
1. Introduction

Majority of analytical and numerical

methods of investigating the strength of

materials are based on the continuum

mechanics and the classical theory of

plasticity which maintain the continuity of

the domain while performing nonlinear

failure controls. Nevertheless, many

engineering/industrial applications such as

blasting in mines, demolition of structures,

crushing, metal cutting etc. are primarily

designed based on the cracking and

fracturing potential of materials. In these

classes of problems, controlled failure and

cracking of material are as desirable as the

strength of material.

From an industrial prospective, explosion is

one of the cheapest operational techniques

for fragmentation of solid material, though

less delicate and accurate than other available

methods. For instance, by detonating the

explosive material filled in existing

boreholes, large rock masses are cracked and

fragmented into small pieces. Unfortunately,

there exist only some general controls on the

size limits of fragments.

On the other hand, from a computational

prospective, numerical modeling of an intact

or fractured medium subjected to explosive

loading is one of the most difficult

applications involving various mechanical

behaviors in various fields such as plasticity,

fracture mechanics, gas dynamics and

chemical/mechanical behavior of detonation

and explosion phenomena. In addition, a

strong coupling is expected between the gas

and solid phases. Detonation causes a phase
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change of the explosive material into a gas

with high pressure and temperature. The

amount of release of energy depends on the

specific energy (energy per unit mass) of the

solid explosive material. Part of this energy is

transmitted to the solid mass and causes

subsequent deformation, acceleration,

fracture and fragmentation of the solid

material. Gas expansion and its flow within

the crack openings as well as the energy

consumption for solid deformation reduce

the gas pressure. Therefore, gas explosion

and cracking are strongly coupled

phenomena; applying the gas pressure onto

the solid body while changing gas

characteristics by deformation and cracking

of the solid material.

A wide range of blast induced gas pressure

models have been proposed [1-8]. The

earliest model, dating back to 1899, is the

Rankine-Hugoniot model for blast shock

waves based on the mass, momentum and

energy conservation equations [1-2]. A

century later, they are still the backbone of

blast and shock wave simulations. The

simplest model, however, is a user defined

pressure-time curve which lacks any

interaction phenomena [3-4]. As a result,

such an analysis becomes sensitive to the

way user defines the pressure curve. On the

other hand, several gas flow models have

been developed which somehow simulate the

gas flow within the crack opening [5-14].

They are mainly based on two approaches;

detecting the gas flow within independent

cracks, and detecting an equivalent flow

within a porous medium simulated from the

cracked solid mass.  The first approach

involves with rather difficult contact

detection algorithms for detecting the gas

flow within the complex geometry of

independent cracks, while the second

approach requires a realistic estimation of

porosity [11-14].

A comprehensive approach which adopts two

separate but coupled meshes for the analysis

of solid and gas phases is proposed for the

study of the gas-solid interaction and

simulation of explosion. In gas phase,

equations of gas flow in a porous medium are

used to compute the pressure, mass transfer,

energy and expansion of the gas at each

specified point. The solution for the solid

state will be performed based on the derived

pressure loading.

Modelling the solid media is performed by

the combined finite/discrete element

methodology [14-17]. It is capable of

analyzing the interaction among a wide range

of discrete bodies/materials and is coupled,

in this study, with gas dynamics and porous

media equations to analyze the dynamic

behavior of fracturing media in blasting. A

Rankine strain softening plasticity model,

which has been widely used for simulation of

cracking in brittle materials, is employed for

modeling creation and propagation of cracks

[18]. 

When the gas-solid interaction model is

implemented into the combined

finite/discrete element method, the model

will be capable of the evaluation of spatial

distribution of the pressure of detonation gas,

work done by the expanding gas and the total

mass of detonation gas as functions of time

indicating the ability of the model to respond

to changes in both the mass of explosive

charge and the size of the fractured solid

block. The proposed algorithm allows for

corporation of gas flow interaction with new

changing geometry of fractured solid model.

2. Porous Media

Microscopic and macroscopic equations of

state have already been developed to study
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different physical behaviour of gas and solid

phases of a porous medium [18]. Each phase

may be considered separately or studied

within a multi-phase porous medium. Here,

only the necessary two dimensional

equations of conservation of mass and

momentum are examined. Figure 1 illustrates

typical 2D porous specimens with the

emphasis being on the potential fluid/gas

flow within the networks of interstitial spaces

[17].

The differential form of the balance equation

for variable ψ− π , a macroscopic

thermodynamic property  associated with a

π–phase, can be derived under certain

smoothness conditions by localization at the

macroscopic level [18]

(1)

subject to 

(2)

where the exchange of ψ− π  due to mechanical

interactions between the constituents is given

by

(3)

and the phase change of a constituent or

possible mass exchange between the

constituent π and the other constituents α is

given by

(4)

where other parameters are defined as

iπ = the flux vector associated with ψ− π

b
− π = the external supply of ψ− π

G
−π = the net production of ψ− π

< ρ >π= the volume-averaged value of mass

density

r = the position of a microscopic volume

element

r 
.

= the velocity of the phase at a fixed point

in space

nπα = the unit normal vector pointing out of

the π phase and into the α phase

If the body is separated by a discontinuity

surface G which moves with velocity w− at the

macroscopic scale, the following additional

relation must be fulfilled:

(5)

Different equations can be derived by

properly defining ψ, i,b and G variables.

The mass balance equation for solid and/or

gas phases based on a microscopic viewpoint

can be defined as:

(6)

while on a macroscopic level, the mass
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Fig.1 Flow through a typical porous specimen.
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balance equation for the solid phase (s) can

be written as:

(7)

where ρ s = < ρ >s
s is the intrinsic phase

averaged density,  stands for the phase

averaged solid density and is the mass

averaged solid velocity.

Similarly, for the gas phase,

(8)

Equation for the microscopic linear

momentum balance takes the following form

(9)

where tm is the microscopic stress tensor and

g is the external momentum supply related to

gravitational effects. The macroscopic linear

momentum, however, takes a more

complicated form,

(10)

where ηπ is the volume fraction, µπ is the

dynamic viscosity, aπs is the relative

acceleration, k is the permeability tensor of

the medium, and krπ is the relative

permeability parameter.

Equation (10) reduces to the well known

Darcy law by neglecting the relative and

solid phase accelerations in comparison to

very high pressures,

(11)

and if further neglecting the gravitational

acceleration  g and Vs= 0 ,

(12)

Combining the mass and momentum

equations leads to 

(13)

Finally, microscopic and macroscopic energy

balance equations can be written as:

(14)

(15)

where E is the specific intrinsic energy,  is the

heat flux vector, h is the intrinsic heat source

and Qπ is the exchange of energy due to

mechanical interaction.

3. Coupled Gas-Solid Interaction

In this section, an interaction algorithm based

on a two-mesh model is developed. One

mesh is used for modeling the solid material

(S-mesh) and the second mesh is used for

modeling the gas phase (G-mesh), as

illustrated in Figure 2. At any time t, the

G-mesh can be mapped onto the S-mesh, and

all necessary data can be transferred from the

S-mesh to the G-mesh for evaluation of the

gas porosity [19].
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Fig.2 Coupled s-mesh and g-mesh finite element model.



The G-mesh is analyzed based on the

mechanics of porous media; it is assumed

that no solid exists for the gas phase and only

the equations of mass and momentum are

satisfied. The solid phase contributes the

equilibrium equation only through the

permeability coefficient, defined for

example,

(16)

(17)

Beginning with the mass-momentum

equation for the gas phase,

(18)

with the boundary conditions

(19)

where q g is the input mass flow and

n={nx, ny, nz}T is the normal vector.

The weighted residual form of (18) and (19)

can be written as [19]

(20)

where W
−

*, W* are weighted residual

functions. Applying the Green theorem 

(21)

and assuming  qg = 0 ,

(22)

Following the standard finite element

procedure, pressure Pg
can be defined based

on the nodal pressure P
−g

and the nodal shape

function Np,

(23)

The weighted residual functions are assumed

to be the same as shape functions

(24)

Therefore, equation (22) reduces to

(25)

The first term represents the change of mass

in unit time. The final form can be written as [19]

(26)

with H t
p
defined as the permeability matrix,

(27)

By adopting a square cell G-mesh (Figure 3),

shape functions  can be written as:
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(28)

and

(29)

where a is the size of the square element. 

If the mean values of ρ−g and K
−

are used over

the element and assuming µg = 1, a simple

H t
p

matrix can be computed [19]

(30)

However, a more accurate solution is

achieved if similar shape functions are used

to approximate the variations of density and

porosity within the element. Numerical

solutions are then required to evaluate the

components of symmetric H t
p

matrix.

Returning to the mass equation (26) for an

element e,

(31)

Similar equation can be derived for the

change of internal energy, in terms of the

mean internal energy per unit mass of the

element U
−

e

(32)

A non-perfect gas law is adopted to include

for the high pressure and temperature

conditions (where the gas can not be

considered as a perfect gas),

(33)

Another necessary assumption is the way

Vs(p); the volume of a solid at mean pressure

p, can be calculated from its volume at zero

pressure state Vs(o),

(34)

where λ is the rate of volume reduction. 

The step by step procedure for the developed

gas flow algorithm can be explained as: 

1. Set the initial values for the G-mesh nodes

M
o
n , p

o
n , U

o
n .

2. Evaluate the solid volume associated to

each node of the G-mesh. 

3. Calculate the solid volume at pressure p,

Vs
o
,n = Vs

o
,n (0)e -p/λ

4. Calculate the porosity volume of the G-

mesh nodes Vp
o
,n = Vo

n - Vs
o
,n , Vo

n is the

volume of G-mesh nodes without any solid 

5. Compute the initial mean density ( ρ− ) from

ρ n
o

= Mn
o

/ Vp
o
,n and the initial permeability

of the element Ko = Kmax( Vo
p / Vo

)

6. Calculate the permeability matrix Hp
o
e

7. Calculate the mean internal energy per unit

mass U
−

e
o

from its nodal values Un
o

8. Determine new nodal pressures

9. Interpolate the S-mesh  nodal pressures

from the G-mesh nodal values 

10. Analyze the solid model using an explicit

dynamic FE/DE analysis

11. Perform a deformation/crack analysis

based on the material model for the solid, and

perform re-meshing and geometric crack

modeling, if necessary

12. Compute the deformation and new values
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for porosity in G-mesh

13. The new value for the mass is computed

from the nodal pressures Pn ,

Mn
1
= Mn

o
- ∆t Hp

o
e P

o
n 

14. The new value for the internal energy

U n
1
= U n

o
- ∆t U

−
e
oHp

o
e P

o
n has to be corrected

due to the change of G-mesh nodal volumes

and porosities                            

Step 8 requires a simple iterative procedure

for determining new pressure values which is

now briefly explained:

1. Set the initial values for i=0

Pn
1

= Pn
1,o

= Pn
o

V s,n          
1,i

= V s,n          
1

( Pn
1,i

)

V p,n          
1,o  

= Vn
1

- V s,n          
1,i

2. Calculate the work done by the gas due to

change of porosity 

∆W i
= Pn

o
( V p,n          

1,o 
- V p,n          

o 
)

Un
i , 1 = Un

1
- ∆W i

Tn
i , 1 = Un

i , 1 / (CV Mn
1
)

3. Calculate the new pressure from the gas

pressure law 

Pn
1 , i 

= P ( ρn
1 , i 

, Tn
1 , i  

)

4. If  C Pn
1 , i 

- Pn
1 , i-1 C P X, Set  i=i+1 and

goto 2

The final remaining important point is the

selection of a proper timestep size, as it

directly affects the accuracy, cost and

efficiency of the numerical simulation. In a

practical simulation, size of the timestep has

to be selected from the characteristics of both

phases:

1. ∆t for the solid phase:

An explosion in a solid is accompanied by

very high pressure, extensive cracking and

fragmentation. Therefore, the timestep ∆t
must be limited to a value necessary to

perform contact detection and interaction

procedures to avoid cracked elements or

discrete elements to excessively penetrate or

fly through each other freely [17].

2. ∆t for the gas phase:

∆t is one of the effective terms in defining the

mass update according to

Mt+∆t = Mt - ∆t Hp
t Pg . ∆t should then be fine

tuned so the gas flow is performed at the

same time as the cracks  are opened. Too

small timestep results in small mass transfer

into cracks; no gas flow within opening

cracks. On the other hand, too large timesteps

cause large mass transfers to occur without

any crack opening.

4. Solid Fracture

Cracking and Fragmentation in solid domain

is performed based on a softening plasticity

formulation. As a result, fracture mechanics

concepts such as toughness, etc. are not

required. Here, a simple bilinear Rankine

softening law (Figure 4) is adopted to avoid

mesh dependency of the finite element
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Fig.4 Strain softening model and the definition of fracture
energy release Gf . 



simulation through the introduction of the

fracture energy release Gf and a

charachteristic length. Special remeshing

techniques are adopted in order to

geometrically simulate the crack propagation

by splitting the necessary finite elements and

nodes and satisfaction of compatibility

requirements [18]. Therefore, the new

finite/discrete element mesh conforms to the

cracked and fragmented geometry of the

solid domain, and can be directly used

through the gas flow procedure.

5. Numerical Verification

5.1 Example 1

This example is adopted to verify the gas

flow algorithm in its simplest possible case:

gas flow through a uniform pipe. A solid

chamber is filled with ANFO explosive

material, as illustrated in Figure 5. The

density of explosive material is

ρ = 240 kg/m3and the total mass is

m = 0.148 kg. The velocity of detonation

(VOD) is assumed to be 1725m/s .

The gas pressure history, predicted by the

proposed approach is illustrated in Figure 6.

It almost instantly reaches to a peak value of

730000 KN/m2 and then gradually reduces to

atmospheric pressure (zero overpressure).

The results are in very good agreement with

the experimental measurements and the

results obtained by Munjiza [4] based on a

single mesh gas dynamics (no flow)
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Fig.6 Pressure history response predicted by the present algorithm.



approach (Figure 7).

Figure 8 illustrates the velocity time history

of the chamber. It shows the point of

completion of explosion process within the

chamber, where a sudden change of slope is

predictable.

Deformation and effective stress contours at

successive timesteps are illustrated in Figures

9-10. Again, as the detonation of the

explosive material extends towards the free
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end of the container, the stress bubbles

continuously move from the right end of the

container towards its free end.

5.2 Example 2

This is a complex example of gas-solid

interaction problem modelled by a two-mesh

approach within a finite/discrete element

approach. Consider a 1G1 m square block of

rock with 0.33G0.33 m a central hole (Figure

11a). The hole is completely filled with

ANFO explosive material. Properties of rock

and explosive materials are given in Table 1.
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Three different meshes (depicted in Figure

11b,c,d) have been used to investigate the

effect of gas mesh density.

Mesh 1 is a very coarse mesh which does not

have any point inside the explosion hole

(borehole). As a result, no gas pressure can

be evaluated at the gas-mesh nodes.

Therefore, no pressure on solid mesh is

generated. 

The second G-mesh, mesh 2, is defined in a

region two times the dimensions of the solid

rock. 8 square elements are used in each

direction. It is expected to achieve poor

results again, because of having only one

node of the gas mesh (node (4,4)) within the

explosion borehole

The third mesh is constructed using 24

square elements in each direction. Nine gas
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a) Geometry of the borehole b) G-mesh 1 

1 2 3 4 5 6 7 8

Gas grid number in X

1

2

3

4

5

6

7

8

G
as

gr
id

nu
m

be
r 

in
 Y

3/1 m 

1 m

1 2 3 4 5 6 7 8

Gas grid raster in X

1

2

3

4

5

6

7

8

G
as

 g
ri

d 
ra

st
er

 in
Y

9/1 m

1 m

c) G-mesh 2 and the solid mesh d) G-mesh 3 and the solid mesh 

Fig.11 Geometry and different gas and solid meshes.



nodes are located within the explosion

borehole. Better approximation may be

achieved by adopting finer gas mesh. It is

important to note that there should be a

practical limit on the minimum size of the

gas mesh as the cost of numerical simulation

may be unacceptably increased with a very

small size of the gas mesh.

Figures 12-14 illustrate the pressure contours

and cracking patterns in different timesteps.

By increasing the openings of cracks, part of

the gas mass is transferred through the

openings; instantly increasing the gas

pressure in the vicinity of cracks. This is

clearly seen from Figure 13 where the values

of gas pressure are greater in the top left part

of the solid mesh with extensive cracking.

The pressure substantially reduces immediately

after the escape of gas from the crack opening.

325International Journal of Civil Engineerng. Vol. 4 , No. 4, December 2006

1 2 3 4 5 6 7 8

Gas grid number in X

1

2

3

4

5

6

7

8

G
as

 g
ri

d
nu

m
be

r 
in

 Y

Fig.12 Cracking pattern and gas pressure contour at t=0.0003
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Fig.13 Cracking pattern and gas pressure contour at t=0.0006
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Fig.14 Cracking pattern and gas pressure contour at t=0.001



6. Conclusion

A finite element based gas flow within an

equivalent porous solid medium  has been

developed for the analysis of gas-solid

interaction and implemented into a combined

finite/discrete element methodology to

simulate the complex behavior of explosion

in solid media which causes extensive

fracture and fragmentation within the

domain; affecting the pressure and density of

the gas induced by blast. Numerical

simulations have shown good agreement

with available benchmarks. The proposed

approach solves the equations of gas flow

and solid state by adopting a coupled two-

mesh strategy. It is proposed to design an

independent adaptive gas mesh in future

studies.
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