Trivial Numerical Integration

MJR

February 2014

There follows a discussion of the numerical integration of a Gaussian over a
semi-infinite interval. The integrands chosen are

exp(—2?/0?) and exp(—2%/0?) +107°

with ¢ < 1. The range is zero to 100, which, for any reasonable precision, is
equivalant to zero to infinity.

This integrations are evaluated a number of times. After each evaluation, o is
halved. The analytic results are effectively 0.50/7, and the same plus 104

The difficulty for numerical integration is although the exponential is non-zero
at one end-point (it is one at the origin), for small o it decays quite rapidly to
zero. Integrators tend not to sample the end point, so may end up sampling
exclusively at points where the exponential is zero (less than smallest non-zero
representable number). In this case the integrator will falsely conclude that the
result is zero for the first integrand, and 10~* for the second, and that there is
no interesting region in which a higher sampling rate is necessary.

The default integration routines from GSL, NAG, Matlab and Mathematica
were used, and the results and codes are discussed below.

1 Results

1.1 First Integrand

NAG (d01lahf) incorrectly gave zero as the answer for o = 0.0625 and below.
It gave no warning. NAG (d01ajf) did better, incorrectly giving zero for o =
0.015625 and below. The documentation for d01ahf states ‘an attempt is made
to detect sharp end point peaks and singularities. ..’

GSL (gsl_-integration_gag with GSL_INTEG_GAUSS15) incorrectly gave zero as
the answer for ¢ = 0.015625 and below. It gave no warning.

Mathematica (NIntegrate) incorrectly gave zero as the answer for o = 0.015625
and below. It did give a warning that the integral and error estimates were all
Zero.

Matlab (quadgk) gave incorrect, tiny, non-zero answers for o = 7.62939e — 06
and 3.8147e — 06, followed by zero for smaller ¢. It gave no warning.

1.2 Second Integrand

NAG (d01ahf) gives incorrect answers (i.e. 10~%) for o = 0.25 and below, and
NAG (d01ajf) remains as good as GSL.

GSL gives incorrect answers for o = 0.0625 and below.

With ¢ = 0.125 and below, Mathematica believes that this integrates to 0.0001.
The correct answer is just over 0.11. No warnings are given.

Matlab is still correct until o reaches 7.62939¢ — 06.

Octave 3.6 gives similar results to Matlab for both integrals.

2 Conclusions

In all cases wrong answers with no warnings were readily triggered.

Assuming the integrator first attempts a 7 point Gauss rule with a 15 point
Kronrod rule, and compares the answers, the closest point to the origin sampled
will be approximately 0.42725. For the first integral, there will be confusion if
the integrand evaluates to zero here, which is approximately the condition that

exp(—2?/0%) < 1073%
—2?/0? < T4
zlo > 26.7

o < 0.016

For the second integral, confusion would occur if the integrand does not evaluate
to something distinguishable from 1076, which is approximately

exp(—2?/c?) < 107*
o < 0.061

This reflects what GSL seems to do. NAG seems worse, and Matlab remarkably
good. None is perfect though.

3 Programs

3.1 NAG

module const
double precision :: sigma
contains
function gauss(x)
double precision gauss
double precision, intent(in):: x
gauss=exp (-x*x/(sigma*sigma))
return
end function
end module

program integrate
use const
use nag_library
integer i,ifail,npts
double precision x,err,pi

pi=3.14159265358979d0
sigma=1
ifail=0

do i=1,10
x=d01lahf (040, 100d0,1d-8,npts,err,gauss,100000,ifail)
write(x,*)’sigma=’,sigma
write(*,*)’integral=’,x,’err=’,err*x,’ifail=’,ifail
write(*,*)’actual error’,abs(x-0.5*sigma*sqrt(pi))
sigma=sigma*0.5

enddo

end

3.2 GSL

/* Compile with
gcc -I/usr/include/gsl int_gsl.c -1lgsl -lgslcblas
*/

#include<stdio.h>
#include<math.h>

#include<gsl/gsl_errno.h>
#include<gsl_roots.h>
#include<gsl/gsl_integration.h>

double sigma;
double gauss(double x, void *p){
return exp(-x*x/(sigma*sigma)) ;

}

int main(){
int 1i;

double x,err,p,pi=3.14159265358979;
int n;

gsl_integration_workspace *work;
gsl_function F;

work=gsl_integration_workspace_alloc(100000);
F.function=gauss;

F.params=NULL;

gsl_set_error_handler_off();

sigma=1;

for(i=0;i<10;i++){
gsl_integration_qag(&F,0,100,0,1e-8,100000,GSL_INTEG_GAUSS15,
work,&x,&err) ;
printf ("sigma=Y%g\n integral=jg claimed error J%g actual error %g\n"
sigma,x,err,fabs(x-0.5*sigma*sqrt(pi)));
sigma*x=0.5;

}
gsl_integration_workspace_free(work) ;

return O;

3.3 Matlab
sigma=1;
for i=1:20
gauss=0(x) exp(-(x+x)/(signa*signa));

x=quadgk (@ (xx)arrayfun(gauss,xx),0,100,’AbsTol’, eps,
’MaxIntervalCount’, 100000);

fprintf (’sigma=%g\n integral=Y,g claimed error ’%g actual error %g\n’,
sigma,x,eps,abs(x-0.5*sigma*sqrt(pi)));

sigma=0.5*sigma;

end

3.4 Mathematica

sigma = 1; Doly = NIntegratel[Exp[-x*x/(sigma*sigma)]l, {x, 0, 100}]1;
Print [sigma, " ", yl]; Print [Abs[y - 0.5*sigma*N[Sqrt[Pil]]];
sigma = 0.5*sigma, {i, 10}]

