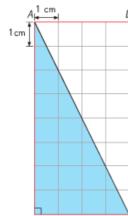
Area of a Triangle

Finding the Area of a Triangle

Lesson Objective


 Find the area of a triangle given its base and its height.

Vocabulary

area right triangle acute triangle obtuse triangle

Area Rectangle - Lxw

The area of a triangle is half the area of a rectangle with the same 'base' and 'height' or half its base times height.

The area of triangle ABC is half the area of rectangle ABCD.

ABCD is a rectangle.

In triangle ABC, \overline{AB} is perpendicular to \overline{BC} .

 \overline{BC} is the base and AB is the height.

The length of the base $\overline{BC}=4$ cm and the height AB=8 cm.

Area of triangle $ABC = \frac{1}{2} \times$ area of rectangle ABCD

$$=\frac{1}{2}\times 4\times 8$$

$$=\frac{1}{2}\times BC\times AB$$

$$=\frac{1}{2} \times \text{base} \times \text{height}$$

Tixipole

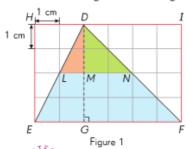
The length 4 cm and the width 8 cm of rectangle ABCD are exactly the base and the height of triangle ABC.

So,
$$\frac{1}{2} \times 4 \times 8 = \frac{1}{2} \times BC \times AB$$

$$=\frac{1}{2} \times \text{base} \times \text{height}$$

Triangles can be identified by type:

Right triangle — A triangle with exactly one right angle.


Acute triangle — A triangle with all angles measuring less than 90°.

Obtuse triangle — A triangle with one angle measuring greater than 90°.

On page 256, you saw that a right triangle ABC has an area that is half the area of the corresponding rectangle or $\frac{1}{2} \times \text{base} \times \text{height. You shall}$ now check if the same is true of the area of the two other types of triangles.

- 1 In triangle DEF, EF is the base and DG is the height.
- Use a copy of Figure 1. Cut out triangles *DLM* and *DMN*. Rearrange the two triangles as shown in Figure 2.

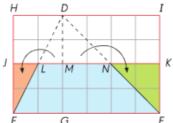
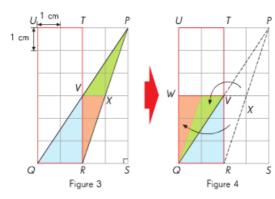


Figure 2

Complete.

Area of triangle DEF = area of rectangle

 $=\frac{1}{2}$ × area of rectangle


 $=\frac{1}{2} \times EF \times IF$

 $=\frac{1}{2}\times EF\times$

 $=\frac{1}{2} \times base \times$

Complete.

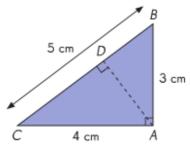
Area of triangle
$$PQR$$
 = area of rectangle

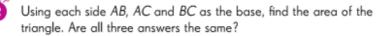
$$=\frac{1}{2}$$
 × area of rectangle

$$=\frac{1}{2}\times QR\times TR$$

$$=\frac{1}{2}\times QR\times$$

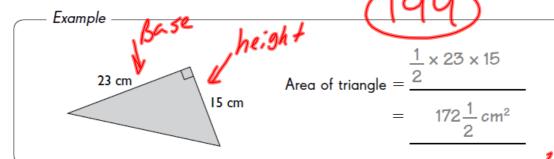
$$=\frac{1}{2} \times base \times$$

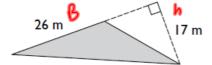

What can you say of the area of triangle DEF? How about triangle PQR?



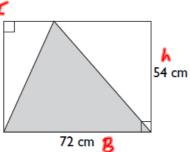
Try this.

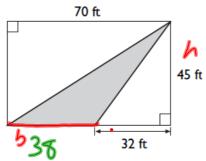
In triangle ABC, \angle BAC is a right angle and AD is perpendicular to BC.



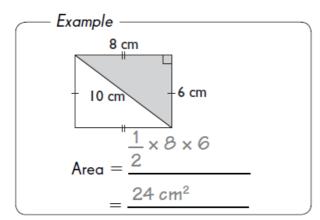

Practice 2 Finding the Area of a Triangle

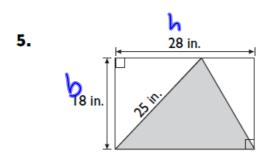
Find the area of each shaded triangle. Show each step and give your answer using the correct units.


1.


© 2009 Marshall Cavendish International (Singapore) Private Limited

$$A = 12b \cdot V$$
 $A = 13 \cdot 17$


2 172 2 1/2 2.


$$A = 1/2b \cdot h$$
 $A = 19 \cdot 45$
 $A = 855 + 4^{2}$

Find the area of each shaded triangle.

9 in. 4 in. 12 in.

Area = _____

6. 5 cm 5 cm

Area = _____

Area = _____

7. 4 in. 5 in. 7 in.

Area = ______

Area = _____