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Chapter 1

System Analysis

Prior to designing a controller for a system, the control system designer must understand the character-
istics of the system. For example, is the system open-loop stable? Are there dominant poles, or poles that
may be neglected during design? Is the system controllable using the selected inputs? Can an estimator be
constructed based on the measured outputs? These types of questions should be answered both intuitively
and mathematically prior to embarking on an attempt to design a controller for the system. For example,
the compensator design process for the Ćuk converter begins with the construction of a mathematical model
of the system in MATLAB (The Mathworks, Inc.). The model is a mathematical description of some or
all of the behavior of the real-world system that is adequate for performing controller design. State space
averaging yields a linear small-signal model for the nonlinear switching system (derivations may be found
in the Appendix) [1]. Additionally, a nonlinear circuit model was created in the Power Electronics Circuit
Simulator (PECS) software package in order to validate the performance of the linear model. PECS uses a
schematic-based circuit editor and features its own plotting tool, PECSPLOT.

1.1 The Ćuk Converter

The Ćuk converter is a step-down/step-up converter based on a switching boost-buck topology. Essen-
tially, the converter is composed of two sections, an input stage and an output stage. The schematic of the
Ćuk converter is presented in Figure 1.1, with component values given in the Appendix. (The lowercase vari-
ables indicate small-signal deviations from nominal operating point variables as obtained by linearization.)
The input voltage vg is fed into the circuit via inductor L1. When transistor Q1 is on, current i1 builds the
magnetic field of the inductor in the input stage. The diode CR1 is reverse biased, and energy dissipates
from the storage elements in the output stage. When Q1 turns off, inductor L1 tries to maintain the current
flowing through it by reversing polarity and sourcing current as its magnetic field collapses. It thus provides
energy to the output stage of the circuit via capacitor C1. Both currents i1 and i2 must sum to zero in the
steady state, since the assumption is that voltage v1 is essentially constant (given that the voltage across a
capacitor cannot change instantaneously and the switching speed of the circuit is high). This provides for
the following relation:

i1ton + i2toff = 0 (1.1)

The inductor currents are the input and output currents, therefore, if the principle of conservation of energy
is applied:

vo

vg
=

Ds

1−Ds

(1.2)

where Ds is the duty cycle of the switch, Ds
∆
= ton

ton+toff
. Thus, the voltage ratio of a Ćuk converter is the

same as that of a buck-boost converter, but its main advantage over other converters is that the input and
output inductors result in a filtered current on both sides of the converter, while buck, boost, and buck-boost

1



Figure 1.1: Ćuk converter with inductor equivalent series resistances.

converters have a pulsating current that occurs on at least one side of the circuit. Equation 1.2 shows that by
controlling the duty cycle of the switch (by small-signal deviation d), the output voltage vo can be controlled
and can be higher or lower than the input voltage vg. By using a controller to vary the duty cycle during
operation, the circuit can also be made to reject disturbances, as will be shown.

1.2 Open Loop Performance of the Ćuk Converter

Before a controller was designed, the performance of the open-loop Ćuk model was examined. Using the
state space block diagram for the open-loop model (Figure 1.2), the state space equations were determined
to be:

ẋ = Ax+Bvg +Bdd (1.3)

vo = Cx

x =
[

v2 v1 i2 i1
]

′

The state space matrices for the open-loop model from the disturbance input vg to the output vo are the
state space averaged matrices {A,B,C,D}. The state space matrices for the open-loop system from the
control input d to the output vo are the state space averaged matrices {A,Bd, C,D}. Thus, the model of
the Ćuk converter has two inputs (a control input d and a disturbance input vg) and one output (vo). (See
Appendix for model derivations.)

The MATLAB model open-loop response to a unit step disturbance in vg is shown in Figure 1.3. By
inspection of the plotted response, it was determined that the system reached lightly damped oscillations
around a steady state DC value in approximately 20 ms. The steady state value was 26 V, a value predicted
from the gain equation for the Ćuk converter:

vo =
Ds

1−Ds

vg (1.4)
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Figure 1.2: State space model of the Ćuk converter.

With nominal duty cycle Ds = 0.667, a 1 V step input in vg produces a 2 V step in the output voltage
vo. This shows that the open-loop system cannot reject disturbances on the input voltage vg. Also, note
that the output of the circuit is a lightly damped sinusoid, with an approximate frequency of 1.83 kHz (11.5
krad/s).

The PECS circuit is shown in Figure 1.4. The simulator was set up to check the performance of the
nonlinear converter in response to a unit step up in vg. The PECS plot of these transients is shown in
Figure 1.5. Comparison of the MATLAB and PECS plots reveals that the linear model used in MATLAB
is an acceptable model of the plant to use for control system design.

The pole-zero plot of Tvod is shown in Figure 1.6. All poles and zeros are in the LHP, therefore the Ćuk
converter is a stable minimum-phase system. The locations for the zeros and poles are:

z =
[

−1490± 9000 i
]

p =
[

−879± 3641 i, −40± 11500 i
]

The 1.83 kHz ringing in the output transient caused by the unit step disturbance is due to the frequency
associated with the dominant pole pair at −40± 11500i.

1.3 Controllability and Stabilizability

The idea of controllability refers to the ability of the input control u to affect the system dynamics.
Controllability is defined as the ability to move the state of a system from an initial value x0 to any arbitrary
state xf within a finite time period t using the input signal u. (Note that controllability says nothing
about the magnitude of the input signal u, i.e., the control effort, nor the time t required to accomplish this
transition.) Essentially, it is a test to determine if the closed-loop system poles may be arbitrarily placed in
the complex plane.

The controllability matrix Mc is constructed from (A, B) in the following manner:

Mc =
[

B AB A2B . . . An−1B
]

(1.5)
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Figure 1.3: Ćuk converter response to a unit step disturbance in vg.

where n is the order of the system. If Mc is a full rank matrix, the system is fully controllable. The rank
deficiency of Mc tells the designer how many modes are uncontrollable. There is no rank deficiency in Mc

for the Ćuk converter model, therefore the system is fully controllable.

1.4 Observability and Detectability

Observability refers to the ability to determine any initial state x0 using only a finite record of the output
y between an initial time and a final time.

The observability matrix Mo is constructed from (A, C) in the following manner:

Mo =















C

CA

CA2

...
CAn−1















(1.6)

where n is the order of the system. If Mo is a full rank matrix, the system is fully observable. The rank
deficiency of Mo tells the designer how many modes are unobservable. The Ćuk converter model is fully
observable.

1.5 Controlling the Ćuk Converter

The model used in controller design is a small-signal model, since, like many other methods of lineariza-
tion, the state-space averaging method only holds for small deviations from the nominal operating point.
Most of the equations and figures that follow refer to deviations from the nominal operating point of the
system unless otherwise stated or identifiable from context.
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Figure 1.4: The Ćuk converter simulated in PECS.

The control system designer should always begin with a set of design specifications when starting a
project. The specifications are a set of goals for the behavior of the controlled system, and may need to
change during the design process if not achievable or as new information becomes available. Specifications
generally consider both transient behavior (e.g., rise time, settling time, percent overshoot) and stability
margins (e.g., relative stability, gain margin, phase margin).

1.5.1 Time Domain Specifications

Time domain constraints are placed by the system performance specifications. The transient response of
a regulated system is typically limited in terms of maximum deviation from the nominal output and settling
time in response to a transient. The goal for the Ćuk converter controller design presented is to control the
output voltage to within 1% of nominal (i.e., 23.76 to 24.24 V) in response to unit step voltage transients
in the input. This matches the 1% regulation of standard industrial power supplies sold by a major control
system equipment manufacturer. Also, the controller should be able to maintain the nominal output voltage
within tolerances as the input varies over a range of 9 to 14 V, though this shall be considered a steady-state,
not transient, operating requirement. As a final specification, steady-state error in the output voltage shall
be eliminated within 20 milliseconds of the start of a transient.

1.5.2 Frequency Domain Specifications

The frequency response of the transfer function Tvod should be high at low frequencies to properly regulate
and low at high frequencies to adequately reject noise. Because the system base switching frequency is 100
kHz (6.28×105 rad/s), for controlled design, the loop gain at any frequency above 50 kHz (3.14×105 rad/s)
should be less than 0 dB, as the small signal model breaks down above half of the switching frequency.

5



Figure 1.5: Unit step response of the Ćuk converter in PECS.

Indeed, there should be a design margin left between this frequency and the gain crossover frequency. A
gain margin of at least 20 dB and a phase margin of at least 50◦ will be sought to ensure stability.

1.5.3 Control Effort Constraints

The Ćuk converter nominal duty cycle is related to the steady-state gain of the converter G by Equation
1.4. Neglecting circuit losses, Equation 1.4 may be rearranged to calculate the duty cycle as a function of
the output operating point and input voltages, vo and vg:

Ds =
vo

vo + vg
(1.7)

Therefore, the nominal duty cycle at the operating point of 24 V for an input of 12 V is determined to be
0.667. However, the purpose of controller design is to ensure the output voltage remains within 1% of 24 V
despite disturbances in the input voltage. Since a deviation model is used, the difference between the nominal
operating duty cycle and the duty cycle required to keep the output at exactly 24 V may be approximated,
and this is shown in Figure 1.7. It is this difference d that the controller must provide, as the deviation in
duty cycle is the small-signal control input of the Ćuk converter. Thus, it can be predicted from Equation 1.7
or Figure 1.7 that the the controller must change the duty cycle by -0.018 to maintain the output at 24 V
for a step disturbance input on vg from the nominal 12 V to 13 V. This value of -0.018 will be used to verify
the correct steady-state control effort in controller design. (Note that Equation 1.7 does not account for
any voltage losses within the circuit, so the duty cycle will actually be slightly higher from the calculated
value when any resistances are included in the circuit.) The duty cycle is limited to 0 ≤ Ds ≤ 1, therefore
if the control effort plus the nominal value of 0.667 exceeds these limiting values, the compensator design
is not acceptable. This leads to hard limits on the small-signal control effort of [−0.667, 0.333], though the
inclusion of a design margin to these limits is desirable.

6



−1500 −1000 −500 0
−1.5

−1

−0.5

0

0.5

1

1.5
x 104

Im
ag

in
ar

y 
A

xi
s

Real Axis

Figure 1.6: Map of the pole and zero locations of Tvovg
.

9 9.5 10 10.5 11 11.5 12 12.5 13 13.5 14
−0.04

−0.02

0

0.02

0.04

0.06

0.08

Input Voltage (V)

∆ 
D

ut
y 

C
yc

le

Figure 1.7: The small-signal duty cycle required over the full input voltage range to maintain nominal output
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Chapter 2

Pole Placement

For a system that is completely controllable and where all the states are accessible, feedback of all of the
states through a gain matrix can be used to place the poles at any desired location in the complex plane.
The control law used for state feedback is:

u = −Kx (2.1)

which uses the matrix K to place the poles of the system at desired locations [2]. This type of compensator
shall be said to employ full state feedback (FSFB). A FSFB regulator is shown in Figure 2.1.

Figure 2.1: State feedback regulation.

2.1 Pole Placement via Ackermann’s Formula

Ackermann’s formula may be used with SISO systems like the Ćuk converter. Ackermann’s formula is:

K =
[

0 0 . . . 1
]

M−1
c (An + α1A

n−1 + . . .+ αn−1A+ αnI) (2.2)
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This method of determining K may be used with the system in any representation. It is this method of pole
placement that is used in the designs of the state feedback controllers that follow.

2.2 Ćuk Converter with State Feedback Compensator

One problem with pole placement is how to go about selecting desirable pole locations. Two main
methods of design are suggested:

• Select pole locations such that a dominant complex pole pair exists. This technique is generally used
when designing tracking systems, for which the transient time domain requirements (e.g., rise time,
overshoot, settling time, etc.) are able to be recast into desired dominant pole locations.

• Select pole locations that have been determined to give a prototype time-domain response, e.g., filter
pole locations.

The latter method has been selected for use with full state feedback.
Graham and Lathrop [3] discuss assigning the system poles of higher-order systems to prototype locations

that minimizes a performance index (or cost function) known as the integral of the time-weighted absolute
error (ITAE) to an input signal:

JITAE =

∫

∞

0

t |e(t)| dt (2.3)

By placing poles in an ITAE filter pattern to minimize JITAE , the designer achieves a response that is
optimized with respect to deviation from setpoint (provided by the absolute error) and settling time (errors
that occur later in the time history contribute more to the JITAE cost). Since the goal of the control system
designer is to regulate the Ćuk converter output voltage with respect to input voltage disturbances, JITAE
provides a scalar figure of merit by which to judge controller performance. For regulator problems, the
desired output is rejection of disturbance deviations from the nominal operating point. The error between
the desired output and the plant output is defined as e(t) = r(t) − y(t). Since r(t) = 0 for all time t in a
regulator problem, the error e(t) is simply −y(t).

The frequency-normalized characteristic equations for minimum ITAE response are given in Table 2.1 up
through order five (so that a full-order state feedback controller with an integrator may be applied to the
Ćuk converter).

Table 2.1: Frequency-Normalized Characteristic Equations for ITAE Response

Order Characteristic Equation

1 s+ ω

2 s2 + 1.414ωs+ ω2

3 s3 + 1.75ωs2 + 2.15ω2s+ ω3

4 s4 + 2.1ωs3 + 3.4ω2s2 + 2.7ω3s+ ω4

5 s5 + 2.8ωs4 + 5ω2s3 + 5.5ω3s2 + 3.4ω4s+ ω5

A control system designer can use a computer program (e.g., MATLAB from The Mathworks with the
Control Systems Toolbox) to iteratively design and test state feedback controllers over a range of values
for ω. It is easiest to work with the characteristic equations given in Table 2.1 in MATLAB in a factored
format as shown in Table 2.2. The control system designer must determine the value of the scalar multiplier
frequency ω that places the poles in such a way as to achieve the desired time domain response. By using the
steady state error as a measurement metric for each iteration during the design, a frequency multiplier ω can
be chosen that produces a steady state error within the performance specification of 1%. This design method
was used to select the pole locations for a full state feedback controller as shown in Figure 2.2. Initially, a
wide range of frequencies was selected with a large increment, then the range and the increment were made
smaller in order to narrow in on the first frequency with less than 0.24 V of steady state error, which occurs
at ω = 10.0125 rad/s. The unit step disturbance response of the system with a full state feedback controller
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Figure 2.2: Steady state error of unit step disturbance as frequency multiplier is swept.
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Figure 2.3: Response to unit step disturbance of input voltage.
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Table 2.2: Frequency-Normalized Pole Locations for ITAE Response

Order Factored Pole Locations

1 ω[−1]
2 ω2[−0.7071± 0.7071i]
3 ω3[−0.7081,−0.521± 1.068i]
4 ω4[−0.424± 1.263i,−0.626± 0.4141i]
5 ω5[−0.8955,−0.3764± 1.292i,−0.5758± 0.5339i]

designed in this manner is shown in Figure 2.3. Note that there is 0.24 V of steady-state error to the 1
V step disturbance in input voltage, indicating that the disturbance is rejected to within the performance
specifications. The amplitude and settling time of the transient meet design specifications, so this controller
has very desirable time-domain response characteristics. The loop gain of the regulated system is shown in
Figure 2.4, where the loop is broken at the large X shown on the control input d in Figure 2.5. MATLAB
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Figure 2.4: Loop gain with the full state feedback controller.

calculations give the gain margin as∞ and a phase margin of 67◦, which are very desirable frequency-domain
response characteristics.

Finally, the control effort of the design should be examined. Once again, the control input to the Ćuk
converter is the change in duty cycle d used to turn on and off Q1. The control effort is plotted in Figure 2.6,
and it can be seen that the effort is not approaching the limits assigned to d. It can also be seen that
the steady-state deviation control effort is approximately -0.0163, which corresponds roughly to calculations
using Equation 1.7.
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Figure 2.5: The full state feedback controller applied to the Ćuk converter.
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Figure 2.6: Control effort with the full state feedback controller.
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Chapter 3

Integral Action

The previous state feedback design for the Ćuk converter resulted in 0.24 V of steady-state error to the
1 V disturbance in input voltage, which is just within design specifications. Additional gain could reduce
this error, though it could never be eliminated, as the Ćuk converter is a type 0 system, which means that
there will always be some finite steady-state error to a unit step disturbance or setpoint change, even in
a controlled system, no matter how high the gain. However, it is desirable to eliminate steady-state error
entirely if possible. The only way to do this is to have the controller raise the type number. Full state
feedback does not introduce an integrator into the closed loop, therefore does not change the type number.

3.1 Adding Integrators

In order to eliminate any steady-state offset that may occur, an integrating controller may be added to the
controlled system. Integral control is a method of output feedback, as shown in Figure 3.1. The integrating

Figure 3.1: Generic system controlled with a FSFB regulator and output integral feedback.
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controller integrates the error between any reference signal and the output e(t) = r(t) − y(t) and adds it to
the state feedback control effort to eliminate steady-state error. The equation for the integrator is xi =

∫

edt,
or ẋi = e. Since each row in the state space representation is a first order linear differential equation, and
the integrator adds one new differential equation to the system ẋi = −y = −Cx, one new state xi must be
added to the state vector to raise the Ćuk system from type 0 to type 1. The augmented state vector is
[x xi]

′ and the new state space quadruple is:

A =

[

A 0

−C 0

]

(3.1)

B =
[

B 0
]

′

C =
[

C 0
]

D = 0

The control law for this augmented system is u = −kx − kixi. From the above modifications, the desired
poles (with an added desired closed-loop pole location to account for the pole associated with the integrator)
can be used to determine the state feedback gain, which has the structure K = [k ki].

3.2 Ćuk Converter with State Feedback and Integral Compen-
sator

The augmented controlled system of the Ćuk converter is shown in Figure 3.2. This control method will
be described as full state feedback with an integrator (FSFBI).

Figure 3.2: System controlled with a FSFBI regulator.

The state quadruple for the system augmented with the new state and controlled with the new control
law may be derived from the block diagram.

ẋ = (A−Bdk)x−Bdkixi +Bvg (3.2)

vo = Cx
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along with the augmented closed-loop state space matrices

Ā =

[

A−Bdk −Bdki
−C 0

]

(3.3)

B̄ =
[

B 0
]

′

C̄ =
[

C 0
]

D̄ = [D]

The controlled system then becomes:

ẋ = Āx+ B̄vg (3.4)

vo = C̄x

A frequency-sweep technique similar to that used for the FSFB controller was used to determine the pole
placement for the system augmented with an integrator, and the results are shown in Figure 3.3. However,
because the steady state error of a step disturbance response is always zero with a type 1 system, steady state
error cannot be used as the performance metric for determining the frequency weighting used with the ITAE
filter pole locations given in Table 2.1. Instead, the ITAE value of each unit step transient is calculated,
and the frequency multiplier is found for the transient that has the minimum ITAE value. The frequency
multiplier was swept and the minimum ITAE determined to occur at ω = 6.564 rad/s. The step disturbance
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Figure 3.3: ITAE pole frequency multiplier determination.

transient is shown in Figure 3.4. The loop gain of the controlled system may be seen in Figure 3.5, where
the loop is broken at the large X shown on the control input d in Figure 3.2. MATLAB calculations give
the gain margin as ∞ and a phase margin of 68◦. Figure 3.6 shows the change in duty cycle effected by the
FSFBI controller to control the Ćuk converter. Note that the final value of the control effort is -0.018. This
is the approximate change in duty cycle that is necessary to completely reject the unit step distubance in vg
as shown in Figure 1.7.

From this point forward in this paper, all of the example compensator designs will include an integrator
term to completely reject the effects of the step disturbance in vg, and though sometimes not explicitly
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Figure 3.4: Unit step disturbance response of system with FSFBI controller.

stated in the compensator name, terms related to the integrator will appear in the state equations as well
as the block diagrams relating to control of the Ćuk converter.

16



−40

−20

0

20

40

60
M

ag
ni

tu
de

 (d
B

)

102 103 104 105 106
−180

−135

−90

−45

0

Ph
as

e 
(d

eg
)

Frequency (rad/s)

Figure 3.5: Loop gain of Ćuk converter controlled by FSFBI.
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Chapter 4

State Estimation

Since an n-th order system requires n states be fed back to the gain matrix K to allow pole placement
anywhere in the complex plane, this requires at least n measurements of the state variables. This can be
prohibitively expensive or complex. In some cases, the internal system states may not even be measurable.
In general, only the input and output of a system are available to the control system designer. However, if the
system is fully observable, a state estimator (also known as an observer) may be used to provide estimated
states for use in feedback control. The use of an observer requires that the state estimates converge to the
actual state values (if starting from different initial states) more rapidly than the system itself responds.
The control law used is then:

u = −Kx̂ (4.1)

where x̂ indicates that the states fed back into the system are estimates.
In order to quickly force the state estimate to converge to the actual values of the state from arbitrary

initial conditions, a correction term must be applied to the estimator dynamics such that the error dynamics
approach zero rapidly.

4.1 Full-order State Estimators

System modeling from physical principles essentially produces a state estimator once it as been per-
formed. Since the objective of modeling is to produce a mathematical representation of the system, and that
representation is based on the dynamics predicted by physical principles, the resulting model is an estimator.

Assuming the system is observable, the output of the estimator Cx̂ can be compared to the output of
the system, and any difference between them may be multiplied by a gain vector and added to the state
estimator dynamics. Therefore:

e = y − Cx̂ (4.2)

= C(x− x̂)

Multiplying this error by a gain vector L, the desired state error correction term is formed, which can then
be added to the dynamics of the estimator to form:

˙̂x = Ax̂+Bu− LC(x− x̂) (4.3)

= (A− LC)x̂+Bu+ LCx

When L is chosen such that the eigenvalues of A−LC lie in the left half of the complex plane, the estimator
error e → 0 as t → ∞. Since the state estimate must converge to the controlled state faster than the state
itself can change, the eigenvalues of A − LC should be placed farther to the left than the eigenvalues of
A − BK. A good rule of thumb is to make the estimator dynamics at least twice as fast as the controlled
system dynamics.
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The separation principle allows the control law gain K and the observer gain L to be determined in-
dependently. The proof of this is in many other references (e.g., [2]), so it shall not be repeated here, but
application shall be made of the principle in the design examples to follow.

When paired with the linear state feedback control law, the estimator-based compensator is formed. For
the case of state feedback without an integral state added, the compensator is given by:

˙̂x = (A−BK − LC)x̂+ Ly (4.4)

u = −Kx̂

Where the state of the system has been augmented by an integrator state, the compensator is given by:

[

˙̂x
ẋi

]

=

[

A−Bk − LC −Bki
0 0

] [

x̂

xi

]

+

[

L

−1

]

y (4.5)

u =
[

−k −ki
]

[

x̂

xi

]

4.2 Full-Order Estimator-Based Compensator

The block diagram for the Ćuk converter controlled with a full-order state estimator with linear control
law and integral action is shown in Figure 4.1, and was used to derive the following closed-loop state
equations:

ẋ = Ax−Bdkx̂−Bdkixi +Bvg (4.6)

ẋi = −Cx
˙̂x = LCx−Bdkixi + (A−Bdk − LC) x̂

vo = Cx

and the associated state space matrices:

Ā =





A −Bdki −Bdk

−C 0 0
LC −Bdki A−Bdk − LC



 (4.7)

B̄ =
[

B 0 0
]

′

C̄ =
[

C 0 0
]

D̄ = [D]

The step disturbance transient is shown in Figure 4.2. There is more oscillatory behavior in the initial part
of the transient response compared to the response under FSFBI control. This is likely to be caused by the
initial estimation of states and their convergence to the actual state values. Comparison of the settling times
shows that they are approximately the same, and the only transient differences occur early in the transient.
The loop gain of the controlled system may be seen in Figure 4.3, where the loop is broken at the large X
shown on the control input d in Figure 4.1. MATLAB calculations give the gain margin as 33.6 dB and a
phase margin of 105◦. Figure 4.4 shows the control effort of the ESFBI controller.

Since the Ćuk converter has only four states, the observer itself will be a fourth order system. Along
with the integral state, the compensator becomes a fifth order system. When evaluating desired observer
pole locations, keep in mind that the poles of the observer must be placed to the left of the poles of the plant
by a large margin to ensure that the state estimator dynamics are faster than those of the plant.

4.3 Reduced-order State Estimators

If some of the states appear directly in the output as a function of the measurement equation (i.e., are
not a linear combination of other states), those states do not need to be estimated. Hence, a reduced-order
estimator may be constructed that only estimates those unmeasured states.
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Figure 4.1: An estimated state feedback compensator with integral action.

If C is a full rank matrix, a nonsingular linear transformation matrix can be formed by randomly choosing
an appropriate matrix T of dimension (n− r) x n and forming:

P =

[

C

T

]

(4.8)

Applying the standard linear transformation x = Px with Equation (4.8) puts the system into an
equivalent representation where C is of the form:

[

Ir 0
]

(4.9)

(I is a square identity matrix with dimension r x r, r < n). It can be assumed that this representation exists
without loss of generality since it is the result of a linear transformation.

The system and feedback gain matrix can now be partitioned into measured and unmeasured portions:

[

ẋm
ẋu

]

=

[

A11 A12
A21 A22

] [

xm
xu

]

+

[

B1
B2

]

u (4.10)

y = xm

K = [km ku]

Since xm corresponds to the states that appear in the output of the measurement equation, xu represents
the remaining unmeasured states. As xm is present in the output, these states do not require estimation.
This means that a reduced-order state estimator can be constructed that allows the estimation of xu in such
a manner that all states (either measured or estimated) are available for feedback via a linear control law:

u = −kmxm − kux̂u (4.11)

In order to ensure that the reduced-order observer dynamics converge to the true state values of x, the
error dynamics must converge to zero. A full-order observer uses a correction term to perform this, which
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Figure 4.2: Unit step disturbance response of Ćuk converter with ESFBI compensator.

is a gain matrix that multiplies the error between plant output and observer output. Unfortunately, since
only the xm states appear in the plant output, using the plant output contributes no information about the
unmeasured states to the estimator and therefore has no dynamic effect on the estimate x̂u. However, a
variable change can be performed:

x̂u = Ly + z (4.12)

where z is the output of a system of order r < n:

ż = Ez + Fy +Gu (4.13)

with E, F , and G and the observer gain L yet to be determined.
Since observer design is concerned with elimination of the error between the actual state and its estimate,

the estimation error can be defined as eu = xu− x̂u and the error dynamics will converge to zero if x̂u → xu.
Using the partitioned format of xu from Equation 4.10 along with x̂u determined from the block diagram

in Figure 4.5, it can be shown that:

˙̂xu = L(A11xm +A12xu +B1u) + E(x̂u − Lxm) + Fxm +Gu (4.14)

ẋu = A21xm +A22xu +B2u

Adding zero to the right side of ˙̂xu in the form of Exu −Exu:

˙̂xu = (LA11 − EL+ F )xm + (LA12 + E)xu . . . (4.15)

+(LB1 +G)u+ E(xu − x̂u)

This gives the following equation for the estimator error dynamics when substituted into the time derivative
of the unmeasured error ėu = ẋu − ˙̂xu:

ėu = (A21 − LA11 + EL− F )xm + (A22 − LA12 − E)xu . . . (4.16)

+(B2 − LB1 −G)u+ Eeu
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Figure 4.3: Loop gain of Ćuk converter controlled by ESFBI compensator.

In order for the estimator error dynamics to be independent of the state x, plant output y, and the input u,
the first three terms on the right side of Equation 4.16 must be zero. This is accomplished by selecting:

E = A22 − LA12 (4.17)

F = A21 − LA11 + EL

G = B2 − LB1

This leaves ėu = Eeu, which converges to zero when E is an asymptotically stable matrix. Thus, the
error dynamics die out, leaving an estimate that equals the state. This means that L must be selected such
that A22 − LA12 → 0 as t → ∞, i.e., the poles of E must lie in the left half of the complex plant. As with
the full-order observer, the reduced-order observer poles should be placed such that the estimator dynamics
are much more rapid than the controlled plant dynamics.

When paired with the properly-partitioned linear state feedback control law, the reduced-order estimator-
based compensator is formed. For the case of state feedback without an integral state added, the reduced-
order compensator is given by:

ż = (E −Gku)z + (F −GkuL−Gkm)y (4.18)

u = −kuz + (−kuL− km)y

Where the state of the system has been augmented by an integrator state, the reduced-order compensator
is given by:

[

ż

ẋi

]

=

[

E −Gku −Gki
0 0

] [

z

xi

]

+

[

F −GkuL−Gkm
−1

]

y (4.19)

u =
[

−ku −ki
]

[

z

xi

]

+ (−kuL− km)y
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Figure 4.4: Control effort of ESFBI compensator.

4.4 Reduced-Order Estimator-Based Compensator

For the Ćuk converter model, matrix C is of the form C =
[

I 0
]

therefore v2 is a measured state,
and the unmeasured states are v1, i2, and i1. This means that a reduced order observer may be designed
that estimates only the three unmeasured states. The block model for a system controlled by a compensator
made of a reduced-order estimator and a linear state feedback law is shown in Figure 4.6, and was used to
derive the following state equations:

ẋ = (A−BdkuLC −BdkmC)x−Bdkixi −Bdkuz +Bvg (4.20)

ẋi = −Cx

ż = (FC −GkmC −GkuLC)x−Gkixi + (D −Gku) z

vo = Cx

from which were determined the matrices:

Ā =





A−BdkmC −BdkuLC −Bdki −Bdku
−C 0 0

FC −GkmC −GkuLC −Gki E −Gku



 (4.21)

B̄ =
[

B 0 0
]

′

C̄ =
[

C 0 0
]

D̄ = [D]

where

E = A22 − LA12 (4.22)

F = EL+A21 − LA11

G = Bd2
− LBd1
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Figure 4.5: Reduced-order estimator construction.

To determine estimator pole placement, the same type of iterative algorithm used for the full order observer
was implemented. The reduced order observer poles were placed to have faster dynamics than the poles of
the controlled system.

The step disturbance transient is shown in Figure 4.7. The loop gain of the controlled system may be
seen in Figure 4.8, where the loop is broken at the large X shown on the control input d in Figure 4.6.
MATLAB calculations give the gain margin as ∞ dB and a phase margin of 36.5◦. This clearly does not
show enough margin to instability with respect to the design specifications.
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Figure 4.6: A state feedback regulator with integral action based on a reduced-order estimator.
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Figure 4.7: Unit step disturbance response of Ćuk converter with ROESFBI compensator.
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Figure 4.8: Loop gain of Ćuk converter controlled by ROESFBI compensator.
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Chapter 5

Linear Quadratic Optimal Control

Linear quadratic optimal control uses penalization of state transients x and control effort u to optimize
system performance with respect to a figure of merit determined by a cost or penalty function. There
is typically a classical trade-off designed into the cost function: one cannot have tight control over state
transients with small control effort. In other words, large controller gains (and therefore control effort)
produce the smallest output transients. Additionally, quadratic forms are used to ensure that only the
magnitude and not the sign of the transient contributes to the cost determined by the penalty function.

5.1 Linear Quadratic Regulators

For optimal control, a controller is sought where the controller gain K is determined by solving a linear
quadratic regulator (LQR) problem. This controller seeks to provide a control effort u that minimizes a
Lagrangian cost function:

J =

∫

∞

0

(xTQx+ uTRu)dt (5.1)

subject to the constraint of the state equation:

ẋ = Ax+Bu (5.2)

The weight matrix Q is an n× n positive semidefinite matrix (for a system with n states) that penalizes
variation of the state from the desired state. The weight matrix R is an m×m positive definite matrix that
penalizes control effort. Solutions for the constrained optimal system can be found in [4], [5], and [6]. The
well-published time invariant solution to this problem is:

K = R−1BTP (5.3)

where P is the unique, symmetric, positive definite solution to the steady-state algebraic Riccati equation:

PA+ATP − PBR−1BTP +Q = 0 (5.4)

The minimum value of the cost function is based on the initial state x0, and is given by:

Jmin = xT0 Px0 (5.5)

The LQR designed for a SISO system can be shown to possess very desirable stability properties: it
always has a gain margin between {-6 dB, ∞} and a phase margin of at least 60◦. However, it has a high
frequency roll-off rate of only 20 dB per decade so the open loop frequency response shows susceptibility to
high frequency noise.

Since the weight matrices Q and R are both included in the summation term within the cost function, it
is really the relative size of the weights within each quadratic form which is important. Simple inspection of

27



the cost function shows that multiplying both weight matrices by the same real constant (e.g., κ) will not
affect their ratio. The multiplier κ may be factored out of the integral, thus returning the cost function to its
original form. Thus, the problem of minimizing κJ becomes the same as minimizing J . Therefore, holding
one weight matrix constant while varying either the individual elements or a scalar multiplier of the other
is an acceptable technique for iterative design. It is good for the designer to maintain an understanding
of the effects of manipulating individual weights, however. In general, raising the effective penalty a single
state or control input by manipulating its individual weight will tighten the control over the variation in
that parameter, however it may do so at the expense of larger variation in the other states or inputs.

5.2 Ćuk Converter with LQR Compensator

The fifth-order system formed by augmenting the Ćuk converter with an integral state requires that Q be
a five-by-five matrix. To review, the state vector is [v2 v1 i2 i1 xi]

′

, where xi corresponds to the integral of the
reference error e. Since the states have physical significance in this model, it is easy to see that each voltage,
current, or error transient may be individually penalized using the diagonal elements of the Q matrix. As the
objective of controlling the Ćuk converter is to regulate the output vo = v2 in the face of disturbances to vg,
penalizing transients that occur on state v2 is a logical choice, as is penalizing the state xi associated with
the reference error integral as the integral of that error should be minimized to provide for good regulation.
Hence, the Q matrix chosen for design of the LQR has two positive entries corresponding to the first (Q11)
and last (Q55) entries along the diagonal to ensure it is positive semidefinite. The Ćuk converter has only a
single control input, and for initial design R was set equal to 1 arbitrarily. If the control effort exceeds the
limitations put on it (refer to Section 1.5), the value of R may need to be increase to penalize the control
effort.

After proceeding through an iterative process where Q11 and Q55 were varied with R fixed, a finalized
design was determined. The step disturbance response of the controlled Ćuk converter is shown in Figure 5.1
The loop gain of the controlled system is shown in Figure 5.2, where the loop is broken at the large X shown
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Figure 5.1: Unit step disturbance response of the Ćuk converter controlled by LQR.

on the control input d. Figure 5.3 shows the control effort produced by the optimal controller.
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Figure 5.2: Loop gain of Ćuk converter controlled by LQR compensator.

5.3 Linear Quadratic Gaussian Regulators

The LQR problem requires that full state feedback be used. This is not always possible, as was discussed
in Section 4. The Kalman-Bucy filter is the dual to the LQR problem; it forms an optimal state estimator
in the presence of process and measurement noise for a system that is observable. The presence of noise
introduces stochastic effects on the state trajectory, therefore, the optimal state estimator must deal with
these stochastic effects appropriately by removing them. Since the process of removing noise from a signal
is commonly known as filtering, the optimal observer became known as the Kalman filter, or Kalman-Bucy
filter, after its creator(s). The Kalman filter is based on essentially the same mathematics as the LQR and, as
such, has come to be known as a linear quadratic estimator (LQE). The cost function J0 that is minimized is
the error variance between the state vector and its estimate. LQE calculates the solution to an ARE (which
happens to be the error covariance) and uses it to determine L, the estimator gain vector, along the lines
of the same equations given for the LQR gain K. Q0, the covariance matrix of the process noise, and R0,
the covariance matrix of the sensor noise, have to be selected for optimal determination of the observer gain
vector L.

When combined, the linear quadratic controller and estimator form a structure known as a linear
quadratic Gaussian (LQG) compensator. To form an LQG controller, the separation principle of controller
design holds, which states that the controller gain K and the observer gain L can be found independently.
Unfortunately, the desirable properties of LQR design are not retained by the LQG compensator. Once the
state variables have been estimated, they can be fed back through the controller gain K to close the loop.
The LQR and LQE problems can be solved independently due to the separation principle, and both require
solving algebraic Riccati equations (ARE).

Adding process disturbances and measurement noise to the state space system description results in:

ẋ = Ax+Bu+ ω (5.6)

y = Cx+ ν

where ω is the disturbance signal (typically modeled by Gaussian white noise of spectral density Q0) and
ν is additive measurement noise (Gaussian white noise, with spectral density R0). Note that the fact that
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Figure 5.3: LQR control effort.

neither ω or ν has a coefficient implies a coefficient of I, meaning each state and output has its own distinct
noise [7]. The time invariant solution to the optimal estimator problem is then:

L = P0C
TR−1

0 (5.7)

where P (known as the estimation error variance) is the unique, symmetric, positive definite solution to the
steady-state algebraic Riccati equation:

AP0 + P0A
T − P0C

TR−1
0 CP0 +Q0 = 0 (5.8)

Since the spectral density of the process and measurement noise in a system is typically unknown, design-
ers frequently treat Q0 and R0 as additional design parameters that can be manipulated. The bandwidth of
the open-loop system frequency response can be controlled using these matrices. This can allow reduction
of the susceptibility of the controlled system to noise at higher frequencies.

5.4 Ćuk Converter with LQG Compensator

The unit step response of the Ćuk converter controlled by a LQG compensator is shown in Figure 5.4.
A comparison of the loop gains of the LQR and LQG controlled systems is shown in Figure 5.2, where the
loop is broken at the control input d. Loss of gain and phase margins has clearly occurred. Figure 5.6 shows
the control effort produced by the LQG controller. Minimal discussion is given to this design as it requires
the improvements described in the next section.

5.5 Control with LQG/LTR Compensators

Newcomers to the world of optimal control might think that the pairing of the optimal controller formed
by the solution of the LQR problem and the optimal estimator formed by the construction of a Kalman
filter would have optimal properties. This is not necessarily the case. Doyle [8] provided an example to show

30



0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018
24

24.005

24.01

24.015

24.02

24.025

Time (s)

A
m

pl
itu

de
 (V

)

Figure 5.4: Unit step disturbance response of Ćuk converter controlled by LQG compensator.

that the LQG design loses the guaranteed stability margins of the LQR design when feeding back estimated
states. Doyle and Stein [9] then showed how this problem could be addressed. In order to recover the good
stability margins and sensitivity properties of an LQR design, an iterative procedure known as loop transfer
recovery (LTR) may be performed during the LQG design. (A variety of other methods for LTR have been
presented in the controls literature, including several which require employment of subspace methods or
special coordinate bases [10], [11], but these techniques are beyond the scope of this work.) The Doyle-Stein
method of LTR is performed by iteratively increasing the intensity of the noise covariance matrices used in
Kalman filter design. LTR causes the open loop frequency domain characteristics associated with the LQR
design to be either exactly or asymptotically recovered as an input noise matrix weighting parameter q is
increased. As q →∞, the properties of the LQR are recovered. Essentially, LTR produces a state estimator
whose estimates x̂ are independent of the control input u (or only weakly depended on u) and dependent
only on the input provided by the plant output y.

Performing the Doyle-Stein method of asymptotic loop transfer recovery on a full-order compensator
requires:

• The system must be minimum-phase and strictly proper.

• Ro = 1 and Qo = q2BB′

The fact that the plant must be minimum-phase prevents the compensator designed from being unstable,
since the LTR technique moves some of the compensator poles toward the plant zeros where pole-zero
cancellation makes them unobservable. (Other LTR methods may be used with nonminimum-phase systems
by using subspace [11] or loop-shaping techniques [12].) The remainder of the poles (an excess of poles
exists because the plant is strictly proper) move toward infinity in the left-half of the complex plane in a
Butterworth filter pattern [13].

The effect of loop transfer recovery is to essentially decouple the observer from the control input u

by raising the observer gain L so that the state estimate x̂ depends only on the plant output y. This is
illustrated in Figure 5.7. The decoupling is accomplished by the increasing noise intensity on u, which causes
L to increase such that y has a larger contribution to the state estimate.
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Figure 5.5: Loop gain of Ćuk converter controlled by LQR vs. LQG.

In order to accomplish LTR, the loop is broken at the control input as shown in Figure 5.8. The frequency
response of the loop from d to d′ is driven to asymptotically approach the frequency response of the system
with LQR control. Figure 5.9 shows the LQGI/LTR iterative design process applied to the Ćuk converter.
Initial LQGI design resulted in a gain margin reduction from infinity to 28.2 dB and a loss of phase margin
from 65.4◦ to 32.7◦. The iterative loop transfer recovery process resulted in a controlled system gain margin
of 30.2 dB and phase margin of 61.7◦. Iteration was stopped at that point since these margins are adequate.
Further iterations would result in larger observer gains that may be undesirable during implementation, and
recovery of the undesirable high frequency characteristics of the LQR compensator has already begun.
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Figure 5.6: LQG control effort.

Figure 5.7: Input decoupling effect of loop transfer recovery.
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Figure 5.8: The loop to be recovered during loop transfer recovery with a full-order observer.

−100

−50

0

50

100

M
ag

ni
tu

de
 (d

B
)

101 102 103 104 105 106

−250

−200

−150

−100

−50

0

Ph
as

e 
(d

eg
)

Frequency (rad/s)

LQRI

q=100

q=102

q=104

q=106

Figure 5.9: Loop transfer recovery of an LQGI compensator.
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Chapter 6

Compensator Order Reduction

With the advent of computer control of systems, high-order system models can be created that allow
model-based control methods (such as observer-based compensators) to be easily implemented. These dig-
ital controller implementations have many advantages over analog controllers, which may be considered to
be outdated. However, analog control can often still be performed at the circuit level with a few discrete
components and may be more cost-effective to implement when compared to a microprocessor and its associ-
ated support circuitry and programming. Thus, this section examines the idea of controller order reduction
for use with analog circuitry. It focuses first on reducing the order of an LQGI/LTR compensator using
model reduction techniques, then design of an LQGI/LTR compensator using a reduced-order Kalman filter
(ROKF), and finally, application of model reduction techniques to the ROKF-based compensator.

6.1 Model Reduction of the LQGI/LTR Compensator

Model reduction (MR) may be accomplished by creating a balanced realization (i.e., equal and diagonal
controllability and observability Gramian matrices) of the system to be reduced using a linear transformation
such as the balreal command [14]. Examination of the eigenvalues of the Gramian matrix of the balanced
realization allows the designer to identify states that are weakly coupled to both the input and output of
the compensator [15]. These states, which are at once both weakly controllable and weakly observable,
have small Hankel singular values associated with them and may be eliminated with little impact to the
performance of the compensator using the modred command.

In this case, the system to be reduced is the compensator. The balreal command identifies only two
states that may be eliminated from the LQGI/LTR compensator designed previously without significant loss
of accuracy, as may be predicted by the information provided from the pole-zero plot in Figure 6.1. Model
reduction resulted in the addition of a high-frequency zero for this particular compensator. This zero was a
simulation artifact created by the modred command, therefore it was removed by truncation.

Examination of the LQGI/LTR compensator poles, zeros, and gain of the Evans form of the transfer
function yields:

p =
[

−1490± 9000 i −1129500± 1129500 i 0
]

(6.1)

z =
[

−32410 −319 −1440± 9090 i
]

k = 7.195× 107

By comparing the frequencies at which the poles and zeros occur and their complex plane locations, it
can be seen that a complex pair of zeros at −1490 ± 9000i essentially cancels out a complex pair of poles
at −1440 ± 9090i. This is more readily viewed in the close-up view of the pole-zero plot in Figure 6.2.
Examination of the compensator after model reduction methods yields:

pr =
[

0 −1126800± 1132300 i
]

(6.2)

zr =
[

−319.5 −33035
]

kr = 7.18× 107
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Figure 6.1: Pole-zero plot of the LQGI/LTR compensator.
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Figure 6.2: Compensator pole-zero plot showing likely pole-zero pair cancellation.
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Once model reduction has been accomplished, validation must occur to verify that significant differences
do not exist between the full-order and model-reduced compensators. Comparison of the full-order and
model-reduced compensator frequency responses is shown in Figure 6.3. Based on this diagram, it is readily
apparent that the model-reduced compensator may be used to replace the full-order compensator without
significant difference, thus reducing the controller order. The MRLQGI/LTR compensator can then be
achieved with less analog circuitry than the LQGI/LTR yet still perform adequately, and therefore may be
selected for implementation.
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Figure 6.3: Compensator frequency response comparison following model reduction.

Care must be taken when performing model reduction to ensure desirable stability margins are not lost.
Comparable frequency responses between the full-order and model-reduced compensators tell the designer
that margins will probably not change appreciably during model reduction. Verification of margins was
performed for system with the MRLQGI/LTR compensator; no change in gain margin resulted but phase
margin was reduced to 61.2◦, a loss of 0.5◦, which is not a significant difference.

The step disturbance response for the model-reduced compensator is shown in Figure 6.4. The step
disturbance input is attenuated well, with a maximum deviation of just over 20 mV. This would be a
perfectly acceptable controller for the Ćuk converter, however, additional order reduction (though impossible
to achieve in this controller incarnation without significantly impacting performance) would be desirable and
is explored in the next section.

6.2 A Reduced-Order LQGI/LTR Compensator

The model-reduced compensator designed in Section 6.1 is based on pole-zero cancellation in a balanced
state-space realization of the Kalman filter and truncation to remove a high-frequency zero. However, a
compensator based on a LQRI paired with a reduced-order Kalman filter (ROKF) can be designed and
the LTR technique applied during the design process in order to develop a ROLQGI/LTR compensator.
Madiwale and Williams [16] described the mathematics necessary for performing loop transfer recovery with
reduced-order linear quadratic compensators and provided proofs that the equations used in this section
achieve LTR.
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Figure 6.4: Unit step disturbance response of Ćuk converter - MRLQGI/LTR compensator.

The design of the ROLQGI/LTR compensator begins with construction of a linear quadratic regulator.
Once the regulator gain K has been determined, the system matrices and K are partitioned to form a
reduced-order observer as in Equation 4.10.

Consider a minimum phase system with process noise ω (with positive definite Gaussian spectral density
matrix V ) that is distributed into the state dynamics by W and let the system be free from measurement
noise in the measured state vector xm:

ẋ = Ax+Bu+Wω (6.3)

y = xm

Process noise characteristics are usually difficult to determine or unknown. Thus, both W and the
corresponding noise spectral density V are manipulated as design parameters for determining the optimal
reduced-order estimator gain L in a manner similar to the manipulation of Q0 and R0 in full-order estimator
design methods. Both W and V are also partitioned as in Equation 4.10 in order to form the reduced-order
Kalman filter. Let:

V11 = W1V1W
′

1 + q2B1V2B
′

1 (6.4)

V12 = W1V1W
′

2 + q2B1V2B
′

2 (6.5)

V22 = W2V1W
′

2 + q2B2V2B
′

2 (6.6)

Then with:

Ā = A22 − V ′

12V
−1
11 A12 (6.7)

V̄ = V22 − V ′

12V
−1
11 V12

where V11 is nonsingular, the following ARE is solved for for Qo:

ĀQo +QoĀ′ −QoA
′

12V
−1
11 A12Qo + V̄ = 0 (6.8)
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The Kalman filter gain L can then be determined from:

L = (QoA
′

12 + V ′

12)V
−1
11 (6.9)

Now, as q is increased in Equations 6.4-6.6, the target feedback loop of the LQR controller is recovered.
Once again the loop is broken at the control input as shown in Figure 6.5. The frequency response of

the loop from d to d′ is again driven to asymptotically approach the frequency response of the system with
LQR control as shown in Figure 6.6, which is a plot of the iterative LTR process for this reduced-order
compensator and the Ćuk converter.

Figure 6.5: Loop transfer recovery with a reduced-order observer.

During simulation, it was found that the original matrices selected to represent the process noise had
values that were too large. The initial results showed loop transfer recovery had already occurred, therefore
the noise values had to be made smaller to verify that LTR was taking place. For the model of the Ćuk
converter to be controlled, the following partitions of the W and V matrices were used to simulate the
fictitious noise:

W1 =
[

1× 10−4 0 0
]

, W2 =









1× 10−5 0 0

0 1× 10−5 0

0 0 1× 10−5









V1 =









1× 10−5 0 0

0 1× 10−5 0

0 0 1× 10−5









, V2 = 1× 10−5

The scalar q was allowed to vary from 1× 10−10 to 1× 10−7 during the recovery process.
Examination of the Evans form of the ROLQGI/LTR compensator transfer function yields:

pr =
[

−1490.0± 9000.0 i −2466000.0 0.0
]

(6.10)

zr =
[

−32990.0 −319.2 −1442.0± 9087.0 i
]

kr = 70.74
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Figure 6.6: Loop transfer recovery of a ROKF-based LQGI compensator.

which shows a pole-zero pair that could possibly be canceled via model reduction methods. The balanced
realization approach to model reduction discussed in Section 6.1 was applied. Comparison of the Hankel
singular values produced by the balreal command revealed that only two states could be eliminated without
significant loss of accuracy in the controller model. Elimination of these states resulted in a second-order
compensator that had the following characteristics for its Evans form transfer function:

pr =
[

0.0 −2469000.0
]

(6.11)

zr =
[

−319.4 −33570.0
]

kr = 70.76

This model-reduced compensator has a pole at the origin and two zeros on the negative real axis left of
the pole, which is a classical PID controller. It also has another pole on the negative real axis beyond the
zeros, which corresponds to high frequency low-pass filtering. It may therefore be thought of as a feedback
PID compensator with the derivative term acted upon by a first-order low-pass filter. This type of filtered
derivative action is implemented in PID controllers to reduce the bandwidth of the controller and associated
undesirable amplification of high-frequency noise, as well as to make them implementable (the ideal PID
equation is non-causal due to the fact that there is an excess of zeros). This PID controller is very simple
to implement with a single inverting operational amplifier configuration. A second inverter buffer stage is
needed to eliminate the undesirable inversion caused by the first stage.

A frequency response comparison of the two compensators designed in this section is shown in Figure 6.7.
There is excellent correlation between the Bode plots, showing that the MRROLQGI/LTR compensator
performance will be almost exactly the same as the ROLQGI/LTR compensator.

Initial ROLQGI design resulted in no gain margin reduction from infinity but had a loss of phase margin
from 65.4◦ to 56.3◦. The iterative loop transfer recovery process resulted in a controlled system phase
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Figure 6.7: Comparison of compensator frequency response - ROLQGI/LTR and MRROLQGI/LTR.

margin of 63.7◦. Further iterations would result in larger observer gains that may be undesirable during
implementation. Verification of margins was performed for system with the MRROLQGI/LTR compensator;
no change in gain margin resulted but phase margin was reduced to 63.3◦, a loss of 0.4◦. Again, this is not
a significant difference.

The step disturbance response for the model-reduced compensator is shown in Figure 6.8. The step
disturbance input is attenuated well, with a maximum deviation of less than 20 mV. This is a perfectly
acceptable controller for the Ćuk converter.
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Figure 6.8: Unit step vg response of Ćuk converter - MRROLQGI/LTR compensator
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Chapter 7

Compensator Implementation

At this point, four optimal compensator designs that rely on output feedback and state estimation have
been developed. The initial design of the optimal compensator began with a fifth-order controller comprising
four estimated states for each of the states in the plant and an augmented integral state (LQGI/LTR).
Model reduction techniques applied directly resulted in a third-order controller (MRLQGI/LTR), which was
a significant improvement in terms of minimizing the circuitry for implementation. The final design began
with a fourth-order compensator based on a three states from a reduced-order observer augmented by an
integral state (ROLQGI/LTR), to which model reduction techniques were applied to form a second-order
transfer function (MRROLQGI/LTR). This final regulator had the form of a classical PID controller. The
final design had a significant reduction in circuitry yet maintained excellent performance in both the time
and frequency domains.

The reduced-order compensators developed in Section 6 using model reduction techniques can be im-
plemented with analog circuits using operational amplifiers. The goal is to use the minimum amount of
components and circuitry for control (to minimize manufacturing costs) while maintaining adequate con-
troller performance.

7.1 Model-Reduced LQG/LTR Compensator Implementation

The model-reduced compensator designed in Section 6.1 has two zeros on the negative real axis, a
LHP pair of complex poles, and a pole at the origin. This compensator can be implemented by a PI
compensator cascaded with a Tow-Thomas biquadratic filter as seen in Figure 7.1. The Tow-Thomas filter
is a general second-order filter able to implement low-pass, high-pass, band-pass, notch, and all-pass filters
with appropriate choices of coefficients of the filter transfer function [17]:

Tb(s) =
a2s

2 + a1s+ a0

b2s2 + b1s+ b0
(7.1)

The biquad filter section is used to implement the second-order denominator term with a simple zero by
setting a2 = 0. The PI section is used to implement the other real zero and the pole at the origin. For both
sections, it is desirable to keep the poles and zeros within a certain frequency tolerance of each other to keep
the component values reasonable in size. The transfer function of the PI section is given by:

Tp(s) = −
C1

C2

(s+ 1
C1R1

)

s
(7.2)

The transfer function of the biquad filter section is given by:

Tb(s) = −

1
C3R2

s+ 1
C2

3
R4R5

s2 + 1
C3R3

s+ 1
C2

3
R2

4

(7.3)
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Figure 7.1: The MRLQGI/LTR compensator implemented using operational amplifiers.

7.2 Model-Reduced ROLQGI/LTR Compensator Implementation

A practical example of the MRROLQGI/LTR compensator requires fewer components to implement than
the MRLQGI/LTR circuit. It is simply an analog PID controller [18]. Consider the circuit in Figure 7.2.
With the inverting opamp configuration and some algebraic manipulation, the transfer function is shown to
be:

T (s) =
R3

R2

(s+ 1
C2R3

)(s+ 1
R1C1

)

s(s+ R2+R1

R1R2C1

)
(7.4)

which shows the following zeros, poles, and gain:

poles =
[

0 −(R2+R1)
R1R2C1

]

(7.5)

zeros =
[

−1
C2R3

−1
R1C1

]

gain =
R3

R2

Component values may be determined by equating the expressions in 7.5 with the compensator values given
in 7.11. Since there are fewer equations than unknowns, one of the component values must be fixed before the
other component values may be determined. The final design used the component values given in Table 7.1.
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Figure 7.2: The analog MRROLQGI/LTR compensator implementation.

Table 7.1: Component values for MRROLQGI/LTR compensator implementation.

Component Value

R1 100 kΩ
R2 1.4 kΩ
R3 100 kΩ
C1 0.29 nF
C2 31.3 nF
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Chapter 8

Power Electronic Circuit Simulation

The MRROLQGI/LTR compensator required the least amount of circuitry and was therefore selected
for implementation and testing in PECS. The PECS environment provides for relatively short run times
compared to SPICE-based circuit simulation environments since power electronics circuits can typically be
simulated with simpler component models than other types of analog circuits.

8.1 Simulating the Controlled Ćuk Converter in PECS

The PECS implementation of the MRROLQGI/LTR compensator design from Section 7.2 connected to
the Ćuk converter can be seen in Figure 8.1.

Figure 8.1: PECS simulation of Ćuk converter - MRROLQGI/LTR compensator.

First, the small-signal operation was tested using a step disturbance in vg as was used during controller
design. A simulation was set up to provide for input voltage steps up and down from the nominal 12 V
using a unit step to 13 V on the Ćuk input. The simulation used a time step of 1 µs, a run time of 0.1 s.
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The results of this simulation are shown in Figure 8.2. The maximum deviation in the output voltage is

Figure 8.2: Unit step vg disturbances and vo response - MRROLQGI/LTR compensator.

only 0.022 V in response to a step input of 1 V. (Note that ripple voltage exists in the simulation which is
not present in the state space averaged model simulations in MATLAB. Neglecting the ripple did not pose
a problem, however, during the control system design process.)

Next, a large-signal simulation was set up to provide for input voltage steps up and down from the
nominal 12 V through a specified operating range of 9-14 V on the Ćuk input. The results of the large-signal
simulation are shown in Figure 8.3. The maximum deviation of 0.11 V in the output voltage occurred when
the input voltage drops sharply from 14 V to 9 V but is rapidly brought back under control. This value is
well within the 0.24 V tolerance that was specified for controller performance.

Finally, a simulation was set up to provide for 25% load current steps (0.214 A) around the nominal load
current of 0.857 A. The results of this simulation are shown in Figure 8.4. The maximum deviation of 0.175
V in the output voltage occurred when the load current dropped sharply from 1.071 A to 0.643 A, but this
is within the transient design specification of regulation to within 1% of the nominal output voltage.

The ability to reject large scale input voltage and load disturbances shows that the compensator design
is excellent. The MRROLQGI/LTR controller allowed the system to not only meet the performance spec-
ifications, but to exceed them, and achieved these results after two separate reduction of order techniques
(reduced-order observer and model reduction) were applied during the design process.
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Figure 8.3: Large signal vg disturbances and vo response - MRROLQGI/LTR compensator.

48



Figure 8.4: Load current disturbance and vo response - MRROLQGI/LTR compensator.
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Chapter 9

Conclusion

This thesis showed the process of modern control design methods applied to regulator design for a Ćuk
DC-DC converter. Full state feedback control for pole placement was applied - first without integral effort,
then with an integrator added. Output compensation using state estimation techniques with full- and
reduced-order observers was then discussed and simulated. LQR and LQG/LTR techniques were then used
to design compensators that were optimized with respect to quadratic performance indices based on state
and control effort transients. Finally, two methods of model reduction were introduced. Balanced realization
of the LQGI/LTR compensator identified weakly controllable/observable states, which were then removed
using truncation to create a third-order compensator (MRLQGI/LTR) that could be implemented with a
combination PI/Tow-Thomas biquad circuit. When the reduced-order Kalman filter-based compensator
design (ROLQGI/LTR) was combined with model reduction using a balanced realization, the result was a
second-order compensator (MRROLQGI/LTR) implementable by an analog PID compensator. Since fewer
components were necessary, the Ćuk converter with MRROLQGI/LTR compensator was simulated in a
power electronics modeling environment and showed excellent input voltage and load current disturbance
rejection abilities.
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Appendix A

The Ćuk Converter
Circuit Model Derivations

A.1 Component Values

Ćuk converter circuit component values used in this paper:

L1 = 0.5mH

R1 = 0.01Ω

L2 = 7.5mH

R2 = 0.01Ω

M = −1.5mH

C1 = 2.0µF

C2 = 20µF

R = 30Ω

Vg = 12V

d = 0.667

f = 100 kHz

A.2 Analysis of Inductors with Mutual Coupling
and Equivalent Series Resistances

The equations for the voltage across two inductors L1 and L2 joined by mutual coupling are:

vL1
= L1

di1

dt
+M

di2

dt

vL2
= M

di1

dt
+ L2

di2

dt

The solutions of the two simultaneous equations are:

di1

dt
=

L2

L1L2 −M2
vL1

+
−M

L1L2 −M2
vL2

di2

dt
=

−M

L1L2 −M2
vL1

+
L1

L1L2 −M2
vL2
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For the circuit with equivalent series resistances included in the inductor models when Q1 conducts:

vL1
= vg − i1R1

vL2
= v1 − v2 − i2R2

therefore:

di1

dt
=

M

σ2
v2 +

−M

σ2
v1 +

MR2

σ2
i2 +

−L2R1
σ2

i1 +
L2

σ2
vg

di2

dt
=

−L1
σ2

v2 +
L1

σ2
v1 +

−L1R2
σ2

i2 +
MR1

σ2
i1 +

−M

σ2
vg

with σ2 = L1L2 −M2.

52



When Q1 does not conduct:

vL1
= vg − i1R1 − v1

vL2
= −v2 − i2R2

therefore:

di1

dt
=

M

σ2
v2 +

−L2
σ2

v1 +
MR2

σ2
i2 +

−L2R1
σ2

i1 +
L2

σ2
vg

di2

dt
=

−L1
σ2

v2 +
M

σ2
v1 +

−L1R2
σ2

i2 +
MR1

σ2
i1 +

−M

σ2
vg

with σ2 = L1L2 −M2.

A.3 The State Space Averaged Model

State space averaging is a well-known method used in modeling switching converters. For a system with
a single switching component with a nominal duty cycle, a model may be developed by determining the state
and measurement equations for each of the two switch states, then calculating a weighted average of the two
sets of equations using the nominal values of the time spent in each state as the weights. To develop the
state space averaged model, the equations for the rate of inductor current change derived in the preceding
section are used along with the equations for the rate of capacitor voltage change that may be derived from
the Ćuk converter circuit. For the purposes of modeling, the state vector is given by:

x =
[

v2 v1 i2 i1
]

′

When Q1 conducts, the following state space matrices result:

A1 =















− 1
RC2

0 1
C2

0

0 0 −1
C1

0

−L1

σ2

L1

σ2 −L1 R2

σ2

MR1

σ2

M
σ2 −M

σ2

MR2

σ2 −L2 R1

σ2















B1 =















0

0

−M
σ2

L2

σ2















C1 =
[

1 0 0 0
]

D1 = [0]
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When Q1 is not conducting, the circuit model is represented by the following state space matrices:

A2 =















− 1
RC2

0 1
C2

0

0 0 0 −1
C1

−L1

σ2

M
σ2 −L1 R2

σ2

MR1

σ2

M
σ2 −L2

σ2

MR2

σ2 −L2 R1

σ2















B2 =















0

0

−M
σ2

L2

σ2















C2 =
[

1 0 0 0
]

D2 = [0]

By representing the duty cycle of the switch as Ds, the following results may be obtained for a state space
averaged model of the Ćuk converter:

D′

s

∆
= 1−Ds

Vo

Vg
=

Ds

1−Ds

=
Ds

D′

s

A = DsA1 +D′

sA2

B = DsB1 +D′

sB2

C = DsC1 +D′

sC2

D = DsD1 +D′

sD2

X = −A−1BVg

Bd = (A1 −A2)X + (B1 −B2)Vg

Dd = (C1 − C2)X + (D1 −D2)Vg

˙̃x = Ax̃+Bṽg +Bdd̃

ṽo = Cx̃+Dṽg +Ddd̃

where the tilde (˜) indicates a small signal deviation from nominal, and:

x = X + x̃

vg = Vg + ṽg

d = Ds + d̃

vo = Vo + ṽo
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A =















− 1
RC2

0 1
C2

0

0 0 −Ds

C1

1−Ds

C1

− L1

L1 L2−M2

DsL1+M−DsM
L1 L2−M2 0 0

M
L1 L2−M2

−DsM−L2+L2 Ds

L1 L2−M2 0 0















B =















0

0

− M
L1 L2−M2

L2

L1 L2−M2















C =
[

1 0 0 0
]

D = [0]

Bd =

















0

−
DsVg

R(1−Ds)
2C1

Vg (L1−M)
(1−Ds)(L1 L2−M2)

Vg (−M+L2 )
(1−Ds)(L1 L2−M2)

















Dd = [0]

The equilibrium state vector is:

X =















V2

V1

I2

I1















=



















DsVg

1−Ds

Vg

1−Ds

DsVg

R(1−Ds)

Ds
2Vg

R(1−Ds)
2


















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