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Fidelity-based Probabilistic Q-learning for Control

of Quantum Systems
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Abstract—The balance between exploration and exploitation
is a key problem for reinforcement learning methods, especially
for Q-learning. In this paper, a fidelity-based probabilistic Q-
learning (FPQL) approach is presented to naturally solve this
problem and applied for learning control of quantum systems.
In this approach, fidelity is adopted to help direct the learning
process and the probability of each action to be selected at
a certain state is updated iteratively along with the learning
process, which leads to a natural exploration strategy instead
of a pointed one with configured parameters. A probabilistic
Q-learning (PQL) algorithm is first presented to demonstrate
the basic idea of probabilistic action selection. Then the FPQL
algorithm is presented for learning control of quantum systems.
Two examples (a spin- 1

2
system and a Λ-type atomic system) are

demonstrated to test the performance of the FPQL algorithm.
The results show that FPQL algorithms attain a better balance
between exploration and exploitation, and can also avoid local
optimal policies and accelerate the learning process.

Index Terms—Fidelity, probabilistic Q-learning, quantum con-
trol, reinforcement learning.

I. INTRODUCTION

REINFORCEMENT learning (RL) [1] is an important

approach to machine learning, control engineering, op-

erations research, etc. RL theory addresses the problem of

how an active agent can learn to approximate an optimal

behavioral strategy while interacting with its environment. RL

algorithms, such as the temporal difference (TD) algorithms

[2] and Q-learning algorithms [3], have been deeply studied

in various aspects and widely used in intelligent control and

industrial applications [4]-[17]. However, there exist several

difficulties in developing practical applications from RL meth-

ods. These difficult issues include tradeoff between exploration

and exploitation, function approximation methods and speed-

up of the learning process. Hence, new ideas are necessary

to improve reinforcement learning performance. In [18], we
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considered two features (i.e., quantum parallelism and proba-

bilistic phenomena) from the superposition of probability am-

plitudes in quantum computation [19] to improve TD learning

algorithms [18], [20], [21]. Inspired by [18], this paper focuses

on only the probabilistic essence of decision-making in Q-

learning [22] with fidelity-directed exploration strategy, and

propose a fidelity-based probabilistic Q-learning method for

the control design of quantum systems.

We focus on exploration strategies (i.e., action selection

methods), which contribute to better balancing between ex-

ploration and exploitation and have attracted more and more

attention from different areas [23]-[30]. For Q-learning, ex-

ploitation (i.e., the greedy action selection) occurs if the action

selection strategy is based on only current values of the

state-action pairs. In most optimization problems, this will

lead to locally optimal policies, possibly differing from a

globally optimal one. In contrast, exploration is a strategy

based on the assumption that the agent selects a non-optimal

action in the current situation and obtains more knowledge

about the problem. This knowledge allows the agent to ne-

glect the locally optimal policies and to reach the globally

optimal one. However, excessive exploration will drastically

decrease the performance of a learning algorithm. Generally

in a reinforcement learning process without prior knowledge

or training data, most of existing exploration strategies are

undirected exploration. Up to now, there have existed two main

types of undirected exploration strategies: ǫ-greedy strategy

and randomized strategy [1], where the randomized strategy

includes such methods as Boltzmann exploration ( i.e., Soft-

max method) and simulated annealing (SA) method [1], [23].

These exploration strategies usually suffer from difficulties in

balancing between exploration and exploitation, and providing

an easy mechanism of parameter setting. Hence, the aim of

this paper is to propose a novel fidelity-based probabilistic

action selection method to improve Q-learning algorithms.

In this approach, we systematically investigate the use of

probabilistic action selection mechanism (e.g., see [31] and

Section 6.6 in [1]) to dynamically balance the exploration

and exploitation in reinforcement learning. Furthermore, a

fidelity-based probabilistic Q-learning algorithm is presented

for learning control of quantum systems. The development

of control design approaches for quantum systems is a key

task for powerful quantum information technology [19], [32]-

[38]. Unique characteristics of quantum systems (e.g., ultrafast

dynamics, measurement destroying quantum states) make open

loop strategies competitive [32], [33]. Here we employ a

reinforcement learning approach to design control laws for a

class of quantum control problems where the set of control
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fields is given. Once the control sequence is obtained by

learning, the corresponding control fields can be applied to

the quantum system to be controlled. The method is very

useful for quantum systems since it is an important objective

to find control laws for complex quantum control problems

when we have limited resources. However, if we employ

a basic reinforcement learning algorithm, the direction of

achieving the objective is always delayed due to the lack of

feedback information during the learning process unless the

agent reaches the target state. Hence, the learning process

is time-consuming and the agent learns very slowly, which

impedes the applications of reinforcement learning methods

to complex learning problems with large learning space. In

quantum information theory, the “closeness” between two

quantum states can be measured by fidelity [19], [39], [40].

The more similar two quantum states are, the greater the

fidelity between the two states is. For example, the fidelity

of two identical quantum states is usually defined as 1 and

the fidelity of two orthogonal quantum states is defined as

0. The fidelity F between two quantum states corresponds

to a non-negative number F ∈ [0, 1]. Hence, the information

of fidelity can be sent back to the learning system and help

speed up the learning process as a global direction signal

to avoid getting lost. Recent research on quantum control

landscapes provides a theoretical footing for the development

of new learning algorithms using the information of fidelity

[41], [42]. Numerical examples show that the fidelity-based

probabilistic Q-learning method has improved performance for

learning control of quantum systems.

This paper is organized as follows. Section II introduces

the basic Q-learning method and the existing exploration

strategies. In Section III, the probabilistic action selection

strategy is presented. Then a probabilistic Q-learning (PQL)

algorithm and a fidelity-based PQL (FPQL) algorithm are

proposed and analyzed aiming at speeding up the learning

process. In Section IV, the FPQL algorithm is applied to

learning control of two typical classes of quantum systems

(a spin- 12 system and a Λ-type atomic system), respectively.

Conclusions are given in Section V.

II. Q-LEARNING AND EXPLORATION STRATEGY

Q-learning can acquire optimal control policies from de-

layed rewards, even when the agent has no prior knowledge of

the environment. For the discrete case, a Q-learning algorithm

assumes that the state set S and action set A can be divided

into discrete values. At a certain step t, the agent observes

the state st, and then chooses an action at. After executing

the action, the agent receives a reward rt+1, which reflects

how good that action is (in a short-term sense). The state

will change into the next state st+1 under action at. Then

the agent will choose the next action at+1 according to the

best known knowledge. The goal of Q-learning is to learn a

policy π : S×∪i∈SA(i) → [0, 1], so that the expected sum of

discounted rewards for each state will be maximized:

Qπ
(s,a) = ras + γ

∑

s′

pass′
∑

a′

pπ(s′, a′)Qπ
(s′,a′) (1)

where γ ∈ [0, 1) is a discount factor, pass′ = Pr{st+1 =
s′|st = s, at = a} is the probability for state transition from

s to s′ with action a, pπ(s′, a′) is the probability of selecting

action a′ for state s′ under policy π and ras = E{rt+1|st =
s, at = a} is an expected one-step reward. Q(s,a) is called

the value function of state-action pair (s, a). Let αt be the

learning rate. The one-step updating rule of Q-learning may

be described as:

Q(st, at)← (1−αt)Q(st, at)+αt(rt+1+γmax
a′

Q(st+1, a
′)). (2)

The optimal value function Q∗
(s,a) satisfies the Bellman equa-

tion [1]:

Q∗
(s,a) = max

π
Q(s,a) = ras + γ

∑

s′

pass′ max
a′

Qπ
(s′,a′). (3)

More details about Q-learning can be found in [1], [3].

To efficiently approach the optimal policy

π∗ = argmax
π

Qπ
(s,a)(∀s ∈ S),

where π∗ is the optimal policy when Qπ
(s,a) is maximized,

Q-learning always needs a certain exploration strategy (i.e.,

the action selection method). One widely used action selection

method is ǫ-greedy (ǫ ∈ [0, 1)) [1], where the optimal action is

selected with probability (1−ǫ) and a random action is selected

with probability ǫ. Sutton and Barto [1] have compared the

performance of RL algorithms with different ǫ and have shown

that a nonzero ǫ is usually better than ǫ = 0 (i.e., the blind

greedy strategy). In addition, the exploration probability ǫ
can be reduced over time, which moves the learning from

exploration to exploitation. The ǫ-greedy method is simple

and effective, but it has the drawback that when the learning

system explores it chooses equally among all actions. This

means that the learning system makes no difference between

the worst action and the next-to-best action. Another problem

is that it is difficult to choose a proper parameter ǫ for the

optimal balancing between exploration and exploitation.

Another kind of action selection methods is randomized

strategies, such as the Softmax method [1] and the simulated

annealing method [23]. Such methods use a positive parameter

τ called a temperature and choose an action a with the

probability proportional to eQ(s,a)/τ . Compared with the ǫ-
greedy method, the “best” action is still given the highest

selection probability, but all the others are ranked and weighted

according to their estimated Q-values. It can also move from

exploration to exploitation by adjusting the “temperature”

parameter τ . It is natural to sample actions according to this

distribution, but it is very difficult to set and adjust a good

parameter τ and may converge slowly. Another shortcoming

is that it does not work well when the Q-values of the actions

are close and the best action cannot be separated from the

others. Moreover, when the parameter τ is reduced over time

to acquire more exploitation, there is no effective mechanism

to guarantee re-exploration when necessary.

To sum up, these existing exploration strategies usually

suffer from difficulties in balancing between exploration and

exploitation, setting appropriate parameters and providing an

effective mechanism of re-exploration. Here, we present a

novel fidelity-based probabilistic Q-learning algorithm where
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Fig. 1. Illustration of the idea of probabilistic action selection method and
the effect of fidelity. (a) ǫ-greedy method; (b) Softmax method; (c) basic
probabilistic action selection method; (d) fidelity-based probabilistic action
selection method.

a probabilistic action selection method is used as more ef-

fective exploration strategies to improve the performance of

Q-learning for complex learning control problems. Compared

with ǫ-greedy and Softmax methods, Fig. 1 shows the il-

lustration of the ideas of straightforward probabilistic action

selection method and the fidelity-based one, where a longer

line with an arrow indicates a higher probability. As shown

in Fig. 1(a), ǫ-greedy method uses a prefixed exploration

policy and the action a1 with the maximum of Q-value

(Q(s, a1)) is selected with the probability of (1 − ǫ) and all

the other actions (a2 ∼ am) are select with the probability of

ǫ/(m − 1), respectively. Using Softmax method (Fig. 1(b)),

the action ai, i = 1, 2, . . . ,m, is selected with the probability

of eQ(s,ai)/τ

∑m
j=1 eQ(s,aj )/τ . Fig. 1(c) shows that the action selection

probability distribution is dynamically updated (denoted with

the dashed line) along with the learning process instead of

being computed from the estimated Q-values and a tempera-

ture parameter. In Fig. 1(d), the fidelity is used to direct the

probability distribution and to strengthen the learning effects

with a regulation on the updating process. These different

exploration policies will be further explained and compared

from a point of view of physical mechanism (as shown in

Fig. 4) after the PQL and FPQL method are systematically

presented in the next section.

III. FIDELITY-BASED PROBABILISTIC Q-LEARNING

A. Probabilistic Action Selection and Reinforcement Strategy

Inspired by the work in [18], [20], we reformulate the action

selection strategy in a unified probabilistic representation

where the action selection probability distribution is updated

based on the reinforcement strategy. The discrete probability

distribution on the state-action space is defined as follows.

Fig. 2. 3-D illustration of probabilistic distribution on the state-action space
for action selection under current policy π.

Definition 1: The probability distribution on the state-

action space (discrete case) of a RL problem is characterized

by a probability mass function defined on the state set S and

the action set A =
⋃

s∈S A(s), where A(s) is the set of all the

permitted actions for state s. For any s ∈ S and a ∈ A(s), the

probability mass function is defined as p(s, a) ≥ 0 and for a

certain state s, it satisfies
∑

a∈A(s)

p(s, a) = 1. (4)

Suppose the state-action space is S ×A, where

S = {s1, s2, . . . , sn} (5)

A =
⋃

s∈S

A(s) = {a1, a2, . . . , am}. (6)

From Definition 1, the policy to be learned π : S×A→ [0, 1]
can be represented using the probability distribution of the

state-action space

π : P π = (pπ(s, a))n×m (7)

where s ∈ S, a ∈ A and for a certain state s, the probability

distribution on the action set A is pπs = {pπ(s, ai)}, i =
1, 2, . . . ,m. The look-up table for the Q-values and the prob-

ability distribution are of the form
































a1 a2 · · · am

s1

[

Q(s1,a1)

pπ(s1,a1)

] [

Q(s1,a2)

pπ(s1,a2)

]

· · ·
[

Q(s1,am)

pπ(s1,am)

]

s2

[

Q(s2,a1)

pπ(s2,a1)

]

. . .
...

...
...

. . .
...

sn

[

Q(sn,a1)

pπ(sn,a1)

]

· · · · · ·
[

Q(sn,am)

pπ(sn,am)

]

































.

(8)

Fig. 2 shows a 3-D illustration of the probabilistic distri-

bution on the state-action space for action selection under

current policy π. In the probabilistic action selection method,

one selects an action a (under policy π) at a certain state s



4

with the probability according to the probability distribution

on the action set A, i.e.,

aπs = fπ(s) =























a1 with probability pπ(s, a1)

a2 with probability pπ(s, a2)
...

am with probability pπ(s, am)

(9)

Such a probabilistic action selection method leads to a natural

probabilistic exploration strategy for Q-learning.

The goal of PQL is to learn a mapping from states to actions.

The agent needs to learn a policy π to maximize the expected

sum of discounted reward for each state:

Qπ
(s,a) =

∑

a∈A(s)

pπ(s, a)[ras + γ
∑

s′

pass′Q
π
(s′,a′)]. (10)

The one-step updating rule of PQL for Q(s,a) is the same as

that of QL

Q(st, at)← (1− αt)Q(st, at) + αt(rt+1 + γmax
a′

Q(st+1, a
′)).

(11)

Besides the updating of Q(s,a), the probability distribution

is also updated for each learning step. After the execution

of action at for state s = st, the corresponding probability

p(st, at) is updated according to the immediate reward rt+1

and the estimated value of Q(s′,a′) for next state s′ = st+1

p(st, at)← p(st, at) + k(rt+1 +max
a′

Q(st+1, a
′)), (12)

where k (k ≥ 0) is an updating step size and the

probability distribution of actions at state s = st
{p(s, a1), p(s, a2), ..., p(s, am)} is normalized after each up-

dating. The parameter setting of k is accomplished by expe-

rience and generally can be set as the same as the learning

rate αt. The variation of k in a relatively large range will

only slightly affect the learning process because the probabil-

ity distribution {p(s, a1), p(s, a2), ..., p(s, am)} is normalized

after each updating step. In particular, k is set as 0.01 for all

the experiments in this paper.

The evolution of the probability distribution of action se-

lection on the state-action space during the whole learning

process is shown as in Fig. 3, where the values of the

action selection probabilities are represented with different

colors. The probability distribution usually starts with an initial

uniform one before learning (as shown in Fig. 3(1)), i.e., for

each state s the probability distribution of action selection is

initialized as {p(s, ai) = 1
m , i = 1, 2, . . . ,m}. It evolves with

the learning and probability updating process (a sample of the

probability distribution during the learning process is shown

in Fig. 3(2)) and reaches an optimal one when the learning

process ends (Fig. 3(3)). Then the learned policy is applied

to the agent (or a control system) and at the same time the

learning system may still keep on-line learning capability. If

the environment changes the probability distribution will be

updated accordingly (Fig. 3(4)) and naturally trigger a re-

learning process for the learning system. Fig. 3(5) and Fig.

3(6) show the process of re-learning for a new environment.

The characteristics of the proposed probabilistic exploration

strategy (as shown in Fig. 3) is very different from the

traditional one, e.g., the ǫ-greedy method for Q-learning,

where action probability distribution for a certain state keeps

constant as shown in Fig. 1(a).

Remark 1: The tradeoff between exploration and exploita-

tion is a specific challenge of RL. Compared with existing

exploration strategies, such as ǫ-greedy, Softmax and simu-

lated annealing methods, the probabilistic exploration strategy

has the following merits. (i) The learning algorithm pos-

sesses more reasonable credit assignment using a probabilistic

method and the action selection method is more natural

without too much difficulty for parameter setting. The only

parameter to be set is the step size k. The parameter k will

not substantially affect the algorithm performance, because the

action selection probabilities for a certain state are relative

and will be normalized after each updating step. (ii) The

method provides a natural re-exploring mechanism (as shown

in Fig. 3), i.e., when the environment changes, the policy also

changes along with the on-line learning process. Such a re-

exploring mechanism is difficult to implement for the existing

exploration strategies (e.g., ǫ-greedy). For example, the value

of ǫ is usually decreased along with the learning process

to exploit more after a lot of trials. When the environment

changes the value of ǫ should be reset to avoid too much

exploitation. However, it is difficult to do so intelligently. Our

scheme provides a straightforward and natural approach for re-

exploring mechanism. Although it may need a little bit more

physical memories for probability distribution updating, it will

not substantially degrade the algorithm, while the performance

improvement is more prominent.

B. Probabilistic Q-learning Algorithms

The procedural form of a probabilistic Q-learning algorithm

is presented as Algorithm 1. In this PQL algorithm, after

initializing the state and action we can choose at according

to the action probability distribution at state st = s. Execute

this action and the system can give the next state st+1 = s′,
immediate reward rt+1 and the estimated next state-action

function value Q(st+1, a
′). Q(st, at) is updated by the one-

step Q-learning rule. The updating of p(st, at) (the probability

of choosing at at state st) is also carried out based on rt+1

and Q(st+1, a
′). Hence, in the PQL algorithm, the exploration

policy is accomplished through a probability distribution over

the action set for each state. When the agent chooses an

action at a certain state s, the action ai will be selected with

probability p(s, ai) which is also updated along with the value

function updating.

Compared with basic Q-learning algorithms, the main fea-

ture of the PQL algorithm is the straightforward probabilistic

exploration strategy and the reinforcement strategy is also

applied to dynamically update the probability distribution

of action selection. The agent selects actions based on the

variable probability distribution over an admissible action set

at a certain state. Such an action selection method keeps a

proper chance of exploration instead of obeying the policy

learned so far, and makes a good tradeoff between exploration

and exploitation using probability.
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(1) Initial (3) After learning

(4) Re-exploring (6) After re-learning

(2) During learning

(5) During re-learning

Fig. 3. Illustration of the evolution of the probabilistic distribution for action selection on the state-action space during the learning and re-exploring process.

Algorithm 1 Probabilistic Q-learning

1: Initialize Q(s, a) arbitrarily
2: Initialize the policy π : P π = (pπ(s, a))n×m to be evaluated
3: repeat (for each episode)
4: Initialize t = 1, st,
5: repeat (for each step of episode)
6: at ← action ai with probability p(st, ai) for st
7: Take action at, observe reward rt+1, and next state st+1

8: Q(st, at)← Q(st, at) + αtδ
Q
t+1

9: where δ
Q
t+1 = rt+1 + γmaxa′Q(st+1, a

′)−Q(st, at)
10: p(st, at)← p(st, at) + k(rt+1 +maxa′Q(st+1, a

′))
11: Normalize {p(st, ai)|i=1,2,...,m}
12: t← t+ 1
13: until st+1 is terminal
14: until the learning process ends

C. Fidelity-based PQL Algorithm

PQL uses a probabilistic action selection method to improve

the exploration strategy and is an effective approach for

stochastic learning and optimization. But for most complex

reinforcement learning problems, the direction of achieving the

objective is always delayed due to the lack of feedback infor-

mation during the learning process unless the agent reaches

the target state. Hence, if we can extract more information

from the system structure or system behavior, the learning

performance can be further improved for complex learning

problems with large learning space. Because most of quantum

control problems are complex and the concept of fidelity is

widely used in quantum information community [19], [39],

[40], we develop a fidelity-based PQL method for learning

control of quantum systems, which can also be applied to some

other complex RL problems.

The updating rule of fidelity-based PQL for Q(s,a) is the

same as (11). The probability distribution is updated for each

learning step. After the execution of action at for state s = st,
the corresponding probability p(st, at) is updated according to

the immediate reward rt+1, the estimated value of Q(st+1,a′)

for next state s′ = st+1 and the fidelity F (st+1, starget)
between the state st+1 and the target state starget. That is

p(st, at)← p(st, at)+k(rt+1+max
a′

Q(st+1, a
′)+F (st+1, starget)).

(13)

The specification of the fidelity F (st+1, starget) is defined

regarding the objective of the learning control task. In this

study, a fidelity of quantum pure states (see Subsection IV-A)

is adopted for the learning control of quantum systems. The

parameter setting methods and the normalization of the proba-

bility distribution of actions at state s = st are the same as that

of PQL. The procedure of the fidelity-based PQL algorithm is

shown as Algorithm 2.

Algorithm 2 Fidelity-based Probabilistic Q-learning

1: Initialize Q(s, a) arbitrarily
2: Initialize the policy π : P π = (pπ(s, a))n×m to be evaluated
3: repeat (for each episode)
4: Initialize t = 1, st
5: repeat (for each step of episode)
6: at ← action ai with probability p(st, ai) for st
7: Take action at, observe reward rt+1, and next state st+1

8: Q(st, at)← Q(st, at) + αtδ
Q
t+1

9: where δ
Q
t+1 = rt+1 + γmaxa′Q(st+1, a

′)−Q(st, at)
10: p(st, at)← p(st, at) + kδ

p
t+1

11: where δpt+1
= rt+1 +maxa′Q(st+1, a

′) + F (st+1, starget)
12: Normalize {p(st, ai)|i=1,2,...,m}
13: t← t+ 1
14: until st+1 is terminal
15: until the learning process ends

As for the convergence of FPQL, it is the same as that of

basic Q-learning [3], because the difference only lies in the

exploration policy which does not affect the convergence of the

algorithms. Several constraints [3], [43] are listed in Theorem

1 to ensure the convergence of FPQL.

Theorem 1 (Convergence of FPQL): Consider an FPQL

agent in a nondeterministic Markov decision process, for every
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Fig. 4. A schematic of physical explanation and comparison of different
exploration strategies for optimization and learning methods.

state-action pair s and a, the Q-value Qt(s, a) will converge

to the optimal state-action value function Q∗(s, a) if the

following constraints are satisfied

1) The rewards in the whole learning process satisfy

(∀s, a)|ras | ≤ R, where R is a finite constant value;

2) A discount factor γ ∈ [0, 1) is adopted;

3) During the learning process, the nonnegative learning

rate αt satisfies

lim
T→∞

T
∑

t=1

αt =∞, lim
T→∞

T
∑

t=1

α2
t <∞. (14)

The difference between the proposed fidelity-based proba-

bilistic exploration strategy and the existing exploration strate-

gies can be explained from a point of view of physical mecha-

nism. As shown in Fig. 4, for a learning optimization problem,

the existing exploration strategies, e.g., ǫ-greedy, softmax and

simulated annealing methods, apply a thermal fluctuation type

of exploration methods to acquire the chance of stepping over

the local optima; while the probabilistic exploration strategy

is inspired by quantum phenomena. It behaves like quantum

tunnelling effect and can step over the local optima in a

more straightforward way. The direction of the fidelity can

strength this tunnelling effect. The physical explanation can

help demonstrate why the fidelity-based probabilistic method

may perform better for complex reinforcement learning tasks.

Remark 2: Although the fidelity-based PQL method is

proposed for learning control of quantum systems, it can also

be applied to other RL problems when there is a clear and

quantitative definition of fidelity that can effectively character-

ize the distance between the current state and the target state.

The fidelity information can speed up the learning process in

that it shows the direction to the target state and can help the

learning process get out of the traps when get lost. In addition,

this fidelity signal is only used to regulate the action selection

probability distribution. It will not deteriorate the exploration

strategy of PQL.

Remark 3: It is clear that the optimal policy of FPQL is

closely related to the probability distribution of the actions

for each state, which means the learning process essentially

is also the process of reducing the uncertainty of decisions

on which action should be chosen at a state. Hence, the

characteristics of the FPQL algorithm and its performance can

also be described with the degree of uncertainty for action

selection. The measurement of uncertainty has been well

addressed through Shannon entropy (i.e., Shannon measure of

uncertainty) [44] in information science, where the amount of

uncertainty is measured by a probability distribution function

p on a finite set: S(p) = −∑

x∈X p(x) log2 p(x), where X is

the universal set, x is the element of the finite set X and p(x) is

the probability distribution function on X . Similar to Shannon

entropy, the concept of Exploration Entropy can also be given

based on the probability distributions of actions to measure

the uncertainty of action selection. The resulting function is

E(s) = −∑

P(ai|s) log2 P(ai|s). For an FPQL system, the

general uncertainty of action selection can be described with

the mean exploration entropy E(s) =
∑

j=1,2,...,n E(sj)

n , where

S = {s1, s2, ..., sn} is the state set. It is clear that when all

the probabilities are equal the exploration entropy (uncertainty

of action selection) will be maximum. In an FPQL system,

the maximum exploration entropy of a state s with m actions

will be log2m. The maximum mean decision entropy E(s)

should be obtained when all the action probability distributions

for each state are uniform, which is always the situation

at the initialization without any prior knowledge about the

environment. Along with the learning process, E(s) will tend

to decrease and obtain its minimum when the learning process

converges and gives the optimal policy.

IV. FIDELITY-BASED PQL FOR LEARNING CONTROL OF

QUANTUM SYSTEMS

A. Learning control of quantum systems

Learning control is an effective method for quantum systems

where a control law can be learned from experience and

the system performance can be optimized by searching for

an optimal control strategy in an iterative way [21], [45]-

[47]. Here, we focus on the control problem of quantum pure

state transition for N -level quantum systems [38]. Denote the

eigenstates of the free Hamiltonian H0 of an N -level quantum

system as D = {|φi〉}Ni=1. An evolving state |ψ(t)〉 of the

controlled system can be expanded in terms of the eigenstates

in the set D:

|ψ(t)〉 =
N
∑

i=1

ci(t)|φi〉 (15)

where complex numbers ci(t) satisfy
∑N

i=1 |ci(t)|2 = 1. We

have the definition of fidelity between two pure states.

Definition 2 (Fidelity of Quantum Pure States): The

fidelity between two pure states |ψa〉 =
∑N

i=1 c
a
i |φi〉 and

|ψb〉 = ∑N
i=1 c

b
i |φi〉 is defined as

F (|ψa〉, |ψb〉) = |〈ψa|ψb〉| = |
N
∑

i=1

(cai )
∗cbi |, (16)

where (cai )
∗ is the complex conjugate of cai .

Introducing a control ε(t) ∈ L2(R) acting on the system via

a time-independent interaction Hamiltonian HI and denoting
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|ψ(t = 0)〉 as |ψ0〉, C(t) = (ci(t))
N
i=1 evolves according to

the Schrödinger equation [32]:
{

ιh̄Ċ(t) = [A+ ε(t)B]C(t)

C(t = 0) = C0

(17)

where ι =
√
−1, C0 = (c0i)

N
i=1, c0i = 〈φi|ψ0〉,

∑N
i=1 |c0i|2 =

1, h̄ is the reduced Planck constant, and the matrices A and

B correspond to H0 and HI , respectively. We assume that the

A matrix is diagonal and the B matrix is Hermitian [32]. In

order to avoid trivial control problems we assume [A,B] ≡
AB − BA 6= 0. Equation (17) describes the evolution of a

finite dimensional control system. The propagator U(t1 → t2)
is a unitary operator such that for any state |ψ(t1)〉 the state

|ψ(t2)〉 = U(t1 → t2)|ψ(t1)〉 is the solution at time t = t2
of (15) and (17) with the initial condition |ψ(t1)〉 at time

t = t1. U(t1 → t2) is also simplified as U(t), t ∈ [t1, t2],
if the specific time t1 can be neglected when handling these

problems. Assume that the control set {εj , j = 1, . . . ,m}
is given. Every control εj corresponds to a unitary operator

Uj . The task of learning control is to find a control sequence

{εl, l = 1, 2, 3, . . .} where εl ∈ {εj, j = 1, . . . ,m} to drive

the quantum system from an initial state |ψ0〉 to the target

state |ψf 〉.
Remark 4: In the past decade, the research areas of quantum

information and machine learning have mutually benefitted

from each other. On one hand, quantum characteristics have

been used for designing quantum or quantum-inspired learning

algorithms [18], [19], [48]-[52]. On the other hand, many

traditional learning algorithms have been applied for the

control design of quantum phenomena, including gradient-

based algorithms [42], [53], genetic algorithm (GA) [45], [54]

and fuzzy logic [38]. For example, gradient-based methods

have been widely used in model-based control design and

theoretical analysis of quantum systems. Since we assume that

very limited control resources are available, gradient-based

algorithms cannot be applied to the quantum control problem

in this paper. GA methods have achieved great success for

quantum learning control in laboratory [45]. However, a large

amount of experimental data is required to optimize the control

performance since the closed-loop learning process involves

the collection of experimental data and the searching of opti-

mized pulses based on the updating of experimental data [45].

In this paper, we consider a class of quantum control problems

with a limited set of control fields. This class of problems

is significant in quantum control since different constraints

are common for quantum control systems. We formulate this

class of quantum control problems as a model-free sequential

Markovian decision process (MDP). Reinforcement learning is

a good candidate to solve a MDP problem. Hence, we apply

the proposed FPQL approach to this class of quantum control

problems that can be used to test the effectiveness of FPQL as

well as to provide an effective design approach for quantum

systems with limited control resources.

B. Quantum controlled transition landscapes

Learning control of quantum systems aims to find an

optimal control strategy to manipulate the dynamics of phys-

Fig. 5. An example of quantum control landscapes. (a) Quantum control
landscape without traps (local maxima) where all the peaks are of the same
height and thus all of them are global maxima; (b) Quantum control landscape
with traps where the landscape has one highest peak representing the global
maximum and several peaks of lower height corresponding to local maxima.

ical processes on the atomic and molecular scales [45]. In

recent years, quantum control landscapes [41], [42] provide a

theoretical footing for analyzing learning control of quantum

systems. A control landscape is defined as the map between

the time-dependent control Hamiltonian and associated values

of the control performance functional. Most quantum control

problems can be formulated as the maximization of an ob-

jective performance function. For example, as shown in Fig.

5, the performance function J(ε) is defined as the functional

of the control strategy ε = εi, i = 1, 2, ...,M , where M is

a positive integer that indicates the number of the control

variables (M = 2 for the case shown in Fig. 5).

Although quantum control applications may span a vari-

ety of objectives, most of them correspond to maximizing

the probability of transition from an initial state |ψ0〉 to a

desired final state |ψf 〉 [41]. For the state transition problem

with t ∈ [0, T ], we define the quantum controlled transition

landscape as

J(ε) = tr(U(ε,T )|ψ0〉〈ψ0|U †
(ε,T )|ψf 〉〈ψf |), (18)

where tr(·) is the trace operator and U † is the adjoint of U .

The objective of the learning control system is to find a global

optimal control strategy ε∗ which satisfies

ε∗ = argmaxεJ(ε). (19)

If the dependence of U(T ) on ε is suppressed (see [42]),

(18) can be reformulated as

J(U) = tr(U(T )|ψ0〉〈ψ0|U †
(T )|ψf 〉〈ψf |). (20)

Equations (18) and (20) are called the dynamic control land-

scape (denoted as JD(ε) instead) and the kinematic landscape
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(denoted as JK(U) instead), respectively (see [42]).

The characteristic of the existence or absence of traps is

most important for exploring the quantum control landscape

with a learning control algorithm, which can be studied using

critical points. A dynamic critical point is defined by

∇JD(ε) = δJD(ε)/δε = 0 (21)

and a kinematic critical point is defined by

∇JK(U) = δJK(U)/δU = 0 (22)

where ∇ denotes gradient. By the chain rule, we have

∇JD(ε) =
δJK(U)

δU(ε,T )

δU(ε,T )

δε
= ∇JK(U)

δU(ε,T )

δε
. (23)

According to the results in [42], we can summarize the prop-

erties of quantum controlled transition landscape as Theorem

2.

Theorem 2: For the quantum control problem defined with

the dynamic control landscape (18) and the kinematic control

landscape (20), respectively, the properties of the solution sets

of the quantum controlled transition landscape are listed as

follows:

1) The kinematic control landscape is free of traps (i.e.,

all critical points of JK(U) are either global maxima or

saddles) if the operator U can be any unitary operator

(i.e., the system is completely controllable);

2) The dynamic control landscape is free of traps if (i)

the operator U can be any unitary operator and (ii) the

Jacobian δU(ε,T )/δε has full rank at any ε.

For detailed proof and discussion about Theorem 2, please

refer to [41], [42].

Remark 5: The quantum controlled transition landscape

theory is the theoretical foundation for learning control de-

sign. The FPQL algorithm has potential for quantum learn-

ing control problems. The reasons can be stated from three

aspects: (i) The probabilistic action selection method makes

a better balance between exploration and exploitation, since

too much exploitation is easy to be trapped and too much

exploration will deteriorate the learning performance; (ii)

The theoretical analysis of the solution sets of a quantum

control landscape can help design a fidelity-based method to

improve the learning performance; (iii) The learning scheme

of reinforcement learning is more suitable for model-free real

laboratory applications than typical gradient-based methods

which need specific models.

In the next two subsections, the learning control problems of

a spin- 12 system and a Λ-type atomic system are studied using

the proposed FPQL algorithm, which shows that FPQL is an

alternative effective approach for quantum control design.

C. Example 1: learning control of a spin- 12 quantum system

The spin- 12 system is a typical 2-level quantum system and

has important theoretical implications and practical applica-

tions. Its Bloch vector can be visualized on a 3D Bloch sphere

as shown in Fig. 6. The state of the spin- 12 quantum system

|ψ〉 can be represented as

|ψ〉 = cos
θ

2
|0〉+ eiϕ sin

θ

2
|1〉 (24)

Fig. 6. Demonstration of a spin- 1
2

system with a Bloch sphere in a 3D
Cartesian coordinates and the state transitions for an initial quantum state
|ψ〉initial using different one-step controls (U1,U2,U3)

where θ ∈ [0, π] and ϕ ∈ [0, 2π] are polar angle and azimuthal

angle, respectively, which specify a point −→a = (x, y, z) =
(sin θ cosϕ, sin θ sinϕ, cos θ) on the unit sphere in R

3.

At each control step, the permitted controls for every state

are U1 (no control input), U2 (a positive pulse control) and U3

(a negative pulse control). Fig. 6 shows a sketch map of one-

step control effects on the evolution of the quantum system.

The propagators {Ui, i = 1, 2, 3} are listed as follow:

U1 = e−iIz
π
15 , (25)

U2 = e−i(Iz+0.5Ix)
π
15 , (26)

U3 = e−i(Iz−0.5Ix)
π
15 , (27)

where

Iz =
1

2

(

1 0
0 −1

)

, Ix =
1

2

(

0 1
1 0

)

. (28)

Now the control objective is to control the spin- 12 system

from the initial state (θ = π
60 , ϕ = π

30 ) to the target state (θ =
41π
60 , ϕ = 29π

30 ) with minimized control steps. Fig. 7 shows one

of the control process before learning, where the controls are

selected randomly and after a long control sequence the system

state may be transited to the target state. We apply the fidelity-

based PQL, PQL and QL algorithms to this learning control

problem, respectively. Now we reformulate the RL problem

of controlling a quantum system from an initial state sinitial =
|ψinitial〉 to a desired target state starget = |ψtarget〉 as follows:

the state set is S = {si = |ψi〉}, i = 1, 2, . . . , n and the
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Fig. 7. Demonstration of a stochastic control case without learning. The left figure shows the state transition path and the right figure shows the control
sequence used (0 for no pulse, -1 for negative pulse and +1 for positive pulse)

action set is A = {aj = uj}, j = 1, 2, . . . ,m. The experiment

settings for these algorithms are listed as follows: r = −1
for each control step until it reaches the target state, then it

gets a reward of r = 1000; the discount factor γ = 0.99, the

learning rate α = 0.01 and the Q-values are all initialized as

0. For PQL and fidelity-based PQL, k = 0.01. The ǫ-greedy

exploration strategy is used and ǫ = 0.1.

Figs. 8-10 show the control performance of all these algo-

rithms, respectively. Hundreds of times of learning process are

carried out for each experiment and all the results maintain

similar performance. We provide the results of one time of

learning process for each experiment. The experimental results

show that fidelity-based PQL outperforms PQL and standard

QL. The fidelity-based PQL quickly find the optimal control

sequence after less than 50 episodes, while PQL needs about

150 episodes and QL needs more than 200 episodes. For each

episode in the learning process, QL and PQL also need much

more steps to find the target state. A clearer performance

comparison between the fidelity-based PQL, PQL and QL is

shown as in Fig. 11. It is clear that the fidelity-based method

contributes to more effective tradeoff between exploration and

exploitation than PQL and confines it from exploring too

much in an economical way with respect to exploration cost.

Although the fidelity-based PQL needs a little more steps in

the early learning stage (which makes its performance lies

between QL and PQL), it can quickly converge to the optimal

policy and remarkably outperforms both of QL and PQL. The

final control results with the learned optimal control sequence

that controls the spin- 12 quantum state from the initial state to

the target state is demonstrated in Fig. 12.

D. Example 2: learning control of a Λ-type quantum system

Now we consider a Λ-type atomic system and demonstrate

the fidelity-based PQL design process. The three level Λ-

type atomic system is a representative of the multi-level

system, which has wide applications in the fields of chemistry,

quantum physics and quantum information [55]. For the Λ-

type system shown in Fig. 13, the evolving state |ψ(t)〉 can

be expanded in terms of the eigenstates as follows:

|ψ(t)〉 = c1(t)|1〉+ c2(t)|2〉+ c3(t)|3〉, (29)

where |1〉, |2〉 and |3〉 are the basis states of the lower, middle

and upper atomic states, respectively. At each control step, the

permitted controls are a finite number of (positive or negative)

control pulses, i.e., we have the propagators

UE = e−i∆t(H0+0.1EH1) (30)

where ∆t = 0.1,

H0 =





1.5 0 0
0 1 0
0 0 0



 , H1 =





0 0 1
0 0 1
1 1 0



 , (31)

and E ∈ {0,±1,±2, . . . ,±20} is the number of chosen

control pulses at a certain control step.

Now the control objective is to control the Λ-type atomic

system from the initial state |ψinitial〉 = (1, 0, 0) to the target

state |ψtarget〉 = (0, 0, 1) with a fixed number of control steps.

We apply the fidelity-based PQL, PQL and QL algorithms

to this learning control problem, respectively. First we re-

formulate the RL problem of controlling a quantum system

from an initial state sinitial = |ψinitial〉 to a desired target state

starget = |ψtarget〉 as follows: the number of control steps is fixed
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Fig. 8. Learning performance of fidelity-based PQL and the learning results with an optimal control sequence

Fig. 9. Learning performance of PQL and the learning results with an optimal control sequence

Fig. 10. Learning performance of standard QL with ε-greedy policy and the learning results with an optimal control sequence
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Fig. 11. Comparison of Learning performances between Fidelity-based PQL,
PQL and QL

Fig. 12. The control results with the learned optimal control sequence

Fig. 13. A schematic of a 3-level Λ-type atomic system.
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Fig. 14. Control performances with respect to the fidelity between the final
state and the target state using fidelity-based PQL, PQL and QL, respectively.

as a constant number of 100, so that we can use a virtual state

set to construct the state-action space instead of the real state

space (with a very high dimension) of the Λ-type system and

the state set S = {si}, i = 1, 2, . . . , 101 and the action set is

A = {aj = Ej = j − 21}, j = 1, 2, . . . , 41. The experiment

settings for these algorithms are listed as follows: r = 0 for

each control step until it reaches the target state at the end of

the control process where it gets a reward of r = 1000; the

discount factor γ = 0.99, the learning rate α = 0.01 and the

Q-values are all initialized as 0. For PQL and fidelity-based

PQL, k = 0.01. The ǫ-greedy exploration strategy is used for

QL and ǫ = 0.1. The fidelity for a current policy π is defined

as F = |〈ψπ
f |ψtarget〉|.

The learning performances of fidelity-based PQL, PQL and

QL are shown in Fig. 14 with respect to fidelity, which

is one of all the alike results for hundreds of experiments

we carried out. The learning process converges after about

300 episodes using fidelity-based PQL, while PQL needs

about 1450 episodes and QL needs about 2000 episodes. The

oscillation for PQL and QL before the learning processes

converge in Fig. 14 is due to the performance criteria regarding

fidelity instead of accumulated learning steps as used in Fig.

11. The performance shown in Fig. 14 is very sensitive to

the exploration behavior in the state-action space for PQL

and QL, while the fidelity-based method shows an almost

monotonically improved learning behavior.

The final optimal control sequence is shown in Fig. 15.

With this learned optimal control sequence the Λ-type atomic

system described by Equations (29)-(31) is controlled from

the initial state |ψinitial〉 = (1, 0, 0) to the target state |ψtarget〉 =
(0, 0, 1) and the population evolution trajectories are demon-

strated in Fig. 16. All these numerical results demonstrate the
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success of the proposed fidelity-based PQL method. In addi-

tion, the learning control of the Λ-type atomic system can also

be implemented with policy iteration [9], [10], but it is out of

the scope of this paper. More comparison results between the

value iteration and policy iteration for reinforcement learning

will be presented in our future work.

V. CONCLUSIONS

In this paper, a probabilistic action selection method is

introduced for Q-learning and an FPQL algorithm is presented

for the learning control design of quantum systems. In FPQL,

the fidelity information can be extracted from the system

structure or the system behavior. The aim is to design a good

exploration strategy for a better tradeoff between exploration

and exploitation and to speed up the learning process as well.

The experimental results show that FPQL is superior to basic

Q-learning with respect to convergence speed. The control

problems of a spin- 12 system and a Λ-type atomic system are

adopted to demonstrate the performance of FPQL. Although

all the cases we considered in this study are discrete examples,

which are most widely used in practical applications, the

proposed fidelity-based probabilistic action selection method

can be extended to other reinforcement learning algorithms

and applications using function approximation with a contin-

uous probability distribution and related iteration methods. In

addition, our future work will focus on further comparison

of FPQL with other existing learning methods (e.g., GA,

gradient-base methods and neural networks) for more general

quantum control problems.
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