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CHAPTER 1

Introduction
Palo Alto and Toronto
June 1993

Bradley Efron
Robert Tibshirani

Statistics is the science of learning from experience, especially ex­
perience that arrives a little bit at a time. The earliest information
science was statistics, originating in about 1650. This century has
seen statistical techniques become the analytic methods of choice
in biomedical science, psychology, education, economics, communi­
cations theory, sociology, genetic studies, epidemiology, and other
areas. Recently, traditional sciences like geology, physics, and as­
tronomy have begun to make increasing use of statistical methods
as they focus on areas that demand informational efficiency, such as
the study of rare and exotic particles or extremely distant galaxies.

Most people are not natural-born statisticians. Left to our own
devices we are not very good at picking out patterns from a sea
of noisy data. To put it another way, we are all too good at pick­
ing out non-existent patterns that happen to suit our purposes.
Statistical theory attacks the problem from both ends. It provides
optimal methods for finding a real signal in a noisy background,
and also provides strict checks against the overinterpretation of
random patterns.

Statistical theory attempts to answer three basic questions:

(1) How should I collect my data?

(2) How should I analyze and summarize the data that I've col­
lected?

(3) How accurate are my data summaries?

Question 3 constitutes part of the process known as statistical in­
ference. The bootstrap is a recently developed technique for making
certain kinds of statistical inferences. It is only recently developed
because it requires modern computer power to simplify the often
intricate calculations of traditional statistical theory.

The explanations that we will give for the bootstrap, and other



We will see examples of much more complicated summaries in later
chapters. One advantage of using a good experimental design is a
simplification of its results. What strikes the eye here is the lower
rate of heart attacks in the aspirin group. The ratio of the two

rates is

computer-based methods, involve explanations of traditional ideas
in statistical inference. The basic ideas of statistics haven't changed,
but their implementation has. The modern computer lets us ap­
ply these ideas flexibly, quickly, easily, and with a minimum of
mathematical assumptions. Our primary purpose in the book is to
explain when and why bootstrap methods work, and how they can
be applied in a wide variety of real data-analytic situations.

All three basic statistical concepts, data collection, summary and
inference, are illustrated in the New York Times excerpt of Figure
1.1. A study was done to see if small aspirin doses would prevent
heart attacks in healthy middle-aged men. The data for-the as­
pirin study were collected in a particularly efficient way: by a con­
trolled, randomized, double-blind study. One half of the subjects
received aspirin and the other half received a control substance, or
placebo, with no active ingredients. The subjects were randomly
assigned to the aspirin or placebo groups. Both the subjects and the
supervising physicians were blinded to the assignments, with the
statisticians keeping a secret code of who received which substance.
Scientists, like everyone else, want the project they are working on
to succeed. The elaborate precautions of a controlled, randomized,
blinded experiment guard against seeing benefits that don't exist,
while maximizing the chance of detecting a genuine positive effect.

The summary statistics in the newspaper article are very simple:

3

HEART ATTACK RISK
FOUND TO BE CUT
BY TAKING ASPIRIN

LIFESAVING EFFECTS SEEN

Study Finds Benefit of Tablet
Every Dther. Day Is Much
Greater Than Expected

ByHAROLD M. SCHMECK Jr.
A major nationwide study shows that

a single aspirin tablet every-other day
can sharply reduce a man I s risk of
heart attack and death from heart at­
tack.

The lifesaving effects were so dra­
matic that the study was halted in mid­
December so that the results could be
reponed as soon as possible to the par­
ticipants and to the medical profession
in general.

The magnitude of the beneficial et­
feet was far greater than expected, Dr.
Charles H. Hennekens of Harvard,
priDdpal investigator in the research,
said in a telephone interview. The risk
of myocardial infarction, the technical
name for heart attack, was cut almost
in half.

'Extreme Beneficial Effect'
A special report said the results

showed ua statistically extreme benefi­
cial effect" from the use of aspirin. The
report is to be published Thursday in
The New England Journal of Medicine.

In recent years smaller studies have
demonstrated that a person who has
had one heart attack can reduce the
risk of a second by taking aspirin, but
there had been no proof that the benefi­
cial effect would extend to the general
male population.

Dr. Claude Lentant, the director of
the National Heart Lung and Blood In­
stitute, said the findings were "ex­
tremely imponant," but he said the
general public should not take the re­
port as an indication that everyone
should start taking aspirin .

Figure 1.1. Front-page news from the New York Times of January 27,
1987. Reproduced by permission of the New York Times.

INTRODUCTION

(1.1)

INTRODUCTION

11037
11034

subjectsheart attacks
(fatal plus non-fatal)

104
189

aspirin group:
placebo group:

(j ~ 104/11037 ~ .55.
189/11034

If this study can be believed, and its solid design makes it very
believable, the aspirin-takers only have 55% as many heart attacks
as placebo-takers.

Of course we are not really interested in (j, the estimated ratio.
What we would like to know is (), the true ratio , that is the ratio

2

rborn
Highlight
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e== 119/11037 - 1 21 (1.4)
98/11034 - . .

It now looks like taking aspirin is actually harmful. However the
interval for the true stroke ratio () turns out to be

with 95% confidence. This includes the neutral value () == 1, at
which aspirin would be no better or worse than placebo vis-a-vis
strokes. In the language of statistical hypothesis testing, aspirin
was found to be significantly beneficial for preventing heart attacks,
but not significantly harmful for causing strokes. The opposite con­
clusion had been reached in an older, smaller study concerning men

we would see if we could treat all subjects, and not just a sample of
them. The value e== .55 is only an estimate of (). The sample seems
large here, 22071 subjects in all, but the conclusion that aspirin
works is really based on a smaller number, the 293 observed heart
attacks. How do we know that emight not come out much less
favorably if the experiment were run again?

This is where statistical inference comes in. Statistical theory
allows us to make the following inference: the true value of () lies
in the interval

with 95% confidence. Statement (1.2) is a classical confidence in­
terval, of the type discussed in Chapters ~2-14, and 22. It says that
if we ran a much bigger experiment, with millions of subjects, the
ratio of rates probably wouldn't be too much different than (1.1).
We almost certainly wouldn't decide that () exceeded 1, that is that
aspirin was actually harmful. It is really rather amazing that the
same data that give us an estimated value, e== .55 in this case,
also can give us a good idea of the estimate's accuracy.

Statistical inference is serious business. A lot can ride on the
decision of whether or not an observed effect is real. The aspirin
study tracked strokes as well as heart attacks, with the following
results:

(1.6)

who had experienced previous heart attacks. The aspirin treatment
remains mildly controversial for such patients.

The bootstrap is a data-based simulation method for statistical
inference, which can be used to produce inferences like (1.2) and
(1.5). The use of the term bootstrap derives from the phrase to
pull oneself up by one's bootstrap, widely thought to be based on
one of the eighteenth century Adventures of Baron Munchausen
by Rudolph Erich Raspe. (The Baron had fallen to the bottom of
a deep lake. Just when it looked like all was lost, he thought to
pick himself up by his own bootstraps.) It is not the same as the
term "bootstrap" used in computer science meaning to "boot" a
computer from a set of core instructions, though the derivation is
similar.

Here is how the bootstrap works in the stroke example. We cre­
ate two populations: the first consisting of 119 ones and 11037­
119==10918zeroes, and the second consisting of 98 ones and 11034­
98==10936 zeroes. We draw with replacement a sample of 11037
items from the first population, and a sample of 11034 items from
the second population. Each of these is called a bootstrap sample.
From these we derive the bootstrap replicate of 0:

0* == Proportion of ones in bootstrap sample #1
Proportion of ones in bootstrap sample #2'

We repeat this process a large number of times, say 1000 times,
and obtain 1000 bootstrap replicates ()*. This process is easy to im­
plement on a computer, as we will see later. These 1000 replicates
contain information that can be used to make inferences from our
data. For example, the standard deviation turned out to be 0.17
in a batch of 1000 replicates that we generated. The value 0.17
is an estimate of the standard error of the ratio of rates O. This
indicates that the obse~ved ratio 0 == 1.21 is only a little more than
one standard error larger than 1, and so the neutral value () == 1
cannot be ruled out. A rough 95% confidence interval like (1.5)
can be derived by taking the 25th and 975th largest of the 1000
replicates, which in this case turned out to be (.93, 1.60).

In this simple example, the confidence interval derived from the
bootstrap agrees very closely with the one derived from statistical
theory. Bootstrap methods are intended to simplify the calculation
of inferences like (1.2) and (1.5), producing them in an automatic
way even in situations much more complicated than the aspirin
study.

(1.5)

(1.3)

(1.2)

subjects
11037
11034

strokes
119
98

.43 < () < .70

.93 < () < 1.59

aspirin group:
placebo group:

For strokes, the ratio of rates is
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The terminology of statistical summaries and inferences, like re­
gression, correlation, analysis of variance, discriminant analysis,
standard error, significance level and confidence interval, has be­
come the lingua franca of all disciplines that deal with noisy data.
We will be examining what this language means and how it works
in practice. The particular goal of bootstrap theory is a computer­
based implementation of basic statistical concepts. In some ways it
is easier to understand these concepts in computer-based contexts
than through traditional mathematical exposition.

1.1 An overview of this book

This book describes the bootstrap and other methods for assessing
statistical accuracy. The bootstrap does not work in isolation but
rather is applied to a wide variety of statistical procedures. Part
of the objective of this book is expose the reader to many exciting
and useful statistical techniques through real-data examples. Some
of the techniques described include nonparametric regression, den­
sity estimation, classification trees, and least median of squares
regression.

Here is a chapter-by-chapter synopsis of the book. Chapter 2
introduces the bootstrap estimate of standard error for a simple
mean. Chapters 3-5 contain some basic background material,
and may be skimmed by readers eager to get to the details of
the bootstrap in Chapter 6. Random samples, populations, and
basic probability theory are reviewed in Chapter 3. Chapter 4
defines the empirical distribution function estimate of the popula­
tion, which simply estimates the probability of each of n data items
to be lin. Chapter 4 also shows that many familiar statistics can
be viewed as "plug-in" estimates, that is, estimates obtained by
plugging in the empirical distribution function for the unknown
distribution of the population. Chapter 5 reviews standard error
estimation for a mean, and shows 'how the usual textbook formula
can be derived as a simple plug-in estimate.

The bootstrap is defined in Chapter 6, for estimating the stan­
dard error of a statistic from a single sample. The bootstrap stan­
dard error estimate is a plug-in estimate that rarely can be com­
puted exactly; instead a simulation ("resampling") method is used
for approximating it.

Chapter 7 describes the application of bootstrap standard er­
rors in two complicated examples: a principal components analysis

and a curve fitting problem.
Up to this point, only one-sample data problems have been dis­

cussed. The application of the bootstrap to more complicated data
structures is discussed in Chapter 8. A two-sample problem and
a time-series analysis are described.

Regression analysis and the bootstrap are discussed and illus­
trated in Chapter 9. The bootstrap estimate of standard error is
applied in a number of different ways and the results are discussed
in two examples.

The use of the bootstrap for estimation of bias is the topic of
Chapter 10, and the pros and cons of bias correction are dis­
cussed. Chapter 11 describes the jackknife method in some detail.
We see that the jackknife is a simple closed-form approximation to
the bootstrap, in the context of standard error and bias estimation.

The use of the bootstrap for construction of confidence intervals
is described in Chapters 12, 13 and 14. There are a number of
different approaches to this important topic and we devote quite
a bit of space to them. In Chapter 12 we discuss the bootstrap-t
approach, which generalizes the usual Student's t method for con­
structing confidence intervals. The percentile method (Chapter
13) uses instead the percentiles of the bootstrap distribution to
define confidence limits. The BC a (bias-corrected accelerated in­
terval) makes important corrections to the percentile interval and
is described in Chapter 14.

Chapter 15 covers permutation tests, a time-honored and use­
ful set of tools for hypothesis testing. Their close relationship with
the bootstrap is discussed; Chapter 16 shows how the bootstrap
can be used in more general hypothesis testing problems.

Prediction error estimation arises in regression and classification
problems, and we describe some approaches for it in Chapter 17.
Cross-validation and bootstrap methods are described and illus­
trated. Extending this idea, Chapter 18 shows how the boot­
strap and cross-validation can be used to adapt estimators to a set
of data.

Like any statistic, bootstrap estimates are random variables and
so have inherent error associated with them. When using the boot­
strap for making inferences, it is important to get an idea of the
magnitude of this error. In Chapter 19 we discuss the jackknife­
after-bootstrap method for estimating the standard error of a boot­
strap quantity.

Chapters 20-25 contain more advanced material on selected
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topics, and delve more deeply into some of the material introduced
in the previous chapters. The relationship between the bootstrap
and jackknife is studied via the "resampling picture" in Chapter
20. Chapter 21 gives an overview of non-parametric and para­
metric inference, and relates the bootstrap to a number of other
techniques for estimating standard errors. These include the delta
method, Fisher information, infinitesimal jackknife, and the sand­
wich estimator.

Some advanced topics in bootstrap confidence intervals are dis­
cussed in Chapter 22, providing some of the underlying basis
for the techniques introduced in Chapters 12-14. Chapter 23 de­
scribes methods for efficient computation of bootstrap estimates
including control variates and importance sampling. In Chapter
24 the construction of approximate likelihoods is discussed. The
bootstrap and other related methods are used to construct a "non­
parametric" likelihood in situations where a parametric model is
not specified.

Chapter 25 describes in detail a bioequivalence study in which
the bootstrap is used to estimate power and sample size. In Chap­
ter 26 we discuss some general issues concerning the bootstrap and
its role in statistical inference.

Finally, the Appendix contains a description of a number of dif­
ferent computer programs for the methods discussed in this book.

1.2 Information for instructors

We envision that this book can provide the basis for (at least)
two different one semester courses. An upper-year undergraduate
or first-year graduate course could be taught from some or all of
the first 19 chapters, possibly covering Chapter 25 as well (both
authors have done this). In addition, a more advanced graduate
course could be taught from a selection of Chapters 6-19, and a se­
lection of Chapters 20-26. For an advanced course, supplementary
material might be used, such as Peter Hall's book The Bootstrap
and Edgeworth Expansion or journal papers on selected technical
topics. The Bibliographic notes in the book contain many sugges­
tions for background reading.

We have provided numerous exercises at the end of each chap­
ter. Some of these involve computing, since it is important for the
student to get hands-on experience for learning the material. The
bootstrap is most effectively used in a high-level language for data

analysis and graphics. Our language of choice (at present) is "S"
(or "S-PLUS"), and a number of S programs appear in the Ap­
pendix. Most of these programs could be easily translated into
other languages such as Gauss, Lisp-Stat, or Matlab. Details on
the availability of Sand S-PLUS are given in the Appendix.

1.3 Some of the notation used in the book

Lower case bold letters such as x refer to vectors, that is, x ==
(Xl, X2, .. . x n ) . Matrices are denoted by upper case bold letters
such as X, while a plain uppercase letter like X refers to a random
variable. The transpose of a vector is written as x T . A superscript
"*,, indicates a bootstrap random variable: for example, x* indi­
cates a bootstrap data set generated from a data set x. Parameters
are denoted by Greek letters such as (). A hat on a letter indicates
an estimate, such as {). The letters F and G refer to populations. In
Chapter 21 the same symbols are used for the cumulative distribu­
tion function of a population. Ie is the indicator function equal to
1 if condition C is true and 0 otherwise. For example, I{x<2} == 1
if X < 2 and 0 otherwise. The notation tr(A) refers to the trace
of the matrix A, that is, the sum of the diagonal elements. The
derivatives of a function g(x) are denoted by g'(X),g"(X) and so
on.

The notation
F ~ (Xl, X2, ... z.,)

indicates an independent and identically distributed sample drawn

from F. Equivalently, we also write x/·~d·F for i == 1,2, ... n.
Notation such as #{Xi > 3} means the number of XiS greater

than 3. log X refers to the natural logarithm of x.
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CHAPTER 2

The accuracy of a sample mean

so the difference x - y equals 30.63, suggesting a considerable life­
prolonging effect for the treatment.

But how accurate are these estimates? After all, the means (2.1)
are based on small samples, only 7 and 9 mice, respectively. In

The bootstrap is a computer-based method for assigning measures
of accuracy to statistical estimates. The basic idea behind the boot­
strap is very simple, and goes back at least two centuries. After
reviewing some background material, this book describes the boot­
strap method, its implementation on the computer, and its applica­
tion to some real data analysis problems. First though, this chapter
focuses on the one example of a statistical estimator where we re­
ally don't need a computer to assess accuracy: the sample mean.
In addition to previewing the bootstrap, this gives us a chance to
review some fundamental ideas from elementary statistics. We be­
gin with a simple example concerning means and their estimated
accuracies.

Table 2.1 shows the results of a small experiment, in which 7 out
of 16 mice were randomly selected to receive a new medical treat­
ment, while the remaining 9 were assigned to the non-treatment
(control) group. The treatment was intended to prolong survival
after a test surgery. The table shows the survival time following
surgery, in days, for all 16 mice.

Did the treatment prolong survival? A comparison of the means
for the two groups offers preliminary grounds for optimism. Let
Xl, X2, ... , X7 indicate the lifetimes in the treatment group, so Xl ==
94, X2 == 197,"', X7 == 23, and likewise let YI, Y2, ... , Y9 indicate
the control group lifetimes. The group means are

(2.2)

Table 2.1. The mouse data. Sixteen mice were randomly assigned to a
treatment group or a control group. Shown are their survival times, in
days, following a test surgery. Did the treatment prolong survival?

Estimated
(Sample Standard

Group Data Size) Mean Error

Treatment: 94 197 16
38 99 141
23 (7) 86.86 25.24

Control: 52 104 146
10 51 30
40 27 46 (9) 56.22 14.14

Difference: 30.63 28.93

where s2 == L~=l (Xi - x)2/(n - 1). (This formula, and standard
errors in general, are discussed more carefully in Chapter 5.) The
standard error of any estimator is defined to be the square root of
its variance, that is, the estimator's root mean square variability
around its expectation. This is the most common measure of an
estimator's accuracy. Roughly speaking, an estimator will be less
than one standard error away from its expectation about 68% of
the time, and less than two standard errors away about 95% of the
time.

If the estimated standard errors in the mouse experiment were
very small, say less than 1, then we would know that x and y were
close to their expected values, and that the observed difference of
30.63 was probably a good estimate of the true survival-prolonging

order to answer this question, we need an estimate of the accuracy
of the sample means ii and y. For sample means, and essentially
only for sample means, an accuracy formula is easy to obtain.

The estimated standard error of a mean x based on n indepen­
dent data points Xl,X2,"',X n , X == L~lxi/n, is given by the
formula

(2.1)
9

and y == LYi/9 == 56.22,
i=l

7

X == L Xi/7 == 86.86
i=l
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where s(·) == L~=l s(x*b)/B. Suppose s(x) is the mean ii: In this

Figure 2.1. Schematic of the bootstrap process for estimating the stan­
dard error of a statistic s(x). B bootstrap sample- are generated from
the original data set. Each bootstrap sample has n elements, generated
by sampling with replacement n times from the oriqitial data set. Boot­
strap replicatess(x*l), S(X*2), ... s(x*B) are obtained by calculating the
value of the statistic s(x) on each bootstrap sample. Finally, the stan­
dard deviation of the values S(X*l), S(:x:*2), ... s(x*B) is our estimate of
the standard error of s(x).

Figure 2.1 is a schematic of the bootstrap process. The boot­
strap algorithm begins by generating a large number of indepen­
dent bootstrap samples x"", x*2, ... ,x*B, each of size n. Typical
values for B, the number of bootstrap samples, range from 50 to
200 for standard error estimation. Corresponding to each bootstrap
sample is a bootstrap replication of s, namely s(x*b), the value of
the statistic s evaluated for x*b. If s(x) is the sample median, for
instance, then s(x*) is the median of the bootstrap sample. The
bootstrap estimate of standard error is the standard deviation of
the bootstrap replications,

(2.3)
B 1

seboot = {~:=rs(x*b) - s(·)f /(B - I)} :2,

b=l

o 0 0

bootstrap
replications

-- - -- ~
~------ *2 A-

S(X*1) S(X ) S(X*B)

i --1--- bootstrap1-._--------- <:> ---;> samples

G:0 QS> X*B

capability of the treatment. On the other hand, if formula (2.2)
gave big estimated standard errors, say 50, then the difference es­
timate would be too inaccurate to depend on.

The actual situation is shown at the right of Table 2.1. The
estimated standard errors, calculated from (2.2), are 25.24 for x
and 14.14 for y. The standard error for the difference x - y equals
28.93 == J25.242 + 14.142 (since the variance of the difference of
two independent ,quant it ies is the sum of their variances). We see
that the observed difference 30.63 is only 30.63/28.93 == 1.05 es­
timated standard errors greater than zero. Readers familiar with
hypothesis testing theory will recognize this as an insignificant re­
sult, one that could easily arise by chance even if the treatment
really had no effect at all.

There are more precise ways to verify this disappointing result,
(e.g. the permutation test of Chapter 15), but usually, as in this
case, estimated standard errors are an excellent first step toward
thinking critically about statistical estimates. Unfortunately stan­
dard errors have a major disadvantage: for most statistical estima­
tors other than the mean there is no formula like (2.2) to provide
estimated standard errors. In other words, it is hard to assess the
accuracy of an estimate other than the mean.

Suppose for example, we want to compare the two groups in Ta­
ble 2.1 by their medians rather than their means. The two medians
are 94 for treatment and 46 for control, giving an estimated dif­
ference of 48, considerably more than the difference of the means.
But how accurate are these medians? Answering such questions is
where the bootstrap, and other computer-based techniques, come
in. The remainder of this chapter gives a brief preview of the boot­
strap estimate of standard error, a method which will be fully
discussed in succeeding chapters.

Suppose we observe independent data points Xl, X2, .•. , X n , for
convenience denoted by the vector x == (Xl, X2, ... , x n ) , from which
we compute a statistic of interest s(x). For example the data might
be the n == 9 control group observations in Table 2.1, and s(x)
might be the sample mean.

The bootstrap estimate of standard error, invented by Efron in
1979, looks completely different than (2.2), but in fact it is closely
related, as we shall see. A bootstrap sample x* == (xi, x;, ... ,x~) is
obtained by randomly sampling n times, with replacement, from
the original data points Xl, X2, ... , X n . For instance, with n == 7 we
might obtain x* == (xs, X7, XS, X4, X7, X3, Xl).



14 THE ACCURACY OF A SAMPLE MEAN PROBLEMS 15

case , standard probability theory tells us (Problem 2.5) that as B
gets very large, formula (2.3) approaches

Table 2.2. Bootstrap estimates of standard error for the mean and me­
dian; treatment group , mouse data , Table 2.1. The median is less accu­
rate (has larger standard error) than the mean for this data set.

This is almost the same as formula (2.2). We could make it ex­
actly the same by multiplying definition (2.3) by the factor [n/ (n-
1)]! , but there is no real advantage in doing so.

Table 2.2 shows bootstrap estimated standard errors for the
mean and the median, for the treatment group mouse data of Ta­
ble 2.1. The estimated standard errors settle down to limiting val­
ues as the number of bootstrap samples B increases. The limiting
value 23.36 for the mean is obtained from (2.4). The formula for
the limiting value 37.83 for the standard error of the median is
quite complicated: see Problem 2.4 for a derivation.

We are now in a position to assess the precision of the differ­
ence in medians between the two groups. The bootstrap procedure
described above was applied to the control group, producing a stan­
dard error estimate of 11.54 based on B == 100 replications (B == CX)

gave 9.73). Therefore, using B == 100, the observed difference of 48
has an estimated standard error of V36.352 + 11.54 2 == 38.14 , and
hence is 48/38.14 == 1.26 standard errors greater than zero. This is
larger than the observed difference in means, but is still insignifi­
cant.

For most statistics we don't have a formula for the limiting value
of the standard error, but in fact no formula is needed. Instead
we use the numerical output of the bootstrap program, for some
convenient value of B. We will see in Chapters 6 and 19, that B
in the range 50 to 200 usually makes 8eboot a good standard error

n

{L(Xi - X)2 /n2}! .
i=I

2.1 Problems

2.1 t Suppose that the mouse survival times were expressed in
weeks instead of days, so that the entries in Table 2.1 were
all divided by 7.

(a) What effect would this have on i: and on its estimated
standard error (2.2)? Why does this make sense?

(b) What effect would this have on the ratio of the differ­
ence x - y to its estimated standard error?

2.2 Imagine the treatment group in Table 2.1 consisted of R rep­
etitions of the data actually shown, where R is a positive inte­
ger. That is, the treatment data consisted of R 94's, R 197's,
etc. What effect would this have on the estimated standard
error (2.2)?

2.3 It is usually true that the error of a statistical estimator de­
creases at a rate of about lover the square root of the sample
size. Does this agree with the result of Problem 2.2?

2.4 Let XCI) < X(2) < X(3) < X(4) < X(5) < X(6) < X(7) be an
ordered sample of size n == 7. Let x* be a bootstrap sample,
and s(x*) be the corresponding bootstrap replication of the
median. Show that

estimator, even for estimators like the median. It is easy to write
a bootstrap program that works for any computable statistic s(x),
as shown in Chapters 6 and the Appendix. With these programs
in place, the data analyst is free to use any estimator, no matter
how complicated, with the assurance that he or she will also have
a reasonable idea of the estimator's accuracy. The price, a factor
of perhaps 100 in increased computation, has become affordable as
computers have grown faster and cheaper.

Standard errors are the simplest measures of statistical accu­
racy. Later chapters show how bootstrap methods can assess more
complicated accuracy measures, like biases, prediction errors, and
confidence intervals. Bootstrap confidence intervals add another
factor of 10 to the computational burden. The payoff for all this
computation is an increase in the statistical problems that can be
analyzed, a reduction in the assumptions of the analysis, and the
elimination of the routine but tedious theoretical calculations usu­
ally associated with accuracy assessment.

(2.4)

CX)

23.36
37.83

1000
23.02
36.48

500
23.79
36.72

250
22.32
34.46

100
23.63
36.35

50
19.72
32.21

B:
mean:

median:



t Indicates a difficult or more advanced problem.
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2.5

THE ACCURACY OF A SAMPLE MEAN

(a) s(x*) equals one of the original data values XCi), i ==

1,2,···,7.
(b) t s(x*) equals XCi) with probability

3 . _ 1 i
p(i) = 'L{Bi(j; n, ~) - Bi(j; n, :;:;:)}, (2.5)

j=O

where Bi(j; n, p) is the binomial probability (j)pi (l-p )n-
j

.

[The numerical values of p(i) are .0102, .0981, .2386, .3062,
.2386, .0981, .0102. These values were used to compute
seboot{ median} == 37.83, for B == 00, Table 2.2.]

Apply the weak law of large numbers to show t~at e.xpression
(2.3) approaches expression (2.4) as n goes to infinity.

CHAPTER 3

Random samples and
probabilities

3.1 Introduction

Statistics is the theory of accumulating information, especially in­
formation that arrives a little bit at a time. A typical statistical
situation was illustrated by the mouse data of Table 2.1. No one
mouse provides much information, since the individual results are
so variable, but seven, or nine mice considered together begin to
be quite informative. Statistical theory concerns the best ways of
extracting this information. Probability theory provides the math­
ematical framework for statistical inference. This chapter reviews
the simplest probabilistic model used to model random data: the
case where the observations are a random sample from a single
unknown population, whose properties we are trying to learn from
the observed data.

3.2 Random samples

It is easiest to visualize random samples in terms of a finite popu­
lation or "universe" U of individual units U1 , U2 , ... , UN, anyone
of which is equally likely to be selected in a single random draw.
The population of units might be all the registered voters in an
area undergoing a political survey, all the men that might con­
ceivably be selected for a medical experiment, all the high schools
in the United States, etc. The individual units have properties we
would like to learn, like a political opinion, a medical survival time,
or a graduation rate. It is too difficult and expensive to examine
every unit in U, so we select for observation a random sample of
manageable size.

A random sample of size n is defined to be a collection of n
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