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Abstract. Reliable network demographics are quickly becoming a much
sought-after digital commodity. However, as the need for more refined
Internet demographics has grown, so too has the tension between privacy
and utility. Unfortunately, current techniques lean too much in favor of
functional requirements over protecting the privacy of users. For exam-
ple, the most prominent proposals for measuring the relative popularity
of a website depend on the deployment of client-side measurement agents
that are generally perceived as infringing on users’ privacy, thereby lim-
iting their wide scale adoption. Moreover, the client-side nature of these
techniques also makes them susceptible to various manipulation tactics
that undermine the integrity of their results. In this paper, we propose a
new estimation technique that uses DNS cache probing to infer the den-
sity of clients accessing a given service. Compared to earlier techniques,
our scheme is less invasive as it does not reveal user-specific traits, and
is more robust against manipulation. We demonstrate the flexibility of
our approach through two important security applications. First, we il-
lustrate how our scheme can be used as a lightweight technique for mea-
suring and verifying the relative popularity rank of different websites.
Second, using data from several hundred botnets, we apply our tech-
nique to indirectly measure the infected population of this increasing
Internet phenomenon.

Keywords: Client Density Estimation, Web-metering, Botnets, Net-
work Security.

1 Introduction

Over the past few years, it has become increasingly important to garner re-
liable information about the demographics of the Internet and the myriad of
services that it supports. For one, Internet businesses increasingly rely on such
information to better customize their marketing campaigns. Advertisers, for ex-
ample, make continual use of the relative popularity of websites and the demo-
graphics of their visitors to design and position their products and services in
an effective manner. Similarly, security practitioners frequently use information
about the population affected by security incidents to develop a better under-
standing of the characteristics and the scope of these attacks.
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However, as the need for network demographics has increased, so too has the
tension between utility and privacy. For instance, the most well-known schemes
for measuring the relative popularity of websites (e.g., Alexa [38], ComScore [20]
and NetRatings [26]) collect client-side data from deployments of measurement
agents placed inside edge networks (e.g., using browser toolbars that record all
URLs visited by the client). Generally speaking, the collected data is sanitized
and used to produce aggregate statistics for the application in question. However,
since the type of sanitization that is applied, as well as the specific data collected,
are completely at the discretion of the data collector, large cross-sections of the
population shy away from deploying these agents. Moreover, the mere client-
side nature of these collection schemes opens the door to abuse (be it via click
fraud [23] or other manipulation recipes [1]) that directly affect the integrity
of the results. Recently, the prevalence of these fraudulent behaviors has raised
so much doubts about the integrity and authenticity of these ranking measures
that it captured the attention of the mainstream press (e.g., [22]).

Also of much interest lately is the question of how to reliably determine the in-
fected population of an all too common security event, namely, botnets. Clearly,
the size of the population affected by a particular security incident plays an
important role in fully understanding its impact, as well as helps in prioritizing
defense tactics from industry and practitioners alike. Unfortunately, although in-
formation on the scale and nature of a security event can be valuable for forensic
and defenses purposes, network operators are usually reluctant to release such
information as disclosure of (repeated) breaches can lead to loss of public confi-
dence. Therefore, information on the spread of security events (worms, botnets,
etc.) is normally collected at a global scale by dedicated measurement entities
(e.g., CAIDA) using a combination of direct [28,31] and indirect methods [3, 24,
31]. While these approaches have been widely successful, they are known to be
vulnerable to various evasive tactics. For example, network monitors can easily
be detected and evaded by active probing attacks [5, 29, 36]. Similarly, in the case
of botnets, several practices complicate direct measurements as botmasters of-
ten suppress broadcast feedback, thereby making direct measurements infeasible
even if the botnet has been infiltrated [30].

In what follows, we present a new technique for inferring the density of clients
accessing a particular network service. Among a number of possible applications,
our technique is directly applicable to both of the aforementioned problems.
Specifically, we present an indirect estimation technique using DNS cache prob-
ing [14], and show how it can be used for website metering as well as for inferring
the infected population of certain security events (e.g., botnets). In the former
case, our evaluation shows that the technique is very accurate, and can serve
as a standalone verification tool for determining the popularity rank of different
websites. Compared to other approaches (e.g., Alexa [38]), our technique is less
invasive as it does not require host-specific information. Moreover, as we discuss
later, our technique is more robust under a threat model where the attacker is
deliberately trying to inflate the popularity rank of her website.
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In the latter case, we illustrate how our technique can be used to arrive at
a better size estimate (than the notion of botnet footprint we suggested ear-
lier [31]). We argue that this refinement is important as botnets continue to be
one of the top Internet threats today [32,37], and so more accurate size mea-
surements have immediate benefit in assessing the monetary impact and damage
they cause (e.g., via identity theft, DDoS attacks, etc.) [15]. While fine-grained
estimates of botnet size still remain challenging [30], we believe this work offers
a valuable step forward in that regard.

The remainder of the paper is organized as follows. In Sections 2 we illus-
trate our methodology and estimation techniques. In Section 3 we validate our
approach through simulation and by comparison to an actual client count mea-
sured directly from our local network. In Section 4 we provide two real world
applications that we believe aptly demonstrate the utility of our technique then
we discuss some practical considerations in Section 5. In Section 6 we review
related work, and conclude in Section 7.

2 Estimation Methodology

Growing security [18,34] and privacy concerns raise significant challenges
for the application of direct methods to obtain faithful counts of clients using
a particular service, for example, by simply taking measurements from within
network boundaries (e.g., using toolbars that monitor a users’ browsing habits).
Rightfully so, this unease calls for indirect counting techniques that limit the
privacy risks with recording host-specific information. In this section, we describe
our methodology for estimating the number of clients accessing a particular
network service using a purely indirect technique.

Our approach exploits the fact that most network services (e.g., websites,
botnet command and control servers) use DNS names to identify their servers.
This, in turn, makes DNS resolution a pre-requisite step for any client connecting
to that server. Simply speaking, we exploit this association to infer the number
of clients requesting the resolution of the DNS name for the service of interest
(e.g., www.cnn.com) from their local DNS resolver. Specifically, we use DNS
cache probing to measure the evolution of that name in the resolver’s cache and
consequently derive an estimate of the number of clients accessing that service.
Compared to direct methods, our technique is less intrusive as it does not reveal
the specific identities of clients accessing the service of interest.

The technique itself is rather straightforward: for each DNS name of interest,
S, we probe the cache(s) of the DNS resolver(s) for the network(s) of interest
at regular intervals and examine the observed cache hits, if any, for S. For each
cache probe, a cooperative resolver (i.e., a resolver that responds to DNS cache
queries) will report a hit if S was in its cache, or a miss otherwise. In the former
case, the resolver also reports the remaining time before S is flushed. While a
cache hit only indicates that at least one client made a request for that entry,
we can refine that estimate by sending appropriately-spaced probes that reveal
the sequence of start and end times of S’s entry in the resolver’s cache. These
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times are a direct result of the combined queries from all clients that the resolver
serves.

Figure 1 illustrates our estimation methodology. At a high level, one can
envision the client population estimation as involving two processes: an input
process representing the combined arrivals of DNS queries for the DNS entry .S,
from clients served by the same resolver, and an output process representing the
refresh and expiry times of S that result from the input querying process. Our
subsequent analysis relies on the simplifying assumption that the inter-arrival
times of client requests in the input process can be modeled as a sequence of
independent identically distributed random variables (IID’s). Jung et al. [21]
also used this assumption and showed that it does not introduce significant bias
in the arrival model. We will return to this assumption, as well as the arrival
model, in Section 2.2. Given this model, our goal is to estimate the number of
clients n, requesting lookups for S from their common DNS resolver. We do
so by estimating the aggregate DNS query rate A, using the observed refresh
and expiry times of the entry S from the output process. As we show later, the
resulting estimate for A leads to an estimate of the number of clients n. In what
follows, we begin by describing our methodology for estimating the rate A and
then proceed to show how we can use this estimate to infer the number of clients
n in Section 2.2.

2.1 Estimating the aggregate rate

DNS Resolver
Input Process

TT T TT TT T T T T T (Client DNS requests)

: : : 2 ~ Time
TTL i i i i Output Process
T, (Observed Refresh times)

Tr 7y AT, |(Case-II)
TTL
DNS cache probes,

one probe per TTL AT, (Case-1)

Fig. 1. Illustration of the estimation methodology.

For a DNS entry S, with a time to live (T'T'L), we estimate the aggregate
rate A, as follows: we probe the cache of the resolver of interest at a rate of
one probe per TTL. As Figure 1 illustrates, the sequence of probes allows us to
capture the start and end times of S in the resolver’s cache. Recall that for a
cache hit corresponding to a probe p at time T},, the resolver returns the time 7;
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until the cached entry expires. Given the TT'L we can therefore infer the most
recent start time (which we call the refresh time) T, as:

T, =T, (ITL-T) (1)

Then one way to estimate the average rate A, is to compute the average time
between consecutive refresh times T,,,T,,,...,Tr, (Case I in Figure 1) from a
sufficient number of refresh events R. Let AT, be the time between consecutive
refresh events of the entry S as observed from the output process, (AT,, =
Ty, — Tr,_,), then,

N - 2)
Ei:l ATH
However, notice that this method is overly conservative since it assumes that
no DNS queries arrive within the TTL of S in the resolver’s cache. This is of
course too restrictive and will lead to under-estimating the rate A. Instead, we

consider AT, as the time between the expiry of the entry until its next refresh
time (Case II in Figure 1),

AT, =T, —T. , —TTL (3)

Notice that doing so makes the implicit assumption that the last DNS query in
the input process took place slightly before the DNS entry expired. As we show
later, this is not a significant issue and our technique still yields a fairly accurate
estimate for practical TTL ranges.

Based on the newly calculated AT,,, we use Equation 2 to calculate the
estimated rate A from a sufficient number of refresh events R. To determine
the required number of samples R, we apply the results of the central limit
theorem [33]. For an acceptable error e, and confidence z,/2, we can calculate
the sample size accordingly (see Appendix A for the detailed derivation). Finally,
with the estimated A\ at hand, we can infer the number of clients as a function
of A and the individual client request rate A\.. In the next section we discuss how
we estimate both A, and n.

2.2 DNS Request Arrival Model

In order to estimate the number of clients n, we need some knowledge of the
DNS request arrival model. We derive this model by studying the distribution of
the inter-arrival times of incoming DNS requests to a particular resolver. Specif-
ically, we use a large dataset of over 320 million NetFlow records collected at the
edge of a large campus network during a 24-hour period on 7/15/2007. We use
this dataset to study the arrival models for two popular domain names, namely,
www.google.com and www.cnn.com with TTLs of 5 and 10 mins, respectively.
Assuming that each HT'TP connection is preceded by a DNS request, we deduce
these models by extracting the inter-arrivals of the start times of flows originating
from individual hosts and destined to each one of these domains. Jung et al. [21]
used a similar approach in their study on the effectiveness of DNS caching. Fig-
ure 2 shows the distribution of the inter-arrival times of requests to each name.
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As the graphs show, the incoming client DNS request arrivals can be reason-
ably modeled by exponential random variables with different rates A. (= 2.6
queries/hour for www.google.com and 0.78 queries/ hour for www.cnn.com).
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(a) www.google.com (A = 2.63 queries/hour) (b) www.cnn.com (A, = 0.78 queries/hour)

Fig. 2. Cumulative Distribution Function (CDF) of the incoming client request inter-
arrivals.

Following the assumption from Section 2, the sequence of IID exponential
inter-arrivals from n clients (each with an input rate of \;) generates an output
arrival process with Gamma distributed arrival times Gamma(n, A). Since n in
our case is an integer value, then it follows from the gamma distribution [33] that
the output process has exponentially distributed inter-arrivals with an aggregate
mean rate of A = nA.. We use this property to indirectly estimate n from the
measured output process rate A, where \ is estimated using R refresh events as

illustrated in Section 2. Given A, the expected number of clients, is (n = /\i)
3 Validation

We first verify the accuracy of the proposed approach via simulation. Us-
ing the simulation parameters shown in Table 1, we evaluate the accuracy of
our approach by measuring the estimation error of n for a wide combination of
A and TTL values. Figure 3 shows the estimation error. As the graph shows,
our estimator is fairly accurate; the 95% confidence interval (i.e., within 2 stan-
dard deviations) of the mean estimation error remains within the bounds of the
acceptable error set in the simulation.

3.1 In the Wild Evaluation

We further validate the effectiveness of our estimation technique by applying
it to data collected from a real-world DNS probing experiment. In this exper-
iment, we probe a local resolver serving a small department network for two
popular DNS names, namely, www.google.com and www.cnn.com. For valida-
tion purposes, we enabled DNS logging on the local resolver so that all internal
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Acceptable estimation error (e){20%
Actual number of clients 100
Confidence 95%
Number of samples (R) 100

Table 1. Simulation parameters.
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Fig. 3. Relative estimation error of the number of hosts n under different number of
DNS queries per TTL (A TTL).

DNS queries issued for either one of those names were recorded. We then ex-
tract the unique sources making queries for each name and use their count as a
validation baseline for our estimate. Table 2 shows the parameters used in our
experiment as well as the estimation results. The client query arrival rate, A, is
chosen based on the campus-wide trace discussed in Section 2.2.

As the table shows, the estimates are fairly accurate. For example, the
estimated aggregate rate A\ for www.google.com, from our cache probing, is
240 queries/hour. Dividing this estimate by the client query rate, A\, = 2.63
query/hour estimated from the NetFlow dataset, yields an estimate of 93 clients
accessed www.google.com. Similarly, our evaluation yields an estimate of 30
clients accessed www.cnn.com. Both estimates are within the bounds of the 20%
error margin set in the experiment parameters. These results provide evidence on
the viability of this estimation technique. We now turn to illustrate the flexibil-
ity of our approach through two important security applications: web-metering
and botnet size measurement. We believe these two applications serve as good
examples of the strength of our scheme.
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| | www.google.com | www.cnn.com |
TTL 300 seconds 600 seconds
Client mean query rate (Ac) 2.63 query/hour 0.78 query/hour
Cache probing rate 1 query every 5 mins.|1 query every 10 mins
Number of samples (R) 100 100
Acceptable estimation error 20% 20%

Actual number of clients (n) 104 26
Estimated mean aggregate rate (\)| 240 queries/hour 23 queries/hour
Estimated number of clients (7) 93 30

Table 2. DNS cache probing experiment, parameters and results.

4 Applications
4.1 Estimating Website Popularity

As mentioned earlier, web metering (or popularity ranking) plays an impor-
tant economic role in today’s Internet. Popularity rank, for instance, is a key
factor in deciding the marketing potential of a website. In particular, the higher
a site’s popularity rank, the more advertisers are willing to bid for advertising
space on that site. Not surprisingly, because of the strong correlation between
website popularity and monetary benefits, techniques for rank inflation are not
uncommon [1,2; 12], and so this problem has stirred much interest on the design
of secure metering schemes (e.g., [16, 25]).

For the most part, web metering schemes attempt to address the problem
of trust between advertisers and website owners by delegating the web metering
task to a third party (e.g., Alexa [38], ComScore [20], NetRatings [26]) that
monitors the interaction between clients and servers, and/or rely on cumbersome
key agreement and distribution schemes [6, 16, 25]. In practice, the most well-
known ranking services offer ranking for websites based on the number of visits
they receive. These visits are measured from data collected from millions of
users who willingly install measurement agents (e.g., Alexa toolbars ®) on their
machines. However, clearly such techniques raise security [18,34] and privacy
concerns as they reveal user-specific traits to the ranking service. Furthermore,
the resilience and accuracy of these techniques has been recently brought into
question [1,22].

In what follows, we illustrate a simple, yet effective, web metering scheme that
requires no client-side deployment. Additionally, our scheme is less intrusive as it
does not breach individual users’ privacy. The outcome of the proposed scheme
is a list of website ranks measured from a completely different perspective. These
ranks can be used as a stand-alone measure of the relative popularity of websites
or to validate the results obtained from other ranking schemes.

Our technique is a direct application of our DNS-based estimation technique.
That is, to measure the relative popularity rank for a set of websites, B, we
periodically probe the caches of a selected set of resolvers, D, following the

3 Whether or not these toolbars should be classified as “Spyware” seems to be a subject
of much debate lately.
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aforementioned approach (i.e., one probe every TTL epoch). Then to determine
the relative rank of a website we simply measure the rate A (as illustrated in
Section 2) from the output of the probing process for each resolver in D. The
final rank K, is then expressed in terms of the average time it takes the web-site
entry to be refreshed in the resolver cache after its last expiry (i.e., 1/\) across
all resolvers in D. Intuitively, DNS entries of websites with higher hit rates will
be refreshed quicker than those with lower hit rates. To get the final website rank
K we calculate the weighted average of the refresh times across all resolvers in
D7

K=Y 3 (4)

i€D

where, W; is the relative weight of each resolver in the final rank outcome. A
number of criteria can be used to decide the relative weight for each resolver. For
example, the weights can be decided based on the population demographics and
target market of the advertising company, or from light-weight sampling of the
IP-space (e.g., [9,29]). In our case, we choose to apply a weight for each resolver
based on the total client population served by that resolver. For simplicity, we
infer this information from a dataset obtained from Google Inc. that contains
a large list of resolvers and a coarse-grained estimate of the number of clients
served by each resolver. For each resolver the weight W; is then calculated as
the number of clients served by resolver ¢ divided by the total number of clients
served by all resolvers in the sample D.
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Fig. 4. DNS rank versus Alexa rank, for the top 100 websites according to Alexa
ranking.
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Case Study. We apply the above methodology to measure the relative pop-
ularity of the top 100 web-sites according to the ranking of Alexa.com *. For
our target resolvers, we use a large list of 1.6 million resolvers obtained by col-
lecting the Name Server (NS) records of a large list of crawled web URLSs [27].
The resolvers list is first sanitized to extract the “cooperative resolvers” (re-
solvers that respond correctly to external cache queries). The sanitization phase
involves sending two consecutive DNS queries to each resolver for a known DNS
record. The first is a recursive query that forces the DNS server to fully resolve
the query. The second query is sent with the recursion flag turned off to elicit
a local reply from the resolver’s cache. We compare the replies for consistency
and also verify that the value of the TTL field in the second response is smaller
than the one in the first response. After sanitization, a total of 768,000 resolvers
were cooperative. As our target resolvers, we choose a smaller sample of resolvers
from the sanitized list. We denote this sample D. Notice that there are several
ways to choose the sample D. In our case, we first map the resolvers in the
large list of 768,000 resolvers to their respective countries using the IP2Location
database [13]. Our resolvers mapped to 189 countries. From each country we
randomly choose up to k (=3) resolvers to form our final target list D of 495
resolvers 5. We choose this particular methodology to serve our goal of ranking
website according to their popularity from a global perspective. However, the
selection criteria can be tuned to serve other ranking goals. For example, one
could select all resolvers from a certain country to study web-site popularity
with respect to users from that region. Investigating the selection of resolvers to
serve such goals is outside the scope of this paper.

We probe each resolver in D for the top 100 websites from Alexa following the
above methodology. Then we estimate \; for each resolver based on a sample of
50 probes and compute the final rank for each name using Equation 4. Figure 4
shows a comparison between our ranks and those of Alexa. As the graph shows,
while both rankings show comparable results (with an average rank difference
of 4.5), in some cases the ranks differ significantly. A closer look into some of
the differing ranks reveal that they refer mostly to websites that have a country
specific domain (e.g., www.ebay.co.uk had a rank difference of 22). Recall that
we select our target resolvers from all-over the globe, hence this discrepancy
is likely a consequence of the resolver selection criteria. In some other cases
(e.g., www.orkut.com which has a rank difference of 12), the reason for the
discrepancy in ranking is unclear. While it is difficult to argue for or against
the accuracy of either ranking (without a true baseline) these results highlight
the benefit of having metrics from different perspectives. This is important as
the multiple measures can reveal inconsistencies in some ranks, and can be used
further to produce new, and hopefully more robust, ranks based on a combination
of different measures.

4 We use the top 100 Alexa global ranks that are based on traffic statistics as of
September, 2007.
® For countries containing < 3 resolvers we choose all the available resolvers.
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Resilience to Fraudulent Inflation

Click fraud. Click fraud schemes [23] have the dual effect of inflating the
number of “click-throughs” on the Ads posted on a website and increasing the
popularity of the website as the number of hits increases. While click-fraud
may directly affect the ranks produced by direct counting schemes (e.g., those
of Alexa), its effect on our ranks is more limited. For one, only those clicks
originating from hosts served by resolvers in our randomly chosen sample, D,
may influence the ranking. More importantly, to influence the outcome of the
probing process, these clicks need to persist over a long period of time in order
to significantly change the average refresh rate.

Direct manipulation attacks. In light of our technique, one might attempt to
inflate the popularity of a website by polluting the caches of the resolvers that
we probe. Cache pollution is possible if the resolver allows recursive external
DNS queries. In this case, the attacker may send a sequence of synchronized
DNS queries for the service name of interest—spaced by the TT L—so that the
DNS entry is refreshed immediately after its expiry. Consequently, our probing
process will falsely yield a high refresh rate for the target resolver. However, for
this attack to be effective, the attacker must target enough resolvers from D to
influence the final website popularity rank. To mitigate such attacks, our sample
of resolvers is selected at random, by region, and refreshed periodically, thereby
making pollution attacks more difficult (though not infeasible) to perpetrate.

4.2 Estimating Botnet Size

Another compelling use of our technique is that of estimating the size of
a botnet. Botnets are networks of compromised hosts, called bots, under the
control of human operators, referred to as botmasters. Botnets are primarily
used for various types of malicious activities, including denial of service attacks,
click fraud [12], software piracy, and spam. While botnets have only recently
attracted the attention of the research community, several works on the topic
have already emerged ([10, 11,19, 28, 31]). In particular, several studies have at-
tempted to address the specific question of botnet size and the subtleties involved
in size estimates. For example, Dagon et al. used DNS redirection to divert bot
connections to a darknet in order to directly count the number of bots [11]. While
effective, their approach requires coordination with DNS authorities in order to
perform the redirection. Other studies used botnet infiltration to directly count
the number of bot ID’s observed on the botnet command and control channel [17,
31]. Unfortunately, botmasters are increasingly suppressing bot information on
the command and control channel, thereby hindering the effectiveness of these
techniques.

As a remedy, we proposed [31] a technique for estimating botnet sizes using
DNS cache probing. Similar to this work, botnet sizes were measured by probing
the caches of a large set of DNS resolvers for the DNS name of the botnet server.
The total number of DNS resolvers returning a cache hit for the name in question
provided a botnet’s so-called “DNS footprint”. However, this footprint is, at best,
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a lower bound of the true infection size because that approach does not provide
any indication on how many infected bots reside behind a domain where a hit
was returned.

.
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Fig. 5. CDF of Individual bot join inter-arrival times (based on data from 470 botnets).

In what follows, we illustrate how one can use the approach suggested in this
paper to provide a better estimate of a botnet’s population. To do so, we first
examine the distribution of bot request inter-arrivals. We derive this distribution
by studying the bot® join times extracted from a dataset containing the activity
logs of 470 infiltrated IRC botnets [31]. Figure 5 shows the distribution of bot
join inter-arrival times over a period of more than 9 months. As the graph shows,
bot inter-arrival times can be approximated by an exponential distribution with
an average rate of A, = 0.156 (i.e., an average of one connection every 6.4 hours).

Given knowledge of the distribution of bot request inter-arrivals, we now
apply our estimation technique. In order to have a baseline for validation, we only
choose botnets whose member counts are sufficiently large and can be calculated
directly from the IRC traces. This yields two botnets, with member counts of
12,700 and 10,690 respectively. As our target resolvers, we use the large list
of 768,000 cooperative resolvers from Section 4.1. Following the methodology
from Section 2, for each resolver, we send a sequence of cache probes spaced by
the TTL for the botnet server name in question then we estimate the botnet
population by calculating the sum of the estimated number of bots n served by

5 In our analysis we assume that a bot IP address is a sufficient measure of bot
uniqueness. To account for the effect of DHCP we only consider join inter-arrivals
that are < 24 hours. We also exclude bot joins resulting from clone attacks as well
as any join with no associated quit message.
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each resolver. Table 3 summarizes the parameters of the probing experiment and
the results of our estimation.

| | Botnet I | Botnet 11 |
TTL 15 mins 30 mins

Client mean query rate (\) 0.156 query/hour 0.156 query/hour
Cache probing rate 1 query every 15 mins.|1 query every 30 mins.
Number of DNS resolvers 768,000 768,000
Number of samples (R) per resolver 100 100
Population size (from IRC logs) 12,700 10,690
Measured DNS footprint 1,700 1,452
Estimated population 8,400 6,350

Table 3. DNS cache probing experiment, estimating botnet sizes.

The probing experiment shows that the botnets in question have DNS foot-
prints [31] of 1,700 and 1,452, respectively. For each resolver in the footprint, we
extracted all refresh times for both botnet server names. We then applied our
estimator from Section 2 to derive the size of the infected population of each
botnet. Our estimation results show that the sizes of the infected population
were about 8,500 and 6,350 bots, respectively. Clearly, the population estimates
derived from our analysis are much closer to the actual population sizes com-
pared to the more coarse-grained DNS footprints — that imply sizes of only
1,700 and 1,452 bots, respectively. That is equivalent to more than a three fold
improvement in accuracy over the DNS footprint estimate.

The observant reader would note that the error margin from the actual bot
count is larger than that in Section 3. The degradation in accuracy is due to
the fact that our list of target DNS resolvers only covers a subset of all DNS
resolvers in the Internet. Hence, a more comprehensive list of servers would
enhance the estimation accuracy. Additionally, botnet size instability (be it due
to bot migration or churn [31]) also contributes to this effect. Nonetheless, we
believe our result shows the utility of this estimation technique in assessing a
botnet’s size when it is not possible to make such measurements directly even
after the botnet has been infiltrated.

5 Practical Considerations

Notice that our probing mechanism requires cooperative resolvers that re-
spond correctly to external cache probes. The sanitization step in Section 4.1
showed that roughly half of the resolvers in our list did not respond to exter-
nal cache queries. While this is not a hindrance for some applications (e.g., for
web-metering we only require a small sample of resolvers), having a large set of
resolvers will improve the accuracy of other applications (e.g., botnet size esti-
mation). An alternative probing model that can overcome this limitation would
be to deploy a set of distributed DNS probing sensors inside the boundaries of
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large networks (e.g., within the boundaries of ISPs). The internal sensors will
be able to query the caches of their respective resolvers and give an estimate for
the client density in the same network.

Another noteworthy point of discussion is the practical impact of the TTL
interval. Our analysis shows that the change in the TT'L interval length does not
significantly affect the accuracy of our estimator. However, in practice, the value
of the T'T'L has an impact on the estimation speed and the overhead associated
with the probing process. Recall that we probe each DNS name at a rate of
one query per TTL. For large TTL values (e.g., on the order of one day), our
probing scheme will require a long time to collect enough samples in order to
reliably estimate A. Luckily, major websites mostly use short T7T L values for
the purposes of load balancing [35]. Figure 6 illustrates the distribution of the
TTL length for the top 100 websites in Alexa’s ranking. As the graph shows,
the majority of the TTLs are relatively short (about 85% of the TTLs are less
than one hour). Likewise, our ealier work showed that a significant portion of
the DNS names used by botmasters have short TTLs [31]. In many cases, these
DNS names are served by dynamic DNS providers that intentionally use shorter
TTLs to accommodate for frequent IP address changes of the subscribing servers.
Finally, we note that one way to accommodate for large TTLs is to compute a
running estimate of A and keep updating the estimate as more samples are
collected.

0.9

0.6 J
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0.4
0.3
0.2
0.1

CDF

0 2 4 6 8 10
TTL (hours)

Fig. 6. CDF of the TTL intervals for the top 100 websites according to Alexa. The
majority of websites use short TTLs with about 85% of the TTLs being less than one
hour.
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6 Other Related Work

The general problem of inferring the size of various client populations on the
Internet has received considerable attention over the last few years. For the most
part, the proposed techniques share the characteristic of attempting to estimate
the size of a population in the absence of information from within the networks’
edge. Generally speaking, these techniques differ in the inference mechanisms
they use to derive the different population estimates. Additionally, each scheme
is normally tailored to meet a specific goal for a specific context.

For example, Bellovin proposed a technique for estimating the number of
hosts behind a Network Address Translation (NAT) device [4]. His technique is
based on observing the evolution of the value of the identity field in the outgoing
IP datagrams. More recently, Casado et al. used the number of scans received
by strategically placed darknets to infer the percentage of Code Red Il-infected
hosts that resided behind NAT devices [8]. Additionally, Casado and Friedman
proposed techniques based on active web content to estimate the number of
hosts located behind a large number of NAT devices and web proxy servers [7].
Our work is different both in scope and technique. In our case, the goal is to
estimate the density of clients accessing the same Internet service using DNS
cache probing.

The strength of our approach is demonstrated by its utility for a wide range
of applications, two of which are presented in Section 4. The web-metering prob-
lem has been the subject of a number of earlier research proposals (e.g., [6, 16,
25]). At a high level, these schemes use cryptographic primitives to design web-
metering schemes that are resilient to click inflation attacks (e.g., [1,2,12]).
These approaches, however, are resource intensive and require sophisticated key
agreement and key distribution schemes. By contrast, our scheme is relatively
straightforward and requires no client side deployment.

Population estimation techniques have also been used to estimate the size of
infections caused by malware spreading. For example, Dagon et al. used DNS
redirection to measure the number of hosts connecting to IRC servers associated
with botnet C&C channels [11]. More recently, we used both direct and indi-
rect methods to better understand the spread of botnets in the wild, and how to
characterize their behavior [30, 31]. While these later works also use DNS probes,
they are different from the approach in this paper in an important way: specif-
ically, while our earlier work provides a course-grain estimate, we refine that
approach to provide a technique for estimating (with reasonable approximation
error) the number of infected hosts within these domains.

7 Conclusion

In this paper, we provide a new technique for estimating an important class
of Internet demographics, specifically, the client population density of a given
service. We demonstrate the utility of our approach through two applications
that we argue are of much interest to the security and network community at
large: verifying the popularity rank of a website and estimating the size of a
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botnet infection. Compared to earlier techniques, our popularity ranking scheme
is easier to deploy, offers increased resilience to fraudulent manipulation, and is
less intrusive as it does not reveal user-specific traits to the ranking service. In the
second case, we provide a refined technique for estimating botnet size. We argue
that since the issue of size plays an important role in assessing the monetary cost
and damage caused by botnets, improvements in accuracy in estimating their size
is of immediate benefit. In short, our approach yields a three-fold improvement
in accuracy compared to the best previously known technique. We believe these
results aptly demonstrate the utility of our approach.
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Appendices

A Deriving the required number of refresh events (R)

It is known that the average rate A\ measured from multiple independent
samples is normally distributed around the actual mean:

= (r3)- 5)

For an acceptable estimation error e and a confidence z,/o the number of
samples R required is [33]:

e (20’ o

where o is the standard deviation of the measured mean rate, A, which can
be determined from a smaller pilot sample of DNS refresh events.



