CSE 154: Web Programming
Node.js/Express “Cheat Sheet”

This reference summarizes the most useful methods/properties used in CSE 154 for Node.js/Express. It is not an
exhaustive reference for everything in Node.js/Express (for example, there exist many more fs
methods/properties than are shown below), but provide most functions/properties you will be using in this class.
Note that this Cheat Sheet is more comprehensive than the one provided in CSE154 exams.

Basic Node.js Project Structure | Example Express app Template

example-node-project/ "use strict";
.gitignore
APIDOC.md /* File comment =*/
app.js . n n
node_modules/ const express = require("express");

// other modules you use

pa(.:I.<z;1ge.json // program constants

public/
. const app = express();
img/ // if serving front-end files in public/
inéé; html app.use(express.static(“public”));
index.Js // if handling different POST formats
styles.css app.use(express.urlencoded({ extended: true }));

app.use(express.json());
app.use(multer().none());

// app.get/app.post endpoints
// helper functions

const PORT = process.env.PORT || 86000;
app.listen(PORT);

npm Commands

Command Description

npm init Initializes a node project. Creates packages.json to track required
modules/packages, as well as the node_modules folder to track
imported packages.

npm install Installs any requirements for the local node package based on the
contents of package.json.

npm install <package-name> Installs a package from NPM’s own repository as well as any
requirements specified in that package’s package.json file.

CSE 154 Node.js Cheat Sheet Summer 2019 - Version 08/21/19

Term

Definition

API

Application Programming Interface.

Web Service

A type of API that supports HTTP Requests, returning data such as
JSON or plain text.

Express A module for simplifying the http-server core module in Node to
implement APIs

npm The Node Package Manager. Used to initialize package.json files
and install Node project dependencies.

Module A standalone package which can be used to extend the
functionality of a Node project.

Package Any project with a package.json file.

API Documentation

A file detailing the endpoints, usage, and functionality of various
endpoints of an API.

Server A publicly accessible machine which exchanges information with
one or more clients at a time.

Client A private or public machine which requests information from a
server.

Module Description

fs The “file system” module with various functions to process data in the file system.

path Provides functions to process path strings.

util Provides various “utility” functions, such as util.promisify.

CSE 154 Node.js Cheat Sheet

Summer 2019 - Version 08/21/19

Other Useful Modules

The following modules must be installed for each new project using npm install <module-name>.

Module Description

express A module for simplifying the http-server core module in Node to implement APIs.

glob Allows for quick traversal and filtering of files in a complex directory.

multer Used to support FormData POST requests on the server-side so we can access the req.body parameters.
mysql Provides functionality for interacting with a database and tables.

promise-mysql

Promisified wrapper over mysql module - each function in the mysqgl module returns a promise instead of
taking a callback as the last argument (recommended).

cookie-parser

A module to access cookies with reg/res objects in Express.

Express Route Functions

Function

Description

app.get(“path”, middlewareFn(s));
> {

app.get(“/”, (req, res)
1)

app.get(“/:city”, (req, res) => {
let city = req.params.city;

ST

app.get(“/cityData”, (req, res) => {
let city = req.query.city;

N

// Example with multiple middleware functions
app.get(“/”, validateInput, (req, res) => {

}, .Hz.andleErr);

Defines a server endpoint which accepts a valid GET request.
Request and response objects are passed as req and res
respectively. Path parameters can be specified in path with
“varname” and accessed via req.params. Query parameters
can be accessed via req.query.

app.post(“path”, middlewareFn(s));

app.post(“/addItem”, (req, res) => {
let itemName = req.body.name;

Defines a server endpoint which accepts a valid POST request.
Request and response objects are passed as req and res
respectively. POST body is accessible via req.body. Requires
POST middleware and multer module for FormData POST
requests.

CSE 154 Node.js Cheat Sheet

Summer 2019 - Version 08/21/19

Property/Function Description

req.params Captures a dictionary of desired path parameters. Keys are
placeholder names and values are the URL itself.

req.query Captures a dictionary of query parameters, specified in a
PReyl=valuel&key2=value2& ... pattern.

req.body Holds a dictionary of POST parameters as key/value pairs.
Requires multer module for multipart form requests (e.g.
FormData) and using middleware functions (see Express template)
for other POST request types.

req.cookies Retrieves all cookies sent in the request. Requires cookie-parser
module.

Property/Function Description

res.set(headerName, value); Used to set different response headers - commonly the

“Content-type” (though there are others we don’t cover).

res.set(“Content-Type", “text/plain”);

res.set(“Content-Type”, “application/json”);

res.type(“text”); Shorthand for setting the “Content-Type” header.

res.type(“json”);

res.send(data); Sends the data back to the client, signaling an end to the
response (does not terminate your JS program).

res.send(“Hello”);

res.send({ “msg” “Hello” });

res.end(); Ends the request/response cycle without any data (does
not terminate your JS program).

res.json(data); Shorthand for setting the content type to JSON and
sending JSON.

res.status(statusCode) Specifies the HTTP status code of the response to

)) communicate success/failure to a client.
res.status(400).send(“client-side error message”);
res.status(500).send("“server-side error message”);

CSE 154 Node.js Cheat Sheet

Summer 2019 - Version 08/21/19

Useful fs Module Functions

Note: You will often see the following “promisified” for use with async/await. The promisified versions will return
a Promise that resolves callback’s contents or rejects if there was an error. Remember that you should always
handle potential fs function errors (try/catch if async/await, if/else if standard callback).

Example of promisifying callback-version of fs.readFile:
fs.readFile(“file.txt”, “utf8”, (err, contents) => {

1)
// Promisified:

const util = require(“util”);
const readFile = util.promisify(fs.readFile);

async function example() {
try {
let contents = await readFile("“file.txt”);

} ééich(err) {

}
}
Function Description
fs.readFile(filename, “utf8”, callback); Reads the contents of the file located at relative
directory filename. If successful, passes the file
fs.readFile(“file.txt”, “utf8”, contents to the callback as contents parameter.
(err, contents) => { ... } Otherwise, passes error info to callback as error
); parameter.
fs.writeFile(filename, data, “utf8”, callback); Writes data string to the file specified by filename,
overwriting its contents if it already exists. If an error
. . " yu y u " occurs, error is passed to the callback function.
fs.writeFile(“file.txt”, “new contents”, “utf8”,
(err) =>{ ... }
)
fs.appendFile(filename, data, “utf8”, callback); Writes data to the file specified by filename,
appending to its contents. Creates a new file if the
. v v w v w R filename does not exist. If an error occurs, error is
fs.appendFile(“file.txt”, "added contents”, “utf8”, passed to the callback function.
(err) => { ... }
)
fs.existsSync(filename); Returns true if the given filename exists. This is the
only synchronous fs function you may use in CSE154
(the asynchronous function is deprecated due to race
conditions).
fs.readdir(path, callback); Retrieves all files within a directory located at path. If
successful, passes the array of directory content
s R paths (as strings) to the callback as contents
fs.readdir(“dir/path”, (err, contents) => { parameter. Otherwise, passes error info to callback
ce as error parameter.
3

CSE 154 Node.js Cheat Sheet Summer 2019 - Version 08/21/19

Useful path Module Functions

Function

Description

path.basename(pathStr);

Returns the filename of the pathStr. Ex. “picture.png” for “img/picture.png”

path.extname(pathStr);

Returns the file type/file extension of the pathStr. Ex. “.png” for “img/picture.png”

path.dirname(pathStr);

Returns the directory name of the pathStr. Ex: “img/” for “img/picture.png”

The glob module

Function

Description

glob(pattern, callback);
glob(“img/*", (err, paths) => {
1)

// promisified
paths = await glob(“img/*");

Globs all path strings matching a provided pattern. The pattern will generally
follow the structure of a file path, along with any wildcards. If no paths match, the
result array will be empty. If successful, passes the array of directory content
paths (as strings) to the callback as contents parameter. Otherwise, passes error
info to callback as error parameter.

Common selectors:

* - A wildcard selector that will contextually match a single filename, suffix, or
directory.

** _ A recursive selector that will search into any subdirectories for the pattern that
follows it.

The promise-mysql module

Function

Description

mysql.createConnection({
host : hostname,
port : port,
user : username,
password pw,
database : dbname

1)

// default localhost

Returns a connected database object using config variables. If an
error occurs during connection (e.g. the SQL server is not running),
does not return a defined database object.

db.query(qryString);

db.query(qryString, [placeholders]);

Executes the SQL query. If the query is a SELECT statement, returns a
Promise that resolves to an array of RowDataPackets with the records
matching the qryString passed. If the query is an INSERT statement,
the Promise resolves to an OkPacket. Throws an error if something
goes wrong during the query.

When using variables in your query string, you should use ?
placeholders in the string and populate [placeholders] with the
variable names to sanitize the input against SQL injection

CSE 154 Node.js Cheat Sheet

Summer 2019 - Version 08/21/19

