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Abstract
Cloud-based Web services are shifting to the event-driven,
scripting language-based programming model to achieve
productivity, flexibility, and scalability. Implementations of
this model, however, generally suffer from long tail laten-
cies, which we measure using Node.js as a case study. Unlike
in traditional thread-based systems, reducing long tails is
difficult in event-driven systems due to their inherent asyn-
chronous programming model. We propose a framework to
identify and optimize tail latency sources in scripted event-
driven Web services. We introduce profiling that allows us
to gain deep insights into not only how asynchronous event-
driven execution impacts application tail latency but also
how the managed runtime system overhead exacerbates the
tail latency issue further. Using the profiling framework, we
propose an event-driven execution runtime design that or-
chestrates the hardware’s boosting capabilities to reduce tail
latency. We achieve higher tail latency reductions with lower
energy overhead than prior techniques that are unaware of
the underlying event-driven program execution model. The
lessons we derive from Node.js apply to other event-driven
services based on scripting language frameworks.
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1 Introduction
Cloud-based Web services are undergoing a transformation
toward server-side scripting in response to its promises of
increased productivity, flexibility, and scalability. Companies
such as PayPal, eBay, GoDaddy, and LinkedIn have publicly
announced their use of asynchronous event-driven scripting
frameworks, such as Node.js, as part of the backends for their
Web applications [3, 4, 7]. The use of the asynchronous event-
driven execution model coupled with the managed scripting
language leads to better application scalability and higher
throughput, developer productivity, and code portability,
which are essential for Web-scale development [41].

A key challenge facing Web-scale deployment is long tail
latency, and asynchronous event-driven Web services are
no exception. Long tail latency is often the single most im-
portant reason for poor user experience in large scale de-
ployments [15]. We use the popular Node.js framework for
our study of tail latency in managed event-driven systems.
Node.js is a JavaScript-based, event-driven framework for
developing responsive, scalable Web applications. We find
that tail latency for requests at the 99.9th percentile is about
10× longer than those at the 50th percentile, indicating that
serious tail latency issues exist in event-driven servers.

https://doi.org/10.1145/3313808.3313823
https://doi.org/10.1145/3313808.3313823
https://doi.org/10.1145/3313808.3313823
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No prior work addresses the tail latency problem from the
event-driven programming paradigm. Prior work addresses
server-side tail latency by improving request-level paral-
lelism in request-per-thread Web services [16, 17, 22, 43] or
by relying on the implicit thread-based programming model
[19, 25, 26]. Other work tends to treat the application and its
underlying runtime as a black box, focusing on system-level
implications or network implications [10, 15, 27, 30, 44].
Asynchronous event-driven Web services pose a unique

challenge for identifying tail latency. Their event-driven
nature makes it difficult to reconstruct a request’s latency
and identify the performance bottleneck because a request’s
lifetime is split into three components—I/O, event callback
execution, and event queuing. The three components of all re-
quests are interleaved in a single thread, posing a challenge in
piecing together these independently operating components
into a single request’s latency. In contrast, in a conventional
thread-per-request server, each request is assigned a unique
thread, which processes each request sequentially and inde-
pendently of all others. As such, queuing, event execution,
and I/O time can be measured more directly [29].
Moreover, in recent years, asynchronous event-driven

Web services have been increasingly developed using man-
aged runtime frameworks. Managed runtimes suffer from
several well known, sometimes non-deterministic, overheads,
such as inline caching, garbage collection, and code cache
management [38]. While there are studies focused on the
performance implications of managed-language runtimes in
general, how tail latency is affected by the binding of event-
driven execution and managed runtimes remains unknown.

In this paper, we present the first solution to mitigate tail
latency in asynchronous event-driven scripting frameworks,
using the production-grade Node.js event-driven scripting
framework. We focus not only on reducing tail latency but
on doing so at minimal energy cost, which is closely aligned
with the total cost of ownership in data centers [11]. We
demonstrate that only by understanding the underlying
event-driven model, and leveraging its execution behavior, is
it possible to achieve significant tail reductions in managed
event-driven systems with little energy cost.
The insight behind our approach to mitigate tail latency

in asynchronous event-driven scripting is to view the pro-
cessing of a request in event-driven servers as a graph where
each node corresponds to a dynamic instance of an event
and each edge represents the dependency between events.
We refer to the graph as the Event Dependency Graph (EDG).
The critical path of an EDG corresponds to the latency of a
request. By tracking vital information of each event, such as
I/O time, event queue delay, and execution latency, the EDG
lets us construct the critical path for request processing, thus
letting us attribute tail latency to fine-grained components.

We use the EDG profiling framework to show that Node.js
tail requests are bounded by CPU performance, which is
largely dominated by garbage collection and dynamically
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Figure 1. Event-driven execution overlaps compute and I/O exe-
cution. While waiting for I/O to complete for a request, the event
loop is free to process events from unrelated requests. In traditional
thread-per-request servers, each request is assigned a unique thread
wherein a request’s queue, execution, and I/O time can be directly
measured. However, queue time is implicit in event-driven servers.

generated native code. To address these tail latency sources,
we first propose GC-Boost, which accelerates GC execution
via frequency and voltage boosting. GC-Boost reduces tail la-
tency by as much as 19.1% with negligible energy overheads.

We also show an orthogonal technique called Queue Boost
that operates by boosting event callback execution in the
event queue. In combination, GC-Boost and Queue Boost
outperform state-of-the-art solutions [19, 25] by achieving
higher tail reduction with lower energy overhead, providing
Web service operators a much wider trade-off space between
tail reduction and energy overhead. GC-Boost, Queue Boost,
and their combination also pushes the Pareto optimal frontier
of tail latency towards a new level unmatched by prior work.

In summary, we make three major contributions:
• We present the insight that understanding the under-
lying programming model is important to effectively
pinpoint and optimize the sources of tail latency.

• We propose the Event Dependency Graph (EDG) as a
general representation of request processing in event-
driven, managed language-based applications, which
we use to design a tail latency optimization framework.

• Using the EDG, we show that the major bottleneck of
tail latency in Node.js is CPU processing, especially
processing that involves the JavaScript garbage collec-
tor and the runtime handling of the event queue.

• We propose, design, and evaluate two event-based opti-
mizations, GC-Boost and Queue Boost, that reduce tail
latency efficiently with little energy overhead, both of-
fering significant improvements over prior approaches
that are agnostic to the event-driven model.

The paper is organized as follows. Section 2 provides brief
background on the event-driven programming model and
its advantages over the thread-per-request model. Section 3
gives an overview of the baselineNode.js setup and the tail op-
timization system we propose and introduces the high-level
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Table 1. Summary of event-driven server-side Node.js benchmarks studied in this paper.

Benchmark I/O Target #Requests Description

Etherpad Lite [2] N/A 20K Real-time collaborative word processor, similar to Google Docs services. Simulated users
create documents, edit document text, and delete documents.

Todo [8] Redis 40K Online task management tool, similar to the Google Tasks service. Users create new tasks,
update tasks, and permanently remove outdated tasks.

Lighter [6] disk 40K Fast, simple blogging engine. Users request a variety of resources, such as web pages
(HTML/CSS/JavaScript files), images, and font files.

Let’s Chat [5] MongoDB 10K Self-hosted online chat application, similar to Slack service. Users create chat rooms,
send/receive messages posted in the same room, and leave rooms.

Client Manager [1] MongoDB 40K Online address book for storing client contacts and other information. Users add new
clients, update client information, and remove clients.

concepts for the sections that follow. Section 4 presents the
design and implementation of our EDG-based latency anal-
ysis framework. Section 5 applies our technique to Node.js
workloads to pinpoint the sources of tail latency. Section 6 in-
troduces our optimizations. Section 7 presents an evaluation
of the performance and energy overheads for our system
and compares our techniques against alternatives. Section 8
discusses prior work and Section 9 concludes the paper.

2 Background and Motivation
Server applications have traditionally employed a “thread-
per-request” execution model where each incoming user
request is dispatched to a different OS thread to increase
system concurrency. Instead of dedicating a thread to each
request, the event-driven programming model translates in-
coming requests into events, each associated with a callback.
Event callbacks are pushed into a FIFO event queue pro-
cessed by a single-threaded event loop. Each event callback
execution might generate further events, which are in turn
pushed into the queue where they wait to be processed.
Figure 1 illustrates the case where the server is handling

three requests concurrently. Each request execution can be
viewed as a sequence of different event executions that are
interleaved with asynchronous, non-blocking I/O operations.
Once event A from request 1 (Req1) finishes execution and
starts an I/O operation, the event loop does not wait idly for
the I/O to complete; rather, it shifts its focus to executing
event C from request 2 (Req2). When the I/O operation of
request 1 completes and returns to the CPU, it triggers an-
other event, event B, which is pushed onto the event queue
and will be executed when it reaches the head of the queue.
The event-driven execution model allows the system to

maximize the overlap between CPU computation and I/O
operations. Therefore, it improves the utility of threads since
the threads are not blocked, idling on I/O operations. As a
consequence, the overhead of thread management dimin-
ishes in an event-driven system compared to a thread-per-
request system. Thus, event-driven servers generally achieve
greater scalability than thread-per-request ones [41, 42].

The challenge in reducing tail latency in the event-driven
execution model is identifying the sources of tail latencies.
Deriving tail latency bottlenecks is challenging for two rea-
sons. First, a request is broken into separate independently
operating events, which will be interleaved with events in
other requests. Second, the end-to-end request latency can
stem from any of the three asynchronous components: I/O,
queuing, and event execution. Thus, determining a request’s
latency in event-driven servers requires us to reconstruct the
execution time of portions of the request across all three in-
dependently operating components within one main thread.

3 System Overview
We introduce an optimization framework to identify the
source of tail latency in event-driven Web services and guide
optimizations to mitigate tail bottlenecks and thus reduce tail
latency. We use Node.js as the event-driven framework, since
it is widely adopted, and build our optimizations into it. We
present the details of our experimental setup (Section 3.1) and
then give an overview of how the optimization framework
operates and build it into Node.js (Section 3.2). Subsequent
sections provide additional details for each of the stages.

3.1 Node.js Baseline

We use industry-strength event-driven server applications
from the NodeBench application suite [46, 47], as well as
new applications that encapsulate additional server func-
tionalities. Table 1 describes the applications we study. The
applications cover various domains and exercise different
types of I/O including file, NoSQL database service (Mon-
goDB), and in-memory key-value store (Redis). Different I/O
services trigger different event execution behaviors, and in
doing so they cause variations in response latencies.

We use wrk2, an HTTP load testing tool featuring param-
eter tuning and dynamic request generation [39]. To real-
istically mimic users interacting with each application, we
use 4 to 10 different types of HTTP requests (depending on
each application’s functionalities) and generate over 10,000
requests per application. We discard warm-up behavior.
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Figure 2. Cumulative distribution function of server-side latencies (milliseconds). In all five workloads, there is a prominent tail.

We deploy the applications on a high-performance quad-
core/eight-thread Intel Core i7 processor with 32 GB DRAM
and a 240 GB SSD to deliver high I/O performance. Our work
is more affected by the clock frequency of the core(s) than
the number of cores, since Node.js is predominantly a single-
threaded application. We set the processor’s frequency to
2.6 GHz to prevent tails caused by “floating” frequencies [30].
We simulate our clients and host our database services on
separate server-class machines connected through 1 Gbps
intranet, isolating event-driven compute from I/O services.
Figure 2 shows the server-side latency cumulative distri-

bution functions (CDFs) for each application. Tail latency is
a serious issue in each. The CDF curves rise very quickly ini-
tially, but as the curves approach the top, the slopes diminish
and the curves become long, nearly flat lines, indicating a
significant difference between the longest latencies and the
vast majority. Any point in each graph < x ,y > reads as
follows: y% of the total requests have a latency below x ms,
i.e., theyth percentile tail is x ms. We label three points: 50th ,
90th , and 99.9th percentile. On average, 99.9th percentile
request latency is 9.1× longer than 50th percentile latency.

3.2 Node.js Tail Latency Optimization Framework

Figure 3 shows an overview of the optimization system. It
consists of three stages: 1) constructing the event dependency
graph (EDG), which reveals the critical path of a tail request;
2) leveraging the EDG to identify the system components
that contribute the most to the tail latency; and 3) improving
the performance of the bottleneck in order to reduce tail
latency. The first two stages are performed in non-user facing
systems as EDG construction incurs a small overhead, which
we discuss later. The third stage improvements do not rely
on real-time EDG construction and are applied to all servers.

Tail Request Reconstruction This stage (Section 4)
identifies the critical path of any incoming request by con-
structing an event-dependency graph (EDG). Each node in an
EDG represents a particular event in a request, and an edge
in the EDG represents the causal relationship between two
events. Each node is also annotated with timing information.

Tail Latency Bottleneck Analysis The constructed
EDG from the previous stage is fed into this stage (Section 5),

which identifies the event critical path of a request and gen-
erates a latency profile. The latency profile quantitatively
attributes the request latency to the major components in
event-driven execution, including I/O, queuing, and event
handler execution. Event handler time could further be de-
composed into various components such as native code exe-
cution, just-in-time compilation, garbage collection, etc., all
of which could potentially be tail latency bottlenecks.

Tail Latency Optimization The generated profile is
sent to the backend (Section 6 and 7) to mitigate and optimize
the tail sources. Among many optimization alternatives, we
choose to focus on leveraging the turbo-boosting capability
of server processors. Turbo Boost is a widely-used technique
to increase performance and it has been extensively used
to reduce tail latency in traditional servers [19, 25]. Blindly
increasing processor frequency, however, comes at a high
energy penalty. Our optimizer leverages the tail latency pro-
file generated from the analysis stage to intelligently apply
turbo boosting only to lucrative application phases, resulting
in significant tail reduction with almost negligible overhead.

4 Tail Latency Reconstruction
We present a direct, precise, and fine-grained way to pin-
point sources of tail latency in event-driven systems. We first
introduce a breakdown model for request latency in event-
driven servers to provide a guideline for attributing sources
of tail latency (Section 4.1). We then describe a new runtime
analysis technique called Event Dependency Analysis, which
is based on dynamically generated EDGs for performing la-
tency analysis that we implemented directly in Node.js so
that applications require no code changes (Section 4.2). We
show that the profiling overhead is negligible (Section 4.3).
Finally, we validate our EDG analysis approach (Section 4.4).

4.1 Request Latency Breakdown

Figure 4 intuitively shows the hierarchy of the latency com-
ponents captured by the analytical model. A request’s latency
is broken down into its I/O, Queue, and Execution time com-
ponents (as first explained in Section 2). The queuing and
execution times are further broken down by the model to pro-
vide application-level insights, specifically in a manner that
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the components that are modified in our Node.js-based implementation to construct the EDG to identify request bottlenecks. The
optimization stage uses the EDG breakdown to dynamically determine what optimization(s) to perform on individual requests.

can provide insights into the managed language components.
We now explain the latency model details.

A request in event-driven servers is a sequence of events.
Therefore, request latency is the sum of the latencies of indi-
vidual events that are on a request’s critical path. Equation 1
expresses the relationship. R denotes a particular request,
ECP (R) denotes the set of events that are on the critical path
of R, and T (ei ) denotes the processing latency of ei .

Latency (R) = ΣN−1
i=1 T (ei ) , ei ∈ ECP (R) (1)

The event processing latency T (ei ) can be further decom-
posed into three major system-level components—I/O, sched-
uling, and execution—expressed as follows:

T (ei ) = IO (ei ) +Queue (ei ) + Exec (ei ) (2)

The I/O latency refers to the latency of the I/O operation
leading ei . After an I/O operation is fulfilled and comes back
to the CPU, it pushes ei into the event queue. The queuing la-
tency then refers to the time ei has to wait in the event queue
before being scheduled for execution. After an event gets
scheduled (i.e., reaches the head of the queue), the execution
latency refers to the event callback execution time.

In order to gain application-level insights on sources of tail
latencies, we further dissect the event execution latency into
four major finer-grained components: native code (Native),
just-in-time compilation (JIT), garbage collection (GC), and
inline cache miss handling (IC) (Equation 3). We focus on
these four components because they have been shown to be
responsible for the majority of execution cycles in JavaScript-
based applications [9, 34]. The scheduling latency is implic-
itly expressed in the four categories, as the scheduling time is
equivalent to the execution time of all the preceding events.

Exec (e) = Native (e) + J IT (e) +GC (e) + IC (e) (3)

Request
Latency

Queue ExecI/O

NativeGC IC JIT

System-level
breakdown

Application-level
breakdown

Figure 4. The hierarchical latency breakdown that allows us to
precisely identify the bottleneck in event-driven applications.

Equations 1, 2, and 3 together form a model for request
latency that is sufficiently fine-grained to capture the system-
and application-level components and explain tail requests.

4.2 Event Critical Path

One of the challenges of using the EDG is that one parent
event may spawn multiple events simultaneously but only
events on the critical path can influence the end-to-end la-
tency. To use the analytical model for analyzing tail latencies,
we must identify the event critical path ECP (R), a set con-
taining all events on the critical path between a requestR and
its corresponding response. The ECP (R) encodes the latency
of a given request. The key to tracking the event critical path
is to identify the dependencies between events, from which
we construct an event dependency graph (EDG) where each
node in the graph corresponds to an event and each edge
represents a dependency between two events. With the EDG,
we can readily identify the event critical path by following
the path from the request to the response.

DefinitionWe define event dependency as a happens-be-
fore relationship, denoted ≺. We use Ei ≺ Ej to indicate that
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Ej depends on Ei . There are three types of happens-before
relationships in Node.js applications:

• If event Ei is the first event triggered by the request
R, then we have Ei ≺ Ej , where Ej denotes any other
subsequent event. We call the first event triggered by
an incoming request a source event.

• If the callback of event Ei registers an event Ej , i.e., Ei
issues an I/O operation which eventually leads to Ej ,
then we have Ei ≺ Ej .

• If event Ei is the event that sends a response corre-
sponding to the requestR, thenwe have Ej ≺ Ei , where
Ej denotes any preceding event. We call the event that
issues the response a sink event.

EventDependencyGraph (EDG)ConstructionTable 2
lists the events that we instrument to correctly construct
the EDG. We consider I/O events related to file and network
operations (including both TCP and UDP sockets and DNS
resolution events) and other sources of asynchronous execu-
tion. Other events also include inter-process communication
events, timers, etc. Generally speaking, one must instrument
the modules that support asynchronous execution.
The EDG can be constructed only at runtime due to I/O

operation reordering. According to the event dependency
definition, recording event dependency is equivalent to track-
ing the event callback registration. We make the observation
that whenever a new event is registered, a new JavaScript
function object will be created in order to be passed as the
callback function. Leveraging this observation, we intercept
all the JavaScript function object creation and invocation
sites inside the JavaScript virtual machine. Whenever a func-
tion object is created, we record the current event’s ID in a
shadow field of the function object. Whenever the function
is invoked, our instrumentation compares the current event
ID with the shadow event ID logged within the function
object. When the two event IDs do not match, we discover a
new event dependency. We record the event dependency in
a hash map and dump it to disk once a minute.

EventDataBesides the event dependencies, we also record
important timestamps for each event that help track the
event critical path: register time, ready time, begin time, and
end time. Register time refers to the time an event is reg-
istered, which is also when its associated I/O operations
are issued. Ready time refers to the time when an event is
ready, i.e., its preceding I/O operation finishes and the event
is pushed into the event queue. Begin and end times refer
to the time an event callback starts and finishes execution,
respectively. According to the timestamps, the components
in Equation 2 can be derived as follows:

IO (e) = Ready − Reдister

Sched (e) = Beдin − Ready

Exec (e) = End − Beдin

Table 2. Description of common events in Node.js.

Event Type Name Description

File System
readFile file read
readDirectory directory read
stat file status (e.g., permission)

Network accept new TCP connection accepted
read TCP/UDP packet received

IPC signal OS signal notified

Timer TimeOut timer expired

Miscellaneous
source the first event in a request
sink the event that sends a response
idle user-defined low-priority events

Logging timestamps is mostly trivial except for the ready
time, which is problematic because I/O events are first ob-
served by the OS kernel and only later become visible to the
user space when the Node.js runtime polls it (via epoll in a
POSIX system). Node.js only polls ready events when all the
current events in the event queue finish. As such, there is a
difference between when an event is truly ready (in kernel
space) and when it becomes visible to the Node.js runtime
(in user space). In practice, this difference can be large.

To track an event’s ready time, a helper thread period-
ically polls at a much finer granularity than Node.js’s de-
fault polling mechanism. The helper thread introduces only
negligible overhead on both the average and tail latency.
This is because the polling thread uses the common Linux
epoll() API to check for events. When there are no events,
the polling thread will be inactive instead of idly spinning.
As a result, the polling overhead will only be proportional to
the number of events. Also, Node.js applications are mostly
single-threaded (backed by a few worker threads), and there
are abundant CPU resources reserved for the helper thread.

4.3 Profiling Overhead

EDG construction has a performance penalty. Note, however,
that constructing the EDG is performed only at the initial
warm-up stage of a long-running Web service, similar to JIT
compilation. Once the profiling results are gathered, profiling
is not triggered for the rest of application execution. Thus,
profiling overhead has very little impact on performance.
There are two overheads: event instrumentation and the

polling thread. Event instrumentation consists of recording
event timestamps and tracking event dependencies, both of
which are done transparently inside the JavaScript VM with-
out application involvement. Table 3 shows the overheard
for the individual applications. Overall, the average overhead
is 6.69% for non-tail requests and 6.77% for tail requests.

In practical deployment, we expect that the EDG construc-
tion and analysis are performed on a dedicated systemwhere
the impact on service performance is not evident (i.e., the
system is not servicing real requests, but it is exposed to the
incoming queries). We provide a switch to easily turn off
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Table 3. EDG profiling overhead. The overhead is calculated by
comparing the average server-side latency between when EDG
is enabled and that when the EDG is disabled. All requests are
classified into tail and non-tail when EDG is disabled.

Application Non-tail Tail

Etherpad Lite 3.34% 3.53%
Todo 8.31% 6.9%
Lighter 4.3% 4.6%
Let’s Chat 8.45% 8.1%
Client Manager 9.05% 10.72%

instrumentation and polling threads should a user choose to
use EDG profiling periodically without restarting the Node.js
server. Because it is unlikely to profile for all the possible user
requests ahead of time, we expect that the system adminis-
trator will periodically perform profiling online to adjust the
EDG profile to realistic user requests in time.
The requests we use to profile and construct the EDG in

the system are independent of the requests we use in evalu-
ation. In our analysis, we found that the profile information
was sufficient to construct the EDG fully. We re-profile in
the event the profiled requests triggers an incomplete EDG.

4.4 Validation

It is important to validate that the root-cause analysis ap-
proach we propose is indeed correct. However, it is difficult
to directly validate the approach because that would entail
measurements that are absolutely non-intrusive. Instead, we
report our best-effort validation by experimentally proving
two propositions that should hold true if our root-cause anal-
ysis framework is performing as expected: 1) I/O time is
independent of the processor frequency; 2) total server-side
latency decreases as we increase processor frequency, and
the decreasing slope depends on the I/O intensity.

We validate the first proposition by reporting the I/O times
of all benchmarked applications as the processor frequency
scales from 2.6 GHz to 4.0 GHz. The I/O times are aver-
aged across all requests, and include both the tail and non-
tail requests for each application. Figure 5a presents the re-
sults with the error bars representing one standard deviation
across 10 runs. The I/O time for all of the five applications is
steady across the different frequency settings. Furthermore,
the small and steady standard deviations across the runs
proves that the results are statistically significant.

We also validate the second proposition by reporting the
total server-side latencies as the processor frequency scales
from 2.6 GHz to 4.0 GHz. The results are normalized to the
latency at 2.6 GHz for each application and are shown in Fig-
ure 5b. We make two observations. First, overall the server-
side latency decreases as the frequency increases. Second,
the applications have different decreasing slopes because the
applications have varying levels of I/O intensity, matching
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Figure 5. Validation experiments. All reported data is averaged
over all requests, including both non-tail and tail requests.

our intuition. For example, Etherpad Lite has the highest de-
creasing ratio. The application does not trigger any external
I/O as we show via a detailed I/O time breakdown later.

5 Tail Latency Analysis
We use the EDG framework to dissect the request latencies
to determine the critical bottlenecks in event-driven server-
side applications. We dissect the bottlenecks at the system-
level (Section 5.1) and the application-level (Section 5.2),
progressively going deeper into the bottleneck sources as
per Figure 4. Finally, we show that our analysis results hold
true for scale-out Node.js workloads as well (Section 5.3).

5.1 System-level Tail Latency Analysis

We remind the reader that system-level request latency con-
sists of three components: I/O, queuing, and event execution.
Figure 6 shows the latency breakdown of the benchmarked
applications as stacked bar plots. Each bar corresponds to a
particular request type (i.e., HTTP request URL) within an
application. Bars in the left half show the average latency
for non-tail requests, and bars in the right half show the
average latency when requests are in the tail. Though there
are few request URLs per application, there are many dy-
namic instances (i.e., clients) of a request type throughout
an experiment. Each bar shows the average latency for all
instances of a request type over 10 runs. For comparison,
we show the results of both non-tail requests in the left half
and tail requests in the right half of each figure. The CPU
frequency is fixed at 2.6 GHz throughout this experiment.
We find that tail latencies of event-driven applications

are predominantly caused by event callback execution and
the queuing overhead rather than I/O time. Across all of the
applications, the average queuing time contributes about
45.8% of the tail latency and the average callback execution
time contributes 37.2% of the tail latency. The significance of
queuing and callback execution time indicates that tail laten-
cies in event-driven applications are bottlenecked primarily
by CPU computations instead of long latency I/O operations.
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Figure 6. Latency breakdown. Each bar represents a particular
request type (i.e., HTTP URL). Bars in the left half show the average
latency for non-tail requests, and bars in the right half show the
average latency when requests are deemed as long latency requests.

Table 4. Application-level latency breakdown. The average just-in-
time (JIT) compilation time is effectively zero because JIT happens
infrequently when the applications are in steady states.

Non-tail Tail
Application IC GC JIT Native IC GC JIT Native
Etherpad Lite 0.3% 1.9% 0% 97.8% 7.0% 41.9% 0% 51.1%
Todo 1.8% 0.5% 0% 97.7% 0.6% 31.0% 0% 68.4%
Lighter 4.9% 4.7% 0% 90.4% 4.4% 45.3% 0% 50.3%
Let’s Chat 2.7% 3.9% 0% 93.4% 3.6% 48.4% 0% 48.0%
Client Manager 3.2% 3.1% 0% 93.7% 3.9% 70.3% 0% 25.8%

Conversely, I/O time only contributes about 21.2% of tail
latency for applications that involve I/O operations (i.e., ex-
cluding Etherpad-Lite which has no I/O operations). In ex-
treme cases such as Todo, the I/O time can amount to almost
half (45.2%) of the tail. To remedy the I/O-induced tail latency
issues, one could optimize the network stack or database op-
erations. Though we leave such optimizations to future work,
it is the EDG that let us identify the bottleneck.

5.2 Application-Level Tail Latency Analysis

The EDG allows us to go a level deeper, as shown in Fig-
ure 4, and break down the queuing and execution time into
four application-level components, including the JIT, GC, IC
miss handling, and native code, all of which are potentially
major sources of runtime overhead contributing to tails (as
discussed in Section 4.1). Table 4 shows the breakdown for
each application. The table shows the data across all of the
components during the non-tail and the tail requests.

Wemake two key observations. First, the results show that
the JIT and IC miss handling, the two commonly optimized
components in any managed runtime system, are not the
most lucrative optimization targets for reducing tail latency
in Node.js applications. Tail requests spend minimal time
(up to 7%) in the JIT compiler, indicating that the compila-
tion of JavaScript code is not a major cause of tail latency.
Most of the code is compiled early on, and we are focused
on the steady state application behavior. Therefore, we can
effectively assume that the code executed in tail requests
is mostly compiled “ahead of time.” The same conclusion
also applies to IC miss handling. Although the performance
penalty of missing the inline cache in JavaScript programs
is high, tail requests do not suffer from inline cache misses.

Second, native code execution and garbage collection con-
stitute about 48.7% and 47.4% of the processor time on av-
erage, respectively. Native code contributes heavily to the
execution time because it contains the functionality of an ap-
plication. Garbage collection, on the other hand, is an artifact
of the event-driven framework using JavaScript.

5.3 Scale-Out Analysis With Node.js Cluster

We also applied our profiling technique to Node.js appli-
cations in cluster mode to characterize the tail latency of
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Table 5. Tail latency breakdown on Node.js clusters, showing the
percentage of I/O, IC, GC, JIT, and native code time in tail requests
when Node.js servers are executed in cluster mode.

Application I/O IC GC JIT Native

Etherpad Lite 0% 0.4% 66.9% 0% 28.7%
Todo 10.9% 1.4% 32.2% 0% 55.5%
Lighter 2.4% 3.3% 56.9% 0% 37.3%
Let’s Chat 20.3% 3.3% 47.3% 0% 29.1%
Client Manager 11.4% 1.9% 60.1% 0% 26.6%

scale-out workloads. In cluster mode, one Node.js master pro-
cess will spawn multiple slave processes to handle incoming
requests concurrently. The number of spawned processes
is usually the same as the number of cores of the machine
(including simultaneous multithreading), e.g., eight slave
processes on our testbed. Each spawned process will have its
own event queue and JavaScript VM. By default, incoming
HTTP requests are assigned to slave Node.js processes in
round-robin style. Table 5 shows the tail latency breakdown
for all five workloads in cluster mode.

Our key observation on scale-outNode.js servers is that GC
and native code execution are still the two major bottlenecks
for tail latency. The GC bottleneck is more severe than in
the single instance case, constituting 52.4% of overall tail
latency compared to 40% in single instance mode. The major
reason is that all the spawned Node.js instances will share
the memory; therefore each VM has less available memory,
and thus tail requests experience more frequent GC events.

6 Tail Latency Optimization
As the final step in our framework (Figure 3), we present
techniques that target the major contributors to tail latency;
these techniques can be applied to a production environment
without the profiling overhead of enabling EDG generation.
We describe the optimizations aimed at reducing overheads
associated with the managed runtime, specifically involving
garbage collection (Section 6.1). We then discuss a comple-
mentary technique that improves the event callback execu-
tion performance using event queue studies (Section 6.2).

6.1 VM Optimization

The first of the optimization schemes we propose targets the
managed runtime specifically with the goal of alleviating
tails caused by the garbage collector (GC), as GC has been
identified as a major source of tail latency in Section 5.2.

Google’s V8 JavaScript Engine uses a “stop-the-world” GC
implementation, meaning the GC’s execution is serialized
with respect to the application. Therefore, GC blocks event
queue processing whenever it triggers, and as such we want
to remove it as a head-of-line “event.” A variety of techniques
have been proposed to improve GC performance (e.g., con-
current GC and hardware GC accelerator [23]), however
most of them require compiler/hardware modifications.

Our goal is to leverage frequency boosting to improve GC
performance without introducing significant changes so that
a solution can be readily deployed in existing Node.js deploy-
ments. Frequency boosting is a good fit for reducing GC time
for two important reasons. First, GC’s average instructions-
per-cycle (IPC) is moderately high at 1.3 (measured with
hardware performance counters using PAPI [21]), suggesting
that GC is compute-bound and can benefit from frequency
boosting. Second, GC contributes only a small fraction of
the non-tail requests. Table 4 shows the latency breakdown
for non-tail requests. GC has little to no impact on non-tail
requests, suggesting that a higher clock frequency during GC
would significantly improve the tail latency with minimal
impact on the overall energy consumption.

In addition, we carefully tune the GC-related parameters,
such as heap sizes and thresholds, to study the upper-bound
of performance improvement with frequency boosting. Tun-
ing application/system parameters, such as TCP/IP configura-
tion and CPU affinity [14], is a common practice in deploying
server applications. The V8 JavaScript engine uses a genera-
tional garbage collector [24], which organizes the heap into
two spaces (generations): a new-space and an old-space. We
focus on the new-space and old-space heap sizes as the two
key tuning parameters after observing that GC performance
in Node.js is most sensitive to the sizes of the two heaps.
Our results indicated that a smaller new-space and mod-

erately large old-space can reduce tail latency most because
it will make GC pauses shorter but more frequent, i.e., more
requests will experience GC but each time GC finishes faster.
As a result, combining GC-Tuning and GC-Boost as a further
optimization can yield greater tail reduction.

6.2 Event Queue Optimization

As seen in Figure 6, time spent in GC is not the only con-
tributor to tail latency; time spent waiting in the event loop
queue is another major cause of tail requests. We therefore
propose another, complementary optimization scheme to
address long queue wait times. Queue waiting times may
arise when the event loop is especially busy executing the
callback functions of earlier events or when the event queue
experiences head-of-line blocking, i.e. the queue is blocked
by an event taking an extraordinarily long time to process.

For our optimization, we address both causes of an overly
busy event queue. To determine if the queue is busy, we
use two metrics: event queue length and head processing
time. Event queue length refers to the number of events in
the queue at a given point of time, excluding the currently
executing event. Head processing time refers to the time that
has been spent on the current head-of-queue event.

We periodically check whether queue length or head pro-
cessing time is larger than some threshold. If the condition
is satisfied, Node.js automatically boosts the processor to
maximum frequency. We check event queue busyness every
microsecond. We verified that the overhead is negligible.
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Figure 7. Tail reduction and energy consumption for GC-Boost, GC-Boost (after Tuning), Queue Boost, and the combined scheme. Results
are normalized to statically running the system at 2.6 GHz. We compare against four baselines: Rubik, Adrenaline, and statically running at
3.3 GHz and 4.0 GHz. Each figure shows the Pareto optimal frontiers with and without the proposed techniques. Our techniques push the
Pareto optimal frontier to a new level, providing better system operating choices that are more energy-efficient with better tail latency.

Rather than use a static threshold, we dynamically decide
the threshold. We calculate the threshold for the event queue
length by computing the average event queue length on the
fly and scaling it by a constant factor. The constant factor is
a hyperparameter that can be set by an end user through an
environmental variable. Similarly, we use another hyperpa-
rameter for head processing time to calculate the threshold.
In practice, we discovered that a hyperparameter between
2.0 and 3.0 can achieve good performance. This is consistent
with the intuition that the tail portion is at least 2.0 longer
than the median value in a normal distribution.

7 Evaluation
Our event-oriented optimizations (Section 7.1) outperform
thread-based solutions by achieving higher tail reduction
with lower energy overhead (Section 7.2). Also, our compre-
hensive set of solutions strictly Pareto-dominate prior work
and offer alternative trade-offs (Section 7.3). Furthermore, we
consider cluster level development of Node.js and study the
effects of global versus per-core DVFS (Section 7.4). Finally,
we summarize our results and point out new optimization
directions for event-driven Web services (Section 7.5).

7.1 Energy-Efficient Tail Boosting

We implemented the frequency boosting technique as a user
space scheduler integrated into V8, which requests that the
kernel set the CPU frequency to a boost value on demand.

Boost Server processors operate at a nominal frequency
ranging from 2 GHz to 3 GHz. Our server can reach a maxi-
mum boost frequency of 4.0 GHz. Our framework dynam-
ically increases clock frequency from 2.6 GHz to 4.0 GHz
whenever GC starts orevent queue thresholds are detected.

Per-core DVFS Our hardware platform does not support
per-core DVFS. Thus, all cores are boosted in the current im-
plementation. This implementation decision does not provide
artificial benefits to our evaluation because event execution
andGChappen in the same thread as the event loop. Boosting
multiple cores has the equivalent performance as boosting

only one core. However, we note that as per-core DVFS us-
ing integrated voltage regulators (IVRs) [13] becomes more
prevalent, our proposal can be directly applicable to plat-
forms equipped with such capabilities.
We considered upgrading our system to the latest Intel

Skylake processor for evaluating per-core DVFS. However,
the integrated voltage regulator (IVR) support requires op-
erating system level driver support. At the time of writing,
these drivers are yet to be released for Linux and Windows.

Cluster Mode It is worth noting that our optimization is
also applicable toNode.js cluster mode, where eachNode.js in-
stance runs on one core. As we have shown in Section 5.3, our
findings regarding bottlenecks hold true in cluster mode. In
fact, GC overhead contributes more to the tail latency in clus-
ter mode than in single instance mode. Thus, our techniques
also benefit the cluster mode for tail latency reduction.
Note that our own setup lacks per-core DVFS; boosting

the frequency of one core boosts all cores’ frequency. Thus,
the energy-efficiency results reported for the cluster mode
should be taken as the lower-bound of the gains that our
technique could provide. With per-core DVFS capability, our
technique is expected to be more energy-efficient.

7.2 Event-based versus Thread-based Solutions

We investigate tail latency reduction and energy overhead
under GC-Boost, GC-Boost (after Tuning), Queue Boost, and
the combination of all three (Figure 7). We also evaluate GC-
Boost and Queue Boost against two recently proposed, state-
of-the-art DVFS schemes: Adrenaline [19] and Rubik [25].
Both techniques aim to reduce tail latency in traditional, non-
event-driven servers. All results are averaged across all the
benchmark applications and are normalized to the results
without boosting (i.e., statically fixed at 2.6 GHz). For com-
parison, we also evaluate tail latency reduction while setting
the frequency statically to 3.3 GHz and 4.0 GHz, which gives
us the limit for improvement if energy were not a concern.

Rubik Comparison The goal of Rubik [25] is to meet
the tail latency target using minimal power. Rubik treats
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request arrival as a form of stochastic random process and
determines the optimal frequency for each request according
to the probability distribution of request processing time.
In our implementation of Rubik, we used the reduced tail
latency after applying GC-Boost as the tail latency target.

As Figure 7 shows, our optimizations consistently achieve
better tail reduction (up to 8×) with lower energy overhead
than Rubik across all five applications. In addition, Rubik
misses the tail target for most applications (not plotted). Ru-
bik has limited tail reduction capability in Node.js because
its statistical model does not directly apply to event-driven
servers. In particular, Rubik assumes that server applications
process requests sequentially and independently. However,
these assumptions do not hold true for event-driven applica-
tions where requests are divided into interleaved events.

Adrenaline Comparison Adrenaline [19] is motivated
by the observation that certain request types have a higher
probability of becoming tail requests and that they can be
identified by indicators such as request URL. Adrenaline
boosts the frequency when encountering any such request.
We build an oracle version of Adrenaline by statically iden-
tifying request URLs that have the highest probability of
becoming a tail and boost those requests to peak frequency.

We find that Adrenaline achieves significant tail reduction
in two out of five benchmarked applications (Etherpad Lite
and Client Manager). However, it introduces much higher
energy overheads than other alternatives except in the case
of Todo. On average, Adrenaline costs 1.51× the energy of
GC-Boost even as they achieve similar tail reductions.
The overhead of Adrenaline is caused by the fact that

request type (i.e., URL) is not a perfect indicator of tail la-
tency in Node.js. We find that any request URL in our ap-
plications has at most a 1.28% chance of becoming a tail.
Adrenaline wastes energy boosting non-tail requests. In ad-
dition, Adrenaline boosts frequency throughout the entire
request processing lifetime. In contrast, GC-Boost acceler-
ates only the GC phase guided by our EDG analysis. Also, the
original Adrenaline relies on a fine-grained, per-core DVFS
mechanism which is not available on our platform.

7.3 Pareto Frontier Analysis

We propose three more tail reduction techniques that form
a new Pareto frontier. Figure 7 shows that GC-Boost, GC-
Boost (after Tuning), Queue Boost, and Combined fall into or
close to the Pareto frontier of the alternatives we consider.

GC-BoostWe find that GC-Boost consistently improves
the tail latency across different applications. The improve-
ments are usually comparable to globally increasing the CPU
frequency to 3.3 GHz. Overall, GC-Boost reduces the tail la-
tency by 13.6% on average and up to 19.1% in the case of
Etherpad Lite. Todo is the least sensitive to GC frequency
boosting with an improvement of about 3.3%. This is be-
cause GC only constitutes about 16% of Todo’s tail latency.

Boosting GC execution has little impact on total energy
consumption. GC-Boost introduces only a 2.8% energy over-
head over the baseline 2.6 GHz. This is because GC con-
tributes only about 3% of the overall request latency. In
contrast, globally boosting CPU frequency to 3.3 GHz and
4.0 GHz introduces major energy overheads of 67.6% and
171.2%, respectively. We conclude that GC-Boost can signifi-
cantly improve tail latency in an energy-efficient manner.

GC-Boost (after Tuning) We find GC-Tuning increases
energy overhead since GC happens more frequently, espe-
cially for Todo, Let’s Chat, and Client Manager. On average, it
introduces 6% (up to 9%) extra energy overhead. But enabling
GC-Tuning can reduce tail latency by up to 30.5% for Lighter,
which is almost 2× better than GC-Boost alone. The average
gains are less pronounced, with GC-Tuning reducing tail
latency by only 3.67% over GC-Boost.

Queue BoostQueue Boost offers a slightly different trade-
off than GC-Boost (after Tuning). It is most effective when
GC is not a major bottleneck. On average, Queue Boost re-
duces tail latency by 16.3% with 10.4% more energy. Queue
Boost achieves better tail reduction than GC-Boost for all
applications. We believe this is because the overhead of GC is
also manifested as queue anomalies. For example, if a request
is suffering from GC, the event queue will detect head-of-
line blocking, or a longer busy queue. Because our anomaly
detection heuristic looks at overall queue activity, agnostic
of what is causing the busyness, it will waste some energy
on non-tail requests, explaining the higher energy overhead.

We also note that Queue Boost outperforms GC-Boost and
GC-Boost (after Tuning) on Todo. We believe this is because
the tail latency in Todo does not generally arise from GC.
Since Queue Boost is more comprehensive than just GC, it
succeeds at improving the tail latency of Todo.
Combined The combination of GC-Boost, GC-Tuning,

and Queue Boost offers an optimal trade-off between tail
reduction and energy overhead. The combined approach
provides 21.18% tail reduction with 14% more energy. The
best tail reduction for the combined optimization is 35.08%
for Lighter, better even than continuously running at 4.0 GHz.
This may be because Lighter is most sensitive to GC-Tuning.

7.4 Cluster Evaluation

We also evaluated GC-Boost and Queue Boost under cluster
mode as shown in Table 6. Recall that in cluster mode, one
Node.js master process spawns eight slave processes to han-
dle incoming requests concurrently. Each process is a full
instance of Node.js with its own event queue and VM.

On average, GC-Boost offers 12.7% tail reduction with 6%
extra energy. Queue Boost also offers 13.5% tail reduction
with 18.0% extra energy. Compared to the single process
mode, our proposed techniques achieved slightly worse tail
reduction with almost 2× more extra energy (GC-Boost cost
3% extra energy and Queue Boost cost 10% extra energy on
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Table 6. Tail-reduction and energy overhead after applying GC-
Boost and Queue Boost to Node.js servers in cluster mode. The
baseline is the average tail latency and energy of all applications
running with the same cluster settings without any boosting.

Tail Reduction(%) Norm. Energy
Application GC-Boost Queue Boost GC-Boost Queue Boost

Etherpad Lite 15.8 25.0 1.08 1.19
Todo 1.2 7.9 0.99 1.07
Lighter 24.9 13.9 1.06 1.28
Let’s Chat 6.3 10.1 1.05 1.24
Client Manager 15.1 10.7 1.12 1.11

Table 7. Summary of all six tail reduction schemes. All values are
normalized to 2.6 GHz without any optimizations.

Technique Tail Reduction(%) Norm. Energy

GC-Boost 13.56 1.03
GC-Boost (after Tuning) 17.23 1.09
Queue Boost 16.27 1.10
Combined 21.18 1.14

Rubik 7.99 1.22
Adrenaline 13.31 1.56

average). These numbers are worse than our own proposed
solution, but they are on par with related work.

We also see a drop in energy efficiency when the number
of slave processes goes from 2 to 4.We suspect that the drop is
largely due to the lack of per-core DVFS. Even if one Node.js
process in the cluster decides to boost frequency, all the
cores’ frequency will boost as a side effect, thus skewing the
results. But with per-core results, similar to the assumptions
made by prior work [19, 25], our energy efficiency results
will be on par with the gains we have shown earlier.

7.5 Summary

We summarize our comparisons against GC-Boost in Table 7.
It lists the average tail reduction and normalized energy for
GC-Boost, GC-Boost (after Tuning), Queue Boost, Combined,
Rubik, and Adrenaline. GC-Boost, GC-Boost (after Tuning),
Queue Boost, and Combined significantly outperform Rubik
and Adrenaline in both tail reduction and energy overhead.
GC-Boost (after Tuning) achieves the maximum tail reduc-
tion (21% on average) with acceptable energy overhead (14%).

8 Related Work
Wedescribe prior work in the context of themes: mechanisms
to pinpoint the sources of tail latency, effects of garbage
collection on tail latency, approaches to classify dependency
relationships, and other generic event-driven research.

Sources of Tail Latency Identifying sources of tail la-
tency is an active research area. Prior work mainly focuses
on identifying system-level sources of tail latency [25, 29, 44].
We take a different approach. We understand applica-tion-
level impact on tail latencies (while not losing insights at the
system level). Accounting for the application and its runtime

behavior is particularly important forNode.js servers because
of their inherent complexity, mixing event-driven execution
with managed runtime-induced overheads. We show that
gaining application-level understanding can empower sys-
tem designers and application developers to diagnose tail
latency issues at a finer granularity.

Garbage Collection in Tail Latency Though garbage
collection has long been an important research area [24], re-
cently it has garnered interest in big data and cloud comput-
ing contexts as emerging distributed applications are increas-
ingly developed in managed languages [15, 23, 31, 32, 40? ].
As far as we know, we are the first to quantify and remedy
GC’s impact on tail latency in event-driven servers. The GC-
induced overhead is particularly detrimental to tail latency in
event-driven servers where event execution is serialized and
thus GC delay directly contributes to the end-to-end latency.
Our analysis framework leverages event-specific knowledge,
non-existent in previous work.

Capturing Event Relationships At the core of our tail
latency analysis framework is the event dependency graph
(EDG). The event dependency is a type of inter-event re-
lation which differs from previously proposed inter-event
relations in that an EDG is constructed dynamically while
previous proposals are based on static event relations [33].
Our formulation of event dependency as a happens-before
relation has similarity to recent work on race detection in
event-driven applications [18, 36, 37], which also defines a
happens-before relation. However, the two definitions have
different semantics. Happens-before in event race detection
captures the read and write behaviors of events to detect
races; our definition captures the event registration and trig-
gering sequence to measure the critical path latency.

Event-Driven Optimizations Event driven execution
has long existed in highly concurrent servers [20, 35]. It has
been optimized both at the system [34, 41] and architecture
levels [12, 28, 47] and in the mobile computing space [45].
However, no prior work specifically targets the tail latency
issue. They instead improve overall performance of event-
driven servers and are thus complementary to our work. For
example, one could first leverage cohort scheduling [28] to
reduce the overall latency of both tail and non-tail requests
and then apply our techniques to remedy excessive tails.

9 Conclusion
Prior tail optimizations that assume a request is bound to a
thread cannot be directly applied to managed event-driven
systems. And if applied, they incur a severe energy penalty.
We have presented a novel approach to identify, understand,
and optimize the sources of tail latency. We introduce the
EDG framework to propose VM and event queue boosting
optimizations that cater to the event-driven system’s charac-
teristics. Where prior solutions increase energy consumption
by 22-56% in an event-driven system, our solutions reduce
tails more aggressively with as little as 3% extra energy.
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