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Abstract— A particle swarm optimisation model for tracking
multiple peaks in a continuously varying dynamic environment
is described. To achieve this, a form of speciation allowing
development of parallel subpopulations is used. The model
employs a mechanism to encourage simulataneous tracking of
multiple peaks by preventing overcrowding at peaks. Possible
metrics for evaluating the performance of algorithms in dynamic,
multimodal environments are put forward. Results are appraised
in terms of the proposed metrics, showing that the technique
is capable of tracking multiple peaks and that its performance
is enhanced by preventing overcrowding. Directions for further
research suggested by these results are put forward.

I. I NTRODUCTION

The particle swarm model is a tool used for the optimi-
sation of continuous, non-linear problems [1]. Optimisation
is achieved by ‘flying’ particles through a solution space
representing a problem with the particle’s position representing
a possible solution. Particles evaluate the fitness of a solution
represented by their coordinates and record the position of the
best solution they have found so far (their personal best or
pbest value). Particles communicate with their neighbours to
record the best position found by other particles (the global
best orgbest value). Using the knowledge of their own best
position and others’ best position, particles derive a velocity
vector which is used to update their position. By using a swarm
of particles behaving in this fashion, a solution space can be
searched for a global optimum. The equations describing this
behaviour are as follows:

vi(t) = wvi(t−1)+c1r1(pi−xi(t−1))+c2r2(pg−xi(t−1)) (1)

xi(t) = xi(t− 1) + vi(t) , (2)

wherevi(t) represents the velocity of particlei at time t,
xi(t) its position,pi andpg the previous best position of the
particle (pbest) and its neighbours (gbest) respectively,c1 and
c2 are two positive constants,w the inertia weighting andr1

andr2 two random numbers in the range [0,1].
Particle Swarm Optimisation (PSO) variations have been

developed to search multimodal environments [2] and to track
a single peak in a dynamic environment [3]. However, to the
best knowledge of the authors a PSO model for tracking mul-
tiple peaks in a dynamic environment has not been developed.
In this respect PSO development lags behind that of genetic

algorithms, variants of which have been developed to operate
in dynamic multimodal envirnoments (e.g. [4]).

Dynamic multimodal environments may change in several
ways - peaks may shift spatially, change shape and change
height. Note that a dynamic multimodal environment in which
only fitness changes is roughly equivalent to a static mul-
timodal environment - once the peaks’ (static) locations are
found no further searching is needed. On the other hand, if
only position changes and not height, only the single peak
representing the global optimum needs to be tracked. In a
fully dynamic multimodal environment, the peak representing
the global optimum may decrease while a local optimum
increases, changing not just the position of the global optimum
as the peaks shift but also the peak which must be tracked
to find it. A peak may ‘disappear’ as it is obscured by
a higher peak above it, or peaks may appear or disappear
entirely. To effectively search such a space an evolutionary
computation technique should track multiple peaks, rather than
a single peak temporarily representing the global optimum, in
order to maintain the location of the global optimum. A two-
dimensional, three-peak mulitmodal space as used later in this
paper is shown in Figure 1.

Fig. 1. Three-peak multimodal environment

This paper provides a technique for multimodal optimisation
in a dynamic environment using a form of speciation similar
to that developed in work by Li et al. on a genetic algorithm
for multimodal optimisation [5]. This technique uses a local
‘species seed’ which provides the local best value to particles
whose position in the solution space is within a user-specified
radius of the seed. This encourages particles to converge
upon local optima rather than all converging to a single
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global optimum, hence developing multiple sub-populations
in parallel.

In the implementation discussed, Morrison and De Jong’s
dynamic function generator DF1 [6] is used to continuously
vary the shape, height and position of peaks within a solution
space. Particles update their fitness at their current position
and their own recorded best-so-far position in order to remain
up-to-date in the dynamic environment.

A parameterpmax is used to limit the number of particles
in a sub-population (i.e. the number of particles sharing
a commongbest). Those particles located within the sub-
population’s space (whose distance to thegbest position is
less than the species radius) beyond the number of allowable
particles are reinitialised at random locations about the search
space.

Research relevant to the problem is explored in Section 2.
Section 3 describes the technique itself. Results are given in
Section 4, along with the problem generator on which the
technique was tested and the metrics used to evaluate its
performance. A discussion of these results is given in Section
5. Following that are the conclusions drawn from this research
and suggestions of directions for further research.

II. RELATED RESEARCH

While research on optimisation in dynamic multimodal
environments has been carried out using GA, none has yet
been published on the use of particle swarms in such an
environment. Evolutionary computation research relevant to
dynamic environments, multimodal environments and dynamic
multimodal environments is briefly reviewed here.

A. Genetic Algorithm for Dynamic Multimodal Environments

A genetic algorithm designed to find optima in a dy-
namic, multimodal enviroment is described by Ursem (the
Multinational GA, [4]). Multinational GAs use multiple GA
populations or nations to track multiple peaks in a dynamic
environment, with each nation having a policy representing
the best point of the nation. A hill-valley detection algorithm
is used to sample points on a line drawn between policies
and its results used to migrate individuals from one nation
to another, to merge nations and to establish new nations
on newly found peaks. It should be noted that the hill-
valley detection algorithm works only on points between
policies (known optima) - the remainder of the space remains
unsampled unless by mutation. The Multinational GA was
tested using several methods of moving a pair of peaks in
two-dimensional environments.

The concepts of using multiple populations to track peaks
and of migrating indiviudals from one population to another,
combining populations and using existing populations to seed
new populations could be applicable to PSO.

B. PSO Algorithms for Dynamic Environments

PSO algorithms appear to be well suited to dynamic envi-
ronments. Eberhart and Shi investigated using PSO to track a
single peak varying spatially only [3]. However, they noted that

in a dynamic environment the height and position may change
in a number of environments simultaneously (but omitted
that the shape and number of peaks may also change). The
authors considered that ability to adapt to a periodic change
occurring every hundred generations should be sufficient.
Using a standard particle swarm to track a single peak in three
dimensions (parabolic functionf(x) = x2 + y2 + z2), they
obtained errors several orders of magnitude less than those of
comparable GA-based approaches.

To adapt PSO to dynamic environments, Hu and Eberhart
[7] suggested monitoring environments for a change and
updating thegbest andpbest values of particles when a change
is detected. Again, they have only tested their algorithms on
single-optimum environments. Carlisle and Dozier investigated
a similar mechanism in their work [8] and also suggested
periodic resetting of personal and population fitness values.

C. PSO and GA Algorithms for Multimodal Environments

Various methods of niching, fitness sharing and speciation
have been used in evolutionary algorithms to find optima in
multimodal environments.

Brits et al. [9] adapted the unimodal particle swarm opti-
miser using niching to find multiple optima in parallel in a
static multimodal environment, a PSO variant they refer to
as NichePSO. Particles are initialised uniformly throughout
the search space using Faure sequences (the authors stated
that success of the algorithm depends on the proper initial
distribution of particles). Particles in the main swarm do not
share knowledge about the best solution - they use only their
own knowledge (‘cognition only’). When a particle’s fitness
shows little change over several iterations a subswarm is cre-
ated with it and its closest topological neighbour as members.
Particles entering the subswarm’s space (a sphere centred on
the position of the best particle in the subswarm with radius
defined as the distance between the centre and the particle in
the subswarm furthest from the centre) automatically become
part of the subswarm. The algorithm was reported to be
successful at detecting global maxima and sometimes local
maxima (although this point was not emphasized in the paper).

While providing useful ideas for a dynamic-environment
PSO, the gradual absorption of all particles, inability to
break populations and use of a convergence-biased PSO in
subswarms do not allow it to be directly applied. Requiring a
certain distribution of particles for the method to succeed is
clearly not useful for a dynamic environment as particles in a
dynamic environment will congregate around the peaks which
must then be tracked.

Parsopoulas et al. studied altering the fitness value via fit-
ness function stretching [10] to adapt PSO to sequentially find
peaks in a multimodal environment. However, in a dynamic
environment it is required to develop multiple populations in
parallel. Kennedy [11] has investigated modifying the PSO
algorithm with stereotyping - clustering based on particles
previous position, with cluster centers substituted for individ-
ual’s or neighbour’s previous bests - which by causing clusters
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to focus on local regions provides an algorithm suitable for
finding optima in multimodal environments in parallel.

Li et al. [5] have developed a species-based GA for use in
static multimodal environments which is applicable with little
modification to PSO techniques. A spatial speciation technique
is used which creates clusters of individuals around species
seeds, representing a local best particle not yet assigned
to another species, with other particles within the species
radius (that are not members of another species) forming a
species. Species are conserved by copying them into the next
generation if they do not survive the GA breeding process.
The technique has similarities to sphericalk-means clustering
[12] in its use of population radius.

III. SPECIATION ALGORITHM

Tracking multiple dynamic peaks requires a technique that
allows the development of multiple sub-populations in parallel.
Any such technique should:

• allow an unbiased search for the local optimum by
members of the exploiting sub-population;

• encourage particles to find multiple peaks;
• provide a natural method for individuals to join sub-

populations, for sub-populations to join and split, and for
sub-population formation; and

• prevent too many particles focusing on a few peaks to
the detriment of the total population’s ability to search
the solution space and track other peaks.

These requirements are features of the algorithm described
which uses speciation to create multiple sub-populations in
parallel, with each sub-population attempting to track and
‘exploit’ a local peak. These sub-populations or species are
centred on the best known position of the fittest particle in
a local region defined as a sphere of radiusr (the speciation
radius) centred on the best position of the fittest particle or
‘species seed’. All particles belonging to the species adopt
the pbest position of the species seed as theirgbest position.
Hence, a candidate species member is defined as any particle
x such that the distanced between it and the species seeds
is less than the speciation radiusr:

d(x, s) ≤ r , (3)

where the distanced(x, s) is defined as the Euclidean
distance between two points inn dimesnions:

d(x, s) =

√√√√ n∑
i=1

(xi − si)2 . (4)

Where a particle is a candidate member of two species, it
will be allocated to the species with the fitter species seed
(Figure 2).

Using this mechanism, every particle is either a species seed
(possibly for a species with only itself as a member) or a
member of a species. Species themselves will be reformed
each iteration of the algorithm, frequently with a different
species seed and set of members than that of any species

of the previous iteration (although the same set of particles
will likely remain near each other for periods of the time as
they track the same peaks). In this way the requirements that
the technique should allow unbiased search for local peaks,
encourage the finding of multiple peaks and provide a natural
way for sub-populations to form and alter are met.

However, a mechanism for preventing too many particles
attempting to track a single peak is still needed. In a dynamic
environment, it is necessary to track not just the current global
optimum but also local optima which are potentially the global
optimum in the near future. To accomplish this a maximum
species population parameterpmax has been introduced such
that only the bestpmax candidate members (including the
species seed) will be allocated as members of the species.
The lower fitness candidate members which would cause the
species population to exceedpmax are reinitialised at random
positions in the solution space. In this way, the total population
can be prevented from focusing its attention on too few areas
and encouraged to explore the total solution space.

Fig. 2. Representation of speciation. Note the candidate member of both
species 1 and 2 moving towards species seedS1, the fitter seed.

To allow the algorithm to operate in a dynamic environ-
ment, each particle’spbest fitness value is re-evaluated at its
recordedpbest positon each iteration. As the algorithm was
designed to operate in a continuously varying environment,
this extra evaluation is warranted although it doubles the
number of fitness evaluations performed by the algorithm.

IV. M ETHOD

A. Test Function

Morrison and De Jong’s DF1 dynamic test function gen-
erator [6] has been used to generate the environment. This
function is capable of generating a given number of peaks in
a given number of dimensions that vary both spatially (position
and shape of the peak) and in terms of fitness. Fitnesses cycle
between a maximum and minimum value creating a saw-tooth
profile when fitness is graphed against iterations for a peak.
The rate at which environments alter is set by a parameterA
used as input to a logistics function:

Yi = A · Y(i−1) · (1− Y(i−1)) . (5)
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The function can produce a series of stepsizes varying from
0 to constant values through to a chaotic series of numbers.
A value of A less than 1.0 produces a static environement
while increasingA beyond 1.0 produces increasingly dynamic
environments with pseudo-random movement.

B. Measurement

Measuring the effectiveness of an evolutionary algorithm
in a dynamic environment is substantially more difficult than
in a static environment. Traditional measures used in static
environments, such as mean fitness, best current fitness and
time to convergence lose their relevance when full convergence
is not desired and the best possible fitness is continuously
changing. As a result, the average minimum error over a run
was used, where minimum error each iteration was defined as:

error = 1− current best fitness

current global maximum possible fitness
. (6)

The minimum and maximum errors for the run were
recorded and the standard deviation calculated to measure the
variability of the error. To reduce the variability of results, each
set of parameters was run 50 times and the averages reported.

C. Environment

The experiments were run in a 2-dimensional environment
with range [-1.0, 1.0] for 500 iterations each with a default
dynamism set byA=1.2 . The PSO parametersc1 andc2 were
set to 1.4 and inertia weight to 0.7. The default number of
agents and maximum species populationpmax were both set
to 60 (hence operating as if the maximum species population
were not a factor), the default speciation radiusr set to 0.1
and the environment created with three peaks by default.

Fifty runs were performed for each experiment and the
results averaged over the runs. Parameters were kept at the
default settings other than those explicitly varied.

V. RESULTS

A. Default parameters with Logistics Function parameter A
varying

The model was run with values ofA of 0.0, 1.1, 1.2, 1.5
and 2.0 to vary the dynamism of the environment, with results
given in Table I. As expected, asA was increased the average
and maximum errors over the run also increased. Standard
deviation for the dynamic cases was about 0.03 to 0.04 greater
than the average error. These results indicate that the algorithm
with default settings finds it increasingly difficult to track the
global optimum as the level of dynamism increases.

B. Default with parameters with number of agents varying

As the number of agents was increased from 30 to 150 in
steps of 30 the average error decreased from 0.1 to 0.04 in an
almost linear fashion (the change in average error decreased
slightly with each increase in agent numbers, suggesting that
the ‘law of diminishing returns’ was in effect). As shown
in Table II, standard deviation also decreased from 0.13 to
0.07 while maximum error decreased from 0.45 to 0.30 over

the same range of agent numbers. These results show that
increasing the number of agents decreased the average error
as would be expected.

C. Default with number of peaks varying, agent/peak ratio
constant

The model was run with a constant ratio of 20 agents per
peak and 1, 3 and 10 peaks. Average error decreased from
0.08 for 1 peak to 0.07 for 3 peaks and 0.03 for 10 peaks. as
shown in Table III. This decrease in error is attributed to the
increased agent density.

D. Varying speciespmax and speciation radiusr

The algorithm was run withpmax set to values of 2, 5, 10,
20, 40 and 60 while the speciation radiusr was set to 0.1, 0.2,
0.5, and 1.0 and the number of peaks held constant at three.
Results are shown in Figure 3.

Notably each of ther settings of 0.2, 0.5 and 1.0 performed
comparatively well at a specificpmax setting (10, 20 and
40 respectively) with an average error between 0.039 and
0.042. Figure 3 suggests there may be a superiorpmax setting
between 20 and 40 agents forr = 1.0. The default setting of
r=0.1 with pmax 20 is relatively bad andr=0.1 appears to
perform uniformly poorly in the experiment.

Figures 4 and 5 shows the difference in clustering between
the {r=0.2, pmax=10} instance and the{r=1.0, pmax=40}
instance. The low species population case shows less cluster-
ing of agents around the peaks and a more evenly distributed
population than the high species population case. Note that
in Figure 5 there is a peak without attending agents (at
approximate (x, y) coordinates (-0.5, 0.8)); as suggested by the
contour lines, this ‘peak’ is submerged beneath its neighbour
and hence undetectable by the agents.

Fig. 3. Error versuspmax with varying population radius

E. Varying speciespmax and A

With the r set to 0.1,pmax was assigned values of 2, 5,
10, 20, 40 and 60 while the parameterA was set to 1.1, 1.2,
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TABLE I

RESULT OF INCREASING DYNAMISM BY VARYING A

A Average error SD of average error Minimum error Maximum error
0 0 0.01 0 0.16

1.1 0.06 0.09 0 0.39
1.2 0.08 0.11 0 0.45
1.5 0.1 0.13 0 0.49
2 0.12 0.16 0 0.53

TABLE II

RESULT OF INCREASING NUMBER OF AGENTS

No. of Agents Average error SD of average error Minimum error Maximum error
30 0.1 0.13 0 0.45
60 0.07 0.11 0 0.4
90 0.06 0.09 0 0.39
120 0.05 0.08 0 0.35
150 0.04 0.07 0 0.3

TABLE III

RESULT OF INCREASING NUMBER OF AGENTS

No. of Peaks No. of Agents Average error SD of average error Minimum error Maximum error
1 20 0.08 0.12 0 0.81
3 60 0.07 0.1 0 0.42
10 200 0.03 0.04 0 0.18

Fig. 4. Swarm with{r=0.2, pmax=10}

1.5, and 2.0 and the number of peaks held constant at three.
Results are shown in Figure 6.

As expected from earlier results, the average error increases
as A increases. In theA = 1.1 andA=1.2 cases there is a
minimum error atpmax=10 andpmax=5 respectively while
for A=1.5 andA=2.0 error is at a minimum with the lowest
pmax value, indicating that the level of dynamism was too
great for the algorithm to effectively track the peaks at these
settings.

VI. D ISCUSSION

The speciation technique used allows the particle swarm
model to succesfully track multiple peaks in a dynamic,
multimodal environment. The results showing that average
error decreases as population increases and that average error
increases as dynamism increases are to be expected. Simply

Fig. 5. Swarm with{r=1.0, pmax=40}

having more particles to find peaks should decrease error while
changing peaks faster will make them more difficult to track
and increase the error.

Increasing the number of peaks while keeping the ratio of
agents to peaks constant decreases the average error. This
is believed to be the result of simply having more agents
available to track the peak. With a greater number of agents
in the same area, any peak becoming the global optimum is
more likely to have an agent nearby to exploit it and having
more agents available to track a peak will decrease error.

The use of apmax parameter has a beneficial effect on the
algorithm when compared to the results obtained with sub-
population size limited only by the population size. Roughly
equal results were obtained at three different settings ofr
andpmax: {r=0.2,pmax=10}, {r=0.5,pmax=20} and{r=1.0,
pmax=40}. Why this is so is not clear; possibly there is an
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Fig. 6. Error versuspmax with varying dynamism

appropriate population density around the peak which balances
exploitation of the peak with exploration of the rest of the
solution space. It is also possible that different mechanisms
are contributing to a similar result - lowerpmax values should
result in a higher number of particles being redistributed about
the search space hence favouring exploration while higher
pmax values will lead to larger species and better tracking
of peaks. That average error is lower in high dynamism
environments whenpmax values are low suggests that the
resulting redistribution of particles throughout the solution
space is the cause of the improved result. This in turn suggests
that for continually varying highly dynamic environments,
random search may outperform the PSO model described.
Logically, this is to be expected: at a sufficiently high level of
dynamism there will not be a relationship between a peak’s
position one iteration and its position the next so that an
algorithm aimed at tracking the peak will have no benefit
compared to a random search.

VII. C ONCLUSION AND FUTURE WORKS

The results demonstrate that the speciation and crowding
mechanisms are able to track multiple continually altering
peaks. In highly dynamic environments low species popula-
tions lead to lower error. For a given problem and speciation
radius, there appears to be an optimal maximum allowable
population for a species if attempting to achieve the lowest
average error. However, there may be multiple speciation
radius/population combinations which give similar lowest av-
erage errors.

The relationship between species population size and radius
is one among many areas for potential future research. The
standard PSO parametersc1, c2 and inertia weight were
kept constant throughout the experiments; highly dynamic
environments may favour greater values for these parameters
giving rise to faster-moving particles able to track a fast-
moving peak better. More investigations of the model’s ability
to track large numbers of peaks are needed. An investigation
of the algorithm’s success in environments with peaks shifting

periodically (everyn iterations rather than every iteration) and
in higher dimension environments is also needed.

To effectively measure tracking in higher dimension en-
vironments will require improved measurement techniques.
Understanding of the algorithms behaviour in two dimensions
was partially achieved by watching a live representation of
the particles and peaks. This representation itself could be
improved to give an indication of a peak’s height and width,
whether a peak is submerged and which particles are acting as
seeds. This information cannot be easily represented graphi-
cally in, say, a ten dimension environment. Hence, a measure
of clustering needs to be developed; an average over a run
of the sum of distances between each particle and its closest
peak may be useful.

This paper has given details of a particle swarm model
for tracking multiple peaks in a dynamic environment using
speciation and demonstrated that it works. Although the paper
does not fully explore the possibilities of the algorithm, it
is hoped that it may contribute to others’ efforts to further
research into evolutionary optimisation of dynamic, multi-
modal environments, a topic at the cutting edge of evolutionary
computation.
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