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MATH20101 Complex Analysis 0. Preliminaries

0. Preliminaries

§0.1 Contact details

The lecturer is Dr. Charles Walkden, Room 2.241, Tel: 0161 275 5805, Email:
charles.walkden@manchester.ac.uk.

My office hour is: Monday 12pm–1pm. If you want to see me at another time then
please email me first to arrange a mutually convenient time.

§0.2 Course structure

§0.2.1 Learning outcomes

At the end of the course you will be able to

• prove the Cauchy-Riemann Theorem and its converse and use them to decide whether
a given function is holomorphic;

• use power series to define a holomorphic function and calculate its radius of conver-
gence;

• define and perform computations with elementary holomorphic functions such as sin,
cos, sinh, cosh, exp, log, and functions defined by power series;

• define the complex integral and use a variety of methods (the Fundamental Theorem
of Contour Integration, Cauchy’s Theorem, the Generalised Cauchy Theorem and the
Cauchy Residue Theorem) to calculate the complex integral of a given function;

• use Taylor’s Theorem and Laurent’s Theorem to expand a holomorphic function in
terms of power series on a disc and Laurent series on an annulus, respectively;

• identify the location and nature of a singularity of a function and, in the case of poles,
calculate the order and the residue;

• apply techniques from complex analysis to deduce results in other areas of mathemat-
ics, including proving the Fundamental Theorem of Algebra and calculating infinite
real integrals, trigonometric integrals, and the summation of series.

§0.2.2 Lectures

There will be approximately 21 lectures in total.
The lecture notes are available on the course webpage. The course webpage is available

via Blackboard or directly at personalpages.manchester.ac.uk/staff/charles.p.walkden/complex-ana
Please let me know of any mistakes or typos that you find in the notes.

I will use the visualiser for the majority of the lectures. I will upload scanned copies of
what I write on the visualiser onto the course webpage. I will normally upload these onto
the course webpage within 3 working days of the lectures.
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MATH20101 Complex Analysis 0. Preliminaries

The lectures will be recorded via the University’s ‘Lecture Capture’ (podcast) system.
Remember that Lecture Capture is a useful revision tool but it is not a substitute for
attending lectures. The support classes are not podcasted.

§0.2.3 Exercises

The lecture notes also contain the exercises (at the end of each section). The exercises are
an integral part of the course and you should make a serious attempt at them.

The lecture notes also contain the solutions to the exercises. I will trust you to have
serious attempts at solving the exercises without looking at the solutions.

§0.2.4 Tutorials and support classes

The tutorial classes start in Week 2. There are 5 classes for this course but you only need
go to one each week. You will be assigned to a class. Attendance at tutorial classes is
recorded and monitored by the Teaching and Learning Office. If you go to a class other
than the one you’ve been assigned to then you will normally be recorded as being absent.

I try to run the tutorial classes so that the majority of people get some benefit from
them. Each week I will prepare a worksheet. The worksheets will normally contain exercises
from the lecture notes or from past exam questions. I will often break the exercises down
into easier, more manageable, subquestions; the idea is that then everyone in the class can
make progress on them within the class. (If you find the material in the examples classes
too easy then great!—it means that you are progressing well with the course.) You still
need to work on the remaining exercises (and try past exams) in your own time!

I will not put the worksheets on the course webpage. There is nothing on the worksheets
that isn’t already contained in either the exercises, lecture notes or past exam papers that
are already on the course webpage. The worksheets tell you which exercises, parts of the
lectures notes, or past exam are being covered.

§0.2.5 Short videos

There are a series of short instructional videos on the course webpage. These recap topics
where, from my experience of teaching the course before, there is often some confusion and
a second explanation (in addition to that given in the lecture notes/lectures) may be useful.
I have highlighted in the lecture notes appropriate times to watch each video.

§0.2.6 Coursework

The coursework for this year will be a closed-book test taking place during Week 6 (reading
week). You can see the time and location on your personalised timetable, available via
my.manchester.ac.uk. All questions on the test are compulsory and it will be in the format
of an exam question. Thus, looking at past exam papers will provide excellent preparation
for the test. You will need to know §§2,3,4 from the course for the test (this is the material
that we will cover in weeks 1–5).

Your coursework script, with feedback, will be returned to you within 15 working days
of the test. You will be able to collect your script during the support class that you have
been allocated to.
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§0.2.7 The exam

The exam will be in a similar format to previous years. The exam for MATH20101 consists
of Part A (examining the Real Analysis part of the course) and Part B (examining the
Complex Analysis part of the course). Each part contains 4 question (so 8 questions in
total). You must answer 5 of these questions, with at least 2 from each part. If you answer
more than 5 questions then the lowest scoring question(s) will be disregarded, subject to
the requirement that at least 2 questions from each part must be answered.

In terms of what is examinable:

• Anything that I cover (including proofs) in the lectures can be regarded as being
examinable (unless I explicitly say otherwise in the lectures).

• There may be a small amount of material in these lecture notes that I do not cover
in the lectures; this will not be examinable.

• For the avoidance of doubt, the proofs of the following theorems will be discussed in
the lectures but are not examinable: Proposition 2.5.2, Theorem 3.3.2, Lemma 3.3.2,
Lemma 4.4.2, Proposition 4.5.1, Theorem 4.5.5, Theorem 5.1.1, Theorem 5.2.1, The-
orem 6.2.1, Theorem 7.3.1. However, understanding the ideas in the proofs may help
you gain a wider understanding of the subject and how different parts of the course
relate to each other.

• The exercises are at a similar level (in terms of style/difficulty) to the (non-bookwork)
parts of the exam.

§0.3 Recommended texts

The lecture notes cover everything that is in the course and you probably do not need to
buy, or refer to, a book.

If you do want a text to refer to then the most suitable is

I.N. Stewart and D.O. Tall, Complex Analysis, Cambridge University Press, 1983.

(This is also an excellent source of additional exercises.)
The best book (in my opinion) on complex analysis is

L.V. Ahlfors, Complex Analysis, McGraw-Hill, 1979

although it is perhaps too advanced to be used as a substitute for the lectures/lecture notes
for this course. There are many other books on complex analysis available either in the
library, on Amazon, or online; many will be suitable for this course, although I should also
warn you that some are not very good...
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MATH20101 Complex Analysis 1. Introduction

1. Introduction

§1.1 Where we are going

You are already familiar with how to differentiate and integrate real-valued functions defined
on the real line. For example, if f : R → R is defined by f(x) = 3x2 + 2x then you already
know that f ′(x) = 6x + 2 and that

∫

f(x) dx = x3 + x2 + c. The precise definition of
what it means for a function defined on the real line to be differentiable or integrable will
be given in the Real Analysis course. In this course, we will look at what it means for
functions defined on the complex plane to be differentiable or integrable and look at ways
in which one can integrate complex-valued functions. Surprisingly, the theory turns out to
be considerably easier than the real case! Thus the word ‘complex’ in the title refers to the
presence of complex numbers, and not that the analysis is harder!

One of the highlights towards the end of the course is Cauchy’s Residue Theorem.
This theorem gives a new method for calculating real integrals that would be difficult
or impossible just using techniques that you know from real analysis. For example, let
0 < a < b and consider

∫ ∞

−∞

x sinx

(x2 + a2)(x2 + b2)
dx. (1.1.1)

If you try calculating this using techniques that you know (integration by substitution,
integration by parts, etc) then you will quickly hit an impasse. However, using complex
analysis one can evaluate (1.1.1) in about five lines of work!1

§1.2 Recap on complex numbers

A complex number is an expression of the form x + iy where x, y ∈ R. (Here i denotes√
−1 so that i2 = −1.) We denote the set of complex numbers by C. We can represent C

as the Argand diagram or complex plane by drawing the point x+ iy ∈ C as the point with
co-ordinates (x, y) in the plane R2 (see Figure 1.2.1).

If a+ ib, c+ id ∈ C then we can add and multiply them as follows

(a+ ib) + (c+ id) = (a+ c) + i(b+ d)

(a+ ib)(c + id) = ac+ iad+ ibc+ i2bd = (ac− bd) + i(ad+ bc).

To divide complex numbers we use the following trick (often referred to as ‘realising the
denominator’)

1

a+ ib
=

1

a+ ib

a− ib

a− ib
=

a− ib

a2 − i2b2
=

a− ib

a2 + b2
=

a

a2 + b2
− i

b

a2 + b2
.

We shall often denote a complex number by the letters z or w. Suppose that z = x+ iy
where x, y ∈ R. We call x the real part of z and write x = Re(z). We call y the imaginary
part of z and write y = Im(z). (Note: the imaginary part of x+ iy is y, and not iy.)

1The answer is π
b2−a2 (e

−a
− e

−b).
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y

x

z = x+ iy

Figure 1.2.1: The Argand diagram or the complex plane. Here z = x+ iy.

We say that z ∈ C is real if Im(z) = 0 and we say that z ∈ C is imaginary if Re(z) = 0.
In the complex plane, the set of real numbers corresponds to the x-axis (which we will often
call the real axis) and the set of imaginary numbers corresponds to the y-axis (which we
will often call the imaginary axis).

If z = x+ iy, x, y ∈ R then we define z̄ = x− iy to be the complex conjugate of z.
Let z = x+ iy, x, y ∈ R. The modulus (or absolute value) of z is

|z| =
√

x2 + y2 ≥ 0.

(If z is real then this is just the usual absolute value.) It is straightforward to check that
|z̄| = |z| and that

zz̄ = (x+ iy)(x− iy) = x2 + y2 = |z|2.
Here are some basic properties of |z|:

Proposition 1.2.1
Let z, w ∈ C. Then

(i) |z| = 0 if and only if z = 0;

(ii) |zw| = |z| |w|;

(iii)
∣

∣

1
z

∣

∣ = 1
|z| if z 6= 0;

(iv) |z + w| ≤ |z|+ |w|;

(v) ||z| − |w|| ≤ |z − w|.

Remark. The inequality |z + w| ≤ |z| + |w| is often called the triangle inequality. The
inequality ||z| − |w|| ≤ |z − w| is often called the reverse triangle inequality.

Proof. Parts (i), (ii) and (iii) follow easily from the definition of |z|. We leave (v) as an
exercise (see Exercise 1.6). To see (iv), first note that if z = x + iy then Re(z) = x ≤
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√

x2 + y2 = |z|. Then

|z + w|2 = (z + w)(z + w)

= (z + w)(z̄ + w̄)

= zz̄ + ww̄ + zw̄ + z̄w

= |z|2 + |w|2 + zw̄ + zw̄

= |z|2 + |w|2 + 2Re(zw̄) using Exercise 1.5(iv)

≤ |z|2 + |w|2 + 2|zw̄|
= |z|2 + |w|2 + 2|z||w̄|
= |z|2 + |w|2 + 2|z||w|
= (|z|+ |w|)2.

✷

Let z 6= 0. If we plot the point z in the complex plane then |z| denotes the length of the
vector joining the origin 0 to the point z. See Figure 1.2.2. The angle θ in Figure 1.2.2 is

z

|z|

θ

Figure 1.2.2: The modulus |z| and argument arg z of z.

called the argument of z and we write θ = arg z. We have that tan θ = y/x. Note that θ is
not uniquely determined: if we replace θ by θ + 2nπ, n ∈ Z, then we get the same point.
However, there is a unique value of θ such that −π < θ ≤ π; this is called the principal
value of arg z. We write Arg(z) for the principal value of the argument of z.

Let z ∈ C. We can represent z in polar co-ordinates as follows. First write z = x+ iy
and draw z in the complex plane; see Figure 1.2.3. Then x = r cos θ and y = r sin θ where
θ is the argument of z and r =

√

x2 + y2 = |z|. We call (r, θ) the polar co-ordinates of z
and write z = r(cos θ + i sin θ).

Video. There is a short video recapping complex numbers on the course webpage (Video
1).
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z

θ

r

r cos θ

r sin θ

Figure 1.2.3: If z has polar co-ordinates (r, θ) then the real part of z is r cos θ and the
imaginary part of z is r sin θ, and conversely.
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Exercises for Part 1

The following exercises are provided for you to revise complex numbers.

Exercise 1.1
Write the following expressions in the form x+ iy, x, y ∈ R:

(i) (3 + 4i)2; (ii)
2 + 3i

3− 4i
; (iii)

1− 5i

3i− 1
; (iv)

1− i

1 + i
− i+ 2; (v)

1

i
.

Exercise 1.2
Express

(1− i)23

(
√
3− i)13

in the form reiθ, r > 0, −π ≤ θ < π.
Express 5e3πi/4 + 2e−πi/6 in the form x+ iy, x, y ∈ R.

Exercise 1.3
By writing z = x+ iy find all solutions of the following equations:

(i) z2 = −5 + 12i; (ii) z2 + 4z + 12− 6i = 0.

Exercise 1.4
Let z, w ∈ C. Show that (i) Re(z ± w) = Re(z)± Re(w), (ii) Im(z ± w) = Im(z) ± Im(w).
Give examples to show that neither Re(zw) = Re(z)Re(w) nor Im(zw) = Im(z) Im(w) hold
in general.

Exercise 1.5
Let z, w ∈ C. Show that (i) z ± w = z̄ ± w̄, (ii) zw = z̄w̄, (iii)

(

1
z

)

= 1
(z̄) if z 6= 0, (iv)

z + z̄ = 2Re(z), (v) z − z̄ = 2i Im(z).

Exercise 1.6
Let z, w ∈ C. Show, using the triangle inequality, that the reverse triangle inequality holds:

||z| − |w|| ≤ |z − w|.

Exercise 1.7
Draw the set of all z ∈ C satisfying the following conditions

(i) Re(z) > 2; (ii) 1 < Im(z) < 2; (iii) |z| < 3; (iv) |z − 1| < |z + 1|.

Exercise 1.8
(i) Let z, w ∈ C and write them in polar form as z = r(cos θ+i sin θ), w = s(cosφ+i sinφ)

where r, s > 0 and θ, φ ∈ R. Compute the product zw. Hence, using formulæ for
cos(θ + φ) and sin(θ + φ), show that arg zw = arg z + argw (we write arg z1 = arg z2
if the principal argument of z1 differs from that of z2 by 2kπ with k ∈ Z).

c© University of Manchester 2018 9



MATH20101 Complex Analysis 1. Exercises for Part 1

(ii) By induction on n, derive De Moivre’s Theorem: (cos θ+ i sin θ)n = cosnθ+ i sinnθ.

(iii) Use De Moivre’s Theorem to derive formulæ for cos 3θ, sin 3θ, cos 4θ, sin 4θ in terms
of cos θ and sin θ.

Exercise 1.9
Let w0 be a complex number such that |w0| = r and argw0 = θ. Find the polar forms of
all the solutions z to zn = w0, where n ≥ 1 is a positive integer.

Exercise 1.10
Let Arg(z) denote the principal value of the argument of z. Give an example to show that,
in general, Arg(z1z2) 6= Arg(z1) + Arg(z2) (c.f. Exercise 1.8(i)).

Exercise 1.11
Try evaluating the integral in (1.1.1), i.e.

∫ ∞

−∞

x sinx

(x2 + a2)(x2 + b2)
dx

using the methods that you already know (substitution, partial fractions, integration by
parts, etc). (There will be a prize for anyone who can do this integral by hand in under 2
pages using such methods!)
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MATH20101 Complex Analysis 2. Differentiation, the Cauchy-Riemann equations

2. Limits and differentiation in the complex plane and the

Cauchy-Riemann equations

§2.1 Open sets and domains

A major difference between real and complex analysis is that the geometry of the complex
plane is far richer than that of the real line. For example, the only connected subsets of R
are intervals, whereas there are far more complicated connected subsets in C (‘connected’
has a rigorous meaning, but for now you can assume that a subset is connected if it ‘looks’
connected: i.e. any two points in the subset can be joined by a line that does not leave the
subset). We need to make precise what we mean by convergence, open sets (generalising
open intervals), etc, in C.

Remark. Throughout, we use ⊂ (rather than ⊆) to denote ‘is a subset of’. Thus A ⊂ B
means that A is a subset (indeed, possibly equal to) B.

Definition. Let z0 ∈ C and let ε > 0. We write

Bε(z0) = {z ∈ C | |z − z0| < ε}

to denote the open disc in C of complex numbers that are distance at most ε from z0. We
call Bε(z0) the ε-neighbourhood of z0.

Definition. Let D ⊂ C. We say that D is an open set if for every z0 ∈ D there exists
ε > 0 such that Bε(z0) ⊂ D.

Definition. We call a set D closed if its complement C \D is open

Remark. Note that a set is closed precisely when the complement is open. A very
common mistake is to think that ‘closed’ means ‘not open’: this is not the case, and it
is easy to write down examples of sets that are neither open nor closed (can you think of
any?).

In our setting, one can often decide whether a set is open or not by looking at it and
thinking carefully. (A more rigorous treatment of open sets is given in the MATH20122
Metric Spaces course.) For example, any open disc {z ∈ C | |z − z0| < r} is an open set;
see Figure 2.1.1

We will also need the notion of a polygonal arc in C. Let z0, z1 ∈ C. We denote the
straight line from z0 to z1 by [z0, z1]. Now let z0, z1, . . . , zr ∈ C. We call the union of the
straight lines [z0, z1], [z1, z2], . . . , [zr−1, zr] a polygonal arc joining z0 to zr.

Open subsets of C may be very complicated. We will only be interested in ‘nice’ open
sets called domains.

Definition. Let D ⊂ C be a non-empty set. Then we say that D is a domain if

c© University of Manchester 2018 11
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z

z0

r

Figure 2.1.1: The open disc Br(z0) with centre z0 and radius r > 0. This is an open set
as, given any point z ∈ C, we can find another open disc centred at z that is contained in
Br(z0).

(i) D is open;

(ii) given any two point z1, z2 ∈ D, there exists a polygonal arc contained in D that joins
z1 to z2.

Examples.

(i) The open disc {z ∈ C | |z − z0| < r} centred at z0 ∈ C and of radius r is a domain.

(ii) An annulus {z ∈ C | r1 < |z − z0| < r2} is a domain.

(iii) A half-plane such as {z ∈ C | Re(z) > a} is a domain.

(iv) A closed disc {z ∈ C | |z− z0| ≤ r} or a closed half-plane {z ∈ C | Re(z) ≥ a} are not
domains as they are not open sets.

(v) The set D = {z ∈ C | Im(z) 6= 0}, corresponding to the complex plane with the real
axis deleted, is not a domain. Although it is an open set, there are points (such as i,
−i) that cannot be connected by a polygonal arc lying entirely in D.

See Figure 2.1.2 for examples of domains.

§2.2 Limits of complex sequences

Let zn ∈ C be a sequence of complex numbers. We say that zn → z as n → ∞ if: for
all ε > 0 there exists N ∈ N such that if n ≥ N then |zn − z| < ε. (Equivalently, in the
language of MATH10242 Sequences and Series, we say that zn → z if |zn − z| is a null
sequence.)

Lemma 2.2.1
Let zn ∈ C and write zn = xn + iyn, xn, yn ∈ R. Then zn converges if and only if xn and
yn converge.

c© University of Manchester 2018 12
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D

D D

(i) (ii)

Figure 2.1.2: In (i), D is a domain. In (ii) D is not a domain as it is not connected.

Proof. Suppose that zn → z and write z = x+ iy. Then

|xn − x| ≤
√

|xn − x|2 + |yn − y|2 = |zn − z| → 0

as n→ ∞. Hence xn → x. A similar argument show that yn → y.
Conversely, suppose that xn → x and yn → y. Then

|zn − z| =
√

|xn − x|2 + |yn − y|2 → 0

so that zn → z. ✷

§2.3 Complex functions and continuity

Let D ⊂ C, D 6= ∅. A function f : D → C is a rule that assigns to each point z ∈ D an
image f(z) ∈ C.

Write z = x + iy. Then saying that f is a function is equivalent to saying that there
are two real-valued functions u(x, y) and v(x, y) of the two real variables x, y such that

f(z) = u(x, y) + iv(x, y).

Example. Let f(z) = z2. Then f(x + iy) = (x + iy)2 = x2 − y2 + 2ixy. Here u(x, y) =
x2 − y2, v(x, y) = 2xy.

Example. Let f(z) = z̄. Then f(x+ iy) = x− iy. Here u(x, y) = x, v(x, y) = −y.

Video. In real analysis one often sketches the graph of a real function f : [a, b] → R.
Why is it impractical to draw the graph of a complex function f : D → C? There is a short
video recapping what is meant by a function and answering this question on the course
webpage (see Video 2).

Let D be a domain and let f : D → C. Let z0 ∈ D. We say that limz→z0 f(z) = ℓ (or,
equivalently, f(z) tends to ℓ as z tends to z0) if, for all ε > 0, there exists δ > 0 such that
if z ∈ D and 0 < |z − z0| < δ then |f(z)− ℓ| < ε.

That is, f(z) → ℓ as z → z0 means that if z is very close (but not equal to) z0 then f(z)
is very close to ℓ. Note that in this definition we do not need to know the value of f(z0).
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Example. Let f : C → C be defined by f(z) = 1 if z 6= 0 and f(0) = 0. Then
limz→0 f(z) = 1. Here limz→0 f(z) 6= f(0).

We will be interested in functions which do behave nicely when taking limits.

Definition. Let D be a domain and let f : D → C be a function. We say that f is
continuous at z0 ∈ D if

lim
z→z0

f(z) = f(z0).

We say that f is continuous on D if it is continuous at z0 for all z0 ∈ D.

Continuity obeys the same rules as in MATH20101 Real Analysis. In particular, suppose
that f, g : D → C are complex functions which are continuous at z0. Then

f(z) + g(z), f(z)g(z), cf(z) (c ∈ C)

are all continuous at z0, as is f(z)/g(z) provided that g(z0) 6= 0.

§2.4 Differentiable functions

Let us first consider how one differentiates real valued functions defined on R. You will cover
this properly in the Real Analysis course, and some of you will have seen ‘differentiation
from first principles’ at A-level or high school. Let (a, b) ⊂ R be an open interval and
letf : (a, b) → R be a function. Let x0 ∈ (a, b). The idea is that f ′(x0) is the slope of the
graph of f at the point x0. Heuristically, one takes a point x that is near x0 and looks at
the gradient of the straight line drawn between the points (x0, f(x0)) and (x, f(x)) on the
graph of f ; this is an approximation to the slope at x0, and becomes more accurate as x
approaches x0. We then say that f is differentiable at x0 if this limit exists, and define the
derivative of f at x0 to be the value of this limit.

Definition. Let (a, b) ⊂ R be an interval and let x0 ∈ (a, b). A function f : (a, b) → R is
differentiable at x0 if

f ′(x0) = lim
x→x0

f(x)− f(x0)

x− x0
(2.4.1)

exists. We call f ′(x0) the derivative of f at x0. We say that f is differentiable if it is
differentiable at all points x0 ∈ (a, b).

Remark. Notice that there are two ways that x can approach x0: x can either approach
x0 from the left or from the right. The definition of the derivative in (2.4.1) requires the
limit to exist from both the left and the right and for the value of these limits to be the
same.

(As an aside, one could instead look at left-handed and right-handed derivatives. For
example, consider f(x) = |x| defined on R. The left-handed derivative at 0 is

lim
x→0−

f(x)− f(0)

x− 0
= lim

x→0−
−x
x

= −1

and the right-handed derivative at 0 is

lim
x→0+

f(x)− f(0)

x− 0
= lim

x→0−
x

x
= 1.
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MATH20101 Complex Analysis 2. Differentiation, the Cauchy-Riemann equations

(Here x → 0− (x → 0+) means x tends to 0 from the left-hand side (right-hand side,
respectively).) Thus the left-handed and right-handed derivatives are not equal, so f is not
differentiable at the origin. This corresponds to our intuition, as the graph of the function
f(x) = |x| has a corner at the origin and so there is no well-defined tangent.)

Remark. The above remark illustrates why we are interested in functions defined on open
sets: we want to approach the point x0 from either side. If f was defined on the closed
interval [a, b] then we could only consider right-handed derivatives at a (and left-handed
derivatives at b).

The generalisation to complex functions is as one would expect.

Definition. Let D ⊂ C be an open set and let f : D → C be a function. Let z0 ∈ D. We
say that f is differentiable at z0 if

f ′(z0) = lim
z→z0

f(z)− f(z0)

z − z0
(2.4.2)

exists. (Note that in (2.4.2) we are allowing z to converge to z0 from any direction.) We
call f ′(z0) the derivative of f at z0. If f is differentiable at every point z0 ∈ D then we say
that f is differentiable on D.

Remark. Sometimes we use the notation

df

dz
(z0)

to denote the derivative of f at z0.

As we shall see, differentiability is a very strong property for a complex function to
possess; it is much stronger than the real case. For example (as we shall see) there are
many functions that are differentiable when restricted to the real axis but that are not
differentiable as a function defined on C. For this reason, we shall often use the following
alternative terminology.

Definition. Suppose that f : D → C is differentiable on a domain D. Then we say that
f is holomorphic on D. If f is defined on a domain D and is holomorphic on that domain
then we say that f is holomorphic.

The higher derivatives are defined similarly, and we denote them by

f ′′(z0), f
′′′(z0), . . . , f

(n)(z0).

Example. Let f(z) = z2, defined on C. Let z0 ∈ C be any point. Then

lim
z→z0

f(z)− f(z0)

z − z0
= lim

z→z0

z2 − z20
z − z0

= lim
z→z0

(z + z0)(z − z0)

z − z0
= lim

z→z0
z + z0 = 2z0.

Hence f ′(z0) = 2z0 for all z0 ∈ C. Thus f is differentiable at every point in C and so is a
holomorphic function on C.

All of the standard rules of differentiable functions continue to hold in the complex case:

c© University of Manchester 2018 15



MATH20101 Complex Analysis 2. Differentiation, the Cauchy-Riemann equations

Proposition 2.4.1
Let f, g be holomorphic on D. Let c ∈ C. Then the following hold:

(i) sum rule: (f + g)′ = f ′ + g′,

(ii) scalar rule: (cf)′ = cf ′,

(iii) product rule: (fg)′ = f ′g + fg′,

(iv) quotient rule:
(

f
g

)′
= f ′g−fg′

g2 ,

(v) chain rule: (f ◦ g)′ = f ′ ◦ g · g′.

Proof. The proofs are all very simple modifications of the corresponding arguments in
the real-valued case. (Usually the only modification needed is to replace the absolute value
| · | defined on R with the modulus | · | defined on C.) ✷

We will need the following fact.

Proposition 2.4.2
Suppose that f is differentiable at z0. Then f is continuous at z0.

Proof. To show that f is continuous, we need to show that limz→z0 f(z) = f(z0), i.e.
limz→z0 f(z)− f(z0) = 0. Note that

lim
z→z0

f(z)− f(z0) = lim
z→z0

f(z)− f(z0)

z − z0
(z − z0) = f ′(z0)× 0 = 0,

as required. ✷

§2.5 The Cauchy-Riemann equations

Throughout, let D be a domain. Let z = x+ iy ∈ D. Let f : D → C be a complex valued
function. We write f as the sum of its real part and imaginary part by setting

f(z) = u(x, y) + iv(x, y)

where u, v : D → R are real-valued functions.

Example. Let f(z) = z3. Then

f(z) = z3 = (x+ iy)3 = x3 − 3xy2 + i(3x2y − y3) = u(x, y) + iv(x, y)

where u(x, y) = x3 − 3xy2 and v(x, y) = 3x2y − y3.

If f is differentiable, then the Cauchy-Riemann equations give two relationships between
u and v. To state them, we need to recall the notion of a partial derivative.

Definition. Suppose that g(x, y) is a real-valued function depending on two co-ordinates
x, y. Define

∂g

∂x
(x, y) = lim

h→0

g(x + h, y)− g(x, y)

h
,
∂g

∂y
(x, y) = lim

k→0

g(x, y + k)− g(x, y)

k

(if these limits exist). For brevity (and provided there is no confusion), we leave out the
(x, y) and write

∂g

∂x
,
∂g

∂y
.
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Thus, to calculate ∂g/∂x we treat y as a constant and differentiate with respect to x, and
to calculate ∂g/∂y we treat x as a constant and differentiate with respect to y.

Theorem 2.5.1 (The Cauchy-Riemann Theorem)
Let f : D → C and write f(x+ iy) = u(x, y) + iv(x, y). Suppose that f is differentiable at
z0 = x0 + iy0. Then

(i) the partial derivatives
∂u

∂x
,
∂u

∂y
,
∂v

∂x
,
∂v

∂y

exist at (x0, y0) and

(ii) the following relations hold

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0),

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0). (2.5.1)

Remark. The relationships in (2.5.1) are called the Cauchy-Riemann equations.

Proof. Recall from (2.4.2) that to calculate f ′(z0) we look at points that are close to z0
and then let these points tend to z. The trick is to calculate f ′(z0) in two different ways: by
looking at points that converge to z0 horizontally, and by looking at points that converge
to z0 vertically.

Let h be real and consider z0+h = (x0+h)+ iy0. Then as h→ 0 we have z0 +h→ z0.
Hence

f ′(z0) = lim
h→0

f(z0 + h)− f(z0)

h

= lim
h→0

u(x0 + h, y0) + iv(x0 + h, y0)− u(x0, y0)− iv(x0, y0)

h

= lim
h→0

u(x0 + h, y0)− u(x0, y0)

h
+ i

v(x0 + h, y0)− v(x0, y0)

h

=
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0). (2.5.2)

Now take k to be real and consider z0 + ik = x0 + i(y0 + k). Then as k → 0 we have
z0 + ik → z0. Hence

f ′(z0) = lim
k→0

f(z0 + ik)− f(z0)

ik

= lim
k→0

u(x0, y0 + k) + iv(x0, y0 + k)− u(x0, y0)− iv(x0, y0)

ik

= lim
k→0

u(x0, y0 + k)− u(x0, y0)

ik
+ i

v(x0, y0 + k)− v(x0, y0)

ik

= −i∂u
∂y

(x0, y0) +
∂v

∂y
(x0, y0), (2.5.3)

recalling that 1/i = −i. Comparing the real and imaginary parts of (2.5.2) and (2.5.3)
gives the result. ✷
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Example. We can use the Cauchy-Riemann equations to examine whether the function
f(z) = z̄ might be differentiable on C. Note that writing z = x + iy allows us to write
f(z) = z̄ = x− iy. Hence f(z) = u(x, y) + iv(x, y) with u(x, y) = x and v(x, y) = −y. Now

∂u

∂x
= 1,

∂u

∂y
= 0,

∂v

∂x
= 0,

∂v

∂y
= −1.

Hence there are no points at which
∂u

∂x
=
∂v

∂y

so that f(z) = z̄ is not differentiable at any point in C.

Remark. Notice however that f(z) = z̄ is continuous at every point in C. Hence
f(z) = z̄ is an example of an everywhere continuous but nowhere differentiable func-
tion. Such functions also exist in real analysis, but they are much harder to write down
and considerably harder to study (one of the simplest is known as Weierstrass’ function
w(x) =

∑∞
n=0 2

−nα cos 2πbnx where α ∈ (0, 1), b ≥ 2; such functions are still of interest in
current research).

We have seen that if f is differentiable at z0 then the partial derivatives of u and v
exist at z0 and the Cauchy-Riemann equations are satisfied. One could ask whether the
converse is true: if the Cauchy-Riemann equations are satisfied at the point z0 then is f
differentiable at z0? The answer is no, as the following example shows. Define

f(x+ iy) =

{

0 if (x, y) lies on either the x or y axes,
1 otherwise.

Note that if we write f(x+ iy) = u(x, y)+ iv(x, y) then u(x, y) = f(x+ iy) and v(x, y) = 0.
Then at the origin

∂u

∂x
(0, 0) = lim

h→0

u(h, 0) − u(0, 0)

h
= lim

h→0

0− 0

h
= lim

h→0
0 = 0

and similarly ∂u/∂y(0, 0). Clearly, ∂v/∂x, ∂v/∂y are all equal to zero at the origin. Hence
the partial derivatives exist at the origin and the Cauchy-Riemann equations hold at the
origin, so that the conclusions of the Cauchy-Riemann Theorem hold at the origin. However,
f is not continuous at the origin; this is because h+ ih→ 0 as h→ 0 but 1 = f(h+ ih) 6→
f(0) = 0 as h → 0. As f is not continuous at the origin, it cannot be differentiable at the
origin.

The problem with the above example is that in the definition of differentiability (2.4.2)
we need to let z tend to z0 in an arbitrary way. In calculating the partial derivatives we
only know what happens at z tends to z0 either horizontally or vertically. Hence we need
some extra hypotheses on u, v at z0; the correct hypotheses are to assume the continuity
of the partial derivatives.

Proposition 2.5.2 (Converse to the Cauchy-Riemann Theorem)
Let f : D → C be a continuous function and write f(x + iy) = u(x, y) + iv(x, y). Let
z0 = x0 + iy0 ∈ D. Suppose that

∂u

∂x
,
∂u

∂y
,
∂v

∂x
,
∂v

∂y

exist and are continuous at z0, and further suppose that the Cauchy-Riemann equations
hold at z0. Then f is differentiable at z0.
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Proof. The proof is based on the following lemma; we omit the proof.

Lemma 2.5.3
Suppose that ∂w/∂x, ∂w/∂y exist at (x0, y0) and ∂w/∂x is continuous at (x0, y0). Then
there exist functions ε(h, k) and η(h, k) such that

w(x0 + h, y0 + k)− w(x0, y0) = h

(

∂w

∂x
(x0, y0) + ε(h, k)

)

+ k

(

∂w

∂y
(x0, y0) + η(h, k)

)

and ε(h, k), η(h, k) → 0 as h, k → 0.

Now consider z = z0 +h+ ik. Applying the above lemma to both u and v we can write

f(z)− f(z0)

= u(x0 + h, y0 + k) + iv(x0 + h, y0 + k)− u(x0, y0)− iv(x0, y0)

= h

(

∂u

∂x
+ ε1

)

+ k

(

∂u

∂y
+ η1

)

+ ih

(

∂v

∂x
+ ε2

)

+ ik

(

∂v

∂y
+ η2

)

where ε1, ε2, η1, η2 → 0 as h, k → 0.
Using the Cauchy-Riemann equations we can write the above expression as

f(z)− f(z0) = (h+ ik)

(

∂u

∂x
+ i

∂v

∂x

)

+ hε1 + kη1 + ihε2 + ikη2

= (z − z0)

(

∂u

∂x
+ i

∂v

∂x

)

+ ρ

where ρ = hε1 + kη1 + ihε2 + ikη2. Hence

f(z)− f(z0)

z − z0
=
∂u

∂x
+ i

∂v

∂x
+

ρ

z − z0

and so it remains to show that ρ/(z − z0) → 0 as z → z0. To see this, note that

∣

∣

∣

∣

ρ

z − z0

∣

∣

∣

∣

=
|ρ|√

h2 + k2
≤ |h||ε1|+ |k||η1|+ |h||ε2|+ |k||η2|√

h2 + k2
≤ |ε1|+ |η1|+ |ε2|+ |η2|

which tends to zero as h, k → 0. ✷

Video. There is a video recapping the Cauchy Riemann Theorem and its converse on the
course webpage (see Video 3).
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Exercises for Part 2

Exercise 2.1
Which of the following sets are open? Justify your answer.

(i) {z ∈ C | Im(z) > 0},

(ii) {z ∈ C | Re(z) > 0, |z| < 2},

(iii) {z ∈ C | |z| ≤ 6}.

Exercise 2.2
Using the definition in (2.4.2), differentiate the following complex functions from first prin-
ciples:

(i) f(z) = z2 + z; (ii) f(z) = 1/z (z 6= 0); (iii) f(z) = z3 − z2.

Exercise 2.3
(i) In each of the following cases, write f(z) in the form u(x, y)+iv(x, y) where z = x+iy

and u, v are real-valued functions.

(a) f(z) = z2; (b) f(z) =
1

z
(z 6= 0).

(ii) Show that u and v satisfy the Cauchy-Riemann equations everywhere for (a), and for
all z 6= 0 in (b).

(iii) Write the function f(z) = |z| in the form u(x, y)+iv(x, y). Using the Cauchy-Riemann
equations, decide whether there are any points in C at which f is differentiable.

Exercise 2.4
(i) Show that the Cauchy-Riemann equations hold for the functions u, v given by u(x, y) =

x3 − 3xy2, v(x, y) = 3x2y − y3. Show that u, v are the real and imaginary parts of a
holomorphic function f : C → C.

(ii) Show that the Cauchy-Riemann equations hold for the functions u, v given by

u(x, y) =
x4 − 6x2y2 + y4

(x2 + y2)4
, v(x, y) =

4xy3 − 4x3y

(x2 + y2)4

where (x, y) 6= (0, 0).
Show that u, v are the real and imaginary parts of a holomorphic function f : C\{0} →

C.

Exercise 2.5
Let f(z) =

√

|xy| where z = x+ iy.

(i) Show from the definition (2.4.2) that f is not differentiable at the origin.
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(ii) Show however that the Cauchy-Riemann equations are satisfied at the origin. Why
does this not contradict Proposition 2.5.2?

Exercise 2.6
Suppose that f(z) = u(x, y) + iv(x, y) is holomorphic. Use the Cauchy-Riemann equations
to show that both u and v satisfy Laplace’s equation:

∂2u

∂x2
+
∂2u

∂y2
= 0,

∂2v

∂x2
+
∂2v

∂y2
= 0

(you may assume that the second partial derivatives exist and are continuous). (Functions
which satisfy Laplace’s equation are called harmonic functions.)

Exercise 2.7
For f(z) = z3 calculate u, v so that f(z) = u(x, y) + iv(x, y) (where z = x + iy). Verify
that both u and v satisfy Laplace’s equation.

Exercise 2.8
Suppose f(z) = u(x, y) + iv(x, y) is holomorphic on C. Suppose we know that u(x, y) =
x5 − 10x3y2 + 5xy4. By using the Cauchy-Riemann equations, find all the possible forms
of v(x, y).

(The Cauchy Riemann equations have the following remarkable implication: suppose
f(z) = u(x, y) + iv(x, y) is holomorphic and that we know a formula for u, then we can
recover v (up to a constant); similarly, if we know v then we can recover u (up to a
constant). Hence for complex differentiable functions, the real part of a function determines
the imaginary part (up to constants), and vice versa.)

Exercise 2.9
Suppose that

u(x, y) = x3 − kxy2 + 12xy − 12x

for some constant k ∈ C. Find all values of k for which u is the real part of a holomorphic
function f : C → C.

Exercise 2.10
Show that if f : C → C is holomorphic and f has a constant real part then f is constant.

Exercise 2.11
Show that the only holomorphic function f : C → C of the form f(x+ iy) = u(x) + iv(y)
is given by f(z) = λz + a for some λ ∈ R and a ∈ C.

Exercise 2.12
Suppose that f(z) = u(x, y) + iv(x, y), f : C → C, is a holomorphic function and that

2u(x, y) + v(x, y) = 5 for all z = x+ iy ∈ C.

Show that f is constant.
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3. Power series and elementary analytic functions

§3.1 Recap on convergence and absolute convergence of series

Recall that we have already discussed what it means for an infinite sequence of complex
numbers to converge. Recall that if sn ∈ C then we say that sn converges to s ∈ C if for
all ε > 0 there exists N ∈ N such that |s− sn| < ε for all n ≥ N .

Let zk ∈ C. We say that the series
∑∞

k=0 zk converges if the sequence of partial sums
sn =

∑n
k=0 zk converges. The limit of this sequence of partial sums is called the sum of the

series. A series which does not converge is called divergent.

Remark. One can show (see Exercise 3.1) that
∑∞

n=0 zn is convergent if, and only if, both
∑∞

n=0Re(zn) and
∑∞

n=0 Im(zn) are convergent.

We will need a stronger property than just convergence.

Definition. Let zn ∈ C. We say that
∑∞

n=0 zn is absolutely convergent if the real series
∑∞

n=0 |zn| is convergent.

Lemma 3.1.1
Suppose that

∑∞
n=0 zn is absolutely convergent. Then

∑∞
n=0 zn is convergent.

Proof. Suppose that
∑∞

n=0 zn is absolutely convergent. Let zn = xn + iyn. Then
|xn|, |yn| ≤ |zn|. Hence by the comparison test, the real series

∑∞
n=0 xn and

∑∞
n=0 yn

are absolutely convergent. As xn, yn are real, we know that
∣

∣

∣

∣

∣

∞
∑

n=0

xn

∣

∣

∣

∣

∣

≤
∞
∑

n=0

|xn|,
∣

∣

∣

∣

∣

∞
∑

n=0

yn

∣

∣

∣

∣

∣

≤
∞
∑

n=0

|yn|,

so that
∑∞

n=0 xn and
∑∞

n=0 yn are convergent. By the above remark,
∑∞

n=0 zn is convergent.
✷

Remark. It is easy to give an example of a series which is convergent but not absolutely
convergent. In fact, we can give an example using real series. Recall from MATH10242
Sequences and Series that

∑∞
n=0(−1)n/n is convergent but

∑∞
n=0 |(−1)n/n| =∑∞

n=0 1/n is
divergent.

The reason for working with absolutely convergent series is that they behave well when
multiplied together. Indeed, two series which converge absolutely may be multiplied in a
similar way to two finite sums. First note that if we have two finite sums then we can
multiply them together systematically as follows:

(a0 + a1 + a2 + a3 + · · ·+ an)(b0 + b1 + b2 + b3 + · · ·+ bn)

= (a0b0) + (a0b1 + a1b0) + (a0b2 + a1b1 + a2b0) + (a0b3 + a1b2 + a2b1 + a3b0) + · · ·
For absolutely convergent series the following proposition holds. (We remark that Proposi-
tion 3.1.2 is not true, in general, if one of the infinite series converges but is not absolutely
convergent.)
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Proposition 3.1.2
Let an, bn ∈ C. Suppose that

∑∞
n=0 an and

∑∞
n=0 bn are absolutely convergent. Then

( ∞
∑

n=0

an

)( ∞
∑

n=0

bn

)

=

∞
∑

n=0

cn

where cn = a0bn + a1bn−1 + a2bn−2 + · · · + anb0 and
∑∞

n=0 cn is absolutely convergent.

Proof. Omitted. ✷

In MATH10242 Sequences and Series you looked at some tests to see whether a real
series converged. The same tests continue to hold for complex series and we state them
below as propositions.

Proposition 3.1.3 (The ratio test)
Let zn ∈ C. Suppose that

lim
n→∞

|zn+1|
|zn|

= ℓ. (3.1.1)

If ℓ < 1 then
∑∞

n=0 zn is absolutely convergent. If ℓ > 1 then
∑∞

n=0 zn diverges.

Remark. If ℓ = 1 in (3.1.1) then we can say nothing: the series may converge absolutely,
it may converge but not absolutely converge, or it may diverge.

Proposition 3.1.4 (The root test)
Let zn ∈ C. Suppose that

lim
n→∞

|zn|1/n = ℓ. (3.1.2)

If ℓ < 1 then
∑∞

n=0 zn is absolutely convergent. If ℓ > 1 then
∑∞

n=0 zn diverges.

Remark. Again, if ℓ = 1 in (3.1.2) then we can say nothing: the series may converge
absolutely, it may converge but not absolutely converge, or it may diverge.

Example. Consider the series
∞
∑

n=0

in

2n
.

Here zn = in/2n. We can use the ratio test to show that this series converges absolutely.
Indeed, note that

∣

∣

∣

∣

zn+1

zn

∣

∣

∣

∣

=

∣

∣

∣

∣

in+1

2n+1

2n

in

∣

∣

∣

∣

=

∣

∣

∣

∣

i

2

∣

∣

∣

∣

=
1

2
.

Hence limn→∞ |zn+1/zn| = 1/2 < 1 and so by the ratio test the series converges absolutely.
We could also have used the root test to show that this series converges absolutely. To

see this, note that

|zn|1/n =

∣

∣

∣

∣

in

2n

∣

∣

∣

∣

1/n

=

(

1

2n

)1/n

= 1/2.

Hence limn→∞ |zn|1/n = 1/2 < 1 and so by the root test the series converges absolutely.
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§3.2 Power series and the radius of convergence

Definition. A series of the form
∑∞

n=0 an(z− z0)
n where an ∈ C, z ∈ C is called a power

series at z0.

By changing variables and replacing z − z0 by z we need only consider power series at 0,
i.e. power series of the form

∞
∑

n=0

anz
n.

When does a power series converge? Let

R = sup

{

r ≥ 0 | there exists z ∈ C such that |z| = r and
∞
∑

n=0

anz
n converges

}

.

(We allow R = ∞ if no finite supremum exists.)

Theorem 3.2.1
Let

∑∞
n=0 anz

n be a power series and let R be defined as above. Then

(i)
∑∞

n=0 anz
n converges absolutely for |z| < R;

(ii)
∑∞

n=0 anz
n diverges for |z| > R.

Remark. We cannot say what happens in the case when |z| = R: the power series may
converge, it may converge but not absolutely converge, or it may diverge.

Proof. Let z ∈ C be such that |z| < R. Choose z1 ∈ C such that |z| < |z1| ≤ R and such
that

∑∞
n=0 anz

n
1 converges. As

∑∞
n=0 anz

n
1 converges, it follows that anz

n
1 → 0 as n → ∞.

Hence |anzn1 | → 0 as n → ∞. It follows that |anzn1 | is a bounded sequence; that is, there
exists K > 0 such that |anzn1 | < K for all n. Let q = |z|/|z1|. As |z| < |z1|, we have that
q < 1. Now

|anzn| = |anzn1 |
∣

∣

∣

∣

z

z1

∣

∣

∣

∣

n

< Kqn.

Hence by the comparison test,
∑∞

n=0 |anzn| converges (noting that
∑∞

n=0Kq
n = K/(1−q)).

Hence
∑∞

n=0 anz
n converges absolutely, and so converges.

Now suppose that
∑∞

n=0 anz
n
2 diverges. If |z| > |z2| and

∑∞
n=0 anz

n converges then
the above paragraph shows that

∑∞
n=0 anz

n
2 must also converge, a contradiction. Hence

∑∞
n=0 anz

n diverges.
These two facts show that R must exist. ✷

Definition. The number R given in Theorem 3.2.1 is called the radius of convergence of
the power series

∑∞
n=0 anz

n. We call the set {z ∈ C | |z| < R} the disc of convergence.

We would like some ways of computing the radius of convergence of a power series.

Proposition 3.2.2
Let

∑∞
n=0 anz

n be a power series.
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(i) If limn→∞ |an+1|/|an| exists then

1

R
= lim

n→∞
|an+1|
|an|

.

(ii) If limn→∞ |an|1/n exists then
1

R
= lim

n→∞
|an|1/n.

(Here we interpret 1/0 as ∞ and 1/∞ as 0.)

Remark. If the limit in (i) exists then the limit in (ii) exists and they give the same
answer for the radius of convergence. It is straightforward to find examples of sequences
an for which the limit in (ii) exists but the limit in (i) does not.

Remark. You may wonder why we state the above formulæ in terms of 1/R rather than
R, given that this introduces the extra notational difficulty of how to interpret 1/0 and
1/∞. The reason is to make the formulæ in Proposition 3.2.2 resemble the ratio test and
the root test (Propositions 3.1.3 and 3.1.4, respectively) for the convergence of infinite
series.

Example. Consider
∞
∑

n=0

zn

n
.

Here an = 1/n. In this case
∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

=
n

n+ 1
→ 1 =

1

R

as n→ ∞. Hence the radius of convergence is equal to 1.

Example. Consider
∞
∑

n=0

zn

2n
.

Here an = 1/2n. Using Proposition 3.2.2(i) we can calculate the radius of convergence as

1

R
= lim

n→∞
|an+1|
|an|

= lim
n→∞

2n

2n+1
= lim

n→∞
1

2
=

1

2

so that R = 2. Alternatively, we could use Proposition 3.2.2(ii) and see that

1

R
= lim

n→∞
|an|1/n = lim

n→∞

(

1

2n

)1/n

=
1

2

so that again R = 2.

Proof of Proposition 3.2.2. We prove (i). Suppose that |an+1/an| converges to a limit,
say ℓ, as n→ ∞, i.e.

lim
n→∞

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

= ℓ.
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Then

lim
n→∞

|an+1z
n+1|

|anzn|
→ ℓ|z|.

By the ratio test, the power series
∑∞

n=0 anz
n converges for ℓ|z| < 1 and diverges for

ℓ|z| > 1. Hence the radius of convergence R = 1/ℓ.
We prove (ii). Suppose that |an|1/n → ℓ as n → ∞. By the root test, the power series

∑∞
n=0 anz

n converges if limn→∞ |anzn|1/n = limn→∞ |an|1/n|z| = ℓ|z| < 1 and diverges if
limn→∞ |anzn|1/n = limn→∞ |an|1/n|z| = ℓ|z| > 1. Hence the radius of convergence R = 1/ℓ.

✷

Remark. It may happen that neither of the limits in (i) nor (ii) of Proposition 3.2.2 exist.
However, there is a formula for the radius of convergence R that works for any power series
∑∞

n=0 anz
n.

Let xn be a sequence of real numbers. For each n, consider supk≥n xk. As n increases,
this sequence decreases. Recall that any decreasing sequence of reals converges. Hence

lim
n→∞

{

sup
k≥n

xk

}

exists (although it may be equal to ∞). We denote the limit by lim supn→∞ xn. Thus
lim supxn exists for any sequence xn. (One can show that if limn→∞ xn = ℓ then lim supn→∞ xn =
ℓ.)

With this definition, it is always the case that

1

R
= lim sup

n→∞
|an|1/n.

§3.3 Differentiation of power series

We know that for a polynomial

p(z) = a0 + a1z + · · ·+ anz
n

the derivative is given by

p′(z) = a1 + 2a2z + · · ·+ nanz
n−1.

This suggests that a power series

f(z) =
∞
∑

n=0

anz
n (3.3.1)

can be differentiated term by term to give

f ′(z) =
∞
∑

n=1

nanz
n−1. (3.3.2)

However, because we are dealing with infinite sums, this needs to be proved. There are two
steps to this: (i) we have to show that if (3.3.1) converges for |z| < R then (3.3.2) converges
for |z| < R, and (ii) that f(z) is differentiable for |z| < R and the derivative is given by
(3.3.2).
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Lemma 3.3.1
Let f(z) =

∑∞
n=0 anz

n have radius of convergence R. Then g(z) =
∑∞

n=1 nanz
n−1 converges

for |z| < R.

Proof. Let |z| < R and choose r such that |z| < r < R. Then
∑∞

n=1 anr
n converges

absolutely. Hence the summands must be bounded, so there exists K > 0 such that
|anrn| < K for all n ≥ 0.

Let q = |z|/r and note that 0 < q < 1. Then

|nanzn−1| = n|an|
∣

∣

∣

z

r

∣

∣

∣

n−1
rn−1 < n

K

r
qn−1.

But
∑∞

n=1 nq
n−1 converges to (1 − q)−2. Hence by the comparison test,

∑∞
n=0 |nanzn−1|

converges. Hence
∑∞

n=0 nanz
n−1 converges absolutely and so converges. ✷

Theorem 3.3.2
Let f(z) =

∑∞
n=0 anz

n have radius of convergence R. Then f(z) is holomorphic on the disc
of convergence {z ∈ C | |z| < R} and f ′(z) =

∑∞
n=1 nanz

n−1.

Proof. Let g(z) =
∑∞

n=1 nanz
n−1. By Lemma 3.3.1 we know that this converges for

|z| < R.
We have to show that if |z0| < R then f(z) is differentiable at z0 and, moreover, the

derivative is equal to g(z0), i.e. we have to show that if |z0| < R then

f ′(z0) := lim
z→z0

f(z)− f(z0)

z − z0
= g(z0)

or equivalently

lim
z→z0

(

f(z)− f(z0)

z − z0
− g(z0)

)

= 0.

For any N ≥ 1 we have the following

f(z)− f(z0)

z − z0
− g(z0)

=
∞
∑

n=1

(

an
zn − zn0
z − z0

− nanz
n−1
0

)

=

∞
∑

n=1

(

an(z
n−1 + z0z

n−2 + · · · + zn−2
0 z + zn−1

0 )− nanz
n−1
0

)

=
∞
∑

n=1

an(z
n−1 + z0z

n−2 + · · ·+ zn−2
0 z + zn−1

0 − nzn−1
0 )

=

N
∑

n=1

an(z
n−1 + z0z

n−2 + · · ·+ zn−2
0 z + zn−1

0 − nzn−1
0 )

+
∞
∑

n=N+1

an(z
n−1 + z0z

n−2 + · · ·+ zn−2
0 z + zn−1

0 − nzn−1
0 )

= Σ1,N (z) + Σ2,N (z), say.
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Let ε > 0. Choose r such that |z0| < r < R. Then, as in the proof of Lemma 3.3.1,
∑∞

n=1 nanr
n−1 is absolutely convergent. Hence we can choose N = N(ε) such that

∞
∑

n=N+1

|nanrn−1| < ε

4
.

Since |z0| < r, provided z is close enough to z0 so that |z| < r then we have that

|Σ2,N (z)| ≤
∞
∑

n=N+1

2n|an|rn−1 <
ε

2
. (3.3.3)

Now consider Σ1,N (z). This is a polynomial in z and so is a continuous function. Note
that Σ1,N(z0) = 0. Hence, as z → z0, we have that Σ1,N (z) → 0. Hence, provided z is close
enough to z0 we have that

|Σ1,N (z)| < ε

2
. (3.3.4)

Finally, if z is close enough to z0 so that both (3.3.3) and (3.3.4) hold then

∣

∣

∣

∣

f(z)− f(z0)

z − z0
− g(z0)

∣

∣

∣

∣

= |Σ1,N (z) + Σ2,N (z)|

≤ |Σ1,N (z)|+ |Σ2,N (z)|
≤ ε

2
+
ε

2
= ε.

As ε is arbitrary, it follows that f ′(z0) = g(z). ✷

The above two results have a very important consequence. If f(z) =
∑∞

n=0 anz
n con-

verges for |z| < R then we can differentiate it as many times as we like within the disc of
convergence.

Proposition 3.3.3
Let f(z) =

∑∞
n=0 anz

n have radius of convergence R. Then all of the higher derivatives

f ′, f ′′, f ′′′, . . . , f (k), . . . of f exist for z within the disc of convergence. Moreover,

f (k)(z) =
∞
∑

n=k

n(n− 1) · · · (n− k + 1)anz
n−k =

∞
∑

n=k

n!

(n− k)!
anz

n−k.

Proof. This is a simple induction on k. ✷

Instead of using a power series at the origin, by replacing z by z − z0 we can consider
a power series at the point z0. (This will be useful later on when we look at Taylor series.)
Suppose that f(z) =

∑∞
n=0 anz

n has disc of convergence |z| < R. Then, replacing z by
z − z0, we have that the power series g(z) =

∑∞
n=0 an(z − z0)

n has disc of convergence
{z ∈ C | |z−z0| < R}. That is, the power series g(z) converges for all z inside the disc with
centre z0 and radius R. Moreover, inside this disc of convergence all the higher derivatives
of g exist and

g(k)(z) =

∞
∑

n=k

n!

(n− k)!
an(z − z0)

n−k.
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§3.4 Special functions

§3.4.1 The exponential function

You have probably already met the exponential function ex =
∑∞

n=0 x
n/n!, certainly in the

case when x is real. Here we study the (complex) exponential function.

Definition. The exponential function is defined to be the power series

exp z =
∞
∑

n=0

zn

n!
.

By Proposition 3.2.2(i) we see that the radius of convergence R for exp z is given by

1

R
= lim

n→∞
n!

(n+ 1)!
= lim

n→∞
1

n+ 1
= 0

so that R = ∞. Hence this series has radius convergence ∞, and so converges absolutely
for all z ∈ C.

By Theorem 3.3.2 we may differentiate term-by-term to obtain

d

dz
exp z =

∞
∑

n=1

n
zn−1

n!
=

∞
∑

n=1

zn−1

(n− 1)!
=

∞
∑

n=0

zn

n!
= exp z,

which we already knew to be true in the real-valued case.
In the real case we know that if x, y ∈ R then ex+y = exey. This is also true in the

complex-valued case, and the proof involves a neat trick. First we need the following fact:

Lemma 3.4.1
Suppose that f is holomorphic on a domain D and f ′ = 0 on D. Then f is constant on D.

Remark. This is well-known in the real case: a function with zero derivative must be
constant. The proof in the complex case is somewhat more involved and we omit it. (See
Stewart and Tall, p.71.)

Proposition 3.4.2
Let z1, z2 ∈ C. Then exp(z1 + z2) = exp(z1) exp(z2).

Proof. Let c ∈ C and define the function f(z) = exp(z) exp(c− z). Then

f ′(z) = exp(z) exp(c− z)− exp(z) exp(c− z) = 0

by the product rule. Hence by Lemma 3.4.1 we must have that f(z) is constant; in particular
this constant must be f(0) = exp c. Hence exp(z) exp(c− z) = exp(c). Putting c = z1 + z2
and z = z1 gives the result. ✷

Remark. In particular, if we take z1 = z and z2 = −z in Proposition 3.4.2 then we have
that

1 = exp 0 = exp(z − z) = exp(z) exp(−z).
Hence exp z 6= 0 for any z ∈ C. (We already knew that ex = 0 has no real solutions; now
we know that it has no complex solutions either.)
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Finally, we want to connect the real number e to the complex exponential function. We
define e to be the real number e = exp 1. Then, iterating Proposition 3.4.2 inductively, we
obtain

en = exp(1)n = exp(1 + · · ·+ 1) = expn.

For a rational number m/n (n > 0) we have that

(exp(m/n))n = exp(nm/n) = exp(m) = em

so that exp(m/n) = em/n. Thus the notation ez = exp z does not conflict with the usual
definition of ex when z is real. Hence we shall normally write ez for exp z. In particular, if
we write z = x+ iy then Proposition 3.4.2 tells us that

ex+iy = exeiy.

We already understand real exponentials ex. Hence to understand complex exponentials
we need to understand expressions of the form eiy.

§3.4.2 Trigonometric functions

Define

cos z =
∞
∑

n=0

(−1)n
z2n

(2n)!
, sin z =

∞
∑

n=0

(−1)n
z2n+1

(2n+ 1)!
.

By Proposition 3.2.2(i) it is straightforward to check that these converge absolutely for all
z ∈ C.

Substituting z = −z we see that cos is an even function and that sin is an odd function,
i.e.

cos(−z) = cos z, sin(−z) = − sin z.

Moreover, cos(0) = 1, sin(0) = 0.
By Theorem 3.3.2 we can differentiate term-by-term to see that

d

dz
cos z = − sin z,

d

dz
sin z = cos z.

Term-by-term addition of the power series for cos z and sin z shows that

exp iz = cos z + i sin z.

Replacing z by −z we see that e−iz = cos z − i sin z. Hence

cos z =
1

2
(eiz + e−iz), sin z =

1

2i
(eiz − e−iz).

Squaring the above expressions and adding them gives cos2 z + sin2 z = 1. These are all
expressions that we already knew in the case when z is a real number; now we know that
they continue to hold when z is any complex number. Carrying on in the same way, one
can prove the addition formulæ cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2, etc, for complex
z1, z2, and all the other usual trigonometric identities.
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§3.4.3 Hyperbolic functions

Define

cosh z =
1

2
(ez + e−z), sinh z =

1

2
(ez − e−z).

Differentiating these we see that

d

dz
cosh z = sinh z,

d

dz
sinh z = cosh z.

One can also prove addition formulæ for the hyperbolic trigonometric functions, and other
identities including (for example)

cosh2 z − sinh2 z = 1 for all z ∈ C

(again, we knew this already when z ∈ R).
We also have the relations

cos iz = cosh z, sin iz = i sinh z;

these follow from Exercise 3.6.

§3.4.4 Periods of the exponential and trigonometric functions

Definition. Let f : C → C. We say that a number p ∈ C is a period for f if f(z+p) = f(z)
for all z ∈ C.

Clearly if p ∈ C is a period and n ∈ Z is any integer then np is also a period.
For the exponential function, we have that

e2πi = cos 2π + i sin 2π = 1

so that
ez+2πi = eze2πi = ez.

Hence 2πi is a period for exp, as is 2nπi for any integer n. In Exercise 3.11 we shall see
that these are the only periods for exp.

We shall also see in the exercises that the only complex periods for sin and cos are 2nπ
.

§3.4.5 The logarithmic function

In real analysis, the (natural) logarithm is the inverse function to the exponential function.
That is, if ex = y then x = ln y. (Throughout we will write ln to denote the (real) natural
logarithm.) Here we consider the complex analogue of this.

Let z ∈ C, z 6= 0, and consider the equation

expw = z. (3.4.1)

By §3.4.4, if w1 is a solution to (3.4.1) then so is w1+2nπi. Each of these values is a called
a logarithm of z, and we denote any of these values by log z. Thus, unlike in the real case,
the complex logarithm is a multi-valued function.
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We want to find a formula for log z. In (3.4.1) write w = x+ iy. Then

z = expw = exp(x+ iy) = ex(cos y + i sin y). (3.4.2)

By taking the modulus of both sides of (3.4.2) we see that ex = |z|. Note that both x and
|z| are real numbers. Hence x = ln |z|. By taking the argument of both sides of (3.4.2) we
see that y = arg z. Hence we can make the following definition.

Definition. Let z ∈ C, z 6= 0. Then a complex logarithm of z is

log z = ln |z|+ i arg z

where arg z is any argument of z.
The principal value of log z is the value of log z when arg z has its principal value Arg z,

i.e. the unique value of the argument in (−π, π]. We denote the principal logarithm by
Log z:

Log z = ln |z|+ iArg z.

Note that we say a complex logarithm (rather than the complex logarithm) to emphasise
the fact that the complex logarithm is multi-valued.

Dealing with multivalued functions is tricky. One way is to only consider the logarithm
function on a subset of C.

Definition. The complex plane with the negative real-axis (including 0) removed is called
the cut plane. See Figure 3.4.1.

Figure 3.4.1: The cut plane: this is the complex plane with the negative real axis removed.

Proposition 3.4.3
The principal logarithm Log z is continuous on the cut plane.

Proof. This follows from the fact (which we shall not prove, although the proof is easy)
that the principal value of the argument Arg z is continuous on the cut-plane. ✷

Having seen that the principal logarithm is continuous, we can go on to show that it is
differentiable.
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Proposition 3.4.4
The principal logarithm Log z is holomorphic on the cut plane and

d

dz
Log z =

1

z
.

Proof. Let w = Log z. Then z = expw. Let Log(z+h) = w+k. Then by Proposition 3.4.3
Log is continuous on the cut plane so we have that k → 0 as h→ 0. Then

d

dz
Log z = lim

h→0

Log(z + h)− Log(z)

h

= lim
k→0

(w + k)− w

exp(w + k)− exp(w)

= lim
k→0

(

exp(w + k)− exp(w)

k

)−1

=

(

d

dw
exp(w)

)−1

=
1

z
.

✷

Having defined the complex logarithm we can go on to define complex powers. For
b, z ∈ C with b 6= 0 we define the principal value of bz to be

bz = exp(z Log b)

and the subsiduary values to be exp(z log b).

Video. There is a video on the course webpage recapping properties of the complex
logarithm and complex powers (see Video 4).
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Exercises for Part 3

Exercise 3.1
Let zn ∈ C. Show that

∑∞
n=0 zn is convergent if, and only if, both

∑∞
n=0 Re(zn) and

∑∞
n=0 Im(zn) are convergent.

Exercise 3.2
Find the radii of convergence of the following power series:

(i)

∞
∑

n=1

2nzn

n
, (ii)

∞
∑

n=1

zn

n!
, (iii)

∞
∑

n=1

n!zn, (iv)

∞
∑

n=1

npzn (p ∈ N).

Exercise 3.3
Consider the power series

∞
∑

n=0

anz
n

where an = 1/2n if n is even and an = 1/3n if n is odd. Show that neither of the formulæ
for the radius of convergence for this power series given in Proposition 3.2.2 converge. Show
by using the comparison test that this power series converges for |z| < 2.

Exercise 3.4
(i) By multiplying two series together, show using Proposition 3.1.2 that for |z| < 1, we

have ∞
∑

n=1

nzn−1 =
1

(1− z)2
.

(ii) By multiplying two series together, show using Proposition 3.1.2 that for z, w ∈ C we
have ∞

∑

n=0

zn

n!

∞
∑

n=0

wn

n!
=

∞
∑

n=0

(z + w)n

n!
.

Exercise 3.5
Recall that if |z| < 1 then we can sum the geometric progression with common ratio z and
initial term 1 as follows:

1 + z + z2 + z3 + · · ·+ zn + · · · = 1

1− z
.

Use Theorem 3.3.2 to show that for each k ≥ 1

1

(1− z)k
=

∞
∑

n=k−1

(

n
k − 1

)

zn−(k−1)

for |z| < 1. (When k = 2 this gives an alternative proof of the result in Exercise 3.4 (i).)

c© University of Manchester 2018 34



MATH20101 Complex Analysis 3. Exercises for Part 3

Exercise 3.6
Show that for z, w ∈ C we have

(i) cos z =
eiz + e−iz

2
, (ii) sin z =

eiz − e−iz

2i
.

Show also that

(iii) sin(z + w) = sin z cosw + cos z sinw,

(iv) cos(z + w) = cos z cosw − sin z sinw.

Exercise 3.7
Derive formulæ for the real and imaginary parts of the following complex functions and
check that they satisfy the Cauchy-Riemann equations:

(i) sin z, (ii) cos z, (iii) sinh z, (iv) cosh z.

Exercise 3.8
For each of the complex functions exp, cos, sin, cosh, sinh find the set of points on which it
assumes (i) real values, and (ii) purely imaginary values.

Exercise 3.9
We know that the only real numbers x ∈ R for which sinx = 0 are x = nπ, n ∈ Z. Show
that there are no further complex zeros for sin, i.e., if sin z = 0, z ∈ C, then z = nπ for
some n ∈ Z. Also show that if cos z = 0, z ∈ C then z = (n+ 1/2)π, n ∈ Z.

Exercise 3.10
Find the zeros of the following functions

(i) 1 + ez, (ii) 1 + i− ez.

Exercise 3.11
(i) Recall that a complex number p ∈ C is called a period of f : C → C if f(z+p) = f(z)

for all z ∈ C. Calculate the set of periods of sin z.

(ii) We know that p = 2nπi, n ∈ Z, are periods of exp z. Show that there are no other
periods.

Exercise 3.12
(So far, there has been little difference between the real and the complex versions of ele-
mentary functions. Here is one instance of where they can differ.)

Let z1, z2 ∈ C \ {0}. Show that

Log z1z2 = Log z1 + Log z2 + 2nπi.

where n = n(z1, z2) is an integer which need not be zero. Give an explicit example of two
complex numbers z1, z2 for which Log z1z2 6= Log z1 + Log z2.

Exercise 3.13
Calculate the principal value of ii and the subsiduary values. (Do you find it surprising
that these turn out to be real?)
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Exercise 3.14
(i) Let α ∈ C and suppose that α is not a non-negative integer. Define the power series

f(z) = 1 + αz +
α(α− 1)

2!
z2 +

α(α− 1)(α − 2)

3!
z3 + · · ·

= 1 +

∞
∑

n=1

α(α− 1) · · · (α− n+ 1)

n!
zn.

(Note that, as α is not a non-negative integer, this is an infinite series.)

Show that the this power series has radius of convergence 1.

(ii) Show that, for |z| < 1, we have f ′(z) =
αf(z)

1 + z
.

(iii) By considering the derivative of the function g(z) =
f(z)

(1 + z)α
, show that f(z) =

(1 + z)α for |z| < 1.
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4. Complex integration and Cauchy’s Theorem

§4.1 Introduction

Consider the real integral
∫ b

a
f(x) dx.

We often read this as ‘the integral of f from a to b’. That is, we think of starting at the
point a and moving along the real axis to b, integrating f as we go.

Now let z0, z1 ∈ C. How might we define
∫ z1

z0

f(z) dz?

We want to start at z0, move through the complex plane to z1, integrating f as we go. But
in the complex plane there are lots of ways of moving from z0 to z1. Suppose γ is a path
from z0 to z1 (we shall make precise what we mean by a path below, but intuitively just
think of it as a continuous curve starting at z0 and ending at z1). Then, using similar ideas
to those from MATH10121 Calculus and Vectors, we can define

∫

γ
f(z) dz.

A priori this looks like it will depend on the path γ. However, as we shall see, in complex
analysis in many cases this quantity is independent of the path chosen.

§4.2 Paths and contours

First we need to make precise what we mean by a path.

Definition. A path is a continuous function γ : [a, b] → C where [a, b] is a real interval.

Remark. So, for each a ≤ t ≤ b, γ(t) is a point on the path. We say that the path γ
starts at γ(a) and ends at γ(b).

Remark. Note that a path is a function. Sometimes, it is convenient to regard a path
as a set of points in C, i.e. we identify the function γ with its image. However, we should
regard this set of points as having an orientation: a path starts at one end-point and ends
at the other. If we think of the path γ in this way then we sometimes call the function γ(t) a
parametrisation of the path γ. Note that the same path can have different parametrisations.
For example

γ1(t) = t+ it, γ2(t) = t2 + it2, 0 ≤ t ≤ 1

are both parametrisations of the straight line that starts at 0 and ends at 1 + i. We shall
see later (Proposition 4.3.1) that when we calculate an integral along a path then it is
independent of the choice of parametrisation.
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As an example of a path, let z0, z1 ∈ C. Define

γ(t) = (1− t)z0 + tz1, 0 ≤ t ≤ 1. (4.2.1)

Then γ(0) = z0, γ(1) = z1 and the image of γ is the straight line joining z0 to z1. We
sometimes denote this path by [z0, z1]. See Figure 4.2.1.

z0

z1

Figure 4.2.1: The path γ(t) = (1− t)z0+ tz1, 0 ≤ t ≤ 1, describes the straight line joining
z0 to z − 1. We sometimes denote this path by [z0, z1].

Definition. Let γ : [a, b] → C be a path. If γ(a) = γ(b) (i.e. if γ starts and ends at the
same point) then we say that γ is a closed path or a closed loop.

Example. An important example of a closed path is given by

γ(t) = eit = cos t+ i sin t, 0 ≤ t ≤ 2π. (4.2.2)

This is the path that describes the circle in C with centre 0 and radius 1, starting and ending
at the point 1, travelling around the circle in an anticlockwise direction. See Figure 4.2.2.

Definition. A path γ is said to be smooth if γ : [a, b] → C is differentiable and γ′ is
continuous. (By differentiable at a we mean that the one-sided derivative exists, similarly
at b.)

All of the examples of paths above are smooth.
We can use integrals to define the lengths of paths:

Definition. Let γ : [a, b] → C be a smooth path. Then the length of γ is defined to be

length(γ) =

∫ b

a
|γ′(t)| dt.

Example. It is straightforward to check from (4.2.1) that

length([z0, z1]) = |z1 − z0|.

If γ(t) is the path given in (4.2.2) then

length(γ) = 2π.
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1

Figure 4.2.2: The circular path γ(t) = eit, 0 ≤ t ≤ 2π. Note that it starts at 1 and travels
anticlockwise around the unit circle.

Often we will want to integrate over a number of paths joined together. One could make
the latter a path by constructing a suitable reparametrisation, but in practice this makes
things complicated; in particular the joins may not be smooth. It is simpler to give a name
to several smooth paths joined together.

Definition. A contour γ is a collection of smooth paths γ1, . . . , γn where the end-point
of γr coincides with the start point of γr+1, 1 ≤ r ≤ n− 1. We write

γ = γ1 + · · · + γn.

If the end-point of γn coincides with the start point of γ1 then we call γ a closed contour.

Thus a contour is a path that is smooth except at finitely many places. A contour looks
like a smooth path but with finitely many corners.

Example. Let 0 < ε < R. Define

γ1 : [ε,R] → C γ1(t) = t,

γ2 : [0, π] → C γ2(t) = Reit,

γ3 : [−R,−ε] → C γ3(t) = t,

γ4 : [−π, 0] → C γ4(t) = εe−it.

Then γ = γ1 + γ2 + γ3 + γ4 is a closed contour (see Figure 4.2.3).

Definition. The length of a contour γ = γ1 + · · ·+ γn is defined to be

length(γ) = length(γ1) + · · ·+ length(γn).

Suppose that γ : [a, b] → C is a path that starts at γ(a) and ends at γ(b). Then we can
consider the reverse of this path, where we start at γ(b) and, travelling backwards along γ,
end at γ(a). More formally, we make the following definition.
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−R −ε ε R

Figure 4.2.3: The contour γ1 + γ2 + γ3 + γ4.

Definition. Let γ : [a, b] → C be a path. Define −γ : [a, b] → C to be the path

−γ(t) = γ(a+ b− t).

We call −γ the reversed path of γ.

Video. There is a video on the course webpage recapping paths, parametrisations of
paths, the reversed path, etc. (See Video 5.)

§4.3 Contour integration

Let f : D → C be a complex functions defined on a domain D. Let γ : [a, b] → D be a
smooth path in D.

Definition. The integral of f along γ is defined to be

∫

γ
f(z) dz =

∫ b

a
f(γ(t))γ′(t) dt. (4.3.1)

We will often write
∫

γ f for
∫

γ f(z) dz.

Remark. Strictly speaking we should write f(γ(t))γ′(t) = u(t)+iv(t) where u, v : [a, b] →
R and define

∫

γ f to be
∫ b
a u(t) dt+ i

∫ b
a v(t) dt.

Example. Take f(z) = z2 and γ(t) = t2 + it, 0 ≤ t ≤ 1. Then f(γ(t)) = (t2 + it)2 =
t4 − t2 + 2it3 and γ′(t) = 2t+ i. Hence

∫

γ
f(z) dz =

∫ 1

0
f(γ(t))γ′(t) dt =

∫ 1

0
(t4 − t2 + 2it3)(2t+ i) dt

=

∫ 1

0
2t5 − 4t3 dt+ i

∫ 1

0
5t4 − t2 dt

=

[

1

3
t6 − t4

]1

0

+ i

[

t5 − 1

3
t3
]1

0

=
−2

3
+ i

2

3
.
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The following proposition shows that the definition (4.3.1) is independent of the choice of
parametrisation of the path.

Proposition 4.3.1
Let γ : [a, b] → C be a smooth path. Let φ : [c, d] → [a, b] be an increasing smooth bijection.
Then γ ◦ φ : [c, d] → C is a path that has the same image as γ. Moreover,

∫

γ◦φ
f =

∫

γ
f

for any continuous function f .

Proof. It is clear that both γ and γ ◦ φ have the same image. Thus γ and γ ◦ φ are
different parametrisations of the same path. Note that

∫

γ◦φ
f =

∫ d

c
f(γ(φ(t)))(γφ)′(t) dt

=

∫ d

c
f(γ(φ(t)))γ′(φ(t))φ′(t) dt by the chain rule

=

∫ b

a
f(γ(t))γ′(t) dt by the change of variables formula.

✷

Remark. If φ in Proposition 4.3.1 is a decreasing smooth bijection then γφ has the same
image as φ but the path traverses this in the opposite direction, i.e. γφ is a parametrisation
of −γ. Following the above calculation we see that

∫

γφ f = −
∫

γ f , corresponding to the

fact stated below that
∫

−γ f = −
∫

γ f .

Now suppose that γ = γ1 + · · ·+ γn is a contour in D. We define
∫

γ
f =

∫

γ1

f + · · ·+
∫

γn

f.

The following basic properties of contour integration follow easily from this definition.

Proposition 4.3.2
Let f, g : D → C be continuous and let c ∈ C. Suppose that γ, γ1, γ2 are contours in D.
Suppose that the end point of γ1 is the start point of γ2. Then

(i)
∫

γ1+γ2

f =

∫

γ1

f +

∫

γ2

f ;

(ii)
∫

γ
(f + g) =

∫

γ
f +

∫

γ
g;

(iii)
∫

γ
cf = c

∫

γ
f ;
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(iv)
∫

−γ
f = −

∫

γ
f.

Recall from real calculus (or, indeed, from A-level or high school) that one way to
calculate the integral of f is to find an anti-derivative, i.e. find a function F such that
F ′ = f . The Fundamental Theorem of Calculus then says that

∫ b
a f(x) dx = F (b) − F (a).

We have an analogue of this in for the complex integral. We first need the following
definition.

Definition. Let f : D → C be a continuous function. We say that a function F : D → C

is an anti-derivative of f on D if F ′ = f .

Theorem 4.3.3 (The Fundamental Theorem of Contour Integration)
Suppose that f : D → C is continuous, F : D → C is an antiderivative of f on D, and γ is
a contour from z0 to z1. Then

∫

γ
f = F (z1)− F (z0). (4.3.2)

Proof. It is sufficient to prove the theorem for smooth paths. Let γ : [a, b] → D, γ(a) = z0,
γ(b) = z1, be a smooth path.

Let w(t) = f(γ(t))γ′(t) and let W (t) = F (γ(t)). Then by the chain rule

W ′(t) = F ′(γ(t))γ′(t) = f(γ(t))γ′(t) = w(t).

Write w(t) = u(t) + iv(t) and W (t) = U(t) + iV (t) so that U ′ = u, V ′ = v. Hence

∫

γ
f =

∫ b

a
f(γ(t))γ′(t) dt

=

∫ b

a
w(t) dt

=

∫ b

a
u(t) dt+ i

∫ b

a
v(t) dt

= U(t)|ba + i V (t)|ba by the Fundamental Theorem of Calculus

= W (t)|ba
= F (z1)− F (z0).

✷

Remark. Notice that (4.3.2) does not depend on the choice of path γ from z0 to z1; all
we need to know is that there exists an anti-derivative for f on a domain that contains
z0, z1.

Example. Let f(z) = z2 and let γ be any contour from z0 = 0 to z1 = 1 + i. Then
F (z) = z3/3 is an anti-derivative for f and

∫

γ
z2 dz =

1

3
z31 −

1

3
z30 =

(1 + i)3

3
= −2

3
+

2

3
i.
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Remark. If γ is a closed path (i.e. γ starts and end at the same point) and f has an
anti-derivative on a domain that contains γ then

∫

γ f = 0. However, possessing an anti-

derivative is a very strong hypothesis on f (see the following remarks).

Remark. In real analysis, any sufficiently nice function f has an anti-derivative: we define

F (x) =

∫ x

0
f(t) dt.

then F ′ = f . In complex analysis, however, the existence of an anti-derivative in on domain
D is a very strong hypothesis. Consider for example f(z) = 1/z defined on D = C \ {0}.
Does this function have an anti-derivative on D? The natural candidate would be Log z.
However, Log z is only continuous on the cut-plane; Log z is not continuous on D and so
cannot be differentiable. So Log z is not an anti-derivative of f(z) = 1/z.

Remark. Let γ(t) = eit, 0 ≤ t ≤ 2π denote the unit circle in C described anticlockwise.
note that γ is a closed path. Let f(z) = 1/z. The above remark suggests that f does not
have an anti-derivative on any domain that contains γ. Thus to evaluate

∫

γ f we need to

use the definition of the contour integral given in (4.3.1). We have

∫

γ
f =

∫ 2π

0
f(γ(t))γ′(t) dt =

∫ 2π

0

1

eit
ieit dt = 2πi.

If f had an anti-derivative on a domain that contains γ then, by the Fundamental Theorem
of Contour Integration, we would have that

∫

γ f = 0. Hence f(z) = 1/z does not have an
anti-derivative on any domain that contains γ.

In general, looking for an anti-derivative is not the best way of calculating complex
integrals. There are much more powerful techniques that allows us to calculate many
complex integrals without having to worry about anti-derivatives. One such technique that
applies in the case when γ is a closed contour is Cauchy’s Theorem. Before discussing
Cauchy’s Theorem, we need a technical result about integration known as the Estimation
Lemma.

§4.4 The Estimation Lemma

There are two results about real integration that are obvious from considering the integral
of f(x) over [a, b] as the area underneath the graph of f . Firstly

∣

∣

∣

∣

∫ b

a
f(x) dx

∣

∣

∣

∣

≤
∫ b

a
|f(x)| dx (4.4.1)

and secondly, if |f(x)| ≤M then

∣

∣

∣

∣

∫ b

a
f(x) dx

∣

∣

∣

∣

≤M(b− a). (4.4.2)

See Figures 4.4.1 and 4.4.2.
Both of these results have analogies in the context of complex analysis. However, the

proofs are surprisingly intricate.
Here is the complex analogue of (4.4.1).
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f |f |

baba

Figure 4.4.1: If f [a, b] → R is negative on some subset of [a, b] then the area underneath
that part of the graph is negative. When f is replaced by |f |, this area becomes positive.

a b

M

f

Figure 4.4.2: The graph of f is contained inside the rectangle of width b− a and height
M . Hence the area underneath the graph is at most M(b− a).

Lemma 4.4.1
Let u, v : [a, b] → R be continuous functions. Then

∣

∣

∣

∣

∫ b

a
u(t) + iv(t) dt

∣

∣

∣

∣

≤
∫ b

a
|u(t) + iv(t)| dt. (4.4.3)

Proof. Write
∫ b

a
u(t) + iv(t) dt = X + iY.

Then

X2 + Y 2 = (X − iY )(X + iY )

=

∫ b

a
(X − iY )(u(t) + iv(t)) dt

=

∫ b

a
Xu(t) + Y v(t) dt+ i

∫ b

a
Xv(t)− Y u(t) dt.
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However, X2 + Y 2 is real, hence the imaginary part of the above expression must be zero,
i.e.

∫ b

a
Xv(t)− Y u(t) dt = 0

so that

X2 + Y 2 =

∫ b

a
Xu(t) + Y v(t) dt. (4.4.4)

Notice that the integrand in (4.4.4) is the real part of (X − iY )(u(t) + iv(t)). Recalling
that for any complex number z we have that Re(z) ≤ |z|, we have that

Xu(t) + Y v(t) ≤ |(X − iY )(u(t) + iv(t))|
= |X − iY ||u(t) + iv(t)|
=

√

X2 + Y 2|u(t) + iv(t)|.
Hence

X2 + Y 2 =

∫ b

a
Xu(t) + Y v(t) dt

≤
√

X2 + Y 2

∫ b

a
|u(t) + iv(t)| dt

and cancelling the term
√
X2 + Y 2 gives

∣

∣

∣

∣

∫ b

a
u(t) + iv(t) dt

∣

∣

∣

∣

= |X + iY | =
√

X2 + Y 2 ≤
∫ b

a
|u(t) + iv(t)| dt

as claimed. ✷

We can now prove the following important result—the complex analogue of (4.4.2)—
which we will use many times in the remainder of the course.

Lemma 4.4.2 (The Estimation Lemma)
Let f : D → C be continuous and let γ be a contour in D. Suppose that |f(z)| ≤M for all
z on γ. Then

∣

∣

∣

∣

∫

γ
f

∣

∣

∣

∣

≤M length(γ).

Remark. We shall use the Estimation Lemma in two different ways: (i) suppose f is a
function which takes small (in modulus) values along a contour γ, then

∫

γ f is small; (ii) if

f is any continuous function and γ is a contour with small length, then
∫

γ f is small.

Proof. Simply note that by Lemma 4.4.1 we have that
∣

∣

∣

∣

∫

γ
f

∣

∣

∣

∣

=

∣

∣

∣

∣

∫ b

a
f(γ(t))γ′(t) dt

∣

∣

∣

∣

≤
∫ b

a
|f(γ(t))||γ′(t)| dt

≤ M

∫ b

a
|γ′(t)| dt

= M length(γ).

✷
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Example. Let f(z) = 1/(z2 + z + 1) and let γ(t) = 5eit, 0 ≤ t ≤ 2π, be the circle of
radius 5 centred at 0. We use the Estimation Lemma to bound

∫

γ f(z) dz.

First note that if z is a point on γ then |z| = 5. Hence

|z2 + z + 1| ≥ |z|2 − |z + 1| by the reverse triangle inequality

≥ |z|2 − |z| − 1 by the triangle inequality

= 25− 5− 1 = 19.

Thus for z on γ we have that

|f(z)| =
∣

∣

∣

∣

1

z2 + z + 1

∣

∣

∣

∣

≤ 1

19
.

Next we note that length(γ) = 2π × 5 = 10π.
Thus, by the Estimation Lemma,

∣

∣

∣

∣

∫

γ
f(z) dz

∣

∣

∣

∣

≤ 10π

19
.

§4.5 Winding numbers and Cauchy’s Theorem

Suppose that f : D → C. The Fundamental Theorem of Contour Integration (Theo-
rem 4.3.3) tells us that if f has an anti-derivative F in D and γ is any path in D from z0
to z1 then

∫

γ
f = F (z1)− F (z0).

We say that γ : [a, b] → D is closed if it begins and ends at the same point, i.e. if
z0 = γ(a) = γ(b) = z1.

In particular, it follows from Theorem 4.3.3 that if f has an anti-derivative F on D then
∫

γ
f = 0 (4.5.1)

for all closed paths γ in D. What happens if we do not know if f has an anti-derivative?
In this case, Cauchy’s Theorem gives conditions under which (4.5.1) continues to hold.
(Actually, there are many different theorems of this kind, most of which are either due to,
or were known to, Cauchy and are often referred to as ‘Cauchy’s Theorem’. We will give
one version expressed in terms of winding numbers.)

Let γ be a closed path and let z0 be a point that is not on γ. Imagine you have a
piece of string. Tie one end to (say) a pencil and place the tip of the pencil on the point
z0. Now trace around the closed path γ with the other end of the piece of string. When
you get back to where you started, the string will be wrapped around the pencil some
number of times. This number (counted positively for anti-clockwise turns and negatively
for clockwise turns) is the winding number of γ at z0. See Figure 4.5.1 for examples of
winding numbers.

In examples, it is easy to calculate winding numbers by eye and this is how we shall
always do it. However, in order to use winding numbers to develop the theory of integration,
we shall need an analytic expression for the winding number w(γ, z) of a closed path γ
around a point z. Let us first consider the case when the closed path γ does not pass
through the origin 0. We need the following result, which we state without proof.
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z0

z1 z1

z0 z0

γ1

γ2

γ3

z1

z2

(i) (ii) (iii)

Figure 4.5.1: In (i), w(γ1, z0) = 1 and w(γ1, z1) = 0. In (ii), w(γ2, z0) = −1 and
w(γ2, z1) = 0 as γ2 winds clockwise around z0. In (iii), w(γ3, z0) = 2, w(γ3, z1) =
1, w(γ3, z2) = 0 as γ3 winds anticlockwise twice around z0, anticlockwise once around z1
and does not wind at all around z2.

Proposition 4.5.1
Let γ be a path in C \ {0}. Then there exists a parametrisation γ : [a, b] → C \ {0} of γ
for which t 7→ arg γ(t) is a continuous function. Any other choice of parametrisation with
a continuous choice of argument differs from this argument by a constant integer multiple
of 2π.

Example. For example, consider

γ(t) =

{

eit, 0 ≤ t ≤ π

ei(t+2π), π < t ≤ 2π.

Then γ describes the unit circle with centre 0 and radius 1. Here

arg γ(t) =

{

t, 0 ≤ t ≤ π
t+ 2π, π < t ≤ 2π.

and this is not continuous. However, we can find a parametrisation of γ for which the
argument is continuous, for example

γ(t) = eit, 0 ≤ t ≤ 2π

and note that arg γ(t) = t, 0 ≤ t ≤ 2π, is continuous.

Now consider the closed path γ. We can reinterpret the winding number w(γ, 0) of γ
around 0 as the multiple of 2π giving the total change in argument along γ.

Proposition 4.5.2
Let γ be a closed path that does not pass through the origin. Then

w(γ, 0) =
1

2πi

∫

γ

1

z
dz.

Example. Let γ(t) = e4πit, 0 ≤ t ≤ 1. Intuitively, this winds around the origin twice
anticlockwise, and so should have winding number w(γ, 0) = 2. We can check this using
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Proposition 4.5.2 as follows:

1

2πi

∫

γ

1

z
dz =

1

2πi

∫ 1

0

1

e4πit
4πie4πit dt

=

∫ 1

0
2 dt = 2.

Example. Let γ(t) = e−it, 0 ≤ t ≤ 2π. In this case, γ winds around the origin once, but
clockwise. Thus w(γ, 0) = −1. Again, we can check this using Proposition 4.5.2 as follows:

1

2πi

∫

γ

1

z
dz =

1

2πi

∫ 2π

0

1

e−it
(−i)e−it dt

=

∫ 2π

0

−1

2π
dt = −1.

Proof of Proposition 4.5.2. Intuitively this is clear: let γ : [a, b] → C \ {0} be a closed
path that does not pass through the origin. Note that γ(a) = γ(b). Then (and we put
quotes around the following to indicate that this is not a valid proof)

“

∫

γ

1

z
dz =

∫ b

a

1

γ(t)
γ′(t)

= [log(γ(t))]ba
= (ln |γ(b)| + i arg γ(b))− (ln |γ(a)|+ i arg γ(a))

= i (arg γ(b)− arg γ(a))

= 2πiw(γ, 0)”.

The reason that the above computation does not work is that 1/z does not have log(z) (or,
indeed, the principal logarithm Log(z)) as an antiderivative on C \ {0}. This is because
Log(z) is not continuous on C \ {0} and so cannot be differentiable. However, Log(z) is
continuous and is an anti-derivative for 1/z on the cut plane, where we remove the negative
real axis from C. More generally, one can define a logarithm continuously on a cut plane
where one removes any ray from C. (A ray is an infinite straight line starting at 0; for
example, the negative real axis is a ray.)

For each α ∈ [−π, π) define the cut plane at angle α to be

Cα = C \ {reiα | r > 0},

i.e. the complex plane with the ray inclined at angle α from the positive x-axis removed.
On Cα we can define arg z to be argα z = θ where

z = reiθ, r > 0, α− 2(m+ 1)π < θ ≤ α− 2mπ

where we have the freedom to choose any m ∈ Z. (The case α = π,m = 0 corresponds to
the usual principal value of the argument.)

Let γ be a closed path that does not pass through the origin. In general, γ will not lie
in one cut plane. Split γ up into pieces γ1, . . . , γn defined on [t0, t1], . . . , [tn−1, tn] so that
each γr lies in a single cut plane, Cαr , say. Along each γr we will choose a value of the
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argument argαr
which is continuous on Cαr and such that argαr

γr(tr) = argαr+1
γr+1(tr),

0 ≤ r ≤ n− 1. Hence
∫

γr

1

z
dz = log γ(tr)− log(γ(tr−1))

= log |γ(tr)| − log |γ(tr−1)|+ i
(

argαr
(γ(tr))− argαr

(γ(tr−1))
)

.

Now

∫

γ

1

z
dz =

n
∑

r=1

∫

γr

1

z
dz

=

n
∑

r=1

(log |γ(tr)| − log |γ(tr−1)|) + i

n
∑

r=1

(

argαr
(γ(tr))− argαr

(γ(tr−1))
)

.

The real parts cancel. The imaginary parts sum to

argαn
(γ(tn))− argα0

(γ(t0)),

the total change in argument around γ, i.e. 2πw(γ, 0). ✷

More generally, we have the following formula for the winding number around z0 for a
closed path that does not pass through z0.

Proposition 4.5.3
Let γ be a closed path that does not pass through z0. Then

w(γ, z0) =
1

2πi

∫

γ

1

z − z0
dz.

Proof. This is just a change-of-origin argument. Let γ : [a, b] → C be a closed path that
does not pass through z0. Consider the path γ1(t) = γ(t) − z0; this is γ translated by z0.
Then w(γ, z0) = w(γ1, 0). Now

1

2πi

∫

γ

1

z − z0
dz =

1

2πi

∫ b

a

1

γ(t)− z0
γ′(t) dt

=
1

2πi

∫ b

a

1

γ1(t)
γ′1(t) dt as γ

′(t) = γ′1(t)

=
1

2πi

∫

γ1

1

z
dz

= w(γ1, 0).

✷

The following results are obvious in terms of the geometric meaning of winding number.

Proposition 4.5.4
(i) Let γ1, γ2 be closed paths that do not pass through z0. Then

w(γ1 + γ2, z0) = w(γ1, z0) + w(γ2, z0).
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(ii) Let γ be a closed path that does not pass through z0. Then

w(−γ, z0) = −w(γ, z0).

Proof. We prove (i). To see this, note that by Proposition 4.3.2(i) we have that

w(γ1 + γ2, z0) =
1

2πi

∫

γ1+γ2

1

z − z0
dz

=
1

2πi

∫

γ1

1

z − z0
dz +

1

2πi

∫

γ2

1

z − z0
dz

= w(γ1, z0) + w(γ2, z0).

We prove (ii). By Proposition 4.3.2(i) we have that

w(−γ, z0) =
1

2πi

∫

−γ

1

z − z0
dz

= − 1

2πi

∫

γ

1

z − z0
dz

= w(γ, z0).

✷

We can now state Cauchy’s Theorem.

Theorem 4.5.5 (Cauchy’s Theorem)
Let f be holomorphic on a domain D and let γ be a closed contour in D that does not
wind around any point outside D (i.e. w(γ, z) = 0 for all z 6∈ D). Then

∫

γ f = 0.

Remark. The strength of Cauchy’s Theorem is that we do not need to know if f has
an anti-derivative on D. (If f did have an antiderivative on D then

∫

γ f = 0 follows
immediately from the Fundamental Theorem of Contour Integration; however, possessing
an antiderivative is an extremely strong assumption on f . See Theorem 4.3.3 and the
remarks following it.)

Remark. See Figure 4.5.2 for examples of the hypotheses of Cauchy’s Theorem.

Proof. There are many proofs of Cauchy’s Theorem; here we give one based on Green’s
Theorem (see MATH10121 Calculus and Vectors). We assume (in addition to the hypothe-
ses stated) that f has continuous partial derivatives.

Green’s theorem states the following: suppose that γ is a piecewise smooth closed
contour bounding a region Γ, g, h are C1 functions defined on an open set containing Γ,
then

∫

γ
g(x, y) dx + h(x, y) dy =

∫ ∫

Γ

(

∂h

∂x
− ∂g

∂y

)

dx dy. (4.5.2)

Let f be as in the hypotheses and write f(z) = f(x+ iy) = u(x, y)+ iv(x, y). Note that
dz = dx+ i dy. Then

∫

γ
f dz =

∫

γ
(u+ iv)(dx+ i dy)
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D
D

D

(i) (ii) (iii)

γ

γ

γ

Figure 4.5.2: In (i) and (ii), γ has winding number zero around every point outside D, so
the hypotheses of Cauchy’s Theorem (Theorem 4.5.5 hold. In (iii) γ has winding number
1 around points inside the ‘hole’ in D, hence the hypothesis of Cauchy’s Theorem do not
hold.

=

∫

γ
u dx− v dy + i

∫

γ
v dx+ u dy

=

∫ ∫

Γ

(

−∂v
∂x

− ∂u

∂y

)

dx dy +

∫ ∫

Γ

(

∂u

∂x
− ∂v

∂y

)

dx dy

= 0

as, by the Cauchy-Riemann equations, ∂u/∂x = ∂v/∂y and ∂u/∂y = −∂v/∂x hold every-
where on Γ. ✷

Remark. In many ways, this proof is cheating: Green’s Theorem is a deep theorem and
not easy to prove. There are direct proofs of Cauchy’s theorem, but they are lengthy and
difficult. (The idea is to build D up from smaller pieces, often starting with the case when
D is a triangle; see Stewart and Tall, p.143.)

Another reason for why the above proof is cheating is that Green’s theorem requires
the partial derivatives in (4.5.2) to be continuous. In general, the statement of Cauchy’s
Theorem only requires the partial derivatives to exist in D (i.e. we do not need to assume
that they are continuous). In fact, as we shall see, the existence of the derivative on a
domain forces the derivative (and so the partial derivatives) to be continuous (indeed, if
the derivative exists on a domain then the function is differentiable infinitely many times).
However the proof of this fact uses Cauchy’s Theorem.

There are many variants of Cauchy’s Theorem. Here we give just two simple modifica-
tions.

Our first variant deals with simply connected domains. Heuristically, a domain is simply
connected if it does not have any holes in it. (For example, in Figure 4.5.2(i) the domain
D is simply connected; however the domains D in Figures 4.5.2(ii) and (iii) are not simply
connected as they have holes in them.) More precisely:

Definition. A domain D is simply connected if for all closed contours γ in D and for all
z 6∈ D, we have w(γ, z) = 0.

c© University of Manchester 2018 51



MATH20101 Complex Analysis 4. Integration and Cauchy’s Theorem

Theorem 4.5.6 (Cauchy’s Theorem for simply connected domains)
Suppose that D is a simply connected domain and f is a holomorphic function on D. Then
for any closed contour γ we have that

∫

γ f = 0.

More generally, we can ask about integrating around several closed contours.

Theorem 4.5.7 (The Generalised Cauchy Theorem)
Let D be a domain and let f be holomorphic on D. Let γ1, . . . , γn be closed contours in
D. Suppose that

w(γ1, z) + · · ·+ w(γn, z) = 0 for all z 6∈ D.

Then
∫

γ1

f + · · · +
∫

γn

f = 0.

Remark. The hypotheses of the Generalised Cauchy Theorem (Theorem 4.5.7) give one
way of extending Cauchy’s Theorem to non-simply connected domains. Consider the ex-
ample in Figure 4.5.3. Here, if z is ‘outside’ D then clearly w(γ1, z) = w(γ2, z) = 0. If z is
in the ‘hole’ in D then w(γ1, z) = 1, w(γ2, z) = −1 so that w(γ1, z) + w(γ2, z) = 0. Hence
the hypotheses of the Generalised Cauchy Theorem hold.

D

γ2

γ1

Figure 4.5.3: An example of closed contours that satisfy the hypotheses in the Generalised
Cauchy Theorem (Theorem 4.5.7).

Proof of Theorem 4.5.7. Suppose that γr starts and ends at zj ∈ D, 1 ≤ j ≤ n.
Choose any z0 ∈ D and contours σ1, . . . , σn in D which join z0 to z1, . . . , zn, respectively.
(See Figure 4.5.4.) Note that, for each j, σj + γj − σj is a closed contour that starts and
ends at z0 and, moreover, that for z 6∈ D we have w(σj + γj − σj, z) = w(γj , z). We see
that

γ = σ1 + γ1 − σ1 + · · ·+ σn + γn − σn

is a closed contour that starts and ends at z0. Let z 6∈ D. Then, using Proposition 4.5.4,

w(γ, z) = w(σ1 + γ1 − σ1 + · · ·+ σn + γn − σn, z)
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γ3

γ2

γ1

σ3

z0
σ1

σ2

Figure 4.5.4: The path γ is formed by starting at z0, traversing σ1, then around γ1, then
back along σ1, then along σ2, around γ2, back along σ2, along σ3, around γ3 and back along
σ3, ending at z0.

=
n
∑

j=1

w(σj + γj − σj , z)

=

n
∑

j=1

w(γj , z)

= 0.

Hence by Cauchy’s Theorem
∫

γ f = 0. Hence

n
∑

j=1

(

∫

σj

f +

∫

γj

f +

∫

−σj

f

)

=
n
∑

j=1

∫

γj

f

as
∫

−σj
f = −

∫

σj
f . ✷

Video. There is a video on the course webpage that summarises the main facts about
complex integration, the Fundamental Theorem of Contour Integration, Cauchy’s Theorem
and the Generalised Cauchy Theorem. (See Video 6.)
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Exercises for Part 4

Exercise 4.1
Draw the following paths:

(i) γ(t) = e−it, 0 ≤ t ≤ π,

(ii) γ(t) = 1 + i+ 2eit, 0 ≤ t ≤ 2π,

(iii) γ(t) = t+ i cosh t, −1 ≤ t ≤ 1,

(iv) γ(t) = cosh t+ i sinh t, −1 ≤ t ≤ 1.

Exercise 4.2
Find the values of

∫

γ
x− y + ix2 dz

where z = x+ iy and γ is:

(i) the straight line joining 0 to 1 + i;

(ii) the imaginary axis from 0 to i;

(iii) the line parallel to the real axis from i to 1 + i.

Exercise 4.3
Let

γ1(t) = 2 + 2eit, 0 ≤ t ≤ 2π,

γ2(t) = i+ e−it, 0 ≤ t ≤ π/2.

Draw the paths γ1, γ2.
From the definition

∫

γ f =
∫ b
a f(γ(t))γ

′(t) dt, calculate

(i)

∫

γ1

dz

z − 2
, (ii)

∫

γ2

dz

(z − i)3
.

Exercise 4.4
Evaluate

∫

γ |z|2 dz where γ is the circle |z − 1| = 1 described anticlockwise.

Exercise 4.5
For each of the following functions find an anti-derivative and calculate the integral along
any smooth path from 0 to i:

(i) f : C → C, f(z) = z2 sin z;

(ii) f : C → C, f(z) = zeiz.
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Exercise 4.6
Calculate

∫

γ |z|2 dz where

(i) γ denotes the contour that goes vertically from 0 to i then horizontally from i to 1+ i;

(ii) γ denotes the contour that goes horizontally from 0 to 1 then vertically from 1 to
1 + i.

What does this tell you about possibility of the existence of an anti-derivative for f(z) =
|z|2?

Exercise 4.7
Calculate (by eye) the winding number around any point which is not on the path.

Figure 4.6.1: See Exercise 4.7.

Exercise 4.8
Prove Proposition 4.3.2(iv): Let D be a domain, γ a contour in D, and let f : D → C be
continuous. Let −γ denote the reversed path of γ. Show that

∫

−γ
f = −

∫

γ
f.

Exercise 4.9
Let f, g : D → C be holomorphic. Let γ be a smooth path in D starting at z0 and ending
at z1. Prove the complex analogue of the integration by parts formula:

∫

γ
fg′ = f(z1)g(z1)− f(z0)g(z0)−

∫

γ
f ′g.

Exercise 4.10
Let

γ1(t) = −1 +
1

2
eit, 0 ≤ t ≤ 2π,
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γ2(t) = 1 +
1

2
eit, 0 ≤ t ≤ 2π,

γ(t) = 2eit, 0 ≤ t ≤ 2π.

Let f(z) = 1/(z2 − 1). Use the Generalised Cauchy Theorem to deduce that

∫

γ
f dz =

∫

γ1

f dz +

∫

γ2

f dz.

Exercise 4.11
Let γ1 denote the unit circle centred at 0, radius 1, described anti-clockwise. Let f(z) = 1/z.
Show that

∫

γ1
f = 2πi. Let γ2 be the closed contour as illustrated in Figure 4.6.2. Use the

Generalised Cauchy Theorem on an appropriate domain to calculate
∫

γ2
f .

γ1

γ2

Figure 4.6.2: Here γ1 denotes the unit circle described anticlockwise and γ2 is an arbitrary
closed contour that winds once around 0.

Exercise 4.12
Let D be the domain C \ {z1, z2}. Suppose that γ, γ1, γ2 are closed contours in D as
illustrated in Figure 4.6.3. Suppose that

∫

γ1

f = 3 + 4i,

∫

γ2

f = 5 + 6i.

Use the Generalised Cauchy Theorem to calculate
∫

γ f .
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z1

γ1

γ2

γ

z2

Figure 4.6.3: See Exercise 4.12.

c© University of Manchester 2018 57



MATH20101 Complex Analysis 5. Cauchy’s Integral Formula

5. Cauchy’s Integral Formula and Taylor’s Theorem

§5.1 Cauchy’s Integral Formula

One of the most remarkable facts about complex analysis is that, in a sense, one can
differentiate a function just by knowing how to integrate it. (This partly explains why
complex analysis is so much easier than real analysis. In real analysis, we say that a
function is Cr if it can be differentiated r times and the rth derivative is continuous. Then
C1 ⊃ C2 ⊃ · · · and we think of a function that is Cr for a large r as being ‘nice’. If we
differentiate a Cr function then we obtain a Cr−1 function, i.e. differentiation takes nice
functions and makes them slightly ‘less nice’. Integration, however, works the other way:
the indefinite integral of a Cr function is Cr+1. Hence integration makes nice functions
‘even nicer’. In terms of complex analysis, this distinction into Cr functions does not have
any meaning: as we shall see, if a function is differentiable once then it is differentiable
infinitely many times!)

Theorem 5.1.1 (Cauchy’s Integral Formula for a circle)
Suppose that f is holomorphic on the disc {z ∈ C | |z − z0| < R}. For 0 < r < R let Cr be
the path Cr(t) = z0 + reit, 0 ≤ t ≤ 2π (so that Cr is the circle with centre z0 and radius
r). Then for |w − z0| < r we have that

f(w) =
1

2πi

∫

Cr

f(z)

z − w
dz. (5.1.1)

Remark. Equation (5.1.1) has the following remarkable corollary: if we know the value
of the function f along the closed path Cr then we know the values of the function at all
points inside the disc Cr. This does not have an analogue in real analysis.

Remark. Theorem 5.1.1 is formulated in terms of the function being holomorphic on a
disc and integrating around circles. This is not necessary, and a more general version of
Cauchy’s Integral Formula holds provided that f is holomorphic on a simply connected
domain D and we replace Cr by an appropriate simple closed loop. (A closed loop γ is
called simple if, for every point z not on γ, the winding number is either w(γ, z) = 0 or
w(γ, z) = 1.)

Proof. Fix w such that |w − z0| < r. Consider the function

g(z) =
f(z)− f(w)

z − w
.

Then g is differentiable in the domain D = {z ∈ C | |z − z0| < R, z 6= w}. Define the circle
Sε to be the circle centred at w and of radius ε > 0.

Sε(t) = w + εeit, 0 ≤ t ≤ 2π.

Then, provided ε > 0 is sufficiently small, both Cr and Sε lie inside D.
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We apply the Generalised Cauchy Theorem (Theorem 4.5.7) to the contours Sε and
−Cr. Suppose that z is not in the domain D. Then either |z − z0| > R or z = w. In the
first case, if |z − z0| > R then w(Sε, z) = w(Cr, z) = 0. In the second case, if z = w then
w(Sε, z) = 1 and w(−Cr, z) = −1. Hence we have that w(Sε, z) + w(−Cr, z) = 0 for all
z 6∈ D. Noting that

∫

−Cr
g = −

∫

Cr
g we have that, by the Generalised Cauchy Theorem

(Theorem 4.5.7),
∫

Cr

g(z) dz =

∫

Sε

g(z) dz. (5.1.2)

Now, from the definition of g, we have that limz→w g(z) = f ′(w). As |f ′(w)| is finite, it
follows that g(z) is bounded for z sufficiently close to w, i.e. there exist δ > 0 and M > 0
such that if 0 < |w − z| < δ then |g(z)| < M .

Hence, if ε < δ, the Estimation Lemma (Lemma 4.4.2) implies that
∣

∣

∣

∣

∫

Sε

g(z) dz

∣

∣

∣

∣

≤M2πε.

By (5.1.2) it follows that
∣

∣

∣

∣

∫

Cr

g(z) dz

∣

∣

∣

∣

≤M2πε,

and since we can take ε > 0 to be arbitrarily small, it follows that
∫

Cr

g(z) dz = 0. (5.1.3)

Recalling that g(z) = (f(z)−f(w))/(z−w) and that f(w) is constant, we can substitute
this expression for g into (5.1.3) to obtain

∫

Cr

f(z)

z − w
dz =

∫

Cr

f(w)

z − w
dz

= f(w)

∫

Cr

1

z − w
dz

= f(w)2πiw(Cr , w)

= f(w)2πi

as Cr winds once anticlockwise around w. Hence

f(w) =
1

2πi

∫

Cr

f(z)

z − w
dz.

✷

§5.2 Taylor series

The integral formula allows us to express a differentiable function as a power series (the
Taylor series expansion). Hence by Theorem 3.3.2 it follows that if f is differentiable once
then it is differentiable arbitrarily many times.

Theorem 5.2.1 (Taylor’s Theorem)
Suppose that f is holomorphic in the domain D. Then all of the higher derivatives of f
exist in D and, on any disc

{z ∈ C | |z − z0| < R} ⊂ D,
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f has a Taylor series expansion given by

f(z) =

∞
∑

n=0

f (n)(z0)

n!
(z − z0)

n.

Furthermore, if 0 < r < R and Cr(t) = z0 + reit, 0 ≤ t ≤ 2π, then

f (n)(z0) =
n!

2πi

∫

Cr

f(z)

(z − z0)n+1
dz.

Remark. This version of Taylor’s Theorem is false in the case of real analysis in the
following sense: there are functions that are differentiable an arbitrary number of times
but that are not equal to their Taylor series. For example, if

f(x) =

{

e−1/x2

, x 6= 0
0, x = 0

then f is differentiable arbitrarily many times. However, one can check (by differentiation
from first principles) that f (n)(0) = 0 for all n, so f has Taylor series 0 at 0. As f 6= 0 near
0, it follows that f is not equal to its Taylor series.

Definition. If, for each z0 ∈ D, a function f : D → C is equal to its Taylor series at
z0 on some open disc then we say that f is analytic. (It follows from Theorem 5.2.1 that
all complex differentiable functions are analytic; however the example in the remark above
shows that not all infinitely real-differentiable functions are analytic.)

Proof of Theorem 5.2.1. First recall that for any w ∈ C we have

1 + w + · · ·+ wm =
1− wm+1

1− w
.

Put w = h/(z − z0). Then

1 +
h

z − z0
+ · · · + hm

(z − z0)m
=

1−
(

h

z − z0

)m+1

1− h

z − z0

=

(

1−
(

h

z − z0

)m+1
)

z − z0 − h
× (z − z0).

Hence

1

z − (z0 + h)
=

1

z − z0 − h
=

1

z − z0
+

h

(z − z0)2
+· · ·+ hm

(z − z0)m+1
+

hm+1

(z − z0)m+1(z − z0 − h)
.

Fix h such that 0 < |h| < R and suppose, for the moment, that |h| < r < R. Then
Cauchy’s Integral formula, together with the above identity, gives

f(z0 + h)

=
1

2πi

∫

Cr

f(z)

z − (z0 + h)
dz
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=
1

2πi

∫

Cr

f(z)

(

1

z − z0
+

h

(z − z0)2
+ · · ·+ hm

(z − z0)m+1

+
hm+1

(z − z0)m+1(z − z0 − h)

)

dz

=
m
∑

n=0

anh
n +Am.

where

an =
1

2πi

∫

Cr

f(z)

(z − z0)n+1
dz

and

Am =
1

2πi

∫

Cr

f(z)hm+1

(z − z0)m+1(z − z0 − h)
dz.

We show that Am → 0 as m→ ∞.
As f is differentiable on Cr, it is bounded. So there exists M > 0 such that |f(z)| ≤M

for all z on Cr.
By the reverse triangle inequality, using the facts that |h| < r = |z− z0| for z on Cr, we

have that
|z − z0 − h| ≥ ||z − z0| − |h|| = r − |h|.

Hence, by the Estimation Lemma (Lemma 4.4.2)

|Am| ≤ 1

2π

M |h|m+1

rm+1(r − |h|)2πr =
M |h|
r − |h|

( |h|
r

)m

.

Since |h| < r, this tends to zero as m→ ∞. Hence

f(z0 + h) =

∞
∑

n=0

anh
n

for |h| < R with

an =
1

2πi

∫

Cr

f(z)

(z − z0)n+1
dz

provided that r satisfies |h| < r < R. However, the integral is unchanged if we vary r in
the whole range 0 < r < R. Hence this formula is valid for the whole of this range of r.

Finally, we put h = z − z0. Then we have that

f(z) =

∞
∑

n=0

an(z − z0)
n

for |z − z0| < R, with an given as above. From Theorem 3.3.2 we know that a power series
can be differentiated term-by-term as many times as we please and that

an =
f (n)(z0)

n!
.

✷

One immediate consequence of Taylor’s Theorem is that the coefficients of the Taylor
series expansion for f are uniquely defined. More precisely, we have the following result.
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Proposition 5.2.2
Suppose that

∞
∑

n=0

an(z − z0)
n =

∞
∑

n=0

bn(z − z0)
n (5.2.1)

for all z ∈ C such that |z − z0| < R. Then an = bn for all n ∈ N.

Proof. Subtracting the right-hand side from the left-hand side in (5.2.1), it is sufficient
to prove that if

∞
∑

n=0

an(z − z0)
n = 0 (5.2.2)

for all z ∈ C with |z − z0| < R then an = 0. Differentiate both sides of (5.2.2) k times to
see that, for each k ∈ N,

∑∞
n=k n(n − 1) · · · (n − (k − 1))(z − z0)

n−k = 0. Putting z = z0
into this expression for each k then gives that ak = 0. ✷

Often, if we are given a function f and want to calculate the Taylor series of f on some
disc, then we may be able to use Proposition5.2.2 to obtain the Taylor series of f without
using the formula for the coefficients an given in Theorem 5.2.1.

Example. We can find the Taylor series for f(z) = sin2 z as follows.
Recall that cos z =

∑∞
n=0(−1)nz2n/(2n!) and that this converges for all z ∈ C. Also

recall that sin2z = 1− cos 2z. Hence

sin2 z = 1− cos 2z

= 1−
∞
∑

n=0

(−1)n(2z)2n/(2n!)

=
22z2

2!
− 24z4

4!
+ · · ·+ (−1)n+12n

(2n)!
z2n + · · · .

As this is a power series that is equal to f(z) and is valid for all z ∈ C, by Proposition 5.2.2
this must be the Taylor series of f on C.

§5.3 Applications of Cauchy’s Integral Formula

Cauchy’s Integral Formula has many applications; here we give just three.

§5.3.1 Cauchy’s Estimate

As a consequence of the formula for the nth derivative of f in terms of an integral given in
Taylor’s Theorem, we have the following estimate.

Lemma 5.3.1 (Cauchy’s Estimate)
Suppose that f is holomorphic on {z ∈ C | |z − z0| < R}. If 0 < r < R and |f(z)| ≤M for
all z such that |z − z0| = r then, for all n ≥ 0,

|f (n)(z0)| ≤
Mn!

rn
.
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Proof. By Theorem 5.2.1 we know that

f (n)(z0) =
n!

2πi

∫

Cr

f(z)

(z − z0)n+1
dz.

By the Estimation Lemma (Lemma 4.4.2),

|f (n)(z0)| =
n!

2π

∣

∣

∣

∣

∫

Cr

f(z)

(z − z0)n+1
dz

∣

∣

∣

∣

≤ n!

2π

M

rn+1
2πr

=
Mn!

rn
.

✷

§5.3.2 Liouville’s Theorem

Theorem 5.3.2 (Liouville’s Theorem)
Suppose that f is holomorphic and bounded on the whole of C. Then f is a constant.

Remark. By bounded we mean that there exists M > 0 such that |f(z)| ≤ M for all
z ∈ C.

Remark. This theorem has no analogue in real analysis. It is easy to think of functions
f : R → R that are differentiable and bounded but not constant. (For example f(x) =
sinx.)

Proof. ChooseM such that |f(z)| ≤M for all z ∈ C. Let z0 ∈ C. Since f is holomorphic
on the whole of C, it is holomorphic in the disc {z ∈ C | |z−z0| < R} of radius R centred at
z0 for R as large as we please. By Cauchy’s Estimate (Lemma 5.3.1), we have for 0 < r < R

|f ′(z0)| ≤
M

r
.

Since we can choose R as large as we please, so we can choose r as large as we please. Hence
we can let r → ∞. Hence f ′(z0) = 0 for every z0 ∈ C. Hence f is a constant. ✷

§5.3.3 The Fundamental Theorem of Algebra

Consider the equation x − n = 0 where n ∈ N. This equation always has solutions x ∈ N

(indeed, x = n). If, however, we consider x + n = 0, n ∈ N, then we need to introduce
negative integers to be able to solve this equation. More generally, consider the equation
px − q = 0 where p, q ∈ Z; then we need to introduce rational numbers Q to be able
to solve this equation. Continuing this theme, one can see that one needs to introduce
surds (to solve x2 − 2 = 0) and complex numbers (to solve x2 + 1 = 0). Let us ask the
ultimate question along these lines: if we have a polynomial equation where the coefficients
are complex numbers, do we need to invent a larger class of numbers to be able to solve
this equation or will complex numbers suffice? The answer is that complex numbers are
sufficient.

Theorem 5.3.3 (The Fundamental Theorem of Algebra)
Let p(z) = zn+ an−1z

n−1+ · · ·+ a1z+ a0 be a polynomial of degree n ≥ 1 with coefficients
aj ∈ C. Then there exists α ∈ C such that p(α) = 0.
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Corollary 5.3.4
Let p(z) = zn+ an−1z

n−1+ · · ·+ a1z+ a0 be a polynomial of degree n ≥ 1 with coefficients
aj ∈ C. Then we can factorise p(z): there exist αj ∈ C, 1 ≤ j ≤ n such that

p(z) =

n
∏

j=1

(z − αj).

Proof of Theorem 5.3.3. Suppose for a contradiction that there are no solutions to
p(z) = 0, i.e. suppose that p(z) 6= 0 for all z ∈ C.

If p(z) 6= 0 for all z ∈ C then 1/p(z) is holomorphic for all z ∈ C. We shall show that
1/p(z) is bounded and then use Liouville’s theorem to show that p is constant.

For z 6= 0
p(z)

zn
= 1 +

an−1

z
+ · · ·+ a1

zn−1
+
a0
zn

→ 1

as |z| → ∞. Hence there exists K > 0 such that if |z| > K then

∣

∣

∣

∣

p(z)

zn

∣

∣

∣

∣

≥ 1

2
.

Re-arranging this implies that for |z| > K we have that

∣

∣

∣

∣

1

p(z)

∣

∣

∣

∣

≤ 2

|zn| ≤
2

Kn
.

Hence 1/p(z) is bounded if |z| > K.
We shall show that this bound continues to hold for |z| ≤ K. Let z0 ∈ C, |z0| ≤ K.

Let Cr(t) = z0 + reit, 0 ≤ t ≤ 2π, denote the circular path with centre z0 and radius r.
By choosing r sufficiently large, we can assume that Cr is contained in {z ∈ C | |z| > K}.
Hence, for such an r, if z is any point on Cr then |z| > K. Hence if z is any point on Cr

then |1/p(z)| ≤ 2/Kn. By Cauchy’s Estimate (Lemma 5.3.1) it follows that

∣

∣

∣

∣

1

p(z0)

∣

∣

∣

∣

≤ 2

Kn
.

Hence |1/p(z)| ≤ 2/Kn for all z ∈ C, so that p is a bounded holomorphic function on C.
By Liouville’s Theorem (Theorem 5.3.2), this implies that p is constant, a contradiction.

✷

Proof of Corollary 5.3.4. Let p(z) be a degree n polynomial with coefficients in C. By
Theorem 5.3.3 we can find α1 ∈ C such that p(α1) = 0. Write p(z) = (z − α1)q(z) where
q(z) is a degree n−1 polynomial with coefficients in C. The proof then follows by induction
on n. ✷
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Exercises for Part 5

Exercise 5.1
Find the Taylor expansion of the following functions around 0 and find the radius of con-
vergence:

(i) sin2 z, (ii) (2z + 1)−1, (iii) f(z) = ez
2

.

Exercise 5.2
Calculate the Taylor series expansion of Log(1 + z) around 0. What is the radius of con-
vergence?

Exercise 5.3
Show that every polynomial p of degree at least 1 is surjective (that is, for all a ∈ C there
exists z ∈ C such that p(z) = a).

Exercise 5.4
Suppose that f is holomorphic on the whole of C and suppose that |f(z)| ≤ K|z|k for some
real constant K > 0 and some positive integer k ≥ 0. Prove that f is a polynomial function
of degree at most k.

(Hint: Calculate the coefficients of zn, n ≥ k, in the Taylor expansion of f around 0.)

Exercise 5.5
(Sometimes one can use Cauchy’s Integral formula even in the case when f is not holomor-
phic.)

Let f(z) = |z+1|2. Let γ(t) = eit, 0 ≤ t ≤ 2π be the path that describes the unit circle
with centre 0 anticlockwise.

(i) Show that f is not holomorphic on any domain that contains γ. (Hint: use the
Cauchy-Riemann Theorem.)

(ii) Find a function g that is holomorphic on some domain that contains γ and such that
f(z) = g(z) at all points on the unit circle γ. (It follows that

∫

γ f =
∫

γ g.) (Hint:

recall that if w ∈ C then |w|2 = ww̄.)

(iii) Use Cauchy’s Integral formula to show that

∫

γ
|z + 1|2 dz = 2πi.
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6. Laurent series and singularities

§6.1 Introduction

We have already seen that a holomorphic function f can be expressed as a Taylor series:
i.e. if f is differentiable on a domain D and z0 ∈ D then we can write

f(z) =
∞
∑

n=0

an(z − z0)
n (6.1.1)

for suitable coefficients an, and this expression is valid for z such that |z − z0| < R, for
some R > 0. The idea of Laurent series is to generalise (6.1.1) to allow negative powers of
(z − z0). This turns out to be a remarkably useful tool.

§6.2 Laurent series

Definition. A Laurent series is a series of the form

∞
∑

n=−∞
an(z − z0)

n. (6.2.1)

As (6.2.1) is a doubly infinite sum, we need to take care as to what it means. We define
(6.2.1) to mean

∞
∑

n=1

a−n(z − z0)
−n +

∞
∑

n=0

an(z − z0)
n = Σ− +Σ+.

The first question to address is when does (6.2.1) converge? For this, we need both Σ−

and Σ+ to converge.
Now Σ+ converges for |z − z0| < R2 for some R2 ≥ 0, where R2 is the radius of

convergence of Σ+.
We can recognise Σ− as a power series in (z − z0)

−1. This has a radius of convergence
equal to, say, R−1

1 ≥ 0. That is, Σ− converges when |(z − z0)
−1| < R−1

1 . In other words,
Σ− converges when |z − z0| > R1.

Combining these, we see that if 0 ≤ R1 < R2 ≤ ∞ then (6.2.1) converges on the annulus

{z ∈ C | R1 < |z − z0| < R2}.

See Figure 6.2.1.
The following theorem says that if we have a function f that is holomorphic on an

annulus then it can be expressed as a Laurent series. (Compare this with Taylor’s Theorem:
if f is holomorphic on a disc then it can be expressed as a Taylor series.) Moreover, we can
obtain an expression for the coefficients an in terms of the function f .
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z0 R1

R2

Figure 6.2.1: An annulus in C with centre z0 and radii R1 < R2.

Theorem 6.2.1 (Laurent’s theorem)
Suppose that f is holomorphic on the annulus {z ∈ C | R1 < |z − z0| < R2}, where
0 ≤ R1 < R2 ≤ ∞. Then we can write f as a Laurent series: on {z ∈ C | R1 < |z−z0| < R2}
we have

f(z) =

∞
∑

n=0

an(z − z0)
n +

∞
∑

n=1

a−n(z − z0)
−n (6.2.2)

Moreover, let R1 < r < R2 and let Cr(t) = z0+re
it, 0 ≤ t ≤ 2π be the circular path around

z0 of radius r. Then

an =
1

2πi

∫

Cr

f(z)

(z − z0)n+1
dz (6.2.3)

for n ∈ Z.

Remark. Note that in this case we cannot conclude that an = f (n)(z0)/n! as we do not
know that f is differentiable at z0 (indeed, it may not even be defined at z0).

Remark. The proof is similar to the proof of Taylor’s Theorem and can be found in
Stewart and Tall’s book (Theorem 11.1).

We call the series (6.2.2) the Laurent series of f(z) about z0 or the Laurent expansion
of f(z).

We call
−1
∑

n=−∞
an(z − z0)

n

the principal part of the Laurent series. Thus the principal part of a Laurent series is the
part that contains all the negative powers of (z − z0).

§6.2.1 Calculating Laurent series

The following result tells us that the coefficients in the Laurent series expansion are uniquely
determined (compare with the analogous result for Taylor series in Proposition 5.2.2).
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Proposition 6.2.2
Suppose that

∞
∑

n=−∞
an(z − z0)

n =

∞
∑

n=∞
bn(z − z0)

n (6.2.4)

for all z ∈ C such that R1 < |z − z0| < R2. Then an = bn for all n ∈ Z.

Proof. Subtracting one side of (6.2.4) from the other tells us that it is sufficient to prove
that if ∞

∑

n=−∞
an(z − z0)

n = 0 (6.2.5)

for all z ∈ C such that R1 < |z − z0| < R2 then an = 0 for all n ∈ Z. Let f(z) =
∑∞

n=−∞ an(z − z0)
n. Then f is identically equal to 0. By Laurent’s Theorem we have that

an =
1

2πi

∫

Cr

f(z)

(z − z0)n+1
dz

where Cr is a circular path with centre z0 and radius r (with R1 < r < R2), described
once anticlockwise. As f is identically equal to zero, the integrand in this expression is
identically equal to 0. Hence an = 0. ✷

Remark. Suppose that f : D → C is a holomorphic function. Suppose that the two
(differenet) annuli {z ∈ C | R1 < |z − z0| < R2}, {z ∈ C | R′

1 < |z − z′0| < R′
2} ⊂ D. Then

by Laurent’s Theorem, we can expand f on these two annuli as two Laurent series:

∞
∑

n=−∞
an(z − z0)

n,

∞
∑

n=−∞
a′n(z − z′0)

n,

respectively. As these two annuli are different, there is no reason why the coefficients an,
a′n should be the same. Indeed, we shall see some specific examples of this below.

Given a specific function f that is holomorphic on an annulus, we want to be calculate
the Laurent series of f ; that is, we want to be able to calculate the coefficients an. If we
were to appeal directly to Theorem 6.2.1 we would have to evaluate the integral in (6.2.3).
In general, this is difficult or time-consuming (Exercise 7.12 in the next section leads you
through one example of this). Instead, we can appeal to Proposition 6.2.4: given a function
f that is holomorphic on an annulus R1 < |z − z0| < R2, if we can find an expression of
the form (6.2.1) that si equal to f on this annulus then it must be the Laurent series.

Example. Let f(z) = ez + e1/z . Recall that ez =
∑∞

n=0 z
n/n! for all z ∈ C. Hence

e1/z =
∑∞

n=0 z
−n/n! for all z 6= 0. Hence

f(z) =

∞
∑

n=−∞
anz

n = · · · + 1

n!zn
+ · · ·+ 1

2!z2
+

1

z
+ 2 + z +

z2

2
+ · · · + zn

n!
+ · · · .

where

an =
1

n!
for n ≥ 1, a0 = 2, a−n =

1

n!
for n ≥ 1.

This expansion if valid for all z 6= 0, i.e. R1 = 0, R2 = ∞.
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Example. Let

f(z) =
1

z
+

1

1− z

and let us calculate the Laurent series at z0 = 0.
Now 1/z is already a Laurent series at 0 (the only non-zero coefficient is a−1 = 1). Note

that this converges if z 6= 0 (in this case, as there is only one term, checking convergence
just means checking when this formula makes sense!).

Now, by summing a geometric progression, we have that 1/(1− z) =
∑∞

n=0 z
n and this

power series converges for |z| < 1.
Hence f(z) has Laurent series

f(z) =
1

z
+ 1 + z + z2 + z3 + · · · =

∞
∑

n=−1

zn

and this expression is valid on the annulus {z ∈ C | 0 < |z| < 1}.

Example. Let

f(z) =
1

z − 1
− 1

z − 2

We will expand f as three different Laurent series about z0 = 0, valid in three different
annuli.

First note that we can write

1

z − 1
=

−1

1− z
= −

∞
∑

n=0

zn (6.2.6)

(summing a geometric progression) and that this is valid for |z| < 1. We can also write

1

z − 1
=

1

z

1
(

1− 1
z

) =
1

z

∞
∑

n=0

z−n =

∞
∑

n=1

1

zn

by again noting that
∑∞

n=0 z
−n = 1/(1− z−1) is the sum to infinity of a geometric progres-

sion with common ratio z−1. This converges for |z−1| < 1, i.e. |z| > 1. Hence

1

z − 1
=

∞
∑

n=1

1

zn
(6.2.7)

and this is valid for |z| > 1.
Similarly, we can write

1

z − 2
=

−1

2− z
= −1

2

(

1

1− z
2

)

= −1

2

∞
∑

n=0

(z

2

)n
(6.2.8)

by noting that
∑∞

n=0(z/2)
n = 1/(1 − z/2) is the sum of a geometric progression with

common ratio z/2. This expansion is valid when |z/2| < 1, i.e. when |z| < 2.
We can also write

1

z − 2
=

1

z

1
(

1− 2
z

) =
1

z

∞
∑

n=0

(z

2

)−n
=

∞
∑

n=1

2n−1

zn
(6.2.9)
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by recognising the middle term as the sum of a geometric progression with common ratio
(z/2)−1. This converges when |(2/z)−1| < 1, i.e. when |z| > 2.

Using (6.2.6) and (6.2.8) we see that we can expand

f(z) = −
∞
∑

n=0

zn +
1

2

∞
∑

n=0

(z

2

)n
=

∞
∑

n=0

(

−1 +
1

2n+1

)

zn

and this is valid on the annulus {z ∈ C | 0 ≤ |z| < 1}.
Using (6.2.7) and (6.2.8) we can expand

f(z) =

∞
∑

n=1

1

zn
+

1

2

∞
∑

n=0

(z

2

)n

= · · ·+ 1

zn
+ · · ·+ 1

z
+

1

2
+

z

22
+ · · ·+ zn

2n+1
+ · · ·

and this is valid on the annulus {z ∈ C | 1 < |z| < 2}.
Using (6.2.7) and (6.2.9) we can expand

f(z) =
∞
∑

n=1

1

zn
−

∞
∑

n=1

2n−1

zn

=

∞
∑

n=1

1− 2n−1

zn

and this is valid on the annulus {z ∈ C | 2 < |z| <∞}.

In the above examples we have expanded functions as Laurent series on annuli centred
at the origin. If we want to expand a function f(z) as a Laurent series on an annulus
centred at z0 then it is often convenient to first change co-ordinates to w = z−z0, calculate
the Laurent series in terms of w, and then change co-ordinates back to z

Example. Let

f(z) =
ez

(z − 1)2
.

We will expand f as a Laurent series on the annulus {z ∈ C | 0 < |z − 1| <∞}.
We first change co-ordinates and let w = z − 1. Then z = 1 + w and we are interested

in expanding
e1+w

w2
.

Now e1+w = eew = e
∑∞

n=0w
n/n!. Hence

e1+w

w2
=

e

w2

∞
∑

n=0

wn

n!
=

e

w2
+
e

w
+
e

2!
+
e

3!
w +

e

4!
w2 + · · ·+ e

n!
wn−2 + · · · ,

and this is valid provided that w 6= 0. Changing co-ordinates back to z we obtain

f(z) =
e

(z − 1)2
+

e

z − 1
+
e

2!
+
e

3!
(z − 1) +

e

4!
(z − 1)2 + · · ·+ e

n!
(z − 1)n−2 + · · · ,

valid for z 6= 1, i.e. on {z ∈ C | 0 < |z − 1|}.
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§6.3 Singularities

Definition. A singularity of a function f(z) is a point z0 at which f(z) is not differen-
tiable.

Remark. Here is a common way for a singularity to occur: if f is not defined at z0 then
it cannot be differentiable at z0.

Example. If f(z) = 1/z then f is not defined at the origin (we are not allowed to divide
by 0). Hence f has a singularity at z = 0.

Suppose that f has a singularity at z0.

Definition. If there exists a punctured disc 0 < |z − z0| < R such that f is differentiable
on this punctured disc then we say that z0 is an isolated singularity of f .

Example. In the above example, 0 is an isolated singularity of f(z) = 1/z.

In this course we will only be interested in isolated singularities. Suppose that f has an
isolated singularity at z0. Then f is holomorphic on an annulus of the form {z ∈ C | 0 <
|z − z0| < R}. We expand f as a Laurent series around z0 on this annulus to obtain

f(z) =

∞
∑

n=0

an(z − z0)
n +

∞
∑

n=1

bn(z − z0)
−n,

and this is valid for 0 < |z − z0| < R. Consider the principal part of the Laurent series

∞
∑

n=1

bn(z − z0)
−n. (6.3.1)

There are three possibilities: the principal part of f may have

(i) no terms,

(ii) a finite number of terms,

(iii) an infinite number of terms.

§6.3.1 Removable singularities

Suppose that f has an isolated singularity at z0 and that the principal part of the Laurent
series (6.3.1) has no terms in it. In this case, for 0 < |z − z0| < R we have that

f(z) = a0 + a1(z − z0) + · · ·+ an(z − z0)
n + · · · .

The radius of convergence of this power series is at least R, and so f(z) extends to a function
that is differentiable at z0.

Example. Let

f(z) =
sin z

z
, z 6= 0.

Then f has an isolated singularity at 0 as f(z) is not defined at z = 0. However, we know
that

sin z

z
= 1− z2

3!
+
z4

5!
− · · ·

for z 6= 0. Define f(0) = 1. Then f(z) is differentiable for all z ∈ C. Hence f has a
removable singularity at z = 0.
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§6.3.2 Poles

Suppose that f has an isolated singularity at z0 and that the principal part of the Laurent
series (6.3.1) has finitely many terms in it. In this case, for 0 < |z − z0| < R we can write

f(z) =
bm

(z − z0)m
+ · · ·+ b1

z − z0
+

∞
∑

n=0

an(z − z0)
n

where bm 6= 0. In this case, we say that f has a pole of order m at z0. A pole of order 1 is
called a simple pole.

Example. Let

f(z) =
sin z

z4
, z 6= 0.

Then f has an isolated singularity at z = 0. We can write

sin z

z4
=

1

z3
− 1

3!

1

z
+

1

5!
z − 1

7!
z3 + · · · .

Hence f has a pole of order 3 at z = 0.

We will often consider functions f : D → C defined on a domainD that are differentiable
except at finitely many points in D and f has either removable singularities or poles at
these points.

Definition. Let D be a domain. A function f : D → C is said to be meromorphic if f
is differentiable on D except at finitely many points, and these points are either removable
singularities or poles.

§6.3.3 Isolated essential singularities

Suppose that f has an isolated singularity at z0 and that the principal part of the Laurent
series (6.3.1) has infinitely many terms in it. In this case we say that f has an isolated
essential singularity.

Isolated essential singularities are difficult to deal with and we will not consider them
in this course.

Example. Let f(z) = sin 1/z, z 6= 0. Then f has a singularity at z = 0 and

sin

(

1

z

)

=
1

z
− 1

3!z3
+

1

5!z5
− · · · .

Hence f has an isolated essential singularity at z = 0.
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Exercises for Part 6

Exercise 6.1
Find the Laurent expansions of the following around z = 0:

(i) (z − 3)−1, valid for 3 < |z| <∞;

(ii) 1/(z(1 − z)), valid for 0 < |z| < 1;

(iii) z3e1/z , valid for 0 < |z| <∞0;

(iv) cos(1/z), valid for 0 < |z| <∞.

Exercise 6.2
Find Laurent expansions for the function

f(z) =
1

z + 1
+

1

z − 3
.

valid on the annuli

(i) 0 ≤ |z| < 1, (ii) 1 < |z| < 3, (iii) 3 < |z| <∞.

Exercise 6.3
(i) Find a Laurent series expansion for

f(z) =
1

z2(z − 1)

valid for 0 < |z| < 1.

(ii) Find a Laurent series expansion for

f(z) =
1

z2(z − 1)

valid for 0 < |z − 1| < 1.

(Hint: introduce w = z − 1 and recall that 1/(1−w)2 =
∑∞

n=1 nw
n−1, provided that

|w| < 1.)

Exercise 6.4
Let f(z) = (z − 1)−2. Find Laurent series for f valid on the following annuli:

(i) {z ∈ C | 0 < |z − 1| <∞},

(ii) {z ∈ C | 0 ≤ |z| < 1},

(iii) {z ∈ C | 1 < |z| <∞}.
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Exercise 6.5
Find the poles and their orders of the functions

(i)
1

z2 + 1
, (ii)

1

z4 + 16
, (iii)

1

z4 + 2z2 + 1
, (iv)

1

z2 + z − 1
.

Exercise 6.6
Describe the type of singularity at 0 of each of the following functions:

(i) sin(1/z), (ii) z−3 sin2 z, (iii)
cos z − 1

z2
.

Exercise 6.7
Let D be a domain and let z0 ∈ D. Suppose that f is holomorphic on D \ {z0} and is
bounded on D\{z0} (that is, there exists M > 0 such that |f(z)| ≤M for all z ∈ D\{z0}).
Show that f has a removable singularity at z0.
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7. Cauchy’s Residue Theorem

§7.1 Introduction

One of the more remarkable applications of integration in the complex plane in general,
and Cauchy’s Theorem in particular, is that it gives a method for calculating real integrals
that, up until now, would have been difficult or even impossible (assuming that you only
had the tools of 1st year calculus or A-level mathematics to hand). As another application:
you may remember from MATH10242 Sequences and Series that you studied whether an
infinite series

∑∞
n=0 an converged or not. However, in only very few examples were you able

to say what the limit actually is! Using complex analysis, it becomes very easy to evaluate
infinite series such as

∑∞
n=1 1/n

4 = π4/90.

§7.2 Zeros and poles of holomorphic functions

Recall that a function f has a singularity at z0 if f is not differentiable at z0. We will only
consider the case when f has poles as singularities. In the examples we have seen so far
f(z) has a pole at z0 because we have been able to write f(z) = p(z)/q(z) and q(z0) = 0
(so that f is not even defined at z0). Thus it makes sense to first study zeros of functions.

Definition. A function f defined on a domain D has a zero at z0 ∈ D if f(z0) = 0.

We will only be interested in isolated zeros. Intuitively, a function f has an isolated zero
at z0 if there are no other zeros nearby. More formally, we have the following definition.

Definition. A function f defined on a domain D has an isolated zero at z0 if f(z0) = 0
and there exists ε > 0 such that f(z) 6= 0 for all z such that 0 < |z − z0| < ε.

Let f : D → C be holomorphic and suppose that f has an isolated zero at z0. By Taylor’s
Theorem (Theorem 5.2.1), we can expand f as a Taylor series in some neighbourhood
around z0. That is we can wrote

f(z) =
∞
∑

n=0

an(z − z0)
n (7.2.1)

for all z in some disc that contains z0.

Definition. We say that f has a zero of order m at z0 if a0 = a1 = · · · = am−1 = 0 but
am 6= 0. We say that z0 is a simple zero if it is a zero of order 1.

Example. (i) Let f(z) = z2. Then f has a zero of order 2 at 0.

(ii) Let f(z) = z(z+2i)3. Then f has a zero of order 1 at 0 and a zero of order 3 at −2i.

(iii) Let f(z) = z2 + 4. Then, noting that z2 + 4 = (z − 2i)(z + 2i), we see that f has
simple zeros at ±2i.
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Remark. The coefficients an in the Taylor expansion are given by an = f (n)(z0)/n!. Thus
f has a zero of order m at z0 if and only if f (k)(z0) = 0 for 0 ≤ k ≤ m−1 but f (m)(z0) 6= 0.
In partiocular, if f(z0) = 0 but f ′(z0) 6= 0 then z0 is a simple zero.

Example. (i) Let f(z) = sin z. Then f(z) has zeros at kπ, k ∈ Z. Note that f ′(kπ) =
cos kπ = (−1)k 6= 0. Hence all the zeros are simple zeros.

(ii) Let f(z) = 1 − cos z. Then f(z) has zeros at 2kπ, k ∈ Z. Now f ′(z) = sin z and
f ′(2kπ) = 0, but f ′′(2kπ) = cos 2kπ = 1 6= 0. Hence all the zeros have order 2.

Lemma 7.2.1
Suppose that the holomorphic function f has a zero of order m at z0. Then, on some disc
centred at z0, we can write

f(z) = (z − z0)
mg(z)

where g is a holomorphic function on an open disc centred on z0 and g(z0) 6= 0.

Proof. By (7.2.1) we can write

f(z) = am(z − z0)
m + am+1(z − z0)

m+1 + · · · = (z − z0)
m

∞
∑

n=0

an+m(z − z0)
n

where am 6= 0. Take g(z) =
∑∞

n=0 an+m(z − z0)
n. Then g is holomorphic on an open disc

centred on z0 and g(z0) = am 6= 0. ✷

We can now link poles of a function f(z) = p(z)/q(z) with zeros of the function q.

Lemma 7.2.2
Suppose that f(z) = p(z)/q(z) where

(i) p is holomorphic and p(z0) 6= 0,

(ii) q is holomorphic and q has a zero of order m at z0.

Then f has a pole of order m at z0.

Proof. By Lemma 7.2.1, we can write q(z) = (z − z0)
mr(z) where r is holomorphic and

r(z0) 6= 0. Define g(z) = p(z)/r(z). Then g(z) is holomorphic at z0, and so we can expand
it as a Taylor series at z0 as

g(z) =

∞
∑

n=0

an(z − z0)
n

and this expression is valid in some disc |z − z0| < R, for some R > 0. Then

f(z) =
p(z)

q(z)

=
p(z)

(z − z0)mr(z)

=
g(z)

(z − z0)m

=
1

(z − z0)m

∞
∑

n=0

an(z − z0)
n

=
a0

(z − z0)m
+

a1
(z − z0)m−1

+
a2

(z − z0)m−2
+ · · · .
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However, a0 = g(z0) = p(z0)/r(z0) 6= 0, as p(z0) 6= 0. Hence f has a pole of order m at z0.
✷

Example. (i) Let

f(z) =
sin z

(z − 3)2
.

Then f has a pole of order 2 at z = 3. This is because sin z 6= 0 when z = 3 and
(z − 3)2 has a zero of order 2 at z = 3.

(ii) Let

f(z) =
z + 3

sin z
.

Then f has a simple pole at kπ for each k ∈ Z. This is because sin z has a simple
zero at z = kπ for each k ∈ Z but z + 3 6= 0 when z = kπ.

§7.3 Residues and Cauchy’s Residue Theorem

We begin with the following important definition.

Definition. Suppose that f is holomorphic on a domain D except for an isolated sin-
gularity at z0 ∈ D. Suppose that on {z ∈ C | 0 < |z − z0| < R} ⊂ D, f has Laurent
expansion

f(z) =

∞
∑

n=0

an(z − z0)
n +

∞
∑

n=1

bn(z − z0)
−n.

The residue of f at z0 is defined to be

Res(f, z0) = b1.

That is, the residue of f at the isolated singularity z0 is the coefficient of (z − z0)
−1 in the

Laurent expansion.

Let 0 < r < R. By Laurent’s Theorem (Theorem 6.2.1) we have the alternative expres-
sion

Res(f, z0) =
1

2πi

∫

Cr

f(z) dz

where Cr(t) = z0+re
it, 0 ≤ t ≤ 2π is a circular anticlockwise path around z0 in the annulus

of convergence. This shows that residues are related to integration.
Cauchy’s Residue Theorem relies on using Cauchy’s Theorem in just the right way. In

particular, we have to be careful about the paths that we integrate over. We make the
following definition.

Definition. A closed contour γ is said to be a simple closed loop if, for every point z not
on γ, the winding number is either w(γ, z) = 0 or w(γ, z) = 1. If w(γ, z) = 1 then we say
that z is inside γ.

Thus a simple closed loop is a loop that goes round anticlockwise in a loop once, and
without intersecting itself; see Figure 7.3.1. In practice, we will look at simple closed loops
that are made up of line segments and arcs of circles.

We can now state the main result of this section.

c© University of Manchester 2018 77



MATH20101 Complex Analysis 7. Cauchy’s Residue Theorem

γ1

γ2
γ3

Figure 7.3.1: Here γ1 is a simple closed loop. The closed loops γ2 and γ3 are not simple
because there are points where the winding number is −1.

Theorem 7.3.1 (Cauchy’s Residue Theorem)
Let D be a domain containing a simple closed loop γ and the points inside γ. Suppose that
f is meromorphic on D with finitely many poles at z1, z2, . . . , zn inside γ. Then

∫

γ
f(z) dz = 2πi

n
∑

j=1

Res(f, zj).

Remark. A word of warning: you will have noticed that many expressions in complex
analysis have a factor of 2πi in them. A very common mistake is to either miss a 2πi out,
or put one in by mistake.

We shall defer the proof of Cauchy’s Residue Theorem until later.

§7.4 Calculating residues

In order to use Cauchy’s Residue Theorem we need to be able to easily calculate residues.
In some cases, ad hoc manipulations have to be used to calculate the Laurent series, but
there are many cases where one can calculate them more systematically.

First recall that if f(z) has Laurent series

f(z) =
bm

(z − z0)m
+ · · ·+ b1

(z − z0)
+

∞
∑

n=0

an(z − z0)
n

with bm 6= 0 then we say that f has a pole of order m at z0. We say that a pole of order 1
is a simple pole.

Remark. If we can write f(z) = p(z)/q(z) where p and q are differentiable and p(z) 6= 0
when q(z) = 0 then the poles of f occur at the zeros of q. Moreover f has a pole of order
m at z0 if q has a zero of order m at z0.

It is easy to calculate the residue at a simple pole.

Lemma 7.4.1
(i) If f has a simple pole at z0 then

Res(f, z0) = lim
z→z0

(z − z0)f(z).
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(ii) If f(z) = p(z)/q(z) where p, q are differentiable, p(z0) 6= 0, q(z0) = 0 but q′(z0) 6= 0,
then

Res(f, z0) =
p(z0)

q′(z0)
.

Proof. (i) If f has a simple pole at z0 then it has a Laurent series

f(z) =
b1

z − z0
+

∞
∑

n=0

an(z − z0)
n

valid on some punctured disc 0 < |z − z0| < R. Hence

(z − z0)f(z) = b1 +
∞
∑

n=0

an(z − z0)
n+1

so that limz→z0(z − z0)f(z) = b1.

(ii) The hypotheses imply that f has a simple pole at z0. By part (i) and the fact that
q(z0) = 0, the residue is

lim
z→z0

(z − z0)p(z)

q(z)
= lim

z→z0

p(z)
(

q(z)−q(z0)
z−z0

) =
p(z0)

q′(z0)
.

✷

Example. For example, let

f(z) =
cos πz

(1− z3)
.

This has a simple pole at z = 1 and satisfies the hypothesis of Lemma 7.4.1. Hence

Res(f, 1) =
cos π

(−3)× 12
=

1

3
.

We can generalise Lemma 7.4.1 to poles of order m.

Lemma 7.4.2
Suppose that f has a pole of order m at z0. Then

Res(f, z0) = lim
z→z0

(

1

(m− 1)!

dm−1

dzm−1
((z − z0)

mf(z))

)

.

Proof. If f has a pole of order m at z0 then it has a Laurent series

f(z) =
bm

(z − z0)m
+ · · ·+ b1

z − z0
+

∞
∑

n=0

an(z − z0)
n

valid for 0 < |z − z0| < R, for some R > 0. Hence

(z − z0)
mf(z) = bm + (z − z0)bm−1 + · · · + (z − z0)

m−1b1 +

∞
∑

n=0

an(z − z0)
m+n.

Differentiating this m− 1 times gives

dm−1

dzm−1
(z − z0)

mf(z) = (m− 1)!b1 +

∞
∑

n=0

(m+ n)!

(n+ 1)!
an(z − z0)

n+1.

Dividing by (m− 1)! and letting z → z0 gives the result. ✷
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Example. Let

f(z) =

(

z + 1

z − 1

)3

.

This has a pole of order 3 at z = 1. To calculate the residue we note that (z − 1)3f(z) =
(z + 1)3. Hence

1

2!

d2

dz2
(

(z − 1)3f(z)
)

=
6

2!
(z + 1) → 6

2!
× 2 = 6

as z → 1. Hence Res(f, 1) = 6.
Let us check this by calculating the Laurent series. First let us change variables by

writing w = z − 1. Then z = w + 1 and we can write

(

z + 1

z − 1

)3

=
(w + 2)3

w3

=
w3 + 6w2 + 12w + 8

w3

=
8

w3
+

12

w2
+

6

w
+ 1

=
8

(z − 1)3
+

12

(z − 1)2
+

6

(z − 1)
+ 1.

Hence f has a pole of order 3 at z = 1 and we can read off Res(f, 1) = 6 as the coefficient
of 1/(z − 1).

In other cases, one has to manipulate the formula for f to calculate the residue.

Example. Let

f(z) =
1

z2 sin z
.

This has singularities whenever the denominator is zero. Hence the singularities are at
z = 0, kπ. We will use Laurent series to calculate the residue at z = 0.

Recalling the power series for sin z we can write

f(z) =
1

z2 sin z

=
1

z2
(

z − z3

6
+ · · ·

)

=
1

z3

(

1− z2

6
+ · · ·

)−1

=
1

z3

(

1 +
z2

6
+ · · ·

)

=
1

z3
+

1

6z
+ · · ·

where we have omitted higher order terms. (Note that when doing computations such as
these, one can usually ignore terms that will not contribute to the coefficient of 1/z.) Hence
Res(f, 0) = 1/6.
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For the poles at kπ, k 6= 0, we could change variables to w = z − kπ and calculate the
Laurent series. Alternatively, we can use Lemma 7.4.1(ii). First note that we can write

f(z) =
p(z)

q(z)

where p(z) = 1 and q(z) = z2 sin z. Now, for k 6= 0, kπ is a simple zero of sin z (as
sin′ kπ = cos kπ 6= 0) and so is a simple zero of q(z). Hence

Res(f, kπ) =
p(kπ)

q′(kπ)
=

(−1)k

(kπ)2

as q′(z) = 2z sin z + z2 cos z so that q′(kπ) = (kπ)2 cos kπ = (−1)k(kπ)2.

Video. There is a short video on the course webpage that summarises poles and residues.
(See Video 7.)

§7.5 Applications

§7.5.1 Easy examples

We shall evaluate some simple integrals around the circular contours C2(t) = 2eit, 0 ≤ t ≤
2π and C4(t) = 4eit, 0 ≤ t ≤ 2π. Thus C2 is the circle of radius 2 centred at 0 described
anticlockwise, and C4 is the circle of radius 4 centred at 0 described anticlockwise. Hence
both C2 and C4 are simple closed loops.

Consider the function

f(z) =
3

z − 1

Then f has a pole at z = 1 and no other poles. We can read off from the definition of f
that Res(f, 1) = 3. As the pole at z = 1 lies inside C2, by Cauchy’s Residue Theorem we
have that

∫

C2

f dz = 2πiRes(f, 1) = 6πi.

Similarly, the pole at z = 1 lies inside C4, hence
∫

C4

f dz = 2πiRes(f, 1) = 6πi.

See Figure 7.5.1.
Now consider the function

f(z) =
1

z2 + (i− 3)z − 3i
.

Then f has a pole when the denominator has a zero. To find the poles we first factorise
the denominator

z2 + (i− 3)z − 3i = (z − 3)(z + i)

(to do this we could either use the quadratic formula or inspired guesswork). Thus f has
simple poles z = 3 and z = −i. Using Lemma 7.4.1 we can calculate that

Res(f,−i) = −1

3 + i
, Res(f, 3) =

1

3 + i
.
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1 2 4

C2

C4

Figure 7.5.1: The function f(z) = 3/(z − 1) has a pole at z = 1 which lies inside both C2

and C4.

See Figure 7.5.2.
Now consider

∫

C2
f dz. The pole z = −i is inside C2 but the pole z = 3 is outside.

Hence
∫

C2

f dz = 2πiRes(f,−i) = 2πi

( −1

3 + i

)

=
−2πi(3− i)

10

=
−2π − 6πi

10
=

−π
5

(1 + 3i).

Now consider
∫

C4
f dz. In this case, both the poles at z = −i and z = 3 lie inside C4.

Hence
∫

C4

f dz = 2πi (Res(f,−i) + Res(f, 3)) = 2πi

( −1

3 + i
+

1

3 + i

)

= 0.

§7.5.2 Infinite real integrals

In this section we shall show how to use Cauchy’s Residue Theorem to calculate some
infinite real integrals, i.e. integrals of the form

∫ ∞

−∞
f(x) dx (7.5.1)

where f is a real-valued function defined on the real line.
First we need to make precise what (7.5.1) means. Formally, we say that

∫∞
−∞ f(x) dx

exists if

lim
A,B→∞

∫ B

−A
f(x) dx (7.5.2)

converges, where the limits can be taken in either order. We then define
∫∞
−∞ f(x) dx to be

equal to this limit.
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2 4

C2

C4

3
−i

Figure 7.5.2: The function f(z) = 1/(z2 + (i − 3)z − 3i) has simple poles at z = −i and
z = 3.

If
∫∞
−∞ f(x) dx exists then it is equal to its principal value, defined by

P
∫ ∞

−∞
f(x) dx = lim

R→∞

∫ R

−R
f(x) dx. (7.5.3)

However, there are many functions f for which the principal value of the integral (7.5.3)
exists but (7.5.2) does not. For example, take f(x) = x. Then

∫ R

−R
f(x) dx =

∫ R

−R
x dx =

1

2
x2
∣

∣

∣

∣

R

x=−R

=
R2

2
− R2

2
= 0

and so converges to 0 as R→ ∞. Hence P
∫∞
−∞ x dx = 0. However

∫ B

−A
f(x) dx =

∫ B

−A
x dx =

1

2
x2
∣

∣

∣

∣

B

x=−A

=
B2

2
− A2

2

does not converge if we first let B tend to ∞ and then let A tend to ∞. Hence
∫∞
−∞ x dx

does not exist.
The following gives a criterion for (7.5.2) to converge.

Lemma 7.5.1
Suppose that f : R → C is a continuous function and there exist constants K > 0, C > 0
and r > 1 such that for |x| ≥ K we have

|f(x)| ≤ C

|x|r . (7.5.4)

Then
∫∞
−∞ f(x) dx exists and is equal to its principal value P

∫∞
−∞ f(x) dx.
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Instead of giving a general theorem, let us consider an example that will illustrate the
method. We will show how to use Cauchy’s Residue Theorem to evaluate

∫ ∞

−∞

1

(x2 + 1)(x2 + 4)
dx (7.5.5)

(the fact that 1 and 4 are squares will make the calculations notationally easier, but this is
not essential to the method).

First note that the complex contour integral
∫

[−R,R] f is equal to the real integral
∫ R
−R f(x) dx. To see this, first recall from (4.2.1) that [−R,R] denotes the straight line
path from −R to R and that this has parametrisation σ(t) = t, −R ≤ t ≤ R. Hence

∫

[−R,R]
f =

∫ R

−R
f(σ(t))σ′(t) dt =

∫ R

−R
f(t) dt.

Note that there exists a constant C > 0 such that
∣

∣

∣

∣

1

(x2 + 1)(x2 + 4)

∣

∣

∣

∣

≤ C

x4
.

Hence, by Lemma 7.5.1, the infinite integral
∫∞
−∞ 1/(x2 + 1)(x2 + 4) dx exists and is equal

to its principal value

P
∫ ∞

−∞

1

(x2 + 1)(x2 + 4)
dx = lim

R→∞

∫ R

−R

1

(x2 + 1)(x2 + 4)
dx.

We will calculate the principal value of integral using Cauchy’s Residue Theorem.
Let

f(z) =
1

(z2 + 1)(z2 + 4)

(note that we have introduced a complex variable). Let [−R,R] denote the path along the
real axis that starts at −R and ends at R. This has parametrisation t, −R ≤ t ≤ R. Note
that we can equate the real integral (7.5.5) with the complex integral as follows:

∫ R

−R

1

(x2 + 1)(x2 + 4)
dx =

∫

[−R,R]
f(z) dz.

To use Cauchy’s Residue Theorem, we need a closed contour. Introduce a semi-circular
path SR(t) = Reit, 0 ≤ t ≤ π and the ‘D-shaped’ contour ΓR = [−R,R] + SR (see
Figure 7.5.3).

Now ΓR is a simple closed loop. To use Cauchy’s Residue Theorem, we need to know
the poles and residues of f(z). Now

f(z) =
1

(z2 + 1)(z2 + 4)
=

1

(z − i)(z + i)(z − 2i)(z + 2i)
.

Hence f(z) has simple poles at z = +i,−i,+2i,−2i. If we take R > 2 then the poles
at z = i, 2i lie inside ΓR (note that the poles at z = −i,−2i lie outside ΓR). Now by
Lemma 7.4.1,

Res(f, i) = lim
z→i

(z − i)f(z)

= lim
z→i

1

(z + i)(z − 2i)(z + 2i)

=
1

6i
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−R R

Figure 7.5.3: The ‘D-shaped’ contour ΓR. It starts at −R, travels along the real axis to
R, and then anticlockwise along the semicircle SR with centre 0 and radius R.

and

Res(f, 2i) = lim
z→2i

(z − 2i)f(z)

= lim
z→2i

1

(z − i)(z + i)(z + 2i)

=
−1

12i
.

Hence by Cauchy’s Residue Theorem
∫

[−R,R]
f(z), dz +

∫

SR

f(z) dz =

∫

ΓR

f(z) dz

= 2πi (Res(f, i) + Res(f, 2i))

= 2πi

(

1

6i
− 1

12i

)

=
π

6
.

If we can show that

lim
R→∞

∫

SR

f(z) dz = 0 (7.5.6)

then we will have that
∫ ∞

−∞

1

(x2 + 1)(x2 + 4)
dx = lim

R→∞

∫

[−R,R]
f(z) dz =

π

6
.

To complete the calculation, we show that (7.5.6) holds. We shall use the Estimation
Lemma. Let z be a point on SR. Note that |z| = R. Hence

|(z2 + 1)(z2 + 4)| ≥ (R2 − 1)(R2 − 4)

so that
∣

∣

∣

∣

1

(z2 + 1)(z2 + 4)

∣

∣

∣

∣

≤ 1

(R2 − 1)(R2 − 4)
.

Hence, by the Estimation Lemma,
∣

∣

∣

∣

∫

SR

f(z) dz

∣

∣

∣

∣

≤ 1

(R2 − 1)(R2 − 4)
length(SR)

=
πR

(R2 − 1)(R2 − 4)

→ 0

as R→ ∞, which is what we wanted to check.
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Remark. As a general method, to evaluate

∫ R

−R
f(x) dx

one uses the following steps:

(i) Check that f(x) satisfies the hypotheses of Lemma 7.5.1.

(ii) Construct a ‘D-shaped’ contour ΓR as in Figure 7.5.3.

(iii) Find the poles and residues of f(z) that lie inside ΓR when R is large.

(iv) Use Cauchy’s Residue Theorem to write down
∫

ΓR
f(z) dz.

(v) Split this integral into an integral over [−R,R] and an integral over SR. Use the
Estimation Lemma to conclude that the integral over SR converges to 0 as R→ ∞.

For a particular example, one may need to make small modifications to the above process,
but the general method is normally as above.

Remark. It is very easy to lose minus signs or factors of 2πi when doing these computa-
tions. You should always check that your answer makes sense. For example, if I had missed
out a factor of i in the above then I would have obtained an expression of the form

∫ ∞

−∞

1

(x2 + 1)(x2 + 4)
dx =

i

6
.

This is obviously wrong: the left-hand side is a real number, whereas the (incorrect) right-
hand side is imaginary. Similarly, in this example the integrand on the left-hand side is
a positive function, and so the integral must be positive; hence if the right-hand side is
negative then there must be a mistake somewhere in the calculation.

§7.5.3 Trigonometric integrals

We can use Cauchy’s Residue Theorem to calculate integrals of the form

∫ 2π

0
Q(cos t, sin t) dt (7.5.7)

where Q is some function. (Integrands such as cos4 t sin3 t− 7 sin t, or cos t+sin2 t, etc, fall
into this category.)

The first step is to turn (7.5.7) into a complex integral. Set z = eit. Then

cos t =
z + z−1

2
, sin t =

z − z−1

2i
.

Also [0, 2π] transforms into the unit circle C1(t) = eit, 0 ≤ t ≤ 2π. Finally, note that
dz = ieit dt so that

dt =
dz

iz
.

Hence
∫ 2π

0
Q(cos t, sin t) dt =

∫

C1

Q

(

z + z−1

2
,
z − z−1

2i

)

dz

iz
.

c© University of Manchester 2018 86



MATH20101 Complex Analysis 7. Cauchy’s Residue Theorem

Then in principle we can evaluate this integral by finding the poles of

Q

(

z + z−1

2
,
z − z−1

2i

)

1

iz

inside C1, together with their associated residues, and then use Cauchy’s Residue Theorem.
Instead of stating a general theorem, we shall compute some examples to illustrate the

method.

Example. We shall how to compute

∫ 2π

0
(cos3 t+ sin2 t) dt.

Let z = eit so that dt = dz/iz. Then

∫ 2π

0
(cos3 t+ sin2 t) dt

=

∫

C1

(

(

z + z−1

2

)3

+

(

z − z−1

2i

)2
)

dz

iz

=

∫

C1

(

z3

8
+

3z

8
+

3z−1

8
+
z−3

8
− z2

4
+

1

2
− z−2

4

)

dz

iz

=

∫

C1

1

i

(

z2

8
+

3

8
+

3z−2

8
+
z−4

8
− z

4
+
z−1

2
− z−3

4

)

dz

The integrand has a pole of order 4 at z = 0 with residue 1/2i, and no other poles. Hence

∫ 2π

0
(cos3 t+ sin2 t) dt = 2πi

1

2i
= π.

Example. We shall compute
∫ 2π

0
cos t sin t dt.

Again, substituting z = eit we have that

∫ 2π

0
cos t sin t dt

=

∫

C1

1

4i
(z + z−1)(z − z−1)

dz

iz

=

∫

C1

1

4i
(z2 − z−2)

dz

iz

=

∫

C1

(−1

4

)(

z − 1

z3

)

dz.

The integrand has a pole of order 3 at z = 0 with residue 0. There are no other poles.
Hence

∫ 2π

0
cos t sin t dt = 0.
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Remark. The above illustrates a more general method. For example, one can also eval-
uate integrals of the form

∫ π

0
Q(cos t, sin t) dt

by using the substitution z = e2it. In this case, as t varies from 0 to π then z describes the
unit circle in C with centre 0 and radius 1 described anti-clockwise.

§7.5.4 Summation of series

Recall that cot πz = cos πz/ sin πz. Then cot πz has a pole whenever sinπz = 0, i.e.
whenever z = n, n ∈ Z. First note that sinπz has a simple zero at z = n (as sin′ πz =
π cos πz 6= 0 when z = n). Hence cot πz has a simple pole at z = n. By Lemma 7.4.1(ii)
we have

Res(cot πz, n) =
cos πn

π cos πn
=

1

π
.

This suggests a method for summing infinite series of the form
∑∞

n=1 an. Let f(z) be a
meromorphic function defined on C such that f(n) = an. Consider the function f(z) cot πz.
Then, if f(n) 6= 0, we have

Res(f(z) cot πz, n) =
an
π

and we can use Cauchy’s Residue Theorem to calculate
∑∞

n=1 an. For example, we will
show how to use this method to calculate

∑∞
n=1 1/n

2.
There are two technicalities to overcome. First of all, we need to choose a good contour

to integrate around. We will want to use the Estimation Lemma along this contour, so
we will need some bounds on |f(z) cot(πz)|. Secondly, f(z) may have poles of its own and
these will need to be taken into account. (In the above example, to calculate

∑∞
n=1 1/n

2

we will take f(z) = 1/z2, which has a pole at z = 0.)
Instead of choosing a D-shaped contour, here we use a square contour. Let CN denote

the square in C with vertices at
(

N +
1

2

)

− i

(

N +
1

2

)

,

(

N +
1

2

)

+ i

(

N +
1

2

)

,

−
(

N +
1

2

)

+ i

(

N +
1

2

)

, −
(

N +
1

2

)

− i

(

N +
1

2

)

(see Figure 7.5.4). This is a square with each side having length 2N + 1. (The factors of
1/2 are there so that the sides of this square do not pass through the integer points on the
real axis.)

Lemma 7.5.2
There is a bound, independent of N , on cot πz where z ∈ CN , i.e. there exists M > 0 such
that for all N and all z ∈ CN , we have | cot πz| ≤M .

Proof. Consider the square CN . This has two horizontal sides and two vertical sides,
parallel to the real and imaginary axes, respectively.

Consider first the horizontal sides. Let z = x + iy be a point on one of the horizontal
sides of CN . Then |y| ≥ 1/2. Hence

| cot πz| =

∣

∣

∣

∣

eiπz + e−iπz

eiπz − e−iπz

∣

∣

∣

∣
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−N 0 1−1 N N + 1−(N + 1)

Figure 7.5.4: The square contour CN .

≤
∣

∣

∣

∣

∣

∣

∣eiπz
∣

∣+
∣

∣e−iπz
∣

∣

|eiπz| − |e−iπz|

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

e−πy + eπy

e−πy − eπy

∣

∣

∣

∣

= coth |πy|
≤ coth

(π

2

)

as |y| ≥ 1/2.
Consider now the vertical sides. If z is on a vertical side of CN then

z = ±
(

N +
1

2

)

+ iy.

Hence

| cot πz| =

∣

∣

∣

∣

eiπz + e−iπz

eiπz − e−iπz

∣

∣

∣

∣

=

∣

∣

∣

∣

e2πiz + 1

e2πiz − 1

∣

∣

∣

∣

=

∣

∣

∣

∣

eiπ−2πy + 1

eiπ−2πy − 1

∣

∣

∣

∣

=

∣

∣

∣

∣

−e−2πiy + 1

−e−2πiy − 1

∣

∣

∣

∣

=
1− e−2πy

1 + e2πy

≤ 1.
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Hence | cot πz| ≤ max{1, coth π/2} for all z ∈ CN . ✷

Instead of stating a general theorem on how to use Cauchy’s Residue Theorem to eval-
uate infinite sums, we will work through an example to illustrate the method. Very similar
techniques and slight modifications to the argument work for many other examples.

We will evaluate
∑∞

n=0 1/n
2. Let f(z) = 1/z2 and consider the function

f(z) cot πz =
cot πz

z2
=

cosπz

z2 sinπz
.

This has a pole whenever the denominator has a zero. These occur when z2 sinπz = 0, i.e.
when z = n, n ∈ Z. Note that when n 6= 0 we have a simple pole and when n = 0 we have
a pole of order 3.

Let us calculate the residue when n 6= 0. We use Lemma 7.4.1(ii). Then

Res

(

cot πz

z2
, n

)

=
cos πn

πn2 cosπn+ 2n sinπn

=
1

πn2
.

Now consider the pole at z = 0. There are (at least) three ways to work out the residue
here, and for completeness we’ll discuss them all. Firstly, we can write

1

z2
cos πz

sinπz

=
1

z2

(

1− (πz)2

2!
+

(πz)4

4!
− · · ·

)(

(πz) − (πz)3

3!
+

(πz)5

5!
− · · ·

)−1

=
1

z2
1

πz

(

1− (πz)2

2!
+

(πz)4

4!
− · · ·

)(

1− (πz)2

3!
+

(πz)4

5!
− · · ·

)−1

=
1

z2
1

πz

(

1− (πz)2

2!
+

(πz)4

4!
− · · ·

)(

1 +
(πz)2

3!
− (πz)4

5!
+ · · ·

)

=
1

πz3

(

1− (πz)2

3
+ · · ·

)

so that Res(cot πz/z2, 0) = −π/3. (We used the expansion (1−x)−1 = 1+x+x2+· · ·.) Note
that to calculate the residue we need only calculate the coefficient of the term involving
1/z; hence we need to be very careful when manipulating these infinite sums to ensure that
we account for all the possible terms which may contribute towards 1/z.

Alternatively, as another method for calculating the residue at 0, we can use the follow-
ing power series expansion for cot z:

cot z =
1

z
− z

3
− z3

45
− 2z5

945
− · · · .

Hence
cot πz

z2
=

1

πz3
− π

3z
− π3z

45
− 2π5z3

945
− · · ·

from which it is clear that z = 0 is a pole of order 3 with residue −π/3.
Finally, as a third method of calculating the residue at 0, one could use Lemma 7.4.2.
Now let CN be the square contour illustrated above. Note that each side of the square

has length 2N + 1. Hence the length of CN is 4(2N + 1).

c© University of Manchester 2018 90



MATH20101 Complex Analysis 7. Cauchy’s Residue Theorem

Note that the poles that lie inside CN occur at z = 0,±1, · · · ,±N . By Cauchy’s Residue
Theorem we have that

2πi
N
∑

n=−N

Res

(

cot πz

z2
, n

)

=

∫

CN

cot πz

z2
dz.

Recall from Lemma 7.5.2 that | cot πz| ≤ M on CN , where M is independent of N . Also
note that |1/z2| ≤ 1/N2 for z on CN . By the Estimation Lemma we have

∣

∣

∣

∣

∫

CN

cot πz

z2
dz

∣

∣

∣

∣

≤ M

N2
lengthCN =

M

N2
4(2N + 1)

which tends to 0 as N → ∞. Hence

lim
N→∞

N
∑

n=−N

Res

(

cot πz

z2
, n

)

= 0. (7.5.8)

Now

N
∑

n=−N

Res

(

cot πz

z2
, n

)

=

−1
∑

n=−N

Res

(

cot πz

z2
, n

)

+Res

(

cot πz

z2
, 0

)

+

N
∑

n=1

Res

(

cot πz

z2
, n

)

= 2

N
∑

n=1

1

πn2
− π

3

and combining this with (7.5.8) we see that

2
∞
∑

n=1

1

πn2
− π

3
= 0.

This rearranges to give
∞
∑

n=1

1

n2
=
π2

6
.

§7.6 Proof of Cauchy’s Residue Theorem

Let us first recall the statement of Cauchy’s Residue Theorem:

Theorem 7.6.1 (Cauchy’s Residue Theorem)
Let D be a domain containing a simple closed loop γ and the points inside γ. Suppose that
f is holomorphic on D except for finitely many poles at z1, z2, . . . , zn inside γ. Then

∫

γ
f(z) dz = 2πi

n
∑

j=1

Res(f, zj).
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Proof. The proof is a simple application of the Generalised Cauchy Theorem (Theo-
rem 4.5.7).

Since D is open, for each j = 1, . . . , n, we can find circles

Sj(t) = zj + εje
it, 0 ≤ t ≤ 2π

centred at zj and of radii εj , each described once anticlockwise, such that Sj and the points
inside Sj lie in D and such that Sj contains no singularity other than zj (see Figure 7.6.1).

z3

z1

z2
S3

S1

S2

γ

D

Figure 7.6.1: Here we have 3 poles at z1, z2, z3 inside γ. The circles S1, S2, S3 (centred on
z1, z2, z3, respectively) have been chosen so that they lie inside γ and do not intersect each
other.

Let D′ = D \ {z1, . . . , zn}. We claim that the collection of paths

−γ, S1, . . . , Sn

satisfy the hypotheses of the Generalised Cauchy Theorem (Theorem 4.5.7) with respect
to D′: i.e. their winding numbers sum to zero for every point not in D′.

To see this, first note that

w(−γ, z) = w(Sj , z) = 0 for z 6∈ D.

Hence the hypotheses of the Generalised Cauchy Theorem hold for points z not in D. It
remains to consider points in D that are not in D′, i.e. the poles zj .

Since each pole zj lies inside γ, we have that

w(−γ, zj) = −w(γ, zj) = −1.

Moreover,

w(Sk, zj) =

{

0 if k 6= j
1 if k = j.
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Hence
w(−γ, zj) +w(S1, zj) + · · ·+ w(Sn, zj) = 0.

Hence, by the Generalised Cauchy Theorem,

∫

−γ
f +

∫

S1

f + · · · +
∫

Sn

f = 0.

By Laurent’s Theorem (Theorem 6.2.1) we have that

Res(f, zj) =
1

2πi

∫

Sj

f(z) dz.

Hence
∫

γ
f =

∫

S1

f + · · · +
∫

Sn

f

= 2πi (Res(f, z1) + · · · +Res(f, zn)) ,

concluding the proof. ✷
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Exercises for Part 7

Exercise 7.1
Using Lemma 7.2.2 to determine the poles of the following functions. For each pole, use
Lemmas 7.4.1, and 7.4.2 (as appropriate) to calculate the residue at each pole.

(i)
1

z(1− z2)
, (ii) tan z, (iii)

z

1 + z4
, (iv)

(

z + 1

z2 + 1

)2

.

Exercise 7.2
Determine the singularities of the following functions. By considering Taylor series, calcu-
late the residue at each singularity.

(i)
sin z

z2
, (ii)

sin2 z

z4
.

Exercise 7.3
(i) Let f(z) = 1/z(1 − z)2. Then f has singularities at 0 and 1. Expand f as a Laurent

series at 0 and as a Laurent series at 1. In each case, read off from the Laurent series
the order of the pole and the residue of the pole.

(Hint: recall that 1/(1 − z)2 = 1 + 2z + 3z2 + · · · + nzn−1 + · · · if |z| < 1.)

(ii) Check your answer by using Lemmas 7.2.2, 7.4.1 and 7.4.2.

Exercise 7.4
Suppose that f, g : D → C are holomorphic and that z0 ∈ D. Suppose that f has a zero
of order n at z0 and g has a zero of order m at z0. Show that f(z)g(z) has a zero of order
n+m at z0.

Exercise 7.5
Let Cr be the circle Cr(t) = reit, 0 ≤ t ≤ 2π, with centre 0 and radius r. Use Cauchy’s
Residue Theorem to evaluate the integrals

(i)

∫

C4

1

z2 − 5z + 6
dz, (ii)

∫

C5/2

1

z2 − 5z + 6
dz, (iii)

∫

C2

eaz

1 + z2
dz (a ∈ R).

Exercise 7.6
(a) Consider the following real integral:

∫ ∞

−∞

1

x2 + 1
dx.

(i) Explain why this integral is equal to its principal value.

(ii) Use Cauchy’s Residue Theorem to evaluate this integral. (How would you have
done this without using complex analysis?)
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(b) (i) Now evaluate, using Cauchy’s Residue Theorem, the integral

∫ ∞

−∞

e2ix

x2 + 1
dx.

(ii) By taking real and imaginary parts, calculate

∫ ∞

−∞

cos 2x

x2 + 1
dx,

∫ ∞

−∞

sin 2x

x2 + 1
dx.

(Why is it obvious, without having to use complex integration, that one of these
integrals is zero?)

(iii) Why does the ‘D-shaped’ contour used in the lectures for calculating such inte-
grals fail when we try to integrate

∫ ∞

−∞

e−2ix

x2 + 1
dx?

By choosing a different contour, explain how one could evaluate this integral
using Cauchy’s Residue Theorem.

Exercise 7.7
Use Cauchy’s Residue Theorem to evaluate the following real integrals:

(i)

∫ ∞

−∞

1

(x2 + 1)(x2 + 3)
dx, (ii)

∫ ∞

−∞

1

28 + 11x2 + x4
dx.

Exercise 7.8
By considering the function

f(z) =
eiz

z2 + 4z + 5

integrated around a suitable contour, show that

∫ ∞

−∞

sinx

x2 + 4x+ 5
dx =

−π sin 2
e

.

Exercise 7.9
Consider the integral

∫ 2π

0

1

13 + 5 cos t
dt

(i) Use the substitution z = eit to show that

∫ 2π

0

1

13 + 5 cos t
dt =

2

i

∫

C1

1

5z2 + 26z + 5
dz

where C1 is the circle with centre 0, radius 1, described once anticlockwise.

(ii) Show that f(z) = 1/(5z2 +26z +5) has simple poles at z = −5 and z = −1/5. Show
that Res(f,−1/5) = 1/24.
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(iii) Use Cauchy’s Residue Theorem to show that

∫ 2π

0

1

13 + 5 cos t
dt =

π

6
.

Exercise 7.10
Convert the following real integrals into complex integrals around the unit circle in the
complex plane. Hence use Cauchy’s Residue Theorem to evaluate them.

(i)

∫ 2π

0
2 cos3 t+ 3cos2 t dt, (ii)

∫ 2π

0

1

1 + cos2 t
dt.

Exercise 7.11
Use the method of summation of series to show that

∑∞
n=1 1/n

4 = π4/90.
Why doesn’t the method work for evaluating

∑∞
n=1 1/n

3?

Remark. Cauchy’s Residue Theorem has a lot of applications. The exercises below pro-
vide more practice at using Cauchy’s Residue Theorem to calculate integrals, summations,
etc. You may find them useful if you want more practice at using Cauchy’s Residue Theo-
rem. If you are focussing solely on doing well in the exam then you should concentrate on
Exercises 7.1–7.11 above.

Exercise 7.12
(This exercise shows how to use Cauchy’s Residue Theorem to explicitly calculate the
coefficients in Laurent’s Theorem using the formula therein.)

Recall that Laurent’s Theorem (Theorem 6.2.1) says the following: Suppose that f is
holomorphic on the annulus {z ∈ C | R1 < |z − z0| < R2}. Then f can be written as a
Laurent series on this annulus in the form

f(z) =

∞
∑

n=−∞
an(z − z0)

n.

The coefficients are given by

an =
1

2πi

∫

Cr

f(z)

(z − z0)n+1
dz

and Cr(t) = z + reit, 0 ≤ t ≤ 2π, denotes the circular path around z0 of radius r where r
is chosen such that R1 < r < R2.

By using Cauchy’s Residue Theorem to evaluate an, determine the Laurent series for
the function

f(z) =
1

z(z − 1)

valid on the annuli

(i) 0 < |z| < 1,

(ii) 1 < |z| <∞,

(iii) 0 < |z − 1| < 1,

(iv) 1 < |z − 1| <∞.
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(Thus we are using Cauchy’s Residue Theorem to evaluate
∫

Cr
f(z)/(z−z0)n+1 dz around a

suitable closed contour Cr of radius r and centred at an appropriate z0 (z0 = 0 in (i),(ii) and
z0 = 1 in (iii),(iv)) by locating the poles of f(z)/(z − z0) that lie inside Cr and calculating
their residues.)

In each case, check your answer by directly calculate the Laurent series using the meth-
ods described in §6.2.

Exercise 7.13
(This exercise uses Cauchy’s Residue Theorem to calculate an integral that is (I believe)
impossible to calculate using common techniques of real analysis/calculus.)

Let 0 < a < b. Evaluate the integral discussed in §1.1:
∫ ∞

−∞

x sinx

(x2 + a2)(x2 + b2)
dx

by integrating a suitable function around a suitable contour.

Exercise 7.14
Suppose a 6= 0. Consider the function

cot πz

z2 + a2

Show that this function has poles at z = n, n ∈ Z and z = ±ia. Calculate the residues at
these poles.

Hence show that ∞
∑

n=1

1

n2 + a2
=

π

2a
coth πa− 1

2a2
.

Exercise 7.15
(The method used in §7.5.3 can be used evaluate other, more complicated, integrals.)

Let C1(t) = eit, 0 ≤ t ≤ 2π, denote the unit circle in C centred at 0 and with radius 1.

(i) Prove, using Cauchy Residue Theorem, that

∫

C1

ez

z
dz = 2πi.

(ii) By using the substitution z = eit, prove that

∫ 2π

0
ecos t cos(sin t) dt = 2π,

∫ 2π

0
ecos t sin(sin t) dt = 0.

Exercise 7.16
(Sometimes, to calculate an indefinite integral, one has to be rather creative in picking the
right contour.)

Let 0 < a < 1. Show that
∫ ∞

−∞

eaz

1 + ez
=

π

sin aπ

using the following steps.
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(i) Show that this integral exists and is equal to its principal value.

(ii) Let f(z) = eaz/(1 + ez). Show that f is holomorphic except for simple poles at
z = (2k + 1)πi, k ∈ Z. Draw a diagram to illustrate where the poles are. Calculate
the residue Res(f, πi).

(iii) On the diagram from (ii), draw the contour ΓR = γ1,R + γ2,R + γ3,R + γ4,R where:

γ1,R is the horizontal straight line from −R to R,

γ2,R is the vertical straight line from R to R+ 2πi,

γ3,R is the horizontal straight line from R+ 2πi to −R+ 2πi,

γ4,R is the vertical straight line from −R+ 2πi to −R.

Which poles does ΓR wind around? Use Cauchy’s Residue Theorem to calculate
∫

ΓR
f .

(iv) Show, by choosing suitable parametrisations of the paths γ1,R and γ3,R and direct
computation, that

∫

γ3
f = −e2πia

∫

γ1
f .

(v) Show, using the Estimation Lemma, that

lim
R→∞

∫

γ2,R

f = lim
R→∞

∫

γ4,R

f = 0.

(vi) Deduce the claimed result.
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8. Solutions to Part 1

Solution 1.1
(i) (3 + 4i)2 = 9 + 24i − 16 = −7 + 24i.

(ii)

2 + 3i

3− 4i
=

2 + 3i

3− 4i

3 + 4i

3 + 4i
=

(2 + 3i)(3 + 4i)

25
=

−6

25
+ i

17

25
.

(iii)

1− 5i

−1 + 3i
=

−8

5
+ i

1

5
.

(iv)

1− i

1 + i
− i+ 2 = −i− i+ 2 = 2− 2i.

(v)

1

i
= −i.

Solution 1.2
First note that |1− i| =

√
2 and arg(1− i) = −π/4 (draw a picture!). Similarly, |

√
3− i| = 2

and arg(
√
3− i) = −π/6. Hence

1− i =
√
2e−iπ/4,

√
3− i = 2e−iπ/6.

Hence

(1− i)23

(
√
3− i)13

=
223/2e−23iπ/4

213e−13iπ/6
= 223/2−13e−23iπ/4+13iπ/6 = 2−3/2e−43iπ/12 = 2−3/2e5iπ/12.

Note that

5e3iπ/4 + 2e−iπ/6 = 5cos(3π/4) + 5i sin(3π/4) + 2 cos(−π/6) + 2i sin(−π/6)

= −5

√
2

2
+ 5i

√
2

2
+ 2

√
3

2
− 2i

1

2

=
−5

√
2 + 2

√
3

2
+ i

5
√
2− 2

2
.

Solution 1.3
(i) Write z = x + iy. Then x2 + 2ixy − y2 = −5 + 12i. Comparing real and imaginary

parts gives the simultaneous equations x2− y2 = −5, 2xy = 12. The second equation
gives y = 6/x and substituting this into the first gives x4 +5x2 − 36 = 0, a quadratic
in x2. Solving this quadratic equation gives x2 = 4, hence x = ±2. When x = 2 we
have y = 3; when x = −2 we have y = −3. Hence z = 2+3i,−2−3i are the solutions.
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(ii) A bare-hands computation as in (i) will work, but is very lengthy. The trick is to
instead first complete the square. Write

z2 + 4z + 12− 6i = (z + 2)2 + 8− 6i.

Write z+2 = x+iy. Then (x+iy)2 = −8+6i. Solving this as in (i) gives x = 1, y = 3
or x = −1, y = −3. Hence z = −1 + 3i or z = −3− 3i.

Solution 1.4
(i) Let z = a+ib, w = c+id. Then Re(z+w) = Re(a+ib+c+id) = Re((a+c)+i(b+d)) =

a+ c = Re(z) + Re(w). Similarly Re(z − w) = Re(z)− Re(w).

(ii) Note that Im(z+w) = Im(a+ib+c+id) = Im((a+c)+i(b+d)) = b+d = Im(z)+Im(w).
Similarly Im(z − w) = Im(z)− Im(w).

Almost any two complex numbers picked at random will give an example for which
Re(zw) 6= Re(z)Re(w). For example, choose z = i, w = −i. Then zw = 1. However,
Re(zw) = 1 6= Re(z)Re(w) = 0 × 0 = 0. Similarly, Im(zw) = 0 6= Re(z)Re(w) =
1× (−1) = −1.

Solution 1.5
Throughout write z = a+ ib, w = c+ id.

(i) z + w = (a+ ib) + (c+ id) = (a+ c) + i(b+ d) = (a+c)−i(b+d) = (a−ib)+(c−id) =
z̄ + w̄. Similarly for z − w.

(ii) zw = (a+ ib)(c+ id) = (ac− bd) + i(ad+ bc) = (ac− bd)− i(ad+ bc) = (a− ib)(c−
id) = zw.

(iii) First note that
(

1
z

)

=
(

1
a+ib

)

=
(

a−ib
a2+b2

)

= a+ib
a2+b2

. We also have 1
z̄ = 1

a−ib = a+ib
a2+b2

, so

the result follows.

(iv) z + z̄ = (x+ iy) + (x− iy) = 2x = 2Re(z).

(v) z − z̄ = (x+ iy)− (x− iy) = 2iy = 2i Im(z).

Solution 1.6
Let z, w ∈ C. Then

|z| = |z − w + w| ≤ |z − w|+ |w|
by the reverse triangle inequality. Hence

|z| − |w| ≤ |z − w|.

Similarly, |w| − |z| ≤ |z − w|. Hence

||z| − |w|| ≤ |z − w|.

Solution 1.7
(i) Writing z = x+ iy we obtain Re(z) = {(x, y) | x > 2}, i.e. a half-plane.

(ii) Here we have the open strip {(x, y) | 1 < y < 2}.
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(iii) The condition |z| < 3 is equivalent to x2 + y2 < 9; hence the set is the open disc of
radius 3 centred at the origin.

(iv) Write z = x+ iy. We have |x+ iy− 1| < |x+ iy+1|, i.e. (x− 1)2+ y2 < (x+1)2+ y2.
Multiplying this out (and noting that the ys cancel) gives x > 0, i.e. an open half-
plane.

Solution 1.8
(i) We have

zw = rs ((cos θ cosφ− sin θ sinφ) + i(cos θ sinφ+ sin θ cosφ))

= rs (cos(θ + φ) + i sin(θ + φ)) .

Hence arg zw = θ + φ = arg z + argw.

(ii) From (i) we have that arg z2 = 2arg z. By induction arg zn = n(arg z). Put z =
cos θ + i sin θ so that arg z = θ. Note that |z|2 = cos2 θ + sin2 θ = 1. Hence |zn| = 1.
Hence zn = cosnθ + i sinnθ.

(iii) Applying De Moivre’s theorem in the case n = 3 gives

(cos θ + i sin θ)3 = cos3 θ + 3i cos2 θ sin θ − 3 cos θ sin2 θ − i sin3 θ

= cos 3θ + i sin 3θ.

Hence, comparing real and imaginary parts and using the fact that cos2 θ+sin2 θ = 1,
we obtain

cos 3θ = cos3 θ − 3 cos θ sin2 θ = 4cos3 θ − 3 cos θ,

sin 3θ = 3cos2 θ sin θ − sin3 θ = 3 sin θ − 4 sin3 θ.

Similarly,
cos 4θ = sin4 θ − 6 cos2 θ sin2 θ + cos4 θ,

sin 4θ = −4 cos θ sin3 θ + 4cos3 θ sin θ.

Solution 1.9
Let w0 = reiθ and suppose that zn = w0. Write z = ρeiφ. Then zn = ρneinφ. Hence ρn = r

and nφ = θ + 2kπ, k ∈ Z. Thus we have that ρ = r1/n and we get distinct values of the
argument φ of z when k = 0, 1, . . . , n− 1. Hence

z = r1/nei(
θ+2kπ

n ), k = 0, 1, . . . , n− 1.

Solution 1.10
Take z1 = z2 = −1 + i. Then Arg(z1) = Arg(z2) = 3π/4. However, z1z2 = −2i and
Arg(z1z2) = −π/2. (Draw a picture!) In this case, Arg(z1z2) 6= Arg(z1) + Arg(z2).

(More generally, any two points z1, z2 for which Arg(z1)+Arg(z2) 6∈ (−π, π] will work.)

Solution 1.11
As far as I know it isn’t possible to evaluate this integral using some combination of in-
tegration by substitution, integration by parts, etc. However, there is one technique that
may work (I haven’t tried it), and it’s one that was a favourite of Richard Feynman (Nobel
laureate in physics, safe-cracker, and bongo-player, amongst many other talents). Feynman
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claimed to have never learned complex analysis but could perform many real integrals using
a trick called ‘differentiation under the integral sign’. See http://www.math.uconn.edu/
~kconrad/blurbs/analysis/diffunderint.pdf for an account of this, if you’re interested.
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9. Solutions to Part 2

Solution 2.1
(i) This set is open. Let D = {z ∈ C | Im(z) > 0}. Let z0 ∈ D. We have to find ε > 0

such that Bε(z0) ⊂ D. To do this, write z0 = x0 + iy0 and let ε = y0/2 > 0. Suppose
that z = x+ iy ∈ Bε(z0). Then

|y − y0| ≤
√

|x− x0|2 + |y − y0|2 = |z − z0| ≤
y0
2
.

Hence
−y0

2
< y − y0 <

y0
2

so that y > y0/2 i.e. Im(z) > 0. Hence z ∈ D. See Figure 9.1(i).

(ii) This set is open. Let D = {z ∈ C | Re(z) > 0, |z| < 2}. Let z0 ∈ D. We have to
find ε > 0 such that Bε(z0) ⊂ D. That one can do this is clear from Figure 9.1(ii).
In order to produce ε we argue as follows. Let

ε = min

{

x0
2
,
2− |z0|

2

}

> 0

(note that |z0| < 2 as z0 ∈ D). Let z = x+ iy ∈ Bε(z0) so that |z − z0| < x0/2 and
|z − z0| ≤ (2− |z0|)/2. Then arguing as in (i) we see that

|x− x0| ≤
√

|x− x0|2 + |y − y0|2 = |z − z0| ≤
x0
2

so that
−x0

2
< x− x0 <

x0
2

from which it follows that x > x0/2 > 0, i.e. Re(z) > 0. We also have that

|z| = |z − z0 + z0| ≤ |z − z0|+ |z0| ≤
2− |z0|

2
+ |z0| = 1 +

|z0|
2

< 2

as |z0| < 2. Hence |z| < 2. It follows that z ∈ D.

(iii) Let D = {z ∈ C | |z| ≤ 6}. This set is not open. If we take the point z0 = 6 on the
real axis, then no matter how small ε > 0 is, there are always points in Bε(z0) that
are not in D. See Figure 9.1(iii).

Solution 2.2
(i) For any z0 ∈ C we have

f ′(z0) = lim
z→z0

z2 + z − (z20 + z0)

z − z0

= lim
z→z0

(z − z0)(z + z0 + 1)

z − z0
= lim

z→z0
z + z0 + 1

= 2z0 + 1

so that f ′(z) = 2z + 1.
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z0

ε
z0

ε z0

ε

(i) (ii) (iii)

Figure 9.1: See Solution 2.1.

(ii) For z0 6= 0 we have

f ′(z0) = lim
z→z0

1/z − 1/z0
z − z0

= lim
z→z0

z0 − z

z0z(z − z0)

= lim
z→z0

−1

z0z

=
−1

z20

so that f ′(z) = −1/z2.

(iii) For each z0 ∈ C we have

f ′(z0) = lim
z→z0

(z3 − z2)− (z30 − z20)

z − z0

= lim
z→z0

(z − z0)(z
2 + z0z + z20 − z − z0)

z − z0

= lim
z→z0

z2 + z0z + z20 − z − z0

= 3z20 − 2z0

so that f ′(z) = 3z2 − 2z.
Notice that the complex derivatives are identical to and can be computed in the same

way as their real analogues (‘bring down the power and knock one off the power’, etc).

Solution 2.3
(i) Throughout write z = x+ iy.

(a) Note that f(z) = (x+ iy)2 = x2 + 2ixy − y2. Hence u(x, y) = x2 − y2, v(x, y) =
2xy.

(b) Note that for z 6= 0

f(x+ iy) =
1

x+ iy
=

x− iy

x2 + y2
=

x

x2 + y2
+ i

−y
x2 + y2

so that u(x, y) = x/(x2 + y2), v(x, y) = −y/(x2 + y2).
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(ii) (a) Here
∂u

∂x
= 2x =

∂v

∂y
,
∂u

∂y
= −2y = −∂v

∂x

so that the Cauchy-Riemann equations are satisfied.

(b) Here
∂u

∂x
=

−x2 + y2

(x2 + y2)2
,
∂u

∂y
=

−2xy

(x2 + y2)2
,

∂v

∂x
=

2xy

(x2 + y2)2
,
∂v

∂y
=

−x2 + y2

(x2 + y2)2
.

Hence ∂u/∂x = ∂v/∂y and ∂u/∂y = −∂v/∂x so that the Cauchy-Riemann
equations hold.

(iii) When f(z) = |z| we have f(x+ iy) =
√

x2 + y2 so that u(x, y) =
√

x2 + y2, v(x, y) =
0. Then for (x, y) 6= (0, 0) we have

∂u

∂x
=

x

(x2 + y2)1/2
,
∂u

∂y
=

y

(x2 + y2)1/2
,
∂v

∂x
= 0,

∂v

∂y
= 0.

If the Cauchy-Riemann equations hold then x/(x2 + y2)1/2 = 0, y/(x2 + y2)1/2 = 0,
which imply that x = y = 0, which is impossible as we are assuming that (x, y) 6=
(0, 0).

At (x, y) = (0, 0) we have
∂u

∂x
= lim

h→0

|h|
h

which does not exist. (To see this, note that if h→ 0, h > 0, then |h|/h → 1; however,
if h→ 0, h < 0, then |h|/h = −h/h→ −1.)

Hence f is not differentiable anywhere.

Solution 2.4
(i) Here

∂u

∂x
= 3x2 − 3y2,

∂v

∂y
= 3x2 − 3y2,

and
∂u

∂y
= −6xy,

∂v

∂x
= 6xy

so that the Cauchy-Riemann equations hold.

(ii) Here

∂u

∂x
=

4

(x2 + y2)5
(−x5 + 10x3y2 − 5xy4),

∂v

∂y
=

4

(x2 + y2)5
(−x5 + 10x3y2 − 5xy4),

and

∂u

∂y
=

4

(x2 + y2)5
(−5x4 + 10x2y3 − y5),

∂v

∂x
=

4

(x2 + y2)5
(5x4 − 10x2y3 + y5)
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so that the Cauchy-Riemann equations hold.
Let z0 ∈ C. In both cases, the partial derivatives of u and v exist at z0. The partial

derivatives of u and v are continuous at z0. The Cauchy-Riemann equations holds at z0.
Thus u and v satisfy the hypotheses of Proposition 2.5.2. Hence f = u+ iv is differentiable
at z0. As z0 ∈ C is arbitrary, we see that f is holomorphic on C.

Solution 2.5
(i) Recall that

f ′(0) = lim
z→0

f(z)− f(0)

z
.

As f(z) = 0 for the function in the question we need to investigate the limit

lim
z→0

f(z)

z
.

Put z = x+ ix with x > 0. Then f(x) = x and

lim
z→0

f(z)

z
= lim

x→0

x

x+ ix
=

1

1 + i
.

However, if z = x− ix, x > 0 then

lim
z→0

f(z)

z
= lim

x→0

x

x− ix
=

1

1− i
.

Hence there is no limit of (f(z)− f(0))/z as z → 0.

(ii) For f(x+ iy) =
√

|xy| we have u(x, y) =
√

|xy| and v(x, y) = 0. Then clearly

∂v

∂x
(0, 0) =

∂v

∂y
(0, 0).

Now
∂u

∂x
(0, 0) = lim

h→0

u(h, 0) − u(0, 0)

h
= lim

h→0

0

h
= 0

and
∂u

∂y
(0, 0) = lim

k→0

u(0, k) − u(0, 0)

k
= lim

k→0

0

k
= 0.

Hence the Cauchy-Riemann equations are satisfied.

This does not contradict Proposition 2.5.2 because the partial derivative ∂u/∂x is not
continuous at (0, 0). To see this, note that for x > 0, y > 0,

∂u

∂x
(x, y) =

√
y

2
√
x

so that

lim
(x,y)→(0,0)

∂u

∂x
(x, y)

does not exist.
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Solution 2.6
By the Cauchy-Riemann equations we have that

∂2u

∂x2
=

∂

∂x

∂u

∂x
=

∂

∂x

∂v

∂y
=

∂2v

∂x∂y
=

∂2v

∂y∂x
=

∂

∂y

∂v

∂x
= − ∂

∂x

∂u

∂y
= −∂

2u

∂y2

so that
∂2u

∂x2
+
∂2u

∂y2
= 0.

Similarly

∂2v

∂x2
=

∂

∂x

∂v

∂x
= − ∂

∂x

∂u

∂y
= − ∂2u

∂x∂y
= − ∂2u

∂y∂x

= − ∂

∂y

∂u

∂x
= − ∂

∂y

∂v

∂y
= −∂

2v

∂y2

so that
∂2v

∂x2
+
∂2v

∂y2
= 0.

Solution 2.7
Let f(z) = z3 and write z = x+ iy so that

f(x+ iy) = (x+ iy)3 = x3 − 3xy2 + i(3x2y − y3).

Hence u(x, y) = x3 − 3xy2 and v(x, y) = 3x2y − y3.
Now

∂2u

∂x2
= 6x,

∂2u

∂y2
= −6x

and
∂2v

∂x2
= 6y,

∂2v

∂y2
= −6y

so that
∂2u

∂x2
+
∂2u

∂y2
= 0,

∂2v

∂x2
+
∂2v

∂y2
= 0.

Hence both u and v are harmonic.

Solution 2.8
Suppose we know that u(x, y) = x5 − 10x3y2 + 5xy4. Then

∂u

∂x
= 5x4 − 30x2y2 + 5y4 =

∂v

∂y
.

Integrating with respect to y gives

v(x, y) = 5x4y − 10x2y3 + y5 + α(x) (9.0.1)

for some function α(x) that depends only on x and not on y. (Recall that we are looking
for an anti-partial derivative and ∂α(x)/∂y = 0.)

Similarly,
∂u

∂y
= −20x3y + 20xy3 = −∂v

∂x
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and integrating with respect to x gives

v(x, y) = 5x4y − 10x2y3 + β(y) (9.0.2)

for some arbitrary function β(y).
Comparing (9.0.1) and (9.0.2) we see that y5 + α(x) = β(y), i.e.

α(x) = β(y)− y5.

The right-hand side depends only on y and the left-hand side depends only on x. This is
only possible if both α(x) and β(y)− y5 is a constant. Hence

v(x, y) = 5x4y − 10x2y3 + y5 + c

for some constant c ∈ R.

Solution 2.9
From Exercise 2.6, we know that if u is the real part of a holomorphic function then u is
harmonic, i.e. u satisfies Laplace’s equation. Note that

∂2u

∂x2
= 6x,

∂2u

∂y2
= −2kx

so that

0 =
∂2u

∂x2
+
∂2u

∂y2
= (6− 2k)x.

Hence k = 3.
It remains to show that in the case k = 3, u is the real part of a holomorphic function.

We argue as in Exercise 2.8. First note that if u(x, y) = x3 − 3xy2 + 12xy − 12x then

∂u

∂x
= 3x2 − 3y2 + 12y − 12 =

∂v

∂y
.

Hence
v(x, y) = 3x2y − y3 + 6y2 − 12y + α(x) (9.0.3)

for some arbitrary function α(x) depending only on x. Similarly

∂u

∂y
= −6xy + 12x = −∂v

∂y

so that
v(x, y) = 3x2y − 6x2 + β(y) (9.0.4)

for some arbitrary function β(y) depending only on y. Comparing (9.0.3) and (9.0.4) we
see that

α(x) + 6x2 = β(y) + y3 − 6y2 + 12y;

as the left-hand side depends only on x and the right-hand side depends only on y, the
above two expressions must be equal to a constant c ∈ R. Hence

v(x, y) = 3x2y − 6x2 − y3 + 6y2 − 12y + c.

Note that the partial derivatives for both u and v exist and are continuous at every
point in C and the Cauchy-Riemann equations hold at every point in C, it follows from
the converse of the Cauchy-Riemann Theorem that f(x + iy) = u(x, y) + iv(x, y) is a
holomorphic function on C.
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Solution 2.10
Suppose that f(x+ iy) = u(x, y) + iv(x, y) and u(x, y) = c, a constant. Then ∂u/∂x = 0.
Hence by the Cauchy-Riemann equations ∂v/∂y = 0. Integrating with respect to y gives
that v(x, y) = α(x) for some function α(x) that depends only on x.

Similarly, ∂u/∂y = 0. Hence by the Cauchy-Riemann equations −∂v/∂x = 0. Integrat-
ing with respect to x gives that v(x, y) = β(y) for some function β(y) that depends only
on y.

Hence
v(x, y) = α(x) = β(y).

As α(x) depends only on x and β(y) depends only on y, this is only possible if both α(x)
and β(y) are constant. Hence v(x, y) is constant and it follows that f is constant.

Solution 2.11
Suppose that f(x + iy) = u(x) + iv(y) where the real part depends only on x and the
imaginary part depends only on y. Then

∂u

∂x
= u′(x),

∂v

∂y
= v′(y).

By the Cauchy-Riemann equations, u′(x) = v′(y). As the left-hand side of this equation
depends only on x and the right-hand side depends only on y, we must have that

u′(x) = v′(y) = λ

for some real constant λ. From u′(x) = λ we have that u(x) = λx+ c1, for some constant
c1 ∈ R. From v′(y) = λ we have that v(y) = λy + c2 for some constant c2 ∈ R. Let
a = c1 + ic2. Then f(z) = λz + a.

Solution 2.12
Suppose that f(z) = u(x, y) + iv(x, y) and 2u(x, y) + v(x, y) = 5. Partially differentiating
the latter expression with respect to x gives

2
∂u

∂x
+
∂v

∂x
= 0

and using the Cauchy-Riemann equations gives

2
∂u

∂x
− ∂u

∂y
= 0.

Similarly, partially differentiating 2u(x, y) + v(x, y) = 5 with respect to y and using the
Cauchy-Riemann equations gives

∂u

∂x
+ 2

∂u

∂y
= 0.

This gives us two simultaneous equations in ∂u/∂x and ∂u/∂y. Solving these equations
gives

∂u

∂x
= 0,

∂u

∂y
= 0.

From ∂u/∂x = 0 it follows that u(x, y) = α(y), an arbitrary function of y. From ∂u/∂y = 0
it follows that u(x, y) = β(x), an arbitrary function of x. This is only possible if u is
constant.
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If u is constant then

0 =
∂u

∂x
=
∂v

∂y

(so that v depends only on x) and

0 =
∂u

∂y
= −∂v

∂x

(so that v depends only on y). Hence v must also be constant.
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10. Solutions to Part 3

Solution 3.1
Let zn ∈ C. Let

sn =

n
∑

k=0

zk, xn =

n
∑

k=0

Re(zk), yn =

n
∑

k=0

Im(zk)

denote the partial sums of zn, Re(zn), Im(zn), respectively. Let s =
∑∞

k=0 zn, x =
∑∞

k=0Re(zk), y =
∑∞

k=0 Im(zk), if these exist.
Suppose that

∑∞
n=0 zn is convergent. Let ε > 0. Then there exists N such that if n ≥ N

we have |s− sn| < ε. As
|x− xn| ≤ |s− sn| < ε,

and
|y − yn| ≤ |s− sn| < ε

(using the facts that |Re(w)| ≤ |w| and | Im(w)| ≤ |w| for any complex number w), provided
n ≥ N , it follows that

∑∞
k=0Re(zk) and

∑∞
k=0 Im(zk) exist.

Conversely, suppose that
∑∞

k=0Re(zk) and
∑∞

k=0 Im(zk) exist. Let ε > 0. Choose N1

such that if n ≥ N1 then |x−xn| < ε/2. Choose N2 such that if n ≥ N2 then |y−yn| < ε/2.
Then if n ≥ max{N1, N2} we have that

|z − zn| ≤ |x− xn|+ |y − yn| < ε.

Hence
∑∞

k=0 zk converges.

Solution 3.2
Recall that a formula for the radius of convergence R of

∑

anz
n is given by 1/R =

limn→∞ |an+1|/|an| (if this limit exists).

(i) Here an = 2n/n so that

|an+1|
|an|

=
2n+1

n+ 1

n

2n
=

2n

n+ 1
→ 2 =

1

R

as n→ ∞. Hence the radius of convergence is R = 1/2.

(ii) Here an = 1/n! so that

|an+1|
|an|

=
n!

(n+ 1)!
=

1

n+ 1
→ 0 =

1

R

as n→ ∞. Hence the radius of convergence is R = ∞ and the series converges for all
z ∈ C.
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(iii) Here an = n! so that
|an+1|
|an|

=
(n+ 1)!

n!
= n→ ∞ =

1

R

as n → ∞. Hence the radius of convergence is R = 0 and the series converges for
z = 0 only.

(iv) Here an = np so that

|an+1|
|an|

=
(n+ 1)p

np
=

(

n+ 1

n

)p

→ 1p = 1 =
1

R

as n→ ∞. Hence the radius of convergence is R = 1.

Solution 3.3
To see that the expression in Proposition 3.2.2(i) does not converge, note that

∣

∣

∣

∣

an+1

an

∣

∣

∣

∣

=











2n

3n+1
if n is even,

3n

2n+1
if n is odd.

Hence limn→∞ |an+1/an| = 0 if we let n→ ∞ through the subsequence of even values of n
but limn→∞ |an+1/an| = ∞ if we let n → ∞ through the subsequence of odd values of n.
Hence limn→∞ |an+1/an| does not exist.

To see that the expression in Proposition 3.2.2(ii) does not converge, note that

|an|1/n =

{

1/2 if n is even,
1/3 if n is odd.

Hence limn→∞ |an+1/an| does not exist.
Note, however, that an ≤ 1/2n for all n. Hence

∣

∣

∣

∣

∣

∞
∑

n=0

anz
n

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∞
∑

n=0

zn

2n

∣

∣

∣

∣

∣

≤
∞
∑

n=0

∣

∣

∣

z

2

∣

∣

∣

n
,

which converges provided that |z/2| < 1, i.e. if |z| < 2. Hence, by the comparison test,
∑∞

n=0 anz
n converges for |z| < 2.

Solution 3.4
(i) We know that for |z| < 1

∞
∑

n=0

zn =
1

1− z

(this is the sum of a geometric progression). Hence

(

1

1− z

)2

=

(

1

1− z

)(

1

1− z

)

=

( ∞
∑

n=0

zn

)( ∞
∑

n=0

zn

)

.

Using Proposition 3.1.2 we can easily see that the coefficient of zn−1 in the above
product is equal to n. Hence

(

1

1− z

)2

=
∞
∑

n=1

nzn−1.
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(ii) Using Proposition 3.1.2 we see that

∞
∑

n=0

zn

n!

∞
∑

n=0

wn

n!
=

∞
∑

n=0

cn

where

cn =
n
∑

r=0

1

r!(n− r)!
zrwn−r.

The claimed result follows by noting that

cn =
1

n!

n
∑

r=0

(

n
r

)

zrwn−r =
1

n!
(z + w)n

by the Binomial Theorem.

Solution 3.5
Let f(z) =

∑∞
n=0 z

n. Then f(z) defines a power series with radius of convergence 1.
Moreover, f(z) = 1/(1 − z) by summing the geometric progression.

By Theorem 3.3.2 we can differentiate
∑∞

n=0 z
n = 1/(1− z) k-times and obtain a power

series that converges for |z| < 1. We obtain, for each k ≥ 1,

∞
∑

n=k−1

n(n− 1) · · · (n− (k − 2))zn−(k−1) = (k − 1)!(1 − z)−k

for |z| < 1. Dividing both sides by (k − 1)! gives the result.

Solution 3.6
(i) We have that eiz = cos z + i sin z and e−iz = cos z − i sin z. Adding these expressions

gives 2 cos z = eiz + eiz so that cos z = (eiz + e−iz)/2.

(ii) Subtracting the above expressions for eiz and e−iz gives 2i sin z = eiz − e−iz so that
sin z = (eiz − e−iz)/2i.

(iii) It is easier to start with the right-hand side:

sin z cosw + cos z sinw

=
1

4i
(eiz − e−iz)(eiw + e−iw) +

1

4i
(eiz + e−iz)(eiw − e−iw)

=
1

2i

(

ei(z+w) − e−i(z+w)
)

= sin(z + w).

(iv) Similarly,

cos z cosw − sin z sinw

=
1

4
(eiz + e−iz)(eiw + e−iw)− 1

4i2
(eiz − e−iz)(eiw − e−iw)

=
1

2

(

ei(z+w) + e−i(z+w)
)

= cos(z + w).
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Solution 3.7
(i) We have

sin z = sin(x+ iy)

=
1

2i

(

ei(x+iy) − e−i(x+iy)
)

=
1

2i
(eixe−y − e−ixey)

=
1

2i
((e−y cos x− ey cos x) + i(e−y sinx+ ey sinx))

=

(

e−y sinx+ ey sinx

2

)

+ i

(

ey cos x− e−y cos x

2

)

= sinx cosh y + i cos x sinh y.

Hence the real and imaginary parts of sin z are u(x, y) = sinx cosh y and v(x, y) =
cos x sinh y, respectively.

Now
∂u

∂x
= cos x cosh y,

∂v

∂y
= cos x cosh y,

and
∂u

∂y
= sinx sinh y,

∂v

∂x
= − sinx sinh y,

so that the Cauchy-Riemann equations are satisfied.

(ii) Here we have that

cos z = cos(x+ iy)

=
1

2

(

ei(x+iy) + e−i(x+iy)
)

=
1

2
(eixe−y + e−ixey)

=
1

2
((e−y cos x+ ey cos x) + i(e−y sinx− ey sinx))

= cos x cosh y − i sinx sinh y.

Hence the real and imaginary parts of cos z are u(x, y) = cos x cosh y and v(x, y) =
− sinx sinh y, respectively.

Now
∂u

∂x
= − sinx cosh y,

∂v

∂y
= − sinx cosh y,

and
∂u

∂y
= cos x sinh y,

∂v

∂x
= − cos x sinh y,

so that the Cauchy-Riemann equations are satisfied.

Alternatively, one could note that

cos z = sin
(

z +
π

2

)

= sin
(

x+
π

2

)

cosh y + i cos
(

x+
π

2

)

sinh y

= cos x cosh y − i sinx sinh y.
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(iii) Here we have that

sinh z = sinh(x+ iy)

=
1

2

(

ex+iy − e−(x+iy)
)

=
1

2
(exeiy − e−xe−iy)

=
1

2
((ex cos y − e−x cos y) + i(ex sin y + e−x sin y))

= sinhx cos y + i cosh x sin y.

Hence the real and imaginary parts of sinh z are u(x, y) = sinhx cos y and v(x, y) =
cosh x sin y, respectively.

Now
∂u

∂x
= coshx cos y,

∂v

∂y
= coshx cos y,

and
∂u

∂y
= − sinhx sin y,

∂v

∂x
= sinhx sin y,

so that the Cauchy-Riemann equations are satisfied.

(One can also argue, assuming the results of (i), by using the fact that sinh z =
−i sin iz.)

(iv) Here we have that

cosh z = cosh(x+ iy)

=
1

2

(

ex+iy + e−(x+iy)
)

=
1

2
(exeiy + e−xe−iy)

=
1

2
((ex cos y + e−x cos y) + i(ex sin y − e−x sin y))

= coshx cos y + i sinhx sin y.

Hence the real and imaginary parts of cosh z are u(x, y) = coshx cos y and v(x, y) =
sinhx sin y, respectively.

Now
∂u

∂x
= sinhx cos y,

∂v

∂y
= sinhx cos y,

and
∂u

∂y
= − coshx sin y,

∂v

∂x
= coshx sin y,

so that the Cauchy-Riemann equations are satisfied.

(Alternatively, using the results of (ii), one can use the fact that cosh z = cos iz to
derive this.)

Solution 3.8
(i) A complex-valued function takes real values if and only its imaginary part equals 0.
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For exp z: note that if z = x+ iy then

ez = ex cos y + iex sin y

and this is real if and only ex sin y = 0. As ex > 0 for all x ∈ R, this is zero if and
only if sin y = 0, i.e. y = kπ, k ∈ Z.

Using the results of the previous exercise, sin z is real if and only if cos x sinh y = 0,
i.e. either x = π

2 + kπ, k ∈ Z or y = 0.

Similarly, the imaginary part of cos z is − sinx sinh y and this equals zero if and only
if x = kπ, k ∈ Z, or y = 0.

The imaginary part of cosh z is sinhx sin y and this equals zero if and only if x = 0
or y = kπ, k ∈ Z.

The imaginary part of sinh z is cosh x sin y and this equals zero if and only if y = kπ,
k ∈ Z (as cosh x > 0 for all x ∈ R).

(ii) A complex-valued function takes purely imaginary values if and only if its real part
is zero.

Now ez = ex cos y + iex sin y has zero real part if and only if ex cos y = 0, i.e. if
cos y = 0. Hence ez takes purely imaginary values when y = π

2 + kπ, k ∈ Z.

The real part of sin z is sinx cosh y and this equals zero if and only if sinx = 0, i.e.
x = kπ, k ∈ Z.

The real part of cos z is cos x cosh y and this equals zero if and only if cos x = 0, i.e.
x = π

2 + kπ, k ∈ Z.

The real part of sinh z is sinhx cos y and this equals zero if and only if either x = 0
or y = π

2 + kπ, k ∈ Z.

The real part of cosh z is coshx cos y and this equals zero if and only if y = π
2 + kπ,

k ∈ Z.

Solution 3.9
Let z = x+ iy. Then sin z = 0 if and only if both the real parts and imaginary parts of sin z
are equal to 0. This happens if and only if sinx cosh y = 0 and cos x sinh y = 0. We know
cosh y > 0 for all y ∈ R so the first equation gives x = kπ, k ∈ Z. Now cos kπ = (−1)k so
the second equation gives sinh y = 0, i.e. y = 0. Thus the solutions to sin z = 0 are z = kπ,
k ∈ Z.

For cos z, we note that the real part of cos z is cos x cosh y and the imaginary part is
− sinx sinh y. Now cosx cosh y = 0 implies cos x = 0 so that x = (k + 1/2)π, k ∈ Z. As
sin(k + 1/2)π = (−1)k, it follows that the second equation gives sinh y = 0, i.e. y = 0.
Hence the solutions to cos z = 0 are z = (k + 1/2)π, k ∈ Z.

Solution 3.10
(i) Let z = x+ iy and suppose that 1 + ez = 0. Then

ez = ex cos y + iex sin y = −1.

Comparing real and imaginary parts we have that ex cos y = −1 and ex sin y = 0. As
ex > 0 for all x ∈ R the second equation gives that sin y = 0, i.e. y = kπ, k ∈ Z.
Substituting this into the first equation gives (−1)kex = −1. When k is even this

c© University of Manchester 2018 116



MATH20101 Complex Analysis 10. Solutions to Part 3

gives ex = −1 which has no real solutions. When k is odd this gives ex = 1, i.e. x = 0.
Hence the solutions are z = (2k + 1)πi, k ∈ Z.

(ii) Let z = x+ iy and suppose that 1 + i− ez = 0. Then

ez = ex cos y + iex sin y = 1 + i

and comparing real and imaginary parts gives

ex cos y = 1, ex sin y = 1.

As ex > 0 for x ∈ R, it follows that cos y = sin y, i.e. either y = π/4 + 2kπ or
y = 5π/4 + 2kπ, k ∈ Z. In the first case, cos(π/4 + 2kπ) = sin(π/4 + 2kπ) = 1/

√
2

and so we have ex =
√
2; hence x = log

√
2. In the second case, cos(5π/4 + 2kπ) =

sin(5π/4 + 2kπ) = −1/
√
2 so that ex = −

√
2, which has no real solutions. Hence

z = log
√
2 + i(π/4 + 2kπ), k ∈ Z.

Solution 3.11
(i) Write z = x + iy. Suppose that sin(z + p) = sin z for all z ∈ C, for some p ∈ C.

Putting z = 0 we get sin p = sin 0 = 0, so that p = kπ, k ∈ Z. Now

sin(z + nπ) = sin(z + (n− 1)π + π)

= sin(z + (n− 1)π) cos π + cos(z + (n− 1)π) sin π

= − sin(z + (n− 1)π).

Continuing inductively, we see that sin(z + nπ) = (−1)n sin z. Hence sin(z + nπ) =
sin z if and only if n is even. Hence the periods of sin are p = 2πn, n ∈ Z.

(ii) Suppose that exp(z+ p) = exp z for all z ∈ C. Putting z = 0 gives exp p = exp 0 = 1.
Put p = x+ iy. Then

exp p = ex cos y + iex sin y = 1

and comparing real and imaginary parts gives ex cos y = 1, ex sin y = 0. As ex > 0 for
all x ∈ R, the second equation gives sin y = 0, i.e. y = nπ, n ∈ Z. The first equation
then gives (−1)nex = 1. When n is odd this has no real solutions. When n is even
this gives ex = 1, i.e. x = 0. Hence the periods of exp are 2nπi, n ∈ Z.

Solution 3.12
Let z1 = r1e

iθ1 , z2 = r2e
iθ2 ∈ C \ {0}. We choose θ1, θ2 ∈ (−π, π] to be the principal value

of the arguments of z1, z2. Hence

Log z1 = ln r1 + iθ1, Log z2 = ln r2 + iθ2.

Then
z1z2 = r1e

iθ1r2e
iθ2 = r1r2e

i(θ1+θ2)

so that z1z2 has argument θ1 + θ2. However, θ1 + θ2 ∈ (−2π, 2π] and is not necessarily a
principle value of the argument for z1z2. However, by adding or subtracting 2π to θ1 + θ2
we can obtain the principal value of the argument of z1z2. Thus

Log z1z2 = ln r1r2 + i(θ1 + θ2 + 2πn)

= Log z1 + Log z2 + 2πn
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for some integer n ∈ {−1, 0, 1}.
For example, take z1 = z2 = −1+ i. Then |z1| = |z2| =

√
2 and Arg z1 = Arg z2 = 3π/4.

Moreover z1z2 = −2i and the principal value of the argument of z1z2 is −π/2. Hence

Log z1 = Log z2 = ln
√
2 +

3πi

4
, Log z1z2 = ln 2− πi

2

so that

Log z1 + Log z2 = ln 2 +
3πi

2
.

Hence
Log z1z2 = Log z1 + Log z2 − 2πi.

(Any two complex numbers z1, z2 where the principal values of the arguments of z1, z2 add
to either more than π or less than −π will also work.)

Solution 3.13
Take b = z = i. Then |i| = 1, arg i = π/2 + 2nπ and the principal value of the argument is
π/2. Hence

Log(i) = ln(1) + i
π

2
= i

π

2

log(i) = ln(1) + i
(π

2
+ 2nπ

)

= i
(π

2
+ 2nπ

)

.

Hence

ii = exp(iLog i) = exp

(−π
2

)

and the subsiduary values are

exp(i log i) = exp

(−π
2

+ 2nπ

)

.

Solution 3.14
(i) Using Proposition 3.2.2(i), the radius of convergence of this power series is given by

1

R
= lim

n→∞

∣

∣

∣

∣

α(α − 1) · · · (α− n+ 1)(α − n)

(n+ 1)!

n!

α(α − 1) · · · (α− n+ 1)

∣

∣

∣

∣

,

if this limit exists. Note that

lim
n→∞

∣

∣

∣

∣

α(α − 1) · · · (α− n+ 1)(α − n)

(n+ 1)!

n!

α(α− 1) · · · (α− n+ 1)

∣

∣

∣

∣

= lim
n→∞

∣

∣

∣

∣

α− n

n+ 1

∣

∣

∣

∣

= 1

Hence the power series has radius of convergence R = 1.

(ii) Recall from Theorem 3.3.2 that a power series is holomorphic on its disc of convergence
and can be differentiated term by term. Hence for |z| < 1 we have

f ′(z) = α+α(α−1)z+
α(α − 1)(α − 2)

2!
z2+ · · ·+ α(α − 1)(α− 2) · · · (α− n)

n!
zn+ · · · .
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Multiply this by 1 + z. Using Proposition 3.1.2 we see that the coefficient of zn for
n ≥ 1 in (1 + z)f ′(z) is given by

α(α − 1)(α − 2) · · · (α− (n− 1))(α − n)

n!
+
α(α− 1)(α − 2) · · · (α− (n− 1))

(n− 1)!

which can be rearranged to

α(α− 1)(α − 2) · · · (α− (n− 1))

(n− 1)!

(

α− n

n
+ 1

)

=
α2(α− 1)(α − 2) · · · (α− (n− 1))

n!
,

which is α times the coefficient of zn in the power series f(z). Clearly the constant
term of (1 + z)f ′(z) is α. Hence (1 + z)f ′(z) = αf(z) for |z| < 1.

(iii) Let g(z) = f(z)/(1 + z)α. Then for |z| < 1 we have that

g′(z) =
(1 + z)αf ′(z)− α(1 + z)α−1f(z)

(1 + z)2α
= 0,

using (ii). Hence g′(z) = 0 on {z ∈ C | |z| < 1}. By Lemma 3.4.1 we have that g(z) is
equal to a constant on {z ∈ C | |z| < 1}. Noting that g(0) = 1 we have that g(z) = 1
for all z with |z| < 1. Hence f ′(z) = (1 + z)α for |z| < 1.
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11. Solutions to Part 4

Solution 4.1
(i) We have γ(t) = e−it = cos t− i sin t, 0 ≤ t ≤ π, so the path is the semicircle of radius

1 centre 0 that starts at 1 and travels clockwise to −1. See Figure 11.1(i).

(ii) Here γ(t) = x(t) + iy(t), x(t) = 1 + 2 cos t, y(t) = 1 + 2 sin t, 0 ≤ t ≤ 2π. Hence
(x − 1)2 + (y − 1)2 = 22, i.e. γ is the circle centred at 1 + i with radius 2, where we
start at 2 + i and travel anticlockwise. See Figure 11.1(ii).

(iii) Here γ(t) = x(t) + iy(t) where x(t) = t, y(t) = cosh t, −1 ≤ t ≤ 1, i.e. y = coshx.
Hence γ describes the piece of the graph of cosh from −1 to 1. See Figure 11.1(iii).

(iv) Here γ(t) = x(t) + iy(t) where x(t) = cosh t, y(t) = sinh t, −1 ≤ t ≤ 1. Hence x(t)2 −
y(t)2 = cosh2 t − sinh2 t = 1, i.e. γ describes a hyperbola from (cosh(−1), sinh(−1))
to (cosh(1), sinh(1)). See Figure 11.1(iv).

(i) (ii)

(iii) (iv)

2
1 + i

Figure 11.1: See Solution 4.1.

Solution 4.2
Let f(z) = x− y + ix2 where z = x+ iy.
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(i) The straight line from 0 to 1 + i has parametrisation γ(t) = t+ it, 0 ≤ t ≤ 1. Here
γ′(t) = 1 + i and f(γ(t)) = t− t+ it2 = it2. Hence

∫

γ
x− y + ix2 =

∫ 1

0
it2(1 + i) dt

=

∫ 1

0
−t2 + it2 dt

=

[−1

3
t3 +

i

3
t3
]1

0

=
−1

3
+
i

3
.

(ii) The imaginary axis from 0 to i has parametrisation γ(t) = it, 0 ≤ t ≤ 1. Here
γ′(t) = i and f(γ(t)) = −t. Hence

∫

γ
x− y + ix2 =

∫ 1

0
−it dt

=

[−it2
2

]1

0

=
−i
2
.

(iii) The line parallel to the real axis from i to 1 + i has parametrisation γ(t) = t + i,
0 ≤ t ≤ 1. Here γ′(t) = 1 and f(γ(t)) = t− 1 + it2. Hence

∫

γ
x− y + ix2 =

∫ 1

0
(t− 1 + it2) dt

=

[

t2

2
− t+

it3

3

]1

0

=
−1

2
+
i

3
.

Solution 4.3
The path γ1 is the circle of radius 2, centre 2, described anticlockwise. The path γ2 is the
arc of the circle of radius 1, centre i, from i+ 1 to 0, described clockwise.

(i) Let f(z) = 1/(z − 2). Note that

f(γ1(t)) =
1

2eit

and
γ′1(t) = 2ieit.

Hence
∫

γ1

dz

z − 2
=

∫ 2π

0

1

2eit
2ieit dt = 2πi.
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(ii) Let f(z) = 1/(z − i)3. Note that

f(γ2(t)) =
1

e−3it

and
γ′2(t) = −ie−it.

Hence
∫

γ2

dz

(z − i)3
=

∫ π/2

0

1

e−3it
(−ie−it) dt = −i

∫ π/2

0
e2it dt =

−i
2i

[

e2it
]π/2

0
= 1.

Solution 4.4
The circle |z − 1| = 1 described anticlockwise has parametrisation γ(t) = 1 + eit = 1 +
cos t+ i sin t, 0 ≤ t ≤ 2π. Here γ′(t) = ieit = − sin t+ i cos t. Note that

|γ(t)|2 = (1 + cos t)2 + sin2 t = 1 + 2 cos t+ cos2 t+ sin2 t = 2(1 + cos t).

Hence
∫

γ
|z|2 dz =

∫ 2π

0
2(1 + cos t)(− sin t+ i cos t) dt

=

∫ 2π

0
(−2 sin t− 2 sin t cos t) + i(2 cos t+ 2cos2 t) dt

=

∫ 2π

0
(−2 sin t− sin 2t) + i(2 cos t+ 1 + cos 2t) dt

=

[

2 cos t+
1

2
cos 2t+ i(2 sin t+ t+

1

2
sin 2t)

]2π

0

=

(

2 +
1

2
+ 2πi

)

−
(

2 +
1

2

)

= 2πi.

Solution 4.5
(i) We want to find a function F such that F ′(z) = f(z). We know that differentiation

for complex functions obeys the same rules (chain rule, product rule, etc) as for real
functions, so we first find an anti-derivative for the real function f(x) = x2 sinx. Note
that by integration by parts we have

∫

x2 sinx dx = −x2 cos x+

∫

2x cos x dx

= −x2 cos x+ 2x sinx−
∫

2 sinx dx

= −x2 cos x+ 2x sinx+ 2cos x.

Let F (z) = −z2 cos z + 2z sin z + 2cos z. Then clearly F is defined on C and one can
check that F ′(z) = z2 sin z.

Hence, by the Fundamental Theorem of Contour Integration (Theorem 4.3.3), if γ is
any smooth path from 0 to i then

∫

γ
f = F (i)− F (0) = −i2 cos i+ 2i sin i+ 2cos i− 2 cos 0

= 3 cosh 1− 2 sinh 1− 2.
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(ii) Again, let us first find an anti-derivative for f(x) = xeix. Integrating by parts gives

∫

xeix dx = −ixeix +
∫

ieix dx

= −ixeix + eix

(noting that 1/i = −i). Hence F (z) = −izeiz + eiz is an anti-derivative for f . Hence
if γ is any smooth path from 0 to i then

∫

γ
f = F (i)− F (0) = (−i2e−1 + e−1)− (0 + 1) = 2e−1 − 1.

Solution 4.6
(i) The contour γ that goes vertically from 0 to i and then horizontally from i to 1 + i

is the sum of the two paths

γ1(t) = it, 0 ≤ t ≤ 1,

γ2(t) = t+ i, 0 ≤ t ≤ 1.

Note that |γ1(t)|2 = t2, γ′(t) = i, |γ2(t)|2 = t2 + 1, γ′(t) = 1. Hence

∫

γ
|z|2 dz =

∫

γ1

|z|2 dz +
∫

γ2

|z|2 dz

=

∫ 1

0
it2 dt+

∫ 1

0
t2 + 1 dt

=

[

it3

3

]1

0

+

[

t3

3
+ t

]1

0

=
4

3
+
i

3
.

(ii) Similarly, the contour γ that goes horizontally from 0 to 1 and then vertically from 1
to 1 + i is the sum of the paths

γ3(t) = t, 0 ≤ t ≤ 1

γ4(t) = 1 + it, 0 ≤ t ≤ 1.

Here |γ3(t)|2 = t2, γ′3(t) = 1, |γ4(t)|2 = 1 + t2, γ′4(t) = i. Hence

∫

γ
|z|2 dz =

∫

γ3

|z|2 dz +
∫

γ4

|z|2 dz

=

∫ 1

0
t2 dt+

∫ 1

0
(1 + t2)i dt

=

[

1

3
t3
]1

0

+

[

it+
it3

3

]1

0

=
1

3
+

4i

3
.

As the integral from 0 to 1 + i depends on the choice of path, this tells us (by the
Fundamental Theorem of Contour Integration) that |z|2 does not have an anti-derivative.
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−1
0

0

0

0

1

2

0

−1

−2

0

Figure 11.2: See Solution 4.7.

Solution 4.7
See Figure 11.2.

Solution 4.8
Let γ : [a, b] → D be a parametrisation of the contour γ. Then −γ has

−γ(t) = γ(a+ b− t) : [a, b] → D

as a parametrisation. Note that (−γ)′(t) = γ′(a+ b− t) = −(γ′(a+ b− t)), using the chain
rule for differentiation. Hence

∫

−γ
f =

∫ b

a
f(−γ(t))(−γ′(t)) dt

= −
∫ b

a
f(γ(a+ b− t))γ′(a+ b− t) dt

=

∫ a

b
f(γ(u))γ′(u) du using the substitution u = a+ b− t

= −
∫ b

a
f(γ(t))γ′(t) dt

= −
∫

γ
f.

Solution 4.9
Let γ : [a, b] → C be a parametrisation of γ. Using the formula for integration by parts
from real analysis, we can write

∫

γ
fg′ =

∫ b

a
f(γ(t))g′(γ(t))γ′(t) dt

=

∫ b

a
f(γ(t))

d

dt
(g(γ(t))) dt
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= f(γ(t))g(γ(t))|bt=a −
∫ b

a

d

dt
(f(γ(t)))g(γ(t)) dt

= f(z1)g(z1)− f(z0)g(z0)−
∫ b

a
f ′(γ(t))g(γ(t))γ′(t) dt

= f(z1)g(z1)− f(z0)g(z0)−
∫

γ
f ′g.

Solution 4.10
Note that the function f(z) = 1/(z2 − 1) is not differentiable at z = ±1 (because it is
not defined at z = ±1). To use the Generalised Cauchy Theorem, we need a domain that
excludes these points. Let D be the domain

D = {z ∈ C | |z| < 3, |z − 1| > 1/3, |z + 1| > 1/3}.

(There are lots of choices of D that will work. The 3 may be replaced by anything larger
than 2; the 1/3 by anything less than 1/2—the point is that D should contain γ1, γ2 and
γ but not ±1. Alternatively, one could take D = C \ {±1}.) Obviously in this case D
contains γ, γ1 and γ2. Let γ3(t) = 2e−it, 0 ≤ t ≤ 2π, i.e. γ3 is γ but described in the
opposite direction.

Suppose z 6∈ D. If |z| ≥ 3 then w(γ1, z) = w(γ2, z) = w(γ3, z) = 0. If |z − 1| ≤ 1/3
then z is inside the contours γ2 and γ3 so that w(γ1, z) = 0, w(γ2, z) = +1, w(γ3, z) = −1.
Similarly if |z + 1| ≤ 1/3 then w(γ1, z) = 0, w(γ2, z) = −1, w(γ3, z) = +1. Hence for each
z 6∈ D we have

w(γ1, z) + w(γ2, z) + w(γ3, z) = 0.

Furthermore, since ±1 6∈ D, the function f is holomorphic on D. Applying the Generalised
Cauchy Theorem we have that

∫

γ1

f +

∫

γ2

f +

∫

γ3

f = 0

and the claim follows by noting that
∫

γ3
f = −

∫

γ f .

Solution 4.11
Let γ1(t) = eit, 0 ≤ t ≤ 2π. Then

∫

γ1

f =

∫ 2π

0
f(γ(t))γ′(t) dt =

∫ 2π

0

1

eit
ieit dt = 2πi.

Let D = C \ {0}. We apply the Generalised Cauchy Theorem to the contours γ2,−γ1.
The only point not in D is z = 0. Note that w(γ1, 0) = 1 (so that w(−γ1, 0) = −1) and
w(γ2, 0) = 1. Hence

w(γ2, z) +w(−γ1, z) = 1− 1 = 0

for all z 6∈ D. By the Generalised Cauchy Theorem we have that
∫

γ2

f +

∫

−γ1

f = 0.

Hence
∫

γ2

f = −
∫

−γ1

f =

∫

γ1

f = 2πi.
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Solution 4.12
We apply the Generalised Cauchy Theorem (Theorem 4.5.7) to the closed contours γ,−γ1, γ2.

There are only two points not in D, namely z1 and z2. Note that

w(γ, z1) = 1, w(−γ1, z1) = −1, w(γ2, z1) = 0

and
w(γ, z2) = −1, w(−γ1, z2) = 0, w(γ2, z2) = 1.

Hence w(γ, z) + w(−γ1, z) + w(γ2, z) = 0 whenever z 6∈ D.
By the Generalised Cauchy Theorem, we have

∫

γ
f +

∫

−γ1

f +

∫

γ2

f = 0.

Re-arranging this and noting that
∫

−γ1
f = −

∫

γ1
f we have that

∫

γ
f = −

∫

−γ1

f −
∫

γ2

f = (3 + 4i)− (5 + 6i) = −2− 2i.
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12. Solutions to Part 5

Solution 5.1
(i) Since sin2 z = (1− cos 2z)/2 and

cos z =

∞
∑

n=0

(−1)n
z2n

(2n)!
(12.0.1)

we have that

sin2 z =
1− cos 2z

2
=

∞
∑

n=1

(−1)n+14n

2(2n)!
z2n. (12.0.2)

As the radius of convergence for (12.0.1) is R = ∞, it follows that the radius of
convergence for (12.0.2) is also R = ∞. (Alternatively, one could check this using the
fact that

1/R = lim
n→∞

|an+1|
|an|

= lim
n→∞

4n+1

2(2(n + 1))!

2(2n)!

4n
= lim

n→∞
4

2n(2n + 1)
= 0

where an denote the coefficients in (12.0.2).)

(ii) Here

1

1 + 2z
= 1− 2z + 4z2 − 8z3 + · · · =

∞
∑

n=0

(−2z)n

(by recognising this as a sum of a geometric progression). The radius of convergence
is given, using Proposition 3.2.2(ii), by

1/R = lim
n→∞

(2n)1/n = 2

so R = 1/2.

(iii) We have

ez
2

=

∞
∑

n=0

z2n

n!

and the radius of convergence is R = ∞.

Solution 5.2
Let f(z) = Log(1+z). This is defined and holomorphic on the domain C\{z ∈ C | Im(z) =
0,Re(z) < −1}. By Taylor’s Theorem, we can expand f as a Taylor series at 0 valid on
some disc centred at 0 as

f(z) =

∞
∑

n=0

anz
n
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where an = 1
n!f

(n)(0). Here

f ′(z) =
1

1 + z
, f ′′(z) =

−1

(1 + z)2
, . . .

and in general

f (n)(z) =
(−1)n+1(n− 1)!

(1 + z)n
.

Hence an = (−1)n+1(n − 1)!/n! = (−1)n+1/n for n 6= 0 and a0 = 0.
By the ratio test, this power series has radius of convergence 1.

Solution 5.3
Let p(z) be a polynomial of degree at least 1. Let a ∈ C. We want to find z0 ∈ C such
that p(z0) = a. Let q(z) = p(z) − a. Then q is a polynomial of degree at least 1. By
the Fundamental Theorem of Algebra, there exists z0 ∈ C such that q(z0) = 0. Hence
p(z0) = a.

Solution 5.4
Since f is differentiable everywhere, for any r > 0 and any m ≥ 1 we have that

|f (k+m)(0)| ≤ Mr(k +m)!

rk+m

where Mr = sup{|f(z)| | |z| = r}. Applying the bound on |f(z)| we have that Mr ≤ Krk.
Hence

|f (k+m)(0)| ≤ K(k +m)!rk

rk+m
=
K(k +m)!

rm
.

Since this holds for r arbitrarily large, by letting r → ∞ we see that f (k+m)(0) = 0.
Substituting this into the Taylor expansion of f shows that f is a polynomial of degree at
most k.

Solution 5.5
(i) Let f(z) = |z + 1|2 and let z = x+ iy. Then

f(z) = |(x+ 1) + iy|2 = (x+ 1)2 + y2.

Writing f(z) = u(x, y)+ iv(x, y) we have that u(x, y) = (x+1)2+ y2 and v(x, y) = 0.
Hence

∂u

∂x
= 2(x+ 1),

∂v

∂y
= 0

and
∂u

∂y
= 2y,

∂v

∂x
= 0.

Suppose that z is a point on the unit circle γ and that z 6= 1; then at least one of
∂u/∂x 6= ∂v/∂y, ∂u/∂y 6= −∂v/∂x holds. (Note that the Cauchy-Riemann equations
do hold at the point z = −1 and that the partial derivatives are continuous at
x = −1, y = 0, hence by Proposition 2.5.2 f is differentiable at z = −1.) Hence
f is not holomorphic on any domain that contains the unit circle γ.
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(ii) Let z be a point on the unit circle γ. Then z̄ = 1/z. Hence

|z + 1|2 = (z + 1)(z + 1) = (z + 1)

(

1

z
+ 1

)

=
(z + 1)2

z

(note that this only holds on the unit circle γ). Let g(z) = (z + 1)2/z. Then g is
holomorphic on C \ {0}.

(iii) Let h(z) = (z + 1)2. Then

∫

γ
|z + 1|2 dz =

∫

γ

(z + 1)2

z
dz

=

∫

γ

h(z)

z − 0
dz

= 2πih(0) by Cauchy’s Integral Formula

= 2πi.
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13. Solutions to Part 6

Solution 6.1
Let f(z) =

∑∞
m=−∞ amz

m denote the Laurent series of f around z = 0.

(i) Since we are looking for an expansion valid for |z| > 3, we should look at powers of
1/z:

1

z − 3
=

1/z

1− (3/z)

=
1

z

(

1 +
3

z
+

32

z2
+ · · ·

)

=
1

z
+

3

z2
+

32

z3
+ · · ·+ 3n

zn+1
+ · · · .

(ii) Here
1

1− z
= 1 + z + z2 + · · ·

and this is valid for |z| < 1. Hence

1

z(1 − z)
=

1

z
+ 1 + z + z2 + · · ·

is valid for 0 < |z| < 1.

(iii) For z 6= 0 we have

e1/z =

∞
∑

m=0

1

m!zm
= · · · + 1

n!zn
+ · · ·+ 1

2!z2
+

1

z
+ 1.

Hence

z3e1/z = · · ·+ 1

(n+ 3)!zn
+ · · ·+ 1

4!z
+

1

3!
+
z

2!
+ z2 + z3.

(iv) Recall that

cos z = 1− z2

2!
+
z4

4!
− · · ·+ (−1)nz2n

(2n)!
+ · · · .

For z 6= 0 we have

cos 1/z = · · ·+ (−1)n

(2n)!z2n
+ · · · + 1

4!z4
− 1

2!z2
+ 1.

Solution 6.2
Note that

1

z + 1
=

1

1− (−z) =
∞
∑

n=0

(−z)n =
∞
∑

n=0

(−1)nzn, (13.0.1)
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summing a geometric progression with common ratio −z. This expression converges for
| − z| < 1, i.e. for |z| < 1.

We also have that

1

z + 1
=

1

z

1

1−
(−1

z

) =
1

z

∞
∑

n=0

(−1

z

)n

=

∞
∑

n=1

(−1)n+1 1

zn
, (13.0.2)

summing a geometric progression with common ratio −1/z. This expression converges for
| − 1/z| < 1, i.e. for |z| > 1.

Similarly, we have that

1

z − 3
=

−1

3

(

1

1− z
3

)

=
−1

3

∞
∑

n=0

(z

3

)n
(13.0.3)

and this is valid when |z| < 3. We also have that

1

z − 3
=

1

z

1

1− 3
z

=
1

z

∞
∑

n=0

(

3

z

)n

=
∞
∑

n=1

3n−1

zn
, (13.0.4)

valid for |z| > 3.
Hence when |z| < 1 we have the Laurent expansion

f(z) =

∞
∑

n=0

(

(−1)n − 1

3n+1

)

zn.

For 1 < |z| < 3 we have the Laurent expansion

f(z) = · · · + (−1)n+1 1

zn
+ · · · − 1

z2
+

1

z
− 1

3
− 1

32
z − · · · − 1

3n + 1
zn − · · · .

For |z| > 3 we have the Laurent expansion

f(z) =
∞
∑

n=1

(

(−1)n+1 + 3n−1
) 1

zn
.

Solution 6.3
(i) First note that

1

z2(z − 1)
=

1

z2
−1

1− z

=
−1

z2
(1 + z + z2 + · · · + zn + · · ·)

and that this expansion is valid for 0 < |z| < 1. Hence f(z) has Laurent series

− 1

z2
− 1

z
− 1− z − z2 − · · · − zn − · · ·

valid for 0 < |z| < 1.
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(ii) Let w = z − 1. Then z = w + 1 so that

1

z2(z − 1)
=

1

(w + 1)2w
=

1

w(1 + w)2

Note that, using the hint,

1

w(1 + w)2
=

1

w

∞
∑

n=0

n(−w)n−1

=
1

w
(1− 2w + 3w2 − 4w3 + · · ·+ (−1)nnwn−1 + · · ·)

=
1

w
− 2 + 3w − 4w2 + · · ·+ (−1)nnwn−2 + · · ·

and that this is valid provided that 0 < |w| < 1. Substituting in for z we then have
that

f(z) =
1

z − 1
− 2 + 3(z − 1)− 4(z − 1)2 + · · · + (−1)nn(z − 1)n−2 + · · ·

and that this is valid for 0 < |z − 1| < 1.

Solution 6.4
Let f(z) = 1/(z − 1)2.

(i) Note that 1/(z − 1)2 is already a Laurent series centred at 1. Hence f has Laurent
series

f(z) =
1

(z − 1)2

valid on the annulus {z ∈ C | 0 < |z − 1| <∞}.

(ii) Note that f(z) = 1/(z − 1)2 is holomorphic on the disc {z ∈ C | |z| < 1}. Therefore
we can apply Taylor’s theorem and expand f as a power series

f(z) = 1 + 2z + 3z2 + · · ·+ (n + 1)zn + · · ·

valid on the disc {z ∈ C | |z| < 1}. (To calculate the coefficients, recall that if f
has Taylor series

∑∞
n=0 anz

n then an = f (n)(0)/n!. Here we can easily compute that
f (n)(z) = (−1)n(n + 1)!(z − 1)−n−2 so that f (n)(0) = (n + 1)!. Hence an = n + 1.
Alternatively, use the method given in Exercise 3.4.) As a Taylor series is a particular
case of a Laurent series, we see that f has Laurent series

f(z) = 1 + 2z + 3z2 + · · ·+ (n + 1)zn + · · ·

valid on the disc {z ∈ C | |z| < 1}.

(iii) Note that
1

(z − 1)2
=

1

z2
1

(

1− 1
z

)2 .

Replacing z by 1/z in the first part of the computation in (ii) above, we see that

1
(

1− 1
z

)2 = 1 +
2

z
+

3

z2
+ · · · + n+ 1

zn
+ · · ·
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provided |1/z| < 1, i.e. provided |z| > 1. Multiplying by 1/z2 we see that

f(z) =
1

z2
+

2

z3
+

3

z4
+ · · ·+ n− 1

zn
+ · · ·

valid on the annulus {z ∈ C | 1 < |z| <∞}.

Solution 6.5
Recall that a function f(z) has a pole at z0 if f is not differentiable at z0 (indeed, it may
not even be defined at z0).

(i) The poles of 1/(z2+1) occur when the denominator vanishes. Now z2+1 = (z−i)(z+i)
so the denominator has zeros at z = ±i and both zeros are simple. Hence the poles
of 1/(z2 + 1) occur at z = ±i and both poles are simple.

(ii) The poles occur at the roots of the polynomial z4 + 16 = 0. Let z = reiθ. Then we
have

z4 = r4e4iθ = −16 = 16eiπ .

Hence r = 2, 4θ = π+2kπ, k ∈ Z. We get distinct values of z for k = 0, 1, 2, 3. Hence
the poles are at

2e
iπ
4
+ ikπ

2 , k = 0, 1, 2, 3,

or in algebraic form

√
2(1 + i),

√
2(1− i),

√
2(−1 + i),

√
2(−1− i).

All the poles are simple.

(iii) The poles occur at the roots of z4 + 2z2 +1 = (z2 +1)2 = (z + i)2(z − i)2. The roots
of this polynomial are at z = ±i, each with multiplicity 2. Hence the poles occur at
z = ±i and each pole is a pole of order 2.

(iv) The poles occur at the roots of z2 + z − 1, i.e. at z = (−1 ±
√
5)/2, and both poles

are simple.

Solution 6.6
(i) Since

sin
1

z
=

∞
∑

m=0

(−1)2m+1 1

(2m+ 1)!z2m+1

our function has infinitely many non-zero term in the principal part of its Laurent
series. Hence we have an isolated essential singularity at z = 0.

(ii) By Exercise 5.1, the function sin2 z has Taylor series

∞
∑

n=1

(−1)n+1

2

22nz2n

(2n)!
.

Hence

z−3 sin2 z =
1

z
− 24

2 · 4!z +
26

2 · 6!z
3 − · · ·

so that z−3 sin2 z has a simple pole at z = 0.
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(iii) Since

cos z = 1− z2

2!
+
z4

4!
− · · ·

we have
cos z − 1

z2
=

−1

2
+
z2

4!
− · · ·

so that there are no terms in the principal part of the Laurent series. Hence 0 is a
removable singularity.

Solution 6.7
Expand f as a Laurent series at z0 and write

f(z) =
∞
∑

n=1

bn(z − z0)
−n +

∞
∑

n=0

an(z − z0)
n,

valid in some annulus centred at z0. Notice from Laurent’s Theorem (Theorem 6.2.1) that

bn =
1

2πi

∫

Cr

f(z)(z − z0)
n−1 dz

where Cr is a circular path that lies on the domain D, centred at z0 of radius r > 0, and
described anticlockwise. By the Estimation Lemma we have that

|bn| ≤
1

2π
× 2πr ×Mrn−1 =Mrn

as |f(z)| ≤M at all points on Cr. As r is arbitrary and M is independent of r, we can let
r → 0 and conclude that bn = 0 for all n. Hence there are no terms in the principal part of
the Laurent series expansion of f at z0, and so f has a removable singularity at z0.
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14. Solutions to Part 7

Solution 7.1
(i) The function f(z) = 1/z(1 − z2) is differentiable except when the denominator van-

ishes. The denominator vanishes when z = 0,±1 and these are all simple zeros. Hence
there are simple poles at z = 0,±1. Then by Lemma 7.4.1(i) we have

Res(f, 0) = lim
z→0

z
1

z(1− z2)
= lim

z→0

1

1− z2
= 1;

Res(f, 1) = lim
z→1

(z − 1)
1

z(1 − z2)
= lim

z→1

−1

z(1 + z)
=

−1

2
;

Res(f,−1) = lim
z→−1

(z + 1)
1

z(1 − z2)
= lim

z→−1

1

z(1− z)
=

−1

2
.

(ii) Let f(z) = tan z = sin z/ cos z. Both sin z and cos z are differentiable on C, so f(z)
is differentiable except when the denominator is 0. Hence f has poles at z where
cos z = 0, i.e. there are poles at (n + 1/2)π, n ∈ Z. These poles are simple (as
(n+ 1/2)π is a simple zero of cos z). By Lemma 7.4.1(ii) we see that

Res(f, (n+ 1/2)π) =
sin(n+ 1/2)π

− sin(n+ 1/2)π
= −1.

(iv) Let f(z) = z/(1 + z4). This has poles when the denominator vanishes, i.e. when
z4 = −1. To solve this equation, we work in polar coordinates. Let z = reiθ. Then
z4 = −1 implies that r4e4iθ = eiπ. Hence r = 1 and 4θ = π + 2kπ. Hence the four
quartic roots of −1 are:

eiπ/4, e3iπ/4, e−iπ/4, e−3iπ/4.

These are all simple zeros of z4 = −1. Hence by Lemma 7.4.1(ii) we have that
Res(f, z0) = z0/4z

3
0 = 1/4z20 so that

Res(f, eiπ/4) =
1

4eiπ/2
=

1

4i
=

−i
4

Res(f, e3iπ/4) =
1

4e3π/2
=

1

−4i
=
i

4

Res(f, e−iπ/4) =
1

4e−iπ/2
=

1

−4i
=
i

4

Res(f, e−3iπ/4) =
1

4e−3iπ/2
=

1

4i
=

−i
4
.

(v) Let f(z) = (z + 1)2/(z2 + 1)2. Then the poles occur when the denominator is zero,
i.e. when z = ±i. Note that we can write

f(z) =
(z + 1)2

(z + i)2(z − i)2
.
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Hence the poles at z = ±i are poles of order 2. By Lemma 7.4.2 (with m = 2) we
have that

Res(f, i) = lim
z→i

d

dz
(z − i)2f(z)

= lim
z→i

d

dz

(z + 1)2

(z + i)2

= lim
z→i

2(z + i)2(z + 1)− 2(z + 1)2(z − i)

(z + i)4

=
2(2i)2(i+ 1)− 2(i+ 1)2(2i)

(2i)4

=
−i
2
.

and

Res(f,−i) = lim
z→−i

d

dz
(z + i)2f(z)

= lim
z→−i

d

dz

(z + 1)2

(z − i)2

= lim
z→−i

2(z − i)2(z + 1)− 2(z + 1)2(z − i)

(z − i)4

=
i

2
.

Solution 7.2
(i) Let f(z) = (sin z)/z2. As sin z and z2 are differentiable on C, the poles occur when

z2 = 0. By considering the Taylor expansion of sin z around 0 we have that

sin z

z2
=

1

z2

(

z − z3

3!
+
z5

5!
− · · ·

)

=
1

z
− z

3!
+
z2

5!
− · · · .

Hence z = 0 is a simple pole and Res(f, 0) = 1.

(ii) Let f(z) = (sin2 z)/z4. Recall that sin2 z = (1− cos 2z)/2. Hence

1

z4
sin2 z =

1

2z4
(1− cos 2x)

=
1

2z4

(

1− 1 +
(2z)2

2!
− (2z)4

4!
+

(2z)6

6!
+ · · ·

)

=
1

z2
− 23

4!
+

25

6!
z2 + · · ·

Hence f has a pole of order 2 at z = 0. The coefficient of the 1/z term in the above
Laurent series for (sin2 z)/z4 is 0. Hence Res(f, 0) = 0.

Solution 7.3
(i) We have

1

z(1− z)2
=

1

z
(1 + 2z + 3z2 + · · ·)

c© University of Manchester 2018 136



MATH20101 Complex Analysis 14. Solutions to Part 7

=
1

z
+ 2 + 3z + 4z4 + · · · .

Hence f has a simple pole at z = 0 (as the most negative power appearing in the
Laurent series at 0 is 1/z). The residue Res(f, 0) is the coefficient of the term 1/z in
the above Laurent series. Hence Res(f, 0) = 1.

To calculate the Laurent series at z = 1 we change variables and introduce w =
z − 1. Then z = 1 + w. Hence (noting that w2 = (−w)2 and summing a geometric
progression)

1

z(1 − z)2
=

1

w2(1 + w)

=
1

w2(1− (−w))

=
1

w2

(

1− w + w2 − w3 + · · ·
)

=
1

w2
− 1

w
+ 1− w + w2 − · · ·

=
1

(z − 1)2
− 1

(z − 1)
+ 1− (z − 1) + (z − 1)2 − · · ·

Hence f has a pole of order 2 at z = 1 (as the most negative power appearing in the
Laurent series at 1 is 1/(z − 1)2). The residue Res(f, 1) is the coefficient of the term
(z − 1)−1 in the above Laurent series. Hence Res(f, 1) = −1.

(ii) By Lemma 7.2.2, f(z) = 1/z(1−z)2 has a pole of order 1 at z = 0 and a pole of order
2 at z = 1.

By Lemma 7.4.1(i) we have

Res(f, 0) = lim
z→0

z × 1

z(1− z)2
= lim

z→0

1

(1− z)2
= 1.

By Lemma 7.4.2 we have

Res(f, 1) = lim
z→0

d

dz

(

(z − 1)2 × 1

z(1− z)2

)

= lim
z→0

d

dz
z = lim

z→0
1 = 1.

Solution 7.4
Suppose that f has a zero of order n at z0. Then we can expand f as a Taylor series valid
on a disc {z ∈ C | |z − z0| < r} ⊂ D:

f(z) = an(z − z0)
n + an+1(z − z0)

n+1 + · · ·
with an 6= 0. Taking out a common factor of (z − z0)

n we can write

f(z) = (z − z0)
nφ(z)

where φ is holomorphic on {z ∈ C | |z − z0| < r} and φ(z0) = an 6= 0.
Similarly, we can write g(z) = (z − z0)

mψ(z) where ψ is holomorphic on a disc centred
at z0 and ψ(z0) 6= 0.

Multiplying these together gives f(z)g(z) = (z − z0)
n+mφ(z)ψ(z) where φ(z)ψ(z) is

holomorphic on a disc centred at z0 and φ(z0)ψ(z0) 6= 0. Hence f(z)g(z) has a zero of order
n+m at z0.
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Solution 7.5
(i) Let f denote the integrand. Note that

1

z2 − 5z + 6
=

1

(z − 2)(z − 3)

so that f has simple poles at z = 2, z = 3. Both of these poles are inside C4. Hence

∫

C4

1

z2 − 5z + 6
dz = 2πiRes(f, 2) + 2πiRes(f, 3).

Now by Lemma 7.4.1(i)

Res(f, 2) = lim
z→2

(z − 2)

(z − 2)(z − 3)
= lim

z→2

1

z − 3
= −1

Res(f, 3) = lim
z→3

(z − 3)

(z − 2)(z − 3)
= lim

z→3

1

z − 2
= 1.

Hence
∫

C4

1

z2 − 5z + 6
dz = 2πi− 2πi = 0.

(ii) Here we have the same integrand as in (i) but integrated over the smaller circle C5/2.
This time only the pole z = 2 lies inside C5/2. Hence

∫

C5/2

1

z2 − 5z + 6
dz = 2πiRes(f, 2) = −2πi.

(iii) Let f denote the integrand. Note that

eaz

1 + z2
=

eaz

(z + i)(z − i)
.

Hence f has simple poles at z = ±i. Now

Res(f, i) = lim
z→i

(z − i)eaz

(z − i)(z + i)
= lim

z→i

eaz

z + i
=
eia

2i

Res(f,−i) = lim
z→−i

(z + i)eaz

(z − i)(z + i)
= lim

z→−i

eaz

z − i
= −e

−ia

2i
.

Hence
∫

C2

eaz

1 + z2
dz = 2πi (Res(f, i) + Res(f,−i))

= 2πi

(

eia

2i
− e−ia

2i

)

= 2πi sin a.

Solution 7.6
(a) (i) Note that x2 + 1 ≥ x2. Hence 1/(x2 + 1) ≤ 1/x2. By Lemma 7.5.1, it follows

that the integral is equal to its principal value.
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(ii) Let R > 1. Let SR denote the semi-circular path Reit, 0 ≤ t ≤ π and let
ΓR = [−R,R] + SR denote the ‘D-shaped’ contour that travels along the real
axis from −R to R and then travels around the semi-circle of centre 0 and radius
R lying in the top half of the complex plane from R to −R.
Let f(z) = 1/(z2 + 1). Then

1

z2 + 1
=

1

(z + i)(z − i)

so f has simple poles at z = ±i. Only the pole at z = i lies inside ΓR (assuming
that R > 1). Note that

Res(f, i) = lim
z→i

(z − i)

(z + i)(z − i)
= lim

z→i

1

z + i
=

1

2i
.

By Cauchy’s Residue Theorem,

∫

[−R,R]
f +

∫

SR

f =

∫

ΓR

f = 2πiRes(f, i) = 2πi
1

2i
= π.

Now we show that the integral over SR tends to zero as R→ ∞. On SR we have
that

|z2 + 1| ≥ |z2| − 1 = R2 − 1.

Hence by the Estimation Lemma,

∣

∣

∣

∣

∫

SR

f

∣

∣

∣

∣

≤ 1

R2 − 1
length(SR) =

πR

R2 − 1
→ 0

as R→ ∞. Hence
∫ ∞

−∞

1

x2 + 1
dx = lim

R→∞

∫

[−R,R]
f = π.

(Without using complex analysis, you could have done this by noting that, in
R, (x2 + 1)−1 has anti-derivative arctan x.)

(b) (i) Let f(z) = e2iz/(z2 + 1). Note that when x is real

|f(x)| =
∣

∣

∣

∣

e2ix

x2 + 1

∣

∣

∣

∣

≤ 1

|x2 + 1| ≤
1

x2
.

By Lemma 7.5.1, the integral is equal to its principal value.

Note that

f(z) =
e2iz

z2 + 1
=

e2iz

(z − i)(z + i)

so that f has simple poles at z = ±i. Let ΓR be the path as described in (a)(ii)
above. Only the pole at z = i lies inside this contour. See Figure 14.1. Note
that

Res(f, i) = lim
z→i

(z − i)e2iz

(z − i)(z + i)
= lim

z→i

e2iz

z + i
=
e−2

2i
.
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−i

i

−R R

Figure 14.1: The contour ΓR and the poles at ±i.

By Cauchy’s Residue Theorem,
∫

[−R,R]
f +

∫

SR

f =

∫

ΓR

f = 2πiRes(f, i) = 2πi
e−2

2i
= πe−2.

Now we show that the integral over SR tends to zero as R→ ∞. On SR we have
that

|z2 + 1| ≥ |z2| − 1 = |z|2 − 1 = R2 − 1.

Also, let z = x+ iy be a point on SR. Then 0 ≤ y ≤ R, so −R ≤ −y ≤ 0

|e2iz | = |e2i(x+iy)| = |e−2y+2ix| = e−2y ≤ 1. (14.0.1)

Hence |f(z)| ≤ 1/(R2 − 1).

Hence by the Estimation Lemma,
∣

∣

∣

∣

∫

SR

f

∣

∣

∣

∣

≤ 1

R2 − 1
length(SR) =

πR

R2 − 1
→ 0

as R→ ∞. Hence
∫ ∞

−∞

e2ix

x2 + 1
dx = lim

R→∞

∫

[−R,R]
f = πe−2.

(ii) Taking real and imaginary parts in the above we see that
∫ ∞

−∞

cos 2x

x2 + 1
dx = πe−2,

∫ ∞

−∞

sin 2x

x2 + 1
dx = 0.

That the latter integral is equal to zero is obvious and we do not need to use
complex integration to see this. Indeed, note that

∫ ∞

−∞

sin 2x

x2 + 1
dx =

∫ 0

−∞

sin 2x

x2 + 1
dx+

∫ ∞

0

sin 2x

x2 + 1
dx

= −
∫ ∞

0

sin 2x

x2 + 1
dx+

∫ ∞

0

sin 2x

x2 + 1
dx

= 0

where we have used the substitution x 7→ −x in the first integral.
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(iii) Now consider f(z) = e−2iz/(z2 + 1). Suppose we tried to use the ‘D-shaped’
contour used in (ii) to calculate

∫∞
−∞ f(x) dx. Then, with SR as the semi-circle

defined above, we would have to bound |f(z)| on SR in order to use the Es-
timation Lemma. However, if z = x + iy is a point on SR then, noting that
y ≤ R,

|e−2i(x+iy)| = |e2y−2ix| = |e2y| ≤ e2R.

We still have the bound 1/|z2 + 1| ≤ 1/(R2 − 1). So, using the Estimation
Lemma,

∣

∣

∣

∣

∫

SR

f

∣

∣

∣

∣

≤ e2R

R2 − 1
length(SR) =

e2RπR

R2 − 1

which does not tend to 0 as R→ ∞ (indeed, it tends to ∞).

Instead, we use a ‘D-shaped’ contour with the ‘negative’ semi-circle S′
R described

by
Re−it, 0 ≤ t ≤ π.

We need to be careful about winding numbers and ensure that we travel around
a contour in the correct direction to ensure that the contour is simple. Consider
the contour Γ′

R which starts at −R travels along the real axis to R, and then
follows the negative semi-circle S′

R lying in the bottom half of the plane. If z is
outside Γ′

R then w(Γ′
R, z) = 0; however, if z is inside Γ′

R then w(Γ′
R, z) = −1, so

that Γ′
R is not a simple closed loop. However, −Γ′

R is a simple closed loop and,
moreover,

∫

Γ′

R

f = −
∫

−Γ′

R

f.

See Figure 14.2.

The poles of f occur at z = ±i and both of these are simple poles. The only
pole inside Γ′

R occurs at z = −i. Here

Res(f,−i) = lim
z→−i

(z + i)e−2iz

(z + i)(z − i)
= lim

z→−i

e−2iz

z − i
= −e

−2

2i
.

Hence
∫

−Γ′

R

f = 2πiRes(f,−i) = −πe−2.

Note that if z = x+ iy is a point on SR then

|z2 + 1| ≥ |z|2 − 1 = R2 − 1

and, as −R ≤ y ≤ 0
|e−2iz| = |e2y−2ix| = |e2y | ≤ 1.

Hence |f(z)| ≤ 1/(R2 − 1) for z on Γ′
R. By the Estimation Lemma

∣

∣

∣

∣

∣

∫

S′

R

f

∣

∣

∣

∣

∣

≤ 1

R2 − 1
length(S′

R) =
πR

R2 − 1
→ 0

as R→ ∞. Hence

−
∫ R

−R
f(x) dx−

∫

S′

R

f =

∫

−Γ′

R

f = −πe−2
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-i

i

-R R

(ii)

-i

i

-R R

(i)

Figure 14.2: The contours (i) Γ′
R and (ii) −Γ′

R and the poles at ±i. Note that Γ′
R is not

a simple closed loop but that −Γ′
R is.

and letting R→ ∞ gives that

∫ ∞

−∞

e−2ix

x2 + 1
dx = πe−2.

Solution 7.7
We will use the same notation as in §7.5.2: SR denotes the positive semicircle with centre
0 radius R, ΓR denotes the contour [−R,R] + SR.

(i) Let f(z) = 1/(z2 +1)(z2 +3). Note that (x2 +1)(x2 +4) ≥ x4 so that |f(x)| ≤ 1/x4.
Hence by Lemma 7.5.1 the integral converges and equals its principal value.

Now f(z) has simple poles at z = ±i,±i
√
3. Suppose R > 3. Then the poles at

z = i, i
√
3 are contained in the ‘D-shaped’ contour ΓR. Now

Res(f, i) = lim
z→i

z − i

(z2 + 1)(z2 + 3)

= lim
z→i

1

(z + i)(z2 + 3)

=
1

2i(−1 + 3)
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=
1

4i

Res(f, i
√
3) = lim

z→i
√
3

z − i
√
3

(z2 + 1)(z2 + 3)

= lim
z→i

√
3

1

(z2 + 1)(z + i
√
3)

=
1

(−3 + 1)2i
√
3

=
−1

4i
√
3
.

Hence
∫

[−R,R]
f +

∫

SR

f =

∫

ΓR

f

= 2πi
(

Res(f, i) + Res(f, i
√
3)
)

= 2πi

(

1

4i
− 1

4i
√
3

)

=
π

2

(

1− 1√
3

)

.

Now we show that the integral over SR tends to 0 as R → ∞. For z on SR we have
that

|(z2 + 1)(z2 + 3)| ≥ (|z|2 − 1)(|z|2 − 3) = (R2 − 1)(R2 − 3).

Hence by the Estimation Lemma

∣

∣

∣

∣

∫

SR

f

∣

∣

∣

∣

≤ 1

(R2 − 1)(R2 − 3)
length(SR) =

πR

(R2 − 1)(R2 − 3)
→ 0

as R→ ∞.

Hence
∫ ∞

−∞

1

(x2 + 1)(x2 + 3)
= lim

R→∞

∫

[−R,R]
f =

π

2

(

1− 1√
3

)

.

(ii) Note that
28 + 11x2 + x4 = (x2 + 4)(x2 + 7).

Let f(z) = 1/(z2 +4)(z2 +7). Note that (x2 +4)(x2 +7) ≥ x4 so that |f(x)| ≤ 1/x4.
Hence by Lemma 7.5.1 the integral converges and equals its principal value.

Now f(z) has simple poles at z = ±2i,±i
√
7. Suppose R >

√
7. Then the poles at

z = 2i, i
√
7 are contained in the ‘D-shaped’ contour ΓR. Now

Res(f, 2i) = lim
z→2i

z − 2i

(z2 + 4)(z2 + 7)

= lim
z→2i

1

(z + 2i)(z2 + 7)

=
1

4i(−4 + 7)
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=
1

12i

Res(f, i
√
7) = lim

z→i
√
7

z − i
√
7

(z2 + 4)(z2 + 7)

= lim
z→i

√
7

1

(z2 + 4)(z + i
√
7)

=
1

(−7 + 4)2i
√
7

=
−1

6i
√
7
.

Hence
∫

[−R,R]
f +

∫

SR

f =

∫

ΓR

f

= 2πi
(

Res(f, 2i) + Res(f, i
√
7)
)

= 2πi

(

1

12i
− 1

6i
√
7

)

=
π

3

(

1

2
− 1√

7

)

.

Now we show that the integral over SR tends to 0 as R → ∞. For z on SR we have
that

|(z2 + 4)(z2 + 7)| ≥ (|z|2 − 4)(|z|2 − 7) = (R2 − 4)(R2 − 7).

Hence by the Estimation Lemma
∣

∣

∣

∣

∫

SR

f

∣

∣

∣

∣

≤ 1

(R2 − 4)(R2 − 7)
length(SR) =

πR

(R2 − 4)(R2 − 7)
→ 0

as R→ ∞.

Hence
∫ ∞

−∞

1

(x2 + 4)(x2 + 7)
= lim

R→∞

∫

[−R,R]
f =

π

3

(

1

2
− 1√

7

)

.

Solution 7.8
Let

f(z) =
eiz

z2 + 4z + 5
.

Then |f(x)| ≤ C
x2 for some constant C > 0. Hence by Lemma 7.5.1 the integral

∫∞
−∞ f(x) dx

exists and is equal to its principal value.
Now f(z) has poles when z2 + 4z + 5 = 0, i.e. at z = −2 ± i. Both of these poles are

simple. Let ΓR denote the ‘D-shaped’ contour [−R,R] + SR. Provided R is sufficiently
large, only the pole at −2 + i lies inside ΓR. Now

Res(f,−2 + i) = lim
z→−2+i

(z − (−2 + i))eiz

(z − (−2 + i))(z − (−2− i))

= lim
z→−2+i

eiz

z − (−2− i)
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=
ei(−2+i)

−2 + i− (−2− i)

=
e−1−2i

2i
.

Hence
∫

[−R,R]
f +

∫

SR

f =

∫

ΓR

f = 2πi

(

e−1−2i

2i

)

= πe−1 cos 2− iπe−1 sin 2.

Let z = x+ iy be a point on SR. Then 0 ≤ y ≤ R, so e−y ≤ 1.

|eiz | = |ei(x+iy)| = |e−y| ≤ 1.

Also, |z2 + 4z + 5| ≥ |z|2 − 4|z| − 5 = R2 − 4R− 5. Hence on SR

|f(z)| ≤ 1

R2 − 4R + 5
.

By the Estimation Lemma,
∣

∣

∣

∣

∫

SR

f

∣

∣

∣

∣

≤ 1

R2 − 4R+ 5
length(SR) =

πR

R2 − 4R+ 5
→ 0

as R→ ∞. Hence

lim
R→∞

∫

[−R,R]
f = πe−1 cos 2− iπe−1 sin 2.

Taking the imaginary part we see that
∫ ∞

−∞

sinx

x2 + 4x+ 5
dx = −π sin 2

e
.

Solution 7.9
(i) Let z = eit so that cos t = (z + z−1)/2 and dz = ieit dt = iz dz. Then

∫ 2π

0

1

13 + 5 cos t
dt =

∫

C1

1

13 + 5
(

z+z−1

2

)

dz

iz

=
2

i

∫

C1

1

5z2 + 26z + 5
dz.

(ii) Note that 5z2 + 26z + 5 = (z + 5)(5z + 1). Hence f(z) has simple poles at z = −5
and z = −1/5.

We use Lemma 7.4.1(i) to calculate Res(f,−1/5). Note that

Res(f,−1/5) = lim
z→−1/5

(z + 1/5)
1

(z + 5)(5z + 1)

= lim
z→−1/5

5z + 1

5

1

(z + 5)(5z + 1)

= lim
z→−1/5

1

5z + 25

=
1

24
.
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(iii) Note that only the pole at z = −1/5 lies inside C1. Hence, by Cauchy’s Residue
Theorem,

∫ 2π

0

1

13 + 5 cos t
dt =

2

i

∫

C1

1

5z2 + 26z + 5
dz

= 2πi× 2

i
× Res(f,−1/5)

= 2πi× 2

i
× 1

24
= π/6.

Solution 7.10
Denote by C the unit circle C(t) = eit, 0 ≤ t ≤ 2π.

(i) Substitute z = eit. Then dz = ieit dt = iz dt so that dt = dz/iz and [0, 2π] transforms
to C. Also, cos t = (z + z−1)/2. Hence

∫ 2π

0
2 cos3 t+ 3cos2 t dt =

∫

C

(

(z + z−1)3

4
+

3(z + z−1)2

4

)

dz

iz
.

Now

(z + z−1)3

4
=

z3 + 3z + 3z−1 + z−3

4
,

(z + z−1)2

4
=

3z2 + 6 + 3z−1

4
.

Hence
∫ 2π

0
2 cos3 t+ 3cos2 t dt

=

∫

C

1

i

(

1

4z4
+

3

4z3
+

3

4z2
+

3

2z
+

3

4
+

2z

4
+
z2

4

)

dz.

Now the integrand has a pole of order 4 at z = 0, which is inside C, and no other
poles. We can immediately read off the residue at z = 0 as the coefficient of 1/z,
namely 3/2i. Hence by the Residue Theorem

∫ 2π

0
2 cos3 t+ 3cos2 t dt = 2πi

3

2i
= 3π.

(ii) As before, substitute z = eit. Then dt = dz/iz, cos t = (z + z−1)/2 and [0, 2π]
transforms to C. Hence

∫ 2π

0

1

1 + cos2 t
dt =

∫

C

1

1 + (z + z−1)2/4

dz

iz
=

1

i

∫

C

4z

z4 + 6z2 + 1
dz

Let

f(z) =
4z

z4 + 6z2 + 1
.

This has poles where the denominator vanishes. The denominator is a quadratic in
z2 and we can find the zeros by the quadratic formula. Hence f(z) has poles where

z2 =
−6±

√
36− 4

2
= −3± 2

√
2.
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Now −3− 2
√
2 < −1. Hence the poles at z = ±i

√

3 + 2
√
2 lie outside C. Note that

−1 < −3 + 2
√
2 < 0. Hence there are poles at z = ±i

√

3− 2
√
2 that lie inside C.

Both of these poles are simple.

We have that

Res

(

f, i

√

3− 2
√
2

)

= lim
z→i

√
3−2

√
2

(z − i
√

3− 2
√
2)4z

(z − i
√

3− 2
√
2)(z + i

√

3− 2
√
2)(z2 − (−3− 2

√
2))

= lim
z→i

√
3−2

√
2

4z

(z + i
√

3− 2
√
2)(z2 − (−3− 2

√
2))

=
4i
√

3− 2
√
2

2i
√

3− 2
√
2(−3 + 2

√
2 + 3 + 2

√
2)

=
1

2
√
2

and

Res

(

f,−i
√

3− 2
√
2

)

= lim
z→−i

√
3−2

√
2

(z + i
√

3− 2
√
2)4z

(z + i
√

3− 2
√
2)(z − i

√

3− 2
√
2)(z2 − (−3− 2

√
2))

= lim
z→−i

√
3−2

√
2

4z

(z − i
√

3− 2
√
2)(z2 − (−3− 2

√
2))

=
−4i

√

3− 2
√
2

−2i
√

3− 2
√
2(−3 + 2

√
2 + 3 + 2

√
2)

=
1

2
√
2
.

Hence

∫ 2π

0

1

1 + cos2 t
dt

=
1

i

∫

C

4z

z4 + 6z2 + 1
dz

=
1

i
2πi

(

Res

(

f, i

√

3− 2
√
2

)

+Res

(

f,−i
√

3− 2
√
2

))

= 2π

(

1

2
√
2
+

1

2
√
2

)

=
√
2π.

Solution 7.11
Let

f(z) =
1

z4
cot πz =

cos πz

z4 sinπz
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Then f has poles when the denominator vanishes, i.e. poles at z = n, n ∈ Z. The pole at
z = n, n 6= 0, is simple and by Lemma 7.4.1(ii) we have that

Res(f, n) =
cos πn

4n3 sinπn+ n4π cos πn
=

1

πn4
.

When z = 0, we use the expansion for cot z:

cot z =
1

z
− z

3
− z3

45
− 2z5

945
− · · · .

Hence
cot πz

z4
=

1

πz5
− π

3z3
− π3

45z
− 2π5z

945
− · · ·

so that z = 0 is a pole of order 5 and we can read off the residue as the coefficient of 1/z.
Hence Res(f, 0) = −π3/45.

Consider the square contour CN described in §7.5.4. The poles at z = −N, . . . , 0, . . . , N
lie inside CN . Hence, by Cauchy’s Residue Theorem

∫

CN

f = 2πi

N
∑

n=−N

Res(f, n)

= 2πi

( −1
∑

n=−N

1

πn4
− π3

45
+

N
∑

n=1

1

πn4

)

= 2πi

(

2

π

N
∑

n=1

1

n4
− π3

45

)

.

By Lemma 7.5.2, we have for z on CN

|f(z)| ≤ M

|z|4 ≤ M

N4
.

Also, length(CN ) = 4(2N + 1). By the Estimation Lemma,

∣

∣

∣

∣

∫

CN

f

∣

∣

∣

∣

≤ 4M(2N + 1)

N4
→ 0

as N → ∞. Hence

lim
N→∞

2

π

N
∑

n=1

1

n4
− π3

45
= 0

and rearranging this gives
∞
∑

n=1

1

n4
=
π4

90
.

(This method doesn’t work for
∑∞

n=1 1/n
3. If we write f(z) = z−3 cot πz then Res(f, n) =

1/πn3 for n 6= 0 and Res(f, 0) = 0. Summing over the residues we get

N
∑

n=−N

1

πn3
=

−1
∑

n=−N

1

πn3
+

N
∑

n=1

1

πn3
+ 0
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and the first two terms cancel, as (−n)3 = n3. So the residues on the negative integers
cancel with the residues at the positive integers. Suppose we took a square contour that
just enclosed the poles at the positive integers, say a square contour with corners at

1

2
+ iN,

1

2
− iN,N +

1

2
+ iN,N +

1

2
− iN

(draw a picture!) then we cannot bound f(z) on the edge from 1
2 + iN, 12 − iN in such a

way that the Estimation Lemma will then ensure that |
∫

f | tends to zero. In fact, there is no
known closed formula for

∑∞
n=1 1/n

3. See http://en.wikipedia.org/wiki/Apery’s constant.)

Solution 7.12
Suppose f has Laurent series

∑∞
n=−∞ an(z − z0)

n valid on the annulus {z ∈ C | R1 <
|z − z0| < R2}. By Theorem 6.2.1 the coefficients an are given by

an =
1

2πi

∫

Cr

f(z)

(z − z0)n+1
dz

where Cr is a circular path described anticlockwise centred at z0 and with radius r, where
r is chosen such that R1 < r < R2.

(i) We calculate that Laurent series of f(z) = 1/z(z − 1) valid on the annulus {z ∈ C |
0 < |z| < 1}. Here z0 = 0. Choose r ∈ (0, 1). We have that

an =
1

2πi

∫

Cr

f(z)

zn+1
dz =

1

2πi

∫

Cr

1

zn+2(z − 1)
dz

where Cr is the circular path with centre 0 and radius r ∈ (0, 1), described once
anticlockwise.

It is straightforward to locate the singularities of the integrand. For all n ∈ Z the
integrand has a simple pole at 1. When n ≥ −1, the integrand also has a pole of
order n+ 2 at 0.

For n = −2,−3, . . . the integrand has no poles inside Cr when r < 1. Hence, by
Cauchy’s Residue Theorem, an = 0 for n = −2,−3, . . .. For n ≥ −1, the pole at 0 lies
inside Cr. We can calculate the residue of the integrand at 0 by using, for example,
Lemma 7.4.2. Here

Res

(

1

zn+2(z − 1)
, 0

)

= lim
z→0

1

(n + 1)!

dn+1

dzn+1

(

zn+2 1

zn+2(z − 1)

)

= lim
z→0

1

(n + 1)!

dn+1

dzn+1

(

1

z − 1

)

= lim
z→0

1

(n + 1)!
(−1)n(n+ 1)!

1

(z − 1)n+1
= −1.

Hence, by Cauchy’s Residue Theorem, an = −1 for n = −1, 0, 1, 2, . . .. Hence f has
Laurent series

f(z) = −1

z
− 1− z − z2 − z3 − · · ·

valid on the annulus {z ∈ C | 0 < |z| < 1}.
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We can check this directly by noting that

1

z(z − 1)
=

−1

z(1− z)

=
−1

z
(1 + z + z2 + z3 + · · ·)

=
−1

z
− 1− z − z2 − z3 − · · ·

valid for 0 < |z| < 1 (where we have used the sum to infinity of the geometric
progression 1 + z + z2 + · · · = 1/(1− z)).

(ii) We calculate the Laurent series of f valid on the annulus {z ∈ C | 1 < |z| < ∞}.
Here z0 = 0 and an is given by

1

2πi

∫

Cr

1

zn+2(z − 1)
dz

where Cr is the circular path with centre 0 and radius r where r is now chosen such
that r ∈ (1,∞). The integrand has, for all n ∈ Z, a simple pole at z = 1 and, for
n ≥ −1, a pole of order n+ 2 at 0. Both of these poles lie inside Cr.

We have already calculated, for n ≥ −1, the residue of the pole at 0. Indeed,

Res

(

1

zn+2(z − 1)
, 0

)

= −1

for n ≥ −1. The residue of the pole at 1 is given by

Res

(

1

zn+2(z − 1)
, 1

)

= lim
z→1

(z − 1)
1

zn+2(z − 1)
= 1.

Hence, by Cauchy’s Residue Theorem,

an =















Res

(

1

zn+2(z − 1)
, 0

)

+Res

(

1

zn+2(z − 1)
, 1

)

= 0, for n ≥ −1,

Res

(

1

zn+2(z − 1)
, 1

)

= 1, for n = −2,−3, . . . .

Hence f has Laurent series

f(z) =
1

z2
+

1

z3
+

1

z4
+ · · ·

valid on the annulus {z ∈ C | 1 < |z| <∞}.
To check this directly, first observe that

(

1− 1

z

)−1

= 1 +
1

z
+

1

z2
+ · · ·

provided that |z| > 1, by summing the geometric progression. Hence

1

z(z − 1)
=

1

z2
(

1− 1
z

) =
1

z2

(

1 +
1

z
+

1

z2
+ · · ·

)

=
1

z2
+

1

z3
+

1

z4
+ · · ·

valid on the annulus {z ∈ C | 1 < |z| <∞}.
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(iii) We calculate the Laurent series of f valid on the annulus {z ∈ C | 0 < |z − 1| < 1}.
Here z0 = 1 and an is given by

an =
1

2πi

∫

Cr

f(z)

(z − 1)n+1
dz =

1

2πi

∫

Cr

1

z(z − 1)n+2
dz

where Cr is the circular path with centre 1 and radius r, described once anticlockwise,
where r is chosen such that r ∈ (0, 1). The integrand has, for all n ∈ Z, a simple pole
at 0 and, for n ≥ −1, a pole of order n+2 at 1. As < 1, only the pole at 1 lies inside
Cr. Hence, by Cauchy’s Residue Theorem, an = 0 for n = −2,−3,−4, . . . and

an = Res

(

1

z(z − 1)n+2
, 1

)

for n ≥ −1. Using Lemma 7.4.2 we have that

Res

(

1

z(z − 1)n+2
, 1

)

= lim
z→1

1

(n+ 1)!

dn+1

dzn+1

(

(z − 1)n+2 1

z(z − 1)n+2

)

= lim
z→1

1

(n+ 1)!

dn+1

dzn+1

(

1

z

)

= lim
z→1

1

(n+ 1)!
(n+ 1)!

1

zn+2
(−1)n+1 = (−1)n+1.

Hence f has Laurent series

f(z) =
1

z − 1
− 1 + (z − 1)− (z − 1)2 + (z − 1)3 − · · · .

To check this directly, it is convenient to change variables and let w = z − 1. Then

1

z(z − 1)
=

1

w(w + 1)
=

1

w

(

1− w + w2 − w3 + · · ·
)

where we have used the fact that

1

1 + w
=

1

1− (−w) = 1−w + w2 − w3 + · · · ,

summing the geometric progression. Hence

f(z) =
1

z − 1
− 1 + (z − 1)− (z − 1)2 + (z − 1)3 − · · · .

valid on the annulus {z ∈ C | 0 < |z − 1| < 1}.

(iv) We calculate the Laurent series of f valid on the annulus {z ∈ C | 1 < |z − 1| < ∞}.
Hence z0 = 1 and an is given by

an =
1

2πi

∫

Cr

f(z)

(z − 1)n+1
dz =

1

2πi

∫

Cr

1

z(z − 1)n+2
dz

where Cr is the circular path with centre 1 and radius r, described once anticlockwise,
where r is chosen such that r ∈ (1,∞). The integrand has, for all n ∈ Z, a simple
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pole at 0 and, for n ≥ −1, a pole of order n + 2 at 1. Both of these poles lie inside
Cr. We have already calculated that, for n ≥ 1,

Res

(

1

z(z − 1)n+2
, 1

)

= (−1)n+1.

The residue of the pole at 0 is given by

Res

(

1

z(z − 1)n+2
, 0

)

= lim
z→0

z
1

z(z − 1)n+2
= (−1)n+2 = (−1)n.

We can now calculate the coefficients an by using Cauchy’s Residue Theorem. When
n ≥ −1 we have that

an = Res

(

1

z(z − 1)n+2
, 0

)

+Res

(

1

z(z − 1)n+2
, 1

)

= (−1)n + (−1)n+1 = 0.

When n = −2,−3, . . . we have that

an = Res

(

1

z(z − 1)n+2
, 1

)

= (−1)n.

Hence f has Laurent series

f(z) =
1

(z − 1)2
− 1

(z − 1)3
+

1

(z − 1)4
− · · ·

valid on the annulus {z ∈ C | 1 < |z − 1| <∞}.
To see this directly we again change variables and let w = z − 1. Hence

1

z(z − 1)
=

1

w(w + 1)

=
1

w2
(

1 + 1
w

)

=
1

w2

(

1− 1

w
+

1

w2
− 1

w3
+ · · ·

)

=
1

w2
− 1

w3
+

1

w4
− · · ·

for |w| > 1, by summing the geometric progression. Hence

f(z) =
1

(z − 1)2
− 1

(z − 1)3
+

1

(z − 1)4
− · · ·

valid on the annulus {z ∈ C | 1 < |z − 1| <∞}.

Solution 7.13
We use the same notation as in §7.5.2: SR denotes the positive semi-circle with centre 0
and radius R, ΓR denotes the contour [−R,R] + SR.

We will actually integrate

f(z) =
zeiz

(z2 + a2)(z2 + b2)
.
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Note that |f(x)| ≤ C/|x|3 for some constant C > 0. Hence by Lemma 7.5.1 the integral
∫∞
−∞ f(x) dx exists and is equal to its principal value.

This has poles where the denominator vanishes, i.e. at z = ±ia,±ib, and all of these
poles are simple. If R is taken to be larger than b then the poles inside ΓR occur at z = ia, ib.
We can calculate

Res(f, ia) = lim
z→ia

(z − ia)zeiz

(z − ia)(z + ia)(z2 + b2)

= lim
z→ia

zeiz

(z + ia)(z2 + b2)

=
iae−a

2ia(b2 − a2)

=
e−a

2(b2 − a2)
.

Similarly,

Res(f, ib) = lim
z→ib

(z − ib)zeiz

(z − ib)(z + ib)(z2 + a2)

= lim
z→ib

zeiz

(z + ib)(z2 + a2)

=
ibe−b

2ib(−b2 + a2)

=
−e−b

2(b2 − a2)
.

Hence
∫

[−R,R]
f dz +

∫

SR

f dz =

∫

ΓR

f dz

= 2πi (Res(f, ia) +Res(f, ib))

=
2πi

2(b2 − a2)
(e−a − e−b)

provided that R > b.
Now if z is a point on SR then |z| > R. Hence

|(z2 + a2)(z2 + b2)| ≥ (|z|2 − a2)(|z|2 − b2) = (R2 − a2)(R2 − b2).

Also, writing z = x + iy so that 0 ≤ y ≤ R, we have that |eiz| = |ei(x+iy)| = |e−y+ix| =
|e−y| ≤ 1. Hence

|f(z)| ≤ R

(R2 − a2)(R2 − b2)
.

By the Estimation Lemma,
∫

SR

f(z) dz ≤ R

(R2 − a2)(R2 − b2)
length(SR) =

πR2

(R2 − a2)(R2 − b2)

which tends to zero as R→ ∞. Hence
∫

[−R,R]
f dz =

πi

(b2 − a2)
(e−a − e−b).
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By taking the imaginary part, we see that

∫ R

−R

x sinx

(x2 + a2)(x2 + b2)
dx =

π

(b2 − a2)
(e−a − e−b).

(As a check to see if we have made a mistake, note that the real part is zero. Hence

∫ ∞

−∞

x cos x

(x2 + a2)(x2 + b2)
dx = 0.

This is obvious as the integrand is an even function, and so must integrate (from −∞ to
∞) to zero.)

Solution 7.14
Let

f(z) =
cot πz

z2 + a2
, a 6= 0.

As
f(z) =

cos πz

(z2 + a2) sinπz

this has poles where the denominator vanishes, i.e. poles at z = ±ia and at z = n, n ∈ Z.
These poles are all simple. We can calculate

Res(f, ia) = lim
z→ia

(z − ia) cos πz

(z − ia)(z + ia) sinπz

= lim
z→ia

cos πz

(z + ia) sin πz

=
cos iπa

2ia sin iπa

=
cosh πa

−2a sinhπa

=
− cothπa

2a

using the facts that cos iz = cosh z, sin iz = i sinh z. Similarly,

Res(f,−ia) = lim
z→−ia

(z + ia) cos πz

(z + ia)(z − ia) sin πz

= lim
z→−ia

cos πz

(z − ia) sin πz

=
cos(−iπa)

−2ia sin(−iπa)

=
coshπa

−2a sinh πa

=
− coth πa

2a
.

For z = n, we use Lemma 7.4.1(ii) to see that

Res(f, n) =
cos πn

2n sinπn+ (n2 + a2)π cos πn
=

1

π(n2 + a2)
.
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−N 0 1−1 N N + 1−(N + 1)

ia

−ia

Figure 14.3: The contour CN encloses the poles at −N, . . . ,−1, 0, 1, . . . , N and at −ia, ia
(if N > |a|).

(Note that unlike in the previous question this is valid for z = 0 as well. This is because
f(z) does not have a pole at z = 0 and so we have a simple pole at z = 0 for f(z) cot πz.)

Let CN denote the square contour as described in §7.5.4; see Figure 14.3. If N > |a|
then CN encloses the poles at z = −N, . . . , 0, . . . , N and z = ±ia. Hence by Cauchy’s
Residue Theorem

∫

CN

f = 2πi

(

N
∑

n=−N

Res(f, n) + Res(f, ia) + Res(f,−ia)
)

= 2πi

(

N
∑

n=−N

1

π(n2 + a2)
− cothπa

2a
− cothπa

2a

)

= 2πi

( −1
∑

n=−N

1

π(n2 + a2)
+

1

πa2
+

N
∑

n=1

1

π(n2 + a2)
− 1

a
coth πa

)

= 2πi

(

2

N
∑

n=1

1

π(n2 + a2)
+

1

πa2
− 1

a
coth πa

)

Note that if z is on CN then |z2 + a2| ≥ |z|2 − a2 ≥ N2 − a2. Hence, by the bound on
cot πz from Lemma 7.5.2, and the Estimation Lemma we have that

∣

∣

∣

∣

∫

CN

f

∣

∣

∣

∣

≤ 4M(2N + 1)

N2 − a2

(as length(CN ) = 4(2N + 1)), which tends to zero as N → ∞. Hence

lim
N→∞

2πi

(

2
N
∑

n=1

1

π(n2 + a2)
+

1

πa2
− 1

a
cothπa

)

= 0
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and rearranging this gives

∞
∑

n=1

1

n2 + a2
=

π

2a
coth πa− 1

2a2
.

Solution 7.15
(i) Let f(z) = ez/z. Note that ez is holomorphic and non-zero on C and that 1/z is

holomorphic on C except at z = 0 where it has a simple pole. Hence f(z) has a
simple pole at z = 0.

By Lemma 7.4.1(i), we have

Res(f, 0) = lim
z→0

z
ez

z
= lim

z→0
ez = 1.

Noting that 0 lies inside C1, Cauchy’s Residue Theorem tells us that

∫

C1

ez

z
dz = 2πiRes(f, 0) = 2πi.

(ii) Let z = eit. Then dz = ieit dt = iz dt. As z moves along C1, we have that t varies
between 0 and 2π. Hence, noting that z = eit = cos t+ i sin t,

2πi =

∫

C1

ez

z
dz

=

∫ 2π

0

ecos t+i sin t

eit
ieit dt

= i

∫ 2π

0
ecos t+i sin t dt

= i

∫ 2π

0
ecos tei sin t dt

= i

∫ 2π

0
ecos t (cos(sin t) + i sin(sin t)) dt

= −
∫ 2π

0
ecos t sin(sin t) dt+ i

∫ 2π

0
ecos t cos(sin t) dt

Comparing real and imaginary parts gives the claimed integrals.

Solution 7.16
(i) Note that ex < 1 + ex so that 1/(1 + ex) < 1/ex. Hence

eax

1 + ex
≤ e(a−1)x.

As a ∈ (0, 1), we have that a− 1 < 0. Note that, if x > 1, we can choose C > 0 such
that x2 ≤ Ce(1−a)x. Hence e(a−1)x ≤ C/x2, provided x > 1. Hence the hypotheses
of Lemma 7.5.1 hold so that

∫∞
−∞ f(x) dx exists and is equal to the principal value

limR→∞
∫ R
−R f(x) dx.

c© University of Manchester 2018 156



MATH20101 Complex Analysis 14. Solutions to Part 7

(ii) Let f(z) = eaz/(1+ez). Then f is holomorphic except when the denominator vanishes.
Let z = x + iy. The denominator vanishes precisely when ex+iy = −1. Taking the
modulus we have that ex = 1, so x = 0. The solutions of eiy = −1 are precisely
y = (2k + 1)π, k ∈ Z. Hence f has singularities at z = (2k + 1)πi, k ∈ Z.

Write f(z) = p(z)/q(z) with p(z) = eaz , q(z) = 1 + ez. As q′(z) = ez , we have
q′((2k + 1)πi) = −1 6= 0. So (2k + 1)πi is a simple zero of q. As p((2k + 1)πi) 6= 0, it
follows that (2k + 1)πi is a simple pole, for each k ∈ Z.

From Lemma 7.4.1(ii), the residue at πi is p(πi)/q′(πi) = −eaπi.
The locations of the poles are illustrated in Figure 14.4.

(iii) The contour ΓR is illustrated in Figure 14.4. The contour ΓR winds once around the

πi

3πi

−R Rγ1

γ2

γ3

γ4

Figure 14.4: The poles of f(z) = eaz/(1 + ez) and the contour ΓR.

pole at πi but not around any other pole. Hence, by Cauchy’s Residue Theorem,

∫

ΓR

f = 2πiRes(f, πi) = −2πie−aπi.

(iv) Choose the parametrisations

γ1,R(t) = t, −R ≤ t ≤ R

and
γ2,R(t) = −t+ 2πi, −R ≤ t ≤ R

(note that γ2,R(t) starts at R+ 2πi and ends at −R+ 2πi). Then

∫

γ1,R

f =

∫ R

−R

eat

1 + et
dt

c© University of Manchester 2018 157



MATH20101 Complex Analysis 14. Solutions to Part 7

and
∫

γ2,R

f =

∫ R

−R

ea(−t+2πi)

1 + e−t+2πi
(−1) dt

= −
∫ R

−R

ea(s+2πi)

1 + es+2πi
ds (substituting s = −t)

= −e2πia
∫ R

−R

eas

1 + es
ds

= −e2πia
∫

γ1,R

f.

(v) First note that length(γ2,R) = 2π. If z is a point on γR,2 then z = R + it for some
0 ≤ t ≤ 2π. Then, for z on γR,2 we have

|f(z)| ≤ sup
t∈[0,2π]

|ea(R+it)|
|1 + eR+it| ≤

eaR

eR − 1

(where we have used the reverse triangle inequality to bound the denominator).
Hence, by the Estimation Lemma,

∣

∣

∣

∣

∣

∫

γ2,R

f

∣

∣

∣

∣

∣

≤ 2πeaR

eR − 1
→ 0

as R→ ∞, as 0 < a < 1.

The case of γR,4 is similar. Again, length(γ4,R) = 2π. If z is a point on γR,4 then
z = −R+ it for some 0 ≤ t ≤ 2π. Then, for z on γR,4 we have

|f(z)| ≤ sup
t∈[0,2π]

|ea(−R+it)|
|1 + e−R+it| ≤

e−aR

1− e−R
.

Hence, by the Estimation Lemma,
∣

∣

∣

∣

∣

∫

γ4,R

f

∣

∣

∣

∣

∣

≤ 2πe−aR

1− e−R
→ 0

as R→ ∞, as 0 < a < 1.

(vi) By parts (iii) and (iv) we know that

−2πieaπi =

∫

ΓR

f

=

∫

γ1,R

f +

∫

γ2,R

f +

∫

γ3,R

f +

∫

γ4,R

f

= (1− e2πia)

∫ R

−R

eax

1 + ex
dx+

∫

γ2,R

f +

∫

γ4,R

f.

Letting R→ 0 and using part (v) we see that

lim
R→∞

∫ R

−R

eax

1 + ex
dx = − 2πieaπi

1− e2πia
=

π

sinπa
.
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