in your
HDL source code, and the simulation is run (either from the beginning of the test bench
or from where you currently are in the design) and stops are made at each breakpoint.

o l Send Feedback I 103
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=103

2: XI LI NX® Chapter 6: Debugging a Design with Vivado Simulator

You can use the Step, Run All, or Run For command to advance the simulation after a
stop. For more information, see the section, Using Breakpoints, below.

« Set conditions. The tools evaluate each condition and execute Tcl commands when the
condition is true. Use the Tcl command:

add_condi ti on <condition> <instruction>

See Adding Conditions, page 106 for more information.

Stepping Through a Simulation

You can use the step command, which executes your HDL source code one line of source
code at a time, to verify that the design is working as expected.

The line of code is highlighted and an arrow points to the currently executing line of code.

You can also create breakpoints for additional stops while stepping through your
simulation. For more information on debugging strategies in the simulator, seethe section,
Using Breakpoints, below.

1. To step through a simulation:

o From the current running time, select Run > Step, or click the Step button. £

The HDL associated with the top design unit opens as a new view in the Wave
window.

- From the start (0 ns), restart the simulation. Use the Restart command to reset time
to the beginning of the test bench. See Chapter 4, Simulating with Vivado
Simulator.

2. In the waveform configuration window, right-click the waveform or HDL tab and select
Tile Horizontally see the waveform and the HDL code simultaneously.

3. Repeat the Step action until debugging is complete.

As each line is executed, you can see the arrow moving down the code. If the simulator is
executing lines in another file, the new file opens, and the arrow steps through the code. It
is common in most simulations for multiple files to be opened when running the Step
command. The Tcl Console also indicates how far along the HDL code the step command
has progressed.

Logic Simulation N Send Feedback 104
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=104

2: XI LI NX® Chapter 6: Debugging a Design with Vivado Simulator

Using Breakpoints

A breakpoint is a user-determined stopping point in the source code that you can use for
debugging the design.

TIP: Breakpoints are particularly helpful when debugging larger designs for which debugging with the
O Step command (stopping the simulation for every line of code) might be too cumbersome and time
consuming.

You can set breakpoints in executable lines in your HDL file so you can run your code
continuously until the simulator encounters the breakpoint.

Note: You can set breakpoints on lines with executable code only. If you place a breakpoint on a line
of code that is not executable, the breakpoint is not added.

To set a breakpoint in the workspace (GUI):

1. Run a simulation.

2. Go to your source file and click the hollow circle & to the left of the source line of
interest. A red dot @ confirms the breakpoint is set correctly.

After the procedure completes, a simulation breakpoint button opens next to the line of
code.

To set a breakpoint in the Tcl Console:

1. Type the Tcl Command: add_bp <file_name> <line_number>

This command adds a breakpoint at <1ine_number> of <file_name>. See the Vivado
Design Suite help or the Vivado Design Suite Tcl Command Reference Guide (UG835)
[Ref 7] for command usage.

To debug a design using breakpoints:

1. Open the HDL source file.
Set breakpoints on executable lines in the HDL source file.

Repeat steps 1 and 2 until all breakpoints are set.

> W

Run the simulation, using a Run option:
o To run from the beginning, use the Run > Restart command.

o Use the Run > Run All or Run > Run For command.
The simulation runs until a breakpoint is reached, then stops.

The HDL source file displays an arrow, indicating the breakpoint stopping point.

Logic Simulation N Send Feedback 105
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=105

v
2A XI LI NX® Chapter 6: Debugging a Design with Vivado Simulator
5. Repeat Step 4 to advance the simulation, breakpoint by breakpoint, until you are

satisfied with the results.
A controlled simulation runs, stopping at each breakpoint set in your HDL source files.

During design debugging, you can also run the Run > Step command to advance the
simulation line by line to debug the design at a more detailed level.

You can delete a single breakpoint or all breakpoints from your HDL source code.
To delete a single breakpoint, click the Breakpoint button @

To remove all breakpoints, either select Run> Delete All Breakpoints
or click the Delete All Breakpoints button X .

To delete all breakpoints:
« Type the Tcl command remove_bps -all
To get breakpoint information on the specified list of breakpoint objects:

« Type the Tcl command report_bps

Adding Conditions

To add breakpoints based on a condition and output a diagnostic message, use the
following commands:

add_condi tion <condition> <message>

Using the Vivado IDE BFT example design, to stop when the wbC1k signal and the reset
are both active-High, issue the following command at start of simulation to print a
diagnostic message and pause simulation when reset goes to 1 and wbClk goes to 1:

add_condition {reset == 1 & wbd k == 1} {puts "Reset went to high"; stop}

In the BFT example, the added condition causes the simulation to pause at 5 ns when the
condition is met and "Reset went to high" is printed to the console. The simulator
waits for the next step or run command to resume simulation.

-notrace Option

Normally, when you execute the add_condition command, the specified Tcl commands
also echo to the console, log file, and journal file. The -notrace switch causes those
commands to execute silently, suppressing the commands (but not their output) from
appearing in those three places.

Logic Simulation N Send Feedback 106
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=106

2: XI LI NX® Chapter 6: Debugging a Design with Vivado Simulator

For Example, If you execute the following example command:
puts ‘Hello’

The normal behavior of the above command would be to emit the following output in the
console, log file, and journal file:

puts ‘Hello’
Hel | o

When you execute -notrace switch, it would produce only the following output:

Hel | o

Pausing a Simulation

While running a simulation for any length of time, you can pause a simulation using the
Break command, which leaves the simulation session open.

To pause a running simulation, select Simulation > Break or click the Break button

The simulator stops at the next executable HDL line. The line at which the simulation
stopped is displayed in the text editor.

Note: This behavior applies to designs that are compiled with the ~-debug <kind> switch.

Resume the simulation any time using the Run All, Run, or Step commands. See Stepping
Through a Simulation, page 104 for more information.

Tracing the Execution of a Simulation

You can display a note on the Tcl console for every source line that the simulation
encounters while running. This continuous display of encountered lines is called line
tracing.

To turn on line tracing, use one of the following Tcl commands:
Itrace on
set _property line_tracing true [current_sim

To turn off line tracing use one of the following Tcl commands:

Itrace of f
set_property line_tracing false [current_sin

You can display a note on the Tcl console for every process that the simulation encounters
while running. This continuous display of encountered processes is called process tracing.

Logic Simulation N Send Feedback 107
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=107

2: XI LI NX® Chapter 6: Debugging a Design with Vivado Simulator

To turn on process tracing, use one of the following Tcl commands:
ptrace on
set_property process_tracing true [current_sin

To turn off process tracing, use one of the following Tcl commands:
ptrace off

set _property process_tracing false [current_sini

Forcing Objects to Specific Values

Using Force Commands

The Vivado simulator provides an interactive mechanism to force a signal, wire, or register
to a specified value at a specified time or period of time. You can also force values on
objects to change over a period of time.

TIP: A ‘force’ is both an action (that is, the overriding of HDL-defined behavior on a signal) and also a
O Tcl first-class object, something you can hold in a Tcl variable.

You can use force commands on an HDL signal to override the behavior for that signal as
defined in your HDL design. You might, for example, choose to override the behavior of a
signal to:

« Supply a stimulus to a test bench signal that the HDL test bench itself is not driving

« Correct a bad value temporarily during debugging (allowing you to continue analyzing
a problem)

The available force commands are:

 Force Constant
» Force Clock

« Remove Force

f IMPORTANT: Running the restart command preserves all forces that have not been cleared with the
remove_force command. When the simulation runs again, the preserved forces take effect at the
same absolute simulation time as in the previous simulation run.

Logic Simulation N Send Feedback 108
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=108

2: XI LI NX® Chapter 6: Debugging a Design with Vivado Simulator

Figure 6-1 illustrates how the add_force functionality is applied given the following
command:

add_force nySig {0 t4} {1 ty} {0 t3} {1 t,} {O ts} -repeat_every tr -cancel_after t

- tc |

Current Time

—tr—Pp

-t 1>
22—

l«—t3

<t t5 -

Figure 6-1: lllustration of -add_force Functionality

You can get more detail on the command by typing the following in the Tcl Console:

add_force -help

Force Constant

The Force Constant option lets you fix a signal to a constant value, overriding the
assignments made within the HDL code or another previously applied constant or clock
force.

Force Constant and Force Clock are options in the Objects or Wave window right-click
menu (as shown in Figure 6-2), or in the text editor (source code).

TIP: Double-click an item in the Objects, Sources, or Scopes window to open it in the text editor. For
O additional information about the text editor, see the Vivado Design Suite User Guide: Using the Vivado
IDE (UG893) [Ref 3].

Logic Simulation N Send Feedback 109
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=109

2: XI LI NX® Chapter 6: Debugging a Design with Vivado Simulator

Go Tao Source Code

Show in Object Window

Force Constant...
Force Clock...

Remaove Force

Cut
Copy
Paste

Delete
Find...

Find Value...
Select All

Figure 6-2: Force Options

The Force options are disabled for the objects for which the Vivado simulator does not
support forcing. The type of object or limitations in the Vivado simulator's modeling for
those objects may be the cause for not supporting such objects.

TIP: To force a module or entity port whose Force options are disabled, try forcing its connected actual
O signal one scope level up. Use the add_force Tcl command (for example, add_force myObj 0) to view
the reason why the options are disabled.

When you select the Force Constant option, the Force Constant dialog box opens so you
can enter the relevant values, as shown in Figure 6-3.

Logic Simulation N Send Feedback 110
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=110

2: XI LI NX® Chapter 6: Debugging a Design with Vivado Simulator

¢ Force Constant: /bft_tb/wbOutputData @

Enter parameters below to force the signal to a constant
value. Assignments made from within HOL code or any ’
previously applied constant or clock force will be overridden.

Signal name: Ibft_tbfwbOutputData
Value radix: Hexadecimal w
Force value:

Starting after time offset. | Ons

Cancel after time offset.

Figure 6-3: Force Selected Signal Dialog Box

The following are Force Constant option descriptions:

Logic Simulation

Signal name: Displays the default signal name, that is, the full path name of the
selected object.

Value radix: Displays the current radix setting of the selected signal. You can choose
one of the supported radix types: Binary, Hexadecimal, Unsigned Decimal, Signed
Decimal, Signed Magnitude, Octal, and ASCIIl. The GUI then disallows entry of the
values based on the Radix setting. For example: if you choose Binary, no numerical
values other than 0 and 1 are allowed.

Force value: Specifies a force constant value using the defined radix value. (For more
information about radixes, see About Radixes, page 83 and Using Radixes and Analog
Waveforms, page 85.)

Starting after time offset: Starts after the specified time. The default starting time is 0.
Time can be a string, such as 10 or 10 ns. When you enter a number without a unit, the
Vivado simulator uses the default (ns).

Cancel after time offset: Cancels after the specified time. Time can be a string such as
10 or 10 ns. If you enter a number without a unit, the default simulation time unit is
used.

Tcl command:

add_force /testbench/ TENSOQUT 1 200 -cancel _after 500

. l Send Feedback I 111
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=111

2: XI LI NX® Chapter 6: Debugging a Design with Vivado Simulator

Force Clock

The Force Clock command lets you assign a signal a value that toggles at a specified rate
between two states, in the manner of a clock signal, for a specified length of time. When
you select the Force Clock option in the Objects window menu, the Force Clock dialog box
opens, as shown in Figure 6-4.

¢ Force Clock: /bft_tb/wbOutputData @

Enter parameters below to force the signal to a constant
value. Assignments made from within HDL code or any '
previously applied constant or clock force will be overridden.

Signal name: Ibft_tbiwbQutputData

Value radix: Hexadecimal -

Leading edge value:

Trailing edge value:

Starting after time offset: | Ons

Cancel after time offset:

Duty cycle (%) 50

Period: 100ns

Figure 6-4: Force Clock Dialog Box

The options in the Force Clock dialog box are shown below.

« Signal name: Displays the default signal name; the full path name of the item selected
in the Objects window or waveform.

TIP: The Force Clock command can be applied to any signal (not just clock signals) to define an
O oscillating value.

» Value radix: Displays the current radix setting of the selected signal. Select one of the
displayed radix types from the drop-down menu: Binary, Hexadecimal, Unsigned
Decimal, Signed Decimal, Signed Magnitude, Octal, or ASCII.

« Leading edge value: Specifies the first edge of the clock pattern. The leading edge
value uses the radix defined in Value radix field.

« Trailing edge value: Specifies the second edge of the clock pattern. The trailing edge
value uses the radix defined in the Value radix field.

Logic Simulation N Send Feedback 112
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=112

2: XI LI NX® Chapter 6: Debugging a Design with Vivado Simulator

« Starting after time offset: Starts the force command after the specified time from the
current simulation. The default starting time is 0. Time can be a string, such as 10 or 10
ns. If you enter a number without a unit, the Vivado simulator uses the default user
unit.

+ Cancel after time offset: Cancels the force command after the specified time from the
current simulation time. Time can be a string, such as 10 or 10 ns. When you enter a
number without a unit, the Vivado simulator uses the default simulation time unit.

« Duty cycle (%): Specifies the percentage of time that the clock pulse is in an active
state. The acceptable value is a range from 0 to 100 (default is 50%).

« Period: Specifies the length of the clock pulse, defined as a time value. Time can be a
string, such as 10 or 10 ns.

Note: For more information about radixes, see About Radixes, page 83 and Using Radixes and
Analog Waveforms, page 85.)

Example Tcl command:

add_force /testbench/ TENSOUT -radi x bin {0} {1} -repeat_every 10ns -cancel _after 3us

Remove Force

To remove any specified force from an object use the following Tcl command:

remove_forces <force object>
remove_forces <HDL object>

Using Force in Batch Mode

The code examples below show how to force a signal to a specified value using the
add_force command. A simple verilog circuit is provided. The first example shows the
interactive use of the add_force command and the second example shows the scripted
use.

Example 1: Adding Force

Verilog Code (tmp.v)
The following code snippet is a Verilog circuit:

nodul e bot (i nput inl, in2, output outl);

reg sel;
assign outl = sel? inl: in2;
endnodul e

nodul e top;

reg inl, in2;

W re outl;

bot 11(inl, in2, outl);
initial

Logic Simulation N Send Feedback 113
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=113

2: XI LI NX® Chapter 6: Debugging a Design with Vivado Simulator

Logic Simulation

begi n
#10 inl = 1'b1; in2 = 1'b0
#10 inl = 1'b0; in2 = 1'Db1;
end
initial
$nmonitor("outl = %\ n", outl);
endnodul e

Command Examples
You can invoke the following commands to observe the effect of add_force:

xelab -vlog tnp.v -debug al
Xsi mwork.top

At the command prompt, type:

add_force /top/l1l/sel 1
run 10
add _force /top/l1l/sel O
run all

Tcl Commands

You can use the add_force Tcl command to force a signal, wire, or register to a specified
value:

add_force [-radix <arg>] [-repeat_every <arg>] [-cancel _after <arg>] [-quiet]
[-verbose] <hdl _object> <val ues>...

For more info on this and other Tcl commands, see the Vivado Design Suite Tcl Command
Reference Guide (UG835) [Ref 7].

Example 2: Scripted Use of add_force with remove_forces

Verilog Code (top.v)

The following is an example Verilog file, top. v, which instantiates a counter. You can use
this file in the following command example.

nodul e counter (i nput clk, reset, updown, out put [4:0] outl);
reg [4:0] r1;

al ways @ posedge cl k)
begin
if(reset)
rl <= 0,
el se
i f (updown)
rli <=rl + 1;
el se
rl <=r1- 1;
end

o l Send Feedback I 114
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=114

& XILINX.

assign outl =r1;
endnodul e

nodul e top;

reg clk;

reg reset;

reg updown;
wire [4:0] outl

counter |1(clk, reset,

initial
begi n
reset = 1;

#20 reset = 0

end

initial
begi n

updown = 1; clk

end

initial
#500 $finish;

initial

$noni tor ("out 1

endnodul e

Command Example

Chapter 6: Debugging a Design with Vivado Simulator

out1);

outl);

1. Create a file called add_force. tcl with following command:

create_project add_force -force

add _files top.v

set _property top top [get_filesets sim1]
set _property -nane xel ab.nore_options -value {-debug all} -objects [get_filesets

sim1]

set_property runtime {0} [get_filesets sim1]
| aunch_sinul ation -sinset sim21 -node behavi ora

add_wave /top/*

2. Invoke the Vivado Design Suite in Tcl mode, and source the add_force.tcl file.

3. In the Tcl Console, type:

set forcel [add_force clk {0 1} {1 2} -repeat_every 3 -cancel _after 500]
set force2 [add_force updown {0 10} {1 20} -repeat_every 30]

run 100

Observe that the value of out1 increments as well as decrements in the Wave window.
You can observe the waveforms in the Vivado IDE using the start_gui command.

Observe the value of updown signal in the Wave window.

Logic Simulation
UG900 (v2018.2) June 6, 2018

o l Send Feedback I 115
www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=115

2: XI LI NX® Chapter 6: Debugging a Design with Vivado Simulator

4. In the Tcl Console, type:

renove_forces $force2
run 100

Observe that only the value of out1 increments.

5. In the Tcl Console, type:

renmove_forces $forcel
run 100

Observe that the value of out1 is not changing because the c1k signal is not toggling.

Power Analysis Using Vivado Simulator

The Switching Activity Interchange Format (SAIF) is an ASCII report that assists in extracting
and storing switching activity information generated by simulator tools. This switching
activity can be back-annotated into the Xilinx® power analysis and optimization tools for
the power measurements and estimations.

Switching Activity Interchange Format (SAIF) dumping is optimized for Xilinx power tools
and for use by the report_power Tcl command. The Vivado simulator writes the following
HDL types to the SAIF file. Refer to this link in the Vivado Design Suite User Guide: Power
Analysis and Optimization (UG907) [Ref 8] for additional information.
« Verilog:

o Input, Output, and Inout ports

o Internal wire declarations

« VHDL:

- Input, Output, and Inout ports of type std_logic, std_ulogic, and bit (scalar,
vector, and arrays).

Note: A VHDL netlist is not generated in the Vivado Design Suite for timing simulations;
consequently, the VHDL sources are for RTL-level code only, and not for netlist simulation.

For RTL-level simulations, only block-level ports are generated and not the internal signals.

For information about power analysis using third-party simulation tools, see Dumping SAIF
for Power Analysis, Dumping SAIF in IES, and Dumping SAIF in VCS in Chapter 3, Simulating
with Third-Party Simulators.

Logic Simulation N Send Feedback 116
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug907-vivado-power-analysis-optimization.pdf;a=xSpecifyingSwitchingActivityForTheAnalysis
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=116

2: XI LI NX® Chapter 6: Debugging a Design with Vivado Simulator

Generating SAIF Dumping

Before you use the 1og_saif command, you must call open_saif. The log_saif
command does not return any object or value.

1.

Compile your RTL code with the -debug typical option to enable SAIF dumping:
xel ab -debug typical top -s nmysim

Use the following Tcl command to start SAIF dumping:

open_saif <saif_fil e_name>

Add the scopes and signals to be generated by typing one of the following Tcl
commands:

| og_saif [get_objects]

To recursively log all instances, use the Tcl command:
|l og_saif [get_objects -r *]

Run the simulation (use any of the run commands).

Import simulation data into an SAIF format using the following Tcl command:

close saif

Example SAIF Tcl Commands

To log SAIF for:

All signals in the scope: /tb: log_saif /tb/*

All the ports of the scope: /tb/UUT

Those objects having names that start with a and end in b and have digits in between:
log_saif [get_objects -regexp {*a[0-91+b$}]

The objects in the current_scope and children_scope:

log_saif [get_objects -r *]

The objects in the current_scope:

log_saif * or log_saif [get_objects]

Only the ports of the scope /tb/UUT, use the command:

log_saif [get_objects -filter {type == in_port || type == out_port || type ==
i nout_port || type == port } /tb/UUT/*]

Only the internal signals of the scope /tb/UUT, use the command:

log_saif [get_objects -filter { type == signal } /tb/UUT/*]

O TIP: This filtering is applicable to all Tcl commands that require HDL objects.

Logic Simulation

o l Send Feedback I 117
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=117

2: XI LI NX® Chapter 6: Debugging a Design with Vivado Simulator

Dumping SAIF using a Tcl Simulation Batch File

simtcl:

open_sai f xsimdunp. saif
log_saif /tb/dut/*

run all

cl ose saif

qui t

Using the report_drivers Tcl Command

You can use the report_drivers Tcl command to determine what signal is driving a value
on an HDL object. The syntax is as follows:

report_drivers <hdl _object>

The command prints drivers (HDL statements doing the assignment) to the Tcl Console
along with current driving values on the right side of the assignment to a wire or signal-type
HDL object.

You can also call the report_drivers command from the Object or Wave window context
menu or text editor. To open the context menu (shown in the figure below), right-click any
signal and click Report Drivers. The result appears in the Tcl console.

Add to Wave Window
Log to Wave Database
Show in Wave Window

Go to Source Code

@e_pnrt Driversj

Force Constant...

Force Clock...

Remove Force

Default Radix k

Figure 6-5: Context Menu with Report Drivers Command Option

Logic Simulation N Send Feedback 118
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=118

(: XI LI NX® Chapter 6: Debugging a Design with Vivado Simulator

Using the Value Change Dump Feature

You can use a Value Change Dump (VCD) file to capture simulation output. The Tcl
commands are based on Verilog system tasks related to dumping values.

For the VCD feature, the Tcl commands listed in the table below model the Verilog system
tasks.

Table 6-1: Tcl Commands for VCD

Tcl Command Description

open_vcd Opens a VCD file for capturing simulation output. This Tcl command
models the behavior of Sdumpfile Verilog system task.

checkpoint_ved Models the behavior of the Sdumpall Verilog system task.

start_ved Models the behavior of the $dumpon Verilog system task.

log_vcd Logs VCD for the specified HDL objects. This command models behavior of
the $dumpvars Verilog system task.

flush_vcd Models behavior of the $dumpflush Verilog system task.

limit_ved Models behavior of the $dumplimit Verilog system task.

stop_vcd Models behavior of the $dumpof £ Verilog system task.

close_vcd Closes the VCD generation.

See the Vivado Design Suite Tcl Command Reference Guide (UG835) [Ref 7], or type the
following in the Tcl Console:

<command> - hel p
Example:
open_vcd xsi m dunp. vcd
| og_ved /tb/dut/*
run all
cl ose_vcd
qui t
See Verilog Language Support Exceptions in Appendix G for more information.

You can use the VCD data to validate the output of the simulator to debug simulation
failures.

Logic Simulation N Send Feedback 119
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=119

2: XI LI NX® Chapter 6: Debugging a Design with Vivado Simulator

Logic Simulation

Using the log_wave Tcl Command

The log_wave command logs simulation output for viewing specified HDL objects with the
Vivado simulator waveform viewer. Unlike add_wave, the 1og_wave command does not
add the HDL object to the waveform viewer (that is, the Waveform Configuration). It simply
enables the logging of output to the Vivado Simulator Waveform Database (WDB).

TIP: To display object values prior to the time of insertion, the simulation must be restarted. To avoid
having to restart the simulation because of missing value changes: issue the log_wave -r / Tcl command
at the start of a simulation run to capture value changes for all display-able HDL objects in your
design.

Syntax:

| og_wave [-recursive] [-r] [-quiet] [-verbose] <hdl_objects>..

Example log_wave TCL Command Usage
To log the waveform output for:

« All signals in the design (excluding those of alternate top modules):
| og_wave -r /
« All signals in a scope: /tb:
| og_wave /tb/*
« Those objects having names that start with a and end in b and have digits in between:
| og_wave [get_objects -regexp {"a[0-9]+b$}]
« All objects in the current scope and all child scopes, recursively:
| og_wave -r *

« Temporarily overriding any message limits and return all messages from the following
command:

| og_wave -v
» The objects in the current scope:
| og_wave *
« Only the ports of the scope /tb/UUT, use the command:

| og_wave [get_objects -filter {type == in_port || type == out_port || type ==
i nout _port || type == port} /tb/UUT/*]

« Only the internal signals of the scope /tb/UUT, use the command:

| og_wave [get_objects -filter {type == signal} /tb/UUT/*]

o l Send Feedback I 120
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=120

2: XI LI NX® Chapter 6: Debugging a Design with Vivado Simulator

The wave configuration settings; which include the signal order, name style, radix, and
color; are saved to the wave configuration (WCFG) file upon demand. See Chapter 5,
Analyzing Simulation Waveforms with Vivado Simulator.

Cross Probing Signals in the Object, Wave, and Text
Editor Windows

In Vivado simulator, you can do cross probing on signals present in the Objects, Wave, and
text editor windows.

From the Objects window, you can check to see if a signal is present in the Wave window
and vice versa. Right-click the signal to open the context menu shown in Figure 6-6. Click
Show in Wave Window or Add to Wave Window (if signal is not yet present in the Wave
window).

Add to Wave Window
Log to Wave Database
Show in Wave Window

Go to Source Code

b
Report Drivers

Force Constant...

Force Clock...

Remove Force

Default Radix 2

Figure 6-6: Objects Window Context Menu Options

Logic Simulation N Send Feedback 121
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=121

(: XI LI NX® Chapter 6: Debugging a Design with Vivado Simulator

You can also cross probe a signal from the text editor. Right-click a signal to open the
context menu shown in the figure below. Select Add to Wave Window, Show in
Waveform or Show in Objects. The signal then appears highlighted in the Wave or Objects
window.

Save File As...

Cut
Copy

MM x

Paste
Duplicate Selection
Select All

EE Toggle column selection mode

O Find...

Replace...
Findin Files...

Replace in Files_ ..

Indent Selection
Unindent Selection

J/ Toggle Line Comments
Togagle Block Comments

Blank Operations 3

Folding 3

Add to Wave Window
Show in Wave Window

Show in Objects Window

Force Constant...
Force Clock...

Remove Force

Figure 6-7: Text Editor Right-Click (Context) Menu

Logic Simulation N Send Feedback 122
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=122

2: XI LI NX® Chapter 6: Debugging a Design with Vivado Simulator

Tool Specific init.tcl

During execution of simulation, Vivado Simulator sources the init file present at the
following location:

$HOVE/ . xi | i nx/ xsim xsiminit.tcl

It is useful, if you want to set a property across multiple runs. In such a scenario, you can
write these inside a tcl file and Vivado Simulator will source this tcl file before time 0' during
execution.

Subprogram Call-Stack Support

You can now step-through subprogram calls and access automatic (as well as static)
variables inside subprogram using get_value/set_value options.

Currently, you can only access these variables if the subprogram is at the top of the
call-stack.

Use the following options to support access to variables at any level of the call-stack:

» Call Stacks Window
« Stack Frames Window

* Locals Tab in Object Window

Call Stacks Window

Call Stacks window shows HDL scopes for all the VHDL/Verilog processes in a design which
are waiting inside a subprogram at the current simulation time. This is similar to
get_stacks Tcl command.

By default, the current process in which simulation is stopped (inside a subprogram) will be
selected in the Call Stacks Window. However, you can select any other processes waiting in
a subprogram. The effect of selecting a process on the call-stack window is same as
selecting a process scope from the Scope Window or using current_scope Tcl command.
When you select a process on the call-stack window, the updated process appears in the
Scope Window, Object Window, Stack Frames Window and Locals tab. The process name
with absolute path and its type of the selected process is shown in the Call Stacks Window.

Logic Simulation N Send Feedback 123
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=123

2: XI LI NX® Chapter 6: Debugging a Design with Vivado Simulator

Call Stacks
Name Process Type
1 Initial183_303 Verilog Process

Figure 6-8: Call-Stack Window

Stack Frames Window

Stack Frames Window shows the current HDL process that is waiting inside a subprogram
and the subprograms in its call-stack. This is similar to report_frames and
current_frame Tcl commands. In the Stack Frames Windows, the most recent
subprogram in the current hierarchy is shown at the top, followed by caller subprograms.
The caller HDL process is shown the bottom. You can select other frames to be current and
the effect is same as the current frame -set <selected_frame_ index> Tcl
command. The Locals tab in the Object window follows the subprogram frame selection and
shows the static and automatic variables local to the selected subprogram frame. The frame
number, subprogram/process name, source file and current line for the selected HDL
process is shown in the Stack Frames Window.

Logic Simulation N Send Feedback 124
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=124

(: XI LI NX® Chapter 6: Debugging a Design with Vivado Simulator

Locals Tab in Object Window

Stack Frames - 1L

Index Name File

0 send_char tb_uart_driver.v (1...
1 do_cmd tb_cmd_genv (142)
2 set var tb_cmd_gen.v (226)
3 set_nsamp tb_cmd_gen.v (234)
4 O fb_wave_gen/initial18.. tb_wave_gen.v (196)
¢ >

Figure 6-9: Stack Frames Window

The Locals Tab in Object Window shows the name, value and type of static and automatic
variables local to the currently executing (or selected) subprogram. This is similar to
get_objects -local Tcl command. This window follows the frame selected in the
Stack-frame Window. For every variable/argument, its name, value and type would be
shown in the locals Tab.

Locals . B0 X
Q o
Name Value Data Type
> W char{7:0] 2a Array

L >

Figure 6-10: Local Tab in Object Window

Logic Simulation N Send Feedback 125
UG900 (v2018.2) June 6, 2018 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=125

& XILINX

Chapter 7

Simulating in Batch or Scripted Mode in
Vivado Simulator

Introduction

This chapter describes the command line compilation and simulation process.

Vivado supports an integrated simulation flow where the tool can launch Vivado simulator,
or a third party simulator from the IDE. However, many users also want to run simulation in
batch or scripted mode in their verification environment, which may include system-level

simulation, or advanced verification such as UVM. The Vivado Design Suite supports batch
or scripted simulation in the Vivado simulator.

This chapter describes a process to gather the needed design files, to generate simulation
scripts for your target simulator, and to run simulation in batch mode. The simulation scripts
can be generated for a top-level HDL design, or for hierarchical modules, managed IP
projects, or block designs from Vivado IP integrator. Batch simulation is supported in both
project and non-project script-based flow.

Exporting Simulation Files and Scripts

Running a simulation from the command line for either a behavioral or timing simulation
requires you to perform the following steps:

1. ldentifying and parsing design files.
2. Elaborating and generating an executable simulation snapshot of the design.

3. Running simulation using the executable snapshot.

The Vivado Design Suite provides an Export Simulation command to let you quickly gather
the design files required for simulation, and generate the simulation scripts for the
top-level RTL design, or a sub-design. The export_simulation command will generate
scripts for all of the supported third-party simulators, or for the target simulator of your
choice.

Logic Simulation N Send Feedback 126
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=126

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

From within the Vivado IDE, use the File> Export > Export Simulation command to open
the Export Simulation dialog box as shown in Figure 7-1, page 127.

¢ Export Simulation Files @
Export a script and associated data files (if any) for driving standalone simulation using the specified simulator. ’
Target simulator; =none= w
Compiled library location:
Export directory: Colproject_files/project_xsim/ |E

Overwrite files

Advanced Options
Use absolute paths

Copy source files to export directory

Command:

Figure 7-1: Export Simulation dialog box

The Export Simulation command writes a simulation script file for all supported simulators,
or for the specified Target simulator. The generated scripts will contain simulator
commands for compiling, elaborating, and simulating the design.

The features of the Export Simulation dialog box include the following:

« Target simulator: Specifies all simulators, or a specific simulator to generate
command line scripts for. Target simulators include Vivado simulator as well as various
supported third-party simulators. Refer to Chapter 3, Simulating with Third-Party
Simulators for more information.

Note: On the Windows operating system, scripts will only be generated for those simulators
that run on Windows.

« Compiled library location: In order to perform simulation with the script generated by
Export Simulation, your simulation libraries must first be compiled with the
compile_simlib Tcl command. The generated scripts will automatically include the setup
files needed for the target simulator from the compiled library directory. Refer to
Compiling Simulation Libraries, page 15 for more information.

Logic Simulation N Send Feedback 127
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug835-vivado-tcl-commands.pdf;a=xcompile_simlib
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=127

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

0

Logic Simulation

TIP: It is recommended to provide the path to the Compile library location whenever running Export
Simulation. This insures that the scripts will always point to the correct simulation libraries.

« Export directory: Specifies the output directory for the scripts written by Export
Simulation. By default, the simulation scripts are written to the local directory of the
current project.

« Overwrite files: Overwrites the files of the same name that already exist in the export
directory.

« Use absolute paths: By default, source files and directory paths in the generated
scripts will be relative to a reference directory that is defined in the scripts. Use this
switch to make file paths in the script absolute rather than relative.

« Copy source files to export directory: Copy design files to the output directory. This
copies the simulation source files as well as the generated scripts to make the entire
simulation folder more portable.

« Command: This field provides the Tcl command syntax for the export_simulation
command that will be run as a result of the various options and settings that you have
specified in the Export Simulation dialog box.

* Help: For detailed information on various options in Export Simulation files dialog,
click on help {?) button.

The Export Simulation command supports both project and non-project designs. It does
not read properties from the current project except to query for Verilog ‘defines and
‘include directories. Instead, the Export Simulation command gets directives from the
dialog box or from export_simulation command options. You must specify the
appropriate options to get the results you want. In addition, you must have output products
generated for all IP and BD that are used in the top-level design.

IMPORTANT: The export_ simulation command will not generate output products for IP and BD if
they do not exist. Instead it will return an error and exit.

When you click OK on the Export Simulation dialog box, the command gets the simulation
compile order of all design files required for simulating the specified design object: the
top-level design, a hierarchical module, IP core, a block design from Vivado IP integrator, or
a Managed IP project with multiple IP. The simulation compile order of the required design
files is exported to a shell script with compiler commands and options for the target
simulator.

The simulation scripts are written to separate folders in the Export directory as specified in
the Export Simulation dialog box. A separate folder is created for each specified simulator,
and compile, elaborate, and simulate scripts are written for the simulator.

The scripts generated by the Export Simulation command uses a 3-step process,
analyze/compile, elaborate and simulate, that is common to many simulators including the

o l Send Feedback I 128
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=128

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

Vivado simulator. However, for ModelSim the generated scripts use the two-step process of
compile and simulate that the tool requires.

TIP: To use the two-step process in the Questa or Aldec simulators, you can start with the scripts
O generated for ModelSim and modify them as needed.

The Export Simulation command will also copy data files (if any) from the fileset, or from an
IP, to the specified export directory. If the design contains Verilog sources, then the
generated script will also copy the "glbl.v" file from the Vivado software installation path to
the output directory.

Tcl Command Example for Export Simulation

export _ip_user _files -no_script -force
export_sinulation -directory "C:/Datalproject_wavel" -simulator all

When you run the Export Simulation command from the dialog box, the Vivado IDE actually
runs a sequence of commands that defines the base directory (or location) for the exported
scripts, exports the IP user files, and then runs the export_simulation command.

The export_ip_user_files command is run automatically by the Vivado IDE to ensure
that all required files needed to support simulation for both core container and non-core
container IP, as well as block designs, are available. See this link in the Vivado Design Suite
User Guide: Designing with IP (UG896) [Ref 2] for more information. While
export_ip_user_files is run automatically when working with the Export Simulation
dialog box, you must be sure to run it manually before running the export_simulation

command.
TIP: Notice the -no_script option is specified when export ip user files s run
O automatically by the Vivado IDE. This is to prevent the generation of simulation scripts for the

individual IP and BDs that are used in the top-level design since it can add significant run time to the
command. However, you can generate these simulation scripts for individual IP and BD by running
export 1ip user files on specified objects (-of objects), or without the -no script option.

The export_ip_user_files command sets up the user file environment for IP and block
design needed for simulation and synthesis. The command creates a folder called
ip_user_files which contains instantiation templates, stub files for use with 3rd party
synthesis tools, wrapper files, memory initialization files, and simulation scripts.

The export_ip_user_files command also consolidates static simulation files that are
shared across all IP and block designs in the project and copies them to an ipstatic
folder. Many of the IP files that are shared across multiple IP and BDs in a project do not
change for specific IP customizations. These static files are copied into the ipstatic
directory. The scripts created for simulation reference the shared files in this directory as
needed. The dynamic simulation files that are specific to an IP customization are copied to
the IP folder. See this link, or “Understanding IP User Files” in Vivado Design Suite User
Guide: Designing with IP (UG896) [Ref 2] for more information.

Logic Simulation N Send Feedback 129
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug835-vivado-tcl-commands.pdf;a=xexport_ip_user_files
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug835-vivado-tcl-commands.pdf;a=xexport_simulation
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug896-vivado-ip.pdf;a=xUsingACoreContainerForCommonFiles
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug896-vivado-ip.pdf;a=xUnderstandingTheIPUserFilesIpUserFiles
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=129

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

)

Logic Simulation

IMPORTANT: The scripts and files generated by the export simulation command point to the files
inthe ip user files directory. You mustrunthe export ip user filescommand before you
run export_simulation or simulation errors may occur.

Exporting the Top level design

To create simulation scripts for the top-level RTL design use export_simulation and
provide the simulation fileset object. In the following example sim_1 is the simulation
fileset, and export simulation will create simulation scripts for all the RTL entities, IP, and BD
objects in the design.

export _ip_user_files -no_script
export_sinulation -of _objects [get_filesets sim1] -directory C/test_sim\
-simul ator questa

Exporting IP from the Xilinx Catalog and Block Designs

To generate scripts for an IP, or a Vivado IP integrator block design, you can simply run the
command on the IP or block design object:

export _ip_user_files -of _objects [get_ips blk_nemgen_0] -no_script -force
export_sinulation -sinmulator ies -directory ./export_script \
-of _objects [get_ips bl k_nem gen_0]

Or, export the ip_user_files for all IP and BDs in the design:

export _ip_user _files -no_script -force
export_sinulation -sinulator ies -directory ./export_script

You can also generate simulation scripts for block design objects:

export _ip_user_files -of _objects [get_files base_m crobl aze_desi gn. bd] \
-no_script -force

export_sinulation -of _objects [get_files base_m crobl aze_design. bd] \
-directory ./simscripts

IMPORTANT: You must have output products generated for all IP and BD that are used in the top-level
design. The export simulation command will not generate output products for IP and BD if they
do not exist. Instead it will return an error and exit.

Exporting a Manage IP Project

Manage IP project provides users an ability to create and manage a centralized repository
of customized IPs. See this link in the Vivado Design Suite User Guide: Designing with IP
(UG896) [Ref 2] for more information on Manage IP projects. When generating the IP
output products for Manage IP projects, the Vivado tool also generates simulation scripts
for each IP using the export_ip_user_files command as previously discussed.

o l Send Feedback I 130
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug896-vivado-ip.pdf;a=xUsingManageIPProjects
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=130

8 X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

PROJECT MANAGER - project_2

o Sources ?_0O00 X Project Summary » IP Catalog b4
E Q = = <+ o Cores | Interfaces
E
o || V=P = 5 ¥ 4 F &
» AFO blk_mem_gen_0(2)
» AF0 ¢ _addsub_01(2) Name
> 40 fifo_generator 0 (2) > Embedded Processing
> 40 xdma_0 (2) > FPGA Features and Design
> Math Functions
> Memories & Storage Elements
> Partial Reconfiguration
> SDAccel DSA Infrastructure
> Standard Bus Interfaces
> UserlP
> Video & Image Processing

Figure 7-2: Managed IP Project

The Managed IP Project shown above features four different customized IP:
blk_mem_gen_0, c_addsub_0, fifo_generator_0, xdma_0. For this project the
Vivado Design Suite creates an ip_user_files folder as shown in the following figure.

(c_addsub w12 0 7 \

L. c_reg_fd_wvl2 0_0
| c_addsub_0 L ip | xbip_addsub_v3_0_0

[. ip_user_files] [T ipstatic] " I xbip_dsp48_addsub_v3_0_0
g - s L L xbip_dsp48_wrapper_v3_0_4
managed_| rojec [’ =]
ged_ip_proj xbip_pipe_v3_0_0

\ xbip_utils_v3_0_4 //

(ies \
modelsim

questa

——T e
Xsim
README. txt

“ J

Figure 7-3: Managed IP Directory Structure

The ip_user_files folder is generated by the export_ip_user_files command as
previously described. When this command is run on a Manage IP project, it will recursively
process all the IP in the project and generate the scripts and other files needed for synthesis
and simulation of the IP. The ip_user_files folder contains the scripts used for batch
simulation, as well as the dynamic and static IP files needed to support simulation.

Logic Simulation N Send Feedback 131
UG900 (v2018.2) June 6, 2018 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=131

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

The simulation scripts for your target simulator, or for all supported simulators, are located
inthe . /sim_scripts folder as seen in Figure 7-3, page 131. You can go to the folder of
your target simulator and incorporate the compile, elaborate, and simulate scripts
into your simulation flow.

The Vivado tool consolidates all the shared simulation files, used by multiple IP and BD in
the design, into a folder called . /ipstatic. The dynamic files that vary depending on the
specifics of an IP customization are located in the . /ip folder.

TIP: /n addition to exporting all the IP in a Manage IP project, you can use the steps outlined in
O Exporting IP from the Xilinx Catalog and Block Designs, page 130 to generate scripts for individual IP
in the project.

Running the Vivado Simulator in Batch Mode

To run in batch or scripted mode, the Vivado simulator relies on three processes which are
supported by the files generated by the export_simulation command.

« Parsing Design Files, xvhdl and xvlog
« Elaborating and Generating a Design Snapshot, xelab

« Simulating the Design Snapshot, xsim

For timing simulation, there are additional steps and data required to complete the
simulation, as described in the following:

» Generating a Timing Netlist in Chapter 2

* Running Post-Synthesis and Post-Implementation Simulations, page 152

Parsing Design Files, xvhdl and xvlog

The xvhdl and xvlog commands parse VHDL and Verilog files, respectively. Descriptions
for each option are available in Table 7-2, page 141.

Logic Simulation N Send Feedback 132
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=132

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

xvhdl

The xvhdl command is the VHDL analyzer (parser).

xvhdl Syntax

xvhdl

[- encrypt dunps]

[-f [-file] <filename>]

[-h [-help]

[-initfile <init_fil enanme>]

[-L [-lib] <library_nane> [=<library_dir>]]
[-1og <fil ename>]

[-nol og]

[-prj <filenanme>]

[-rel ax]

[-v [verbose] [0]1]2]]

[-version]

[-work <library_name> [=<library_dir>]
[-incr]

[-2008]

[- 93_node]

[- nosi gnal handl er s]

This command parses the VHDL source file(s) and stores the parsed dump into a HDL library

on disk.

xvhdl Examples

xvhdl filel.vhd file2.vhd
xvhdl -work worklib filel.vhd file2.vhd
xvhdl -prj files.prj

Logic Simulation N Send Feedback 133
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=133

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

xviog

The xvlog command is the Verilog parser. The xvlog command parses the Verilog source
file(s) and stores the parsed dump into a HDL library on disk.

xvlog Syntax

xvl og

[-d [define] <nanme>[=<val >]]

[- encrypt dunps]

[-f [-file] <filenanme>]

[-h [-help]]

[-i [include] <directory_name>]

[-initfile <init_fil enanme>]

[-L [-lib] <library_nane> [=<library_dir>]]
[-]

og <fil ename>]
[-nol og]
[- nonanme_unamed_gener at e]
[-rel ax]

[-prj <filenanme>]

[-sourcelibdir <sourcelib_dirnanme>]
[-sourcelibext <file_extension>]
[-sourcelibfile <fil ename>]

[-sv]

[-v [verbose] [0]1]2]]

[-version]

[-work <library_name> [=<library_dir>]
[-incr]

[- nosi gnal handl er s]

xvlog Examples

xvlog filel.v file2.v
xvlog -work worklib filel.v file2.v
xvlog -prj files.prj

Note: xelab, xvlog and xvhdl are not Tcl commands. The xvlog, xvhdl, xelab are Vivado-independent
compiler executables. Hence, there is no Tcl command for them.

The simulation launching is Vivado dependent and hence is done through xsim Tcl
command.

For usage of simulation outside Vivado, an executable by the same name as xsim is
provided. The xsim executable launches Vivado in project less mode and executes xsim Tcl
command to launch simulation. Hence, to get help on xvlog, xvhdl, xelab form within
Vivado IDE, please precede the command with exec.

Example: exec xvlog -help.

To get help on xsim, use xsim -help.

Logic Simulation N Send Feedback 134
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=134

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

Elaborating and Generating a Design Snapshot,
xelab

Simulation with the Vivado simulator happens in two phases:

¢ In the first phase, the simulator compiler xelab, compiles your HDL model into a
snapshot, which is a representation of the model in a form that the simulator can
execute.

* In the second phase, the simulator loads and executes (using the xsim command) the
snapshot to simulate the model. In Non-Project Mode, you can reuse the snapshot by
skipping the first phase and repeating the second.

When the simulator creates a snapshot, it assigns the snapshot a name based on the names
of the top modules in the model. You can, however, override the default by specifying a
snapshot name as an option to the compiler. Snapshot names must be unique in a directory
or SIMSET; reusing a snapshot name, whether default or custom, results in overwriting a
previously-built snapshot with that name.

f IMPORTANT: you cannot run two simulations with the same snapshot name in the same directory or
SIMSET.

xelab
The xelab command, for given top-level units, does the following:

« Loads children design units using language binding rules or the -L. <library»>
command line specified HDL libraries

« Performs a static elaboration of the design (sets parameters, generics, puts generate
statements into effect, and so forth)

« Generates executable code

« Links the generated executable code with the simulation kernel library to create an
executable simulation snapshot

You then use the produced executable simulation snapshot name as an option to the xsim
command along with other options to effect HDL simulation.

TIP: xelab can implicitly call the parsing commands, xvlog and xvhdl. You can incorporate the
O parsing step by using the xelab -prj option. See Project File (.prj) Syntax, page 149 for more
information about project files.

Note: xelab, xvlog and xvhdl are not Tcl commands. The xvlog, xvhdl, xelab are Vivado-independent
compiler executables. Hence, there is no Tcl command for them.

Logic Simulation N Send Feedback 135
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=135

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

xelab Command Syntax Options

Descriptions for each option are available in Table 7-2, page 141.

xel ab

[-d [define] <name>[=<val >]

[-debug <ki nd>]

[-f [-file] <filenanme>]
[-generic_top <val ue>]

[-h [-help]

[-i [include] <directory_name>]
[-initfile <init_fil ename>]
[-l1og <filenanme>]

[-L [-lib] <library_nanme> [=<l|ibrary_dir>]
[- maxdesi gndept h ar g]

[- mi ndel ay]

[-typdel ay]

[- maxarraysi ze arg]

[- maxdel ay]

[-nt arg]

[- nol og]

[- noname_unnamed_gener at €]

[- noti m ngchecks]

[- nosdf i nt er connect del ays]

[-nospeci fy]

[-Oarg]

[- Odi sabl e_accel erati on arg]

[- i sabl e_al ways_comnbi ne]

[- Odi sabl e_pass_t hrough_el i m nati on]
[- Odi sabl e_process_opt]

[- Cdi sabl e_unused_renoval]

[- Cenabl e_cdf g]

[- Odi sabl e_cdf g]

[- Cenabl e_al ways_comnbi ne]

[- Cenabl e_pass_t hrough_el i m nati on]
[- Cenabl e_unused_r enoval]
[-override_tinmeunit]
[-override_timeprecision]

[-prj <filename>]

[-pul se_e arg]

[-pul se_r arg]

[-pul se_int_e arg]

[-pul se_int_r arg]

[-pul se_e_style arqg]

[-r [-run]]

[-R [-runall]]

[- rangecheck]

[-rel ax]

[-s [-snapshot] arg]

[- sdf nowar n]

[-sdf noerror]

[-sdfroot <root_path>]

[-sdfmin arg]

[-sdftyp arg]

[-sdf max arg]

[-sourcelibdir <sourcelib_dirnanme>]
[-sourcelibext <file_extension>]
[-sourcelibfile <fil ename>]

Logic Simulation N Send Feedback 136
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=136

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

[-stats]

[-timescal e]
[-timeprecision_vhdl arg]
[-transport _i nt_del ays]

[-v [verbose] [0]1]2]]
[-version]

[-sv_root arg]

[-sv_lib arg]

[-sv_liblist arg]

[- dpi header arg]

[-driver _display_limt arg]
[-dpi _absol ut e]

[-incr]

[- 93_node]

[- nosi gnal handl er s]

[-dpi _stacksize arg]
[-transform.tim ng_checkers]
[-a] --standal one]

xelab Examples

xel ab work.topl work.top2 -s cpusim

xelab libl.topl lib2.top2 -s fftsim

xel ab work.topl work.top2 -prj files.prj -s pciesim
xelab libl.topl Iib2.top2 -prj files.prj -s ethernetsim

Verilog Search Order

The xelab command uses the following search order to search and bind instantiated
Verilog design units:

1. Alibrary specified by the ‘uselib directive in the Verilog code. For example:

nodul e

full _adder(c_in, c_out, a, b, sum

i nput c_in,a,b;

out put c_out, sum

wire carryl,carry2, sumi;

‘uselib Iib = adder_lib

hal f _adder adder1(.a(a),.b(b),.c(carryl),.s(suml));

hal f _adder adder1(.a(suml),.b(c_in),.c(carry2),.s(sum);
c_out = carryl | carry2;

endnodul e

2. Libraries specified on the command line with -1ib| -L switch.
3. Alibrary of the parent design unit.

4. The work library.

Logic Simulation N Send Feedback 137
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=137

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

Verilog Instantiation Unit

When a Verilog design instantiates a component, the xelab command treats the
component name as a Verilog unit and searches for a Verilog module in the user-specified
list of unified logical libraries in the user-specified order.

« If found, xelab binds the unit and the search stops.

« If the case-sensitive search is not successful, xelab performs a case-insensitive search
for a VHDL design unit name constructed as an extended identifier in the
user-specified list and order of unified logical libraries, selects the first one matching
name, then stops the search.

« If xelab finds a unique binding for any one library, it selects that name and stops the
search.

Note: For a mixed language design, the port names used in a named association to a VHDL entity
instantiated by a Verilog module are always treated as case insensitive. Also note that you cannot use
a defparam statement to modify a VHDL generic. See Using Mixed Language Simulation in
Appendix G, for more information.

i? IMPORTANT: Connecting a whole VHDL record object to a Verilog object is unsupported.

VHDL Instantiation Unit

When a VHDL design instantiates a component, the xelab command treats the component
name as a VHDL unit and searches for it in the logical work library.

« If a VHDL unit is found, the xelab command binds it and the search stops.

« If xelab does not find a VHDL unit, it treats the case-preserved component name as a
Verilog module name and continues a case-sensitive search in the user-specified list
and order of unified logical libraries. The command selects the first matching the name,
then stops the search.

« If case sensitive search is not successful, xelab performs a case-insensitive search for a
Verilog module in the user-specified list and order of unified logical libraries. If a
unique binding is found for any one library, the search stops.

Logic Simulation N Send Feedback 138
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=138

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

‘uselib Verilog Directive

The Verilog *uselib directive is supported, and sets the library search order.

‘uselib Syntax

<uselib conpiler directive> ::= “uselib [<Verilog-XL uselib directives>|<lib
directive>]

<Verilog-XL uselib directives> :==dir =<library_directory>| file =<library_file>
| 1ibext = <file_extension>

<lib directive>::= <library reference> {<library reference>}

<library reference> ::=1ib = <logical library name>

‘uselib Lib Semantics

The *uselib 1lib directive cannot be used with any of the Verilog-XL *uselib directives.
For example, the following code is illegal:

“uselib dir=./ file=f.v lib=newib

Multiple libraries can be specified in one “uselib directive.

The order in which libraries are specified determines the search order. For example:
“uselib lib=nylib lib=yourlib

Specifies that the search for an instantiated module is made in my1ib first, followed by
yourlib.

Like the directives, such as *uselib dir, ‘uselib file, and ‘uselib libext, the
‘uselib 1lib directive is persistent across HDL files in a given invocation of parsing and
analyzing, just like an invocation of parsing is persistent. Unless another *uselib directive
is encountered, a “uselib (including any Verilog XL *uselib) directive in the HDL source
remains in effect. A *uselib without any argument removes the effect of any currently
active “uselib <«liblfileldir|libext>.

The following module search mechanism is used for resolving an instantiated module or
UDP by the Verific Verilog elaboration algorithm:

« First, search for the instantiated module in the ordered list of logical libraries of the
currently active “uselib 1ib (if any).

« If not found, search for the instantiated module in the ordered list of libraries provided
as search libraries in xelab command line.

« If not found, search for the instantiated module in the library of the parent module. For
example, if module A in library work instantiated module B of library mylib and B
instantiated module C, then search for module C in the /my1lib, library, which is the
library of B (parent of C).

Logic Simulation N Send Feedback 139
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=139

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

« If not found, search for the instantiated module in the work library, which is one of the
following:

o The library into which HDL source is being compiled
o The library explicitly set as work library

o The default work library is named as work

‘uselib Examples

Table 7-1: ‘uselib Examples

File half_adder.v compiled into logical

library named adder_lib File full_adder.v compiled into logical library named work

module half_ adder(a,b,c,s); module
input a,b; full adder(c_in, c_out, a, b, sum)
output c,s; input c_in,a,b;
s = a N b; output c_out,sum;
c = a & b; wire carryl,carry2,sumi;
endmodule “uselib 1lib = adder_1ib
half adder

adderi(.a(a), .b(b),.
c(carryl), .s(suml));

half adder

adderi1(.a(suml), .b(c_in),.c
(carry2),.s(sum));

c_out = carryl | carry?2;
endmodule

xelab, xvhdl, and xvlog xsim Command Options

Table 7-2 lists the command options for the xelab, xvhdl, and xvlog xsim commands.

Logic Simulation N Send Feedback 140
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=140

(: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

Table 7-2: xelab, xvhd, and xvlog Command Options

Command Option Description Used by Command
-d [define] <name>[=<val>] Define Verilog macros. Use -d | --define for xelab
each Verilog macro. The format of the macro is xvlog

<name>[=<val>] where <name> is name of the
macro and <value> is an optional value of the
macro.

-debug <kind> Compile with specified debugging ability turned xelab
on. The <kind> options are:

« typical: Most commonly used abilities,
including: 1ine and wave

e line: HDL breakpoint.

« wave: Waveform generation, conditional
execution, force value.

+ x1ibs: Visibility into Xilinx® precompiled
libraries. This option is only available on the
command line.

« off: Turn off all debugging abilities (Default).
e all: Uses all the debug options.

-encryptdumps Encrypt parsed dump of design units being xvhdl
compiled. xvlog

-f [-file] <filename> Read additional options from the specified file. xelab
Xsim

xvhdl

xvlog

-generic_top <value> Override generic or parameter of a top-level xelab

design unit with specified value. Example:
-generic_top "P1=10"

-h [-help] Print this help message. xelab
Xsim
xvhdl
xvlog

-i [include] Specify directories to be searched for files xelab

<directory_name> included using Verilog * include. Use xvlog
-i|--include for each specified search
directory.

-initfile <init_filename> User-defined simulator initialization file to add to xelab
or override settings provided by the default xvhd|
xsim.ini file. xvlog

-L [-1ib] <library_name> Specify search libraries for the instantiated xelab

[=<library_dir>] non-VHDL design units; for example, a Verilog xvhdl
design unit. xvlog

Use -L|--1ib for each search library. The format
of the argument is <name>[=<dir>] where
<name> is the logical name of the library and
<library_dir>»> is an optional physical directory
of the library.

Logic Simulation N Send Feedback 141
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=141

& XILINX.

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

Table 7-2: xelab, xvhd, and xvlog Command Options (Cont’d)
Command Option Description Used by Command

-log <filename> Specify the log file name. Default: xelab

<xvlog|xvhdl|xelab|xsim>.log. Xsim
xvhdl
xvlog

-maxarraysize arg Set maximum vhdl array size to be 2**n (Default: n = xelab

28, which is 2**28)
-maxdelay Compile Verilog design units with maximum delays. xelab
-maxdesigndepth arg Override maximum design hierarchy depth xelab
allowed by the elaborator (Default: 5000).

-maxlogsize arg (=-1) Set the maximum size a log file can reach in MB. The xsim

default setting is unlimited.

-mindelay Compile Verilog design units with minimum delays. xelab

-mt arg Specifies the number of sub-compilation jobs xelab

which can be run in parallel. Possible values are

auto, off, or an integer greater than 1.

If auto is specified, xelab selects the number of

parallel jobs based on the number of CPUs on the

host machine. (Default = auto).

Advanced usage: to further control the -nt

option, you can set the Tcl property as follows:
set _property XELAB. MT_LEVEL of f| N
[get _filesets sim1]

-nolog Suppress log file generation. xelab
Xsim
xvhdl
xvlog

-noieeewarnings Disable warnings from VHDL IEEE functions. xelab

-noname_unnamed_generate Do not generate name for an unnamed generate xelab

block. xvlog

-notimingchecks Ignore timing check constructs in Verilog specify xelab

block(s).

-nosdfinterconnectdelays Ignore SDF port and interconnect delay constructs xelab

in SDF.

-nospecify Ignore Verilog path delays and timing checks. xelab

-0 arg Enable or disable optimizations. xelab

-0 0 = Disable optimizations
-0 1 = Enable basic optimizations

-0 2 = Enable most commonly desired
optimizations (Default)

-0 3 = Enable advanced optimizations

Note: A lower value speeds compilation at
expense of slower simulation: a higher value
slows compilation but simulation runs faster.

Logic Simulation
UG900 (v2018.2) June 6, 2018

www.Xxilinx.com

l Send Feedback I 142

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=142

& XILINX.

Table 7-2:

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

xelab, xvhd, and xvlog Command Options (Cont’d)

Command Option Description Used by Command
-Odisable_acceleration arg Turn off acceleration for the specified HDL xelab
package. Choices are: all, math_real,
math_complex, numeric_std,
std_logic_signed, std_logic_unsigned
(default: acceleration is on)
-Odisable_process_opt Turn off the process-level optimization (default xelab
on)
-Oenable_cdfg Turn on (enable) or off (disable) the building of the xelab
-0odisable_cdfg control+data flow graph (default: on)
-Oenable_unused_removal Turn on (enable or off (disable) the optimization to xelab
-0disable_unused_removal remove unused signals and statements (default:
on)
-override_timeunit Override timeunit for all Verilog modules, with the xelab
specified time unit in -timescale option.
-override_timeprecision Override time precision for all Verilog modules, xelab
with the specified time precision in -timescale
option.
-pulse_e arg Path pulse error limit as percentage of path delay. xelab
Allowed values are 0 to 100 (Default is 100).
-pulse_r arg Path pulse reject limit as percentage of path delay. xelab
Allowed values are 0 to 100 (Default is 100).
-pulse_int_e arg Interconnect pulse reject limit as percentage of xelab
delay. Allowed values are 0 to 100 (Default is 100).
-pulse_int_r arg Interconnect pulse reject limit as percentage of xelab
delay. Allowed values are 0 to 100 (Default is 100).
-pulse_e_style arg Specify when error about pulse being shorter than xelab
module path delay should be handled. Choices
are:
ondetect: report error right when violation is
detected
onevent: report error after the module path
delay.
Default: onevent
-prj <filename> Specify the Vivado simulator project file xelab
containing one or more entries of vhdl | verilog xvhd|
<work 1lib> <HDL file name>. xvlog
-r [-runl] Run the generated executable snapshot in xelab
command-line interactive mode.
-rangecheck Enable run time value range check for VHDL. xelab
-R [-runall] Run the generated executable snapshot until the xelab
end of simulation. xsim
-relax Relax strict language rules. xelab
xvhdl
xvlog

Logic Simulation
UG900 (v2018.2) June 6, 2018

www.Xxilinx.com

| Send Feedback I 143

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=143

& XILINX.

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

Table 7-2: xelab, xvhd, and xvlog Command Options (Cont’d)
Command Option Description Used by Command
-s [-snapshot] arg Specify the name of output simulation snapshot. xelab
Default is <worklib>.<unit>; for example:
work . top. Additional unit names are
concatenated using #; for example:
work.tl#work.t2.
-sdfnowarn Do not emit SDF warnings. xelab
-sdfnoerror Treat errors found in SDF file as warning. xelab
-sdfmin arg <root=file> SDF annotate <file> at <root> xelab
with minimum delay.
-sdftyp arg <root=file> SDF annotate <file> at <root> xelab
with typical delay.
-sdfmax arg <root=file> SDF annotate <file> at <root»> xelab
with maximum delay.
-sdfroot <root_path> Default design hierarchy at which SDF annotation xelab
is applied.
-sourcelibdir Directory for Verilog source files of uncompiled xelab
<sourcelib_dirname> modules. xvlog
Use -sourcelibdir <sourcelib_dirname>
for each source directory.
-sourcelibext File extension for Verilog source files of xelab
<file_extension> uncompiled modules. xvlog
Use -sourcelibext <file extension> for
source file extension
-sourcelibfile <filename> File name of a Verilog source file with uncompiled xelab
modules. xvlog
-stat Print tool CPU and memory usages, and design xelab
statistics.
-sv Compile input files in SystemVerilog mode. xvlog
-timescale Specify default timescale for Verilog modules. xelab
Default: ins/1ps.
-timeprecision_vhdl arg Specify time precision for vhdl designs. xelab
Default: 1ps.
-transport_int_delays Use transport model for interconnect delays. xelab
-typdelay Compile Verilog design units with typical delays xelab
(Default).
-v [verbose] [0]1]2] Specify verbosity level for printing messages. xelab
Default = 0. xvhd|
xvlog
-version Print the compiler version to screen. xelab
Xsim
xvhdl
xvlog

Logic Simulation
UG900 (v2018.2) June 6, 2018

www.Xxilinx.com

| Send Feedback I 144

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=144

& XILINX.

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

Table 7-2: xelab, xvhd, and xvlog Command Options (Cont’d)
Command Option Description Used by Command

-work <library_name> Specify the work library. The format of the xvhd|

[=<library_dir>] argument is <name>[=<dir>]1 where: xvlog
« <name> is the logical name of the library.

« <library_dir> is an optional physical
directory of the library.

-sv_root arg Root directory off which DPI libraries are to be xelab
found.

Default:
<current_directory/xsim.dir/xsc>

-sv_lib arg Shared library name for DPI imported functions xelab
(.dll/.so) without the file extension.

-sv_liblist arg Bootstrap file pointing to DPI shared libraries. xelab

-dpiheader arg Header filename for the exported and imported xelab
functions.

-driver_display_limit arg Enable driver debugging for signals with xelab
maximum size (Default: n = 65536).

-dpi_absolute Use absolute paths instead of LD_LIBRARY_PATH xelab
on Linux for DPI libraries that are formatted as
lib<libname>.so.

-incr Enable incremental analysis/elaboration in xvlog
simulation. xvhdl

xelab

-93 mode Compile VHDL in pure 93 mode. xvhdl

xelab

-2008 Compile VHDL file in 2008 mode. xvhd|

-nosignalhandlers Don't allow compiler to trap Antivirus, firewall xvlog
signal xvhd|

xelab

-dpi_stacksize arg User defined stack size for DPI task xelab

-transform_timing_checkers Transform timing checker to Verilog process xelab

-a Generate a standalone non-interactive simulation xelab

executable that performs run-all

Always use with '-R’

Note: To run the simulation faster without any debug
capability, use -standalone with '-R". It will invoke the
Simulation standalone without invoking Vivado IDE. This
option will save the license loading time

Logic Simulation
UG900 (v2018.2) June 6, 2018

www.Xxilinx.com

| Send Feedback I 145

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=145

& XILINX.

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

Simulating the

Design Snapshot, xsim

The xsim command loads a simulation snapshot to effect a batch mode simulation or
provides a workspace (GUI) and/or a Tcl-based interactive simulation environment.

xsim Executable Syntax

The command syntax is as follows:

XSi m <opti ons> <snapshot >

Where:

+ xsim is the command.

« <options> are the options specified in Table 7-3.

* <snapshot> is the simulation snapshot.

xsim Executable Options

Table 7-3: xsim Executable Command Options

xsim Option Description

-f [-file] <filename> Load the command line options from a file.

-g [-guil Run with interactive workspace.

-h [-help] Print help message to screen.

-log <filename> Specify the log file name.

-maxdeltaid arg (=-1) Specify the maximum delta number. Report an error if it exceeds maximum
simulation loops at the same time.

-maxlogsize arg (=-1) Set the maximum size a log file can reach in MB. The default setting is
unlimited.

-ieeewarnings Enable warnings from VHDL IEEE functions.

-nolog Suppresses log file generation.

Logic Simulation
UG900 (v2018.2) June 6, 2018

. l Send Feedback I 146
www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=146

& XILINX.

Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

Table 7-3: xsim Executable Command Options (Cont’d)

xsim Option

Description

-nosignalhandlers

Disables the installation of OS-level signal handlers in the simulation. For
performance reasons, the simulator does not check explicitly for certain
conditions, such as an integer division by zero, that could generate an
OS-level fatal run time error. Instead, the simulator installs signal handlers
to catch those errors and generates a report.

With the signal handlers disabled, the simulator can run in the presence of
such security software, but OS-level fatal errors could crash the simulation
abruptly with little indication of the nature of the failure.

Ay

CAUTION! Use this option only if your security software prevents the simulator
from running successfully.

-onfinish <quit|stop>

Specify the behavior at end of simulation.

-onerror <quit|stop>

Specify the behavior upon simulation run time error.

-R [-runall]

Runs simulation till end (such asdo 'run all;quit?).

-stats

Display memory and CPU stats upon exiting.

-testplusarg <arg>

Specify plusargs to be used by $Stest$plusargs and
SvalueSplusargs system functions.

-t [-tclbatch]
<filename»>

Specify the Tcl file for batch mode execution.

_tp

Enable printing to screen of hierarchical names of process being executed.

-tl

Enable printing to screen of file name and line number of statements being
executed.

-wdb <filename.wdb>

Specify the waveform database output file.

-version

Print the compiler version to screen.

-view <wavefile.wcfg>

Open a wave configuration file. Use this switch together with -gui switch.

TIP: When running the xelab, xsc, xsim, xvhd|, or xvlog commands in batch files or scripts, it might also
O be necessary to define the XILINX_VIVADO environment variable to point to the installation hierarchy
of the Vivado Design Suite. To set the XILINX_VIVADO variable, add one of the following to your script

or batch file:

On Windows: set XILINX VIVADO=<vivado install area>/Vivado/<versions>
On Linux: setenv XILINX VIVADO vivado install area>/Vivado/<versions>
(where <versions is the version of Vivado tools you are using: 2014.3, 2014.4, 2015.1, etc.)

Logic Simulation

UG900 (v2018.2) June 6, 2018

l Send Feedback I 147

www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=147

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

Example of Running Vivado Simulator in
Standalone Mode

When running the Vivado simulator in standalone mode, you can execute commands to:

« Analyze the design file
« Elaborate the design and create a snapshot

« Open the Vivado simulator workspace and wave configuration file(s) and run
simulation

Stepl: Analyzing the Design File

To begin, analyze your HDL source files by type, as shown in the table below. Each
command can take multiple files.

Table 7-4: File Types and Associated Commands for Design File Analysis

File Type Command

Verilog xvlog <«VerilogFileName (s)>
SystemVerilog xvlog -sv <SystemVerlilogFileName (s)>
VHDL xvhdl <VhdlFileName (s)>

Step2: Elaborating and Creating a Snapshot

After analysis, elaborate the design and create a snapshot for simulation using the xelab
command:

xel ab <t opDesi gnUni t Name> - debug typi cal

f IMPORTANT: You can provide multiple top-level design unit names with xelab. To use the Vivado
simulator workspace for purposes similar to those used during launch_simulation, you must set
debug level to typical.

Logic Simulation N Send Feedback 148
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=148

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

Step 3: Running Simulation

After successful completion of the xelab phase, the Vivado simulator creates a snapshot
used for running simulation.

To invoke the Vivado simulator workspace, use the following command:
XSi m <SnapShot Name> - gui
To open the wave config file:
Xsi m <SnapShot Name> -vi ew <wcfg Fil eNane> - gui
You can provide multiple wcfg files using multiple -view flags. For example:

Xxsi m <SnapShot Name> -vi ew <wcfg Fil eNanme> -view <wcfg Fi | eNanme>

Project File (.prj) Syntax

Note: The project file discussed here is a Vivado simulator text-based project file. It is not the same
as the project file (. xpr) created by the Vivado Design Suite.

To parse design files using a project file, create a text file called <proj_name>.prj, and
use the syntax shown below inside the project file.

verilog <work_library> <file_nanes>... [-d <macro>]...[-i <include_path>]...
vhdl <work_library> <fil e_name>

sv <work_library> <file_nanme>

vhdl 2008 <wor k_| i brary> <fil e_name>

Where:

<work_library>: Is the library into which the HDL files on the given line are to be
compiled.

<file_names>: Are Verilog source files. You can specify multiple Verilog files per line.
<file_name>: Is a VHDL source file; specify only one VHDL file per line.

o For Verilog or SystemVerilog: [-d <macro>] provides you the option to define
one or more macros.

o For Verilog or SystemVerilog: [-i <include_path>] provides you the option to
define one or more <include_path> directories.

Logic Simulation N Send Feedback 149
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=149

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

Predefined Macros

XILINX_SIMULATOR is a Verilog predefined-macro. The value of this macro is 1.
Predefined macros perform tool-specific functions, or identify which tool to use in a design
flow. The following is an example usage:

“ifdef VCS

/1 VCS specific code
“endif
“ifdef INCA

/1 NCSI M speci fic code
“endi f

“i fdef MODEL_TECH

/1 MODELSI M speci fic code
“endi f
“ifdef XILINXISIM

/1 I1SE Simulator (ISim specific code
“endi f
“ifdef X LINX_SI MULATOR

/1 Vivado Sinulator (XSim specific code
“endi f

Library Mapping File (xsim.ini)

The HDL compile programs, xvhdl, xvlog, and xelab, use the xsim.ini configuration
file to find the definitions and physical locations of VHDL and Verilog logical libraries.

The compilers attempt to read xsim.ini from these locations in the following order:

1. <Vivado_1Install Dir»>/data/xsim

2. User-file specified through the -initfile switch. If -initfile is not specified, the
program searches for xsim.ini in the current working directory.

The xsim. ini file has the following syntax:

<physi cal _dir_pathl>
<physi cal _dir _pat h2>

<l ogical _libraryl>
<l ogi cal _library2>

The following is an example xsim.ini file:

st d=<Vi vado_I nstal | _Area>/ xsi mvhdl /std

i eee=<Vi vado_Instal | _Area>/xsinm vhdl /i eee

vl =<Vi vado_lI nstal | _Area>/ xsi mf vhdl / vi

i eee_proposed=$RDl _DATADI R/ xsi ml vhdl /i eee_pr oposed
synopsys=<Vi vado_I nstal | _Area>/ xsi m vhdl / synopsys

uni si me<Vi vado_I nst al | _Area>/ xsi nf vhdl / uni sim

uni macr o=<Vi vado_I| nstal | _Area>/ xsi mf vhdl / uni macro

uni f ast =<Vi vado_I nstal | _Area>/ xsi mi vhdl / uni f ast
sinmprims_ver=<Vivado_l nstal | _Area>/ xsi mlveril og/sinprins_ver

Logic Simulation N Send Feedback 150
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=150

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

uni si ms_ver=<Vi vado_l nstal | _Area>/ xsin veril og/ uni sins_ver
uni macr o_ver =<Vi vado_I nstal | _Area>/ xsi ml veri | og/ uni macro_ver
uni fast _ver=<Vivado_I nstal |l _Area>/ xsinlverilog/unifast_ver
securei p=<Vivado_l nstal | _Area>/ xsi mveril og/ secureip

wor k=. / wor k

The xsim. ini file has the following features and limitations:

There must be no more than one library path per line inside the xsim. ini file.

If the directory corresponding to the physical path does not exist, xvhd or xvlog
creates it when the compiler first tries to write to that path.

You can describe the physical path in terms of environment variables. The environment
variable must start with the $ character.

The default physical directory for a logical library is
xsim/<language>/<logical_library_name>, for example, a logical library name
of:

<Vi vado_l nstal |l _Area>/ xsi ni vhdl /uni si m

File comments must start with --

Note: From 2018.2 release onwards, xilinx provides two init files named as xsim.ini and
xsim_legacy.ini. The xsim_legacy.ini file is similar to xsim.ini of older version. It
contains mapping for unisim library while the new xsim. ini file contains mapping for all the files
of unisim library along with the mapping for pre-compiled IP.

Running Simulation Modes

You can run any mode of simulation from the command line. The following subsections
illustrate and describe the simulation modes when run from the command line.

Behavioral Simulation

Figure 7-4 illustrates the behavioral simulation process:

Logic Simulation

o l Send Feedback I 151
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=151

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

Gather Files

'

Parse Using XVLOG/XVHDL

'

Compile and Elaborate Using
XELAB (Create Snapshot)

'

I
Execute Using

XSIM <snapshot>

'

Debug on Waveform

N N Y ()
N N A N/

Figure 7-4: Behavioral Simulation Process

To run behavioral simulation from within the Vivado Design Suite, use the Tcl command:
launch_simulation -mode behavioral.

Running Post-Synthesis and Post-Implementation Simulations

At post-synthesis and post-implementation, you can run a functional or a Verilog timing
simulation. Figure 7-5 illustrates the post-synthesis and post-implementation simulation
process:

Logic Simulation N Send Feedback 152
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=152

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

Post-Synthesis
Post-Implementation
Simulation

[Run Synthesis or Implementatioa

|

Create Netlist
write_verilog or write_vhd|
For Timing Simulation
write_sdf

\

Gather Files
(Create Project File)

\/

Parse Using xvlog/xvhd|

\

Compile and Elaborate
Using xelab

\

Simulation Using
xsim <snapshot>

\/
Debug in Waveform j

Or Self-checking Test Bench

X12985

Figure 7-5: Post-Synthesis and Post-Implementation Simulation

The following is an example of running a post-synthesis functional simulation from the
command line:

synth_design -top top -part xc7k70tfbg676-2
open_run synth_1 -nanme netlist_1

write verilog -npde funcsimtest_synth.v

| aunch_si nul ati on

TIP: When you run a post-synthesis or post-implementation timing simulation, you must run the
O write sdf command after the write verilogcommand, and the appropriate annotate command
is needed for elaboration and simulation.

Logic Simulation N Send Feedback 153
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=153

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

Using Tcl Commands and Scripts

You can run Tcl commands on the Tcl Console individually, or batch the commands into a Tcl
script to run simulation.

Using a -tclbatch File

You can type simulation commands into a Tcl file, and reference the Tcl file with the
following command: -tclbatch <filename>

Use the -tclbatch option to contain commands within a file and execute those command
as simulation starts. For example, you can have a file named run. tcl that contains the
following:

run 20ns
current _time
quit

Then launch simulation as follows:
Xxsi m <snapshot> -tclbatch run.tcl

You can set a variable to represent a simulation command to quickly run frequently used
simulation commands.

Launching Vivado Simulator from the Tcl Console

The following is an example of Tcl commands that create a project, read in source files,
launch the Vivado simulator, do placing and routing, write out an SDF file, and re-launch
simulation.

Vi vado -node Tcl

Vi vado% create_project prjl

Vi vado% read_veril og dut.v

Vi vado% synt h_desi gn -top dut

Vi vado% | aunch_si mul ation -sinmset sim1 -node post-synthesis -type functional
Vi vado% pl ace_desi gn

Vi vado% r out e_desi gn

Vi vado% wite_verilog -node tinmesim-sdf_anno true -sdf_fil e postRoute. sdf
post Route_netlist.v

Vi vado% write_sdf postRoute. sdf

Vi vado% | aunch_si mul ation -sinmset sim1 -node post-inplenentation -type timng
Vi vado% cl ose_proj ect

Logic Simulation N Send Feedback 154
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=154

(: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

export_simulation

Export a simulation script file for the target simulator. The generated script will contain
simulator commands for compiling, elaborating and simulating the design.

This command will retrieve the simulation compile order of specified objects, and export
this information in a shell script with the compiler commands and default options for the
target simulator. The specified object can be either a simulation fileset or an IP. If you want
to run simulation outside Vivado IDE, use export_simulation in place of
launch_simulation -scripts_only to generate scripts file.

export_simulation [-simulator <arg>] [-of _objects <arg>] [-lib_nmap_path <arg>]
[-script_nanme <arg>] [-directory <arg>] [-runtinme <arg>] [-absol ute_path]
[-export_source_files] [-32bit] [-force] [-quiet] [-verbose]

[-ip_user_files_dir <arg>] [-ipstatic_source_dir <arg>] [-define <arg>] [-generic
<arg>] [-include <arg>] [-use_ip_conpiled_libs]

Usage:

Table 7-5: export_simulation Options

Name Description
[-simulator] Simulator for which the simulation script will be created
value=all|xsim|modelsim|questalies|vcs|xcelium|rivieralactivehdl (Default:
all)
[-of_objects] Export simulation script for the specified object (Default: None)
[-1lib_map_path] Precompiled simulation library directory path. If not specified, then please

follow the instructions in the generated script header to manually provide
the simulation library mapping information. (Default: Empty)

[-script_name] Output shell script filename. If not specified, then file with a default name
will be created. (Default: top_module.sh)

[-directory] Directory where the simulation script will be exported (Default:
export_sim)

[-runtime] Run simulation for this time (default: full simulation run or until a logical

break or finish condition)

[-absolute_path] Make all file paths absolute wrt the reference directory

[-export_source_files] | Copy IP/BD design files to output directory

[-32bit] Perform 32bit compilation

[-force] Overwrite previous files

[-quiet] Ignore command errors

[-verbose] Suspend message limits during command execution

[-ip_user_files_dir] Directory path to exported IP/BD user files (for static, dynamic and data
files)

Default: Empty

Logic Simulation N Send Feedback 155
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=155

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

Table 7-5: export_simulation Options (Cont’d)

Name Description

[-ip_static_source_dir] | Directory path to the exported IP/BD static files
Default: Empty

[-define] Read Verilog defines from the list specified with this switch
Default: Empty

[-generic] Read VHDL generics from the list specified with this switch
Default: Empty

[-include] Read include directory paths from the list specified with this switch
Default: Empty

[-use_ip_compiled_libs] | Reference pre-compiled IP static library during compilation. This switch
requires -ip_user_files_dir and -ipstatic_source_dir
switches also for generating scripts using pre-compiled IP library

Categories

simulation, xilinxtclstore, user-witten
Description:

Export a simulation script file for the target simulator (please see the list of supported
simulators below). The generated script will contain simulator commands for compiling,
elaborating and simulating the design.

The command will retrieve the simulation compile order of specified objects, and export
this information in a shell script with the compiler commands and default options for the
target simulator. The specified object can be either a simulation fileset or an IP.

If the object is not specified, then this command will generate the script for the active
simulation top. Any verilog include directories or file paths for the files containing verilog
define statements will be added to the compiler command line.

By default, the design source file and include directory paths in the compiler command line
will be set relative to the reference_dir variable that is set in the generated script. To
make these paths absolute, specify the ~absolute_path switch.

The command will also copy data files (if any) from the fileset, or from an IP, to the output
directory. If the design contains Verilog sources, then the generated script will also copy the
glbl.v file from the software installation path to the output directory.

A default .do file that is used in the compiler commands in the simulation script for the
target simulator, will be written to the output directory.

Note: In order to perform simulation with the generated script, the simulation libraries must be
compiled first using the compile_simlib Tcl command with the compiled library directory path
specified, when generating this script. The generated script will automatically include the setup files
for the target simulator from the compiled library directory. The option provided in Simulation
Settings will not have any impact on export_simulation scripts.

Logic Simulation N Send Feedback 156
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=156

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

Supported simulators

« Vivado simulator (xsim)

» ModelSim Simulator (modelsim)

* Questa Advanced Simulator (questa)
« Incisive Enterprise Simulator (ies)

» Verilog Compiler Simulator (vcs)

« Riviera-PRO Simulator (riviera)

« Active-HDL Simulator (activehdl)

» Cadence Xcelium Parallel Simulator (xcelium)

Arguments

-of_objects - (Optional) Specify the target object for which the simulation script file
needs to be generated. The target object can be either a simulation fileset (simset) or an IP.
If this option is not specified then this command will generate file for the current simulation
fileset.

-1lib_map_path - (Optional) Specify path to the Xilinx pre-compiled simulation library for
the selected simulator. The simulation library is compiled using compile_simlib. See the
header section in the generated script for more information. If this switch is not specified,
then the generated script will not reference the pre-compiled simulation library and the
static IP files will be locally compiled.

-script_name - (Optional) Specify the name of the shell script. If this option is not
specified then the filename with the following syntax will be generated based on the object
type selected with -of_objects switch:

<simul ati on_t op_name>_si m <si mul at or>. sh
<i p_nane>_si m <si nul at or >. sh

-absolute_path - (Optional) Specify this option to make source and include directory
paths used in the script absolute. By default, all paths are written as relative to the directory
path that is specified with the -directory switch. A reference_dir variable will be set
in the script to the directory path that is specified with the -directory switch.

-32bit - (Optional) Specify this option to perform 32bit simulation. If this option is not
specified then by default 64bit option will be added to the simulation command line.

-force - (Optional) Overwrite an existing script file of the same name. If the script file
already exists, the tool returns an error unless the -force argument is specified.

-directory - (Required) Specify the directory path where the script file will be exported.

Logic Simulation N Send Feedback 157
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=157

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

-simulator - (Required) Specify the target simulator name for the simulation script. The
valid simulators names are xsim, modelsim, questa, ies, and vcs (or vcs_mx).

-quiet - (Optional) Execute the command quietly, ignoring any command line errors and
returning no messages. The command also returns TCL_OK regardless of any errors
encountered during execution.

-verbose - (Optional) Temporarily override any message limits and return all messages
from this command.

export_ip_user_files

Generate and export IP/IP integrator user files from a project. This can be scoped to work
on one or more |Ps.

Syntax:

export _ip_user files [-of _objects <arg>] [-ip_user_files_dir <arg>]
[-ipstatic_source_dir <arg>] [-lib_map_path <arg>]
[-no_script] [-sync] [-reset] [-force] [-quiet]
[-verbose]

Returns: list of files that were exported
Usage

Table 7-6: export_ip_user_files

Name Description
[-of_objects] IP,IPI or a fileset (Default: None)
[-ip_user_files_dir] Directory path to simulation base directory (for dynamic and other IP

non static files)(Default: None)

[-ipstatic_source_dir] | Directory path to the static IP files (Default: None)

[-1ib_map_path] Compiled simulation library directory path
Default: Empty
[-no_script] Do not export simulation scripts (Default: 1)
[-sync] Delete IP/IPI dynamic and simulation script files
[-reset] Delete all IP/IPI static, dynamic and simulation script files
[-force] Overwrite files
[-quiet] Ignore command errors
[-verbose] Suspend message limits during command execution

Logic Simulation N Send Feedback 158
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=158

2: X”_INX® Chapter 7: Simulating in Batch or Scripted Mode in Vivado Simulator

Description

Export IP user files repository with static, dynamic, netlist, Verilog/VHDL stubs and memory
initialization files.

Arguments

-of_objects - (Optional) Specify the target object for which the IP static and dynamic
files needs to be exported.

-ip_user_files_dir - (Optional) Directory path to IP user files base directory (for
dynamic and other IP non static files). By default, if this switch is not specified then this
command will use the path specified with the IP.USER_FILES_DIR project property
value.

-ipstatic_source_dir - (Optional) Directory path to the static IP files. By default, if this
switch is not specified then this command will use the path specified with the
SIM.IPSTATIC_SOURCE_DIR project property value.

Note: If the -ip_user_files_dir switch is specified, by default the IP static files will be exported under
the sub-directory with the name ipstatic. If this switch is specified in conjunction with
-ipstatic_source_dir, then the IP static files will be exported in the path specified with the
-ipstatic_source_dir switch.

-clean_dir - (Optional) Delete all files from central directory (including static, dynamic
and other files)

Examples:

The following command will export, char_£fifo IP dynamic files to
<project>/<project>.ip_user_files/ip/char_£fifo directory char_fifo IP
static files to <project>/<project>.ip_user_files/ipstatic directory

% export _ip_user_files -of _objects [get_ips char_fifo]

Logic Simulation N Send Feedback 159
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=159

& XILINX

Appendix A

Compilation, Elaboration, Simulation,
Netlist, and Advanced Options

Introduction

From the Vivado IDE Flow Navigator, you can right-click Simulation, and select Simulation

Settings to open the simulation settings in the Settings dialog box. From the Simulation
settings, you can set various compilation, elaboration, simulation, netlist, and advanced

options.

Compilation Options

The Compilation tab defines and manages compiler directives, which are stored as
properties on the simulation fileset and used by the xvlog and xvhdl utilities to compile
Verilog and VHDL source files for simulation.

Vivado Simulator Compilation Options

Table A-1:

Vivado Simulator Compilation Options

Option

Description

Verilog options

Browse to set Verilog include path and to define macro

Generics/Parameters options

Specify or browse to set the generic/parameter value

xsim.compile.tcl.pre

Tcl file containing set of commands that should be invoked before
launch of compilation

xsim.compile.xvlog.nosort

Do not sort Verilog file during compilation

xsim.compile.xvhdl.nosort

Do not sort VHDL file during compilation

xsim.compile.xvlog.relax

Relax strict HDL language checking rules

xsim.compile.xvhdl.relax

Relax strict HDL language checking rules

xsim.compile.incremental

Perform incremental compilation

xsim.compile.xvlog.more_options

More XVLOG compilation options

xsim.compile.xvhdl.more_options

More XVHDL compilation options

Logic Simulation
UG900 (v2018.2) June 6, 2018

l Send Feedback I 160

www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=160

(A X”_INX® Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options

Questa Advanced Simulator Compilation Options

Table A-2: Questa Advanced Simulator Compilation Options

Option Description
Verilog options Browse to set Verilog include path and to define macro
Generics/Parameters options Specify or browse to set the generic/parameter value
guestasim.compile.tcl.pre TCL file containing set of commands that should be invoked

before launch of compilation

questasim.compile.vhdl_syntax Specify VHDL syntax
questasim.compile.use_explicit_decl Log all signals
questasim.compile.load_glbl Load GLBL module
questasim.compile.incremental Perform incremental compilation
guestasim.compile.vlog.more_options More VLOG compilation options

guestasim.compile.vcom.more_options More VCOM compilation options

ModelSim Simulator Compilation Options

Table A-3: ModelSim Compilation Options

Option Description
Verilog options Browse to set Verilog include path and to define macro
Generics/Parameters options Specify or browse to set the generic/parameter value
modelsim.compile.tcl.pre TCL file containing set of commands that should be invoked

before launch of compilation

modelsim.compile.vhdl_syntax Specify VHDL syntax
modelsim.compile.use_explicit_decl Log all signals
modelsim.compile.load_glbl Load GLBL module
modelsim.compile.incremental Perform incremental compilation

modelsim.compile.vlog.more_options | More VLOG compilation options

modelsim.compile.vcom.more_options | More VCOM compilation options

IES Simulator Compilation Options

Table A-4: 1ES Compilation Options

Option Description
Verilog options Browse to set Verilog include path and to define macro
Generics/Parameters options Specify or browse to set the generic/parameter value
ies.compile.tcl.pre TCL file containing set of commands that should be invoked before
launch of compilation
ies.compile.v93 Enable VHDL-93 features

Logic Simulation N Send Feedback 161
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=161

(A X”_INX® Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options

Table A-4: IES Compilation Options (Cont’d)

Option Description
ies.compile.relax Enable relaxed VHDL interpretation
ies.compile.load_glbl Load GLBL module
ies.compile.update Check if unit is up-to-date before writing

ies.compile.ncvhdlmore_options | More NCVHDL compilation options

ies.compile.ncvlog.more_options | More NCVLOG compilation options

VCS Simulator Compilation Options

Table A-5: VCS Compilation Options

Option Description
Verilog options Browse to set the Verilog include path and to define macro
Generics/Parameters options Specify or browse to set the generic/parameter values
vcs.compile.tcl.pre TCL file containing set of commands that should be invoked before

launch of compilation

vcs.compile.load_glbl Load GLBL module

vcs.compile.vhdlan.more_options | More VHDLAN compilation options

vcs.compile.vlogan.more_options | Extra VLOGAN compilation options

Logic Simulation N Send Feedback 162
UG900 (v2018.2) June 6, 2018 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=162

2A X”_INX® Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options

Xcelium Simulator Compilation Options

Table A-6: Xcelium Compilation Options

Options

Description

Verilog Options

Browse to set Verilog include path and to define macro

Generics/Parameters options

Specify or browse to set the generic/parameter value

xcelium.compile.tcl.pre

TCL file containing set of commands that should be invoked
before the launch of a compilation

xcelium.compile.v93

Enable VHDL-93 features

xcelium.compile.relax

Enable relaxed VHDL interpretation

xcelium.compile.load_glbl

Load GLBL module

xcelium.compile.xmvhdl.more_options | More XMVHDL compilation options

xcelium.compile.xmvlog.more_optio

ns | More XMVLOG compilation options

Elaboration Options

The Elaboration tab defines and

manages elaboration directives, which are stored as

properties on the simulation fileset and used by the xelab utility for elaborating and
generating a simulation snapshot. Select a property in the table to display a description of

the property and edit the value.

Vivado Simulator Elaboration Options

Table A-7: Vivado Simulator Elaboration Options

Option

Description

xsim.elaborate.snapshot

Specifies the simulation snapshot name

xsim.elaborate.debug_level

Choose simulation debug visibility level. By default it is “typical”

xsim.elaborate.relax

Relax strict HDL Language checking rules

xsim.elaborate.mt_level

Specify number of sub-compilation jobs to run in parallel

xsim.elaborate.load_glbl

Load GLBL module

xsim.elaborate.rangecheck

Enables run time value range check for VHDL

xsim.elaborate.sdf_delay

Specifies sdf timing delay type to be read for use in timing
simulation

xsim.elaborate.xelab.more_option

More XELAB elaboration options

xsim.elaborate.xsc.more_option

More options for XSC during elaboration

Logic Simulation
UG900 (v2018.2) June 6, 2018

. l Send Feedback I 163
www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=163

(A X”_INX® Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options

Questa Advanced Simulator Elaboration Options

Table A-8: Questa Advanced Simulator Elaboration Options

Option Description

guestasim.elaborate.acc Enables access to simulation objects that might be
optimized by default (default: npr)

questasim.elaborate.vopt.more_options More VOPT elaboration options

questasim.elaborate.sccom.more_options | More options for sccom during elaboration

ModelSim Simulator Elaboration Options

Table A-9: ModelSim Elaboration Options

Option Description

modelsim.elaborate.acc Enables access to simulation objects that might be
optimized by default

modelsim.elaborate.vopt.more_options | More VOPT elaboration options

IES Simulator Elaboration Options

Table A-10: IES Elaboration Options

Option Description
ies.elaborate.update Checks if unit is up-to-date before writing
ies.elaborate.ncelab.more_options More ncelab elaboration options

VCS Simulator Elaboration Options

Table A-11: VCS Elaboration Options

Option Description

vcs.elaborate.debug_pp Enable post-process debug access

vcs.elaborate.vcs.more_options | More VCS elaboration options

Logic Simulation N Send Feedback 164
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=164

(A X”_INX® Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options

Xcelium Simulator Elaboration Options

Table A-12: Xcelium Elaboration Options

Option Description

xcelium.elaborate.update Checks if unit is up-to-date before writing

xcelium.elaborate.xmelab.more_options | More xmelab elaboration options

Simulation Options

The Simulation tab defines and manages simulation directives, which are stored as
properties on the simulation fileset and used by the xsim application for simulating the
current project. Select a property in the table to display a description of the property and
edit the value.

Vivado Simulator Simulation Options

Table A-13: Vivado Simulator Simulation Options

Option Description

xsim.simulate.runtime Specifies simulation run time for the Vivado simulator. Enter blank to
load just the simulation snapshot and wait for user input.

xsim.simulate.tcl.post TCL file containing set of commands that you want to invoke at end
of simulation.

xsim.simulate.log_all_signals Logs all object signals

xsim.simulate.wdb Specifies simulation waveform database file

xsim.simulate.saif Specifies SAIF file name

xsim.simulate.saif_scope Specify design hierarchy instance name for which power estimation
is desired.

xsim.simulate.saif_all_signals Logs all object signals for the design under test for SAIF file
generation

xsim.simulate.xsim.more_option | More Vivado simulator simulation options

xsim.simulate.custom_tcl Specify the name of a custom tcl file which will be the source during
simulation in place of a regular TCL file generated by Vivado

Questa Advanced Simulator Simulation Options

Table A-14: Questa Advanced Simulator Simulation Options

Option Description
questasim.simulate.runtime Specify simulation run time
questasim.simulate.tcl.post TCL file containing set of commands that you want to invoke at
end of simulation.

Logic Simulation N Send Feedback 165
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=165

(A X”_INX® Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options

Table A-14: Questa Advanced Simulator Simulation Options

Option Description

guestasim.simulate.log_all_signals Log all signals

questasim.simulate.custom_do Specify the name of custom do file

guestasim.simulate.custom_udo Specify the name of custom user do file

guesta.simulate.ieee_warning Suppresses |IEEE warnings

questasim.simulate.sdf_delay Specify the delay type for sdaf annotation

questasim.simulate.saif Specify SAIF file

questasim.simulate.saif_scope Specify design hierarchy instance name for which power
estimation is desired

questasim.simulate.vsim.more_option | More VSIM simulation options

questa.simulate.custom_wave_do Name of the custom wave.do file which is used in place of a
regular Vivado generated wave.do file

ModelSim Simulator Simulation Options

Table A-15: ModelSim Simulation Options

Option Description
modelsim.simulate.runtime Specify simulation run time
modelsim.simulate.tcl.post TCL file containing set of commands that you want to invoke at

end of simulation.

modelsim.simulate.log_all_signals Log all signals
modelsim.simulate.custom_do Specify the name of custom do file
modelsim.simulate.custom_udo Specify the name of custom user do file
modelsim.simulate.sdf_delay Specify the delay type for sdaf annotation
modelsim.simulate.ieee_warning Suppresses |IEEE warnings
modelsim.simulate.saif Specify SAIF file
modelsim.simulate.saif_scope Specify design hierarchy instance name for which power

estimation is desired

modelsim.simulate.vsim.more_option | More VSIM simulation options

modelsim.simulate.custom_wave_do | Name of the custom wave.do file which is used in place of a
regular Vivado generated wave.do file

IES Simulator Simulation Options

Table A-16: IES Simulation Options

Option Description
ies.simulate.runtime Specify simulation run time
ies.simulate.tcl.post TCL file containing set of commands that you want to invoke at end
of simulation

Logic Simulation N Send Feedback 166
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=166

(A X”_INX® Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options

Table A-16: IES Simulation Options

Option Description
ies.simulate.log_all_signals Log all signals
ies.simulate.update Check if unit is up-to-date before writing
ies.simulate.ieee_warning Suppress IEEE warnings
ies.simulate.saif SAIF file name
ies.simulate.saif_scope Specify design hierarchy instance name for which power estimation is
desired
ies.simulate.ncsim.more_option | More NCSIM simulation option

VCS Simulator Simulation Options

Table A-17: VCS Simulation Options

Option Description
vcs.simulate.runtime Specify simulation run time
vcs.simulate.tcl.post TCL file containing set of commands that you want to invoke at end of
simulation.

vcs.simulate.log_all_signals Log all signals

vcs.simulate.saif SAIF file name
vcs.simulate.saif_scope Specify design hierarchy instance name for which power estimation is
desired

vcs.simulate.vcs.more_option | More VCS simulation options

Logic Simulation N Send Feedback 167
UG900 (v2018.2) June 6, 2018 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=167

2A X”_INX® Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options

Xcelium Simulator Simulation Options

Table A-18: Xcelium Simulator Simulation Options

Option Description
xcelium.simulate.tcl.post TCL file containing set of commands that you want to invoke at
end of simulation
xcelium.simulate.runtime Specify simulation run time
xcelium.simulate.log_all_signals Log all signals
xcelium.simulate.update Check if unit is up-to-date before writing
xcelium.simulate.ieee_warnings Suppress IEEE warnings
xcelium.simulate.saif_scope SAIF file name
xcelium.simulate.saif Specify design hierarchy instance name for which power

estimation is desired

xcelium.simulate.xmsim.more_options | More XMSIM simulation options

Netlist Options

The Netlist tab provides access to netlist configuration options related to SDF annotation of
the Verilog netlist and the process corner captured by SDF delays. These options are stored
as properties on the simulation fileset and are used while writing the netlist for simulation.

Vivado Simulator Netlist Options

Table A-19: Vivado Simulator Netlist Options

Option Description

-sdf_anno A check box is available to select the -sdf_anno option. This option is enabled
by default

-process_corner | You can specify the -process_corner as fast or slow

Note: The Netlist Options of all the third-party simulators (Questa Advanced Simulator, ModelSim
Simulator, IES, VCS and Xcelium Simulators) are similar to the options of Vivado Simulator Netlist
Options.

Advanced Simulation Options

Advanced tab contains two options.

« Enable incremental compilation option: This option enables the incremental
compilation and preserves the simulation files during successive run.

Logic Simulation N Send Feedback 168
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=168

2' XILINX Appendix A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options
a ®

« Include all design sources for simulation option: By default, this option is enabled.
Selecting this option ensures that all the files from design sources along with the files
from the current simulation set will be used for simulation. Even if you change the
design sources, the same changes will be updated when you launch behavioral
simulation.

ﬁ IMPORTANT: This is an advanced user feature. Unchecking the box could produce unexpected results.
The Include all design sources for simulation check box is selected by default. As long as the check
box is selected, the simulation set includes Out-of-Context (OOC) IP, IP Integrator files, and DCP.

Unchecking the box gives you the flexibility to include only the files you want to simulate,
but, as stated above, you might experience unexpected results.

Note: The Advanced Simulation Options are the same for all simulators.

Logic Simulation N Send Feedback 169
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=169

& XILINX

Appendix B

SystemVerilog Support in Vivado
Simulator

Introduction

The Vivado® simulator supports the subset of SystemVerilog. The synthesizable set of
SystemVerilog is listed in Table B-1. The supported testbench features are listed in

Table B-2.

Targeting SystemVerilog for a Specific File

By default, the Vivado IDE compiles . v files with the Verilog 2001 syntax and . sv files with
the SystemVerilog syntax.

To target SystemVerilog for a specific . v file in the Vivado IDE:

1. Right-click the file and select Set file type as shown in the figure below.

Logic Simulation N Send Feedback 170
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=170

(: XI LI NX® Appendix B: SystemVerilog Support in Vivado Simulator

Source Mode Properties...

v

Cpen File

Replace File...

> Remove File from Project...

Disable File

Move to Simulation Sources

Hierarchy Update 3
{* Refresh Hierarchy
IP Hierarchy 3

Set Global Include

Set Library...
Set File Type...
SetUsedIn..

Edit Constraints Sets. .

Edit Simulation Sets...
<+ Add Sources..

Report IP Status

Figure B-1: Context Menu with Set File Type Command

2. Inthe Set Type dialog box, shown in the figure below, change the file type from Verilog
to SystemVerilog and click OK.

Logic Simulation N Send Feedback 171
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=171

2: XI LI NX® Appendix B: SystemVerilog Support in Vivado Simulator

¢ SetType @

Setthe type ofthe selected sources.

File type: | Verilog |

Verilog

Verilog Header

SystemVerilog

—J |vHDL —
VHDL 2008

EDIF

NG

XDC

IP-XACT

BMM

=

Memory Initialization Files
Data Files

TCL

IP Update Log

SystemC

Figure B-2: Set File Type
Alternatively, you can use the following command in the Tcl Console:

set_property file_type SystenVerilog [get_files <fil ename>.v]

Running SystemVerilog in Standalone or prj Mode

Standalone Mode

A new -sv flag has been introduced to xv1log, so if you want to read any SystemVerilog file,
you can use following command:

xvlog -sv <Design file list>

xvlog -sv -work <LibraryName> <Design File List>
xvlog -sv -f <FileName> [Where Fil eNane contain path of test cases]

prj Mode

If you want to run the Vivado simulator in the pr j-based flow, use sv as the file type, as you
would verilog or vhadl.

xvlog -prj <prj File>
xelab -prj <prj File> <topMdul eNane> <ot her options>

Where the entry in prj file appears as follows:

Logic Simulation N Send Feedback 172
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=172

(: XI LI NX® Appendix B: SystemVerilog Support in Vivado Simulator

veril og libraryl <Fil eNanme>

SV libraryl <FileName> [File parsed in SystenVeril og node]

vhdl I'ibrary2 <Fil eNane>

sv library3 <FileName> [File parsed in SystenVeril og node]

Table B-1: Synthesizable Set of SystemVerilog 1800-2009
Primary construct Secondary construct LRM section Status
Data type 6
Singular and aggregate 6.4 Supported
types
Nets and variables 6.5 Supported
Variable declarations 6.8 Supported
Vector declarations 6.9 Supported
2-state (two-value) and 6.11.2 Supported
4-state (four-value) data
types
Signed and unsigned 6.11.3 Supported
integer types
Real, shortreal and realtime 6.12 Supported
data types
User-defined types 6.18 Supported
Enumerations 6.19 Supported
Defining new data types as 6.19.1 Supported
enumerated types
Enumerated type ranges 6.19.2 Supported
Type checking 6.19.3 Supported
Enumerated types in 6.19.4 Supported
numerical expressions
Enumerated type methods 6.19.5 Supported
Type parameters 6.20.3 Supported
Const constants 6.20.6 Supported
Type operator 6.23 Supported
Cast operator 6.24.1 Supported
$cast dynamic casting 6.24.2 Supported
Bitstream casting 6.24.3 Supported
Aggregate data types 7

Structures 7.2 Supported
Packed/Unpacked 7.2.1 Supported
structures
Assigning to structures 7.2.2 Supported
Unions 7.3 Supported
Packed/Unpacked unions 7.3.1 Supported

Logic Simulation N Send Feedback 173
UG900 (v2018.2) June 6, 2018 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=173

(: XI LI NX® Appendix B: SystemVerilog Support in Vivado Simulator

Table B-1: Synthesizable Set of SystemVerilog 1800-2009 (Cont’d)

Primary construct Secondary construct LRM section Status
Tagged unions 7.3.2 Not Supported
Packed arrays 7.4.1 Supported
Unpacked arrays 742 Supported
Operations on arrays 743 Supported
Multidimensional arrays 7.4.5 Supported
Indexing and slicing of 7.4.6 Supported
arrays
Array assignments 7.6 Supported
Arrays as arguments to 7.7 Supported
subroutines
Array querying functions 7.11 Supported
Array manipulation 7.12 Supported
methods

Processes 9
Combinational logic 9.2.2 Supported
always_comb procedure
Implicit always_comb 9.2.2.1 Supported
sensitivities
Latched logic 9.22.3 Supported
always_latch procedure
Sequential logic 9.224 Supported
always_ff procedure
Sequential blocks 9.3.1 Supported
Parallel blocks 9.3.2 Supported
Procedural timing controls 9.4 Supported
Conditional event controls 9.4.23 Supported
Sequence events 9424 Not Supported
Assignment statement 10
The continuous assignment 10.3.2 Supported
statement
Variable declaration 10.5 Supported

assignment (variable
initialization)

Assignment-like contexts 10.8 Supported
Array assignment patterns 10.9.1 Supported
Structure assignment 10.9.2 Supported
patterns

Unpacked array 10.10 Supported

concatenation

Logic Simulation N Send Feedback 174
UG900 (v2018.2) June 6, 2018 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=174

(: XI LI NX® Appendix B: SystemVerilog Support in Vivado Simulator

Table B-1: Synthesizable Set of SystemVerilog 1800-2009 (Cont’d)

Primary construct Secondary construct LRM section Status

Net aliasing 10.11 Not Supported

Operators and 11

expressions
Constant expressions 11.2.1 Supported
Aggregate expressions 11.2.2 Supported
Operators with real 11.3.1 Supported
operands
Operations on logic 11.3.4 Supported
(4-state) and bit (2-state)
types
Assignment within an 11.3.6 Supported
expression
Assignment operators 11.4.1 Supported
Increment and decrement 11.4.2 Supported
operators
Arithmetic expressions with 11.4.3.1 Supported
unsigned and signed types
Wildcard equality 11.4.6 Supported
operators
Concatenation operators 11.4.12 Supported
Set membership operator 11.4.13 Supported
Concatenation of 11.4.14.1 Supported
stream_expressions
Re-ordering of the generic 11.4.14.2 Supported
stream
Streaming concatenation 11.4.14.3 Not Supported
as an assignment target
(unpack)
Streaming dynamically 11.4.14.4 Supported
sized data

Procedural 12

programming

statement
Unique-if, unique0-if 12.4.2 Supported

and priority-if

Violation reports 12.4.2.1 Supported
generated by B-if,
unique0-if, and

priority-if constructs

Logic Simulation N Send Feedback 175
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=175

(: XI LI NX® Appendix B: SystemVerilog Support in Vivado Simulator

Table B-1: Synthesizable Set of SystemVerilog 1800-2009 (Cont’d)

Primary construct Secondary construct LRM section Status
If statement violation 12.4.2.2 Supported
reports and multiple
processes
unique-case, 12.5.3 Supported

unique0O-case, and
priority-case

Violation reports 12.5.3.1 Supported
generated by
unique-case,
unique0O-case, and
priority-case

construct
Case statement violation 12.5.3.2 Supported
reports and multiple
processes
Set membership case 12.5.4 Supported
statement
Pattern matching 12.6 Not Supported
conditional statements
Loop statements 12.7 Supported
Jump statement 12.8 Supported
Tasks 13.3
Static and Automatic task 13.3.1 Supported
Tasks memory usage and 13.3.2 Supported
concurrent activation
Function 13.4
Return values and void 13.4.1 Supported
functions
Static and Automatic 13.4.2 Supported
function
Constant function 13.4.3 Supported
Background process 13.4.4 Supported

spawned by function call

Subroutine calls and 13.5
argument passing

Pass by value 13.5.1 Supported
Pass by reference 13.5.2 Supported
Default argument value 13.5.3 Supported
Argument binding by name 13.54 Supported
Optional argument list 13.5.5 Supported

Logic Simulation N Send Feedback 176
UG900 (v2018.2) June 6, 2018 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=176

(: XI LI NX® Appendix B: SystemVerilog Support in Vivado Simulator

Table B-1: Synthesizable Set of SystemVerilog 1800-2009 (Cont’d)

Primary construct Secondary construct LRM section Status
Import and Export function 13.6 Supported
Task and function name 13.7 Supported
Utility system tasks 20 Supported

and system functions
(only synthesizable
set)

1/0 system tasks and 21 Supported
system functions (only
synthesizable set)

Compiler directives 22 Supported

Modules and hierarchy 23
Default port values 23.2.2.4 Supported
Top-level modules and 23.3.1 Supported
Sroot
Module instantiation 23.3.2 Supported
syntax
Nested modules 23.4 Supported
Extern modules 23.5 Supported
Hierarchical names 23.6 Supported
Member selects and 23.7 Supported
hierarchical names
Upwards name referencing 23.8 Supported
Overriding module 23.10 Supported
parameters
Binding auxiliary code to 23.11 Not Supported
scopes or instances

Interfaces 25
Interface syntax 253 Supported
Nested interface 25.3 Supported
Ports in interfaces 25.4 Supported
Example of named port 25.5.1 Supported
bundle
Example of connecting port 25.5.2 Supported
bundle
Example of connecting port 25.5.3 Supported
bundle to generic interface
Modport expressions 2554 Supported
Clocking blocks and 25.5.5 Not Supported
modports

Logic Simulation N Send Feedback 177
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=177

(: XI LI NX® Appendix B: SystemVerilog Support in Vivado Simulator

Table B-1: Synthesizable Set of SystemVerilog 1800-2009 (Cont’d)

Primary construct Secondary construct LRM section Status
Interfaces and specify 25.6 Supported
blocks
Example of using tasks in 25.7.1 Supported
interface
Example of using tasks in 25.7.2 Supported
modports
Example of exporting tasks 25.7.3 Supported
and functions
Example of multiple task 25.7.4 Supported
exports
Parameterized interfaces 25.8 Supported
Virtual interfaces 25.9 Supported

Packages 26
Package declarations 26.2 Supported
Referencing data in 26.3 Supported
packages
Using packages in module 26.4 Supported
headers
Exporting imported names 26.6 Supported
from packages
The std built-in package 26.7 Supported
Generate constructs 27 Supported

Testbench Feature

In Vivado simulator, support for some of the commonly used testbench features have been
added, as shown in the table below.

Table B-2: Supported Dynamic Type Constructs

Primary Construct Secondary Construct LRM Section Status
String data type 6.16 Supported
Len() 6.16.1 Supported
Putc() 6.16.2 Supported
Getc() 6.16.3 Supported
Toupper() 6.16.4 Supported
Tolower() 6.16.5 Supported

Logic Simulation N Send Feedback 178
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=178

& XILINX.

Appendix B: SystemVerilog Support in Vivado Simulator

Table B-2: Supported Dynamic Type Constructs (Cont’d)
Primary Construct Secondary Construct LRM Section Status
Compare 6.16.6 Supported
Icompare() 6.16.7 Supported
Substr() 6.16.8 Supported
,:ttgtlj(i)r,lgtohex(), atooct(), 6.16.9 Supported
Atoreal() 6.16.10 Supported
Itoa() 6.16.11 Supported
Hextoa() 6.16.12 Supported
Octtoal() 6.16.13 Supported
Bintoa() 6.16.14 Supported
Realtoa() 6.16.15 Supported
Dynamic Array 7.5 Supported
Dynamic array new 7.5.1 Supported
Size 7.5.2 Supported
Delete 7.5.3 Supported
Associative Array 7.8 Supported
Wildcard index 7.8.1 Supported
String index 7.8.2 Supported
Class index 7.8.3 Supported
Integral index 7.8.4 Supported
Other user-defined types 7.8.5 Supported
Accessing invalid index 7.8.6 Supported
Associative array methods 7.9 Supported
Num() and Size() 7.9.1 Supported
Delete() 7.9.2 Supported
Exists() 7.9.3 Supported
First() 7.9.4 Supported
Last() 7.9.5 Supported
Next() 7.9.6 Supported
Prev() 7.9.7 Supported
,:‘Argtti]rgjnts to traversal 7.9.8 Supported
Associative array assignment 7.9.9 Supported
Associative array arguments 7.9.10 Supported
Associative Array literals 7.9.11 Supported

Logic Simulation
UG900 (v2018.2) June 6, 2018

www.Xxilinx.com

l Send Feedback I 179

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=179

(: XI LI NX® Appendix B: SystemVerilog Support in Vivado Simulator

Table B-2: Supported Dynamic Type Constructs (Cont’d)

Primary Construct Secondary Construct LRM Section Status

Queue 7.10 Supported
Queue operators 7.10.1 Supported
Queue methods 7.10.2 Supported
Size() 7.10.2.1 Supported
Insert() 7.10.2.2 Supported
Delete() 7.10.2.3 Supported
Pop_front() 7.10.24 Supported
Pop_back() 7.10.2.5 Supported
Push_front() 7.10.2.6 Supported
Push_back() 7.10.2.7 Supported
Persistence of references to 7.10.3
elements of a queue Supported
Updating a queue using 7.10.4
assignment and unpacked Supported
array concatenation
Bounded queues 7.10.5 Supported

Class 8 Supported
Class General 8.1 Supported
Overviews 8.2 Supported
Syntax 8.3 Supported
Objects(Class instance) 8.4 Supported

Object properties and object 8.5

parameter data Supported
Object methods 8.6 Supported
Constructors 8.7 Supported
Static class properties 8.8 Supported
Static methods 8.9 Supported
This 8.10 Supported
?;,Isaiﬁrr:g\ent, renaming, and 8.11 Supported
Inheritance and subclasses 8.12 Supported
Overridden members 8.13 Supported
Super 8.14 Supported
Casting 8.15 Supported
Chaining constructors 8.16 Supported
Data hiding and 8.17 Supported

encapsulation

Logic Simulation N Send Feedback 180
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=180

(: XI LI NX® Appendix B: SystemVerilog Support in Vivado Simulator

Table B-2: Supported Dynamic Type Constructs (Cont’d)

Primary Construct Secondary Construct LRM Section Status
Constant class properties 8.18 Supported
Virtual methods 8.19 Supported
Abstract classes and pure 8.20 Supported
virtual methods
rno;i/g%r?;;irgbdynamlc 8.21 Supported
g;\srsa:gcr);:):e resolution 8.22 Supported
Out-of-block declarations 8.23 Supported
Parameterized classes 8.24 Supported
Class resolution operator for 8.24.1
parameterized classes Supported
Typedef class 8.25 Supported
Classes and structures 8.26 Supported
Memory management 8.27 Supported

Processes 9 Supported
Pa'raIIeI Process - For‘k 9.3 Supported
Join_Any and Fork Join_None
Wait fork 9.6 Supported
Disable Fork 9.6 Supported
Fine grain process control 9.7 Supported

Clocking Block 14 Supported
General 14.1 Supported
Overview 14.2 Supported
Clocking block declaration 14.3 Supported
Input and output Skew 14.4 Supported
Hierarchical Expressions 14.5 Not Supported
Eilgzils in multiple clocking 14.6 Supported
I(iiflgtcilr(:;g block scope and 14.7 Supported
Z(:Lﬂgt: clocking block 14.8 Supported
Interface and clocking block 14.9 Supported
Clocking block event 14.10 Supported
Cycle Delay 14.11 Supported
Default clocking 14.12 Supported

Logic Simulation N Send Feedback 181
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=181

(: XI LI NX® Appendix B: SystemVerilog Support in Vivado Simulator

Table B-2: Supported Dynamic Type Constructs (Cont’d)

Primary Construct Secondary Construct LRM Section Status
Input Sampling 14.13 Supported
Global clocking 14.14 Not Supported
Synchronous events 14.15 Supported
Synchronous drives 14.16 Supported
g)gl\i/ge;riztrj]tzonblocking 14.16.1 Supported
zgx!}g clocking output 14.16.2 Supported
Semaphore 15.3 Supported
Semaphore method new() 15.3.1 Supported
Semaphore method put() 15.3.2 Supported
Semaphore method get() 15.3.3 Supported
Semaphore method try_get() 15.3.4 Supported
Mailbox 15.4 Supported
Mailbox method new() 15.4.1 Supported
Mailbox method num() 15.4.2 Supported
Mailbox method put() 15.4.3 Supported
Mailbox method try_put() 15.4.4 Supported
Mailbox method get() 15.4.5 Supported
Mailbox method try_get() 15.4.6 Supported
Mailbox method peek() 15.4.7 Supported
Mailbox method try_peek() 15.4.8 Supported
Parameterized mailbox 15.4.9 Supported
Named Event 15.5 Supported
Triggering an event 15.5.1 Supported
Waiting on event 15.5.2 Supported
Persistent trigger 15.5.3 Not Supported
Event Sequence 15.5.4 Not Supported
\(/)ap;?eargltei!on on named event 15.5.5 Supported
Merging Events 15.5.5.1 Supported
Reclaiming event 15.5.5.2 Supported
Event comparison 15.5.5.3 Supported
Random Constraint 18 Supported
Concepts and Usage 18.3 Supported
Random Variable 18.4 Supported

Logic Simulation N Send Feedback 182
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=182

& XILINX.

Table B-2: Supported Dynamic Type Constructs (Cont’d)

Appendix B: SystemVerilog Support in Vivado Simulator

Primary Construct Secondary Construct LRM Section Status
Rand modifier 18.4.1 Supported
Randc modifier 18.4.2 Supported
Constraint block 18.5 Supported
External constraint block 18.5.1 Supported
Constraint inheritance 18.5.2 Supported
Set membership 18.5.3 Supported
Distribution 18.5.4 Supported
Implication 18.5.5 Supported
If-else constraint 18.5.6 Supported
[terative constraint 18.5.7 Supported
Foreach iterative constraint 18.5.7.1 Supported
?;;as)ir;ﬁ::ction iterative 18.5.7.2 Supported
Global constraint 18.5.8 Supported
Variable Ordering 18.5.9 Supported
Static constraint block 18.5.10 Supported
Function in constraint 18.5.11 Supported
Constraint Guards 18.5.12 Supported
Method Randomize 18.6.1 Supported
Pre_randomize and 18.6.2
post_randomize Supported
Behavior of randomization 18.6.3 Supported
method
In-line constraints 18.7 Supported
Local scope resolution 18.7.1 Supported
D!sabling random variable 18.8 Supported
with rand_mode
Control!ing constraints with 18.9 Supported
constraint_mode
r[:};;nda};ri]cl;:ticg:stramt 18.10 Supported
In-line random variable 18.11
control Supported
In-line constraint checker 18.11.1 Supported
Rapdomize 'c')f a scope 18.12 Supported
variable std::randomize

Logic Simulation
UG900 (v2018.2) June 6, 2018

www.Xxilinx.com

l Send Feedback I 183

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=183

& XILINX.

Appendix B: SystemVerilog Support in Vivado Simulator

Table B-2: Supported Dynamic Type Constructs (Cont’d)
Primary Construct Secondary Construct LRM Section Status

:{andpm number system 18.13 Supported
unctions and method
$urandom 18.13.1 Supported
$urandom_range 18.13.2 Supported
srandom 18.13.3 Supported
Get_randstate 18.13.4 Not Supported
Set_randstate 18.13.5 Supported
Random stability 18.14 Supported
Randcase 18.16 Supported
Randsequence 18.17 Not Supported

Programs 24 Supported
The Program construct 24.3 Supported
Scheduling semantic of code 24.3.1
in program construct Supported
Program port connection 24.3.2 Supported
Eliminating test bench race 24.4 Supported
?nlg(cjlzing task in cycle/event 24.5 Supported
Anonymous Programs 24.6 Not Supported
Program control task 24.7 Supported

Logic Simulation
UG900 (v2018.2) June 6, 2018

www.Xxilinx.com

l Send Feedback I 184

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=184

& XILINX

Appendix C

VHDL 2008 Support in Vivado Simulator

Introduction

The Vivado® simulator supports the subset of VHDL 2008(IEEE 1076-2008). The complete
list is given in Table C-1.

Compiling and Simulating

The Vivado Simulator executable xvhd1l is used to convert a VHDL design unit into parser
dump (.vdb). By default, Vivado Simulator uses mixed 93 and 2008 standard (STD) and IEEE
packages to freely allow mixing of 93 and 2008 features. If you want to force only the
VHDL-93 standard (STD) and IEEE package, pass -93_mode to xvhdl. To compile a file only
with VHDL 2008 mode, you need to pass -2008 switch to xvhdl.

For example, to compile a design called top.vhdl in VHDL-2008, following command line
can be used:

xvhdl -2008 -work mywork top.vhdl

The Vivado Simulator executable xelab is used to elaborate a design and produce an
executable image for simulation.

xelab can do either of the following:

« Elaborate on parser dumps produced by xvhdl

» Directly use vhdl source files.

No switch is needed to elaborate on parser dumps produced by xvhdl. You can pass
-vhd12008 to xelab to directly use vhdl source files.

Example 1:
xelab top -s nysim xsimnysim-R
Example 2:

xel ab -vhdl 2008 top.vhdl top -s nysim xsimnmysim-R

Logic Simulation N Send Feedback 185
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=185

(: X| |_| NX® Appendix C: VHDL 2008 Support in Vivado Simulator

Instead of specifying VHDL files in the command line for xvhdl and xelab, a .prj file can be
used. If you have two files for a design called top.vhdl (2008 mode) and bot .vhdl (93
mode), you can create a project file named example.prj as follows:

vhdl xil_defaultlib bot.vhdl

vhdl2008 xil_defaultlib top.vhdl

In the project file, each line starts with the language type of the file, followed by the library
name such as xil_defaultlib and one or more file names with a space separator. For
VHDL 93, one should use vhdl as the language type. For VHDL 2008, use vhd12008
instead.

A .prj file can be used as shown in the example below:
xelab -prj exanple.prj xil_defaultlib.top -s nysim xsimnysim-R

Alternatively, to mix VHDL 93 and VHDL 2008 design units, compile the files separately with
a proper language mode specified to xvhdl. Then, elaborate on top(s) of the design. For
example, if we have a VHDL 93 module called bot in file bot .vhdl, and a VHDL-2008
module called top in file top.vhdl, you can compile them as shown in the example below:

xvhdl bot . vhdl
xvhdl -2008 top. vhdl
xel ab -debug typical top -s nysim

Once the executable is produced by xelab, you can run the simulation as usual.
Example 1:

XSi m nysim -gui
Example 2:

xsimnysim-R

Logic Simulation N Send Feedback 186
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=186

(: X| |_| NX® Appendix C: VHDL 2008 Support in Vivado Simulator

Fixed and Floating Point Packages

Fixed and floating point packages used by the Vivado simulator are the new enhanced IEEE
standard packages introduced in VHDL-2008. If you are using the VHDL-93 standard fixed
or floating package, that may work in Vivado synthesis, however you must edit your VHDL
source file for simulation.

For example:
If you are using the following syntax for the fixed package in Vivado synthesis:

library ieee;
use ieee.fixed_pkg.all;

Change this to the following syntax in VHDL-2008 for use in the Vivado simulator:

library ieee_proposed;
use i eee_proposed. fixed_pkg. all;

See this link in the Vivado Design Suite User Guide: Synthesis (UG901) [Ref 13] for more
information about fixed and floating packages in Vivado Synthesis.

Similar changes will apply for floating package too.

Supported Features

Table C-1: Supported features of VHDL 2008 (IEEE1076-2008)

Features Example/Comment

VHDL-2008 STD and IEEE packages Limited by other language features such as generic
precompiled, including new fixed and float package which XSIM does not yet support. Not all
packages, unsigned bit etc. newly added std functions are supported.

Notably, stop and £inish are supported.
Simplified sensitivity list process(all)
Matching Relational Operators ?=,7?/=,7>,7>=,7<, 7<=

Xx?=y
Unary Reduction Logic Operators signal x: std_logic_vector(0 to 31);

signal x_and : std:logic;

x_and <= and x;

Simplified Case Statement case x and y is
when '1" => report "1%;
when '0"' => report "0";
end case;

Instead of an intermediate variable or signal, we can
use an expression directly in the case statement.

Logic Simulation N Send Feedback 187
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug901-vivado-synthesis.pdf;a=xFixedPointSupport
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=187

& XILINX.

Table C-1:

Appendix C: VHDL 2008 Support in Vivado Simulator

Supported features of VHDL 2008 (IEEE1076-2008) (Cont’d)

Features

Example/Comment

Array / Bit Logic Operators

signal s : std_logic;
signal v, r : std_logic_vector(0 to 7);

r<=sandvy;

Array / Bit Addition Operators

Library functions

Enhanced Bit String Literals

16SX"FF" = “1111_1111_1111_1111"
16UX"FF" = “0000_0000_1111_1111"

Conditional and selected sequential statements

process(clk)

with x select
y:="111" when "110",
"000" when others;

a:="'1T"whenb ="'1"else
‘0" when b = '0"

Protected type

type areaOfSquare is protected
procedure setx(newx : real);
impure function area return real;
end protected;

type areaOfSquare is protected body
variable x : real = 0.0;

Note: Protected type shared variable is supported in
HDL simulation, but Tcl and GUI does not allow
examining value of protected type shared variables
yet.

Keyword ‘parameter’ in procedure declaration

procedure proc parameter (a : in std_logic)

Array element resolution function in subtype
definition

type bit_word is array (natural range <>) of bit;
function resolve_array (s : bit_word) return bit;
subtype resolved_array is (resolve_array) bit_word;

Block comments

/*
X<=1;
Process(all)

*/

Predefined array types

boolean_vector, integer_vector etc.

Logic Simulation
UG900 (v2018.2) June 6, 2018

www.Xxilinx.com

l Send Feedback I 188

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=188

(: X| |_| NX@ Appendix C: VHDL 2008 Support in Vivado Simulator

Table C-1: Supported features of VHDL 2008 (IEEE1076-2008) (Cont’d)

Features Example/Comment
Type passed as Generic Sentity test is
generic (type data_type);
port (

X :in data_type;
s : out data_type);
end entity test;

Hierarchical references to signal <<signal .top.dut_inst.sig1: std_logic_vector(3 downto
0)>>

Expression in port map

Reading output port

Note: Other features that are not mentioned in the above table, are not supported by Vivado Simulator.

Logic Simulation N Send Feedback 189
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=189

& XILINX

Appendix D

Direct Programming Interface (DPI) in
Vivado Simulator

Introduction

You can use the SystemVerilog Direct Programming Interface (DPI) to bind C code to
SystemVerilog code. Using DPI, SystemVerilog code can call a C function, which in turn can
call back a SystemVerilog task or function. Vivado® simulator supports all the constructs as
DPI task/function, as described below.

Compiling C Code

A new compiler executable, xsc, is provided to convert C code into an object code file and
to link multiple object code files into a shared library (.a on Windows and . so on Linux).
The xsc compiler is available in the <Vivado installation>/bin directory.You can use
-sv_1ib to pass the shared library containing your C code to the Vivado
simulator/elaborator executable. The xsc compiler works in the same way as a C compiler,
such as gcc. The xsc compiler:

« Calls the LLVM clang compiler to convert C code into object code

« Calls the GNU linker to create a shared library (.a on Windows and . so on Linux) from
one or more object files corresponding to the C files

The shared library generated by the xsc compiler is linked with the Vivado simulator kernel
using one or more newly added switches in xelab, as described below. The simulation
snapshot created by xelab thus has ability to connect the compiled C code with compiled
SystemVerilog code and effect communication between C and SystemVerilog.

Logic Simulation N Send Feedback 190
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=190

(: X”_INX® Appendix D: Direct Programming Interface (DPI) in Vivado Simulator

xsc Compiler

The xsc compiler helps you to create a shared library (. a on Windows or . so on Linux) from
one or more C files. Use xelab to bind the shared library generated by xsc into the rest of
your design. You can create a shared library using the following processes:

One-step process
Pass all C files to xsc without using the -compile or -1ink switch.
Two-step process

Xxsc -conpile <C files>
xsc -link <object files>

Usage

xsc [options] <files...>
Switches

You can use a double dash (--) or a single dash (-) for switches.

Table D-1: XSC Compiler Switches

Switch Description
-compile Generate the object files only from the source C files. The link
stage is not run.
-f [-file] arg Read additional options from the specified file.
-h [-help 1] Print this help message.
-i [-input_file] arg List of input files (one file per switch) for compiling or linking.
-link Run only the linking stage to generate the shared library (.a or

.s0) from the object files.

-mt arg (=auto) Specifies the number of sub-compilation jobs that can be run
in parallel. Choices are:

auto: automatic

n: where n is an integer greater than 1
of£: turn off multi-threading
(Default: auto)

-o [-output] arg Specify the name of output shared library. Works with the
-1link option only.

-work arg Specify the work directory in which to place the outputs.
(Default: <current_directory>/xsim.dir/xsc)

-v [-verbose] arg Specify verbosity level for printing messages.
Allowed values are: 0, 1
(Default: 0)

Logic Simulation N Send Feedback 191
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=191

(: X”_INX® Appendix D: Direct Programming Interface (DPI) in Vivado Simulator

Table D-1: XSC Compiler Switches (Cont’d)

Switch Description
-additional_option arg Provide an additional option to the compiler. You can use
multiple -additional_option switches.
--gcc_compile_options arg Supply an additional option to the compiler. You can use
multiple -gcc_compile_options switches.
--gcc_link_options arg Supply an additional option to the linker. You can use multiple
-gcc_link_options switches.
--shared Run only the linking stage to generate the shared library
(.d1l1l]| .so) from the object files.
--gcc_version Print version of the C compiler used internally
--gcc_path Print path of the C compiler used internally
--lib arg Specify the logical library directories that will be read. Default
is <current_directory>/xsim.dir/xs
--cppversion arg Set the CPP version; currently CPP 11 and 14. supported.
Default is 11.
Examples

xsc functionl.c function2.c
xelab -svlog file.sv -sv_lib dpi

xsc -conpile functionl.c function2.c -work abc
xsc -link abc/functionl.| nx64.0 abc/function2.lnx64.0 -work abc

Note: By default, Linux uses the LD_LIBRARY_PATH for searching the DPI libraries. Hence, provide
-dpi_absolute flag to xelab on Linux if library name start with 1ib*.

Note: You can use -additional_option to the compiler to pass extra switch.

Example:

xsc tl.c --additional _option "-I<path>"

Example to pass multiple paths:

xsc tl.c --additional _option "-l<path>" --additional_option "-I<path>"

Logic Simulation N Send Feedback 192
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=192

2: X”_INX® Appendix D: Direct Programming Interface (DPI) in Vivado Simulator

Binding Compiled C Code to SystemVerilog Using
xelab

The DPI-related switches for xelab that bind the compiled C code to SystemVerilog are as
follows:

Table D-2: DPI-Related Switches for xelab

Switch Description

-sv_root arg Root directory relative to which a DPI shared library should be searched. (Default:
<current_directory>/xsim.dir/xsc)

-sv_lib arg Name of the DPI shared library without the file extension defining C function
imported in SystemVerilog.

-sv_1liblist Bootstrap file pointing to DPI shared libraries.

arg

-dpiheader Generate a DPI C header file containing C declaration of imported and exported

arg functions.

For more information on r-sv_1iblist arg, refer to the IEEE Standard for
SystemVerilog—Unified Hardware Design, Specification, and Verification Language [Ref 17],
Appendix J.4.1, page 1228.

Data Types Allowed on the Boundary of C and
SystemVerilog

The IEEE Standard for SystemVerilog [Ref 17] allows only subsets of C and SystemVerilog data
types on the C and SystemVerilog boundary. Provided below are (1) details on data types
supported in Vivado simulator and (2) descriptions of mapping between the C and
SystemVerilog data types.

Supported Data Types

The following table describes data types allowed on the boundary of C and SystemVerilog,
along with mapping of data types from SystemVerilog to C and vice versa.

Table D-3: Data Types Allowed on the C-SystemVerilog Boundary

SystemVerilog C Supported Comments
byte char Yes None
shortint short int Yes None
int int Yes None

Logic Simulation

o l Send Feedback I 193
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=193

& XILINX.

Appendix D: Direct Programming Interface (DPI) in Vivado Simulator

Table D-3: Data Types Allowed on the C-SystemVerilog Boundary (Cont’d)

SystemVerilog C Supported Comments
longint long long Yes None
real double Yes None
shortreal float Yes None
chandle void * Yes None
string const char* Yes None
bit unsigned char Yes sv_0, sv_1
Available on C side using svdpi.h
logic, reg unsigned char Yes sv_0, sv_1, sv_z, sv_x:
Array (packed) of bits svBitVecval Yes Defined in svdpi.h
Array (packed) of logic/reg svLogicVecvVal Yes Defined in svdpi.h

enum Underlying enum type Yes None

Packed structs, unions Passed as array Yes None

Unpacked arrays of bit, Passed as array Yes C can call SystemVerilog
logic

Unpacked structs, Passed as struct Yes None

Unpacked unions Passed as struct No None

Open arrays svOpenArrayHandle | Yes None

To generate a C header file that provides details on how SystemVerilog data types are
mapped to C data types: pass the parameter -dpiheader <file name> to xelab.
Additional details on data type mapping are available in the The IEEE Standard for

SystemVerilog [Ref 17].

Mapping for User-Defined Types

Enum

You can define an enumerated type (enum) for conversion to the equivalent SystemVerilog
types, svLogicVecVal or svBitVecVal, depending on the base type of enum. For
enumerated arrays, equivalent SystemVerilog arrays are created.

Logic Simulation
UG900 (v2018.2) June 6, 2018

www.Xxilinx.com

l Send Feedback I 194

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=194

2: X”_INX® Appendix D: Direct Programming Interface (DPI) in Vivado Simulator

Examples

SystemVerilog types:

typedef enumreg [3:0] { a =0, b =1, c} eType;
eType e;

eType el[4:3];

typedef enumbit { a = 0, b = 1} eTypeBit;
eTypeBi t e3;

eTypeBi t e4[3: 1]

C types:

svLogi cVecVal e[SV_PACKED DATA NELEMS(4)];
svLogi cVecVal el 2] [SV_PACKED DATA NELEMS(4)];
svBit e3;

svBit e4[3];

O TIP: The C argument types depend on the base type of the enum and the direction.

Packed Struct/Union

When using a packed struct or union type, an equivalent SystemVerilog type,
svLogicVecVal or svBitVecVal, is created on the DPI C side.

Examples

SystemVerilog type:

typedef struct packed {
int i;
bit b;
reg [3:0]r;
logic [2:0] [4:8][9:1] I;

} sType;
sType c_obj;
sType [3:2] c_obj1[5];

C type:

svLogi cVecVal c_obj [SV_PACKED DATA NELEMS(172)];
svLogi cVecVal c_obj 1[5] [SV_PACKED DATA NELEMS(344)];

Arrays, both packed and unpacked, are represented as arrays of svLogicVecval or
svBitVecVal.
Unpacked Struct

An equivalent unpacked type is created on the C side, in which all the members are
converted to the equivalent C representation.

Logic Simulation N Send Feedback 195
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=195

2: X”_INX® Appendix D: Direct Programming Interface (DPI) in Vivado Simulator

Examples

SystemVerilog type:

typedef struct {
int i;
bit b;
reg r[(3:0];
logic [2:0] I1[4:8][9:1];
} sType;

C type:

typedef struct {

int i;

svBit b;

svLogic r[4];

svLogi cVecVal |[5][9][SV_PACKED DATA NELEMS(3)];
} sType;

Support for svdpi.h functions

The svdpi.h header file is provided in this directory:
<vivado installation»>/data/xsim/include.

The following svdpi .h functions are supported:

svBit svCetBitsel Bit(const svBitVecval* s, int i);

svLogi c svGetBitsel Logi c(const svLogicVecVal* s, int i);

void svPutBitsel Bit(svBitVecval* d, int i, svBit s);

voi d svPutBitsel Logi c(svLogicVecVal* d, int i, svlLogic s);

void svCGetPartsel Bit(svBitVecVal * d, const svBitVecVal* s, int i, int w);

voi d svCet Partsel Logi c(svLogi cVecVal * d, const svLogicVecVal* s, int i, int w;
voi d svPut Partsel Bit(svBitVecVal * d, const svBitVecVal s, i, int w;

voi d svPut Part sel Logi c(svLogi cVecVal * d, const svLogicVecVal s, int i, int w;

const char* svDpi Version();
svScope svGet Scope();
svScope svSet Scope(const svScope scope);
const char* svGet NameFr onScope(const svScope);

i nt svPut User Dat a(const svScope scope, voi d*userKey, void* userData);

voi d* svGet User Dat a(const svScope scope, Vvoi d* userKey);

Logic Simulation
UG900 (v2018.2) June 6, 2018 www.xilinx.com

l Send Feedback I 196

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=196

2: X”_INX® Appendix D: Direct Programming Interface (DPI) in Vivado Simulator

Open arrays in DPI

When declaring an import function in system Verilog, you may specify formal argument as
open arrays. By specifying certain dimension(s) of formal array arguments as blank (open),
it will allow passing actual arguments of different size, which facilitates more general C
code. At C side, the open arrays are represented as SVOpenArrayHandle. By passing this
handle to provided functions, you may query the information of open array, e.g. the size of
opened dimension, and access the actual data.

Declaration

Open arrays may only appear in import function/task declaration in System Verilog code. By
leaving the dimension(s) open, you must specify an open array and the size of blank
dimension will be determined with respect to actual argument.

Examples

SystemVerilog function declaration:

import "DPI-C'" function int nyFunctionl(input bit[] v);
import "DPI-C' function void nyFunction2(input int vi[], input int v2[], output int
v3[]);

At C side, the open array(s) may only be accessed by the handle and provided APIs:

int myFunctionl(const SvVOpenArrayHandle V);
voi d nyFunction2(const SvVOpenArrayHandle v1, const SvVOpenArrayHandle V2, const
SVOpenArrayHandle V3);

svdpi.h Support

The following open array related functions are supported in svdpi.h:

int svLeft(const svQpenArrayHandle h, int d);

int svRi ght (const svQOpenArrayHandl e h, int d);

int svLow const svQpenArrayHandle h, int d);

int svH gh(const svQpenArrayHandle h, int d);

int svincrement (const svOpenArrayHandl e h, int d);

int svSize(const svQpenArrayHandle h, int d);

int svDi nensi ons(const svOpenArrayHandl e h);

voi d *svGet ArrayPtr(const svQpenArrayHandl e);

int svSizeOF Array(const svQpenArrayHandl e) ;

void *svGet ArrEl enPtr(const svOpenArrayHandl e, int indxl, ...);

void *svGet ArrEl enPtr1(const svOpenArrayHandl e, int indxl);

void *svGet ArrEl enPtr2(const svOpenArrayHandl e, int indxl, int indx2);
void *svGet ArrEl enPtr3(const svQpenArrayHandl e, int indx1, int indx2,

int indx3);

voi d svPutBit Arr El enVecVal (const svQpenArrayHandl e d, const svBitVecVal * s,
int indx1, ...);

voi d svPutBitArrEl enlVecVal (const svOpenArrayHandl e d, const svBitVecVal * s,
int indx1);

voi d svPutBit Arr El enRVecVal (const svQpenArrayHandl e d, const svBitVecVval * s,

Logic Simulation N Send Feedback 197
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=197

2: X”_INX® Appendix D: Direct Programming Interface (DPI) in Vivado Simulator

int indx1, int indx2);

voi d svPut Bit Arr El enBVecVal (const svOpenArrayHandl e d, const svBitVecVval * s,
int indx1, int indx2, int indx3);

voi d svPut Logi cArr El emVecVal (const svOpenArrayHandl e d, const svlLogi cVecVal *
s, int indx1, ...);

voi d svPut Logi cArrEl emlVecVal (const svOpenArrayHandl e d, const svlLogi cVecVal *
s, int indx1);

voi d svPut Logi cArr El en2VecVal (const svOpenArrayHandl e d, const svLogi cVecVal *
s, int indx1, int indx2);

voi d svPut Logi cArr El emBVecVal (const svOpenArrayHandl e d, const svLogi cVecVval *
s, int indx1, int indx2, int indx3);

voi d svGetBit ArrEl enVecVal (svBitVecVal * d, const svQpenArrayHandl e s,

int indx1, ...);
voi d svCGetBitArrEl enlVecVal (svBitVecVal * d, const svOpenArrayHandl e s,
int indx1);

voi d svGetBit Arr El enRVecVal (svBitVecVal * d, const svOpenArrayHandl e s,
int indx1, int indx2);

voi d svGetBit Arr El enBVecVal (svBitVecVal * d, const svOpenArrayHandl e s,
int indx1, int indx2, int indx3);

voi d svCet Logi cArr El emecVal (svLogi cVecVal * d, const svOpenArrayHandl e s,

int indx1, ...);
voi d svGet Logi cArrEl emlVecVal (svLogi cVecVal * d, const svOpenArrayHandl e s, int
i ndx1);

voi d svGet Logi cArr El em2VecVal (svLogi cVecVal * d, const svOpenArrayHandl e s,

int indx1, int indx2);

voi d svCet Logi cArr El enBVecVal (svLogi cVecVal * d, const svOpenArrayHandl e s,

int indx1, int indx2, int indx3);

svBit svGetBitArrEl en{const svOpenArrayHandle s, int indxl, ...);

svBit svGetBitArrEl enl(const svQpenArrayHandl e s, int indxl);

svBit svGetBitArrEl en2(const svQpenArrayHandl e s, int indxl, int indx2);

svBit svGetBitArrEl enB(const svOpenArrayHandl e s, int indx1l, int indx2, int indx3);
svLogi ¢ svGetLogi cArrEl en(const svOpenArrayHandle s, int indxl1, ...);

svLogi ¢ svGet Logi cArrEl enl(const svOpenArrayHandl e s, int indxl);

svLogi ¢ svGetLogi cArrEl en2(const svOpenArrayHandl e s, int indx1l, int indx2);
svLogi ¢ svGetLogi cArrEl enB(const svOpenArrayHandl e s, int indx1l, int indx2, int

i ndx3);

voi d svPut Logi cArrEl em(const svOpenArrayHandl e d, svLogic value, int indx1, ...);
voi d svPut Logi cArrEl eml(const svOpenArrayHandl e d, svLogic value, int indxl);

voi d svPut Logi cArrEl en2(const svOpenArrayHandl e d, svLogic value, int indxl, int
i ndx2);

voi d svPut Logi cArrEl en8(const svQpenArrayHandl e d, svLogic val ue, int indxl,

int indx2, int indx3);

void svPutBitArrEl en{const svOpenArrayHandl e d, svBit value, int indx1, ...);
void svPutBitArrEl enl(const svOpenArrayHandl e d, svBit value, int indxl);

voi d svPut Bi t Arr El en2(const svOpenArrayHandl e d, svBit value, int indx1l, int indx2);
voi d svPutBitArrEl enB(const svOpenArrayHandl e d, svBit value, int indxl,

int indx2, int indx3);

Usage Example

SystemVerilog code:

nmodul e n();
import "DPI-C' function void nyFunctionl(input int v[]);

int arr[4];
int dynArr[];

Logic Simulation N Send Feedback 198
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=198

2: X”_INX® Appendix D: Direct Programming Interface (DPI) in Vivado Simulator

initial begin
arr = '{4, 5, 6, 7};
myFunctionl(arr);

dynArr = new 6];

dynArr = '{8, 9, 10, 11, 12, 13};
nyFuncti onl(dynArr);

end

endnodul e

C code:

#i ncl ude "svdpi.h"

voi d nmyFunctionl(const svQOpenArrayHandl e v)

{

int 11 = svilow(v, 1);

int hl = svHi gh(v, 1);

for(int i =11; i<= hl; i++) {

printf("\t%l", *((char*)svGetArrEl enPtri(v, i)));

}
printf("\n");

Examples
Note: All the examples below print PASSED for a successful run.

Examples include:

« Import example using -sv_lib, -sv_liblist, and -sv_root: A function import example that
illustrates different ways to use the -sv_1ib, -sv_1iblist and -sv_root options.

« Function with Output: A function that has output arguments.

« Simple Import-Export Flow (illustrates xelab -dpiheader flow): Shows a simple
import>export flow (illustrates xelab -dpiheader <filename> flow).

Import example using -sv_lib, -sv_liblist, and -sv_root

Code

Assume that there are:

« Two files each containing a C function

« A SystemVerilog file that uses the following functions:
- functionl.c
- function2.c

o file.sv

Logic Simulation N Send Feedback 199
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=199

2: X”_INX® Appendix D: Direct Programming Interface (DPI) in Vivado Simulator

functionl.c
#i ncl ude "svdpi.h"

DPI _DLLESPEC
int myFunctionl()

{
}

return 5;

function2.c

#i ncl ude <svdpi . h>
DPI _DLLESPEC
int myFunction2()

{
return 10;
}
file.sv
modul e () ;

import "DPI-C' pure function int nmyFunctionl ();
import "DPI-C' pure function int myFunction2 ();

integer i, j;

initial
begin
#1;
i nmyFunctionl();
j myFunction2();
$di splay(i, j);
if(i ==5 & j == 10)
$di spl ay(" PASSED") ;
el se
$di spl ay("FAI LED") ;

end

endnodul e

Usage
Methods for compiling and linking the C files into the Vivado simulator are described below.

Single-step flow (simplest flow)

xsc functionl.c function2.c
xelab -svliog file.sv -sv_lib dp

Logic Simulation N Send Feedback 200
UG900 (v2018.2) June 6, 2018 www.xilinx.com L—w_—————————J

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=200

2: X”_INX® Appendix D: Direct Programming Interface (DPI) in Vivado Simulator

Flow description:

The xsc compiler compiles and links the C code to create the shared library
xsim.dir/xsc/dpi.so, and xelab references the shared library through the switch
-sv_1lib.

Two-step flow
xsc -conpile functionl.c function2.c -work abc

xsc -link abc/functionl.| nx64.0 abc/function2.1nx64.0 -work abc
xelab -svlog file.sv -sv_root abc -sv_lib dpi -R

Flow description:

o Compile the two C files into corresponding object code in the work directory abc.
o Link these two files together to create the shared library dpi.so.

- Make sure that this library is picked up from the work library abe via the -sv_root
switch.

O TIP: -sv_root specifies where to look for the shared library specified through the switch -sv_1ib.

TIP: On Linux, if -sv_root is not specified and the DPI library is named with the prefix 1ib and the
O suffix . so, then use the LD_LIBRARY_PATH environment variable for the location of shared library.

Two-step flow (same as above with few extra options)

xsc -conpile functionl.c function2.c -work "abc" -v 1
xsc -link "abc/functionl.|nx64.0" "abc/function2.|1nx64.0" -work "abc" -o final -v 1
xelab -svlog file.sv -sv_root "abc" -sv_lib final -R

Flow description:

If you want to do your own compilation and linking, you can use the -verbose switch to
see the path and the options with which the compiler was invoked. You can then tailor those
to suit your needs. In the example above, a distinct shared library final is created. This
example also demonstrates how spaces in file path work.

Logic Simulation N Send Feedback 201
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=201

2: X”_INX® Appendix D: Direct Programming Interface (DPI) in Vivado Simulator

Function with Output

Code

file.sv

[*- - - =%

package packl

import "DPI-C' function int nyFunctionl(input int v, output int 0)

import "DPI-C' function void nmyFunction2 (input int vl1, input int v2, output int o)
endpackage

[*-- ---%]
nodul e m();

int i, j;

int ol ,02, 03;

initial
begi n
#1;
j = 10;
03 =packl:: nyFunctionl(j, ol);//should be 10/2 =5
packl: : nyFunction2(j, 2+3, 02); // 5 += 10 + 2+3
$di spl ay(o01, 02);
if(o0l == 5 && 02 == 15)
$di spl ay(" PASSED") ;
el se
$di spl ay(" FAI LED") ;
end

endnodul e

function.c
#i ncl ude "svdpi.h"

DPI _DLLESPEC
int myFunctionl(int j, int* 0)
{

*o=j /2

return O;

}

DPI _DLLESPEC
void nmyFunction2(int i, int j, int* o)
{

0 = i+,

return;

Logic Simulation N Send Feedback 202
UG900 (v2018.2) June 6, 2018 www.xilinx.com L—w_—————————J

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=202

2: X”_INX® Appendix D: Direct Programming Interface (DPI) in Vivado Simulator

run.ksh

xsc function.c
xelab -vlog file.sv -sv -sv_|lib dpi -R

Simple Import-Export Flow (illustrates xelab -dpiheader flow)
In this flow:

* You run xelab with the -dpiheader switch to create the header file, file.h.

« Yourcodein file.c thenincludes the xelab-generated header file (Eile.h), which is
listed at the end.

+ Compile the code in file.c and test.sv as before to generate the simulation
executable.

file.c

#include "file.h"
/* NOTE: This file is generated by xel ab -dpi header <filenane> flow */

int cfunc (int a, int b) {
//Call the function exported from SV.
return c_exported_func (a,b);

test.sv

nodul e m();
export "DPI-C' c_exported_func = function func;
import "DPI-C' pure function int cfunc (input int a ,b);

/*This function can be called fromboth SV or C side. */
function int func(input int x, y);
begi n
func = x + v;
end
endf uncti on

int z;

initial
begin
#5;
z = cfunc(2, 3);
if(z == 5)
$di spl ay(" PASSED") ;
el se
$di spl ay("FAI LED");

end
endnodul e

Logic Simulation N Send Feedback 203
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=203

2: X”_INX® Appendix D: Direct Programming Interface (DPI) in Vivado Simulator

run.ksh

xel ab -dpi header file.h -svlog test.sv
xsc file.c
xelab -svlog test.sv -sv_lib dpi -R

/**I*I~A!*e*.*h********************~k***/
/* */
/* I\ / */
/01 N */
[* A\ \ \/ */
/* \ \ Copyright (c) 2003-2013 Xilinx, Inc. */
[* / Al'l Right Reserved. */
[* ---1 /\ */
[* A\ \ */
N VAN */

/**l

/* NOTE: DO NOT EDIT. AUTOVATI CALLY GENERATED FI LE. CHANGES W LL BE LOST. */

#i f ndef DPI _H

#define DPI_H

#i fdef __cplusplus

#define DPI _LI NKER_ DECL extern "C'
#el se

#defi ne DPI _LI NKER _DECL

#endi f

#i ncl ude "svdpi.h"

/* Exported (from SV) function */
DPI _LI NKER_DECL DPI _DLLI SPEC
int c_exported_func(

int x, int y);

/* Inported (by SV) function */
DPI LI NKER _DECL DPI _DLLESPEC
int cfunc(

int a, int b);

#endi f

Logic Simulation N Send Feedback 204
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=204

2: X”_INX® Appendix D: Direct Programming Interface (DPI) in Vivado Simulator

DPI Examples Shipped with the Vivado Design Suite

There are two examples shipped with the Vivado Design Suite that can help you understand
how to use DPI in Vivado simulator. Locate these in your installation directory,

<vivado installation dir>/examples/xsim/systemverilog/dpi.Eachincludes
a README file that can help you get started. The examples include:

*+ simple_import: simple import of pure function

« simple_export: simple export of pure function

O TIP: When the return value of a function is computed solely on the value of its inputs, it is called a “pure
function.”

Logic Simulation N Send Feedback 205
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=205

& XILINX

Appendix E

Handling Special Cases

Using Global Reset and 3-State

Xilinx® devices have dedicated routing and circuitry that connect to every register in the
device.

Global Set and Reset Net

During configuration, the dedicated Global Set/Reset (GSR) signal is asserted. The GSR
signal is deasserted upon completion of device configuration. All the flip-flops and latches
receive this reset, and are set or reset depending on how the registers are defined.

O RECOMMENDED: Although you can access the GSR net after configuration, avoid use of the GSR
circuitry in place of a manual reset. This is because the FPGA devices offer high-speed backbone
routing for high fanout signals such as a system reset. This backbone route is faster than the dedicated
GSR circuitry, and is easier to analyze than the dedicated global routing that transports the GSR signal.

In post-synthesis and post-implementation simulations, the GSR signal is automatically
asserted for the first 100 ns to simulate the reset that occurs after configuration.

A GSR pulse can optionally be supplied in pre-synthesis functional simulations, but is not
necessary if the design has a local reset that resets all registers.

TIP: When you create a test bench, remember that the GSR pulse occurs automatically in the
O post-synthesis and post-implementation simulation. This holds all registers in reset for the first 100 ns
of the simulation.

Note: If a design uses ICAP primitive, GSR will last for 1.281 us at that time.

Global 3-State Net

In addition to the dedicated global GSR, output buffers are set to a high impedance state
during configuration mode with the dedicated Global 3-state (GTS) net. All
general-purpose outputs are affected whether they are regular, 3-state, or bidirectional
outputs during normal operation. This ensures that the outputs do not erroneously drive
other devices as the FPGA is configured.

Logic Simulation N Send Feedback 206
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=206

(: X”_INX® Appendix E: Handling Special Cases

In simulation, the GTS signal is usually not driven. The circuitry for driving GTS is available in
the post-synthesis and post-implementation simulations and can be optionally added for
the pre-synthesis functional simulation, but the GTS pulse width is set to 0 by default.

Using Global 3-State and Global Set and Reset Signals

Figure E-1 shows how Global 3-State (GTS) and Global Set/Reset (GSR) signals are used in an
FPGA.

1/0s Used for

Initialization User
Programmable
el Latch/Register
Global Tri-State |] H—‘—}—H,D o al—
(GTS) T 1
Initializati | | | —JlcE
User Tri-State D rg::];f;lgn 7D
Enable | 4 —C
fo | IGSR —D CLR
| GTS 1]
D77 User 7D
D:f Programmable *:D
I'o User Output Logic User
Pad D* Resources ::D A Se
g— Output Buffer] S
=TT t — HJ Reset_Globa
User Input I O O Set/Reset
LI T IJTLILIJLILIL] (GSR)
Input Buffer General Purpose X8352

Figure E-1: Built-in FPGA Initialization Circuitry Diagram

Global Set and Reset and Global 3-State Signals in Verilog

The GSR and GTS signals are defined in the
<Vivado_Install_Dir»>/data/verilog/src/glbl.v module.

In most cases, GSR and GTS need not be defined in the test bench.

The glbl.v file declares the global GSR and GTS signals and automatically pulses GSR for
100 ns.

Global Set and Reset and Global 3-State Signals in VHDL

The GSR and GTS signals are defined in the file:
<Vivado_Install_Dir>/data/vhdl/src/unisims/primitive/GLBL_VHD. vhd.

To use the GLBL_VHD component you must instantiate it into the test bench.

The GLBL_VHD component declares the global GSR and GTS signals and automatically
pulses GSR for 100 ns.

Logic Simulation N Send Feedback 207
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=207

(: X”_INX® Appendix E: Handling Special Cases

The following code snippet shows an example of instantiating the GLBL_VHD component in
the test bench and changing the assertion pulse width of the Reset on Configuration (ROC)
to 90 ns:

GLBL_VHD i nst: G.BL_VHD generic map (ROC_W DTH => 90000);

Delta Cycles and Race Conditions

This user guide describes event-based simulators. Event-based simulators can process
multiple events at a given simulation time. While these events are being processed, the
simulator cannot advance the simulation time. This event processing time is commonly
referred to as delta cycles. There can be multiple delta cycles in a given simulation time step.

Simulation time is advanced only when there are no more transactions to process for the
current simulation time. For this reason, simulators can give unexpected results, depending
on when the events are scheduled within a time step. The following VHDL coding example
shows how an unexpected result can occur.

VHDL Coding Example With Unexpected Results

clk_b <= clk;
clk_prcs : process (clk)
begin

if (clk'event and clk="1") then
result <= data
end if;
end process;
clk_b_prcs : process (clk_b)
begin
if (clk_b'event and clk_b="1") then
resultl <= result;
end if;
end process;

In this example, there are two synchronous processes:

e clk_prcs

e clk_b_prcs

The simulator performs the c1k_b <= clk assignment before advancing the simulation
time. As a result, events that should occur in two clock edges occur in one clock edge
instead, causing a race condition.

Recommended ways to introduce causality in simulators for such cases include:

« Do not change clock and data at the same time. Insert a delay at every output.

+ Use the same clock.

Logic Simulation N Send Feedback 208
UG900 (v2018.2) June 6, 2018 www.xilinx.com L—w_—————————J

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=208

(: X”_INX® Appendix E: Handling Special Cases

« Force a delta delay by using a temporary signal, as shown in the following example:

clk_b <= clk;
clk_prcs : process (clk)
begin

if (clk'event and clk="1") then
result <= data
end if;
end process;

result_tenp <= result;
clk_b_prcs : process (clk_b)
begin
if (clk_b"event and clk_b="1") then
resultl <= result_tenp;
end if;
end process;

Most event-based simulators can display delta cycles. Use this to your advantage when
debugging simulation issues.

Using the ASYNC_REG Constraint

The ASYNC_REG constraint:

« Identifies asynchronous registers in the design

« Disables X propagation for those registers

The ASYNC_REG constraint can be attached to a register in the front-end design by using
either:

« An attribute in the HDL code
« A constraint in the Xilinx Design Constraints (XDC)

The registers to which ASYNC_REG are attached retain the previous value during timing
simulation, and do not output an X to simulation. Use care; a new value might have been
clocked in as well.

The ASYNC_REG constraint is applicable to CLB and Input Output Block (IOB) registers and
latches only. For more information, see ASYNC_REG constraint at this link in the Vivado
Design Suite Properties Reference Guide (UG912) [Ref 12].

Logic Simulation N Send Feedback 209
UG900 (v2018.2) June 6, 2018 www.xilinx.com L—w_—————————J

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug912-vivado-properties.pdf;a=xAsyncReg
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=209

(: X”_INX® Appendix E: Handling Special Cases

)

Logic Simulation

RECOMMENDED: /f you cannot avoid clocking in asynchronous data, do so for IOB or CLB registers only.
Clocking in asynchronous signals to RAM, Shift Register LUT (SRL), or other synchronous elements has
less deterministic results; therefore, should be avoided. Xilinx highly recommends that you first properly
synchronize any asynchronous signal in a register, latch, or FIFO before writing to a RAM, Shift Register
LUT (SRL), or any other synchronous element. For more information, see the Vivado Design Suite User
Guide: Using Constraints (UG903) [Ref 9].

Disabling X Propagation for Synchronous Elements

When a timing violation occurs during a timing simulation, the default behavior of a latch,
register, RAM, or other synchronous elements is to output an X to the simulator. This occurs
because the actual output value is not known. The output of the register could:

« Retain its previous value
« Update to the new value

« Go metastable, in which a definite value is not settled upon until some time after the
clocking of the synchronous element

Because this value cannot be determined, and accurate simulation results cannot be
guaranteed, the element outputs an X to represent an unknown value. The X output remains
until the next clock cycle in which the next clocked value updates the output if another
violation does not occur.

The presence of an X output can significantly affect simulation. For example, an X generated
by one register can be propagated to others on subsequent clock cycles. This can cause
large portions of the design under test to become unknown.

To correct X-generation:

« On asynchronous path, analyze the path and fix any timing problems associated with
this or other paths to ensure a properly operating circuit.

« On an asynchronous path, if you cannot otherwise avoid timing violations, disable the X
propagation on synchronous elements during timing violations by using the
ASYNC_REG property.

When X propagation is disabled, the previous value is retained at the output of the register.
In the actual silicon, the register might have changed to the 'new' value. Disabling X
propagation might yield simulation results that do not match the silicon behavior.

CAUTION! Exercise care when using this option. Use it only if you cannot otherwise avoid timing
violations.

o l Send Feedback I 210
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=210

(: X”_INX® Appendix E: Handling Special Cases

Simulating Configuration Interfaces

This section describes the simulation of the following configuration interfaces:

« JTAG simulation

« SelectMAP simulation

JTAG Simulation

BSCAN component simulation is supported on all devices.

The simulation supports the interaction of the JTAG ports and some of the JTAG operation
commands. The JTAG interface, including interface to the scan chain, is not fully supported.
To simulate this interface:

1. Instantiate the BSCANE2 component and connect it to the design.

2. Instantiate the JTAG_SIME2 component into the test bench (not the design).
This becomes:

« The interface to the external JTAG signals (such as TDI, TDO, and TCK)

¢ The communication channel to the BSCAN component

The communication between the components takes place in the vPXG VHDL package file or
the g1lbl Verilog global module. Accordingly, no implicit connections are necessary
between the specific JTAG_SIME2 component and the design, or the specific BSCANE2
symbol.

Stimulus can be driven and viewed from the specific JTAG_SIME2 component within the
test bench to understand the operation of the JTAG/BSCAN function. Instantiation
templates for both of these components are available in both the Vivado® Design Suite
templates and the specific-device libraries guides.

SelectMAP Simulation

The configuration simulation models (SIM_CONFIGE2 and SIM_CONFIGE3) with an
instantiation template allow supported configuration interfaces to be simulated to
ultimately show the DONE pin going HIGH. This is a model of how the supported devices
react to stimulus on the supported configuration interface.

Logic Simulation N Send Feedback 211
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=211

(: X”_INX® Appendix E: Handling Special Cases

Table E-1 lists the supported interfaces and devices.

Table E-1: Supported Configuration Devices and Modes

Devices SelectMAP Serial SPI BPI
7 Series and Yes Yes No No
Zynq®-7000 SoC
Devices
UltraScale™ Devices Yes Yes No No
UltraScale+™ Devices Yes Yes No No

The models handle control signal activity as well as bit file downloading. Internal register
settings such as the CRC, IDCODE, and status registers are included. You can monitor the
Sync Word as it enters the device and the start-up sequence as it progresses. Figure E-2,
below, illustrates how the system should map from the hardware to the simulation
environment.

The configuration process is specifically outlined in the configuration user guides for each
device. These guides contain information on the configuration sequence, as well as the
configuration interfaces.

Host Controller - Input Stimulus to Model Configuration Simulation Model
T
! 11 I
: Memory : : :
| Controller 1l IDCODE Parameter |
! 11 I
I Bit File Il Target FPGA I
! + CCLK I
: SelectMAP - Data [0-n] [
| Control : t cs :
| Logic — RDWR !
I User | ! |
! Memory t PROG_B 1
: } : INIT_B 1
| : | Mode Pins [2:0] :
! 11 I
| 1| |
! 11 I
| 11 |
! 11 I
e e e e e T S A A 1

X10194
1710

Figure E-2: Block Diagram of Model Interaction

Logic Simulation N Send Feedback 212
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=212

(: X”_INX® Appendix E: Handling Special Cases

System Level Description

The configuration models allow the configuration interface control logic to be tested before
the hardware is available. It simulates the entire device, and is used at a system level for:

« Applications using a processor to control the configuration logic to ensure proper
wiring, control signal handling, and data input alignment.

« Applications that control the data loading process with the CS (SelectMAP Chip Select)
or CLK signal to ensure proper data alignment.

« Systems that need to perform a SelectMAP ABORT or Readback.

The config_test_bench.zip file has sample test benches that simulate a processor
running the SelectMAP logic. These test benches have control logic to emulate a processor
controlling the SelectMAP interface, and include features such as a full configuration,
ABORT, and Readback of the IDCODE and status registers.

For the ZIP files associated with this model, see Xilinx Answer 53632.

The simulated host system must have a method for file delivery as well as control signal
management. These control systems should be designed as set forth in the device
configuration user guides.

The configuration models also demonstrate what is occurring inside the device during the
configuration procedure when a BIT file is loaded into the device.

During the BIT file download, the model processes each command and changes registers
settings that mirror the hardware changes.

You can monitor the CRC register as it actively accumulates a CRC value. The model also
shows the Status Register bits being set as the device progresses through the different
states of configuration.

Debugging with the Model

Each configuration model provides an example of a correct configuration. You can leverage
this example to assist in the debug procedure if you encounter device programming issues.

You can read the Status Register through JTAG using the Vivado Device Programmer tool.
This register contains information relating to the current status of the device and is a useful
debugging resource. If you encounter issues on the board, reading the Status Register in
Vivado Device Programmer is one of the first debugging steps to take.

After the status register is read, you can map it to the simulation to pinpoint the
configuration stage of the device.

Logic Simulation N Send Feedback 213
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=answers;d=53632.html
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=213

& XILINX.

For example, the GHIGH bit is set HIGH after the data load process completes successfully;
if this bit is not set, then the data loading operation did not complete. You can also monitor
the GTW, GWE, and DONE signals set in BitGen that are released in the start-up sequence.

Appendix E: Handling Special Cases

The configuration models also allow for error injection. The active CRC logic detects any
issue if the data load is paused and started again with any problems. It also detects bit flips
manually inserted in the BIT file, and handles them just as the device would handle this
error.

Feature Support

Each device-specific configuration user guide outlines the supported methods of
interacting with each configuration interface.The table below shows which features

discussed in the configuration user guides are supported.

The SIM_CONFIGE2 model:

Does not support Readback of configuration data.

Does not store configuration data provided, although it does calculate a CRC value.

Can perform Readback on specific registers only to ensure that a valid command
sequence and signal handling is provided to the device.

Is not intended to allow Readback data files to be produced.

Table E-2: Model-Supported Slave SelectMAP and Serial Features
Slave SelectMAP and Serial Features Supported

Master mode No
Daisy chain - slave parallel daisy chains No
SelectMAP data loading Yes
Continuous SelectMAP data loading Yes
Non-continuous SelectMAP data loading Yes
SelectMAP ABORT Yes
SelectMAP reconfiguration No
SelectMAP data ordering Yes
Reconfiguration and MultiBoot No
Configuration CRC—CRC checking during configuration Yes
Configuration CRC—post-configuration CRC No

Logic Simulation
UG900 (v2018.2) June 6, 2018 www.xilinx.com

l Send Feedback I 214

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=214

(: X”_INX® Appendix E: Handling Special Cases

Disabling Block RAM Collision Checks for
Simulation

Xilinx block RAM memory is a true dual-port RAM where both ports can access any memory
location at any time. Be sure that the same address space is not accessed for reading and
writing at the same time. This causes a block RAM address collision. These are valid
collisions, because the data that is being read from the read port is not valid.

In the hardware, the value that is read might be the old data, the new data, or a combination
of the old data and the new data.

In simulation, this is modeled by outputting X because the value read is unknown. For more
information on block RAM collisions, see the user guide for the device.

In certain applications, this situation cannot be avoided or designed around. In these cases,
the block RAM can be configured not to look for these violations. This is controlled by the
generic (VHDL) or parameter (Verilog) SIM_COLLISION_CHECK string in block RAM
primitives.

Table E-3 shows the string options you can use with SIM_COLLISION_CHECK to control
simulation behavior in the event of a collision.

Table E-3: SIM_COLLISION_CHECK Strings

. Write Collision .
String Messages Write Xs on the Output
ALL Yes Yes
WARNING_ONLY Yes No. Applies only at the time of collision.
Subsequent reads of the same address space could
produce Xs on the output.
GENERATE_X_ONLY No Yes
None No No. Applies only at the time of collision.
Subsequent reads of the same address space could
produce Xs on the output.

Apply the SIM_COLLISION_CHECK at an instance level so you can change the setting for
each block RAM instance.

Logic Simulation N Send Feedback 215
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=215

(: X”_INX® Appendix E: Handling Special Cases

Dumping the Switching Activity Interchange Format
File for Power Analysis

« Vivado simulator: Power Analysis Using Vivado Simulator, page 116

« Dumping SAIF for Power Analysis, Dumping SAIF in IES, and Dumping SAIF in VCS in
Chapter 3, Simulating with Third-Party Simulators

Skipping Compilation or Simulation

Skipping Compilation

You can run simulation on an existing snapshot and skip the compilation (or recompilation)
of the design by setting the SKIP_COMPILATION property on the simulation fileset:

set_property SKIP_COWPI LATION 1 [get _filesets sim 1]

Note: Any change to design files after the last compilation is not reflected in simulation when you
set this property.
Skipping Simulation

To perform a semantic check on the design HDL files, by elaborating and compiling the
simulation snapshot without running simulation, you can set the SKIP_SIMULATION
property on the simulation fileset:

set_property SKIP_SIMJLATION true [get_filesets sim1]

f IMPORTANT: /f you elect to use one of the properties above, disable the Clean up simulation files
checkbox in the simulations settings or, if you are running in batch/Tcl mode, call
launch _simulation with -noclean dir.

Logic Simulation N Send Feedback 216
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=216

& XILINX

Appendix F

Value Rules in Vivado Simulator Tcl
Commands

Introduction

This appendix contains the value rules that apply to both the add_force and the
set_value Tcl commands.

String Value Interpretation

The interpretation of the value string is determined by the declared type of the HDL object
and the -radix command line option. The -radix always overrides the default radix
determined by the HDL object type.

« For HDL objects of type 1ogic, the value is a one-dimensional array of the logic type
or the value is a string of digits of the specified radix.

If the string specifies less bits than the type expects, the string is implicitly
zero-extended (not sign-extended) to match the length of the type.

If the string specifies more bits than the type expects, the extra bits on the MSB side
must be zero; otherwise the command generates a size mismatch error.

For example: The value 3F specifies 8 bits (4 per hex digit) with radix hex and a 6 bit
logic array, equivalent to binary 0011 1111. But, because the upper two bits of 3
are zero, the value can be assigned to the HDL object. In contrast, the value 7F would
generate an error, because the upper two bits are not zero.

A scalar (not array or record) 1logic HDL object has an implicit length of 1 bit.

Fora logic array declaredasa [left:right] (Verilog) ora(left TO/DOWNTO
right), the left-most value bit (after extension/truncation) is assigned to a[left]
and the right-most value bit is assigned to a[right].

Logic Simulation N Send Feedback 217
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=217

2: XI LI NX® Appendix F: Value Rules in Vivado Simulator Tcl Commands

Vivado Design Suite Simulation Logic

The logic is not a concept defined in HDL but is a heuristic introduced by the Vivado®
simulator.

« A Verilog object is considered to be of 1ogic type if it is of the implicit Verilog bit type,
which includes wire and reg objects, as well as integer and time.

« A VHDL object is considered to be of Logic type if the objects type is bit, std_logic,
or any enumeration type whose enumerators are a subset of those of std_logic and
include at least 0 and 1, or type of the object is a one-dimensional array of such a type.

« For HDL objects, which are of VHDL enumeration type, the value can be one of the
enumerator literals, without single quotes if the enumerator is a character literal. Radix
is ignored.

« For VHDL objects, of integral type, the value can be a signed decimal integer in the
range of the type. Radix is ignored.

« For VHDL and Verilog floating point types the value can be a floating point value. Radix
is ignored.

« For all other types of HDL objects, the Tcl command set does not support setting values.

Logic Simulation N Send Feedback 218
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=218

& XILINX

Appendix G

Vivado Simulator Mixed Language
Support and Language Exceptions

Introduction

The Vivado® Integrated Design Environment (IDE) supports the following languages:

e VHDL, see IEEE Standard VHDL Language Reference Manual (IEEE-STD-1076-1993)
[Ref 15]

» Verilog, see IEEE Standard Verilog Hardware Description Language
(IEEE-STD-1364-2001) [Ref 16]

« SystemVerilog Synthesizable subset. See IEEE Standard Verilog Hardware Description
Language (IEEE-STD-1800-2009) [Ref 17]

« |EEE P1735 encryption, see Recommended Practice for Encryption and Management of
Electronic Design Intellectual Property (IP) (IEEE-STD-P1735) [Ref 19]

This appendix lists the application of Mixed Language in the Vivado simulator, and the
exceptions to Verilog, SystemVerilog, and VHDL support.

Using Mixed Language Simulation

The Vivado simulator supports mixed language project files and mixed language
simulation. This lets you include Verilog/SystemVerilog (SV) modules in a VHDL design, and
vice versa.

Restrictions on Mixed Language in Simulation

« A VHDL design can instantiate Verilog/SystemVerilog (SV) modules and a Verilog/SV
design can instantiate VHDL components. Component instantiation-based default
binding is used for binding a Verilog/SV module to a VHDL component. Any other kind
of mixed use of VHDL and Verilog, such as VHDL process calling a Verilog function, is
not supported.

Logic Simulation N Send Feedback 219
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=219

v g . . .
2A X”_INX® Appendix G: Vivado Simulator Mixed Language Support and Language Exceptions

« A subset of VHDL types, generics, and ports are allowed on the boundary to a
Verilog/SV module. Similarly, a subset of Verilog/SV types, parameters and ports are
allowed on the boundary to VHDL components. See Table G-2, page 222.

i} IMPORTANT: Connecting whole VHDL record object to a Verilog object is unsupported; however, VHDL
record elements of a supported type can be connected to a compatible Verilog port.

« A Verilog/SV hierarchical reference cannot refer to a VHDL unit nor can a VHDL
expanded or selected name refer to a Verilog/SV unit.

Key Steps in a Mixed Language Simulation

1. Optionally, specify the search order for VHDL components or Verilog/SV modules in the
design libraries of a mixed language project.

2. Use xelab -L to specify the binding order of a VHDL component or a Verilog/SV
module in the design libraries of a mixed language project.

Note: The library search order specified by -L is used for binding Verilog modules to other
Verilog modules as well.

Mixed Language Binding and Searching

When you instantiate a VHDL component in a Verilog/SV module or a Verilog/SV module in
a VHDL architecture, the xelab command:

« First searches for a unit of the same language as that of the instantiating design unit.

« If a unit of the same language is not found, xelab searches for a cross-language
design unit in the libraries specified by the -L option.

The search order is the same as the order of appearance of libraries on the xelab command
line. See Verilog Search Order, page 137 for more information.

Note: When using the Vivado IDE, the library search order is specified automatically. No user
intervention is necessary or possible.

Instantiating Mixed Language Components

In a mixed language design, you can instantiate a Verilog/SV module in a VHDL architecture
or a VHDL component in a Verilog/SV module as described in the following subsections.

To ensure that you are correctly matching port types, review the Port Mapping and
Supported Port Types, page 221.

Logic Simulation N Send Feedback 220
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=220

v g . . .
2A X”_INX® Appendix G: Vivado Simulator Mixed Language Support and Language Exceptions

Instantiating a Verilog Module in a VHDL Design Unit

1. Declare a VHDL component with the same name and in the same case as the Verilog
module that you want to instantiate. For example:

COVPONENT MY_VHDL_UNI T PORT (
Q: out STD ULCGE G
D: in STD_ULGA G
C: in STD _ULOGE C);
END COVPONENT;

2. Use named or positional association to instantiate the Verilog module. For example:

UUT © MY_VHDL_UNI T PORT MAP(
Q=>0Q
D=>1,
C => CLK);

Instantiating a VHDL Component in a Verilog/SV Design Unit

To instantiate a VHDL component in a Verilog/SV design unit, instantiate the VHDL
component as if it were a Verilog/SV module.

For example:

nodul e t estbench ;
wire in, clk;
wre out;

FD FD1(
.QqQaun,

. C(CLK) ;

) DAY,

Port Mapping and Supported Port Types

Table G-1 lists the supported port types.

Table G-1: Supported Port Types

VHDL (1) Verilog/sv(2)
IN INPUT
ouT OUTPUT
INOUT INOUT

1. Buffer and linkage ports of VHDL are not supported.

2. Connection to bi-directional pass switches in Verilog are not supported. Unnamed Verilog ports are not allowed on
mixed design boundary.

Table G-2 shows the supported VHDL and Verilog data types for ports on the mixed

language design boundary.

Logic Simulation N Send Feedback 221
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=221

v g . . .
(A X”_INX® Appendix G: Vivado Simulator Mixed Language Support and Language Exceptions

Table G-2: Supported VHDL and Verilog Data Types

VHDL Port Verilog Port

bit net

std_logic net

bit_vector vector net
signed vector net
unsigned vector net
std_ulogic_vector vector net
std_logic_vector vector net

Note: Verilog output port of type reg is supported on the mixed language boundary. On the
boundary, an output reg port is treated as if it were an output net (wire) port. Any other type found
on mixed language boundary is considered an error.

Note: The Vivado simulator supports the record element as an actual in the port map of a Verilog
module that is instantiated in the mixed domain. All those types that are supported as VHDL port
(listed in Table G-2) are also supported as a record element.

Table G-3: Supported SV and VHDL Data Types

SV Data type VHDL Data type

Int

bit_vector

std_logic_Vector

std_ulogic_vector

signed

unsigned

byte

bit_vector

std_logic_Vector

std_ulogic_vector

signed

unsigned

shortint

bit_vector

std_logic_Vector

std_ulogic_vector

signed

unsigned

longint

bit_vector

Logic Simulation N Send Feedback 222
UG900 (v2018.2) June 6, 2018 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=222

8 XI LI NX® Appendix G: Vivado Simulator Mixed Language Support and Language Exceptions

Table G-3: Supported SV and VHDL Data Types (Cont’d)

SV Data type VHDL Data type

std_logic_Vector

std_ulogic_vector

signed

unsigned

integer

bit_vector

std_logic_Vector

std_ulogic_vector

signed

unsigned

vector of bit(1D)

bit_vector

std_logic_Vector

std_ulogic_vector

signed

unsigned

vector of logic(1D)

bit_vector

std_logic_Vector

std_ulogic_vector

signed

unsigned

vector of reg(1D)

bit_vector

std_logic_Vector

std_ulogic_vector

signed

unsigned

logic/bit

bit

std_logic

std_ulogic

bit_vector

std_logic_Vector

std_ulogic_vector

Logic Simulation N Send Feedback 223
UG900 (v2018.2) June 6, 2018 www.xilinx.com I—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=223

v g . . .
(A X”_INX® Appendix G: Vivado Simulator Mixed Language Support and Language Exceptions

Table G-3: Supported SV and VHDL Data Types (Cont’d)

SV Data type

VHDL Data type

signed

unsigned

Note: VHDL entity instantiating Verilog Module having real port is supported.

Generics (Parameters) Mapping

The Vivado simulator supports the following VHDL generic types (and their Verilog/SV

equivalents):

* integer
« real

« string

* boolean

Note: Any other generic type found on mixed language boundary is considered an error.

VHDL and Verilog Values Mapping

Table G-4 lists the Verilog states mappings to std_logic and bit.

Table G-4: Verilog States mapped to std_logic and bit

Verilog std_logic bit
Z VA 0
0 0 0
1 1 1
X X 0

Note: Verilog strength is ignored. There is no corresponding mapping to strength in VHDL.

Table G-5 lists the VHDL type bit mapping to Verilog states.

Table G-5: VHDL bit Mapping to Verilog States

bit

Verilog

0

0

1

1

Table G-6 lists the VHDL type std_logic mappings to Verilog states.

Logic Simulation
UG900 (v2018.2) June 6, 2018

WWW.

xilinx.com

l Send Feedback I 224

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=224

v g . . .
(A X”_INX® Appendix G: Vivado Simulator Mixed Language Support and Language Exceptions

Table G-6: VHDL std_logic mapping to Verilog States

std_logic Verilog
u X
X X
0 0
1 1
Z Z
W X
L 0
H 1
- X

Because Verilog is case sensitive, named associations and the local port names that you use
in the component declaration must match the case of the corresponding Verilog port

names.

VHDL Language Support Exceptions

Certain language constructs are not supported by the Vivado simulator. Table G-7 lists the
VHDL language support exceptions.

Table G-7: VHDL Language Support Exceptions

Supported VHDL Construct

Exceptions

abstract_literal

Floating point expressed as based literals are not
supported.

alias_declaration

Alias to non-objects are in general not supported;
particularly the following:

+ Alias of an alias

 Alias declaration without subtype_indication
« Signature on alias declarations

* Operator symbol as alias_designator

+ Alias of an operator symbol

» Character literals as alias designators

alias_designator

Operator_symbol as alias_designator
Character_literal as alias_designator

association_element

Globally, locally static range is acceptable for taking
slice of an actual in an association element.

attribute_name

Signature after prefix is not supported.

binding_indication

Binding_indication without use of entity_aspect is not
supported.

Logic Simulation
UG900 (v2018.2) June 6, 2018

. l Send Feedback I 225
www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=225

& XILINX.

Appendix G: Vivado Simulator Mixed Language Support and Language Exceptions

Table G-7: VHDL Language Support Exceptions (Cont’d)

Supported VHDL Construct

Exceptions

bit_string_literal.

Empty bit_string_literal (" ") is not supported

block_ statement

Guard_expression is not supported; for example,
guarded blocks, guarded signals, guarded targets,
and guarded assignments are not supported.

choice

Aggregate used as choice in case statement is not
supported.

concurrent_assertion_statement

Postponed is not supported.

concurrent_signal_assignment_statement

Postponed is not supported.

concurrent_statement

Concurrent procedure call containing wait statement
is not supported.

conditional_signal_assignment

Keyword guarded as part of options is not supported
as there is no supported for guarded signal
assignment.

configuration_declaration

Non locally static for generate index used in
configuration is not supported.

entity_class

Literals, unit, file, and group as entity class are not
supported.

entity_class_entry

Optional <> intended for use with group templates is
not supported.

file_logical_name

Although file_logical_name is allowed to be any
wild expression evaluating to a string value, only
string literal and identifier is acceptable as file name.

function_call

Slicing, indexing, and selection of formals is not
supported in a named parameter association within a
function_call.

instantiated_unit

Direct configuration instantiation is not supported.

mode Linkage and Buffer ports are not supported
completely.

options Guarded is not supported.

primary At places where primary is used, allocator is

expanded there.

procedure_call

Slicing, indexing, and selection of formals is not
supported in a named parameter association within a
procedure_call.

process_statement

Postponed processes are not supported.

selected_signal_assignment

The guarded keyword as part of options is not
supported as there is no support for guarded signal
assignment.

signal_declaration

The signal_kind is not supported. The
signal_kind is used for declaring guarded signals,
which are not supported.

Logic Simulation
UG900 (v2018.2) June 6, 2018

www.Xxilinx.com

l Send Feedback I 226

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=226

v g . . .
(A X”_INX® Appendix G: Vivado Simulator Mixed Language Support and Language Exceptions

Table G-7: VHDL Language Support Exceptions (Cont’d)

Supported VHDL Construct

Exceptions

subtype_indication

Resolved subtype of composites (arrays and records)
is not supported

waveform

Unaffected is not supported.

waveform_element

Null waveform element is not supported as it only has
relevance in the context of guarded signals.

Verilog Language Support Exceptions

Table G-8 lists the exceptions to supported Verilog language support.

Table G-8: Verilog Language Support Exceptions

Verilog Construct

Exception

Compiler Directive Constructs

‘unconnected_drive

not supported

‘nounconnected_drive

not supported

Attributes

attribute_instance

not supported

attr_spec

not supported

attr_name

not supported

Primitive Gate and Switch Types

cmos_switchtype

not supported

mos_switchtype

not supported

pass_en_switchtype

not supported

Generated Instantiation

Logic Simulation
UG900 (v2018.2) June 6, 2018

. l Send Feedback I 227
www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=227

v g . . .
(A X”_INX® Appendix G: Vivado Simulator Mixed Language Support and Language Exceptions

Table G-8: Verilog Language Support Exceptions (Cont’d)

Verilog Construct Exception

generated_instantiation The module_or_generate_item alternative is not
supported.

Production from IEEE standard (see /EEE Standard Verilog
Hardware Description Language (IEEE 1364-2001) section 13.2
[Ref 16]):

generate_item_or_null ::=
generate_conditonal_statement |
generate_case_statement |
generate_loop_statement |

generate_block |

module_or_generate_item

Production supported by Simulator:
generate_item_or_null ::=
generate_conditional_statement|
generate_case_statement |
generate_loop_statement |
generate_blockgenerate_condition

genvar_assignment Partially supported.
All generate blocks must be named.

Production from standard (see /EEE Standard Verilog Hardware
Description Language (IEEE 1364-2001) section 13.2 [Ref 16]:

generate_block ::=

begin

[: generate_block_identifier]

{ generate_item }

end

Production supported by Simulator:
generate_block ::=

begin:

generate_block_identifier {
generate_item }

end
Source Text Constructs
Library Source Text
library_ text not supported
library_descriptions not supported
library_declaration not supported
include_statement This refers to include statements within library map files (See

IEEE Standard Verilog Hardware Description Language (IEEE
1364-2001) section 13.2 [Ref 16]. This does not refer to the
*include compiler directive.

System Timing Check Commands

$skew_timing_check not supported

$timeskew_timing_check not supported

Logic Simulation N Send Feedback 228
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=228

v g . . .
(A X”_INX® Appendix G: Vivado Simulator Mixed Language Support and Language Exceptions

Table G-8: Verilog Language Support Exceptions (Cont’d)

Verilog Construct

Exception

Sfullskew_timing_check

not supported

Snochange_timing_check

not supported

System Timing Check Command Argument

checktime_condition

not supported

PLA Modeling Tasks

Sasync$nandSarray

not supported

Sasync$norSarray

not supported

Sasync$orSarray

not supported

Ssync$andSarray

not supported

Ssync$nandSarray

not supported

Ssync$norSarray

not supported

Ssync$SorSarray

not supported

Sasync$andSplane

not supported

Sasync$nandSplane

not supported

SasyncnorSplane

not supported

Sasync$SorS$plane not supported
$sync$andS$plane not supported
$sync$nandSplane not supported
$sync$nor$Splane not supported
$syncSor$plane not supported

Value Change Dump (VCD) Files

Sdumpportson
Sdumpports
Sdumpportsoff
Sdumpportsflush
Sdumpportslimit

Svedplus

not supported

Logic Simulation
UG900 (v2018.2) June 6, 2018

www.Xxilinx.com

| Send Feedback I 229

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=229

& XILINX

Appendix H

Vivado Simulator Quick Reference Guide

Introduction

Table H-1 provides a quick reference and examples for common Vivado® simulator
commands.

Table H-1: Standalone Mode: Parsing, Elaborating, and Running Simulation from a Command Line

Parsing HDL Files

Vivado Simulator supports three HDL file types: Verilog, SystemVerilog and VHDL. You can parse the supported
files using XVHDL and XVLOG commands.

Parsing VHDL
files

xvhdl
xvhdl

filel.vhd file2.vhd
-work worklib filel.vhd file2.vhd

files

xvhdl -prj files.prj
. xvlog filel.v file2.v
Parsing . . .
.) xvlog -work worklib filel.v file2.v
Verilog files . .
xvlog -prj files.prj
. xvlog -sv filel.v file2.v
Parsing . . .
. xvlog -work worklib -sv filel.v file2.v
SystemVerilog o .
xvlog -prj files.prj

Note: For information about the PRJ file format, see Project File (.prj) Syntax in Chapter 7.

Logic Simulation

. l Send Feedback I 230
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=230

(: XI LI NX® Appendix H: Vivado Simulator Quick Reference Guide

Table H-1: Standalone Mode: Parsing, Elaborating, and Running Simulation from a Command Line

Additional xvlog and xvhdl Options

See Table 7-2, page 141 for a complete list of command options.
The following are key options for xvlog and xvhdl:

Key Option Applies to:
-d [define] xvlog
<name>[=<val>]
-h [-help] xvlog, xvhdl
-i [include] xvlog
<directory_name>

xvlog and
-initfile xvlog, xvhdl

xvhdl Key .. .

. <init_filename>
Options

-L [-1ib] xvlog, xvhdl
<library_name>
[=<library_dir>]

-log <filename> xvlog, xvhdl
-prj <filename> xvlog, xvhdl
-relax xvhdl, vlog
-work <library name> xvlog, xvhdl

[=<library_dir>]

Elaborating and Generating an Executable Snapshot

After parsing, you can elaborate the design in Vivado simulator using the XELAB command. XELAB generates an
executable snapshot.

Note: You can skip the parser stage, directly invoke the XELAB command, and pass the PRJ file. XELAB calls XVLOG and XVHDL
for parsing the files.

xelab topl top2 Elaborates a design that has two top design units: top1 and
top2. In this example, the design units are compiled in the
work library.

xelab libil.topil Elaborates a design that has two top design units: top1 and
1lib2.top2 top2. In this example, the design units have are compiled in
1ib1 and 1ib2, respectively
xelab topl top2 -prj Elaborates a design that has two top design units: top1 and
files.prj top2. In this example, the design units are compiled in the
Usage work library. The file files.prj contains entries such as:

verilog <libraryNanme> <Veril ogDesi gnFi | eNane>
vhdl <li braryNanme> <VHDLDesi gnFi | eNanme>
sv <l i braryNane> <Syst enmVeri | ogDesi gnFi | eNane>

xelab topl top2 -s top | Elaborates a design that has two top design units: top1 and
top2. In this example, the design units are compiled in the
work library. After compilation, xelab generates an
executable snapshot with the name top. Without the -s top
switch, xelab creates the snapshot by concatenating the unit
names.

Logic Simulation N Send Feedback 231
UG900 (v2018.2) June 6, 2018 www.xilinx.com l—\/—l

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=231

(: XI LI NX® Appendix H: Vivado Simulator Quick Reference Guide

Table H-1: Standalone Mode: Parsing, Elaborating, and Running Simulation from a Command Line

Command xelab -help
Line Help and | xelab, xvhd, and xvlog Command Options, page 141
xelab Options

Running Simulation

After parsing, elaboration and compilation stages are successful; xsim generates an executable snapshot to run
simulation.

xsim top -R Simulates the design to through completion.
xsim top -gui Opens the Vivado simulator workspace (GUI).
Usage xsim top Opens the Vivado Design Suite command prompt in Tcl mode.
From there, you can invoke such options as:
run -all
run 100 ns

Important Shortcuts

You can invoke the parsing, elaboration, and executable generation and simulation in one, two, or three stages.

Three Stage xvlog bot.v

xvhdl top.vhd

xelab work.top -s top
xsim top -R

Two Stage xelab -prj my_prj.prj work.top -s top

xsim top -R
where my_prj.prj file contains:

verilog work bot.v
vhdl work top.vhd

Single Stage xelab -prj my_prj.prj work.top -s top -R
where my_prj.prj file contains:

verilog work bot.v
vhdl work top.vhd

Vivado Simulation Tcl Commands

The following are commonly used Tcl commands. For a complete list, invoke following commands in the Tcl
Console:

e load_features simulator
e help -category simulation
For information on any Tcl Command, type: ~-help <Tcl_command>

Logic Simulation N Send Feedback 232
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=232

& XILINX.

Table H-1: Standalone Mode: Parsing, Elaborating, and Running Simulation from a Command Line

Appendix H: Vivado Simulator Quick Reference Guide

Common
Vivado
Simulator Tcl
Commands:

add_bp

Add break point at a line of HDL source. A Tcl command
example is provided on page 106.

add_force

Force the value of a signal, wire, or register to a specified value.
Tcl command exampled are provided on page 111.

current_time

now

Report current simulation time. See current_time, page 154 for
an example of this command within a Tcl script.

current_scope

Report or set the current, working HDL scope. See Additional
Scopes and Sources Options, page 57 for more information.

get_objects

Get a list of HDL objects in one or more HDL scopes, per the
specified pattern. For example command usage refer to:
page 117.

get_scopes

Get a list of child HDL scopes. See Additional Scopes and
Sources Options, page 57 for more information.

get_value

Get the current value of the selected HDL object (variable,
signal, wire, register). Type get_value -help in Tcl Console
for more information.

launch_simulation

Launch simulation using the Vivado simulator.

remove_bps

Remove breakpoints from a simulation. A Tcl command
example is provided on page 106.

report_drivers

Print drivers along with current driving values for an HDL wire
or signal object. Reference for more information: Using the
report_drivers Tcl Command, page 118.

report_values

Print current simulated value of given HDL objects (variables,
signals, wires, or registers). For example Tcl command usage,
see page 57.

restart

Rewind simulation to post loading state (as though the design
was reloaded); time is set to 0. For additional information, see
page 51.

set_value

Set the HDL object (variable, signal, wire, or register) to a
specified value. Reference for more information: Appendix F,
Value Rules in Vivado Simulator Tcl Commands.

step

Step simulation to the next statement. See Stepping Through a
Simulation, page 104.

Logic Simulation

UG900 (v2018.2) June 6, 2018

l Send Feedback I 233

www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=233

& XILINX

Appendix |

Using Xilinx Simulator Interface

Introduction

The Xilinx® Simulator Interface (XSI) is a C/C++ application programming interface (API) to
the Xilinx Vivado Simulator (xsim) that enables a C/C++ program to serve as the test bench
for a HDL design. Using XSI, the C/C++ program controls the activity of the Vivado
Simulator which hosts the HDL design.

The C/C++ program controls the simulation in the following methods:

« Setting the values of the top-level input ports of the HDL design

« Instructing the Vivado Simulator to run the simulation for a certain amount of
simulation time

Additionally, the C/C++ program can read the values of the top-level output ports of the
HDL design.

Perform the following steps to use XSl in your C/C++ program:

1. Prepare the XSI API functions to be called through dynamic linking

2. Write your C/C++ test bench code using the API functions

3. Compile and link your C/C++ program

4. Package the Vivado Simulator and the HDL design together into a shared library

Preparing the XSI Functions for Dynamic Linking

Xilinx recommends the usage of dynamic linking for indirectly calling the XSI functions.
While this technique involves more steps than simply calling XSI functions directly, dynamic
linking allows you to keep the compilation of your HDL design independent of the
compilation of your C/C++ program. You can compile and load your HDL design at any
time, even while your C/C++ program continues to run.

Logic Simulation N Send Feedback 234
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=234

2: X”_INX® Appendix I: Using Xilinx Simulator Interface

To call a function through dynamic linking requires your program to perform the following
steps:

1. Open the shared library containing the function
Look up the function by name to get a pointer to the function

Call the function using the function pointer

A won

Close the shared library (optional)

Steps 1, 2, and 4 require the use of OS-specific library calls, as shown in Table I-1. See your
operating system documentation for details about these functions.

Table I-1: Operating System Specific Library Calls

Function Linux Windows
Open shared library voi d *dl open(const char HVODULE W NAPI
*filename, int flag); LoadLi brary(_I n_ LPCTSTR
| pFi | eName
)
Look up function by name void *dl sym(voi d FARPROC W NAPI
*handl e, const char Get ProcAddress(_In_
*synbol) ; HMODULE hModul e, _In_

LPCSTR | pProcNane
)

Close shared library int dlclose(void BOCL W NAPI
*handl| e) ; FreeLi brary(_I n_ HVMODULE

hMbdul e
)

XSl requires you to call functions from two shared libraries: the kernel shared library and
your design shared library. The kernel shared library ships with the Vivado Simulator and is
called 1ibrdi_simulator_kernel.so (Linux) or 1ibrdi_simulator_kernel.dll
(Windows). It resides in the following directory:

<Vivado Installation Root>/1ib/<platfornm

where <platform»> is 1nx64.0 or winé64.o. Make sure to include this directory in your
library path while running your program. On Linux, include the directory in the environment
variable LD _LIBRARY_ PATH, and on Windows, in the environment variable PATH.

Your design shared library, which the Vivado Simulator creates in the course of compiling
your HDL design, as described in Preparing the Design Shared Library, is called xsimk.so
(Linux) or xsimk.d11l (Windows) and typically resides at the following location:

<HDL desi gn directory>/xsi mdir/<snapshot nanme>

where <HDL design directory> is the directory from which your design shared library
was created, and <snapshot name> is the name of the snapshot that you specify during
the creation of the library.

Logic Simulation N Send Feedback 235
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=235

2: X”_INX® Appendix I: Using Xilinx Simulator Interface

Your C/C++ program will call the XSI function xsi_open() residing in your design shared
library and all other XSI functions from the kernel shared library.

The XSI code examples that ship with the Vivado Simulator consolidate the XSI functions
into a C++ class called Xsi: :Loader. The class accepts the names of the two shared
libraries, internally executes the necessary dynamic linking steps, and exposes all the XSI
functions as member functions of the class. Wrapping the XSI functions in this manner
eliminates the necessity of calling the dynamic linking OS functions directly. You can find
the source code for the class that can be copied into your own program at the following
location under your Vivado installation:

<Vivado Installation Root>/exanpl es/xsimverilog/xsi/counter/xsi_|oader.h
<Vivado Installation Root>/exanpl es/xsi mverilog/xsi/counter/xsi_| oader. cpp

To use Xsi: :Loader, simply instantiate it by passing the names of the two shared libraries
as shown in the following example:

#i ncl ude "xsi _| oader. h"

Xsi:: Loader |oader("xsimdir/mnmySnapshot/xsink.so", "librdi_simulator_kernel.so");

Writing the Test Bench Code

A C/C++ test bench using XSI typically uses the following steps:

1. Open the design

2. Fetch the IDs of each top-level port

3. Repeat the following until the simulation is finished:
a. Set values on top-level input ports
b. Run the simulation for a specific amount of time
c. Fetch the values of top-level output ports

4. Close the design

The following table lists the XSI functions and their Xsi: : Loader member function
equivalents to use for each step. You can find the usage details for each XSI function in the
XSI Function Reference section.

Table |I-2: Xsi::Loader member functions

Activity XSl Function Xsi: :Loader Member Function
Open the design Xsi _open open
Fetch a port ID Xsi _get _port _nunber get _port _nunber

Logic Simulation N Send Feedback 236
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=236

2: X”_INX® Appendix I: Using Xilinx Simulator Interface

Table I-2: Xsi::Loader member functions (Cont’d)

Activity XSl Function Xsi: :Loader Member Function
Set an input port XSi _put _val ue put _val ue
value
Run the simulation Xsi_run run
Fetch an output port Xsi _get _val ue get _val ue
value
Close the design xsi _cl ose cl ose

You can find the example C++ programs that use XSl in your Vivado Simulator installation
at the following location:

<Vivado Installation Root>/exanpl es/xsi m <HDL | anguage>/ xsi

Compiling Your C/C++ Program

You can use the XSI example programs as a guideline. Each example supplies one or two
scripts for compiling and running the example. Refer to your compiler's documentation for
details on compiling a program. On Linux, compiling and running is a two-step process.

1. In a C shell, source set_env.csh

2. Invoke run.csh
On Windows, simply run the batch file run.bat.
Note the following from the scripts:

1. The compilation lines specify (via -I) the inclusion of the directory containing the
xsi.h include file.

2. There is no mention of the design shared library or kernel shared library during the
compilation of a C++ program.

The XSl include file resides at the following location:

<Vivado Install ation Root>/data/xsiniinclude/xsi.h

Preparing the Design Shared Library

The last step for producing a working XSI-based C/C++ program involves the compilation of
a HDL design and packaging it together with the Vivado Simulator to become your design
shared library. You may repeat this step whenever there is a change in HDL designs source
code.

Logic Simulation N Send Feedback 237
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=237

2: X”_INX® Appendix I: Using Xilinx Simulator Interface

Y

Logic Simulation

CAUTION! /f you intend to rebuild the design shared library for your C/C++ program while your
program continues to run, be sure to close the design in your program before executing this step.

Create your design shared library by invoking xelab on the HDL design and including the
-dll switch to instruct xelab to produce a shared library instead of the usual snapshot for use
with the Vivado Simulator's user interface.

For example:

Type the following in the Linux command line to create a design shared library at
./xsim.dir/design/xsimk.so:

xel ab work.topl work.top2 -dll -s design

where work.topl and work.top2 are the top module names and design is the snapshot
name.

See xelab, xvhdl, and xvlog xsim Command Options for more details on compiling an HDL
design.

XSI Function Reference

This section presents each of the XSI API functions in plain (direct C call) and Xsi: :Loader
member function forms. The plain form functions take an xsiHandle argument, whereas
the member functions do not take this argument. The xsiHandle contains state
information about the opened HDL design. The plain form xsi_open produces the
xsiHandle. Xsi: :Loader contains an xsiHandle internally.

xsi_close

voi d xsi _cl ose(xsi Handl e desi gn_handl e);
voi d Xsi::Loader::close();

This function closes an HDL design, freeing the memory associated with the design. Call this
function to end the simulation.

xsi_get_error_info

const char* xsi_get_error_info(xsi Handl e desi gn_handl e);
const char* Xsi::Loader::get_error_info();

This function returns a string description of the last error encountered.

o l Send Feedback I 238
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=238

2: X”_INX® Appendix I: Using Xilinx Simulator Interface

xsi_get_port_number

XSl _INT32 xsi _get _port_nunber (xsi Handl e desi gn_handl e, const char* port_nane);
int Xsi::Loader::get_port_nunber(const char* port_nane);

This function returns an integer ID for the requested top-level port of the HDL design. You
may subsequently use the ID to specify the portin xsi_get_value and xsi_put_value
calls. port_name is the name of the port and is case sensitive for Verilog and case
insensitive for VHDL. The function returns -1 if no port of the specified name exists.

Example code:

#i ncl ude "xsi.h"
#i ncl ude "xsi _| oader. h"

Xsi::Loader | oader("xsimdir/mySnapshot/xsink.so","librdi_sinul ator_kernel.so");
int count = | oader.get_port_nunber("count");
xsi_get_status

XSl _INT32 xsi _get _stat us(xsi Handl e desi gn_handl e) ;
int Xsi::Loader::get_status();

This function returns the status of the simulation. The status may be equal to one of the
following identifiers:

Table I-3: Xsi Simulation Status Identifiers

Status code Identifiers Description
xsi Nor mal No error
xsi Error The simulation has encountered an HDL run-time error
xsi Fat al Error The simulation has encountered an error condition for
which the Vivado Simulator cannot continue.

Example code:

#i ncl ude "xsi.h"
#i ncl ude "xsi _| oader. h"

Xsi:: Loader |oader("xsimdir/mySnapshot/xsink.so","librdi_sinulator_kernel.so");

if (loader.get_status() == xsiError)
printf("HDL run-time error encountered.\n");

xsi_get_value

voi d xsi _get _val ue(xsi Handl e desi gn_handl e, XSI _I NT32 port_nunber, void* val ue);
int Xsi::Loader::get_value(int port_nunber, void* val ue);

Logic Simulation N Send Feedback 239
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=239

2: X”_INX® Appendix I: Using Xilinx Simulator Interface

This function fetches the value of the port indicated by port ID port_number. The value is
placed in the memory buffer to which value points. See xsi_get_port_number for
information on obtaining an ID for a port.

f IMPORTANT: Your program must allocate sufficient memory for the buffer before calling the function.
See Vivado Simulator VHDL Data Format and Vivado Simulator Verilog Data Format to determine the
necessary size of the buffer.

Example code:

#i ncl ude "xsi.h"
#i ncl ude "xsi _| oader. h"

/1 Buffer for value of port "count"
s_xsi _vlog_l ogi cval count_val = {0X00000000, 0X00000000};
Xsi::Loader | oader("xsimdir/mySnapshot/xsink.so","librdi_sinulator_kernel.so");

int count = | oader.get_port_nunber("count");
| oader. get _val ue(count, &count_val);

Xsi_open

typedef struct t_xsi_setup_info {
char* | ogFil eNaneg;
char* wdbFi | eNare;

} s_xsi_setup_info, *p_xsi_setup_info;

xsi Handl e xsi _open(p_xsi _setup_info setup_info);
voi d Xsi::Loader::open(p_xsi_setup_info setup_info);
bool Xsi::Loader::isopen() const;

This function opens an HDL design for simulation. To use this function, you must first
initialize an s_xsi_setup_info struct to pass to the function. Use 1ogFileName for the
name of the simulation log file, or NULL to disable logging. If waveform tracing is on (see
xsi_trace_all), wdbFileName is the name of the output WDB (waveform database) file. Use
NULL for the default name of xsim.wdb. If the waveform tracing is off, the Vivado Simulator
ignores the wdbFileName field.

TIP: To protect your program from future changes to the XSI API, Xilinx recommends that you zero out
O the s_xsi setup info struct before filling in the fields, as shown in the Example.

The plain (non-loader) form of the function returns an xsiHandle, a C object containing
process state information about the design, to be used with all other plain-form XSI
functions. The loader form of the function has no return value. However, you may check
whether the loader has opened a design by querying the isopen member function, which
returns true if the open member function had been invoked.

Logic Simulation N Send Feedback 240
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=240

2: X”_INX® Appendix I: Using Xilinx Simulator Interface

Example

#i ncl ude "xsi.h"
#i ncl ude "xsi _| oader. h"

Xsi:: Loader |oader("xsimdir/mySnapshot/xsink.so","librdi_sinulator_kernel.so");
s_xsi _setup_info info;

nenset (& nfo, 0, sizeof(info));

info.l ogFil eName = NULL;

char wdbNane[] = "test.wdb"; // make a buffer for holding the string "test.wdb"
i nf o. wdbFi | eNane = wdbNane;

| oader . open(& nfo);

xsi_put_value

voi d xsi _put _val ue(xsi Handl e desi gn_handl e, XSI_I NT32 port_nunber, void* val ue);
voi d Xsi::Loader:: put_val ue(int port_nunber, const void* val ue);

This function deposits the value stored in value onto the port specified by port ID
port_number. See xsi_get_port_number for information on obtaining an ID for a port.
value is a pointer to a memory buffer that your program must allocate and fill. See the
Vivado Simulator VHDL Data Format and Vivado Simulator Verilog Data Format for
information on the proper format of value.

Q CAUTION! For maximum performance, the Vivado Simulator performs no checking on the size or type
of the value you pass to xsi_put value. Passing a value to xsi put value which does not match
the size and type of the port may result in unpredictable behavior of your program and the Vivado
Simulator.

Example code:

#i ncl ude "xsi.h"
#i ncl ude "xsi _| oader. h"

/1 Hard-coded Buffer for a 1-bit "1" Verilog 4-state val ue
const s_xsi_vlog_l ogicval one_val = {0X00000001, 0X00000000};

Xsi::Loader | oader("xsimdir/mySnapshot/xsink.so","librdi_sinulator_kernel.so");
int clk = | oader.get_port_nunber("clk");
| oader. put _val ue(cl k, &one_val); // set clk to 1

xsi_restart

voi d xsi _restart(xsi Handl e desi gn_handl e);
void Xsi::Loader:: restart();

This function resets the simulation to simulation time 0.

Logic Simulation N Send Feedback 241
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=241

2: X”_INX® Appendix I: Using Xilinx Simulator Interface

Xsi_run

voi d xsi _run(xsi Handl e desi gn_handl e, XSI _U NT64 tinme_ticks);
voi d Xsi::Loader::run(XSl_INT64 step);

This function runs the simulation for the given amount of time specified in kernel precision
units. A kernel precision unit is the smallest unit of time precision specified among all HDL
source files of the design. For example, if a design has two source files, one of which that
specifies a precision of 1 ns and the other specifies a precision of 1 ps, the kernel precision
unit becomes 1 ps, as that time unit is the smaller of the two.

A Verilog source file may specify the time precision using the * timescale directive.
Example:
“tinmescal e 1ns/ 1ps

In this example, the time unit after the / (1 ps) is the time precision. VHDL has no equivalent
of *timescale.

You may additionally adjust the kernel precision unit through the use of the xelab
command-line options --timescale, --override_timeprecision, and
--timeprecision_vhdl. See xelab, xvhdl, and xvlog xsim Command Options for
information on the use of these command-line options.

Note: xsi_run blocks until the specified simulation run time has elapsed. Your program and the
Vivado Simulator share a single thread of execution.

xsi_trace_all

voi d xsi _trace_al |l (xsi Handl e desi gn_handl e);
void Xsi::Loader:: trace_all();

Call this function after xsi_open to turn on waveform tracing for all signals of the HDL
design. Running the simulation with waveform tracing on causes the Vivado Simulator to
produce a waveform database (WDB) file containing all events for every signal in the design.
The default name of the WDB file is xsim.wdb. To specify a different WDB file name, set the
wdbFileName field of the s_xsi_setup_info struct when calling xsi_open, as shown
in the example code.

Example code:

#i ncl ude "xsi.h"
#i ncl ude "xsi _| oader. h"

Xsi:: Loader |oader("xsimdir/mySnapshot/xsink.so","librdi _sinulator_kernel.so");
s_xsi _setup_info info;

nenset (& nfo, 0, sizeof(info));

char wdbNane[] = "test.wdb"; // make a buffer for holding the string "test.wdb"
i nf o. wdbFi | eNane = wdbNane;

| oader . open(& nf o) ;

| oader.trace_all ();

Logic Simulation N Send Feedback 242
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=242

(: X”_INX® Appendix I: Using Xilinx Simulator Interface

After the simulation completes, you can open the WDB file in Vivado to examine the
waveforms of the signals. See Opening a Previously Saved Simulation Run for more
information on how to view WDB files in Vivado.

f IMPORTANT: When compiling the HDL design, you must specify -debug allor -debug typicalon
the xelab command line. The Vivado Simulator will not record the waveform data without the -debug
command line option.

Vivado Simulator VHDL Data Format

This section describes how to convert between VHDL values and the format of the memory
buffers to use with the XSI functions xsi_get_value and xsi_put_value.

IEEE std_logic Type

A single bit of VHDL std_logic and std_ulogic is represented in C/C++ as a single byte
(char or unsigned char). Table I-4 shows the values of std_logic/std_ulogic and their
C/C++ equivalents.

Table I-4: std_logic/std_ulogic values and their C/C++ Equivalents

std logic Value C/C++ Byte Value (Decimal)
‘g’ 0
‘X’ 1
<0’ 2
‘1 3
‘Z° 4
‘W’ 5
‘L’ 6
‘H’ 7
‘< 8

Example code:

/1 Put a 'l on signal "clk," where "clk" is defined as
/1 signal clk : std_logic;

const char one_val = 3; // Cencoding for std_logic "1'...
int clk = | oader.get_port_nunber("clk");

| oader. put _val ue(cl k, &one_val); // set clk to 1

Logic Simulation N Send Feedback 243
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=243

2: X”_INX® Appendix I: Using Xilinx Simulator Interface

VHDL bit Type

A single bit of VHDL bit type is represented in C/C++ as a single byte. Table I-5 shows the
values of bit and their C/C++ equivalents.

Table I-5: Values of bit and their C/C++ equivalents

bit Value C/C++ Byte Value (Decimal)
3 0 s 0
‘1’ 1

Example code:

/1 Put a '1 on signal "clk," where "clk" is defined as
/1 signal clk : bit;

const char one_val =1; // Cencoding for bit "1'...
int clk = | oader.get_port_number("clk");

| oader. put _val ue(cl k, &one_val); // set clk to 1

VHDL character Type

A single VHDL character value is represented in C/C++ as a single byte. VHDL
character values are exactly identical to C/C++ char literals and are also equal to their
ASCIl numeric values. For example, the VHDL character value 'n’ is equivalent to the C/C++
char literal ‘'m’ or decimal value 109.

Example code:

/1 Put a'T on signal "myChar," where "nyChar" is defined as
/1 signal myChar : character;

const char tval ="'T";

int myChar = | oader. get_port_nunber ("myChar");

| oader . put _val ue(nyChar, &tVal);

VHDL integer Type
A single VHDL integer value is represented in C/C++ as an int.
Example code:
/1 Put 1234 (decimal) on signal "nylnt," where "nylnt" is defined as
/1 signal mylnt : integer;
const int intVal = 1234;

int mylnt = | oader.get_port_nunber("nylnt");
| oader . put _val ue(nylnt, & ntVval);

VHDL real Type

A single VHDL real value is represented in C/C++ as a double.

Logic Simulation N Send Feedback 244
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=244

& XILINX.

Logic Simulation

Example code:

/1 Put 3.14 on signal "nyReal," where "nmyReal" is defined as
/1 signal nmyReal : real;

const doubl e doubl eval = 3. 14;

int myReal = |oader.get_port_nunber("nyReal ");

| oader. put _val ue(nyReal, &doubl eVval);

VHDL Array Types

A VHDL array is represented in C/C++ as an array of whatever C/C++ type represents the
element type of the VHDL array. Table 1-6 shows the examples of VHDL arrays and their
C/C++ equivalent types.

Table I-6: VHDL Arrays and their C/C++ Equivalent Types

VHDL Array Type C/C++ Array Type
std_logic_vector (array of std_logic) | char [1]
bit_vector (array of bit) char [1]
string (array of character) char []
array of integer int []
array of real double [1]

Appendix I: Using Xilinx Simulator Interface

VHDL arrays are organized in C/C++ with the left index of the VHDL array mapped to C/C++

array element 0 and the right index mapped to C/C++ element <array size> - 1.

Table I-7: VHDL Array mapping to C/C++

<array size>

C/C++ Array Index 0 1 2 1
VHDL array(left TO right) .
Index left left + 1 left + 2 right
VHDL array(left DOWNTO | . left — 1 left - 2 right

right) Index

Example code:

/'l For the following VHDL definitions

/1 signal slv : std_|logic_vector(7 downto 0);

/1 signal bv : bit_vector(3 downto 0);

/1 signal s : string(1l to 11);

/1 type IntArray is array(natural range <>) of integer;
/1 signal iv : IntArray(0 to 3);

/1 do the follow ng assignnents
I

/1 slv <= "11001010";

/1 bv <= B"1000";

I/l s <= "Hello world";

/1 iv <= (33, 44, 55, 66);

. l Send Feedback I 245
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=245

2: X”_INX® Appendix I: Using Xilinx Simulator Interface

const unsigned char slvval[] = {3, 3, 2, 2, 3, 2, 3, 2}; // 3="1", 2="0
| oader. put _val ue(slv, slvval);

const unsigned char bvval[] = {1, 0, 0, 0};

| oader . put _val ue(bv, bvVval);

const char sVal[] = "Hello world"; // ends with extra '\0" that XSI ignores
| oader . put _val ue(s, sVal);

const int ivval[] = {33, 44, 55, 66};

| oader . put _val ue(iv, ivval);

Vivado Simulator Verilog Data Format

Verilog logic data is encoded in C/C++ using the following struct, defined in xsi.h:

typedef struct t_xsi_vlog_|logicval {
XSI _UI NT32 aVal ;
XSI _UI NT32 bVal ;
} s_xsi_vlog_logicval, *p_xsi_vlog_|ogicval;

Each four-state bit of Verilog value occupies one bit position in aval and the corresponding
bit position in bval.

Table |-8: Verilog Value Mapping

Verilog Value aVval Bit Value bval Bit Value
0 0 0
1 1 0
1 1
0 1

For two-state SystemVerilog bit values, an aval bit holds the bit value, and the
corresponding bval bit is unused. Xilinx recommends that you zero out bval when
composing two-state values for xsi_put_value.

Logic Simulation N Send Feedback 246
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=246

Appendix I: Using Xilinx Simulator Interface

& XILINX.

Verilog vectors are organized in C/C++ with the right index of the Verilog vector mapped to
aval/bval bit position 0 and the left index mapped to aval/bval bit position <vector
size> - 1

Table I-9: Verilog Vectors

aVal/bVal Bit Position

<vector size>
to 31

<vector
size> - 1

<vector
size> - 2

1

Index of

unused

left

left - 1

right + 1

right

wire [left:right]
vec

(where left > right)

Index of unused left left + 1 right - 1 right

wire [left:right]
vec

(where left < right)

For example, Table I-10 shows the Verilog and C/C++ equivalents of the following Verilog
vector.

wire [7:4] w = 4'bXX01,;

Table I-10: Verilog and C/C++ Equivalents of the Verilog Vector
Verilog Bit Index 7 6 5 4
Verilog Bit Value X X 0 1
C/C++ Bit Position 31 4 3 2 1 0
aVal Bit Value unused unused 1 1 0 1
bval Bit Value unused unused 1 1 0 0

The C/C++ representation of a Verilog vector with more than 32 elements is an array of
s_xsi_vlog_logicval, for which the right-most 32 bits of the Verilog vector maps to
element 0 of the C/C++ array. The next 32 bits of the Verilog vector maps to element 1 of
the C/C++ array, and so forth. For example, Table I-11 shows the mapping of Verilog vector

wire [2:69] vec;
to the C/C++ array

s_xsi _vlog_l ogi cval val[3];
Table I-11: Verilog Index Range

Verilog Index Range C/C++ Array Element

vec[38:69] val[0]
vec[6:37] val[1]
vec[2:5] val[3]

Hence, vec[2] maps to vall[3] bit position 3, and vec[69] maps to val[0] bit position
0.

Logic Simulation
UG900 (v2018.2) June 6, 2018

l Send Feedback I 247

www.Xxilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=247

2: X”_INX® Appendix I: Using Xilinx Simulator Interface

A multi-dimensional Verilog array maps to the bits of a s_xsi_vlog_logicval or

s_xsi_vlog_logicval array as if the Verilog array were flattened in row-major order
before mapping to C/C++.

For example, the two-dimensional array
reg [7:0] men{O:1];

is treated as if copied to a vector before mapping to C/C++:
reg [15:0] vec;

vec[7:0] = men1];
vec[8:15] = nmen{0];

Logic Simulation

o l Send Feedback I 248
UG900 (v2018.2) June 6, 2018 www.xilinx.com

https://www.xilinx.com
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=248

& XILINX

Appendix J

Additional Resources and Legal Notices

Xilinx Resources

For support resources such as Answers, Documentation, Downloads, and Forums, see Xilinx
Support.

Solution Centers

See the Xilinx Solution Centers for support on devices, software tools, and intellectual
property at all stages of the design cycle. Topics include design assistance, advisories, and
troubleshooting tips.

Documentation Navigator and Design Hubs

Xilinx Documentation Navigator provides access to Xilinx documents, videos, and support
resources, which you can filter and search to find information. To open the Xilinx
Documentation Navigator (DocNav):

« From the Vivado IDE, select Help > Documentation and Tutorials.
« On Windows, select Start > All Programs > Xilinx Design Tools > DocNav.

« At the Linux command prompt, enter docnav.

Xilinx Design Hubs provide links to documentation organized by design tasks and other
topics, which you can use to learn key concepts and address frequently asked questions. To
access the Design Hubs:

« In the Xilinx Documentation Navigator, click the Design Hubs View tab.
« On the Xilinx website, see the Design Hubs page.

Note: For more information on Documentation Navigator, see the Documentation Navigator page
on the Xilinx website.

Logic Simulation N Send Feedback 249
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=design+hubs
https://www.xilinx.com/cgi-bin/docs/rdoc?t=docnav
https://www.xilinx.com/support
https://www.xilinx.com/support
https://www.xilinx.com/support/solcenters.htm
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=249

2: X”_INX® Appendix J: Additional Resources and Legal Notices

References

—_

Vivado Design Suite User Guide: System-Level Design Entry (UG895)

Vivado Design Suite User Guide: Designing with IP (UG896)

Vivado Design Suite User Guide: Using the Vivado IDE (UG893)

Vivado Design Suite User Guide: Using the Tcl Scripting Capabilities (UG894)
Writing Efficient Testbenches (XAPP199)

Vivado Design Suite 7 Series FPGA and Zyng-7000 SoC Libraries Guide (UG953)
Vivado Design Suite Tcl Command Reference Guide (UG835)

Vivado Design Suite User Guide: Power Analysis and Optimization (UG907)

© © N o U A WD

Vivado Design Suite User Guide: Using Constraints (UG903)

—_
o

. Vivado Design Suite Tutorial: Simulation (UG937)

—_
—_

. Vivado Design Suite User Guide: Design Flows Overview (UG892)

—_
N

. Vivado Design Suite Properties Reference Guide (UG912)

—
w

. Vivado Design Suite User Guide: Synthesis (UG901)

Links to Additional Information on Third-Party
Simulators

14. For more information on:
o Questa Advanced Simulator/ModelSim simulators:
- www.mentor.com/products/fv/questa/
- www.mentor.com/products/fv/modelsim/
- Cadence IES simulators:
- www.cadence.com/products/fv/enterprise_simulator/pages/default.aspx
- Synopsys VCS simulators:
- www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/VCS.aspx
o Active-HDL Simulators:

- https://www.aldec.com/support/resources/documentation/articles/1579

Logic Simulation N Send Feedback 250
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug896-vivado-ip.pdf
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug907-vivado-power-analysis-optimization.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug903-vivado-using-constraints.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug937-vivado-design-suite-simulation-tutorial.pdf
https://www.aldec.com/en/support/resources/documentation/articles/1579
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug895-vivado-system-level-design-entry.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug893-vivado-ide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug894-vivado-tcl-scripting.pdf
https://www.xilinx.com/cgi-bin/docs/ndoc?t=application_notes;d=xapp199.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug953-vivado-7series-libraries.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug835-vivado-tcl-commands.pdf
http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/VCS.aspx
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug901-vivado-synthesis.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug892-vivado-design-flows-overview.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;d=ug912-vivado-properties.pdf
http://www.mentor.com/products/fv/questa/
http://www.mentor.com/products/fv/modelsim/
http://www.cadence.com/products/fv/enterprise_simulator/pages/default.aspx
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=250

2: X”_INX® Appendix J: Additional Resources and Legal Notices

Riviera PRO Simulators:

- https://www.aldec.com/support/resources/documentation/articles/1525

Links to Language and Encryption Support
Standards

15. IEEE Standard VHDL Language Reference Manual (IEEE-STD-1076-1993)
16. IEEE Standard Verilog Hardware Description Language (IEEE-STD-1364-2001)

17. IEEE Standard for SystemVerilog--Unified Hardware Design, Specification, and Verification
Language (IEEE-STD-1800-2009)

18. Standard Delay Format Specification (SDF) (IEEE-STD-1497-2004)

19. Recommended Practice for Encryption and Management of Electronic Design Intellectual
Property (IP) (IEEE-STD-P1735).

Links to OS Support and Release Changes

The following guide provides information about the most recent release changes, operating
systems support and licensing requirements:

20. Vivado Design Suite User Guide: Release Notes, Installation, and Licensing (UG973)

Training Resources

Xilinx provides a variety of training courses and QuickTake videos to help you learn more
about the concepts presented in this document. Use these links to explore related training
resources:

1. Designing FPGAs Using the Vivado Design Suite 1 Training Course

2. Designing FPGAs Using the Vivado Design Suite 2 Training Course

3. Designing FPGAs Using the Vivado Design Suite 3 Training Course

4. Vivado Design Suite Quick Take Video: How to use the Zyng-7000 Verification IP to verify
and debug using simulation

5. Vivado Design Suite Quick Take Video: Logic Simulation

6. Vivado Design Suite QuickTake Video Tutorials

Logic Simulation N Send Feedback 251
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-3.html
https://www.xilinx.com
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=soc/how-to-use-zynq-7000-verification-ip-to-verify-debug.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/logic-simulation.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=hardware/logic-simulation.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-1.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.aldec.com/en/support/resources/documentation/articles/1525
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=2018.2;t=vivado+release+notes
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-3.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=vivado+videos
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=soc/how-to-use-the-zynq-7000-verification-ip-verify-debug-simulation.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=soc/how-to-use-the-zynq-7000-verification-ip-verify-debug-simulation.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=video;d=soc/how-to-use-zynq-7000-verification-ip-to-verify-debug.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-1.html
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=392561
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1406532
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=5354441
http://ieeexplore.ieee.org/servlet/opac?punumber=9647
http://standards.ieee.org/develop/project/1735.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-2.html
https://www.xilinx.com/cgi-bin/docs/ndoc?t=training;d=designing-fpgas-vivado-design-suite-3.html
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=251

2: X”_INX® Appendix J: Additional Resources and Legal Notices

Please Read: Important Legal Notices

The information disclosed to you hereunder (the “Materials”) is provided solely for the selection and use of Xilinx products. To the
maximum extent permitted by applicable law: (1) Materials are made available "AS IS" and with all faults, Xilinx hereby DISCLAIMS
ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY, INCLUDING BUT NOT LIMITED TO WARRANTIES OF
MERCHANTABILITY, NON-INFRINGEMENT, OR FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
in contract or tort, including negligence, or under any other theory of liability) for any loss or damage of any kind or nature related
to, arising under, or in connection with, the Materials (including your use of the Materials), including for any direct, indirect, special,
incidental, or consequential loss or damage (including loss of data, profits, goodwill, or any type of loss or damage suffered as a
result of any action brought by a third party) even if such damage or loss was reasonably foreseeable or Xilinx had been advised
of the possibility of the same. Xilinx assumes no obligation to correct any errors contained in the Materials or to notify you of
updates to the Materials or to product specifications. You may not reproduce, modify, distribute, or publicly display the Materials
without prior written consent. Certain products are subject to the terms and conditions of Xilinx's limited warranty, please refer to
Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos; IP cores may be subject to warranty and
support terms contained in a license issued to you by Xilinx. Xilinx products are not designed or intended to be fail-safe or for use
in any application requiring fail-safe performance; you assume sole risk and liability for use of Xilinx products in such critical
applications, please refer to Xilinx's Terms of Sale which can be viewed at https://www.xilinx.com/legal.htm#tos.

AUTOMOTIVE APPLICATIONS DISCLAIMER

AUTOMOTIVE PRODUCTS (IDENTIFIED AS “XA" IN THE PART NUMBER) ARE NOT WARRANTED FOR USE IN THE DEPLOYMENT OF
AIRBAGS OR FOR USE IN APPLICATIONS THAT AFFECT CONTROL OF A VEHICLE (“SAFETY APPLICATION") UNLESS THERE IS A
SAFETY CONCEPT OR REDUNDANCY FEATURE CONSISTENT WITH THE ISO 26262 AUTOMOTIVE SAFETY STANDARD (“SAFETY
DESIGN"). CUSTOMER SHALL, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE PRODUCTS, THOROUGHLY
TEST SUCH SYSTEMS FOR SAFETY PURPOSES. USE OF PRODUCTS IN A SAFETY APPLICATION WITHOUT A SAFETY DESIGN IS FULLY
AT THE RISK OF CUSTOMER, SUBJECT ONLY TO APPLICABLE LAWS AND REGULATIONS GOVERNING LIMITATIONS ON PRODUCT
LIABILITY.

© Copyright 2012-2018 Xilinx, Inc. Xilinx, the Xilinx logo, Artix, ISE, Kintex, Spartan, Virtex, Vivado, Zynq, and other designated
brands included herein are trademarks of Xilinx in the United States and other countries. PCI, PCle and PCl Express are trademarks
of PCI-SIG and used under license. All other trademarks are the property of their respective owners.

Logic Simulation N Send Feedback 252
UG900 (v2018.2) June 6, 2018 www.xilinx.com [—\/—]

https://www.xilinx.com
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/legal.htm#tos
https://www.xilinx.com/about/feedback.html?docType=User_Guides&docId=UG900&Title=Vivado%20Design%20Suite%20User%20Guide%3A%20Logic%20Simulation&releaseVersion=2018.2&docPage=252

	Vivado Design Suite User Guide: Logic Simulation
	Revision History
	Table of Contents
	Ch. 1: Logic Simulation Overview
	Introduction
	Supported Simulators
	Simulation Flow
	Behavioral Simulation at the Register Transfer Level
	Post-Synthesis Simulation
	Post-Implementation Simulation

	Language and Encryption Support

	Ch. 2: Preparing for Simulation
	Overview
	Using Test Benches and Stimulus Files
	Pointing to the Simulator Install Location
	Compiling Simulation Libraries
	Compiling Simulation Libraries Using Vivado IDE
	Compiling Simulation Libraries Using Tcl Commands
	Changing compile_simlib Defaults
	Compiling Patched IP Repository in a New Output Directory using MYVIVADO
	Compiling Patched IP Repository in an Existing Output Directory using MYVIVADO

	Using Xilinx Simulation Libraries
	UNISIM Library
	Encrypted Component Files
	VHDL UNISIM Library
	Verilog UNISIM Library

	UNIMACRO Library
	VHDL UNIMACRO Library
	Verilog UNIMACRO Library

	SIMPRIM Library
	SECUREIP Simulation Library
	VHDL SECUREIP Library
	Verilog SECUREIP Library

	UNIFAST Library
	MMCME2
	DSP48E1
	GTHE2_CHANNEL/GTHE2_COMMON

	Using Verilog UNIFAST Library
	Method 1: Using the complete Verilog UNIFAST library (Recommended)
	Method 2: Using specific UNIFAST modules

	Using VHDL UNIFAST Library

	Using Simulation Settings
	Understanding the Simulator Language Option
	Setting the Simulation Runtime Resolution

	Adding or Creating Simulation Source Files
	Working with Simulation Sets

	Generating a Netlist
	Generating a Functional Netlist
	Generating a Timing Netlist

	Ch. 3: Simulating with Third-Party Simulators
	Introduction
	Running Simulation Using Third Party Simulators with Vivado IDE
	Running Timing Simulation Using Third-Party Tools
	Post-Synthesis Timing Simulation
	Post-Implementation Timing Simulations
	Annotating the SDF File for Timing Simulation
	Running Standalone Timing Simulation

	Dumping SAIF for Power Analysis
	Dumping SAIF in Questa Advanced Simulator/ModelSim
	Example DO File

	Dumping SAIF in IES
	Dumping SAIF in VCS

	Dumping VCD for Power Analysis
	Dumping VCD in Questa Advanced Simulator/ModelSim
	Dumping VCD in IES
	Dumping VCD in VCS

	Simulating IP
	Using a Custom DO File During an Integrated Simulation Run
	In Questa Advanced Simulator
	In Modelsim
	In IES
	In VCS
	In Xcelium
	Simulation Step Control Constructs for ModelSim and Questa

	Running Third-Party Simulators in Batch Mode

	Ch. 4: Simulating with Vivado Simulator
	Introduction
	Running the Vivado Simulator
	Main Toolbar
	Run Menu
	Simulation Toolbar
	Simulation Toolbar Button Descriptions

	Sources Window
	Scopes Window
	Filtering Scopes
	Additional Scopes and Sources Options

	Objects Window
	Objects Context Menu

	Wave Window
	Wave Objects
	Context Menu in Waveform Window
	Saving a Waveform Configuration

	Creating and Using Multiple Waveform Configurations

	Running Functional and Timing Simulation
	Running Functional Simulation
	Post-Synthesis Functional Simulation
	Post-Implementation Functional Simulations

	Running Timing Simulation
	Post-Synthesis Timing Simulation
	Post-Implementation Timing Simulations
	Annotating the SDF File for Timing Simulation

	Saving Simulation Results
	Distinguishing Between Multiple Simulation Runs
	Closing a Simulation
	Adding a Simulation Start-up Script File
	Viewing Simulation Messages
	Managing Message Output

	Using the launch_simulation Command
	Examples

	Re-running the Simulation After Design Changes (relaunch)
	Using the Saved Simulator User Interface Settings
	Default Settings

	Ch. 5: Analyzing Simulation Waveforms with Vivado Simulator
	Introduction
	Using Wave Configurations and Windows
	Creating a New Wave Configuration
	Opening a WCFG File
	Saving a Wave Configuration

	Opening a Previously Saved Simulation Run
	Understanding HDL Objects in Waveform Configurations
	About Radixes
	Changing the Default Radix
	Changing the Radix on Individual Objects

	Customizing the Waveform
	Using Analog Waveforms
	Using Radixes and Analog Waveforms
	Displaying Waveforms as Analog
	Customizing the Appearance of Analog Waveforms
	Analog Settings Dialog Box Option Descriptions

	Waveform Object Naming Styles
	Renaming Objects
	Changing the Object Name Display

	Reversing the Bus Bit Order
	Changing the Format of SystemVerilog Enumerations

	Controlling the Waveform Display
	Using the Column Resizing Handles
	Scrolling with the Mouse Wheel
	Using the Zoom Feature Buttons
	Zooming with the Mouse Wheel
	Y-Axis Zoom Gestures for Analog Waveforms
	Using the Waveform Settings Dialog Box
	Changing the Display of the Time Scale

	Organizing Waveforms
	Grouping Signals and Objects
	Using Dividers
	Defining Virtual Buses

	Analyzing Waveforms
	Using Cursors
	Placing Main and Secondary Cursors
	Moving Cursors
	Finding the Next or Previous Transition on a Waveform

	Using Markers
	Using the Floating Ruler
	Searching a Value in Waveform Configuration

	Ch. 6: Debugging a Design with Vivado Simulator
	Introduction
	Debugging at the Source Level
	Stepping Through a Simulation
	Using Breakpoints
	To set a breakpoint in the workspace (GUI):
	To set a breakpoint in the Tcl Console:
	To debug a design using breakpoints:

	Adding Conditions
	-notrace Option

	Pausing a Simulation
	Tracing the Execution of a Simulation

	Forcing Objects to Specific Values
	Using Force Commands
	Force Constant
	Force Clock
	Remove Force

	Using Force in Batch Mode
	Example 1: Adding Force
	Verilog Code (tmp.v)
	Command Examples
	Tcl Commands

	Example 2: Scripted Use of add_force with remove_forces
	Verilog Code (top.v)
	Command Example

	Power Analysis Using Vivado Simulator
	Generating SAIF Dumping
	Example SAIF Tcl Commands
	Dumping SAIF using a Tcl Simulation Batch File

	Using the report_drivers Tcl Command
	Using the Value Change Dump Feature
	Using the log_wave Tcl Command
	Example log_wave TCL Command Usage

	Cross Probing Signals in the Object, Wave, and Text Editor Windows
	Tool Specific init.tcl
	Subprogram Call-Stack Support
	Call Stacks Window
	Stack Frames Window
	Locals Tab in Object Window

	Ch. 7: Simulating in Batch or Scripted Mode in Vivado Simulator
	Introduction
	Exporting Simulation Files and Scripts
	Tcl Command Example for Export Simulation
	Exporting the Top level design
	Exporting IP from the Xilinx Catalog and Block Designs
	Exporting a Manage IP Project

	Running the Vivado Simulator in Batch Mode
	Parsing Design Files, xvhdl and xvlog
	xvhdl
	xvhdl Syntax
	xvhdl Examples
	xvlog
	xvlog Syntax
	xvlog Examples

	Elaborating and Generating a Design Snapshot, xelab
	xelab
	xelab Command Syntax Options

	xelab Examples
	Verilog Search Order
	Verilog Instantiation Unit
	VHDL Instantiation Unit
	`uselib Verilog Directive
	`uselib Syntax
	`uselib Lib Semantics
	`uselib Examples

	xelab, xvhdl, and xvlog xsim Command Options

	Simulating the Design Snapshot, xsim
	xsim Executable Syntax
	xsim Executable Options

	Example of Running Vivado Simulator in Standalone Mode
	Step1: Analyzing the Design File
	Step2: Elaborating and Creating a Snapshot
	Step 3: Running Simulation

	Project File (.prj) Syntax
	Predefined Macros
	Library Mapping File (xsim.ini)
	Running Simulation Modes
	Behavioral Simulation
	Running Post-Synthesis and Post-Implementation Simulations

	Using Tcl Commands and Scripts
	Using a -tclbatch File
	Launching Vivado Simulator from the Tcl Console

	export_simulation
	Usage:
	Categories
	Description:
	Supported simulators
	Arguments

	export_ip_user_files
	Syntax:
	Usage
	Description
	Arguments
	Examples:

	Appx. A: Compilation, Elaboration, Simulation, Netlist, and Advanced Options
	Introduction
	Compilation Options
	Vivado Simulator Compilation Options
	Questa Advanced Simulator Compilation Options
	ModelSim Simulator Compilation Options
	IES Simulator Compilation Options
	VCS Simulator Compilation Options
	Xcelium Simulator Compilation Options

	Elaboration Options
	Vivado Simulator Elaboration Options
	Questa Advanced Simulator Elaboration Options
	ModelSim Simulator Elaboration Options
	IES Simulator Elaboration Options
	VCS Simulator Elaboration Options
	Xcelium Simulator Elaboration Options

	Simulation Options
	Vivado Simulator Simulation Options
	Questa Advanced Simulator Simulation Options
	ModelSim Simulator Simulation Options
	IES Simulator Simulation Options
	VCS Simulator Simulation Options
	Xcelium Simulator Simulation Options

	Netlist Options
	Vivado Simulator Netlist Options

	Advanced Simulation Options

	Appx. B: SystemVerilog Support in Vivado Simulator
	Introduction
	Targeting SystemVerilog for a Specific File
	Running SystemVerilog in Standalone or prj Mode
	Standalone Mode
	prj Mode

	Testbench Feature

	Appx. C: VHDL 2008 Support in Vivado Simulator
	Introduction
	Compiling and Simulating
	Fixed and Floating Point Packages

	Supported Features

	Appx. D: Direct Programming Interface (DPI) in Vivado Simulator
	Introduction
	Compiling C Code
	xsc Compiler
	Usage
	Switches
	Examples
	Example:
	Example to pass multiple paths:

	Binding Compiled C Code to SystemVerilog Using xelab
	Data Types Allowed on the Boundary of C and SystemVerilog
	Supported Data Types

	Mapping for User-Defined Types
	Enum
	Examples
	SystemVerilog types:
	C types:

	Packed Struct/Union
	Examples

	Unpacked Struct
	Examples

	Support for svdpi.h functions
	Open arrays in DPI
	Declaration
	Examples
	svdpi.h Support
	Usage Example
	SystemVerilog code:

	Examples
	Import example using -sv_lib, -sv_liblist, and -sv_root
	Code
	function1.c
	function2.c
	file.sv

	Usage
	Single-step flow (simplest flow)
	Two-step flow
	Two-step flow (same as above with few extra options)

	Function with Output
	Code
	file.sv
	function.c
	run.ksh

	Simple Import-Export Flow (illustrates xelab -dpiheader flow)
	file.c
	test.sv
	run.ksh

	DPI Examples Shipped with the Vivado Design Suite

	Appx. E: Handling Special Cases
	Using Global Reset and 3-State
	Global Set and Reset Net
	Global 3-State Net
	Using Global 3-State and Global Set and Reset Signals
	Global Set and Reset and Global 3-State Signals in Verilog
	Global Set and Reset and Global 3-State Signals in VHDL

	Delta Cycles and Race Conditions
	VHDL Coding Example With Unexpected Results

	Using the ASYNC_REG Constraint
	Disabling X Propagation for Synchronous Elements

	Simulating Configuration Interfaces
	JTAG Simulation
	SelectMAP Simulation
	System Level Description
	Debugging with the Model
	Feature Support

	Disabling Block RAM Collision Checks for Simulation
	Dumping the Switching Activity Interchange Format File for Power Analysis
	Skipping Compilation or Simulation
	Skipping Compilation
	Skipping Simulation

	Appx. F: Value Rules in Vivado Simulator Tcl Commands
	Introduction
	String Value Interpretation
	Vivado Design Suite Simulation Logic

	Appx. G: Vivado Simulator Mixed Language Support and Language Exceptions
	Introduction
	Using Mixed Language Simulation
	Restrictions on Mixed Language in Simulation
	Key Steps in a Mixed Language Simulation
	Mixed Language Binding and Searching
	Instantiating Mixed Language Components
	Instantiating a Verilog Module in a VHDL Design Unit
	Instantiating a VHDL Component in a Verilog/SV Design Unit

	Port Mapping and Supported Port Types
	Generics (Parameters) Mapping
	VHDL and Verilog Values Mapping

	VHDL Language Support Exceptions
	Verilog Language Support Exceptions

	Appx. H: Vivado Simulator Quick Reference Guide
	Introduction

	Appx. I: Using Xilinx Simulator Interface
	Introduction
	Preparing the XSI Functions for Dynamic Linking
	Writing the Test Bench Code
	Compiling Your C/C++ Program
	Preparing the Design Shared Library
	XSI Function Reference
	xsi_close
	xsi_get_error_info
	xsi_get_port_number
	xsi_get_status
	xsi_get_value
	xsi_open
	Example

	xsi_put_value
	xsi_restart
	xsi_run
	xsi_trace_all

	Vivado Simulator VHDL Data Format
	IEEE std_logic Type
	VHDL bit Type
	VHDL character Type
	VHDL integer Type
	VHDL real Type
	VHDL Array Types

	Vivado Simulator Verilog Data Format

	Appx. J: Additional Resources and Legal Notices
	Xilinx Resources
	Solution Centers
	Documentation Navigator and Design Hubs
	References
	Links to Additional Information on Third-Party Simulators
	Links to Language and Encryption Support Standards
	Links to OS Support and Release Changes
	Training Resources
	Please Read: Important Legal Notices

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Impact
 /LucidaConsole
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF0633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F006200650020005000440046002006450646062706330628062900200644063906310636002006480637062806270639062900200648062B06270626064200200627064406230639064506270644002E00200020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644062A064A0020062A0645002006250646063406270626064706270020062806270633062A062E062F062706450020004100630072006F00620061007400200648002000410064006F00620065002000520065006100640065007200200036002E00300020064806450627002006280639062F0647002E>
 /BGR <FEFF04180437043F043E043B043704320430043904420435002004420435043704380020043D0430044104420440043E0439043A0438002C00200437043000200434043000200441044A0437043404300432043004420435002000410064006F00620065002000500044004600200434043E043A0443043C0435043D04420438002C0020043F043E04340445043E0434044F044904380020043704300020043D04300434043504360434043D043E00200440043004370433043B0435043604340430043D0435002004380020043F04350447043004420430043D04350020043D04300020043104380437043D0435044100200434043E043A0443043C0435043D04420438002E00200421044A04370434043004340435043D043804420435002000500044004600200434043E043A0443043C0435043D044204380020043C043E0433043004420020043404300020044104350020043E0442043204300440044F0442002004410020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E0030002004380020043F043E002D043D043E043204380020043204350440044104380438002E>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200036002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF0054006f0074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002000760068006f0064006e00fd006300680020006b0065002000730070006f006c00650068006c0069007600e9006d0075002000700072006f0068006c00ed017e0065006e00ed002000610020007400690073006b00750020006f006200630068006f0064006e00ed0063006800200064006f006b0075006d0065006e0074016f002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e0074007900200050004400460020006c007a00650020006f007400650076015900ed007400200076002000610070006c0069006b0061006300ed006300680020004100630072006f006200610074002000610020004100630072006f006200610074002000520065006100640065007200200036002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200036002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200036002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200036002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002c0020006500740020006c0075007500610020005000440046002d0064006f006b0075006d0065006e00740065002c0020006d0069007300200073006f00620069007600610064002000e4007200690064006f006b0075006d0065006e00740069006400650020007500730061006c006400750073007600e400e4007200730065006b0073002000760061006100740061006d006900730065006b00730020006a00610020007000720069006e00740069006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e0074006500200073006100610062002000610076006100640061002000760061006900640020004100630072006f0062006100740020006a0061002000410064006f00620065002000520065006100640065007200200036002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200036002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003BA03B103C403AC03BB03BB03B703BB03B1002003B303B903B1002003B103BE03B903CC03C003B903C303C403B7002003C003C103BF03B203BF03BB03AE002003BA03B103B9002003B503BA03C403CD03C003C903C303B7002003B503C003B103B303B303B503BB03BC03B103C403B903BA03CE03BD002003B503B303B303C103AC03C603C903BD002E0020002003A403B1002003AD03B303B303C103B103C603B10020005000440046002003C003BF03C5002003B803B1002003B403B703BC03B903BF03C503C103B303B703B803BF03CD03BD002003B103BD03BF03AF03B303BF03C503BD002003BC03B50020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200036002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B503C2002003B503BA03B403CC03C303B503B903C2002E>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105E705D105D905E205D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05EA05D005D905DE05D905DD002005DC05EA05E605D505D205D4002005D505DC05D405D305E405E105D4002005D005DE05D905E005D505EA002005E905DC002005DE05E105DE05DB05D905DD002005E205E105E705D905D905DD002E0020002005E005D905EA05DF002005DC05E405EA05D505D7002005E705D505D105E605D90020005000440046002005D1002D0020004100630072006F006200610074002005D505D1002D002000410064006F006200650020005200650061006400650072002005DE05D205E805E105D400200036002E0030002005D505DE05E205DC05D4002E>
 /HRV <FEFF004F0076006500200070006F0073007400610076006B00650020006B006F00720069007300740069007400650020006B0061006B006F0020006200690073007400650020007300740076006F00720069006C0069002000410064006F00620065002000500044004600200064006F006B0075006D0065006E007400650020006B006F006A00690020007300750020007000720069006B006C00610064006E00690020007A006100200070006F0075007A00640061006E00200070007200650067006C006500640020006900200069007300700069007300200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E006100740061002E0020005300740076006F00720065006E0069002000500044004600200064006F006B0075006D0065006E007400690020006D006F006700750020007300650020006F00740076006F007200690074006900200075002000700072006F006700720061006D0069006D00610020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200036002E0030002000690020006E006F00760069006A0069006D0020007600650072007A0069006A0061006D0061002E>
 /HUN <FEFF0045007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c002000fc007a006c00650074006900200064006f006b0075006d0065006e00740075006d006f006b0020006d00650067006200ed007a00680061007400f30020006d00650067006a0065006c0065006e00ed007400e9007300e900720065002000e900730020006e0079006f006d00740061007400e1007300e10072006100200061006c006b0061006c006d00610073002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b006100740020006b00e90073007a00ed0074006800650074002e002000200041007a002000ed006700790020006c00e90074007200650068006f007a006f007400740020005000440046002d0064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200036002c0030002d0073002000e900730020006b00e9007301510062006200690020007600650072007a006900f3006900760061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 6.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200036002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200036002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d0069002000730075006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c002000740069006e006b0061006d0075007300200076006500720073006c006f00200064006f006b0075006d0065006e00740061006d00730020006b006f006b0079006200690161006b006100690020007000650072017e0069016b007201170074006900200069007200200073007000610075007300640069006e00740069002e002000530075006b00750072007400750073002000500044004600200064006f006b0075006d0065006e007400750073002000670061006c0069006d006100200061007400690064006100720079007400690020007300750020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200036002e00300020006200650069002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF004c006900650074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200069007a0076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020007000690065006d01130072006f00740069002000640072006f01610061006900200075007a01460113006d0075006d006100200064006f006b0075006d0065006e0074007500200073006b00610074012b01610061006e0061006900200075006e0020006400720075006b010101610061006e00610069002e00200049007a0076006500690064006f0074006f0073002000500044004600200064006f006b0075006d0065006e00740075007300200076006100720020006100740076011300720074002c00200069007a006d0061006e0074006f006a006f0074002000700072006f006700720061006d006d00750020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200036002e003000200076006100690020006a00610075006e0101006b0075002000760065007200730069006a0075002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 6.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200036002e003000200065006c006c00650072002e>
 /POL <FEFF004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e004b006f0072007a0079007300740061006a010500630020007a00200074007900630068002000750073007400610077006900650144002c0020006d006f017c006e0061002000740077006f0072007a0079010700200064006f006b0075006d0065006e00740079002000410064006f00620065002000500044004600200070006f007a00770061006c0061006a01050063006500200077002000730070006f007300f300620020006e00690065007a00610077006f0064006e0079002000770079015b0077006900650074006c00610107002000690020006400720075006b006f00770061010700200064006f006b0075006d0065006e007400790020006600690072006d006f00770065002e00200020005500740077006f0072007a006f006e006500200064006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d0061006300680020004100630072006f00620061007400200069002000410064006f0062006500200052006500610064006500720020007700200077006500720073006a006900200036002e00300020006f00720061007a002000770020006e006f00770073007a00790063006800200077006500720073006a00610063006800200074007900630068002000700072006f006700720061006d00f30077002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200036002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006C0069007A00610163006900200061006300650073007400650020007300650074010300720069002000700065006E007400720075002000610020006300720065006100200064006F00630075006D0065006E00740065002000410064006F006200650020005000440046002000610064006500630076006100740065002000700065006E007400720075002000760069007A00750061006C0069007A006100720065002000640065002000EE006E00630072006500640065007200650020015F0069002000700065006E00740072007500200069006D007000720069006D006100720065006100200064006F00630075006D0065006E00740065006C006F007200200064006500200061006600610063006500720069002E00200044006F00630075006D0065006E00740065006C00650020005000440046002000630072006500610074006500200070006F00740020006600690020006400650073006300680069007300650020006300750020004100630072006F0062006100740020015F0069002000410064006F00620065002000520065006100640065007200200036002E003000200073006100750020007600650072007300690075006E006900200075006C0074006500720069006F006100720065002E>
 /RUS <FEFF04180441043F043E043B044C043704430439044204350020044D044204380020043F043004400430043C043504420440044B0020043F0440043800200441043E043704340430043D0438043800200434043E043A0443043C0435043D0442043E0432002000410064006F006200650020005000440046002C0020043F043E04340445043E0434044F04490438044500200434043B044F0020043D0430043404350436043D043E0433043E0020043F0440043E0441043C043E044204400430002004380020043F043504470430044204380020043104380437043D04350441002D0434043E043A0443043C0435043D0442043E0432002E00200421043E043704340430043D043D044B043500200434043E043A0443043C0435043D0442044B00200050004400460020043C043E0436043D043E0020043E0442043A0440044B0442044C002C002004380441043F043E043B044C04370443044F0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200036002E00300020043B04380431043E00200438044500200431043E043B043504350020043F043E04370434043D043804350020043204350440044104380438002E>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200073006c00fa017e006900610020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f007600200076006f00200066006f0072006d00e100740065002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300fa002000760068006f0064006e00e90020006e0061002000730070006f013e00610068006c0069007600e90020007a006f006200720061007a006f00760061006e006900650020006100200074006c0061010d0020006f006200630068006f0064006e00fd0063006800200064006f006b0075006d0065006e0074006f0076002e002000200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e0074007900200076006f00200066006f0072006d00e10074006500200050004400460020006a00650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d00650020004100630072006f0062006100740020006100200076002000700072006f006700720061006d0065002000410064006f006200650020005200650061006400650072002c0020007600650072007a0069006900200036002e003000200061006c00650062006f0020006e006f007601610065006a002e>
 /SLV <FEFF005400650020006E006100730074006100760069007400760065002000750070006F0072006100620069007400650020007A00610020007500730074007600610072006A0061006E006A006500200064006F006B0075006D0065006E0074006F0076002000410064006F006200650020005000440046002C0020007000720069006D00650072006E006900680020007A00610020007A0061006E00650073006C006A006900760020006F0067006C0065006400200069006E0020007400690073006B0061006E006A006500200070006F0073006C006F0076006E0069006800200064006F006B0075006D0065006E0074006F0076002E0020005500730074007600610072006A0065006E006500200064006F006B0075006D0065006E0074006500200050004400460020006A00650020006D006F0067006F010D00650020006F00640070007200650074006900200073002000700072006F006700720061006D006F006D00610020004100630072006F00620061007400200069006E002000410064006F00620065002000520065006100640065007200200036002E003000200074006500720020006E006F00760065006A01610069006D0069002E>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200036002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200036002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0130015f006c006500200069006c00670069006c0069002000620065006c00670065006c006500720069006e0020006700fc00760065006e0069006c0069007200200062006900e70069006d006400650020006700f6007200fc006e007400fc006c0065006e006d006500730069006e0065002000760065002000790061007a0064013100720131006c006d006100730131006e006100200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e0020004f006c0075015f0074007500720075006c0061006e002000500044004600200064006f007300790061006c0061007201310020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200036002e003000200076006500200073006f006e00720061006b00690020007300fc007200fc006d006c0065007200690079006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043A043E0440043804410442043E043204430439044204350020044604560020043F043004400430043C043504420440043800200434043B044F0020044104420432043E04400435043D043D044F00200434043E043A0443043C0435043D044204560432002000410064006F006200650020005000440046002C0020043F044004380437043D043004470435043D0438044500200434043B044F0020043D0430043404560439043D043E0433043E0020043F0435044004350433043B044F04340443002004560020043404400443043A0443002004340456043B043E04320438044500200434043E043A0443043C0435043D044204560432002E0020042104420432043E04400435043D04560020005000440046002D0434043E043A0443043C0435043D044204380020043C043E0436043D04300020043204560434043A04400438043204300442043800200437043000200434043E043F043E043C043E0433043E044E0020043F0440043E043304400430043C04380020004100630072006F00620061007400200456002000410064006F00620065002000520065006100640065007200200036002E00300020044204300020043F04560437043D04560448043804450020043204350440044104560439002E>
 /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents. Created PDF documents can be opened with Acrobat and Adobe Reader 6.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

