
Mathematica Aeterna, Vol. 5, 2015, no. 4, 583-592

On connection between values
of Riemann zeta function at rationals
and generalized harmonic numbers

PawełJ. Szabłowski

Department of Mathematics and Information Sciences,
Warsaw University of Technology

ul. Koszykowa 75,
00-662 Warsaw, Poland

Abstract

Using Euler transformation of series, we relate values of Hurwitz zeta func-
tion ζ(s, t) at integer and rational values of arguments to certain rapidly con-
verging series, where some generalized harmonic numbers appear. Most of
the results of the paper can be derived from the recent, more advanced re-
sults, on the properties of Arakawa-Kaneko zeta functions. We derive our
results directly, by solving simple recursions. The form of mentioned above
generalized harmonic numbers carries information, about the values of the ar-
guments of Hurwitz function. In particular we prove: ∀k ∈ N : ζ(k, 1) =

ζ(k) = 2k−1

2k−1−1
∑∞

n=1
H
(k−1)
n

n2n
, where H(k)

n are defined below generalized harmonic

numbers, or that K =
∑∞

n=0
n!(H2n+1−Hn/2)

2(2n+1)!!
, where K denotes Calatan constant

and Hn denotes n−th (ordinary) harmonic number. Further we show that
generating function of the numbers ζ̂(k) =

∑∞
j=1(−1)j−1/jk , k ∈ N and ξ̂(0)

= 1/2 is equal to B(1/2, 1− y, 1 + y) where B(x, a, b) denotes incomplete beta
function.

Mathematics Subject Classification: Primary 111M35, 40G05, ; Sec-
ondary 05A15, 05E05

Keywords: Riemann zeta function Hurwitz zeta function, Euler summa-
tion, Harmonic numbers, generalized Harmonic numbers, Catalan constant.



584 PawełJ. Szabłowski

1 Introduction

First let us recall basic notions and definitions that we will work with. By the
Hurwitz function ζ(s, α) we will mean:

ζ(s, α) =
∞∑
j=0

1

(j + α)s
,

considered for Re s > 1, Reα ∈ (0, 1]. Function ζ(s, 1) is called Riemann zeta
function. We will denote it also by ζ(s), if it will not cause misunderstanding.
It turns out that both these functions can be extended to holomorphic func-
tions of s on the whole complex plane except s = 1 where a single pole exists.
Of great help in doing so is the formula

ζ(s) =
2s−1

2s−1 − 1

∞∑
j=1

(−1)j−1

js
, (1)

that enables to extend Riemann zeta function to the whole half plane Re s > 0.
We will consider numbers:

M(m,i)
k =

∞∑
j=0

(−1)j

(mj + i)k
,

for m ∈ N and i ∈ {1, . . . ,m− 1} . Notice that M(1,1)
k =

∑∞
j=1(−1)j−1/jk and

M(2,1)
1 = π/4. The number M(2,1)

2 =
∑∞

j=0
(−1)j
(2j+1)2

is called Catalan constant K.
It is elementary to notice that

M(m,i)
k =

1

(2m)k
(ζ(k, i/(2m))− ζ(k, 1/2 + i/(2m)).

The main idea of this paper is to apply the so called Euler transformation,
that was nicely recalled by Sondow in [12]. As pointed out there we have:

∞∑
k=1

(−1)k−1ak =

∞∑
n=0

∆na1/2
n+1,

where {ak}k≥1 is a sequence of complex numbers and the sequence ∆nak is de-
fined recursively: ∆0ak = ak, ∆nak = ∆n−1ak−∆n−1ak+1 =

∑n
m=0(−1)m

(
n
m

)
am+k.

Sondow in [12] presented general idea of applying Euler transformation to
Riemann function. He however stopped half way in the sense that he calculated
finite differences ∆n applied to (j+1)−s only for s being negative integers. We
are going to make a few steps further and calculate these differences pointing
out the rôle of the generalized harmonic numbers in those calculations.



Hurwitz function 585

As stated in the abstract most of the results of this paper can be derived
from recent more advanced results concerning Lerch and Arakawa-Koneko zeta
functions that were presented in the series of papers [3], [4], [5], [6], [7].
We present here an alternative, simple way of obtaining them by solving

simple recursion.
The paper is organized as follows. In the next section 2 we present an aux-

iliary result that enables application of Euler transformation to the analyzed
series. Further we present transformed series approximating numbers M(m,i)

k .
In Section 3 we calculate generating functions of certain series of numbers and
functions. More precisely we calculate generating functions of the generalized
harmonic numbers that we have defined in the previous section. We also cal-
culate generating function of the series of the generating functions that were
defined previously. It turns out that this calculation enables to obtain the
generating function of the series sums that appear on the right hand side of
(1). Finally in the last Section 4 there are collected cases when exact values
of numbers M are known.

2 Euler transformation

To proceed further we need the following result.

Proposition 1 Let us denote A(m,i)n,k =
∑n

j=0(−1)j
(
n
j

)
/(mj+ i)k, n = 0, 1, . . . ,

and the family of sequences defined recursively: B(m,i)
n,0 = 1, B0,k = 1

ik−1 , k ≥ 1,

∀n, k ≥ 0 : B
(m,i)
n,k =

∑n
j=0

1
(mj+i)

B
(m,i)
j,k−1. We have then:

∀ m ∈ N : A(m,i)0,0 = 1, A(m,i)n,0 = 0, A
(m,i)
n,1 = n!

m(i/m)n+1
, where

(a)n = a(a+ 1) . . . (a+ n− 1) is the so called ’rising factorial’.
∀ n ≥ 0, k ≥ 1 we get:

A
(m,i)
n,k =

n!

m(i/m)n+1
B
(m,i)
n,k−1.

Proof. i) The fact that An,0 = 0 follows immediately properties of binomial
coeffi cients. Notice that we have

A
(m,i)
n+1,k −

m(n+ 1)

m(n+ 1) + i
A
(m,i)
n,k =

n∑
j=0

(−1)j
(
n+ 1

j

)
/(mj + i)k +

(−1)n+1

(m(n+ 1) + i)k

− m(n+ 1)

m(n+ +1) + i

n∑
j=0

(−1)j
(
n

j

)
/(mj + i)k =
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(−1)n+1

(m(n+ 1) + i)k
+

n∑
j=0

(−1)j(

(
n+ 1

j

)
− m(n+ 1)!

j!(n− j)!(m(n+ 1) + i)
)/(mj + i)k

=
(−1)n+1

(m(n+ 1) + i)k
+

1

m(n+ 1) + j

n∑
j=0

(−1)j
(
n+ 1

j

)
/(mj + i)k−1

=
1

m(n+ 1) + i

n+1∑
j=0

(−1)j
(
n+ 1

j

)
/(mj + i)k−1 =

1

m(n+ 1) + i
A
(m,i)
n+1,k−1

since (1− m(n+1−j)
(mn+m+i)

) = jm+i
m+mn+i

. Now notice that we haveA(m.i)n+1,1−
m(n+1)
m(n+1)+i

A
(m,i)
n,1

= 0 from which immediately follows that A(m,i)n,1 = n!
m(i/m)n+1

since A(m,i)0,1 = 1
i
.

Now divide both sides of the identity A(m,i)n+1,k−
m(n+1)
mn+m+i

A
(m,i)
n,k = 1

mn+m+i
A
(m,i)
n+1,k−1

byA(m,i)n+1,1 and denoteB
(m,i)
n,k = A

(m,i)
n,k /A

(m,i)
n,1 .We getB(m,i)

n+1,k−B
(m,i)
n,k = 1

m(n+1)+i
B
(m,i)
n+1,k−1

since A(m.i)n+1,1 = m(n+1)
mn+m+i

A
(m,i)
n,1 . Hence B(m,i)

n,k =
∑n

j=0
1

mj+i
B
(m,i)
j,k−1 since ∀k ≥ 1 :

B
(n,i)
0,k = 1/ik−1.

Remark 1 In the literature (compare e.g. [2], [8], [10]) there function notions
of harmonic and generalized harmonic numbers defined by h(k)n =

∑n
j=1 1/jk,

n ≥ 1. Numbers h(1)n are called simply (ordinary) harmonic numbers. Another
way to generalize the notion of harmonic numbers was presented by Coppo
and Candelpergher in their papers [5], [6], [7]. There the generalized harmonic
numbers were defined using Bell’s polynomials.

We are going to define differently generalized harmonic numbers.

Definition 1 For every k ∈ N numbers
{
H
(k)
n

}
n≥1,k≥0

defined recursively by

H
(0)
n = 1, H

(k)
n =

∑n
j=1H

(k−1)
j /j, n ≥ 1 will be called generalized harmonic

numbers of order k.

Remark 2 It is easy to see that B(1,1)
n,k = H

(k)
n+1 and that H

(1)
n is an ordinary

n−th harmonic number.

Remark 3 Notice that H(k)
n is a symmetric function of order k of the numbers

{1, 1/2, . . . , 1/n} hence it can be expressed as a linear combination of some
other symmetric functions of order less or equal k. For example we have: H(1)

n

= h
(1)
n = Hn (the ordinary harmonic number), H

(2)
n = H2

n/2 + h
(2)
n /2, H

(3)
n =

H3
n/6 +Hnh

(2)
n /2 + h

(3)
n /3 and so on.

Remark 4 Notice also that recursive equation, that was obtained in the proof
of Proposition 1 i.e.

A
(m,i)
n+1,k −

m(n+ 1)

m(n+ 1) + i
A
(m,i)
n,k =

1

m(n+ 1) + i
An+1,k−1,
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is valid also for k = 0,−1,−2, . . . . . Of course then we apply it in the following
form:

An+1,k−1 = (m(n+ 1) + i)An+1,k −m(n+ 1)A
(m,i)
n,k ,

getting for example : A(m,i)0,−1 = 1, A
(m,i)
1,−1 = −m, A(m,i)n,−1 = 0, A

(m,i)
0,−2 = 1, A

(m,i)
1,−2

= −m(m + i + 1), A
(m,i)
2,−2 = 2m2 , A(m,i)n,−2 = 0 for n = 3, 4, . . . . The fact that

A
(m,i)
n,−k = 0 for n ≥ k + 1 was already noticed, justified and applied by Sondow
in [12].

As a corollary we have the following result:

Theorem 2

M(m,i)
k =

∞∑
n=0

n!

2n+1m(i/m)n+1
B
(m,i)
n,k−1, (2)

where numbers B(m,i)
n,k are defined above.

i) In particular :

M(2m,m)
2k+1 =

1

m2k+1
M

(2,1)
2k+1 = π2k+1

(−1)kE2k
2(2m)2k+1(2k)!

, (3)

M(2,1)
2 = K =

∞∑
n=0

n!(H2n+1 −Hn/2)

2(2n+ 1)!!
, (4)

where Hn denotes n− th (ordinary) harmonic number.
ii) for m = i = 1, k ∈ N:

∞∑
j=1

(−1)j−1

jk
=
∞∑
n=1

H
(k−1)
n

n2n
, (5)

and consequently for k = 2, 3, . . .

ζ(k) =
2k−1

2k−1 − 1

∞∑
n=1

H
(k−1)
n

n2n
. (6)

Proof. Applying Euler transformation to the series M(m,i)
n,k we have

M(m,i)
n,k =

∞∑
n=0

A
(m,i)
n,k /2n+1.

Now it remains to apply Proposition 1. i) To see that (2) reduces to (4)
when k = 2, m = 2 and i = 1 notice that B(2,1)

n,0 = 1 and consequently B(2,1)
n,1

=
∑n

j=0 1/(2j + 1) = H2n+1 − 2Hn. Further we have (1/2)n+1 =
∏n

j=0(j +
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1/2) = (2n + 1)!!/2n+1. To justify (3) we have to observe that 2M(2m,m)
2k+1 =

Ŝ(2k+1, 2m,m) =
∑∞

j=−∞
(−1)j

(j2m+m)2k+1
= 1

m2k+1

∑∞
j=−∞

(−1)j
(j2+1)2k+1

. The fact that∑∞
j=−∞

(−1)j
(j2+1)2k+1

= π2k+1(−1)k E2k
22k+1(2k)!

dates back to Euler and was recalled
in [13].
ii) If m = i = 1 we have (1)n+1 = (n + 1)!. Recall also that then B(m,i)

n,k =

H
(k)
n+1. (6) follows additionally (1).

Remark 5 Notice that when i = 1, then the sequence
{
B
(m,1)
n,k

}
is generated

by the recursion: B(m,1)
n,0 = 1, B

(m,1)
n,k =

∑n
j=0B

(m,1)
n.k−1/(mj + 1). Now arguing

by induction we see that ∀n ≥ 0: B(m,1)
n,k ≥ B

(m,1)
n,k−1. Consequently we deduce

that the sequence
{
M(m,1)

k

}
k≥1

is increasing, which is not so obvious when

considering only definition of these numbers. It is also elementary to notice
that

lim
k−→∞

M(m,1)
k = 1.

In particular we deduce that the sequence {ζ(k)(1− 1/2k−1)}k>1 is increasing.

Remark 6 Notice that one can easily prove (by induction) that ∀n, k ∈ N :

1 ≤ H
(k)
n ≤ n. Hence, utilizing (6) we have:

ln 2− 1/2

2m+1(m+ 1)
≤
∣∣∣∣∣ζ(k)− 2k−1

2k−1 − 1

m∑
n=0

H
(k−1)
n+1

2n+1(n+ 1)

∣∣∣∣∣ ≤ 1

2m+1
,

since 2k−1

2k−1−1 ≤ 2 for k ≤ 2 and further

∣∣∣∣ζ(k)− 2k−1

2k−1−1
∑m

n=0

H
(k−1)
n+1

2n+1(n+1)

∣∣∣∣ ≤
2k−1

2k−1−1
∑∞

n=m+1 1/2n+1 ≤ 2k−1

2k−1−1/2
m+2 and m+1

n+1
≥ 1

n−m+1 and
∑∞

n=m+1
1

2n+1(n+1)

≥ 1
2m+1(m+1)

∑∞
n=m+1

1
2n−m+1(n−m+1) = ln 2−1/2

2m+1(m+1)
.

Remark 7 Formulae (2) and (6) can be considered as a series transformation
to speed up its convergence. Apery for ζ(3) in his breakthrough paper and later
Hessami Pilehrood et al. in [9] obtained series transformations to speedup
series appearing in the definitions of Riemann or Hurwitz zeta functions. As
it is remarked in [9] all these transformation give series more or less of the
form cn/4

n where cn = O(1), but for different arguments of ζ one gets very
different series in a very different, particular way. Apery’s one is one of the
simplest. Formulae (2) and (6) offer unified form of the transformed series
and speed of convergence is only slightly worse. Namely of the form cn/2

n.
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Remark 8 Notice also that analyzing the proof of Proposition 1 we can formu-
late the following observation. Let us denote A(m,l)n,s =

∑n
j=0(−1)j

(
n
j

)
/(mj+ l)s

for Re(s) > 0. Then

A
(m,l)
n+1,s −

m(n+ 1)

m(n+ 1) + l
A(m,l)n,s =

1

m(n+ 1) + l
A
(m,l)
n+1,s−1.

Hence keeping in mind that A(m,l)0,s = 1/ls and assuming that we know numbers{
A
(m,l)
n,s−1

}
n≥0

we are able to get numbers
{
A
(m,l)
n,s

}
n≥0

and consequently find

ζ(s, l/m).
In particular if m = l = 1 we get An+1,s− n+1

n+2
An,s = 1

n+2
An+1,s−1 where we

denoted An,s = A
(1,1)
n,s to simplify notation. Consequently we deduce that An,s =

1
n+1

∑n
j=1Aj,s−1. Since we can iterate this relationship we see that the knowl-

edge of functions An,s, for Re(s) ∈ (0, 1] implies knowledge of these functions
for s with Re(s) > 0.

3 Generating functions and integral represen-
tation Riemann zeta functions at integer val-
ues

Let us denote by fn(x) the generating function of numbers
{
H
(n)
j

}∞
j=0

i.e. fn(x)

=
∑∞

j=0 x
jH

(n)
j+1. We have the following simple observation:

Proposition 3 i) ∀x ∈ (−1, 1) : f−1(x) = 1, f0(x) = 1/(1− x) :

fn(x) =
1

x(1− x)

∫ x

0

fn−1(y)dy, (7)

n ≥ 1.
ii) Let us denote Q(x, y) the generating function of function series {fn}n≥0

i.e. Q(x, y) =
∑∞

j=0 y
jfj(x), for y ∈ (−1, 1). We have

Q(x, y) =
B(x, 1− y, 1 + y)

x1−y(1− x)1+y
, (8)

where B(x, a, b) denotes incomplete beta function.

Proof. i) We have fn(x) =
∑∞

j=1 x
j−1H

(n)
j =

∑∞
j=1 x

j−1∑j
k=1H

(n−1)
k /k =∑∞

k=1H
(n−1)
k /k

∑∞
j=k x

j−1 = 1
1−x
∑

k=1 x
k−1H

(n−1)
k /k =

1
x(1−x)

∑∞
k=1H

(n−1)
k

∫ s
0
yk−1dy = 1

x(1−x)
∫ x
0

∑∞
k=1 y

k−1H
(n−1)
k dy

= 1
x(1−x)

∫ x
0
fn−1(y)dy.
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ii) We have: (1−x)xQ(x, y) =
∑∞

j=0 y
j(1−x)xfj(x) = x+

∑∞
j=1 y

j
∫ x
0
fj−1(z)dz

=
x +

∫ x
0

∑∞
j=1 y

jfj−1(z)dz) = x + y
∫ x
0
Q(z, y))dz. Differentiating with respect

to x we get: (1 − 2x)Q(x, y) + x(1 − x)Q′(x, y) = 1 + yQ(x, y). Now solving
this differential equation we get Q(x, y) = Beta(x,1−y,1+y)−C(y)

x1−y(1−x)1+y . Recalling that
Q(0, y) = 1/(1− y) we see C(y) = 0.

Let us denote for simplicity ζ̂(s)
df
=
∑∞

j=1(−1)j/js for Re(s) > 0. Notice
that following (5) we have

ζ̂(k) =

∫ 1/2

0

fk−1(x)dx =
1

4
fk(1/2), (9)

for k = 1, 2, . . . .
We also have:

∞∑
j=0

yj ζ̂(j) = B(1/2, 1− y, 1 + y),

for y ∈ (−1, 1) following (8).
Recall that

∑∞
j=1 ζ(2j)t2j = 1 − πt cot(πt) hence

∑∞
j=1 ζ̂(2j)t2j = πt

sin(πt)
−

1 after some algebra. Hence

∞∑
j=0

y2j+1ζ̂(2j + 1) = B(1/2, 1− y, 1 + y) + 1− πy

sin(πy)
,

since ζ̂(0) = 1/2. Let us remark that there exist some expansions of incomplete
beta function. Applying one of them we have for example:

∞∑
j=0

yj ζ̂(j) = 2y−1
∞∑
j=0

(−y)j
j!(j + 1− y)2j

,

for y ∈ (0, 1).

4 Remarks on particular values

In [13] the sums of the form S(n, k, l) =
∑∞

j=−∞
1

(jk+l)n
, Ŝ(n, k, l) =

∑∞
j=−∞

(−1)j
(jk+l)n

were analyzed and some of them were calculated. From the results of this paper
it follows that the following sums:

M(m,i)
k + (−1)k+1M(m,m−i)

k

have values of the form πk times some known, analytic number. Notice that
this statement is trivial for k odd, m even and i = m/2.
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In particular we get for k = 2l we haveM(m,i)
2l −M

(m,m−i)
2l = 1

m2l (ζ(2l, l/(2m))
−ζ(2l, (m+i)/(2m))−ζ(2l, (m−i)/(2m))+ζ(2l, (2m−i)/(2m)) = 1

m2l (ζ(2l, l/(2m))
+ ζ(2l, 1− i/(2m))− ζ(2l, (m+ i)/(2m)− ζ(2l, (m− i)/(2m)).
Following [13] we also have for k ≥ 1:

S(2k, 4, 1) =
1

42k
(ζ(2k, 1/4) + ζ(2k, 3/4)) = π2k

(22k − 1)

2(2k)!
(−1)k+1B2k,

where B2k denotes 2k − th Bernoulli number. In particular we have

16K =(ζ(2, 1/4)− ζ(2, 3/4)); (ζ(2, 1/4) + ζ(2, 3/4)) = 2π2.

Finally let us recall that ζ(2l, 1) = (−1)l+1B2l
(2π)2l

2(2l)!
. Using formula (6) we

get:

(−1)l+1B2l
(2π)2l

2(2l)!
=

22l−1

22l−1 − 1

∞∑
n=1

H
(2l−1)
n

n2n
,

and consequently we obtain the following expansions of even powers of π :

π2l = (−1)l+1
(2l)!

(22l−1 − 1)B2l

∞∑
n=1

H
(2l−1)
n

n2n
.
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