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Abstract. We investigate the ground state of the two-dimensional three-band d-p model for
for high-temperature superconductors on the basis of a variational Monte Carlo method. We
employ an optimization variational Monte Carlo method that we have developed recently. The
many-body wave function is improved beyond the Gutzwiller ansatz by adopting the wave
function in the form ψ = exp(−S)ψG where ψG represents the Gutzwiller function and S is a
kinetic operator. The strong magnetic correlation and also superconductivity (SC) are induced
by the on-site Coulomb repulsive interaction. It is important to clarify the phase diagram that
includes superconductive phase and antiferromagnetic phase. We show the phase diagram to
show the antiferromagnetic region in the parameter space. High-temperature superconductivity
may occur in the strongly correlated region near the antiferromagnetic boundary.

1. Introduction

The physics of high-temperature superconductivity has been studied intensively for about 30
years since the discovery of cuprate high-temperature superconductors[1]. It has been established
that the Cooper pairs of cuprate superconductors have the d-wave symmetry. This indicates
that the electron correlation plays an important role for the appearance of high-temperature
superconductivity. It is also known that cuprate parent materials without carries are Mott
insulators.

The CuO2 plane is commonly contained in high-temperature cuprates. The CuO2 plane
consists of oxygen atoms and copper atoms and the electronic model for this plane is the model
with d and p orbitals called the d-p model (or three-band Hubbard model)[2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13, 14, 15, 16, 17, 18]. It is very hard to elucidate the phase diagram of the d-p
model because of strong correlation between electrons. We often use simplified models such as
the two-dimensional single-band Hubbard model[19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
32, 33, 34, 35, 36] or ladder model[37, 38, 39, 40] to make clear the phase diagram of correlated
electron systems.

A variational Monte Carlo method is a useful method to investigate electronic properties
of strongly correlated electron systems where we calculate the expectation values numerically.
It is necessary to improve variational wave functions to obtain reliable results for correlated
electrons. We proposed wave functions by multiplying an initial wave function by exp(−S)-type
operators[36, 41], where S is a correlation operator with variational parameters. An optimization
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process is performed in a systematic way by multiplying by the exponential-type operators
repeatedly[41]. It has been shown that the ground-state energy is lowered considerably by using
this type of wave functions[36].

2. Hamiltonian

The three-band model that explicitly includes oxygen p and copper d orbitals contains the
parameters Ud, Up, tdp, tpp, t

′
d, ǫd and ǫp. Our study is within the hole picture and the

Hamiltonian is written as

Hdp = ǫd
∑

iσ

d†iσdiσ + ǫp
∑

iσ

(p†i+x̂/2σpi+x̂/2σ + p†i+ŷ/2σpi+ŷ/2σ)

+ tdp
∑

iσ

[d†iσ(pi+x̂/2σ + pi+ŷ/2σ − pi−x̂/2σ − pi−ŷ/2σ) + h.c.]

+ tpp
∑

iσ

[p†i+ŷ/2σpi+x̂/2σ − p†i+ŷ/2σpi−x̂/2σ

− p†i−ŷ/2σpi+x̂/2σ + p†i−ŷ/2σpi−x̂/2σ + h.c.]

+ t′d
∑

〈〈ij〉〉σ

ǫij(d
†
iσdjσ + h.c.) + Ud

∑

i

d†i↑di↑d
†
i↓di↓. (1)

diσ and d†iσ represent the operators for the d hole. pi±x̂/2σ and p†i±x̂/2σ denote the operators

for the p holes at the site Ri±x̂/2, and in a similar way pi±ŷ/2σ and p†i±ŷ/2σ are defined. tdp
is the transfer integral between adjacent Cu and O orbitals and tpp is that between nearest
p orbitals. 〈〈ij〉〉 denotes a next nearest-neighbor pair of copper sites. t′d was introduced (as
shown in Fig.1) to reproduce the Fermi surface[42] reported in several cuprate superconductors
such as Bi2Sr2CaCu2O8+δ[43] and Tl2ba2CuO6+δ[44]. ǫij takes the values ±1 according to the
sign of the transfer integral between next nearest-neighbor d orbitals. Ud is the strength of the
on-site Coulomb repulsion between d holes. In this paper we neglect Up among p holes because
Up is small compared to Ud[45, 46, 47, 48, 49]. Up is not important in the low-doping region
where the p-hole correlation effect is small. The values of band parameters were estimated as,
for example, Ud = 10.5, Up = 4.0 and Udp = 1.2 in eV[46] where Udp is the nearest-neighbor
Coulomb interaction between holes on adjacent Cu and O orbitals. We neglect Udp because Udp

is small compared to Ud. We use the notation ∆dp = ǫp − ǫd. The number of sites is denoted as
N , and the total number of atoms is Na = 3N . The energy unit is given by tdp.

The single-band Hubbard model can be regarded as a simplified version of the three-band
d-p model. This model has been studied more intensively. The Hamiltonian is given by

H =
∑

ijσ

tijc
†
iσcjσ + U

∑

i

ni↑ni↓, (2)

where {tij} are transfer integrals and U is the on-site Coulomb energy. The transfer integral tij
for nearest-neighbor pairs 〈ij〉 is given as tij = −t and that for next-nearest neighbor pair 〈〈ij〉〉
is tij = −t′. Otherwise, tij vanishes. The number of sites is denoted as N and the number of

electrons is as Ne. The energy unit is given by t. niσ is the number operator: niσ = c†iσciσ. The
second term in the Hamiltonian represents the on-site repulsive interaction between electrons.
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Figure 1. The transfer integral t′d in
the CuO2 plane. t′d is the transfer
integral between next nearest-neighbor
copper sites. We can also consider the
transfer integral t′pp between next nearest-
neighbor oxygen atoms.
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Figure 2. AF and SC order parameters as
a function of U/t for the two-dimensional
Hubbard model on a 10 × 10 lattice[36]
(some data have been updated). The upper
curve AF(G) indicates the result obtained
by the Gutzwiller function, and those for
AF and SC are obtained using ψλ.

3. Wave functions with strong electron correlation

The starting wave function for correlated electrons is Gutzwiller-projected wave function given
by ψG = PGψ0, where PG is the Gutzwiller operator to control the double occupancy of d holes:

PG =
∏

i

[1− (1− g)ndi↑ndi↓] = exp

(

−α
∑

i

ndi↑ndi↓

)

, (3)

where α = ln(1/g). g is a variational parameter in the range from 0 to unity. ndiσ = d†iσdiσ
is the number operator for d holes. ψ0 is the Fermi sea where the lowest band is occupied up
to the Fermi energy µ. For the d-p model, ψ0 contains the variational parameters t̃dp, t̃pp, t̃

′
d,

ǫ̃p − ǫ̃d:
ψ0 = ψ0(t̃dp, t̃pp, t̃

′
d, ǫ̃p − ǫ̃d). (4)

In the non-interacting case, parameters t̃dp, t̃pp, t̃
′
d and ǫ̃p − ǫ̃d coincide with those in the

Hamiltonian, respectively. We fix t̃dp = tdp as energy unit.
We consider the following wave function that is improved from the Gutzwiller wave

function[36, 41, 50, 51, 52, 53, 54]:

ψλ = exp(−λK)ψG, (5)

where λ is a variational parameter andK is the kinetic part of the Hamiltonian. The expectation
values are evaluated by using the auxiliary field method[41, 55]. The kinetic part K also contains
the band parameters tpp, t

′
d and ǫp − ǫd as variational parameters:

K = K(t̂pp, t̂
′
d, ǫ̂p − ǫ̂d). (6)

We take t̂pp = t̃pp, t̂
′
d = t̃′d and ǫ̂p − ǫ̂d = ǫ̃p − ǫ̃d, for simplicity. Thus we have g, t̃pp, t̃

′
d,

ǫ̂p − ǫ̂d = ǫ̃p − ǫ̃d, and λ as variational parameters. The expectation values for this type of
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wave function are calculated by using the variational Monte Carlo method. We can evaluate the
expectation value correctly within statistical errors.

The correlated superconducting (SC) state is represented by the projected-BCS wave
function. This is given as

ψS = PNe
PGψBCS , (7)

where ψBCS indicates the BCS wave function:

ψBCS =
∏

k

(uk + vkα
†
k↑α

†
−k↓)|0〉. (8)

α†
kσ indicates the creation operator of the state in the lowest band with the momentum k which

is represented by a linear combination of d and p electron operators d†
kσ and p†

kσ. The BCS

parameters uk and vk are given by the ratio vbfk/uk = ∆k/(ξk +
√

ξ2
k
+∆2

k
) where ξk is the

dispersion relation of the lowest band. We assume the d-wave symmetry ∆k = ∆(cos kx−cos ky)
and we regard ∆ as the superconducting gap. ∆ is a variational parameter that is optimized to
give the lowest ground energy. PNe

is a projection operator which extracts only the states with
a fixed total hole number.

It is convenient to perform the particle-hole transformation for down-spin holes[36, 51] in
multiplying by the operator exp(−λK):

ψλ = exp(−λK)PGψBCS = exp(−λK)PG

∏

k

(ukβ
†
k
+ vkα

†
k
)|0̃〉, (9)

where β†
k
= α−k↓ and α†

k
= α†

k↑. |0̃〉 denotes the vacuum for newly defined α and β particles

satisfying αk|0̃〉 = βk|0̃〉 = 0.

4. Antiferromagnetic phase and t′d
In the two-dimensional Hubbard model, the antiferromagnetic (AF) correlation can be controlled
by the Coulomb interaction U [36]. In the strongly correlated region where U is larger than the
bandwidth, the antiferromagnetic correlation is suppressed and as a result superconducting state
can be stable. We would expect a similar phase diagram for the d-p model. It is not, however,
easy to have control of the antiferromagnetic state in the three-band d-p model. It appears
that the AF state is considerably stable in the d-p model, compared to that in the single-band
Hubbard model.

We show that the parameter t′d plays an important role regarding a stability of the AF state.
In Fig.3 the antiferromagnetic region is exhibited in the plane of t′d and the level difference
ǫp− ǫd where we have 72 holes on 8× 8 lattice with 192 atoms in total. There is a paramagnetic
region for negative t′d. When the level difference is small, the paramagnetic state can be stable
for small |t′d|.

There is a possibility of high-temperature superconductivity near the boundary where the AF
correlation suppressed. We have three parameters Ud, ǫp − ǫd and t′d. For t

′
d = 0, the AF phase

exists as shown in Fig.4 where the doping rate is δ = 0.25. AF order exists in a wide range of
parameters. The strongly correlated d-wave superconducting state, however, exists when d and
p level difference is small. The pure d-wave superconductivity may be realized in this region.

5. Superconducting wave function

We perform the electron-hole transformation for down-spin electrons to multiply the projected
BCS function by the operator exp(−λK). The electron (hole) number is not fixed as in the BCS
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Figure 3. Antiferromagnetic region in the
plane of t′d and ǫp − ǫd of the three-band
d-p model. The energy unit is given by
tdp. The hole density is δ = 0.125 for 72
holes on 8× 8 lattice We used tpp = 0.4tdp,
Ud = 10tdp and Up = 0.
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Figure 4. Antiferromagnetic region in the
plane of Ud and ǫp − ǫd in units of tdp for
8×8 lattice with 76 holes. The dashed line
is a guid for eyes. The band parameters are
tpp = 0.4tdp,t

′
d = 0 and Up = 0.

wave function. The chemical potential is not a variational parameter since it is used to adjust
the total electron number.

We show the result of calculations in Fig.5 where the total number Nh is evaluated as the
expectation value by varying the chemical potential. In this result in slightly overdoped region,
the optimized SC order parameter is finite indicating that the d-wave SC state is indeed realized.
We expect that the SC state is stabilized in the region where ǫd−ǫp is small and near the boundary
of the AF region. There is a possibility of high-temperature superconductivity in this region.
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Figure 5. Total energy as a function of hole
number Nh on 8× 8 lattice. We set Ud = 10,
tpp = 0, t′d = 0, ǫd = −0.5 and ǫp = 0. The
gap parameter ∆ = ∆d = ∆p is introduced
for the BCS wave function. At Nh = 76, the
energy has a minimum at finite value of ∆.

6. Discussion and Summary

It is important to determine the phase diagram in the study of correlated electron systems.
In particular, we need to clarify the stability of magnetic order in electronic models of high-
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temperature superconductors. For this purpose, it is necessary to improve and optimize the
wave function to include electron correlation. The exponential kinetic operator e−λK used in
our work has an effect to move electrons to get the kinetic-energy gain. This will increase the
double occupancy, and the variational parameters are determined to lower the ground-state
energy by balancing the kinetic energy against the Coulomb repulsive energy. We can lower the
ground-state energy further by multiplying the wave function by exponential kinetic operator.

The importance of multiplying by e−λK lies in that the AF phase narrows since AF correlation
is suppressed. In the 2D Hubbard model, the AF correlation is considerably suppressed when
U is large being greater than the bandwidth where the kinetic-energy gain is dominant over
the AF energy lowering. This also holds for the d-p model. By using the Gutzwiller function,
the optimized value of the AF order parameter is very large and is larger than that of the
superconducting order parameter more than by one order of magnitude in the d-p model. The
AF order parameter is reduced and becomes of the same order as the superconducting one on
the basis of our wave function. This would give a possibility of superconductivity.

We investigated the ground state of the two-dimensional d-p (three-band Hubbard) model
by employing the optimization variational Monte Carlo method. We introduced long-range
transfer intergrals t′d to conquer the antiferromagnetism in the d-p model. We have shown the
phase diagram in the plane of Ud and ǫp − ǫd. We expect that there also occurs a crossover
between strongly correlated and weakly correlated regions by controlling the antiferromagnetic
correlation in the d-p model. There is a crossover in the two-dimensional Hubbard model[36]. A
large fluctuation presumably exists in the crossover region. This indicates a possibility of high-
temperature superconductivity. A crossover from weakly to strongly coupled systems is universal
phenomenon that exists ubiquitously in the world as in the Kondo effect[56, 57, 59, 60, 61, 62, 63].
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