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1 Introduction

Healthcare providers face a tradeoff between increasing the number of patients they treat and

maintaining high standards of care. This tension between the quality and quantity of treat-

ments lies at the center of many recent policy initiatives, such as Medicare’s prospective pay-

ment system that ties reimbursements to a fixed amount per service irrespective of a provider’s

actual costs. Although these initiatives aim to limit wasteful healthcare expenses, they may

inadvertently result in less-effective care if providers cut costs by reducing the quality of their

treatments. As such, measuring the tradeoff between the number and quality of treatments is

crucial for understanding the impact of any potential policy change, though doing so in a way

that properly accounts for differences in productivity across providers poses several econometric

challenges. This paper examines the quality-quantity tradeoff explicitly and provides an empir-

ical framework for measuring its magnitude. Applied to the dialysis industry, we find that the

cost of improving treatment quality is substantial, whereas previous measurement techniques

would show only a small tradeoff.

Centers that provide outpatient dialysis treatment — a process that cleans the blood of

patients with kidney failure — face a particularly acute quality-quantity tradeoff, and several

institutional details make it a natural setting for studying the relationship between productivity

and quality within health care. First, dialysis treatments follow a straightforward process related

to stations and staff, which allows us to closely approximate a facility’s production function.

Second, we observe centers’ input levels (i.e., staffing and machines) and production (i.e., patient

loads), which allows us to cleanly identify the transformation of inputs into outputs. Third,

facilities have observable differences in outcomes that relate directly to the quality of care they

provide (e.g., infections and mortality), which allows us to connect a center’s inputs and outputs

to its treatment quality. Fourth, payments for treatment are largely uniform due to Medicare’s

prospective payment system and do not depend on treatment quality, making it possible for us

to distinguish quality choices from price discrimination.1 Finally, payments to dialysis facilities

are substantial, at over $20 billion in 2011 and 6 percent of total Medicare spending, which

allows us to implement our model on an important area for policy analysis.

1In 2012, Medicare instituted a Quality Incentive Program (QIP) for dialysis centers that reduces reimbursements
by 2 percent if centers do not adhere to a quality standard for average hemoglobin levels and urea reductions rates, two
measures of the effectiveness of dialysis. Although it is considered a novel attempt to incorporate quality standards
into the Prospective Payment System, the QIP does not account for infection rates — clearly an important measure
of treatment quality — in its measurement system. The QIP was not in effect for the timespan covering the data
used in our analysis.
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Identifying a quality-quantity tradeoff among dialysis providers requires us first to under-

stand the incentives centers face for providing high-quality care. Most directly, dialysis centers

have an incentive to minimize treatment costs under Medicare’s prospective payment system,

which may lead them to provide low-quality — and hence less-costly — care. As an example,

a center can treat more patients if it spends less time cleaning machines after each use, al-

though doing so increases the risk of patients acquiring infections. Counteracting the incentive

to increase patient loads by reducing treatment quality are several motivations for maintaining

high standards.Perhaps most notably, centers must report quality statistics to Medicare and

face intermittent inspections by state regulators, with Ramanarayanan & Snyder (2011) finding

that these reports have a causal impact on the quality of care provided by dialysis centers.2 In

addition, patients have some choice over their dialysis providers and nephrologists make referrals

based, in part, on a center’s effectiveness, potentially leading centers to compete for patients

by providing higher-quality care (Dai 2014). Finally, non-profit centers may have objectives

for providing high-quality care unrelated to maximizing profits (Sloan 2000). In keeping with

these studies, we find that the frequency of inspections, the number of years since a center was

last inspected, and nephrologists’ referral rates are all correlated with centers’ infection rates.

In recognition of this institutional detail, our model of centers’ quality choices includes such

incentive shifters, as they provide an important source of variation that allows us to identify a

center’s quality-quantity tradeoff.

After establishing centers’ motivations for providing high-quality care, determining whether

dialysis centers do, in fact, face a costly tradeoff between quality and quantity requires us to

overcome two key econometric challenges: the presence of unobserved differences in productivity

across centers and the difficulty of directly measuring centers’ quality choices.

As it relates to the first challenge, unobserved differences in productivity may bias esti-

mates of the quality-quantity tradeoff: because centers choose their targeted levels of quality,

estimating the relationship between quality and quantity becomes confounded by unobserved

differences in productivity, such as staff skill levels, managerial ability, or patient characteristics,

which are observable to the center but not to the researcher.3 As greater productivity effectively

shifts out a center’s production possibilities frontier, the center becomes able both to treat more

2Using a regression discontinuity approach, they show that centers rated just below the threshold between “worse
than expected” and “as expected” on annual CMS reports have improve their performance in the following year
relative to those that narrowly surpass the threshold.

3While we control for observable differences in patient characteristics, unobservable differences may still affect
centers’ input and quality choices.

2



patients and to provide better care. At the extreme, high levels of unobserved productivity may

even generate a positive correlation between quality and quantity; this correlation would bias

reduced-form estimates of the quality-quantity tradeoff and lead researchers to underestimate

facilities’ true costs of improving their quality standards.

To obtain consistent cost estimates for providing higher-quality care, we build on the struc-

tural methods for estimating firm-level production functions first proposed by Olley & Pakes

(1996), and later extended by Levinsohn & Petrin (2003), Ackerberg et al. (2015) Gandhi et al.

(2016), and others. Conceptually, we adapt these methods to incorporate a “quality-choice”

stage that comes after a center’s choices of labor and capital inputs. That is, after acquiring

capital and training workers, a manager observes her center’s expected level of productivity and

dictates an optimal level of quality by, for example, stipulating guidelines for the cleanliness of

equipment or the amount of time between shifts. Incorporating these endogenous quality choices

into our estimation technique is a necessary adjustment for healthcare settings such as dialysis

because providers would otherwise appear more productive when they are instead treating many

patients ineffectively.

To address the second main econometric challenge — that we do not directly observe cen-

ters’ quality choices — we use observable measures of patient outcomes as proxies for what those

choices must have been. Our approach is based on the assumption that, if high-quality care is

more likely to result in better health outcomes, those outcomes are valid proxies for unobserved

quality choices. Proceeding in this manner, however, presents two additional complications.

First, health outcomes depend not just on the choices made by centers, but also on patients’

underlying characteristics. To account for this, we use center-level patient characteristics to con-

trol for key sources of variation in the patient population that could influence health outcomes.

Second, health outcomes depend on many factors beyond just the quality of care provided by

centers, including a large random component, which introduces attenuation bias into standard

estimation techniques. In light of this, we employ multiple measures of health outcomes —

in our case, derived from centers’ septic (blood) infection and mortality rates — and use an

instrumental variable approach to recover the impact of quality choices on output.

From our analysis, we find a substantial quality-quantity tradeoff for dialysis treatments: a

center can increase its patient load by 1.6 percent by reducing the quality of its treatments such

that the expected septic infection rate increases by 1 percentage point, holding input levels and

productivity constant. This corresponds to an elasticity of quantity with respect to quality of
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-0.185 at the median, with an inter-quartile range from -0.127 to -0.251. Equivalently, holding

the number of patients constant but allowing a one standard deviation increase in the targeted

infection rate would reduce a center’s costs by the equivalent of five full-time employees, which

almost 40 percent of the staff at an average center.

In an extension of our model, we allow for a heterogeneous quality-quantity tradeoff across

providers. By making the production frontier’s slope a function of each center’s scale or input

mix, we find that the tradeoff depends on a center’s capital-labor ratio. Specifically, a high

capital-to-labor ratio corresponds to a steeper-than-average tradeoff (that is, centers can increase

output more for a given decrease in quality), while centers with relatively more labor have a

flatter tradeoff. Although intuitive, our finding that the quality-quantity tradeoff depends on a

center’s input mix and scale is, to our knowledge, novel in the healthcare literature.

In addition to informing policy discussions surrounding productivity in health care, our

paper also contributes to the growing literature in empirical industrial organization related to

the estimation of production functions. These methods have a long history in economics, with

much prior work focused on selection and simultaneity bias.4 In light of this, more recent

work has developed structural techniques that use centers’ observed input decisions to control

for unobserved productivity shocks and overcome endogeneity problems.5 We extend these

methods to incorporate observable measures of output quality into the production function,

which is necessary for healthcare applications. To our knowledge, we are the first to apply these

methods to a healthcare setting with the goal of measuring a quality-quantity tradeoff.6 Our

work also connects to the literature on firms’ quality choices within regulated industries (Joskow

& Rose 1989, Crawford & Shum 2007), as measuring the tradeoff is central to understanding

the full impact of regulations.

The remainder of our paper continues in the following section with a description of the

outpatient dialysis industry and our data sources. Section 3 proposes a structural model for

estimating a production frontier in the presence of unobserved productivity differences and an

endogenous quality choice. Section 4 shows how variation in our data can be used to identify the

model. Section 5 outlines the implementation of our estimator for the parameters of the model,

4See Syverson (2011) for a recent review.
5See, for example, Olley & Pakes (1996), Ackerberg et al. (2015), and Levinsohn & Petrin (2003).
6Romley & Goldman (2011) consider quality choices among hospitals using a revealed-preference approach rather

than outcome-based quality measures. Gertler & Waldman (1992) estimate a quality-adjusted cost function for
nursing homes. Lee et al. (2013) use a structural approach to measure the impact of healthcare IT on hospital
productivity, but do not consider output quality.
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while Section 6 presents our estimation results. Finally, Section 7 concludes with a discussion

of our findings’ implications for policy analysis.

2 The Dialysis Industry and Data

The demand for dialysis treatments comes from patients afflicted with end-stage renal disease

(ESRD), a chronic condition characterized by functional kidney failure that results in death

if not managed properly. Patients with ESRD have only two treatment options, a kidney

transplant or dialysis. Due to the long wait-list for transplants, however, nearly all ESRD

patients must at some point undergo dialysis, a medical procedure that cleans the blood of

waste and excess fluids. Patients can receive different dialysis modalities, with hemodialysis,

a method that circulates a patient’s blood through a filtering device before returning it to the

body, constituting 90.4 percent of treatments (Center for Medicare and Medicaid Services). The

typical dialysis regimen calls for three treatments per week lasting 2 to 5 hours each, with the

duration dictated by a nephrologist to meet clinical thresholds. Although treatment lengths

depend on individual patient characteristics, such as the severity of ESRD, treatment frequency

rarely deviates from the standard protocol of three sessions per week.7

Patients receiving dialysis in the United States primarily do so at free-standing dialysis

facilities, which collectively comprise over 90 percent of the market (USRDS 2010).8 Medicare’s

ESRD program, instituted by an act of Congress in 1973, covers 90 percent of these patients;

notably, all patients with ESRD become eligible for Medicare coverage, regardless of age, and the

program now includes over 400,000 individuals. Today, Medicare spends more than $20 billion

a year on dialysis care — approximately $77,000 per patient annually — which represents more

than six percent of all Medicare spending despite constituting fewer than one percent of Medicare

patients (ProPublica 2011).

Beginning in 1983, Medicare has paid dialysis providers a fixed, prospective payment per

treatment — the “composite rate” — up to a maximum of three sessions per week per patient.

Initially, payments did not adjust for quality, length of treatment, dialysis dose, or patient

characteristics, though Medicare began to adjust payments based on patient characteristics in

2005, which were approximately $135 per session throughout the course of our study. Many

7Generally, Medicare reimbursements are limited to three sessions per week. Hirth (2007) argues that this limit
may lead to inadequate dialyzing for some patients.

8Other options for receiving dialysis include hospital emergency rooms and in-home treatments.
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have speculated that this payment structure affects the quality of dialysis treatments, such as

Hirth (2007) who states, “Research on the relationship between payment for dialysis and the

quality and nature of the process is not definitive, but there is evidence that practices such

as dialyzer reuse, staffing reductions, and scheduling inflexibilities (fewer dialysis stations per

patient) were encouraged by financial pressures.”

Dialysis requires constant supervision by trained medical professionals, as patients must re-

main connected to a station for several hours while being treated. Prior to treatment, staff

connect the machine to a patient by inserting two lines into a vascular access and assess his

condition. During treatment, staff must continually monitor patients and treat any compli-

cations that arise (e.g., hypotension). Following treatment, staff disconnect the patient from

the station and assess his condition a final time before discharge; they then clean and sterilize

machines in advance of the next patient. As a result of this labor-intensive and hands-on care,

the cost per patient treated necessarily increases with the average amount of time devoted to

treatments and cleaning. Labor costs, which consist largely of nurses and technicians’ wages,

reflect this, accounting for approximately 70 to 75 percent of a facility’s total variable costs

(Ford & Kaserman 2000).

Centers’ employees have varying skill levels, with registered nurses (RNs) comprising the

majority of staff. Technicians, who have less-extensive training than RNs, also treat patients

and can do so with only a high-school diploma and in-house training (although they must

eventually pass a state or national certification test). Notably, centers cannot quickly react

to changes in productivity by hiring more workers due to persistent nurse shortages and the

additional training and certification required to become a dialysis nurse. As an example of this,

for-profit dialysis chain Fresenius claims in an internal report that, “In practical terms, nurse

staffing turnover is a costly proposition because of the training required to bring new hires up

to speed.”9 Centers also must have board-certified physicians as medical directors (usually a

nephrologist), but commonly have no physician on site. Medicare does not mandate a specific

staffing ratio for dialysis centers, although some states do.

In addition to staffing levels, another significant decision for dialysis facilities is the number

of stations to operate. Each station can serve only one patient at a time, and stations must be

thoroughly disinfected after each use. Centers vary widely in terms of size, ranging from 1 to

80 stations. Based on industry reports, a typical dialysis station costs $16,000 and has a useful

9See “FMS Pathways: Nursing Shortage,” http://bridgesights.com/hillwriter/Nursing%20Shortage.pdf
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life of approximately seven years (Imerman & Otto 2004).

Along with labor and capital decisions, centers must also choose how much effort to put

towards providing high-quality care, the central focus of our study. Quality in this setting

can mean many things, from the effectiveness of dialysis in removing urea from blood to the

comfort of patients during treatment. We focus on a dimension of quality directly related to

improving patients’ health, a patient’s risk of contracting a septic infection, as such infections

are particularly costly and life-threatening for patients. As an alternative measure of quality,

we also consider centers’ excess mortality rates, described below.

Centers can allocate their labor and capital resources in ways that improve patients’ health

outcomes, but doing so comes with the opportunity cost of treating fewer patients. For example,

infections stem in large part from the exposure of a patient’s blood during dialysis, making the

cleanliness of the center and its stations a key determinant of health outcomes. Because dialysis

sessions require up to one hour of preparation and cleaning, the center has considerable control

over its targeted infection rate, as health professionals who follow straightforward procedures

can virtually eliminate their patients’ risk of contracting infections (Patel et al. 2013, Pronovost

et al. 2006).10

Centers may also have some limited scope for shortening patients’ treatment times, which

also would represent a reduction in treatment quality at the margin.11 In an international

survey of dialysis centers, Tentori et al. (2012) found that the average treatment time in the

United States was 214 minutes, with a 95 percent confidence interval of 197 to 231 minutes

across centers.12 This study also finds that longer treatment times are associated with lower

infection rates and better rates of survival.

Reducing the risk of infection and mortality with either longer cleaning times or longer

treatment times comes with the opportunity cost of treating fewer patients due to the resource

constraints of the facility, which may ultimately reduce the center’s profits. That is, because a

facility’s reimbursement per treatment does not vary with the treatment’s duration or thorough-

ness of cleaning under Medicare’s prospective payment system, a facility’s profit per treatment

decreases as treatment and cleaning times — and, hence, costs per patient — increase. In

10There may also be differences in the quality of dialysis stations in regards to how efficiently they can be cleaned,
although this is not highlighted in industry reports or CDC guidelines that emphasize thorough cleaning and steril-
ization of machines, the use of appropriate disinfectants, and the monitoring and appropriate cleanup of blood and
other fluid spills (CDC 2001).

11Although patient treatment times are dictated by a nephrologist, slight deviations between the prescribed treat-
ment time and the actual treatment time are at the discretion of the center.

12Average treatment times in the United States were the shortest of the 12 countries surveyed in the study.

7



essence, the tradeoff faced by centers stems from their choice to either improve treatment qual-

ity or decrease costs.13

An extensive medical literature has examined these tradeoffs in health care more generally,

mostly from an accounting perspective (Weinstein & Stason 1977). Morey et al. (1992), for

example, found that a 1 percent increase in a hospital’s quality of care increased costs by 1.3

percent; Jha et al. (2009) found that low-cost hospitals had slightly worse risk-adjusted outcomes

for common medical conditions; and Laine et al. (2005) found that efficient wards struggled to

maintain high quality standards for conditions that require time-consuming nursing procedures.

Building on this literature, we consider the tradeoff using a structural model of healthcare

provision that controls for possible confounding factors, such as centers’ endogenous quality

decisions and the measurement error that arises from using observable outcomes as proxies for

centers’ unobservable choices.

To study the relationship between the quality and quantity of treatments, we use a dataset

derived from annual reports compiled by the Centers for Medicare and Medicaid Services (CMS)

for each dialysis facility across the country. In December 2010, ProPublica, a non-profit orga-

nization dedicated to investigative journalism, obtained these reports under the Freedom of

Information Act and posted them online. We systematically downloaded all individual reports

covering 2004-2008 and constructed a usable dataset. The data include detailed center-level

information on aggregated patient (e.g., age, gender, co-morbid conditions, etc.) and facility

(e.g., number of stations and nurses, years in operation, etc.) characteristics.

Table 1 presents selected summary statistics from the data, with several variables deserving

note. First, CMS analyzes individual patient records and calculates the number of patient-years

attributable to each center (e.g., a patient treated at a center for six months is counted as one

half of a patient-year). We use this variable as our measure of output, as it provides an accurate

record of dialysis provision that accounts for partial years of service due to death, transfers,

transplants, newly diagnosed patients, and so forth.14 We also use the number of full-time

equivalent (a weighted mix of full-time and part-time) employees at each center as our measure

of labor and the number of dialysis stations as our measure of capital. The average center

13Critics allege that facilities may sacrifice their quality of care in pursuit of efficiency, turning over three to four
shifts of patients a day. And while policy makers contend that technicians should not monitor more than four patients
at once, patient-to-staff ratios exceed this guideline at many facilities. At the extreme, inspection reports allege that
some clinics have allowed patients to soil themselves rather than interrupt dialysis (ProPublica 2011).

14Since treatment is mostly standardized at three treatments per week and the goal of dialysis is to clean the blood,
we do not consider differences in treatment times as output variation.
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Table 1: Summary Statistics

Variable Mean St. Dev.

Patient Years 50.856 31.913
FTE Staff 13.484 7.769
Net Hiring 0.182 3.868
Zero Net Hiring 0.127 0.333
Stations 18.612 7.877
Zero Net Investment 0.923 0.266
Septic Infection Rate 12.504 6.399
Excess Mortality 1.041 0.405

Number of Centers 4,270
Number of Center-Years 18,295

Notes: Summary statistics from the dialysis facility
reports. The unit of observation is a center-year.
Patient Years is the annualized number of patients
treated at a center. FTE Staff is the number of full-
time equivalent nurses and technicians at the center.
Net Hiring is the annual change in FTE staff. Zero
Net Hiring is a dummy variable equal to 1 if a center
had no net change in FTE staff that year. Stations
is the number of dialysis stations at the center. Zero
Net Investment is is a dummy variable equal to 1
if a center had no net change in stations that year.
Septic Infection Rate is the percentage of a center’s
patients that contracted a septic infection that year.
Excess Mortality is the ratio of actual deaths to the
number of deaths projected by CMS based on the
center’s patient characteristics.

has 13.5 full-time-equivalent, patient-facing employees and increases its staff by the equivalent

of one full-time employee each year (although 12.7 percent of centers have no net change in

employment in a given year). In terms of capital stock, the average number of dialysis stations

used by a center is 18, making the purchase of a new machine a significant investment; reflecting

this, centers have zero net investment for 92 percent of the center-year observations in the data.

We use a center’s hospitalization rate from septic infections as our primary measure of

quality, which averages 12.5 percent per year and has a standard deviation of over 6 percent.

Finally, in addition to the mortality rate at the center, CMS includes an expected mortality rate

calculated from data on individual patient characteristics (only center-average characteristics are

publicly available). We construct our excess mortality variable as the ratio of realized mortality

to expected mortality; this ratio is very close to one on average, but has substantial variation
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Table 2: Potential Quality Drivers

Variable Mean St. Dev. N

State Inspection Rate 29.335 11.640 18,221
Time Since Inspection 1.634 1.813 18,221
% Patients Referred by Nephrologist 69.441 20.346 11,342
Competitors 7.826 13.095 18,221
For Profit 0.883 0.321 18,221

Notes: Summary statistics from the dialysis facility reports. The unit of
observation is a center-year. State Inspection Rate is the percentage of
centers that were inspected in the center’s state that year. Time Since
Inspection is the number of years since a facility was last inspected by
regulators. % Patients Referred by Nephrologist is the percentage of a
center’s patients who were referred by a nephrologist. Competitors is the
number of competing facilities in an HSA. For Profit is a dummy variable
equal to 1 if a center is for-profit.

across centers.

In Table 2, we report several factors that may influence a center’s decision to favor quality

over quantity, while in Section 5.2 we examine whether any of these proposed shifters are indeed

correlated with centers’ quality measures. First, states intermittently inspect dialysis centers to

ensure that they meet regulated standards of care. States vary in terms of inspection rates, as

the average state inspects 29.3 percent of its centers each year, with a standard deviation of 11.6

percent. Because a center that faces a greater likelihood of inspection may take measures to

improve its quality, those in states with more frequent inspections may have a stronger incentive

to maintain high quality standards. Similarly, a center that has not been inspected in many

years may have more unaddressed quality issues. The average number of years since a center

was last inspected is 1.6 years, with a standard deviation of 1.8.

In addition, centers that rely more on referrals from nephrologists may have a greater incen-

tive to maintain high quality standards, as a nephrologist may advocate on his patient’s behalf

in the event he receives poor treatment or refer patients to better-performing facilities. The

average center receives 69.4 percent of its patients through referral, with a standard deviation

of 20.3. Furthermore, competition may discipline centers’ quality choices, as those that face the

prospect of losing patients to competitors may take steps to improve their quality. The average

center has nearly 8 competing centers in its market — defined as a hospital service area15 —

15Following the healthcare literature, we use hospital service areas (HSA) as our market definition for dialysis
centers. The Dartmouth Atlas determines HSA boundaries based on CMS data for patients’ actual hospital choices,
and therefore serves as a well-suited market definition because they explicitly incorporate patients’ travel patterns in
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with a standard deviation of 13.1. Finally, for-profit centers may favor quantity over quality

due to their explicit mandate to maximize profits. Nearly 90 percent of dialysis centers are

for-profit.

3 A Model of the Quality-Quantity Tradeoff in Dialysis

To estimate the quality-quantity tradeoff in dialysis, we develop a model that accounts for both

the standard endogeneity problems associated with using observed input choices to estimate

production functions and the additional problem introduced by a center’s endogenous choice

of treatment quality. The complication related to endogenous quality choices stems from the

unobserved (to the econometrician) choice made by centers that receive positive shocks to their

productivity: they may choose either to treat more patients, or to treat their current patients

more intensively.

3.1 The Production Technology

In each period, we model the provision of dialysis treatments as a stochastic two-output pro-

duction process, where the outputs are the number of patients treated and the quality of the

treatments. Given this setup, a center faces a production frontier governing the number of pa-

tients it treats and the quality of care it provides, with the frontier dictated by its staff, stations,

and productivity. Formally, we define a center’s production possibilities frontier as

T (ỹ, q̃) ≤ F (k, `, ω). (1)

The production function F (·) is the most familiar part of this constraint; it governs how the

center’s (log) capital, k, (log) labor, `, and unobserved productivity, ω, determine its overall

capacity for providing treatments.

The unobserved productivity term, ω, accounts for all of the factors that impact a center’s

production possibilities that are observable to the center but not to the econometrician, such

as a center’s square footage.16 Because ω affects firms’ quality and investment decisions, it also

reflects firms’ “anticipated” productivity from their assessment of unobservable staff quality

a way that geographic boundaries such as counties or MSAs would not.
16Below, we use a superscript to denote productivity at a particular point in time during a period of the model.

Here, we use ω without superscript to denote an argument of the production function. The timing of the model and
the evolution of ω is presented in the following section.
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(e.g., how efficient their staff are at cleaning machines and taking care of patients), unobserv-

able patient characteristics (e.g., how well patients follow treatment protocols), and managerial

ability. Differences in centers’ patient populations are particularly important in a healthcare

setting such as dialysis where variation in patient characteristics may lead to large differences in

each center’s ability to treat patients. For example, highly educated patients may follow treat-

ment protocols more closely and therefore require less attention from technicians while being

treated.17 Importantly, we will allow ω to change over time, so that centers’ perceptions of

their own productivity can evolve as they hire new staff, acquire new capital, or simply gain

operational experience.

Our approach, which is common in the production function literature, assumes these differ-

ences in unobserved productivity can be summarized by a single index, this implies that all of

the differences impact the production frontier in the same way. This assumption holds in our

setting because all centers face the same choice following an increase in productivity: they can

either treat more patients (e.g., by shortening cleaning or treatment times), or they can treat

current patients more thoroughly. For instance, if a center’s patients follow treatment protocols

more closely than other centers’ patients do, then this would free the center either (i) to treat

more patients because it devotes less time to dealing with complications that arise, or (ii) to

spend additional time intensively cleaning machines and advising patients, which ultimately im-

proves outcomes but would not appear in a raw productivity measure like output-to-labor ratios.

Similarly, better trained staff may be more efficient at cleaning machines or evaluating patients,

making both labor and capital more productive. Finally, better designed stations may be easier

to clean, allowing the center either to treat more patients or clean stations more thoroughly in

the same amount of time. Given that the fundamental tradeoff we study is based on how much

time a center allocates to treating each patient (including station cleaning times), we believe

that allowing all heterogeneity to be summarized by a scalar index is a sensible simplification in

an industry where “better stations,” “better patients,” and “better staff” all have the potential

to make other factors more productive.18

The transformation function, T (·), determines how the center can divide its productive

17Although our data will allow us to control for a number of key patient characteristics, some will remain unobserved
and therefore must be captured by ω.

18Ideally, we would include multiple dimensions of unobserved productivity — for example, separate terms for labor
or capital productivity, or separate terms for producing output or quality. Recent work by Doraszelski & Jaumandreu
(2016) and Zhang (2014), building in part on Gandhi et al. (2016), propose using a center’s first-order conditions
of profit maximization to allow for multiple dimensions of heterogeneity. Unfortunately, since we do not explicitly
model center’s objectives, this approach cannot be applied in our setting.
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capacity between the two targeted outputs, the number of patients treated and the quality of

these treatments. The first output, ỹjt, is the center’s targeted (log) number of patient-years

for the period. The second output, q̃jt, represents the quality of its treatments and is a scalar

index representing the center’s targeted infection rate. We assume that T (·) is differentiable

and increasing in both outputs, and in estimation we will adopt a parametric form for T (·).19

The center is unable to choose either its patient load or its infection rate directly. For

instance, some patients will either die for reasons outside of a center’s control, receive transplants

and no longer need dialysis, or transfer to other centers; conversely, a center’s patient load may

increase unexpectedly when new patients arrive at random intervals. Patients’ infections are

also difficult to predict because they will depend not just on the center’s cleaning protocol,

but also on whether infectious bacteria exist in the center. Therefore, instead of modeling the

centers as perfectly choosing their quality and quantity, we instead assume they choose targets

(ỹ, q̃) that are stochastically related to the observed number of patients and infections. For

quantity, this is a standard approach in the productivity literature, where an “unanticipated”

productivity shock or measurement error term is typically included in the production process.

For quality, this unanticipated shock between the targeted and realized infection rate is closely

tied to the nature of infections. Although centers can implement procedures to reduce infections,

such as by devoting more time to cleaning machines, many factors outside the center’s control

also influence the realized infection rate. For example, the ability of a patient’s immune system

to fight off a particular bacteria may depend on his or her previous exposure, which is less likely

to be known by the center’s manager when she sets quality standards.

3.2 The Timing of Dialysis Center Decision Making

We now turn to how the center makes its choices regarding quality, hiring, and investment.

Although we are primarily interested in the center’s choice of quality, the hiring decision is an

important part of the model because we will adapt the insights of Olley & Pakes (1996) to

control for a center’s unobserved productivity.

At the start of the period t, each center j observes its state, (kjt, `jt, xjt, ω
q
jt). The vector

19Note that “quality” here reflects how carefully the center acts to reduce the risk of infection and improve health
outcomes, not the infection rate itself. As we discuss in Section 2, “quality” can have many dimensions for patients,
such as the likelihood of becoming sick, the amount of time spent waiting for treatments, the convenience of the
center’s operating hours, or even having televisions available during treatments. Despite this, we focus on one specific
outcome, low septic infection risk, which is arguably the most prominent dimension due to its severe impact on
patients’ well-being and its direct connection to quality choices.

13



xjt contains observed variables that affect the center’s incentives for providing high-quality care

but that do not directly affect its productive capacity (such as a state’s inspection rate). The

assumption that the variables in xjt do not affect the production process directly makes them

useful excluded variables for tracing out the production frontier, as we discuss in Section 4. In

practice, we consider a variety of incentive shifters in xjt, including a center’s for-profit status,

its state’s inspection rate, and the time since it was last inspected.20 Finally, the center’s

assessment of its own productivity, ωqjt, is not observed by the econometrician. We denote this

assessment with a superscript q since it is the productivity centers consider when making their

quality decision. As we explain below, a center’s assessment of its productivity will change

during the period as it observes its true production and infection rates.

The period consists of the following sequence of events:

1. Quality and Quantity Choices Made. Based on its initial state, the center chooses its

targeted level of quantity and quality for the period, (ỹ, q̃), such that it maximizes the

objective function described below subject to the production constraint (1).

2. Production Occurs. Based on its chosen target, the center treats patients and observes

realized outcomes for patient loads and infections, (y, q). The center also updates its

beliefs about its productivity to ωh.

3. Hiring and Investment Choices Made. After observing production, the center’s state is up-

dated to reflect what has been learned about its productivity, becoming (kjt, `jt, xjt, ω
h
jt).

With this information, the center decides on hiring, h, and investment, i; newly hired

workers and invested capital become available at the start of period t+ 1.

4. New State Realized. In line with the literature, we assume centers’ expectations of pro-

ductivity follow an exogenous Markov process between periods t and t+ 1,

E[ωqj,t+1|Ij,t] = E[ωqj,t+1|ω
h
j,t],

where Ij,t represents center j’s information set at the end of period t. Also following the

literature, we assume this process is stochastically increasing in ωhj,t (as in Pakes 1994)

and that the state variable xjt moves according to an exogenous Markov process (similar

to De Loecker 2011).

20We discuss the appropriateness of excluding these variables from the production process in Section 5.2. We also
show that the model is robust to changes in the set of incentive shifters.
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Based on these timing assumptions, centers make decisions at two distinct points during a

period. First, they decide how to allocate their effort between quality and quantity. Second,

they decide how to adjust capital and labor for the future after observing their current period’s

production. The key assumption is that a center can quickly adjust its allocation to quality

versus quantity after observing ωq, whereas it must make its input decisions for the next period

before that period’s ωq is revealed. This restriction reflects the relative ease with which dialysis

centers can allocate time across tasks relative to adjusting labor or capital, as centers must train

and certify staff before they can begin treating patients. For example, to adjust targets to favor

quality over quantity, a manager could advise her center’s staff to take extra precautions when

treating patients. Alternatively, a center may reduce quality in favor of quantity by placing

less emphasis on cleanliness and more on speed (Pronovost et al. 2006). At the same time,

even though a center can dictate these policy changes more quickly than it can make hiring or

investment changes, a lag still exists between a center’s decision about quality and its actual

implementation. Within the model, this is reflected in the fact that the centers observe their

productivity change during production (from ωqjt to ωhjt) but cannot react to it by altering their

quality choices. This seems reasonable in our context given that health outcomes cannot be

observed until after treatment is provided.

3.3 The Center’s Quality Decision

Prior to production, the center chooses its targeted level of output and quality for the period,

respectively (ỹ, q̃). The center’s payoff is determined by actual outcomes, which are unknown to

the center when it makes its quality-quantity choice. We assume quality choices are fully flexible

from period to period and that quality and output do not affect future states, implying that

the center’s quality-choice problem does not have dynamic links.21 The center chooses (ỹ, q̃) to

21Our assumption that the number of patients treated in the current period does not affect the state of the
center in subsequent periods is common in the literature. Our assumption that current levels of quality have no
dynamic implications is stronger, owing to the possibility of long-lasting reputation effects; however, one could
imagine accounting for the effects of reputation through per-period profits (e.g., the center immediately pays for the
discounted future costs of low-quality performance). Extending the model to allow for a long-run reputation would
require an additional state variable and a precise model of how quality affects reputation.
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optimize the static problem,22

π(k, `, x, ωq) = max
ỹ,q̃

E[ρ(y, q, k, `, x)]

subject to: T (ỹ, q̃) ≤ F (k, `, ωq)

y = ỹ + εy

q = q̃ + εq.

(2)

The payoff function ρ(·) represents the returns a center receives from its realized output and

infection rate in the current period given its state variables. As dialysis centers’ objectives are

difficult to model directly, we remain agnostic as to the precise form of this function other than

to assume that it is increasing in both output and quality. For example, one might think of the

firm’s payoff as

ρ(y, q, k, `, x) = πy − Px(1− q)−G(k, `), (3)

where π represents the marginal profit from treating a patient; P represents a penalty from

being found negligent due to an infection that occurs during an inspection year; the incentive

shifter x (or a function of x) in this example may represent the chance of being inspected given

state inspection activity; (1−q) is the realized rate of infection;23 and G(k, `) are the fixed costs

of operating a center of a given size. It is clear in this simple setup that, because x changes the

relative payoffs of y and q, it should affect the optimal allocation of resources – and hence provide

variation in q̃(k, `, x, ωq) that is independent of the production function variables (k, `, ωq).

Although (3) is a plausible start for specifying a payoff function, an advantage of our method

is that it does not require an explicit form for ρ(·), which will be challenging to derive in

healthcare settings. In addition to being an industry with a sizable number of not-for-profit

firms, the health-economics literature in general has struggled with how to model the objectives

of doctors given that the Hippocratic oath, though only informally enforceable, implies some

non-profit motive driven by patients’ welfare. Moreover, factors such as torts, malpractice

insurance, social reputation, and professional sanction through medical boards all play a role in

shaping doctors’ incentives. Untangling these incentives would be interesting, but is well beyond

22For notational clarity, we suppress firm and time indices where they are clear from the context throughout the
remainder of the paper.

23We say we use infection rates as a proxy for quality. As they are negatively correlated, it might be more intuitive
to say we use the negative infection rate, but this quickly becomes tedious and we avoid doing so. The two approaches
are clearly isomorphic.
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the scope of our paper. However, we can still estimate the key technological parameters of T (·)

without directly modeling the incentives encapsulated in ρ(·). That is, we only use the fact that

we observe some variable x that shifts these incentives on the margin.

Returning to the center’s quality-quantity problem, the expectation in (2) is taken over

(εy, εq), which represent the random deviations from the center’s targeted quantity and quality

levels and its observed outcomes. By construction, these variables are mean zero and uncorre-

lated with the center’s information set when it makes its quality decision.

We will assume that the demand for dialysis is inelastic in the sense that a reduction in q̃

will lead to an increase in ỹ through the production frontier, which will result in a corresponding

increase in the number of patients treated. This fits with the tight capacity in the industry, as

reflected by wait-lists for treatment and the opening of new centers in many markets.24

Before moving to the center’s hiring choice, the following lemma establishes that the return

to labor is increasing in productivity, which will be important for establishing the invertibility

of the hiring policy in Proposition 1 below and which motivates using hiring as a proxy for

productivity as a part of our estimation strategy.

Lemma 1. The center’s expected per-period return to labor is increasing in ωq; that is, ∂π
∂` is

increasing in ωq.

We provide the proof in the appendix. Intuitively, increases in both ` and ωq relax the

production constraint, which, due to non-satiation, must always bind if the center is acting

optimally. This binding constraint implies that the return to increasing ` is increasing in any

variable whose only effect is to relax the constraint further, such as ωq.

3.4 The Center’s Hiring and Investment Problem

After setting its quality-quantity target, treatments occur and the center observes the number

of patients it treats and its infection rate for the period. In addition, the center updates its

beliefs about its productivity according to ωh = ωq + εω and learns the realization of the shocks

(εyjt, ε
q
jt, ε

ω
jt).

25 Importantly, the components of this vector may be correlated with each other.

24In Section 6.2, we perform a robustness check by dropping centers in markets where the ratio of stations to the
general population is particularly high, as these are the centers where a reduction in quality is most likely to lead to
slack capacity rather than increased output.

25Without loss of generality, we could allow productivity within the period to evolve according to an unknown
stochastically increasing Markov process. Letting it evolve according to a random walk is notationally convenient
because E[ωh|ωq] = ωq.
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That is, conditional on both εyjt and εqjt being positive, we would expect the center to raise its

assessment of its own productivity.

After observing patient loads and infection rates, the center makes its hiring and investment

decisions for the following period. This choice has dynamic implications owing to the time it

takes to install new machines and train new workers. The Bellman equation for this choice is

V h(k, `, x, ωh) = max
i,h
−c(i, h) + βE[V q(k + i, `+ h, x′, ωq

′
)|k, `, ωh, i, h], (4)

where i is net investment and h is net hiring, while the function c(·) captures adjustment

costs for investment and hiring.26

Our decision to model hiring with a lag reflects the institutional detail that training and

other adjustment costs are significant in the dialysis industry relative to the difficulty of altering

current workers’ on-the-job incentives to strive for either more output or higher quality. We

follow the literature in assuming that hiring costs are differentiable and convex, except possibly

with a fixed adjustment cost at h = 0.27

The function V q(·) represents the value of the center at the start of the period,

V q(k, `, x, ωq) = π(k, `, x, ωq) + E[V h(k, `, x, ωh)|k, `, x, ωq].

We adopt this notation because the center’s perception of its own productivity evolves over the

course of the period from ωq to ωh as the center observes its own production process.

Based on the lumpiness of investment in this industry, we assume that the choice of next

period’s capital is discrete. By contrast, we view the hiring choice as effectively continuous.

This seems reasonable given a center’s option to adjust nurses’ hours from period to period and

that we observe part-time staff in the data. Under these assumptions, the following proposition

establishes that, for a given level of investment, a one-to-one relationship exists between ωh and

the center’s hiring choice, h(k, `, x, ωh).

26We can also allow c(i, h) to be zero, in which case time-to-build is the only hiring and investment friction.
27Such a fixed adjustment cost would lead to a “zone of inactivity” in which the center does not adjust its staffing

level for a range of productivity levels. Clearly, a fixed adjustment cost at zero means that we cannot invert the
hiring function at h = 0, and these observations must be dropped. However, under the model, this truncation only
affects efficiency. On the other hand, unanticipated zones of inactivity (say, a maximum allowable level of hiring)
have the potential to bias our estimates. The discussion on possible failure of the investment proxy in Levinsohn &
Petrin (2003, 321) applies to our hiring proxy. See also (Pakes 1994, Remark 2). Recall that in our setting hiring is
zero in 12.7 percent of firm-year observations (Table 1).
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Proposition 1. For any fixed investment level ι, the center hiring function h(k, `, x, ωh) is

invertible with respect to ωh on the domain {(k, `, x, ωh) : i(k, `, x, ωh) = ι} such that

ωh = h−1(h, ι, k, `, x).

The proof of this theorem makes use of results in Theorem 1 from Pakes (1994) and Appendix

C from De Loecker (2011). We show that, given Lemma 1, our problem can be written in such

a way that we can apply Theorem 1 from Pakes (1994) directly, where hiring is the inverting

variable instead of investment. We have the added complication, however, of controlling for

centers’ discrete investment choices: if a center invests in a new station, the cost of this new

investment may lead the center to hire fewer nurses than it might in a situation where it had

lower productivity but did not choose to invest. To account for this possibility directly within

our data, we can isolate cases where centers make the same investment choice (e.g., keep the

number of stations constant) and conclude that centers within a given investment tier that hire

more workers must have higher productivity. Furthermore, because i = 0 in over 92 percent of

the observed periods in our data, any complication related to this point will be comparatively

mild.

4 Identifying the Quality-Quantity Tradeoff

For our empirical application, we will adopt the following parsimonious functional forms to

describe the transformation and production functions:

T (ỹjt, q̃jt) = ỹjt + αq q̃jt, (5)

F (kjt, `jt, ω
q
jt) = βkkjt + β``jt + ωqjt. (6)

In short, we follow the common practice in the literature of assuming a Cobb-Douglas production

function, where ωjt is a Hicks-neutral technology shifter. For the transformation function, we

also assume a Cobb-Douglas-like specification that parameterizes the production possibilities

frontier by assuming that a reduction in the infection rate of 1 percentage point (i.e., increasing

q̃jt by 1) will reduce expected output by a factor of αq, which is constant across centers. These

functional forms can be rationalized by assuming that centers optimally allocate their productive
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capacity between the two tasks of treating more patients and reducing infection rates. If we

assume, without loss of generality, that all centers choose to operate on the production frontier,

we can then re-write the center’s static optimization problem as choosing the proportion of

resources, λ, to devote purely to output:

π(k, `, x, ωq) = max
λ∈[0,1]

E[ρ(y, q, k, `, x)]

subject to: ỹ = λ(βkk + β``+ ωq)

q̃ =
1− λ
αq

(βkk + β``+ ωq)

y = ỹ + εy

q = q̃ + εq.

(7)

This problem yields an optimal policy for allocating resources, λ(k, `, x, ωq), which through

the two production constraints generates the center’s targeted levels of output and quality,

ỹ(k, `, x, ωq) and q̃(k, `, x, ωq). In a model with two independent outputs, such as cars and

boats, λ could be viewed as literally assigning workers and capital to assembly tasks. In our

setting, it is better to think of λ as a choice of production speed. A high λ would mean placing

an emphasis on running many patients though the center quickly — and hence less emphasis

on cleaning machines and evaluating patients’ health before, during, and after treatment. This

allows the center to increase ỹ by sacrificing q̃, with αq representing the key technological

parameter that governs this tradeoff.28

We do not have data on how the center allocates staff and machines, or on how it sets

its cleaning and evaluation policies, so we cannot claim to directly observe the center’s choice

of λ. Instead, we observe the realized outcomes, y and q, and therefore rewrite the problem

focusing on the choice of ỹ and q̃ through λ, adding the two production constraints to yield our

production frontier:

28Note that while αq only appears in the restriction for q̃, this is simply a normalization. To be precise, this
normalization is that the production function F (k, `, ωq) = βkk+β``+ωq is expressed in units of (log) output. If we
included a separate parameter for the transfer of “productivity units” to output, only the ratio of this new parameter
and αq would be identified. Of course this ratio would still express exactly the tradeoff in which we are interested.
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π(k, `, x, ωq) = max
(ỹ,q̃)

E[ρ(y, q, k, `, x)]

subject to: ỹ + αq q̃ = βkk + β``+ ωq

y = ỹ + εy

q = q̃ + εq.

(8)

This specification of the center’s quality choice maps directly into the more general model dis-

cussed in the previous section and connects a center’s quality target to observable outcomes.

By increasing the effort it puts towards providing high-quality treatments, the center incurs

additional costs but increases the likelihood of delivering better outcomes (e.g, fewer infections

and lower mortality). On the other hand, a change in inputs or productivity shifts the pro-

duction possibilities frontier but does not alter the relative transformation between outputs.

For instance, a center with healthier patients recognizes that its production frontier has shifted

outwards but still faces a tradeoff between treating more patients at a given level of quality or

providing higher-quality care for a given number of patients.

Our goal is to estimate this production frontier, but this is complicated in that we do not

observe centers’ expected output and quality. Instead, we observe realized patient loads and

infection rates, which are subject to both measurement error and unanticipated shocks. To

account for this, we assume that observed output is y = ỹ + εy and that the observed infection

rate is qjt = q̃ + εq. Substituting these into (1), we arrive at the linear equation

y = −αqq + βkk + β``+ ωq − αεq − εy. (9)

This equation makes the potential sources of bias apparent. Estimating (9) by ordinary least

squares with data on (y, q, k, `) would be inconsistent, as the composite error term ωq − αεq −

εy is correlated with observed quality for two separate reasons, simultaneity due to ωq and

measurement error due to εq.

To identify the parameter that governs the quality-quantity tradeoff, αq, as well as the pro-

duction function parameters β, we must address three different issues: (i) independent variation

of q̃ from the other variables that enter the production frontier; (ii) simultaneity due to the

fact that the center chooses q̃ — or equivalently in (7), λ — with knowledge of ωq; and (iii)

attenuation bias due to the fact that we do not directly observe q̃ (center quality), but in-

stead only observe a noisy proxy, q, the (negative) realized infection rate. We take different
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approaches to address these issues: (i) our timing assumptions that allow productivity to evolve

during production but before hiring (separating ωq and ωh) provides independent variation of

q̃, while variation in x also provides variation in firms’ quality choices (as we describe below);

(ii) our dynamic model implies that hiring this period to change the quantity of labor between

this period and the next period can be used to construct a control function to deal with simul-

taneity; and (iii) a second noisy outcome related to the quality of care (our empirical approach

uses the ratio of actual mortality to expected mortality) is used as an instrument to address

measurement error in the initial proxy outcome, q. For expositional ease, we deal with these

problems sequentially, starting with a model where neither simultaneity nor measurement error

is an issue, before building up to the full model we estimate in the following section. We focus

on recovering the quality-quantity tradeoff parameter αq, as identification of the β parameters

is essentially identical to that presented in Olley & Pakes (1996) and Ackerberg et al. (2015).

We provide the full estimation details, including estimation of β, in Section 5.

4.1 The Simplest Model

We begin with a highly simplified case of the full model in which we assume (i) the infection

rate is a perfect indicator of the quality choice — so q = q̃ and there is no εq — and (ii) there

is not a heterogeneous productivity process (i.e., we drop ωq and ωh). With these assumptions,

the production frontier constraint (9) becomes

y = −αqq + βkk + β``− εy, (10)

where we have substituted y = ỹ + εy. Since the error term εy is unanticipated by the center

when it makes its quality decision (at the start of this period) and when it determines its capital

and labor levels through investment and hiring (at the end of the previous period), there is no

simultaneity problem in this version of the model. Similarly, with no εq, there is no measurement

error problem. Therefore, as long as we have independent variation among (q, k, `), we can

consistently estimate the parameters (αq, βk, β`) using ordinary least squares (OLS). However,

the optimization problem that governs the quality choice (or the resource allocation choice) now

implies that q = q̃(k, `, x).29 To see why this is an issue, suppose x did not vary across centers,

so we effectively have q = q̃(k, `). In that case, all centers with the same (k, `) must make the

29Recall that we have temporarily dropped ωq from the model.
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same quality choice. Furthermore, if the policy function is linear, then (q, k, `) are co-linear

and the parameters are not identified. If the center’s policy function q = q̃(k, `) is nonlinear,

then the parameters are identified with the help of the parametric assumption of the production

technology, though such identification off of the functional form of the production frontier is

clearly not ideal.

If we reintroduce x, however, the problem is relaxed even if we do not observe x ourselves.

Now, because the center’s policy function is q = q̃(k, `, x), independent variation is restored

and OLS successfully recovers the parameters. It is not necessary to use x as an instrument

because there is no endogeneity issue, but x provides a source of variation in q that allows us

to identify αq, which illustrates the importance of including x as an incentive shifter in the

structural model.

4.2 Adding Heterogenous Productivity

We next incorporate heterogeneity in unobserved total factor productivity across centers. To

illustrate the need for our timing assumptions, we will begin with productivity being constant

over the period, as in Olley & Pakes (1996), so ωq = ωh = ω. We continue to assume that

quality is perfectly observed through the infection rate, so we have

y = −αqq + βkk + β``+ ω − εy, (11)

which introduces a simultaneity issue between q and ω. Because productivity is a persistent

Markov process, there is also simultaneity between ω and the center’s inputs (k, `), which are

a function of lagged productivity. Olley & Pakes (1996) show how to address this simultaneity

issue using the center’s dynamic decisions. Under the assumptions of our dynamic model,

Proposition 1 shows that the center’s optimal hiring policy, hjt(kjt, `jt, xjt, ωjt) = `it+1− `jt, is

invertible in the productivity term for a given level of discrete capital investment (i.e., a change

in the number of stations).30 This means we can replace ωjt in (11) with the inverted hiring

policy h−1(h, i, k, `, x), where we control for the center’s discrete level of investment i as part

of this inversion. Of course, βk and β` are not separately identified from the nonparametric

inverted hiring function, so they are subsumed into a general nonparametric function, resulting

30Recall that because qjt is flexible and has no dynamic implications, it does not enter the hiring policy.
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in the potential semi-parametric estimating equation

y = −αqq + Φ(h, i, k, `, x)− εy. (12)

This equation addresses the simultaneity problem and is essentially the estimating equation

from the first stage of Olley & Pakes (1996) adapted to our model.

Ackerberg et al. (2015) point out a subtle identification problem with this equation, how-

ever, which is very similar to what we discussed in the previous subsection. Recall that the

policy function for quality is q̃(k, `, x, ω), and employing the same invertibility argument for

productivity we have

q = q̃(k, `, x, h−1(h, i, k, `, x)).

While this involves some abuse of notation, the point is that, under these assumptions, there

is no independent variation between q and the variables of the nonparametric function Φ(·)

because they are both functions of (h, i, k, `, x). Therefore, αq is not separately identified in

(12). In this case, as opposed to the previous subsection, we cannot appeal to x alone to provide

the necessary variation because it enters the hiring policy function, and hence Φ(·).

Ackerberg et al. (2015) consider several modifications of Olley & Pakes (1996) to address this

issue. Our approach adopts one which will be compatible with our measurement error concerns

below and which we believe fits the dialysis industry well: we make use of the timing assumption

that allows for an intra-period evolution of productivity in the form of ωq and ωh. Notice that

the simultaneity issue is really due to the center’s perception of its productivity. It is natural to

assume that, having observed output and the infection rates in the current period, the center’s

perception of its productivity should evolve before it makes investment and hiring decisions

for the next period. This reintroduces independent variation between q and the nonparametric

function because the quality policy is q = q̃(k, `, x, ωq), where the inverted hiring function yields

ωh = h−1(h, i, k, `, x). The two are related through the assumption that ωh = ωq + εω, where

εω is uncorrelated with the center’s information set when it makes its quality choice.31 In this

context, εω can be thought of as a “discovering productivity by doing” shock. Although we do

not explicitly model a learning process, the shock is meant to reflect the fact that the center’s

assessment of its own productivity is likely to change when the task is actually completed. We

31The random walk assumption is for notational convenience. We could allow ωh = E[ωh|k, `, x, ωq] + εω as long
as this expectation were increasing in ωq. Since we are unable to recover ωq, the random walk assumption amounts
to a normalization.
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can now write the first stage as

y = −αqq + Φ(h, i, k, `, x)− εω − εy, (13)

where the new error term reflects the fact that we replace ωq using inverted hiring and the

difference between productivity at the beginning and end of the period. This composite error

term is uncorrelated with q and there is independent variation between q and the nonparametric

function Φ(·).32

Ackerberg et al. (2015) do not include a variable akin to our x, though doing so offers

important advantages. Namely, if x is dropped from the model, then all firms with the same

production frontier choose the same quality policy, q(k, `, ωq). Although perturbations between

ωq and ωh introduce variation between q and the nonparametric function Φ(·), it is still the case

that if x does not vary, centers facing the same production frontier — i.e., the same k, `, ωq —

all choose the same point on the frontier. As a result, the variation between ωq and ωh only

allows us to identify αq at a point on the frontier (the optimal point, given k, `, ωq) and the

slope of the entire frontier is identified off of functional form. Again, including incentive shifters

in x relaxes this issue, because now centers facing the same production frontier choose different

levels of output and quality due to differences in x. Note that, as opposed to the simple model

discussed above, in this model it is important that we observe x because it potentially plays a

role in the hiring policy.

Of course, x only supplies useful variation if it actually leads firms to shift their quality

targets. We rely on a set of incentive shifters that includes the center’s for-profit status, its

state’s inspection rates, and the time since its last inspection. In Section 5.2, we provide

evidence that these variables do, in fact, affect centers’ incentives to provide high-quality care.

4.3 Adding Measurement Error in the Quality Policy

Finally, we come to the full model by re-introducing measurement error in q by allowing the

infection rate to be a noisy signal of the center’s quality choice. Here, we do not mean to say

that the infection rate itself is mis-measured, but instead that the infection rate is determined

by both the center’s quality choice and some noise: sometimes bacteria do not infect a patient

even if the machine is not properly cleaned, and sometimes the center follows its protocol

32Note that at this point we are still assuming that quality is perfectly observed (i.e., no εq).
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but a patient acquires an infection for reasons unrelated to dialysis. This means we observe

q = q̃(k, `, x, ωq) + εq, and the first stage becomes

y = −αqq + Φ(h, i, k, `, x)− εω − αqεq − εy. (14)

Although this introduces attenuation bias because q and εq are correlated, it does not reintro-

duce the simultaneity problem. The reason is that εq is not known to the center when it makes

its quality (or resource allocation) choice. Therefore, we follow the literature on classical mea-

surement error to address this issue by instrumenting for the infection rate with a second noisy

measure of quality, the (excess) mortality rate.33 Specifically, we assume d = d(q̃(k, `, x, ωq))+εd,

where d(·) is a monotonic function of quality and εd is uncorrelated with εq. After controlling

for patient characteristics and the center’s quality, we would expect infections and deaths to be

uncorrelated at the center level, and we can then use d as an instrument to identify αq.

Although the validity of this assumption may appear questionable in the sense that infected

patients clearly have a higher death rate, the assumption holds if, after controlling for the center’s

quality, individual patient outcomes are uncorrelated. To see this, suppose each patient r of

center j has an individual risk of infection and death related to center quality, q̃j , so that the risk

of infection is qrj = q̃j + ηr and the risk of death is drj = d(q̃j) + νr. We allow these individual

infection and death shocks to be correlated for a given patient but we assume that (ηr, νr)

are drawn independently across patients. As a result, center-level infection and death rates

are Poisson binomial distributions of the underlying individual risks. For centers with enough

patients, the covariance between center-level infection and death rates is well approximated by

cov(qj , dj) ≈
1

N2

N∑
r,s=1

cov(qrj , d
s
j) = cov(q̃j , d(q̃j)) +

1

N2

N∑
r=1

cov(ηrj , ν
r
j ),

where the final term exploits the fact that cov(ηrj , ν
s
j ) = 0 if r 6= s. Clearly, the second term

vanishes as the number of patents at the center N grows large. With a mean number of patient

years in our sample over 50, it seems reasonable to believe that the correlation in center-level

averages is being primarily driven by center quality.

We acknowledge that if εq and εd are correlated, then our estimate of αq will be biased

downward, making our results conservative. This could happen either because N is not large

33This is the mortality rate controlling for the expected number of deaths in the center based on patient charac-
teristics, as discussed in Section 2.
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enough, or because patient outcomes are not independent after controlling for q̃ and the ob-

servable characteristics of the patient population. For example, if infections and deaths had a

stochastic component that was common to all patients in a center (e.g., a virulent outbreak of

staph infection at the local hospital), our result would not hold. The most obvious correlated

shock to patients’ infection and death rates, however, is infections spread through an improperly

cleaned dialysis machine, which is directly related to the center’s quality choice when determin-

ing how closely to follow cleaning protocols. In Section 6.2, we present a robustness check of

the model where we do not use an instrument for quality. The results of this experiment are

consistent with the presence of attenuation bias.

5 Implementation

We now turn to the details of the empirical analysis, beginning with the construction of our

quality proxy. We then discuss our choice of incentive shifters for x and provide some prima

facie evidence that centers with similar technologies actually do react to our incentive shifters in

the predicted way, thus justifying the inclusion of these variables in the estimation. Finally, we

describe the two-step estimator used to estimate the transformation and production functions.

5.1 Infection Rate Proxy for Quality

Although we do not observe treatment quality directly, the data contain information on patient

outcomes that are correlated with a center’s choices on this dimension. In particular, we focus on

the center’s infection rate as an indicator of quality. This is only an imperfect measure, however,

because variation in the infection rate may be due to differences in patient characteristics across

centers rather than centers’ deliberate quality choices. To account for this, we control for center-

level averages of several patient characteristics that influence infection rates. Specifically, we

use the (negative) residual from a regression of infection rates on patient characteristics as our

proxy for patient quality; this residual represents the variation in infection rates that remains

unexplained after controlling for observable differences in the patient pool, and therefore serves

as a proxy for the center’s targeted quality level.

We control for several observable patient characteristics that influence a center’s infection

rate beyond its quality decision, with summary statistics displayed in Table 3. Most notably,

we include controls for patients’ vascular access type, which can be either an arteriovenous
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Table 3: Patient Characteristics Summary Statis-
tics

Variable Mean St. Dev.

Avg. Patient Age 61.518 4.381
Pct. Female 45.798 8.333
Pct. AV Fistula 43.016 13.477
Avg. Comorbid Conditions 3.026 0.826
Avg. Duration of ESRD 4.089 0.953
Avg. Hemoglobin Level 11.882 0.332

Number of Center-Years 18,221

Notes: Summary statistics from the dialysis facility
reports. The unit of observation is a center-year. Avg.
Patient Age is the average age of patients at a center.
Pct. Female is the percentage of a center’s patients
who are women. Pct. AV Fistula is the percentage of
a center’s patients who have an AV fistula. Avg. Co-
morbid Conditions is the average number of comorbid
conditions a center’s patients have. Avg. Duration of
ESRD is the average number of years a center’s pa-
tients have had kidney failure. Avg. Hemoglobin Level
is the average hemoglobin levelof a center’s patients.

(AV) fistula, AV graft, or venous catheter. A patient’s vascular access method influences his

likelihood of developing a blood infection, as those with an AV fistula are significantly less likely

to experience clots or infections. In addition to a patient’s vascular access, other characteristics

have been shown clinically to affect treatment outcomes. Because centers’ patient loads vary

in terms of these characteristics, we also include controls for patients’ (i) average number of

comorbid conditions, (ii) average duration of ESRD, (iii) average age, (iv) gender distribution,

and (v) average hemoglobin levels.34 Putting these center-level average patient characteristics

together into the vector zjt, we estimate

fjt = zjtγ − qjt,

where fjt is the realized infection rate at center j in period t. The residuals from this regression

reflect the center’s relative infection rate after controlling for observable patient characteristics,

which we then use as our measure of center quality.

Even after controlling for observable characteristics, some unobservable differences in patient

34Low hemoglobin levels are associated with anemia and pose health risks for dialysis patients.
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health may remain, part of which may be observable to centers as they make their quality

choices. Within our model, we interpret these unobservable differences as differences in ωjt across

centers along with other unobservable differences in productivity (e.g., management ability or

unobserved quality of inputs), and address them using a control function approach.

As discussed above, we account for expectational or measurement error in our specification of

the production function by including εqjt and using a second outcome variable as an instrument,

in our case the excess mortality ratio that compares actual death rates at the center to CMS’s

expected death rate based on individual patient characteristics.35 CMS uses this ratio as an

indicator of center quality in its own reports, and we include this measure as a second noisy

proxy for a center’s quality.36

5.2 Centers’ Quality Incentive Shifters

An important source of identification for our estimation procedure comes from variation in x,

the variables that affect the center’s incentives for providing high-quality treatments. These

variables should consist of observable factors that affect centers’ incentives for providing high-

quality care without directly affecting center productivity. That is, these variables should be

excluded from the production frontier (1) but shift outcomes through their effect on center

payoffs, ρ(·). Note that, while the variables in x cannot directly enter into the production process,

they may be correlated with centers’ unobserved productivity. For example, our assumption

rules out the possibility that a non-profit center could alter its production frontier simply by

becoming for-profit while keeping the same staff and management practices in place. At the

same time, it does allow for the possibility that low-productivity non-profit centers are more

likely to enter into the industry than low-productivity for-profit centers, which would generate

35Individual-level characteristics are not released in our data to protect patient privacy.
36As discussed earlier, for this instrument to be valid, the variation in excess mortality which is unrelated to center

quality should be uncorrelated with the variation in the infection rate that is unrelated to quality. As discussed above,
our assumption will hold approximately even if mortality and infection outcomes are correlated at the individual
level as long as outcomes are uncorrelated across patients (after controlling for center quality). Moreover, although
infections do raise the risk of death, they are the primary cause of fewer than 10 percent of patient deaths overall
(USRDS 2013). By contrast, over one-third of patient deaths stem from cardiovascular issues, which may be related
to center quality through the effectiveness of monitoring for hypotension and other complications that arise during
treatment. Conversely, the majority of patients hospitalized with a septic infection survive. We include the death-rate
ratio as an instrument rather than as the primary proxy because it is less directly tied to the quality choices made
by dialysis centers (e.g., cleaning protocols) than the septic infection rate. Results are qualitatively robust when the
roles of the primary proxy and the instrument are reversed.
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a correlation between non-profit status and productivity.37

We consider several variables that are likely to change a centers’ incentives for providing

more treatments versus providing higher-quality care, which we describe below. Although the

assumption that these variables do not directly affect the production frontier is not testable, we

can nevertheless verify they are correlated with health outcomes.38 To examine the relationship

between quality and the observable variables in our data, we consider a series of fixed-effects

regressions of the septic infection rate on plausibly exogenous drivers of quality and patient

characteristics in Table 4. The results suggest that centers facing stronger incentives to provide

high-quality care have better outcomes, indicating that centers adjust their quality level when

it is in their best interest to do so.39

First, we look at the time since a facility was last inspected by a state authority, as centers

with many reported violations face the possibility of losing certification.40 Column (1) of Table

4 shows that the infection rate increases a statistically significant 0.15 percentage points for

each year since a center was last inspected, or about 11.8 percent at the mean. Note that the

most likely source of endogeneity bias for this regression — that regulators are more likely to

target centers with poor health outcomes for inspections — works against this result, making it

a conservative estimate. In addition, it seems unlikely that the number of years since a center

was last inspected would directly affect its production frontier, so we include this variable in x.

We next turn to the state-level inspection rates. This incentive shifter relies on year-to-

year variation in funding and other local regulations to exogenously change the probability

that a center is inspected — and hence affects the return to providing high-quality care (which

presumably reduces the risk of receiving health citations during an inspection). As shown in

Column (2), we find evidence that an increase in the state inspection rate is associated with a

lower infection rate: an increase in the inspection rate one standard deviation above the mean is

associated with a 0.1 percentage point decline in the infection rate, on average, which is about

1 percent lower at the mean. As with the number of years since a center was last inspected, it

seems unlikely that the state inspection rate directly affects the production frontier of individual

37In Section 6.2, we explicitly allow centers’ productivity evolution to depend on ownership type, one of our variables
in x.

38As discussed above, the question of whether external forces influence dialysis facilities’ incentives for providing
high-quality care has been investigated in previous studies (Ramanarayanan & Snyder 2011, Sloan 2000).

39Of course, these regressions are subject to the critique that they are not robust to across-time changes in pro-
ductivity; our structural model does control for productivity changes over time.

40We know only the year of the last inspection, so if a center is inspected this year there are “zero” years since its
last inspection.
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firms, so we also include this as a potential incentive shifter.

Third, we consider the possibility that the referral rates of nephrologists might affect treat-

ment quality. If nephrologists are able to ascertain a center’s quality, then centers that are

more dependent on referrals will have stronger incentives to provide high-quality care. Column

(3) shows that a higher rate of referrals is associated with a lower infection rate, although this

correlation may be due to reverse causality — presumably nephrologists will not refer patients

to centers with poor quality records. Moreover, the referral rate is available for only 3 years of

our 5 year panel, severely reducing the number of observations in the data. For these reasons,

we do not include referral rates in x as a part of the structural model.

Fourth, competition potentially shifts centers’ quality incentives because centers in highly

competitive markets may choose to improve quality or increase staff levels to attract patients.41

We define the level of competition each center faces as a categorical variable for having 0, 1, 2,

or 3 or more competitors in the same Hospital Service Area (HSA), and the regressions show

little evidence that competition influences the quality of care provided by centers whether we

include a center-level or market-level fixed effect. Although monopolists do appear to have

higher infection rates in the market fixed-effects specification in column (9), the center fixed-

effects specification in column (4) is weaker and shows a non-monotonicity between 1 and more

than 1 competitor. Still, even though competition does not seem to have a strong impact on

quality, we include it in x as it is clearly appropriate to exclude competition from the production

frontier, and it may affect the center’s hiring policies. We provide a robustness check where the

model is estimated without including the competition variable in Section 6.2, and all results

remain unchanged.

Finally, we consider the effect of a center’s ownership structure, as roughly 87.7 percent of

centers operate as for-profit entities. Among the for-profit centers, two major chains dominate,

with DaVita owning roughly 28 percent of centers nationwide and Fresenius 31 percent.42 A

center’s ownership structure may affect its polices related to hiring and treatment quality: non-

profit centers may, on average, target a different weighting of quality over quantity, and even

different corporate owners may have different views on the risks and benefits of reducing quality

to treat more patients.Because there is almost no variation in a given center’s for-profit status

41Although in principle the degree of competition is the outcome of an endogenous dynamic entry game between
players, we believe it is reasonable to model it as exogenous to the center’s quality choice as the latter is a flexible
decision made on a much shorter time frame by center managers, whereas the entry and exit decision of centers
involves a substantial sunk cost and is the result of a lengthy regulatory process.

42These averages are taken across all years in the data.
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over time, we consider the impact of for-profit status with market-level fixed effects in Column

(7). We find strong evidence that for-profits have worse health outcomes, with infection rates

roughly 1.3 percentage points higher then non-profit centers in identical markets. Column (8)

adds controls for membership in the two major chains. It appears that, although DaVita’s

average infection rate is almost the same as unaffiliated for-profits’, Fresenius is somewhat

lower. Although it is certainly possible that ownership status is correlated with productivity, we

see little reason why the legal status of a center should directly affect the production frontier.

Therefore, we include non-profit status, along with the affiliation with one of the two most

prominent chains, in our preferred specification of x. In separate robustness checks, we allow for

centers’ productivity evolution to depend on its ownership status, and also estimate the model

dropping ownership status from x. In both cases, our results on the quality-quantity tradeoff

are qualitatively similar.

Although each of the regressions in Table 4 suffers from its own particular shortcomings

(e.g., both referrals from nephrologists and the likelihood of inspection are potentially endoge-

nous with respect to centers’ quality choices), taken together they provide consistent evidence

that plausibly exogenous drivers of quality do, in fact, influence a facility’s quality choices. Note

also that Specifications (1)–(6) control for facility-level fixed effects, so any time-invariant in-

stitutional factors (e.g., the facility is in a region with sicker patients) are accounted for in the

regressions. To summarize, we include the following variables in our preferred specification of

incentive shifters, x: the number of years since a center was last inspected, the state inspection

rate, the extent of competition, and the center’s ownership structure.

5.3 Two-Step Estimation

To recover the parameters of the production frontier, we first note that ωhjt = ωqjt + εωjt, so we

can rewrite (9) as

yjt = −αqqjt + βkkjt + β``jt + ωhjt − εωjt − αε
q
jt − ε

y
jt.

Because (εωjt, ε
q
jt, ε

y
jt) are revealed to the center after it makes its quality choice and are un-

correlated with the center’s information set at the time quality and output choices are made,

they do not impose an endogeneity problem. Because centers’ expectations about ωhjt are a

function of ωqjt, however, we must still control for ωhjt. From Proposition 1, we know that a
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center’s expectation about its productivity at the time of hiring can be recovered by inverting

the center’s hiring policy at a fixed investment level such that

ωhjt = h−1(hjt, ijt, kjt, `jt, xjt). (15)

Substituting (15) into (9), we arrive at our first-stage estimating equation,

yjt = −αqqjt + βkkjt + β``jt + h−1(hjt, ijt, kjt, `jt, xjt)− εωjt − αε
q
jt − ε

y
jt (16)

= −αqqjt + Φ(hjt, ijt, kjt, `jt, xjt) + εjt,

where εjt = −εωjt−αε
q
jt−ε

y
jt and Φ(hjt, ijt, kjt, `jt, xjt) = βkkjt+β``jt+h

−1(hjt, ijt, kjt, `jt, xjt).

Due to invertibility requirements, we only have usable observations of (16) whenever hiring is

non-zero.43 Moreover, because the function h−1(·) depends on the level of investment, we must

estimate a separate Φ(·) for each investment level. In practice, investment is zero 92 percent of

the time, and we drop the other investment levels and estimate (16) using observations where

the center did not invest. Dropping observations where hiring is zero and investment is non-zero

collectively reduce the size of the dataset by 19 percent, but this truncation does not bias our

results if the model is correctly specified. Comparing the dropped observations to those used

in the first stage, centers with dropped center-years are slightly smaller on average but have

similar quality outcomes (infection rates and ratios of deaths to expected deaths). Running the

descriptive analysis presented in Table 4 on the truncated sample also produces qualitatively

similar results.

Finally, notice that the optimal policy for quality is qjt = q(kjt, `jt, xjt, ω
q
jt), whereas the

optimal hiring policy is hjt = h(kjt, `jt, xjt, ω
h
jt). Therefore, the difference between ωqjt and ωhjt

provides the variation needed to separately identify αq.

Although the approach above handles the endogeneity of ωqjt, we still have attenuation bias

because εjt and qjt are correlated through εqjt. To address this, we use a second noisy measure

of quality as an instrument in the second stage of a three-stage estimation procedure follow-

ing Robinson (1988).44 First, we estimate Ê[y|hjt, ijt, kjt, `jt, xjt] and Ê[q|hjt, ijt, kjt, `jt, xjt]
43Because there are likely adjustment costs to hiring, h−1(·) is not well defined when hiring is zero (multiple

productivity levels may lead to zero net hiring). We follow the productivity literature and drop observations of zero
hiring when estimating the first stage.

44An alternative approach, following Ackerberg et al. (2015), would have estimated yjt as a non-parametric function
of (qjt, hjt, kjt, `jt, xjt, ijt) and then estimated αq together with (βk, β`) in the second stage. This would have the
advantage of removing the requirement that qjt be flexibly chosen during the quality stage. However, the first stage
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nonparametrically using local linear regression.45 In doing so, we are careful to account for the

possible discontinuity of these functions at hjt = 0 by considering positive and negative hiring

observations separately.46 We then estimate α̂q with the linear instrumental variables regression

yjt − Ê[y|hjt, , ijt, kjt, `jt, xjt] = −αq(qjt − Ê[q|hjt, ijt, kjt, `jt, xjt]) + εjt,

where we instrument for (qjt − Ê[q|hjt, ijt, kjt, `jt, xjt]) with a second noisy measure of quality.

Here, we use the ratio of expected to actual deaths as this instrument, as discussed in Section

5.1.47

Finally, we recover Φ̂i(·) from the nonparametric estimation

yjt + α̂qqjt = Φ(hjt, ijt, kjt, `jt, xjt) + εjt.

We recover the remaining parameters in a subsequent stage. Note that, given any β = (βk, β`),

we can compute an estimate of unobserved productivity for each center-year that has non-zero

hiring from

ω̂jt(β) = Φ̂(hjt, ijt, kjt, `jt, xjt)− βkkjt − β``jt.

Because ωjt follows a Markov process, we have

ωjt = g(ωjt−1) + ξjt, (17)

where g is a non-parametric function of ωjt−1 and ξjt is a shock to productivity between time

t − 1 and t that is independent of the center’s time-t information set.48 Thus, for any given

estimation would be a nonparametric instrumental variables regression, introducing significant complications due to
the high dimensionality of the problem.

45Bandwidths are chosen using an over-smoothed version of the rule of thumb proposed by Scott (1992), which is a
generalization of Silverman (1986) to the multivariate case. Results are robust to using alternative bandwidths. We
have also experimented with the method of sieves which yields qualitatively similar results.

46That is, only negative hiring observations are used in the local linear regression when hjt < 0, and only positive
hiring observations are used when hjt > 0. Not doing this would raise the possibility of inconsistent estimates of these
expectations near zero hiring. Recall that at hjt = 0, the hiring function is not invertible, and these observations are
dropped. Hiring is negative in roughly 40 percent of our observations.

47The instrument in the second stage of the Robinson procedure is djt − Ê[d|hjt, ijt, kjt, `jt, xjt], where djt is the
ratio of deaths to expected deaths.

48We use a fifth-order polynomial sieve to approximate g(·); results are robust to using other orders.
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β = (βk, β`), we can estimate g(·) from the equation

yjt + α̂qqjt − βkkjt − β``jt = g(ω̂it−1(β)) + ηjt(β),

which follows from substituting the production function from (9) into the innovation of produc-

tivity from (17), where α̂q is the consistent estimator of αq recovered in the first stage.49

At the true value of β, ηjt(β) = εjt + ξjt. Therefore, ηjt(β) is uncorrelated with the time-

t labor and capital variables by construction, and β can be consistently estimated using the

moment conditions

E

 ηjt(β)kjt

ηjt(β)`jt

 = 0; (18)

we use (18) to estimate β̂ via GMM. Finally, standard errors are calculated using the block

bootstrap, which accounts for statistical uncertainty in recovering the quality proxy, as well as

both stages of the estimation process.

6 Results

We present results from our baseline model and two extensions, one which allows for the slope

of the production frontier to vary based on a center’s capital and labor and another that allows

for heterogeneous transitions of productivity.

6.1 Baseline Model

We now present our estimates of the production and transformation functions in the first column

of Table 5. As a point of comparison for our structural estimates, we include ordinary least

squares (OLS) and fixed effects (FE) estimates in the next two columns. Finally, we include

results from a specification that excludes the effect of quality choices, which are effectively

estimates of a standard one-output production function.

We first consider the baseline production function parameters βk and β`. Estimates of these

parameters are strikingly different across methods, though similar with regards to whether or

49We can estimate this equation using each observation that follows an observation used in the first stage. While
it might seem more straightforward to recover g(·) by regressing ω̂jt(β) on ω̂it−1(β), this would require using only
observations where consecutive periods of hiring are non-zero (and investment is zero), reducing the available data
even further and introducing a potential selection problem since we would be censoring on a left-hand side variable
(although our results are robust to this approach). We thank David Rivers for pointing this out to us.
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not quality choices are included in the model. The comparison with the OLS and FE estimates

is instructive for several reasons. First, OLS does not control for endogenous input choices.

Because OLS relies on cross-sectional variation in stations to identify the labor and capital

coefficients, it must ignore the possibility of productivity differences across centers, resulting in

a substantially higher labor coefficient and, consequently, the suggestion of increasing returns

to scale. We believe that the finding of increasing returns to scale is due to endogeneity bias

from unobserved productivity, as more productive centers are likely both to use more stations

and employ more staff.

The FE procedure, by contrast, allows for productivity differences across centers but as-

sumes that these differences remain constant over time; that is, the FE estimates identify the

capital and labor coefficients on the basis of year-to-year changes in centers’ inputs. Using this

approach, both the capital and labor coefficients fall substantially relative to the OLS results.

We believe this is primarily due to two factors. First, relying on only year-to-year variation

makes measurement error in both capital and labor inputs a more prominent concern. Because

stations and employees remain fairly stable over time, measurement error for hiring and in-

vestment decisions biases these coefficients towards zero;50 this is especially an issue for capital

because of infrequent investment. A second potential reason for the discrepancy between the

OLS and FE approaches is that capital and labor differences in the cross-section may proxy for

unobserved time-invariant characteristics (e.g., floorspace) that the FE specification captures

through the productivity term.

In contrast to OLS and FE, estimates of our model yield a coefficient on labor of 0.24 and

a coefficient on capital of 0.52, which suggest decreasing returns to scale overall. To review,

our structural specification employs a Markov process for productivity and uses both cross-

section and time-series variation to identify the parameters while at the same time using centers’

hiring choices to identify unobserved productivity. The relatively larger weight of capital in this

specification fits well with our understanding of dialysis: although hiring more employees may

allow a center to treat more patients by speeding up the transition of stations from one patient

to the next, the number of patients being treated by the center at any given time is necessarily

bounded by the number of available stations. While the labor coefficient is small relative to many

previous studies, it is in line with some micro studies in different industries (e.g., De Loecker

50For example, if a new station was installed in June of 2002, it will first be reported in 2003, but the difference in
the number of patients served in 2002 versus 2003 will underreport the impact of the new station that actually came
online for the second half of 2002.
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Table 5: Transformation and Production Estimates

With Quality Without Quality
(1) (2) (3) (4) (5) (6)

Model OLS FE Model OLS FE

Quality, −αq -0.0155 -0.0026 -0.0017
(0.0037) (0.0007) (0.0004)

Capital, βk 0.5204 0.4548 0.2608 0.5331 0.4572 0.2634
(0.0432) (0.0210) (0.1044) (0.0398) (0.0210) (0.1041)

Labor, β` 0.2436 0.6848 0.1985 0.2556 0.6834 0.1978
(0.0317) (0.0162) (0.0134) (0.0313) (0.0162) (0.0134)

Notes: Main model results with standard errors in parenthesis. Columns (1) &
(4) are results from the full structural model. Columns (2) & (5) are estimates
using ordinary least squares. Columns (3) & (6) include a center-level fixed
effect to control for productivity.

2011); we know of no other study on the dialysis industry which could serve as a benchmark

for comparison. The finding of decreasing returns to scale may reflect omitted inputs, such as

floor-space and other forms of physical capital not related to the number of dialysis stations,

which are presumably captured by the productivity term.

We next turn to the primary focus of the paper, the estimates of the quality-quantity tradeoff

in the transformation function, αq.
51 All three specifications provide evidence of a statistically

significant quantity-quality tradeoff, although the magnitude of the effect is much larger in the

structural model than with either OLS or FE. The smaller impact of quality on output in the

OLS and FE specifications likely stems from endogeneity and attenuation bias. Because the

OLS specification does not control for differences in productivity, an estimate of αq in this setup

will be biased towards zero. And while the FE approach controls for time-invariant productivity,

if centers’ changes in quality choices are positively correlated with changes in their productivity,

the FE estimate of αq will also be biased downwards. This effect, coupled with the attenuation

bias already discussed above, drives the estimates of the quality-quantity tradeoff towards zero.

The coefficient of 0.0155 from the structural model indicates that, holding inputs fixed, a

center that improves its quality enough so that its targeted infection rate falls by 1 percentage

point would need to reduce its patient load by 1.55 percent. Across all centers, the elasticity of

quantity with respect to quality — that is, the percent change in patient years corresponding

to a percent change in expected infections — is -0.185 at the median, with an inter-quartile

51Note that, we report “−αq” in the tables, incorporating the negative sign in (16).
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Table 6: Robustness Checks

(1) (2) (3) (4)
No Quality No Patient No No Low
Instrument Char. Controls Competition Demand Markets

Quality, −αq -0.0108 -0.0126 -0.0145 -0.0185
(0.0008) (0.0032) (0.0039) (0.0039)

Capital, βk 0.5233 0.5174 0.5069 0.5420
(0.0414) (0.0430) (0.0442) (0.0437)

Labor, β` 0.2467 0.2453 0.2215 0.2257
(0.0308) (0.0313) (0.0202) (0.0360)

Notes: Alternative specifications to the baseline results presented in Table 5, Column 1.
Standard errors in parenthesis. Column (1) does not instrument for the quality proxy
with the excess death rate. Column (2) drops controls for patient characteristics in the
quality measure. Column (3) drops competition from x. Column (4) drops centers in
markets where the ratio of dialysis stations to the overall population is above the ninetieth
percentile.

range of -0.127 to -0.254. Equivalently, a center could increase its output 1 percent by reducing

quality such that its targeted infection rate increases 0.65 percentage points, holding inputs and

productivity fixed. Alternatively, we can measure the cost of providing high-quality treatments

in units of labor: a center can reduce its infection rate by 1 percent while maintaining its

current level of output by increasing labor 6.4 percent. Given that the average center employs

approximately 13 full-time-equivalent nurses, this roughly equates to expanding employment by

an additional 0.83 full-time workers. Moreover, reducing the targeted infection rate by a full

standard deviation of 6.3 percentage points would cost the equivalent of roughly five additional

full-time workers for the average center.

6.2 Robustness Checks

Table 6 presents a series of robustness checks on our baseline model. In the first column, we

do not instrument for the quality proxy with the excess death rate, but instead estimate the

first stage assuming that there is no error in our quality proxy. The estimate of the quality-

quantity tradeoff falls by about 30 percent, as would be expected if our quality proxy contained

measurement error. This suggests that instrumenting for quality is effectively controlling for

attenuation bias.

The second column drops controls for patient characteristics, using the infection rate itself

as a proxy for quality targets instead. This has a minimal effect on the production function
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parameters but reduces the estimated quality-quantity tradeoff, a result that may stem from the

fact that our measure of quality is now contaminated by unobserved factors previously controlled

for through patient characteristics.

The third column adjusts the baseline specification by dropping the extent of competition

from the set of incentive shifters in x. In our baseline estimation, we assume that competition

is exogenous in regards to the center’s quality decision. We believe this is reasonable given the

timing of the model, as quality and hiring decisions can be adjusted much more rapidly than

entry and exit decisions (as discussed in Section 5.2 and footnote ??). One might be concerned,

however, that the entry and exit decisions of other firms could depend on a center’s quality

decisions, in which case the model would be mis-specified. To investigate this concern, we re-

estimate the model without including competition in x. We find only very small changes in the

estimates, suggesting that our results are not heavily dependent on inclusion of competition as

an exogenous incentive shifter.52

The fourth column addresses the possibility that not all centers face inelastic demand for

dialysis. Our model of the quantity-quality tradeoff assumes that a center is able to treat more

patients by reducing its quality. In markets where all ESRD patients are already being served,

however, there may be no additional patients to treat when a center reduces its quality. (Note

that the unobserved slack demand would bias our estimates of the quality-quantity tradeoff

downward, making our estimates conservative.) To investigate this possibility, we re-run our

baseline specification while dropping centers in markets where the ratio of dialysis stations to

the overall population is above the ninetieth percentile.53 That is, we drop those markets that

are most likely to have slack demand. We find that the estimate of the quality quantity tradeoff

rises to 0.0185, which is consistent with a bias from slack demand but well within our baseline

confidence interval. Because we do not directly observe measures of excess capacity in our data,

we find this robustness check reassuring in that the bias is small — and also conservative in

that our estimated quality-quantity tradeoff is understated.

Finally, we extend our baseline model so that the productivity process depends on both

ωj,t−1 and center characteristics, allowing them to differ based on for-profit status and whether

the center belongs to one of the two major chains in the industry, Fresenius and DaVita. Several

other analyses of the healthcare industry have found that for-profits tend to be more productive

52We have also run a version of the model that removes ownership status from the specification and the results
were similarly robust.

53These results are robust to adjusting this threshold to drop up to one quarter of the data.
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Table 7: Heterogeneity in Productivity Process

(1) (2) (3)
Baseline Separable Nonpara.

Quality, −αq -0.0155 -0.0155 -0.0155
(0.0037) (0.0037) (0.0037)

Capital, βk 0.5204 0.5130 0.4980
(0.0432) (0.0446) (0.0492)

Labor, β` 0.2436 0.2375 0.2353
(0.0317) (0.0307) (0.0283)

Notes: Alternative specifications to the baseline results
presented in Table 5, Column 1, that allow the produc-
tivity process to depend on both ωj,t−1 and center char-
acteristics, allowing them to differ based on for-profit
status and whether the center belongs to one of the two
major chains in the industry, Fresenius and DaVita.
Standard errors in parenthesis.

than non-profits (Kessler & McClellan 2002). Our analysis considers whether this stylized fact

holds in the dialysis industry after controlling for centers’ endogenous quality choices.

Specifically, we consider two alternatives to (17). First, we allow center-type, p, which can be

either non-profit, independent for-profit, DaVita-owned, or Fresenius-owned, to shift the level

of the production process,

ωjt = δp + g(ωjt−1) + ξjt.

Second, we consider a non-parametric approach and estimate a separate productivity process

for each center-type,

ωjt = gp(ωjt−1) + ξjt.

We do so because institutionalized management practices at the chain level may influence the

manner in which productivity evolves within a center.

We present the results from estimates of these two alternative specifications in Table 7, with

the baseline results repeated for comparison purposes. With α̂q remaining the same across all

specifications because it is estimated in the first stage, we see that the production function

estimates are robust to alternative specifications of the productivity process.
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Table 8: Flexible Production Frontier

(1) (2) (3)
Model OLS FE

Quality, −αq -0.0082 0.0057 -0.0069
(0.0254) (0.0047) (0.0024)

Quality x Capital, αqk -0.0364 0.0008 0.0023
(0.0109) (0.0025) (0.0012)

Quality x Labor, , αq` 0.0407 -0.0045 -0.0004
(0.0104) (0.0021) (0.0011)

Capital, βk 0.4451 0.4569 0.2589
(0.0605) (0.0214) (0.1054)

Labor, β` 0.2969 0.6830 0.1975
(0.0515) (0.0165) (0.0136)

Notes: Alternative specification allowing the slope of the
production frontier to depend on labor and capital inputs.
Standard errors in parenthesis.

6.3 Heterogeneity in the Quality-Quantity Tradeoff

Our baseline model assumes that the slope of the production frontier is homogeneous across

centers. Although a reasonable starting point, the slope of the frontier may vary across centers

based on their size or capital-labor ratio. For instance, one might expect that, for a given number

of stations, adding nurses and technicians could make it easier to reduce infections compared

to adding more machines. To investigate this possibility, we consider a generalized form of (9)

that allows for the slope of the frontier to depend on the center’s labor and capital inputs,54

y = −(αqqjt + αqkqjtkjt + αq`qjt`jt) + βkkjt + β``jt + ωqjt + εjt. (19)

With this specification of the production frontier, the distinction between the transformation

function and the production function is no longer straightforward, though the production frontier

itself is still well defined. The quality-quantity tradeoff for a center is now αq +αqkkjt +αq``jt,

and the returns to capital and labor are now likewise dependent on the center’s quality choice.

Table 8 presents the results for this specification of our model, as well as the OLS and FE

approaches. Although the OLS and FE approaches are statistically insignificant for the most

part, our model indicates that the slope of the production frontier is strongly related to the

capital-labor ratio. In particular, adding stations makes the quantity-quality tradeoff steeper,

54Here in a slight abuse of notation we let εjt collect all the unanticipated error terms.
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while adding labor flattens it; that is, the differential impact of adding stations expands the pro-

duction frontier towards quantity compared to hiring more employees. This result corresponds

well with our description of the industry: an additional station can be used to expand output

with the same number of nurses and technicians, though the risk of infection increases as fewer

nurses are available to monitor and clean machines.

Interestingly, the coefficients on αqk and αq` sum to almost zero, which suggests that the

quality-quantity tradeoff is not sensitive to scale.55 Instead, it appears that the capital-labor

ratio is the key factor determining the tradeoff.

Overall, the average slope of the production frontier is -0.0115, which is similar to that found

in the baseline model of Table 5, though slightly smaller in magnitude. The estimates imply an

average elasticity of quantity with respect to quality of -0.148. The coefficient is not statistically

significant, however, due to the much larger standard errors. The lack of precision is at least

partially due to the high correlation between capital and labor, which is further exacerbated

when both are interacted with our quality measures. Furthermore, about 20 percent of centers

— those with the lowest capital-to-labor ratios — are estimated to have a production frontier

with a positive slope, which violates the model. This could be due to specification error or

attenuation bias from using proxies to control for quality choices. Therefore, although the results

of this specification are instructive, we take our baseline estimates as our primary estimate of

the quality-quantity tradeoff within the industry.

7 Conclusion

Because dialysis treatments comprise a large — and growing — expense for Medicare, controlling

their costs will likely concern policy makers for the foreseeable future. By estimating center-

level production functions that incorporate endogenous quality choices, we quantify the tradeoff

that dialysis centers face between treating more patients and providing higher-quality care.

Understanding this relationship is crucial for designing effective policies that promote the proper

balance of efficiency and efficacy.

A back-of-the-envelope calculation demonstrates how our analysis can inform policy deci-

sions. In the first of two approaches, we benchmark the cost of reducing infections by calculating

the number of patients a center would have to forgo in order to prevent one (expected) infec-

55Formally, the model does not reject the hypothesis that αyq + αy` = 0; the p-value for the test is 0.67.
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tion. Under this scenario, the median number of patient-years a center must give up to eliminate

one expected infection per year is 1.5. As industry studies suggest that the cost of hemodial-

ysis treatment is between $45,000-55,000 per patient annually (Lee et al. 2002), this suggests

the opportunity cost of preventing one infection per year is roughly $75,000. Alternatively,

we could consider the possibility that centers treat the same number of patients but reduce

infections by hiring more staff. From this perspective, our results indicate that the median

increase in staff required to eliminate one expected infection would be 1.8 full-time-equivalent

employees. Although compensation varies based on staff qualifications and location, if we as-

sume compensation ranges from $35,000-50,000, this would suggest preventing one infection

costs $63,000-90,000.56 Under either approach, the opportunity cost of one infection to a center

is approximately $75,000.

With this estimate in hand, we can compare the opportunity cost of preventing infections for

a dialysis center to the cost of treating septic infections in a hospital. Although hospitalization

costs vary widely depending on the severity of the infection, a recent study estimates that the

hospitalization of a hemodialysis patient for an infection costs, on average, $25,000 (Ramanathan

et al. 2007). Therefore, tighter quality regulation will improve social welfare if society’s non-

hospitalization cost of infection (i.e., the increased risk of death and disutility of the infected

patient) is greater than $50,000, but will reduce welfare if it is less than this amount. Although

admittedly speculative, this analysis serves as a guidepost for policy makers seeking to regulate

dialysis providers along this dimension.

To provide context for this $50,000 figure, we consider the cost of an infection in terms of life-

years lost.57 According to the facility reports which are the source for our data, the death rate

at dialysis facilities was 21.0 percent, while 17.5 percent of these deaths were due to infection.

This implies the rate of deaths due to infection was roughly 3.7 percent against an overall

septic infection rate of 12.3 percent.58 If we assume that all infection-related deaths involve

hospitalization, this implies that an infection corresponds to a 29.6 percent chance of death.

Given the overall life expectancy of ESRD patients is 6.2 years (USRDS 2013), this implies that

56BLS (2014) reports that the median salary of all licensed practical and vocational nurses is $41,000. Our labor
measure includes nurses and technicians so this salary estimate is likely an upper bound. On the other hand, this
salary estimate does not account for non-salary compensation.

57We consider life-years lost instead of the value of a statistical life because ESRD patients have much shorter life
expectancy than the general population. For an ESRD patient age 60-65 (the average age in our data set is 61.5),
life expectancy was 5.1 years, while life expectancy for the US population is 23.1 years (USRDS 2013).

58Our data compiles reports for years 2004-2008 and we calculate an infection rate of 12.5 percent based on center
averages (Table 1).
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an infection costs roughly 1.8 expected life years. Willingness to pay for a “quality adjusted

life-year” (QALY) is commonly cited as $50,000, although studies attempting to estimate the

value of a QALY produce a wide range of results.59 This benchmark would imply that the

cost of infection in life-year terms is $92,000, which suggests that welfare could be increased

by increasing quality incentives in dialysis centers.60 The introduction of the Quality Incentive

Program introduced by Medicare in 2012, which reduces payments to dialysis centers that fail

to meet outcome metrics, is an example of such a policy.

More broadly, our work informs policy discussions by showing that, while productivity dis-

persion is extensive within the industry, cost-cutting initiatives may result in centers reducing

the quality of care they provide. Because dialysis resembles other healthcare settings, these find-

ings illustrate the challenges of introducing policies intended to minimize costs while maintaining

high standards of care.

59Hirth et al. (2000) surveys several studies which can be used to provide QALY estimates. These estimates range
from $24,000 to $428,000. The authors conclude that the $50,000 rule of thumb likely understates the societal value
of a QALY. We use the benchmark for consistency with the literature while recognizing it may be conservative.

60Clearly, there is substantial uncertainty about this calculation in both directions. For example, one may believe
that quality of life for dialysis patients is lower than the QALY benchmark, reducing the cost of an infection.
Alternatively, low-quality care results in more adverse outcomes than simply deaths from infections, implying the full
benefits of increasing quality exceed this figure.
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A Proofs

Proof of Lemma 1 The center’s expected period-return to labor is increasing in ωq; that is,
∂π
∂` is increasing in ωq.

Proof. Because center payoffs are increasing in both y and q (i.e., the center has non-satiable
payoffs), we know that the center will choose (ỹ, q̃) to solve the following problem where the
production constraint binds:

π(k, `, x, ωq) = max
ỹ,q̃

E[ρ(y, q, k, `, x)]

subject to: T (ỹ, q̃) = F (k, `, ωq)

y = ỹ + εy

q = q̃ + εq.

Differentiating π with respect to `, the return to an increase in labor is,

dπ

d`
= E

[
ρy
dỹ

d`
+ ρq

dq̃

d`
+ ρ`

]
,

where ρx represents the partial derivative of ρ with respect to x and the total derivatives with
respect to ỹ and q̃ are the center’s optimal policy change for a change in `. We know both are
weakly positive — with at least one strictly positive — because an increase in ` relaxes the
production constraint through an increase in F (·), and ρ(·) is increasing in both y and q. To see
that this is increasing in ωq, note that an increase in ωq also relaxes the production constraint.
Differentiating again with respect to ωq yields

d2π

d`dωq
= E

[
ρy
dỹ

d`

dỹ

dωq
+ ρq

dq̃

d`

dq̃

dωq

]
.

Non-satiation again ensures that both terms are weakly positive and at least one is strictly
positive.

Proof of Proposition 1 For any fixed investment level κ, the center hiring function h(k, `, x, ωh)
is invertible with respect to ωh on the domain {(k, `, x, ωh) : i(k, `, x, ωh) = ι},

ωh = h−1ι (k, `, x, h).

Proof. We will apply Theorem 1 from Pakes (1994) while accounting for three differences which
complicate our model. First, following Lemma 1 from Pakes (1994), we note the the inclusion
of a discrete choice of capital investment does not alter our ability to use the center’s first-order
condition with respect to hiring; we must simply substitute the (observed) optimal investment
choice ι into the first-order condition such that

ch(ι, h) + βEVh(k + ι, `+ h, x′, ωq
′
)|k, `, ωh, ι, h] = 0.

Second, because x evolves according to an exogenous stochastic process, we can use the
insight found in Appendix C of De Loecker (2011) that additional exogenous variables do not
alter the invertibility property. The only remaining difference between this problem and the tra-
ditional investment problem described by Olley & Pakes (1996) is that our productivity process
evolves intra-period between the quality and investment stages. However, because Pr(ωq

′ |ωh)
and Pr(ωh|ωq) are both stochastically increasing in ωh and ωq (the former by assumption, and
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the latter because it is a random walk), we know that Pr(ωh
′ |ωh) is also stochastically increas-

ing. We can thus write a single Bellman equation for a center at the time of the hiring decision
as

V (k, `, x, ωq, ξ, ωh) = max
i,h
−c(i, h, k, `)+π(k, `, x, ωq)+ξ+βE[V (k′, `′, x′, ωq

′
, ξ, ωh

′
)|k, `, x, ωh, i, h].

Note here that today’s realized profits from the quality stage are π(k, `, x, ωq) + ξ, where ξ is
uncorrelated with the agent’s information set at the time of the quality choice (or any time before
the quality choice), but is known at the time of the hiring decision since production outcomes are
already revealed; that is, they are sunk with respect to today’s hiring decision. Note also that
ωq and ξ represent two additional state variables, but they both evolve exogenously. Moreover,
conditional on ωh, they are uncorrelated with future draws of ωq and ξ, which is why they do
not appear in the final expectation term. Finally, using Lemma 1 and the fact that Pr(ωq

′ |ωh)

is stochastically increasing, we know E[∂π(k
′,`′,x′ωq′ )
∂` |k, `, x, ωh] is increasing in ωh.

Following De Loecker (2011), group k∗ = (k, `, x, ωq, ξ), meaning that the policy function
can be written as h(k∗, ωh). We can now directly apply Pakes (1994, Lemma 3) where c(h, ι, k∗)
stands for c(x, k) ; π(ωq, k∗) = π(k, `, x, ωq) + ξ for π(ω, k); and the choice variable is h (hiring),
rather than x, which was continuous capital investment in Pakes (1994).
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