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Measurement is an essential activity in every branch of technology and science. We
need to know the speed of a car, the temperature of our working environment, the
flow rate of liquid in a pipe, the amount of oxygen dissolved in river water. It is import-
ant, therefore, that the study of measurement forms part of engineering and science
courses in further and higher education. The aim of this book is to provide the funda-
mental principles of measurement which underlie these studies.

The book treats measurement as a coherent and integrated subject by presenting
it as the study of measurement systems. A measurement system is an information 
system which presents an observer with a numerical value corresponding to the vari-
able being measured. A given system may contain four types of element: sensing,
signal conditioning, signal processing and data presentation elements.

The book is divided into three parts. Part A (Chapters 1 to 7) examines general
systems principles. This part begins by discussing the static and dynamic charac-
teristics that individual elements may possess and how they are used to calculate the
overall system measurement error, under both steady and unsteady conditions. In later
chapters, the principles of loading and two-port networks, the effects of interference
and noise on system performance, reliability, maintainability and choice using 
economic criteria are explained. Part B (Chapters 8 to 11) examines the principles,
characteristics and applications of typical sensing, signal conditioning, signal process-
ing and data presentation elements in wide current use. Part C (Chapters 12 to 19)
examines a number of specialised measurement systems which have important
industrial applications. These are flow measurement systems, intrinsically safe 
systems, heat transfer, optical, ultrasonic, gas chromatography, data acquisition,
communication and intelligent multivariable systems.

The fourth edition has been substantially extended and updated to reflect new 
developments in, and applications of, technology since the third edition was published
in 1995. Chapter 1 has been extended to include a wider range of examples of basic
measurement systems. New material on solid state sensors has been included in 
Chapter 8; this includes resistive gas, electrochemical and Hall effect sensors. In
Chapter 9 there is now a full analysis of operational amplifier circuits which are
used in measurement systems. The section on frequency to digital conversion in
Chapter 10 has been expanded; there is also new material on microcontroller struc-
ture, software and applications. Chapter 11 has been extensively updated with new
material on digital displays, chart and paperless recorders and laser printers. 
The section on vortex flowmeters in Chapter 12 has been extended and updated. 
Chapter 19 is a new chapter on intelligent multivariable measurement systems 
which concentrates on structure and modelling methods. There are around 35 addi-
tional problems in this new edition; many of these are at a basic, introductory level.

Preface to the
fourth edition

        



xii PREFACE TO THE FOURTH EDITION

Each chapter in the book is clearly divided into sections. The topics to be covered
are introduced at the beginning and reviewed in a conclusion at the end. Basic and
important equations are highlighted, and a number of references are given at the 
end of each chapter; these should provide useful supplementary reading. The book
contains about 300 line diagrams and tables and about 140 problems. At the end of
the book there are answers to all the numerical problems and a comprehensive index.

This book is primarily aimed at students taking modules in measurement and instru-
mentation as part of degree courses in instrumentation/control, mechanical, manu-
facturing, electrical, electronic, chemical engineering and applied physics. Much of
the material will also be helpful to lecturers and students involved in HNC/HND and
foundation degree courses in technology. The book should also be useful to profes-
sional engineers and technicians engaged in solving practical measurement problems.

I would like to thank academic colleagues, industrial contacts and countless 
students for their helpful comments and criticism over many years. Thanks are 
again especially due to my wife Pauline for her constant support and help with the
preparation of the manuscript.

John P. Bentley
Guisborough, December 2003
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General Principles

        



        



1 The General
Measurement
System

1.1 Purpose and performance of measurement systems
We begin by defining a process as a system which generates information.
Examples are a chemical reactor, a jet fighter, a gas platform, a submarine, a car, a
human heart, and a weather system.

Table 1.1 lists information variables which are commonly generated by processes:
thus a car generates displacement, velocity and acceleration variables, and a chemical
reactor generates temperature, pressure and composition variables.

Figure 1.1 Purpose of
measurement system.

Acceleration Density
Velocity Viscosity
Displacement Composition
Force–Weight pH
Pressure Humidity
Torque Temperature
Volume Heat/Light flux
Mass Current
Flow rate Voltage
Level Power

Table 1.1 Common
information/measured
variables.

We then define the observer as a person who needs this information from the 
process. This could be the car driver, the plant operator or the nurse.

The purpose of the measurement system is to link the observer to the process, 
as shown in Figure 1.1. Here the observer is presented with a number which is the
current value of the information variable.

We can now refer to the information variable as a measured variable. The input
to the measurement system is the true value of the variable; the system output is the
measured value of the variable. In an ideal measurement system, the measured

        



4 THE GENERAL MEASUREMENT SYSTEM

value would be equal to the true value. The accuracy of the system can be defined
as the closeness of the measured value to the true value. A perfectly accurate system
is a theoretical ideal and the accuracy of a real system is quantified using measure-
ment system error E, where

E = measured value − true value

E = system output − system input

Thus if the measured value of the flow rate of gas in a pipe is 11.0 m3/h and the 
true value is 11.2 m3/h, then the error E = −0.2 m3/h. If the measured value of the
rotational speed of an engine is 3140 rpm and the true value is 3133 rpm, then 
E = +7 rpm. Error is the main performance indicator for a measurement system. The
procedures and equipment used to establish the true value of the measured variable
will be explained in Chapter 2.

1.2 Structure of measurement systems
The measurement system consists of several elements or blocks. It is possible to 
identify four types of element, although in a given system one type of element may
be missing or may occur more than once. The four types are shown in Figure 1.2 and
can be defined as follows.

Figure 1.2 General
structure of measurement
system.

Sensing element

This is in contact with the process and gives an output which depends in some way
on the variable to be measured. Examples are:

• Thermocouple where millivolt e.m.f. depends on temperature

• Strain gauge where resistance depends on mechanical strain

• Orifice plate where pressure drop depends on flow rate.

If there is more than one sensing element in a system, the element in contact with the
process is termed the primary sensing element, the others secondary sensing elements.

Signal conditioning element

This takes the output of the sensing element and converts it into a form more suit-
able for further processing, usually a d.c. voltage, d.c. current or frequency signal.
Examples are:

• Deflection bridge which converts an impedance change into a voltage change

• Amplifier which amplifies millivolts to volts

• Oscillator which converts an impedance change into a variable frequency 
voltage.

        



1.3  EXAMPLES OF MEASUREMENT SYSTEMS 5

Signal processing element

This takes the output of the conditioning element and converts it into a form more
suitable for presentation. Examples are:

• Analogue-to-digital converter (ADC) which converts a voltage into a digital
form for input to a computer

• Computer which calculates the measured value of the variable from the
incoming digital data.

Typical calculations are:

• Computation of total mass of product gas from flow rate and density data

• Integration of chromatograph peaks to give the composition of a gas stream

• Correction for sensing element non-linearity.

Data presentation element

This presents the measured value in a form which can be easily recognised by the
observer. Examples are:

• Simple pointer–scale indicator

• Chart recorder

• Alphanumeric display

• Visual display unit (VDU).

1.3 Examples of measurement systems

Figure 1.3 shows some typical examples of measurement systems.
Figure 1.3(a) shows a temperature system with a thermocouple sensing element;

this gives a millivolt output. Signal conditioning consists of a circuit to compensate
for changes in reference junction temperature, and an amplifier. The voltage signal
is converted into digital form using an analogue-to-digital converter, the computer
corrects for sensor non-linearity, and the measured value is displayed on a VDU.

In Figure 1.3(b) the speed of rotation of an engine is sensed by an electromag-
netic tachogenerator which gives an a.c. output signal with frequency proportional
to speed. The Schmitt trigger converts the sine wave into sharp-edged pulses which
are then counted over a fixed time interval. The digital count is transferred to a com-
puter which calculates frequency and speed, and the speed is presented on a digital
display.

The flow system of Figure 1.3(c) has an orifice plate sensing element; this gives
a differential pressure output. The differential pressure transmitter converts this into
a current signal and therefore combines both sensing and signal conditioning stages.
The ADC converts the current into digital form and the computer calculates the flow
rate, which is obtained as a permanent record on a chart recorder.

The weight system of Figure 1.3(d) has two sensing elements: the primary ele-
ment is a cantilever which converts weight into strain; the strain gauge converts this
into a change in electrical resistance and acts as a secondary sensor. There are two
signal conditioning elements: the deflection bridge converts the resistance change into

        



6 THE GENERAL MEASUREMENT SYSTEM
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CONCLUSION 7

millivolts and the amplifier converts millivolts into volts. The computer corrects for
non-linearity in the cantilever and the weight is presented on a digital display.

The word ‘transducer’ is commonly used in connection with measurement and
instrumentation. This is a manufactured package which gives an output voltage (usu-
ally) corresponding to an input variable such as pressure or acceleration. We see there-
fore that such a transducer may incorporate both sensing and signal conditioning
elements; for example a weight transducer would incorporate the first four elements
shown in Figure 1.3(d).

It is also important to note that each element in the measurement system may itself
be a system made up of simpler components. Chapters 8 to 11 discuss typical 
examples of each type of element in common use.

1.4 Block diagram symbols
A block diagram approach is very useful in discussing the properties of elements and
systems. Figure 1.4 shows the main block diagram symbols used in this book.

Figure 1.4 Block
diagram symbols.

Conclusion
This chapter has defined the purpose of a measurement system and explained the 
importance of system error. It has shown that, in general, a system consists of 
four types of element: sensing, signal conditioning, signal processing and data 
presentation elements. Typical examples have been given.

        



        



2 Static Characteristics
of Measurement
System Elements

In the previous chapter we saw that a measurement system consists of different types
of element. The following chapters discuss the characteristics that typical elements
may possess and their effect on the overall performance of the system. This chapter
is concerned with static or steady-state characteristics; these are the relationships which
may occur between the output O and input I of an element when I is either at a 
constant value or changing slowly (Figure 2.1).

2.1 Systematic characteristics
Systematic characteristics are those that can be exactly quantified by mathematical
or graphical means. These are distinct from statistical characteristics which cannot
be exactly quantified and are discussed in Section 2.3.

Range

The input range of an element is specified by the minimum and maximum values 
of I, i.e. IMIN to IMAX. The output range is specified by the minimum and maximum
values of O, i.e. OMIN to OMAX. Thus a pressure transducer may have an input range
of 0 to 104 Pa and an output range of 4 to 20 mA; a thermocouple may have an input
range of 100 to 250 °C and an output range of 4 to 10 mV.

Span

Span is the maximum variation in input or output, i.e. input span is IMAX – IMIN, and
output span is OMAX – OMIN. Thus in the above examples the pressure transducer has
an input span of 104 Pa and an output span of 16 mA; the thermocouple has an input
span of 150 °C and an output span of 6 mV.

Ideal straight line

An element is said to be linear if corresponding values of I and O lie on a straight
line. The ideal straight line connects the minimum point A(IMIN, OMIN ) to maximum
point B(IMAX, OMAX) (Figure 2.2) and therefore has the equation:

Figure 2.1 Meaning of
element characteristics.

        



10 STATIC CHARACTERISTICS OF MEASUREMENT SYSTEM ELEMENTS

O – OMIN = (I – IMIN) [2.1]

Ideal straight 
line equation

where:

K = ideal straight-line slope =

and

a = ideal straight-line intercept = OMIN − KIMIN

Thus the ideal straight line for the above pressure transducer is:

O = 1.6 × 10−3I + 4.0

The ideal straight line defines the ideal characteristics of an element. Non-ideal char-
acteristics can then be quantified in terms of deviations from the ideal straight line.

Non-linearity

In many cases the straight-line relationship defined by eqn [2.2] is not obeyed and
the element is said to be non-linear. Non-linearity can be defined (Figure 2.2) in terms
of a function N(I ) which is the difference between actual and ideal straight-line
behaviour, i.e.

N(I ) = O(I ) − (KI + a) [2.3]

or

O(I ) = KI + a + N(I ) [2.4]

Non-linearity is often quantified in terms of the maximum non-linearity ; expressed
as a percentage of full-scale deflection (f.s.d.), i.e. as a percentage of span. Thus:

= × 100% [2.5]
;

OMAX – OMIN

Max. non-linearity as
a percentage of f.s.d.

OMAX – OMIN

IMAX – IMIN

OIDEAL = KI + a [2.2]

J
L

OMAX – OMIN

IMAX – IMIN

G
I

Figure 2.2 Definition of
non-linearity.

        



2.1  SYSTEMATIC CHARACTERISTICS 11

As an example, consider a pressure sensor where the maximum difference between
actual and ideal straight-line output values is 2 mV. If the output span is 100 mV,
then the maximum percentage non-linearity is 2% of f.s.d.

In many cases O(I ) and therefore N(I ) can be expressed as a polynomial in I:

O(I ) = a0 + a1I + a2 I 2 + . . . + aqIq + . . . + amI m = aqIq [2.6]

An example is the temperature variation of the thermoelectric e.m.f. at the junction
of two dissimilar metals. For a copper–constantan (Type T) thermocouple junction,
the first four terms in the polynomial relating e.m.f. E(T ), expressed in µV, and 
junction temperature T °C are:

E(T ) = 38.74T + 3.319 × 10−2T 2 + 2.071 × 10−4T 3

− 2.195 × 10−6T 4 + higher-order terms up to T 8 [2.7a]

for the range 0 to 400 °C.[1] Since E = 0 µV at T = 0 °C and E = 20 869 µV at 
T = 400 °C, the equation to the ideal straight line is:

EIDEAL = 52.17T [2.7b]

and the non-linear correction function is:

N(T ) = E(T ) − EIDEAL

= −13.43T + 3.319 × 10−2T 2 + 2.071 × 10−4T 3

− 2.195 × 10−6T 4 + higher-order terms [2.7c]

In some cases expressions other than polynomials are more appropriate: for example
the resistance R(T ) ohms of a thermistor at T °C is given by:

R(T ) = 0.04 exp [2.8]

Sensitivity

This is the change ∆O in output O for unit change ∆ I in input I, i.e. it is the ratio
∆O/∆I. In the limit that ∆I tends to zero, the ratio ∆O/∆I tends to the derivative dO/dI,
which is the rate of change of O with respect to I. For a linear element dO/dI is equal
to the slope or gradient K of the straight line; for the above pressure transducer the
sensitivity is 1.6 × 10−3 mA/Pa. For a non-linear element dO/dI = K + dN/dI, i.e. 
sensitivity is the slope or gradient of the output versus input characteristics O(I).
Figure 2.3 shows the e.m.f. versus temperature characteristics E(T ) for a Type T
thermocouple (eqn [2.7a] ). We see that the gradient and therefore the sensitivity vary
with temperature: at 100 °C it is approximately 35 µV/°C and at 200 °C approximately 
42 µV/°C.

Environmental effects

In general, the output O depends not only on the signal input I but on environ-
mental inputs such as ambient temperature, atmospheric pressure, relative humidity,
supply voltage, etc. Thus if eqn [2.4] adequately represents the behaviour of the 
element under ‘standard’ environmental conditions, e.g. 20 °C ambient temperature,

D
F

3300

T + 273

A
C

q m

∑
q 0

        



12 STATIC CHARACTERISTICS OF MEASUREMENT SYSTEM ELEMENTS

1000 millibars atmospheric pressure, 50% RH and 10 V supply voltage, then the 
equation must be modified to take account of deviations in environmental conditions
from ‘standard’. There are two main types of environmental input.

A modifying input IM causes the linear sensitivity of an element to change. K is
the sensitivity at standard conditions when IM = 0. If the input is changed from the
standard value, then IM is the deviation from standard conditions, i.e. (new value –
standard value). The sensitivity changes from K to K + KMIM, where KM is the change
in sensitivity for unit change in IM. Figure 2.4(a) shows the modifying effect of 
ambient temperature on a linear element.

An interfering input II causes the straight line intercept or zero bias to change. a
is the zero bias at standard conditions when II = 0. If the input is changed from the
standard value, then II is the deviation from standard conditions, i.e. (new value –
standard value). The zero bias changes from a to a + KI II, where KI is the change in
zero bias for unit change in II. Figure 2.4(b) shows the interfering effect of ambient
temperature on a linear element.

KM and KI are referred to as environmental coupling constants or sensitivities. Thus
we must now correct eqn [2.4], replacing KI with (K + KMIM)I and replacing a with 
a + KIII to give:

O = KI + a + N(I ) + KM IM I + KIII [2.9]

Figure 2.3
Thermocouple sensitivity.

Figure 2.4 Modifying and interfering inputs.

        



2.1  SYSTEMATIC CHARACTERISTICS 13

An example of a modifying input is the variation ∆VS in the supply voltage VS of 
the potentiometric displacement sensor shown in Figure 2.5. An example of an 
interfering input is provided by variations in the reference junction temperature T2 

of the thermocouple (see following section and Section 8.5).

Hysteresis

For a given value of I, the output O may be different depending on whether I is 
increasing or decreasing. Hysteresis is the difference between these two values of O
(Figure 2.6), i.e.

Hysteresis H(I ) = O(I )I↓ − O(I)I ↑ [2.10]

Again hysteresis is usually quantified in terms of the maximum hysteresis à

expressed as a percentage of f.s.d., i.e. span. Thus:

Maximum hysteresis as a percentage of f.s.d. = × 100% [2.11]

A simple gear system (Figure 2.7) for converting linear movement into angular 
rotation provides a good example of hysteresis. Due to the ‘backlash’ or ‘play’ in the
gears the angular rotation θ, for a given value of x, is different depending on the 
direction of the linear movement.

Resolution

Some elements are characterised by the output increasing in a series of discrete steps
or jumps in response to a continuous increase in input (Figure 2.8). Resolution is defined
as the largest change in I that can occur without any corresponding change in O. 

à

OMAX – OMIN

If x is the fractional
displacement, then 
VOUT = (VS + ∆VS )x

= VSx + ∆VS x

Figure 2.5

Figure 2.6 Hysteresis.

Figure 2.7 Backlash in
gears.
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Thus in Figure 2.8 resolution is defined in terms of the width ∆IR of the widest step;
resolution expressed as a percentage of f.s.d. is thus:

× 100%

A common example is a wire-wound potentiometer (Figure 2.8); in response to a 
continuous increase in x the resistance R increases in a series of steps, the size of 
each step being equal to the resistance of a single turn. Thus the resolution of a 
100 turn potentiometer is 1%. Another example is an analogue-to-digital converter
(Chapter 10); here the output digital signal responds in discrete steps to a continu-
ous increase in input voltage; the resolution is the change in voltage required to cause
the output code to change by the least significant bit.

Wear and ageing

These effects can cause the characteristics of an element, e.g. K and a, to change slowly
but systematically throughout its life. One example is the stiffness of a spring k(t)
decreasing slowly with time due to wear, i.e.

k(t) = k0 − bt [2.12]

where k0 is the initial stiffness and b is a constant. Another example is the constants
a1, a2, etc. of a thermocouple, measuring the temperature of gas leaving a cracking
furnace, changing systematically with time due to chemical changes in the thermo-
couple metals.

Error bands

Non-linearity, hysteresis and resolution effects in many modern sensors and trans-
ducers are so small that it is difficult and not worthwhile to exactly quantify each indi-
vidual effect. In these cases the manufacturer defines the performance of the element
in terms of error bands (Figure 2.9). Here the manufacturer states that for any value
of I, the output O will be within ±h of the ideal straight-line value OIDEAL. Here an exact
or systematic statement of performance is replaced by a statistical statement in terms of
a probability density function p(O). In general a probability density function p(x) is
defined so that the integral p(x) dx (equal to the area under the curve in Figure 2.10
between x1 and x2) is the probability Px1,x2

of x lying between x1 and x2 (Section 6.2).
In this case the probability density function is rectangular (Figure 2.9), i.e.

x2∫x1

∆IR

IMAX – IMIN

Figure 2.8 Resolution
and potentiometer
example.

        



2.2  GENERALISED MODEL OF A SYSTEM ELEMENT 15

p(O) [2.13]

We note that the area of the rectangle is equal to unity: this is the probability of O
lying between OIDEAL − h and OIDEAL + h.

2.2 Generalised model of a system element
If hysteresis and resolution effects are not present in an element but environmental
and non-linear effects are, then the steady-state output O of the element is in general
given by eqn [2.9], i.e.:

O = KI + a + N(I ) + KMIMI + KIII [2.9]

Figure 2.11 shows this equation in block diagram form to represent the static 
characteristics of an element. For completeness the diagram also shows the transfer
function G(s), which represents the dynamic characteristics of the element. The
meaning of transfer function will be explained in Chapter 4 where the form of G(s)
for different elements will be derived.

Examples of this general model are shown in Figure 2.12(a), (b) and (c), which 
summarise the static and dynamic characteristics of a strain gauge, thermocouple and
accelerometer respectively.

1= Oideal − h ≤ O ≤ Oideal + h
2h

= 0 O > Oideal + h

= 0 Oideal − h > O

1
4
2
4
3

Figure 2.9 Error 
bands and rectangular
probability density
function.

Figure 2.10 Probability
density function.

        



16 STATIC CHARACTERISTICS OF MEASUREMENT SYSTEM ELEMENTS

Figure 2.11 General
model of element.

Figure 2.12 Examples of
element characteristics:
(a) Strain gauge
(b) Copper–constantan
thermocouple
(c) Accelerometer.
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The strain gauge has an unstrained resistance of 100 Ω and gauge factor 
(Section 8.1) of 2.0. Non-linearity and dynamic effects can be neglected, but the 
resistance of the gauge is affected by ambient temperature as well as strain. Here 
temperature acts as both a modifying and an interfering input, i.e. it affects both gauge
sensitivity and resistance at zero strain.

Figure 2.12(b) represents a copper–constantan thermocouple between 0 and 
400 °C. The figure is drawn using eqns [2.7b] and [2.7c] for ideal straight-line and
non-linear correction functions; these apply to a single junction. A thermocouple instal-
lation consists of two junctions (Section 8.5) – a measurement junction at T1 °C 
and a reference junction at T2 °C. The resultant e.m.f. is the difference of the two 
junction potentials and thus depends on both T1 and T2, i.e. E(T1, T2) = E(T1) − E(T2);
T2 is thus an interfering input. The model applies to the situation where T2 is small
compared with T1, so that E(T2) can be approximated by 38.74 T2, the largest term
in eqn [2.7a]. The dynamics are represented by a first-order transfer function of time
constant 10 seconds (Chapters 4 and 14).

Figure 2.12(c) represents an accelerometer with a linear sensitivity of 
0.35 mV m−1 s2 and negligible non-linearity. Any transverse acceleration aT , i.e. 
any acceleration perpendicular to that being measured, acts as an interfering input.
The dynamics are represented by a second-order transfer function with a natural 
frequency of 250 Hz and damping coefficient of 0.7 (Chapters 4 and 8).

2.3 Statistical characteristics

2.3.1 Statistical variations in the output of a single element
with time – repeatability

Suppose that the input I of a single element, e.g. a pressure transducer, is held con-
stant, say at 0.5 bar, for several days. If a large number of readings of the output O
are taken, then the expected value of 1.0 volt is not obtained on every occasion; a
range of values such as 0.99, 1.01, 1.00, 1.02, 0.98, etc., scattered about the expected
value, is obtained. This effect is termed a lack of repeatability in the element.
Repeatability is the ability of an element to give the same output for the same input,
when repeatedly applied to it. Lack of repeatability is due to random effects in the
element and its environment. An example is the vortex flowmeter (Section 12.2.4):
for a fixed flow rate Q = 1.4 × 10−2 m3 s−1, we would expect a constant frequency out-
put f = 209 Hz. Because the output signal is not a perfect sine wave, but is subject to
random fluctuations, the measured frequency varies between 207 and 211 Hz.

The most common cause of lack of repeatability in the output O is random fluctua-
tions with time in the environmental inputs IM, II: if the coupling constants KM, KI

are non-zero, then there will be corresponding time variations in O. Thus random fluctu-
ations in ambient temperature cause corresponding time variations in the resistance
of a strain gauge or the output voltage of an amplifier; random fluctuations in the 
supply voltage of a deflection bridge affect the bridge output voltage.

By making reasonable assumptions for the probability density functions of the 
inputs I, IM and II (in a measurement system random variations in the input I to 

        



18 STATIC CHARACTERISTICS OF MEASUREMENT SYSTEM ELEMENTS

a given element can be caused by random effects in the previous element), the 
probability density function of the element output O can be found. The most likely
probability density function for I, IM and II is the normal or Gaussian distribution 
function (Figure 2.13):

Normal probability
density function [2.14]

where: P = mean or expected value (specifies centre of distribution)
σ = standard deviation (specifies spread of distribution).

Equation [2.9] expresses the independent variable O in terms of the independent 
variables I, IM and II. Thus if ∆O is a small deviation in O from the mean value /,
caused by deviations ∆I, ∆IM and ∆II from respective mean values -, -M and -I, then:

∆O = ∆I + ∆IM + ∆II [2.15]

Thus ∆O is a linear combination of the variables ∆I, ∆IM and ∆II; the partial deriv-
atives can be evaluated using eqn [2.9]. It can be shown[2] that if a dependent variable
y is a linear combination of independent variables x1, x2 and x3, i.e.

y = a1x1 + a2x2 + a3x3 [2.16]

and if x1, x2 and x3 have normal distributions with standard deviations σ1, σ2 and σ3

respectively, then the probability distribution of y is also normal with standard devi-
ation σ given by:

[2.17]

From eqns [2.15] and [2.17] we see that the standard deviation of ∆O, i.e. of O about
mean O, is given by:

σ σ σ σ      = + +a a a1
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Figure 2.13 Normal
probability density
function with P = 0.
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Standard deviation 
of output for a 

[2.18]single element 

where σI , σIM
and σII

are the standard deviations of the inputs. Thus σ0 can be 
calculated using eqn [2.18] if σI , σIM

and σII
are known; alternatively if a calibration

test (see following section) is being performed on the element then σ0 can be estim-
ated directly from the experimental results. The corresponding mean or expected value
/ of the element output is given by:

Mean value of output
for a single element

and the corresponding probability density function is:

[2.20]

2.3.2 Statistical variations amongst a batch of similar 
elements – tolerance

Suppose that a user buys a batch of similar elements, e.g. a batch of 100 resistance
temperature sensors, from a manufacturer. If he then measures the resistance R0 of
each sensor at 0 °C he finds that the resistance values are not all equal to the man-
ufacturer’s quoted value of 100.0 Ω. A range of values such as 99.8, 100.1, 99.9, 100.0
and 100.2 Ω, distributed statistically about the quoted value, is obtained. This effect
is due to small random variations in manufacture and is often well represented by
the normal probability density function given earlier. In this case we have:

[2.21]

where =0 = mean value of distribution = 100 Ω and σR0
= standard deviation, typic-

ally 0.1 Ω. However, a manufacturer may state in his specification that R0 lies within
±0.15 Ω of 100 Ω for all sensors, i.e. he is quoting tolerance limits of ±0.15 Ω. Thus
in order to satisfy these limits he must reject for sale all sensors with R0 < 99.85 Ω
and R0 > 100.15 Ω, so that the probability density function of the sensors bought by
the user now has the form shown in Figure 2.14.

The user has two choices:

(a) He can design his measurement system using the manufacturer’s value of 
R0 = 100.0 Ω and accept that any individual system, with R0 = 100.1 Ω say,
will have a small measurement error. This is the usual practice.

(b) He can perform a calibration test to measure R0 as accurately as possible 
for each element in the batch. This theoretically removes the error due to
uncertainty in R0 but is time-consuming and expensive. There is also a small
remaining uncertainty in the value of R0 due to the limited accuracy of the 
calibration equipment.
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/ = K- + a + N(- ) + KM-M- + KI-I [2.19]
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20 STATIC CHARACTERISTICS OF MEASUREMENT SYSTEM ELEMENTS

This effect is found in any batch of ‘identical’ elements; significant variations are found
in batches of thermocouples and thermistors, for example. In the general case we can
say that the values of parameters, such as linear sensitivity K and zero bias a, for a
batch of elements are distributed statistically about mean values . and ã.

2.3.3 Summary

In the general case of a batch of several ‘identical’ elements, where each element is
subject to random variations in environmental conditions with time, both inputs I, IM

and II and parameters K, a, etc., are subject to statistical variations. If we assume that
each statistical variation can be represented by a normal probability density function,
then the probability density function of the element output O is also normal, i.e.:

[2.20]

where the mean value / is given by:

Mean value of output 
for a batch of elements

and the standard deviation σ0 is given by:

Standard deviation 
of output for a batch 
of elements

[2.23]

Tables 2.1 and 2.2 summarise the static characteristics of a chromel–alumel thermo-
couple and a millivolt to current temperature transmitter. The thermocouple is 
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Tolerance limits.
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characterised by non-linearity, changes in reference junction (ambient temperature)
Ta acting as an interfering input, and a spread of zero bias values a0. The transmitter
is linear but is affected by ambient temperature acting as both a modifying and an
interfering input. The zero and sensitivity of this element are adjustable; we cannot
be certain that the transmitter is set up exactly as required, and this is reflected in a
non-zero value of the standard deviation of the zero bias a.

2.4 Identification of static characteristics – calibration

2.4.1 Standards

The static characteristics of an element can be found experimentally by measuring
corresponding values of the input I, the output O and the environmental inputs IM and
II, when I is either at a constant value or changing slowly. This type of experiment
is referred to as calibration, and the measurement of the variables I, O, IM and II must
be accurate if meaningful results are to be obtained. The instruments and techniques
used to quantify these variables are referred to as standards (Figure 2.15).

Model equation ET,Ta
= a0 + a1(T − Ta) + a2(T

2 − T 2
a) (50 to 150 °C)

Mean values ã0 = 0.00, ã1 = 4.017 × 10−2, ã2 = 4.66 × 10−6, >a = 10

Standard deviations σa0
= 6.93 × 10−2, σa1

= 0.0, σa2
= 0.0, σTa

= 6.7

Partial derivatives = 1.0, = −4.026 × 10−2
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Model equation i = KE + KM E∆Ta + KI ∆Ta + a
4 to 20 mA output for 2.02 to 6.13 mV input
∆Ta = deviation in ambient temperature from 20 °C

Mean values . = 3.893, ã = 3.864, ∆>a = −10
.M = 1.95 × 10−4, .I = 2.00 × 10−3

Standard deviations σa = 0.14, σ∆Ta
= 6.7

σK = 0.0, σKM
= 0.0, σKI

= 0.0

Partial derivatives = 3.891, = 2.936 × 10−3, = 1.0
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Table 2.1 Model for
chromel–alumel
thermocouple.

Table 2.2 Model for
millivolt to current
temperature transmitter.
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The accuracy of a measurement of a variable is the closeness of the measurement
to the true value of the variable. It is quantified in terms of measurement error, i.e.
the difference between the measured value and the true value (Chapter 3). Thus the
accuracy of a laboratory standard pressure gauge is the closeness of the reading to
the true value of pressure. This brings us back to the problem, mentioned in the pre-
vious chapter, of how to establish the true value of a variable. We define the true value
of a variable as the measured value obtained with a standard of ultimate accuracy.
Thus the accuracy of the above pressure gauge is quantified by the difference
between the gauge reading, for a given pressure, and the reading given by the ulti-
mate pressure standard. However, the manufacturer of the pressure gauge may not
have access to the ultimate standard to measure the accuracy of his products.

In the United Kingdom the manufacturer is supported by the National Measure-
ment System. Ultimate or primary measurement standards for key physical 
variables such as time, length, mass, current and temperature are maintained at the
National Physical Laboratory (NPL). Primary measurement standards for other
important industrial variables such as the density and flow rate of gases and liquids
are maintained at the National Engineering Laboratory (NEL). In addition there is a
network of laboratories and centres throughout the country which maintain transfer
or intermediate standards. These centres are accredited by UKAS (United Kingdom
Accreditation Service). Transfer standards held at accredited centres are calibrated
against national primary and secondary standards, and a manufacturer can calibrate
his products against the transfer standard at a local centre. Thus the manufacturer of
pressure gauges can calibrate his products against a transfer standard, for example 
a deadweight tester. The transfer standard is in turn calibrated against a primary or
secondary standard, for example a pressure balance at NPL. This introduces the 
concept of a traceability ladder, which is shown in simplified form in Figure 2.16.

The element is calibrated using the laboratory standard, which should itself be 
calibrated using the transfer standard, and this in turn should be calibrated using the
primary standard. Each element in the ladder should be significantly more accurate
than the one below it.

NPL are currently developing an Internet calibration service.[3] This will allow
an element at a remote location (for example at a user’s factory) to be calibrated directly
against a national primary or secondary standard without having to be transported to
NPL. The traceability ladder is thereby collapsed to a single link between element
and national standard. The same input must be applied to element and standard. The
measured value given by the standard instrument is then the true value of the input
to the element, and this is communicated to the user via the Internet. If the user 
measures the output of the element for a number of true values of input, then the 
characteristics of the element can be determined to a known, high accuracy.

Figure 2.15 Calibration
of an element.
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2.4.2 SI units

Having introduced the concepts of standards and traceability we can now discuss 
different types of standards in more detail. The International System of Units (SI)
comprises seven base units, which are listed and defined in Table 2.3. The units of
all physical quantities can be derived from these base units. Table 2.4 lists common
physical quantities and shows the derivation of their units from the base units. In 
the United Kingdom the National Physical Laboratory (NPL) is responsible for the

Figure 2.16 Simplified
traceability ladder.

Table 2.3 SI base units (after National Physical Laboratory ‘Units of Measurement’ poster, 1996[4]).

Time: second (s) The second is the duration of 9 192 631 770 periods of the radiation corresponding to the
transition between the two hyperfine levels of the ground state of the caesium-133 atom.

Length: metre (m) The metre is the length of the path travelled by light in vacuum during a time interval of
1/299 792 458 of a second.

Mass: kilogram (kg) The kilogram is the unit of mass; it is equal to the mass of the international prototype of the
kilogram.

Electric current: The ampere is that constant current which, if maintained in two straight parallel conductors 
ampere (A) of infinite length, of negligible circular cross-section, and placed 1 metre apart in vacuum,

would produce between these conductors a force equal to 2 × 10−7 newton per metre of
length.

Thermodynamic The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16 of the 
temperature: kelvin (K) thermodynamic temperature of the triple point of water.

Amount of substance: The mole is the amount of substance of a system which contains as many elementary 
mole (mol) entities as there are atoms in 0.012 kilogram of carbon-12.

Luminous intensity: The candela is the luminous intensity, in a given direction, of a source that emits 
candela (cd) monochromatic radiation of frequency 540 × 1012 hertz and that has a radiant intensity in

that direction of (1/683) watt per steradian.
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Table 2.4 SI derived
units (after National
Physical Laboratory 
Units of Measurement
poster, 1996[4]).

Examples of SI derived units expressed in terms of base units

Quantity SI unit

Name Symbol

area square metre m2

volume cubic metre m3

speed, velocity metre per second m/s
acceleration metre per second squared m/s2

wave number 1 per metre m−1

density, mass density kilogram per cubic metre kg/m3

specific volume cubic metre per kilogram m3/kg
current density ampere per square metre A/m2

magnetic field strength ampere per metre A/m
concentration (of amount of substance) mole per cubic metre mol/m3

luminance candela per square metre cd/m2

SI derived units with special names

Quantity SI unit

Name Symbol Expression Expressiona 

in terms of in terms of 
other units SI base units

plane angleb radian rad m ⋅ m−1 = 1
solid angleb steradian sr m2 ⋅ m−2 = 1
frequency hertz Hz s−1

force newton N m kg s−2

pressure, stress pascal Pa N/m2 m−1 kg s−2

energy, work quantity 
of heat joule J N m m2 kg s−2

power, radiant flux watt W J/s m2 kg s−3

electric charge, quantity 
of electricity coulomb C s A

electric potential, 
potential difference, 
electromotive force volt V W/A m2 kg s−3 A−1

capacitance farad F C/V m−2 kg−1 s4 A2

electric resistance ohm Ω V/A m2 kg s−3 A−2

electric conductance siemens S A/V m−2 kg−1 s3 A2

magnetic flux weber Wb V s m2 kg s−2 A−1

magnetic flux density tesla T Wb/m2 kg s−2 A−1

inductance henry H Wb/A m2 kg s−2 A−2

Celsius temperature degree Celsius °C K
luminous flux lumen lm cd sr cd ⋅ m2 ⋅ m−2 = cd
illuminance lux lx lm/m2 cd ⋅ m2 ⋅ m−4 = cd ⋅ m−2

activity (of a radionuclide) becquerel Bq s−1

absorbed dose, specific 
energy imparted, kerma gray Gy J/kg m2 s−2

dose equivalent sievert Sv J/kg m2 s−2
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physical realisation of all of the base units and many of the derived units mentioned
above. The NPL is therefore the custodian of ultimate or primary standards in the
UK. There are secondary standards held at United Kingdom Accreditation Service
(UKAS) centres. These have been calibrated against NPL standards and are avail-
able to calibrate transfer standards.

At NPL, the metre is realised using the wavelength of the 633 nm radiation from
an iodine-stabilised helium–neon laser. The reproducibility of this primary standard

Examples of SI derived units expressed by means of special names

Quantity SI unit

Name Symbol Expression in terms 
of SI base units

dynamic viscosity pascal second Pa s m−1 kg s−1

moment of force newton metre N m m2 kg s−2

surface tension newton per metre N/m kg s−2

heat flux density, 
irradiance watt per square metre W/m2 kg s−3

heat capacity, entropy joule per kelvin J/K m2 kg s−2 K−1

specific heat capacity, 
specific entropy joule per kilogram kelvin J/(kg K) m2 s−2 K−1

specific energy joule per kilogram J/kg m2 s−2

thermal conductivity watt per metre kelvin W/(m K) m kg s−3 K−1

energy density joule per cubic metre J/m3 m−1 kg s−2

electric field strength volt per metre V/m m kg s−3 A−1

electric charge density coulomb per cubic metre C/m3 m−3 s A
electric flux density coulomb per square metre C/m2 m−2 s A
permittivity farad per metre F/m m−3 kg−1 s4 A2

permeability henry per metre H/m m kg s−2 A−2

molar energy joule per mole J/mol m2 kg s−2 mol−1

molar entropy, molar 
heat capacity joule per mole kelvin J/(mol K) m2 kg s−2 K−1 mol−1

exposure (X and γ rays) coulomb per kilogram C/kg kg−1 s A
absorbed dose rate gray per second Gy/s m2 s−3

Examples of SI derived units formed by using the radian and steradian

Quantity SI unit

Name Symbol

angular velocity radian per second rad/s
angular acceleration radian per second squared rad/s2

radiant intensity watt per steradian W/sr
radiance watt per square metre steradian W m−2 sr−1

a Acceptable forms are, for example, m ⋅ kg ⋅ s−2, m kg s−2; m/s, m–s or m ⋅ s−1.
b The CIPM (1995) decided that the radian and steradian should henceforth be designated as

dimensionless derived units.

Table 2.4 (cont’d)
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is about 3 parts in 1011, and the wavelength of the radiation has been accurately 
related to the definition of the metre in terms of the velocity of light. The primary
standard is used to calibrate secondary laser interferometers which are in turn used
to calibrate precision length bars, gauges and tapes. A simplified traceability ladder
for length[5] is shown in Figure 2.17(a).

The international prototype of the kilogram is made of platinum–iridium and 
is kept at the International Bureau of Weights and Measures (BIPM) in Paris. The
British national copy is kept at NPL and is used in conjunction with a precision bal-
ance to calibrate secondary and transfer kilogram standards. Figure 2.17(b) shows a
simplified traceability ladder for mass and weight.[6] The weight of a mass m is the
force mg it experiences under the acceleration of gravity g; thus if the local value of
g is known accurately, then a force standard can be derived from mass standards. 
At NPL deadweight machines covering a range of forces from 450 N to 30 MN are
used to calibrate strain-gauge load cells and other weight transducers.

The second is realised by caesium beam standards to about 1 part in 1013; this is
equivalent to one second in 300 000 years! A uniform timescale, synchronised to 0.1
microsecond, is available worldwide by radio transmissions; this includes satellite 
broadcasts.

The ampere has traditionally been the electrical base unit and has been realised
at NPL using the Ayrton-Jones current balance; here the force between two current-
carrying coils is balanced by a known weight. The accuracy of this method is 
limited by the large deadweight of the coils and formers and the many length measure-
ments necessary. For this reason the two electrical base units are now chosen to be
the farad and the volt (or watt); the other units such as the ampere, ohm, henry 
and joule are derived from these two base units with time or frequency units, using

Figure 2.17
Traceability ladders: 
(a) length (adapted 
from Scarr[5])
(b) mass (reprinted by
permission of the Council
of the Institution of
Mechanical Engineers
from Hayward[6] ).
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Ohm’s law where necessary. The farad is realised using a calculable capacitor based
on the Thompson–Lampard theorem. Using a.c. bridges, capacitance and frequency
standards can then be used to calibrate standard resistors. The primary standard 
for the volt is based on the Josephson effect in superconductivity; this is used to 
calibrate secondary voltage standards, usually saturated Weston cadmium cells. The
ampere can then be realised using a modified current balance. As before, the force
due to a current I is balanced by a known weight mg, but also a separate measure-
ment is made of the voltage e induced in the coil when moving with velocity u. Equating
electrical and mechanical powers gives the simple equation:

eI = mgu

Accurate measurements of m, u and e can be made using secondary standards trace-
able back to the primary standards of the kilogram, metre, second and volt.

Ideally temperature should be defined using the thermodynamic scale, i.e. the 
relationship PV = Rθ between the pressure P and temperature θ of a fixed volume V
of an ideal gas. Because of the limited reproducibility of real gas thermometers the
International Practical Temperature Scale (IPTS) was devised. This consists of:

(a) several highly reproducible fixed points corresponding to the freezing, boiling
or triple points of pure substances under specified conditions;

(b) standard instruments with a known output versus temperature relationship
obtained by calibration at fixed points.

The instruments interpolate between the fixed points.
The numbers assigned to the fixed points are such that there is exactly 100 K between

the freezing point (273.15 K) and boiling point (373.15 K) of water. This means that
a change of 1 K is equal to a change of 1 °C on the older Celsius scale. The exact
relationship between the two scales is:

θ K = T °C + 273.15

Table 2.5 shows the primary fixed points, and the temperatures assigned to them,
for the 1990 version of the International Temperature Scale – ITS90.[7] In addition
there are primary standard instruments which interpolate between these fixed points.
Platinum resistance detectors (PRTD – Section 8.1) are used up to the freezing point
of silver (961.78 °C) and radiation pyrometers (Section 15.6) are used at higher 
temperatures. The resistance RT Ω of a PRTD at temperature T °C (above 0 °C) can
be specified by the quadratic equation

RT = R0(1 + αT + βT 2)

where R0 is the resistance at 0 °C and α, β are constants. By measuring the resistance
at three adjacent fixed points (e.g. water, gallium and indium), R0, α and β can be
calculated. An interpolating equation can then be found for the standard, which
relates RT to T and is valid between the water and indium fixed points. This primary
standard PRTD, together with its equation, can then be used to calibrate secondary and
transfer standards, usually PRTDs or thermocouples depending on temperature range.

The standards available for the base quantities, i.e. length, mass, time, current and
temperature, enable standards for derived quantities to be realised. This is illustrated
in the methods for calibrating liquid flowmeters.[8] The actual flow rate through the meter
is found by weighing the amount of water collected in a given time, so that the accur-
acy of the flow rate standard depends on the accuracies of weight and time standards.
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National primary and secondary standards for pressure above 110 kPa use pres-
sure balances.[3] Here the force pA due to pressure p acting over an area A is balanced
by the gravitational force mg acting on a mass m, i.e.

pA = mg

or

p = mg/A

Thus standards for pressure can be derived from those for mass and length, though
the local value of gravitational acceleration g must also be accurately known.

2.4.3 Experimental measurements and evaluation of results

The calibration experiment is divided into three main parts.

O versus I with IM = II = 0

Ideally this test should be held under ‘standard’ environmental conditions so that IM

= II = 0; if this is not possible all environmental inputs should be measured. I should
be increased slowly from IMIN to IMAX and corresponding values of I and O recorded
at intervals of 10% span (i.e. 11 readings), allowing sufficient time for the output to
settle out before taking each reading. A further 11 pairs of readings should be taken
with I decreasing slowly from IMAX to IMIN. The whole process should be repeated 
for two further ‘ups’ and ‘downs’ to yield two sets of data: an ‘up’ set (Ii, Oi)I ↑ and
a ‘down’ set (Ij, Oj)I↓ i, j = 1, 2, . . . , n (n = 33).

Computer software regression packages are readily available which fit a poly-
nomial, i.e. O(I ) = aq Iq, to a set of n data points. These packages use a ‘least
squares’ criterion. If di is the deviation of the polynomial value O(Ii) from the data
value Oi, then di = O(Ii) – Oi. The program finds a set of coefficients a0, a1, a2, etc.,

q=m∑q=0

Equilibrium state θ K T °C

Triple point of hydrogen 13.8033 −259.3467
Boiling point of hydrogen at a pressure of 33 321.3 Pa 17.035 −256.115
Boiling point of hydrogen at a pressure of 101 292 Pa 20.27 −252.88
Triple point of neon 24.5561 −248.5939
Triple point of oxygen 54.3584 −218.7916
Triple point of argon 83.8058 −189.3442
Triple point of mercury 234.3156 −38.8344
Triple point of water 273.16 0.01
Melting point of gallium 302.9146 29.7646
Freezing point of indium 429.7485 156.5985
Freezing point of tin 505.078 231.928
Freezing point of zinc 692.677 419.527
Freezing point of aluminium 933.473 660.323
Freezing point of silver 1234.93 961.78
Freezing point of gold 1337.33 1064.18
Freezing point of copper 1357.77 1084.62

Table 2.5 The primary
fixed points defining the
International Temperature
Scale 1990 – ITS90.
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such that the sum of the squares of the deviations, i.e. di
2, is a minimum. This

involves solving a set of linear equations.[9]

In order to detect any hysteresis, separate regressions should be performed on the
two sets of data (Ii, Oi)I↑, (Ij, Oj)I↓, to yield two polynomials:

O(I)I↑ = aq
↑I q and O(I)I↓ = aq

↓I q

If the hysteresis is significant, then the separation of the two curves will be 
greater than the scatter of data points about each individual curve (Figure 2.18(a)).
Hysteresis H(I ) is then given by eqn [2.10], i.e. H(I ) = O(I )I↓ − O(I )I↑. If, however,
the scatter of points about each curve is greater than the separation of the curves 
(Figure 2.18(b)), then H is not significant and the two sets of data can then be com-
bined to give a single polynomial O(I). The slope K and zero bias a of the ideal straight
line joining the minimum and maximum points (IMIN, OMIN) and (IMAX, OMAX) can be
found from eqn [2.3]. The non-linear function N(I ) can then be found using eqn [2.4]:

N(I ) = O(I ) − (KI + a) [2.24]

Temperature sensors are often calibrated using appropriate fixed points rather than a
standard instrument. For example, a thermocouple may be calibrated between 0 and
500 °C by measuring e.m.f.’s at ice, steam and zinc points. If the e.m.f.–temperature
relationship is represented by the cubic E = a1T + a2T

2 + a3T
3, then the coefficients

a1, a2, a3 can be found by solving three simultaneous equations (see Problem 2.1).

O versus IM, II at constant I

We first need to find which environmental inputs are interfering, i.e. which affect the
zero bias a. The input I is held constant at I = IMIN, and one environmental input is
changed by a known amount, the rest being kept at standard values. If there is a result-
ing change ∆O in O, then the input II is interfering and the value of the correspond-
ing coefficient KI is given by KI = ∆O/∆II. If there is no change in O, then the input
is not interfering; the process is repeated until all interfering inputs are identified and
the corresponding KI values found.

We now need to identify modifying inputs, i.e. those which affect the sensitivity
of the element. The input I is held constant at the mid-range value 1–2 (IMIN + IMAX) and
each environmental input is varied in turn by a known amount. If a change in input

q m

∑
q 0

q m

∑
q 0

i=n∑ i=1

Figure 2.18
(a) Significant hysteresis
(b) Insignificant
hysteresis.
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produces a change ∆O in O and is not an interfering input, then it must be a modi-
fying input IM and the value of the corresponding coefficient KM is given by

KM = = [2.25]

Suppose a change in input produces a change ∆O in O and it has already been
identified as an interfering input with a known value of KI. Then we must calculate
a non-zero value of KM before we can be sure that the input is also modifying. Since

∆O = KI∆II,M + KM∆II,M

then

KM = − KI [2.26]

Repeatability test

This test should be carried out in the normal working environment of the element,
e.g. out on the plant, or in a control room, where the environmental inputs IM and II

are subject to the random variations usually experienced. The signal input I should
be held constant at mid-range value and the output O measured over an extended period,
ideally many days, yielding a set of values Ok, k = 1, 2, . . . , N. The mean value of
the set can be found using

/ = Ok [2.27]

and the standard deviation (root mean square of deviations from the mean) is found
using

[2.28]

A histogram of the values Ok should then be plotted in order to estimate the prob-
ability density function p(O) and to compare it with the normal form (eqn [2.20]). A
repeatability test on a pressure transducer can be used as an example of the construction
of a histogram. Suppose that N = 50 and readings between 0.975 and 1.030 V are
obtained corresponding to an expected value of 1.000 V. The readings are grouped
into equal intervals of width 0.005 V and the number in each interval is found, e.g.
12, 10, 8, etc. This number is divided by the total number of readings, i.e. 50, to give
the probabilities 0.24, 0.20, 0.16, etc. of a reading occurring in a given interval. The
probabilities are in turn divided by the interval width 0.005 V to give the probab-
ility densities 48, 40 and 32 V−1 plotted in the histogram (Figure 2.19). We note 
that the area of each rectangle represents the probability that a reading lies within the
interval, and that the total area of the histogram is equal to unity. The mean and 
standard deviation are found from eqns [2.27] and [2.28] to be / = 0.999 V and 
σ0 = 0.010 V respectively. Figure 2.19 also shows a normal probability density func-
tion with these values.
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Conclusion
The chapter began by discussing the static or steady-state characteristics of 
measurement system elements. Systematic characteristics such as non-linearity
and environmental effects were first explained. This led to the generalised model of 
an element. Statistical characteristics, i.e. repeatability and tolerance, were then 
discussed. The last section explained how these characteristics can be measured
experimentally, i.e. calibration and the use and types of standards.
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Problems

The e.m.f. at a thermocouple junction is 645 µV at the steam point, 3375 µV at the zinc point
and 9149 µV at the silver point. Given that the e.m.f.–temperature relationship is of the form
E(T ) = a1T + a2T

2 + a3T
3 (T in °C), find a1, a2 and a3.

The resistance R(θ) of a thermistor at temperature θ K is given by R(θ) = α exp(β/θ). Given
that the resistance at the ice point (θ = 273.15 K) is 9.00 kΩ and the resistance at the steam
point is 0.50 kΩ, find the resistance at 25 °C.

A displacement sensor has an input range of 0.0 to 3.0 cm and a standard supply voltage 
VS = 0.5 volts. Using the calibration results given in the table, estimate:

(a) The maximum non-linearity as a percentage of f.s.d.
(b) The constants KI, KM associated with supply voltage variations.
(c) The slope K of the ideal straight line.

Displacement x cm 0.0 0.5 1.0 1.5 2.0 2.5 3.0
Output voltage millivolts (VS = 0.5) 0.0 16.5 32.0 44.0 51.5 55.5 58.0
Output voltage millivolts (VS = 0.6) 0.0 21.0 41.5 56.0 65.0 70.5 74.0

A liquid level sensor has an input range of 0 to 15 cm. Use the calibration results given in the
table to estimate the maximum hysteresis as a percentage of f.s.d.

Level h cm 0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0
Output volts h increasing 0.00 0.35 1.42 2.40 3.43 4.35 5.61 6.50 7.77 8.85 10.2
Output volts h decreasing 0.14 1.25 2.32 3.55 4.43 5.70 6.78 7.80 8.87 9.65 10.2

A repeatability test on a vortex flowmeter yielded the following 35 values of frequency 
corresponding to a constant flow rate of 1.4 × 10−2 m3 s−1: 208.6; 208.3; 208.7; 208.5; 208.8;
207.6; 208.9; 209.1; 208.2; 208.4; 208.1; 209.2; 209.6; 208.6; 208.5; 207.4; 210.2; 209.2; 208.7;
208.4; 207.7; 208.9; 208.7; 208.0; 209.0; 208.1; 209.3; 208.2; 208.6; 209.4; 207.6; 208.1; 208.8;
209.2; 209.7 Hz.

(a) Using equal intervals of width 0.5 Hz, plot a histogram of probability density values.
(b) Calculate the mean and standard deviation of the data.
(c) Sketch a normal probability density function with the mean and standard deviation 

calculated in (b) on the histogram drawn in (a).

A platinum resistance sensor is used to interpolate between the triple point of water (0 °C),
the boiling point of water (100 °C) and the freezing point of zinc (419.6 °C). The corre-
sponding resistance values are 100.0 Ω, 138.5 Ω and 253.7 Ω. The algebraic form of the inter-
polation equation is:

RT = R0(1 + αT + βT 2 )

where RT Ω = resistance at T °C
R0 Ω = resistance at 0 °C
α, β = constants.

Find the numerical form of the interpolation equation.

2.6

2.5

2.4

2.3

2.2

2.1
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The following results were obtained when a pressure transducer was tested in a laboratory under
the following conditions:

I Ambient temperature 20 °C, supply voltage 10 V (standard)
II Ambient temperature 20 °C, supply voltage 12 V
III Ambient temperature 25 °C, supply voltage 10 V

Input (barg) 0 2 4 6 8 10
Output (mA)

I 4 7.2 10.4 13.6 16.8 20
II 4 8.4 12.8 17.2 21.6 28
III 6 9.2 12.4 15.6 18.8 22

(a) Determine the values of KM, KI, a and K associated with the generalised model equa-
tion O = (K + KM IM)I + a + KIII .

(b) Predict an output value when the input is 5 barg, VS = 12 V and ambient temperature 
is 25 °C.

Basic problems

A force sensor has an output range of 1 to 5 V corresponding to an input range of 0 to 
2 × 105 N. Find the equation of the ideal straight line.

A differential pressure transmitter has an input range of 0 to 2 × 104 Pa and an output range
of 4 to 20 mA. Find the equation to the ideal straight line.

A non-linear pressure sensor has an input range of 0 to 10 bar and an output range of 0 to 
5 V. The output voltage at 4 bar is 2.20 V. Calculate the non-linearity in volts and as a 
percentage of span.

A non-linear temperature sensor has an input range of 0 to 400 °C and an output range of 0 to
20 mV. The output signal at 100 °C is 4.5 mV. Find the non-linearity at 100 °C in millivolts
and as a percentage of span.

A thermocouple used between 0 and 500 °C has the following input–output characteristics:

Input T °C 0 100 200 300 500
Output E µV 0 5268 10 777 16 325 27 388

(a) Find the equation of the ideal straight line.
(b) Find the non-linearity at 100 °C and 300 °C in µV and as a percentage of f.s.d.

A force sensor has an input range of 0 to 10 kN and an output range of 0 to 5 V at a standard
temperature of 20 °C. At 30 °C the output range is 0 to 5.5 V. Quantify this environmental
effect.

A pressure transducer has an output range of 1.0 to 5.0 V at a standard temperature of 20 °C,
and an output range of 1.2 to 5.2 V at 30 °C. Quantify this environmental effect.

A pressure transducer has an input range of 0 to 104 Pa and an output range of 4 to 20 mA 
at a standard ambient temperature of 20 °C. If the ambient temperature is increased to 30 °C,
the range changes to 4.2 to 20.8 mA. Find the values of the environmental sensitivities KI

and KM.
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An analogue-to-digital converter has an input range of 0 to 5 V. Calculate the resolution error
both as a voltage and as a percentage of f.s.d. if the output digital signal is:

(a) 8-bit binary
(b) 16-bit binary.

A level transducer has an output range of 0 to 10 V. For a 3 metre level, the output voltage
for a falling level is 3.05 V and for a rising level 2.95 V. Find the hysteresis as a percentage
of span.

2.17

2.16

        



3 The Accuracy of
Measurement
Systems in the
Steady State

In Chapter 1 we saw that the input to a measurement system is the true value of the
variable being measured. Also, if the measurement system is complete, the system
output is the measured value of the variable. In Chapter 2 we defined accuracy in
terms of measurement error, i.e. the difference between the measured and true 
values of a variable. It follows therefore that accuracy is a property of a complete
measurement system rather than a single element. Accuracy is quantified using 
measurement error E where:

E = measured value – true value

= system output – system input [3.1]

In this chapter we use the static model of a single element, developed previously, to
calculate the output and thus the measurement error for a complete system of several
elements. The chapter concludes by examining methods of reducing system error.

3.1 Measurement error of a system of ideal elements
Consider the system shown in Figure 3.1 consisting of n elements in series. Suppose
each element is ideal, i.e. perfectly linear and not subject to environmental inputs. 
If we also assume the intercept or bias is zero, i.e. a = 0, then:

Input/output equation
for ideal element with 
zero intercept

for i = 1, . . . , n, where Ki is the linear sensitivity or slope (eqn [2.3]). It follows that
O2 = K2I2 = K2K1I, O3 = K3 I3 = K3K2K1I, and for the whole system:

O = On = K1K2K3 . . . Ki . . . KnI [3.3]

Oi = KiIi [3.2]

Figure 3.1.
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If the measurement system is complete, then E = O − I, giving:

E = (K1K2K3 . . . Kn − 1)I [3.4]

Thus if

K1K2K3 . . . Kn = 1 [3.5]

we have E = 0 and the system is perfectly accurate. The temperature measurement
system shown in Figure 3.2 appears to satisfy the above condition. The indicator is
simply a moving coil voltmeter (see Chapter 11) with a scale marked in degrees Celsius
so that an input change of 1 V causes a change in deflection of 25 °C. This system
has K1K2K3 = 40 × 10−6 × 103 × 25 = 1 and thus appears to be perfectly accurate. The
system is not accurate, however, because none of the three elements present is ideal.
The thermocouple is non-linear (Chapter 2), so that as the input temperature changes
the sensitivity is no longer 40 µV °C−1. Also changes in reference junction temper-
ature (Figure 2.12(b)) cause the thermocouple e.m.f. to change. The output voltage 
of the amplifier is also affected by changes in ambient temperature (Chapter 9). The
sensitivity K3 of the indicator depends on the stiffness of the restoring spring in the
moving coil assembly. This is affected by changes in environmental temperature and
wear, causing K3 to deviate from 25 °C V−1. Thus the condition K1K2K3 = 1 cannot
be always satisfied and the system is in error.

In general the error of any measurement system depends on the non-ideal 
characteristics – e.g. non-linearity, environmental and statistical effects – of every
element in the system. Thus in order to quantify this error as precisely as possible we
need to use the general model for a single element developed in Sections 2.2 and 2.3.

3.2 The error probability density function of a system 
of non-ideal elements
In Chapter 2 we saw that the probability density function of the output p(O) of a 
single element can be represented by a normal distribution (eqn [2.20]). The mean
value / of the distribution is given by eqn [2.22], which allows for non-linear and
environmental effects. The standard deviation σ0 is given by [2.23], which allows 
for statistical variations in inputs I, IM and II with time, and statistical variations in
parameters K, a, etc., amongst a batch of similar elements. These equations apply to
each element in a measurement system of n elements and can be used to calculate
the system error probability density function p(E) as shown in Table 3.1.

Equations [3.6] (based on [2.22]) show how to calculate the mean value of 
the output of each element in turn, starting with /1 for the first and finishing with 
/n = / for the nth. The mean value + of the system error is simply the difference
between the mean value of system output and mean value of system input (eqn [3.7]).
Since the probability densities of the outputs of the individual elements are normal,
then, using the result outlined in Section 2.3, the probability density function of the

Figure 3.2 Simple
temperature measurement
system.
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system output O and system error E is also normal (eqn [3.10]). Equations [3.8] 
(based on [2.23]) show how to calculate the standard deviation of the output of each
element in turn, starting with σO1

for the first, and finishing with σOn
for the nth. We

note that the standard deviation of the system input is zero and that the standard 
deviation of the error is equal to that of the system output (eqn [3.9]).

We now use the temperature measurement system shown in Figure 3.3 as an
example of the calculation of + and σE. This consists of a platinum resistance tem-
perature detector, current transmitter and recorder.

Table 3.2 gives the models for each of the elements in the temperature measure-
ment system. In (a), the platinum resistance temperature detector is characterised by

Mean values of element outputs

-l = -

-2 = /1 = .1 -1 + å1(-1) + ã1 + .M1
-M1

-1 + .I1
-I1

-3 = /2 = .2 -2 + å2(-2) + ã2 + .M2
-M2

-2 + .I2
-I2

7 7 [3.6]

-i+1 = /i = .i -i + åi(-i) + ãi + .Mi
-Mi

-i + .Ii
-Ii

7 7

/ = /n = .n -n + ån(-n) + ãn + .Mn
-Mn

-n + .In
-In

Mean value of system error

+ = / − - [3.7]
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Error probability density function
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Table 3.1 General
calculation of system
p(E).
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Figure 3.3 Temperature
measurement system.

(a) Platinum resistance temperature detector

Model equation RT = R0(1 + αT + βT 2)

Individual mean values =0 = 100.0 Ω, [ = 3.909 × 10−3, ] = −5.897 × 10−7

(between 100 and 130 °C)

Individual standard deviations σR0
= 4.33 × 10−2, σα = 0.0, σβ = 0.0

Partial derivatives = 1.449 at T = 117 °C

Overall mean value =T = =0(1 + [> + ]> 2)

Overall standard deviation σ 2
RT

=
2

σ 2
R0

(b) Current transmitter

Model equation 4 to 20 mA output for 138.5 to 149.8 Ω input (100 to 130 °C)
∆Ta = deviation of ambient temperature from 20 °C
i = KRT + KMRT∆Ta + KI∆Ta + a

Individual mean values . = 1.4134, .M = 1.4134 × 10−4, .I = −1.637 × 10−2

ã = −191.76, ∆>a = −10
Individual standard deviations σK = 0.0, σKM

= 0.0, σKI
= 0.0

σa = 0.24, σ∆Ta
= 6.7

Partial derivatives = 1.413, = 4.11 × 10−3, = 1.00

Overall mean value j = .=T + .M=T∆>a + .I∆>a + ã

Overall standard deviation σ i
2 =

2

σ 2
RT

+
2

σ 2
∆Ta

+
2

σ 2
a

(c) Recorder

Model equation TM = Ki + a

Individual mean values . = 1.875, ã = 92.50
(100 to 130 °C record for 4 to 20 mA input)

Individual standard deviations σk = 0.0, σa = 0.10

Partial derivatives = 1.875, = 1.00

Overall mean value >M = .j + ã

Overall standard deviation σ 2
TM

=
2

σ 2
i +

2

σ 2
a
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Table 3.2 Models for
temperature measurement
system elements.
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a small amount of non-linearity and a spread of values of R0 (resistance at 0 °C). The
current transmitter (b) is linear but temperature acts as both a modifying and an inter-
fering input. The zero bias and sensitivity are adjustable: we cannot be certain that
the transmitter will be set up exactly as stated in the table, and this is reflected in the
non-zero value of σa. In (c) the recorder is linear but again calibration uncertainties
are modelled by a non-zero value of σa.

Table 3.3 summarises the calculation of + and σE for the system when the mean
value > of the true temperature is 117 °C. The corresponding mean values for 
the system are resistance =T = 144.93 Ω (Table 3.2(a)), current j = 13.04 mA 
(Table 3.2(b)) and measured temperature >M = 116.95 °C (Table 3.2(c)). The mean
error is therefore + = −0.05 °C. The standard deviations σRT

, σi and σTM
are calcu-

lated using Table 3.2 to give σE = 0.49 °C.

Modelling using error bands

In Section 2.1 we saw that in situations where element non-linearity, hysteresis and
environmental effects are small, their overall effect is quantified using error bands.
Here a systematic statement of the exact element input/output relationship (e.g. 
eqn [2.9]) is replaced by a statistical statement. The element output is described by
a rectangular probability density function, of width 2h, centred on the ideal straight
line value OIDEAL = KI + a. If every element in the system is described in this way,
then the mean output value /i will have the ideal value /i = Ki-i + ai for each ele-
ment in the system. In the special case ai = 0 for all i, /i = Ki -i, the mean value of
system output is given by

/ = K1K2 . . . Ki . . . Kn -

and the mean value of error + = / − -. In the special case K1K2 . . . Ki . . . Kn = 1, 
+ = 0 (Table 3.4). The error probability density function p(E ) is the result of 

Mean +

> = 117 °C =T = 144.93 Ω
j = 13.04 mA >M = 116.95 °C

+ = >M − > = −0.005 °C

Standard deviation σE
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= 39.4 × 10−4
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= 78.7 × 10−4 + 8.18 × 10−4 + 5.76 × 10−2

= 6.62 × 10−2

σ 2
TM

=
2

σ i
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σ a
2 = 24.3 × 10−2

σE = σTM
= 0.49 °C
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Table 3.3 Summary of
calculation of + and σE

for temperature system.
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combining n rectangular distributions, each of width 2hi, i = 1, 2, . . . , n. If n > 3,
then the resultant distribution p(E) approximates to a normal distribution; the larger
the value of n the closer the distribution is to normal.

In order to calculate the standard deviation σE of p(E) we return to eqns [2.16]
and [2.17]. If a dependent variable y is a linear combination of independent random
variables x1, x2, x3, i.e.

y = a1x1 + a2x2 + a3x3 [2.16]

then the standard deviation σ of the probability distribution of y is given by

σ 2 = a2
1σ 2

1 + a2
2σ 2

2 + a2
3σ 2

3 [2.17]

Equation [2.17] applies whatever the probability distributions of the individual x1, 
x2, x3 are, provided that the individual standard deviations σ1, σ2, σ3 are small.[1]

Consider the ith element in Table 3.4 with sensitivity Ki and error band width 2hi .
The standard deviation σOi

of the output Oi is equal to

σ 2
Oi

= σ 2 due to input + σ 2 due to element

If σIi
is the standard deviation of the input Ii, then this contributes KiσIi

to the output
standard deviation. The standard deviation of the rectangular distribution of width
2h

i
, due to the element, is hi/ê3. We therefore have:

σ 2
Oi

= K i
2σ 2

Ii
+ h2

i /3

Table 3.4 gives the calculation procedure for a complete system of n elements
described by error bands.

/i = Ki-i

/ = K1K2 . . . Ki . . . Kn -

+ = / − - [= 0, if K1K2 . . . Kn = 1]
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Table 3.4 + and σE

for system of elements
described by error bands.
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3.3 Error reduction techniques
In the two previous sections we saw that the error of a measurement system depends 
on the non-ideal characteristics of every element in the system. Using the calibration
techniques of Section 2.4, we can identify which elements in the system have the 
most dominant non-ideal behaviour. We can then devise compensation strategies 
for these elements which should produce significant reductions in the overall system
error. This section outlines compensation methods for non-linear and environmental
effects.

One of the most common methods of correcting a non-linear element is to intro-
duce a compensating non-linear element into the system. This method is illustrated
in Figure 3.4. Given a non-linear element, described by U(I), we need a compensat-
ing element C(U ), such that the overall characteristics C[U(I)] of the elements
together are as close to the ideal straight line as possible. The method is illustrated
in Figure 3.4 by the use of a deflection bridge to compensate for the non-linear char-
acteristics of a thermistor. A detailed procedure for the design of the bridge is given
in Section 9.1.

The most obvious method of reducing the effects of environmental inputs is 
that of isolation, i.e. to isolate the transducer from environmental changes so that 
effectively IM = II = 0. Examples of this are the placing of the reference junction of
a thermocouple in a temperature-controlled enclosure, and the use of spring mount-
ings to isolate a transducer from the vibrations of the structure to which it is attached.
Another obvious method is that of zero environmental sensitivity, where the 
element is completely insensitive to environmental inputs, i.e. KM = KI = 0. An 
example of this is the use of a metal alloy with zero temperature coefficients of expan-
sion and resistance as a strain gauge element. Such an ideal material is difficult to
find, and in practice the resistance of a metal strain gauge is affected slightly by changes
in ambient temperature.

A more successful method of coping with environmental inputs is that of opposing
environmental inputs. Suppose that an element is affected by an environmental 

Figure 3.4 Compensating
non-linear element.
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input; then a second element, subject to the same environmental input, is deliberately
introduced into the system so that the two effects tend to cancel out. This method is
illustrated for interfering inputs in Figure 3.5 and can be easily extended to modify-
ing inputs.

An example is compensation for variations in the temperature T2 of the reference
junction of a thermocouple. For a copper–constantan thermocouple (Figure 2.12(b)),
we have KIII equal to −38.74T2 µV so that a compensating element giving an output
equal to +38.74T2 µV is required. The design of the reference junction compensation
element is discussed in Sections 8.5 and 9.1 and Problem 9.2.

An example of a differential system (Figure 3.5(b)) is the use of two matched
strain gauges in adjacent arms of a bridge to provide compensation for ambient 
temperature changes. One gauge is measuring a tensile strain +e and the other an equal
compressive strain −e. The bridge effectively subtracts the two resistances so that
the strain effect is doubled and the environmental effects cancel out.

The use of high-gain negative feedback is an important method of compensating
for modifying inputs and non-linearity. Figure 3.6 illustrates the technique for a force
transducer. The voltage output of a force-sensing element, subject to a modifying input,
is amplified by a high-gain amplifier. The amplifier output is fed back to an element
(e.g. a coil and permanent magnet) which provides a balancing force to oppose the
input force.

Figure 3.5 Compensation
for interfering inputs:
(a) Using opposing
environmental inputs
(b) Using a differential
system.
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Ignoring the effects of the modifying input for the moment we have:

∆F = FIN − FB [3.11]

VOUT = KKA∆F [3.12]

FB = KFVOUT [3.13]

i.e.

= FIN − KFVOUT

giving

Equation for force 
transducer with [3.14]
negative feedback 

If the amplifier gain KA is made large such that the condition

KKAKF � 1 [3.15]

is satisfied, then VOUT ≈ FIN. This means that the system output depends only on 

the gain KF of the feedback element and is independent of the gains K and KA in the
forward path. This means that, provided the above condition is obeyed, changes in
K and KA due to modifying inputs and/or non-linear effects have negligible effect 
on VOUT. This can be confirmed by repeating the above analysis with K replaced by
K + KMIM, giving

[3.16]

which again reduces to VOUT ≈ if (K + KMIM)KAKF � 1. We now, of course, have 

to ensure that the gain KF of the feedback element does not change due to non-
linear or environmental effects. Since the amplifier provides most of the required 
power, the feedback element can be designed for low power-handling capacity, 
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Figure 3.6 Closed loop
force transducer.
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giving greater linearity and less susceptibility to environmental inputs. A commonly
used device which employs this principle is discussed in Section 9.4.

The rapid fall in the cost of digital integrated circuits in recent years has meant
that microcontrollers are now widely used as signal-processing elements in measurement
systems (Chapter 10). This means that the powerful techniques of computer estim-
ation of measured value can now be used. For this method, a good model of the
elements in the system is required. In Sections 2.1 and 2.2 we saw that the steady-
state output O of an element is in general given by an equation of the form:

Direct equation

This is the direct equation (Figure 3.7(a)); here O is the dependent variable, which
is expressed in terms of the independent variables I, IM and II. In Section 2.4.2 we
saw how the direct equation could be derived from sets of data obtained in a calibra-
tion experiment. In Section 3.2 eqn [2.9] was used to derive the error probability 
density function for a complete measurement system.

The steady-state characteristics of an element can also be represented by an altern-
ative equation. This is the inverse equation (Figure 3.7(b)); here the signal input I
is the dependent variable and the output O and environmental inputs II and IM are the
independent variables. The general form of this equation is:

Inverse equation
I = K ′O + N ′(O) + a′ + KM′ IMO + KI′I [3.17]

O = KI + a + N(I ) + KMIMI + KIII [2.9]

Figure 3.7 Models 
for system element:
(a) Direct
(b) Inverse.
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where the values of K ′, N ′( ), a′, etc., are quite different from those for the direct
equation. For example, the direct and inverse equations for a copper–constantan 
(type T) thermocouple with reference junction at 0 °C are:

DIRECT

E = 3.845 × 10−2T + 4.682 × 10−5T 2 − 3.789 × 10−8T 3 + 1.652 × 10−11T 4 mV

INVERSE

T = 25.55E − 0.5973E2 + 2.064 × 10−2E3 − 3.205 × 10−4E4 °C [3.18]

where E is the thermocouple e.m.f. and T the measured junction temperature
between 0 and 400 °C. Both equations were derived using a least squares poly-
nomial fit to IEC 584.1 data; for the direct equation E is the dependent variable and
T the independent variable; for the inverse equation T is the dependent variable 
and E the independent variable. While the direct equation is more useful for error
estimation, the inverse equation is more useful for error reduction.

The use of the inverse equation in computer estimation of measured value is best
implemented in a number of stages; with reference to Figure 3.8(a), these are:

1. Treat the uncompensated system as a single element. Using the calibration 
procedure of Section 2.4.2 (or any other method of generating data) the para-
meters K ′, a′, etc. in the inverse model equation:

I = K ′U + N ′(U) + a′ + KM′ IMU + KI′II [3.19]

representing the overall behaviour of the uncompensated system can be found.
This procedure will enable major environmental inputs IM and II to be identified
(there may be more than one of each type).

2. The uncompensated system should be connected to the estimator. This consists
firstly of a computer which stores the model parameters K ′, a′, N ′( ), etc. 
If errors due to environmental inputs are considered significant, then environ-
mental sensors to provide the computer with estimates I ′M, II′, of these inputs
are also necessary. The output U of the uncompensated system is also fed to
the computer.

3. The computer then calculates an initial estimate I′ of I using the inverse equation:

I ′ = K ′U + N ′(U ) + a′ + KM′ IM′ U + KI′ II′ [3.20]

4. The data presentation element then displays the measured value O, which
should be close to I ′. In applications not requiring the highest accuracy the 
procedure can be terminated at this stage.

5. If high accuracy is required, then it may be possible to further improve the 
estimator by calibrating the complete system. Values of system output O are
measured for a range of known standard inputs I and the corresponding values
of system error E = O − I are calculated. These error values will be mainly due
to random effects but may also contain a small systematic component which
can be corrected for.

6. An attempt should now be made to fit the data set (Oi, Ei), i = 1, 2, . . . n, by a
least squares straight line of the form:

E = kO + b [3.21]

where b is any residual zero error and k specifies any residual scale error. There
is little point in attempting a polynomial fit at this stage.
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7. The correlation coefficient:

[3.22]

between E and O data should now be evaluated. If the magnitude of r is greater
than 0.5, then there is reasonable correlation between the E and O data; this
means the systematic error of eqn [3.7] is present and we can proceed to stage
8 to correct for it. If the magnitude of r is less than 0.5, then there is no cor-
relation between the E and O data; this means that the errors E are purely 
random and no correction can be made.

8. If appropriate, eqn [3.21] can be used to calculate an improved measured
value:

O′ = O − E = O − (kO + b) [3.23]

The displacement measurement system of Figure 3.8(b) shows this method. The
uncompensated system consists of an inductive displacement sensor, an oscillator
(Section 9.5) and a Schmitt trigger (Section 10.1.4). The sensor has a non-linear 
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Figure 3.8 Computer
estimation of measured
value using inverse model
equation:
(a) Principles
(b) Example of
displacement
measurement system.
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relation between inductance L and displacement x, the oscillator a non-linear relation
between frequency f and inductance L. This means that the inverse model equation,
relating displacement x and frequency f of the Schmitt trigger output signal, has the
non-linear form shown. The estimator consists of a 16-bit pulse counter and a computer.
The computer reads the state of the counter at the beginning and end of a fixed 
time interval and thus measures the frequency f of the pulse signal. The computer
then calculates x from the inverse model equation using model coefficients stored 
in memory.

Conclusion

This chapter has shown how to find the error of a complete measurement system under
steady-state conditions. Measurement error was first defined and then the error
probability density function was derived, firstly for a general system of non-ideal
elements and then for the typical example of a temperature measurement system. The
last section discussed a range of methods for error reduction.

Reference

[1] kennedy j b and neville a 1986 Basic Statistical Methods for Engineers and
Scientists, 3rd edn, pp. 345–60. Harper and Row, New York.

Problems

A measurement system consists of a chromel–alumel thermocouple (with cold junction com-
pensation), a millivolt-to-current converter and a recorder. Table Prob. 1 gives the model equa-
tions, and parameters for each element. Assuming that all probability distributions are normal,
calculate the mean and standard deviation of the error probability distribution, when the input
temperature is 117 °C.

Table Prob. 1.
Chromel–alumel e.m.f-to-current Recorder
thermocouple converter

Model equation E = C0 + C1T + C2T
2 i = K1E + KME∆Ta + KI∆Ta + a1 TM = K2i + a2

Mean values ™0 = 0.00 .1 = 3.893 .2 = 6.25
™1 = 4.017 × 10−2 ∆Ta = −10 ã2 = 25.0
™2 = 4.66 × 10−6 ã1 = −3.864

.M = 1.95 × 10−4

.I = 2.00 ×10−3

Standard deviations σC0
= 6.93 × 10−2 σa1

= 0.14, σ∆Ta
= 10 σa2

= 0.30
σC1

= σC2
= 0 σK1

= σKM
= σKI

= 0 σK2
= 0.0

3.1
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Table Prob. 2.
Element Linear sensitivity K Error bandwidth ± h

Pressure sensor 10−4 Ω Pa−1 ±0.005 Ω
Deflection bridge 4 × 10−2 mV Ω−1 ±5 × 10−4 mV
Amplifier 103 mV mV−1 ±0.5 mV
Recorder 250 Pa mV−1 ±100 Pa

A pressure measurement system consists of a pressure sensor, deflection bridge, amplifier and
recorder. Table Prob. 2 gives the linear sensitivities and error bandwidths for each element in
the system.

(a) Calculate the standard deviation σE of the error distribution function.
(b) Given that the recorder is incorrectly adjusted so that its sensitivity is 225 Pa mV−1, 

calculate the mean error + for an input pressure of 5 × 103 Pa.

Figure Prob. 3 shows a block diagram of a force transducer using negative feedback. The 
elastic sensor gives a displacement output for a force input; the displacement sensor gives a
voltage output for a displacement input. VS is the supply voltage for the displacement sensor.

(a) Calculate the output voltage V0 when

(i) VS = 1.0 V, F = 50 N
(ii) VS = 1.5 V, F = 50 N.

(b) Comment on the practical significance of the variation of the supply voltage VS.

3.3

3.2

Figure Prob. 4 is a block diagram of a voltmeter. The motor produces a torque T proportional
to voltage V, and the output angular displacement θ of the spring is proportional to T. The
stiffness Ks of the spring can vary by ±10% about the nominal value of 5 × 10−2 rad N−1m−1.
Given that the following are available:

(i) a d.c. voltage amplifier of gain 1000
(ii) a voltage subtraction unit
(iii) a stable angular displacement transducer of sensitivity 100 V rad−1,

(a) draw a block diagram of a modified system using these components, which reduces the
effect of changes in Ks;

(b) calculate the effect of a 10% increase in Ks on the sensitivity of the modified system.

3.4

Figure Prob. 3.

Figure Prob. 4.
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A temperature measurement system consists of a thermocouple, an amplifier, an 8-bit analogue-
to-digital converter and a microcontroller with display facilities. Table Prob. 5 gives the
model equations and parameters for each element in the system. The temperature of the 
thermocouple measurement junction is T1 °C and the temperature of the reference junction is
T2 °C. The microcontroller corrects for T2 having a non-zero mean value.

(a) Estimate the mean and standard deviation of the error probability density function
when the input temperature T1 is 100 °C. Treat rectangular distribution as normal with
σ = h/ê3.

(b) Explain briefly what modifications should be made to the system to reduce the quanti-
ties calculated in (a).

Table Prob. 5.
Thermocouple Amplifier Analogue-to- Microcontroller 

digital converter with display

Model ET1,T2
V = K1ET1,T2

+ b1 n = K2V + b2 Tm = K3n + b3

equations = a0 + a1(T1 − T2)
+ a2(T 2

1 − T 2
2)

Mean values ã0 = 0 .1 = 255 .2 = 0.1 .3 = 1.0
ã1 = 4.3796 × 10−2 ç1 = 0.0 ç2 = 0.0 ç3 = 20
ã2 = −1.7963 × 10−5 n rounded to 
>2 = 20 nearest integer

Statistical Normal with Normal with b2 has a rectangular σK3
= 0.0

distributions σa0
= 0.05 σb1

= 5.0 distribution of σb3
= 0.0

σT2
= 2.0 σK1

= 0.0 width ±0.5
σa1

= σa2
= 0.0 σK2

= 0.0

A fluid velocity measurement system consists of a pitot tube, a differential pressure trans-
mitter, an 8-bit analogue-to-digital converter and a microcontroller with display facilities. 
Table Prob. 6 gives the model equations and parameters for each element in the system. The
microcontroller calculates the measured value of velocity assuming a constant density.

(a) Estimate the mean and standard deviation of the error probability density function
assuming the true value of velocity vT is 14.0 m s−1. Use the procedure of Table 3.1,
treating the rectangular distributions as normal with σ = h/ê3.

(b) Explain briefly what modifications could be made to the system to reduce the quanti-
ties calculated in (a).

Table Prob. 6.
Pitot tube Differential Analogue-to- Microcontroller 

pressure transmitter digital converter with display

Model equations ∆P = 1–2 ρv 2
T i = K1∆P + a1 n = K2i + a2 vM = K3ên ú−ú ú5ú1ú

Mean values ë = 1.2 .1 = 0.064 .2 = 12.80 .3 = 1.430
ã1 = 4.0 ã2 = 0.0

n rounded off 
to nearest integer 

Half-widths of hρ = 0.1 ha1
= 0.04 ha2

= 0.5 hK3
= 0.0

rectangular 
distribution

3.6

3.5
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A temperature measurement system consists of a thermistor, bridge and recorder. Table Prob. 7
gives the model equations, mean values and standard deviations for each element in the 
system. Assuming all probability distributions are normal, calculate the mean and standard 
deviation of the error probability density function for a true input temperature of 320 K.

Table Prob. 7.
Thermistor Bridge Recorder

Model equations Rθ = K1 exp
V0 = VS

θM = K2V0 + a2

Mean values .1 = 5 × 10−4 kΩ \S = −3.00 V .2 = 50.0 K/V
] = 3 × 103 K ã1 = 0.77 ã2 = 300 K

Standard deviations σK1
= 0.5 × 10−4 σVS

= 0.03 σK2
= 0.0

σβ = 0 σa1
= 0.01 σa2

= 3.0

Basic problems

A force measurement system consists of four elements with sensitivities 10−2, 5 × 10−2, 103

and 1.9. Find the system error for a true value input of 10 kN.

A level measurement system consists of three linear elements with sensitivities of 0.050, 21.5
and 0.99. Find the system error for a true value input of 5.0 metres.

3.9

3.8
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4 Dynamic
Characteristics 
of Measurement
Systems

If the input signal I to an element is changed suddenly, from one value to another,
then the output signal O will not instantaneously change to its new value. For 
example, if the temperature input to a thermocouple is suddenly changed from 25 °C
to 100 °C, some time will elapse before the e.m.f. output completes the change from
1 mV to 4 mV. The ways in which an element responds to sudden input changes are
termed its dynamic characteristics, and these are most conveniently summarised using
a transfer function G(s). The first section of this chapter examines the dynamics of
typical elements and derives the corresponding transfer function. The next section
examines how standard test signals can be used to identify G(s) for an element. If
the input signal to a multi-element measurement system is changing rapidly, then the
waveform of the system output signal is in general different from that of the input
signal. Section 4.3 explains how this dynamic error can be found, and the final sec-
tion outlines dynamic compensation methods that can be used to minimise errors.

4.1 Transfer function G(s) for typical system elements

4.1.1 First-order elements

A good example of a first-order element is provided by a temperature sensor with 
an electrical output signal, e.g. a thermocouple or thermistor. The bare element (not
enclosed in a sheath) is placed inside a fluid (Figure 4.1). Initially at time t = 0− ( just
before t = 0), the sensor temperature is equal to the fluid temperature, i.e. T(0−) =
TF(0−). If the fluid temperature is suddenly raised at t = 0, the sensor is no longer in
a steady state, and its dynamic behaviour is described by the heat balance equation:

rate of heat inflow − rate of heat outflow = [4.1]

Assuming that TF > T, then the rate of heat outflow will be zero, and the rate of heat
inflow W will be proportional to the temperature difference (TF − T). From Chapter 14
we have

rate of change of
sensor heat content

Figure 4.1 Temperature
sensor in fluid.

        



52 DYNAMIC CHARACTERISTICS OF MEASUREMENT SYSTEMS

W = UA(TF − T ) watts [4.2]

where U W m−2 °C−1 is the overall heat transfer coefficient between fluid and sensor
and A m2 is the effective heat transfer area. The increase of heat content of the sensor
is MC [T − T(0−)] joules, where M kg is the sensor mass and C J kg−1 °C−1 is the
specific heat of the sensor material. Thus, assuming M and C are constants:

rate of increase of sensor heat content = MC [T − T(0−)] [4.3]

Defining ∆T = T − T(0−) and ∆TF = TF − TF(0−) to be the deviations in temper-
atures from initial steady-state conditions, the differential equation describing the 
sensor temperature changes is

UA(∆TF − ∆T ) = MC

i.e.

+ ∆T = ∆TF [4.4]

This is a linear differential equation in which d∆T/dt and ∆T are multiplied by 
constant coefficients; the equation is first order because d∆T/dt is the highest
derivative present. The quantity MC/UA has the dimensions of time:

= = seconds

and is referred to as the time constant τ for the system. The differential equation is
now:

Linear first-order 
differential equation [4.5]

While the above differential equation is a perfectly adequate description of the
dynamics of the sensor, it is not the most useful representation. The transfer func-
tion based on the Laplace transform of the differential equation provides a conveni-
ent framework for studying the dynamics of multi-element systems. The Laplace 
transform g(s) of a time-varying function is defined by:

Definition of Laplace 
transform 

where s is a complex variable of the form σ + jω where j = ê−ú1ú .
Table 4.1 gives Laplace transforms for some common standard functions f(t). In

order to find the transfer function for the sensor we must find the Laplace transform
of eqn [4.5]. Using Table 4.1 we have:

τ[s∆>(s) − ∆T(0−)] + ∆>(s) = ∆>F (s) [4.7]

g (s) = �
0

∞

e−st f (t) dt [4.6]

τ d

d

∆
∆ ∆

T

t
T TF    + =

J

W

kg × J × kg−1 × °C−1

W × m−2 × °C−1 × m2

d∆T

dt

MC

UA

d∆T

dt

d

dt
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where ∆T(0−) is the temperature deviation at initial conditions prior to t = 0. By
definition, ∆T(0−) = 0, giving:

τs∆>(s) + ∆>(s) = ∆>F(s)

i.e.

(τs + 1)∆>(s) = ∆>F(s) [4.8]

The transfer function G(s) of an element is defined as the ratio of the Laplace transform
of the output to the Laplace transform of the input, provided the initial conditions are
zero. Thus:

�[ f(t)] = g (s) = �
∞

0

e−stf (t)dt

Function Symbol Graph Transform

1st derivative f (t) sg(s) − f(0− )

2nd derivative f (t) s2g(s) − sf(0− ) − Ã (0− )

Unit impulse δ(t) 1

Unit step µ(t)

Exponential exp(−αt)
decay

Exponential 1 − exp(−αt)
growth

Sine wave sin ωt

Phase-shifted sin(ωt + φ)
sine wave

Exponentially exp(−αt)sin ωt
damped 
sine wave

Ramp with t exp(−αt)
exponential 
decay

a Initial conditions are at t = 0−, just prior to t = 0.

1
(s + α)2

ω
(s + α)2 + ω2

ω cos φ + s sin φ
s2 + ω2

ω
s2 + ω2

α
s(s + α)

1
s + α

1
s

d2

dt 2

d
dt

Table 4.1 Laplace
transforms of common
time functions f(t).a
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Definition of element 
transfer function [4.9]

and g0(s) = G(s) gi(s); this means the transfer function of the output signal is simply
the product of the element transfer function and the transfer function of the input 
signal. Because of this simple relationship the transfer function technique lends itself
to the study of the dynamics of multi-element systems and block diagram representa-
tion (Figure 4.2).

G s
s

si

( )  
( )

( )
=

g

g

0

From eqns [4.8] and [4.9] the transfer function for a first-order element is:

Transfer function for 
a first-order element [4.10]

The above transfer function only relates changes in sensor temperature to changes in
fluid temperature. The overall relationship between changes in sensor output signal
O and fluid temperature is:

= [4.11]

where ∆O/∆T is the steady-state sensitivity of the temperature sensor. For an ideal
element ∆O/∆T will be equal to the slope K of the ideal straight line. For non-linear
elements, subject to small temperature fluctuations, we can take ∆O/∆T = dO/dT, the
derivative being evaluated at the steady-state temperature T(0−) around which the 
fluctuations are taking place. Thus for a copper–constantan thermocouple measuring
small fluctuations in temperature around 100 °C, ∆E/∆T is found by evaluating
dE/dT at 100 °C (see Section 2.1) to give ∆E/∆T = 35 µV °C−1. Thus if the time con-
stant of the thermocouple is 10 s the overall dynamic relationship between changes
in e.m.f. and fluid temperature is:

= 35 × [4.12]

In the general case of an element with static characteristics given by eqn [2.9] and
dynamic characteristics defined by G(s), the effect of small, rapid changes in ∆I is
evaluated using Figure 4.3, in which steady-state sensitivity (∂O/∂I )I0

= K + KMIM +
(dN/dI )I0

, and I0 is the steady-state value of I around which the fluctuations are 

1

1 + 10s

∆+(s)

∆>F (s)

∆>(s)

∆>F (s)

∆O

∆T

∆/(s)

∆>F(s)

G s
s

s sF

( )  
( )

( )
  

  
= =

+
∆
∆

>

>

1

1 τ

Figure 4.2 Transfer
function representation.

Figure 4.3 Element
model for dynamic
calculations.
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taking place. Table 4.2 shows analogous fluidic, electrical and mechanical elements,
which are also described by a first-order transfer function G(s) = 1/(1 + τs). All four
elements are characterised by ‘resistance’ and ‘capacitance’ as illustrated in the table.
Temperature, pressure, voltage and force are analogous ‘driving’ or effort variables;
heat flow rate, volume flow rate, current and velocity are analogous ‘driven’ or flow
variables. These analogies are discussed further in Section 5.2.

Volume flow rate Q = (PIN − P)

Pressures PIN = hINρg, P = hρg

AF = Q = (hIN − h)

+ h = hIN

i.e.

τF + h = hIN, τF = AF RF

ρg
dh
dt

dh
dt

AF RF

ρg

ρg
RF

dh
dt

1
RF

VIN − V = iR

Charge q = CV, current i = =

RC + V = VIN

i.e.

τE + V = VIN, τE = RC
dV
dt

dV
dt

CdV
dt

dq
dt

FIN − F = λ , λ N s m−1 = damping constant

Displacement x = , k N m−1 = spring stiffness

+ F = FIN

τM + F = FIN, τM = λ
k

dF
dt

dF
dt

λ
k

F
k

dx
dt

Thermal τTh = = RThCTh; RTh = , CTh = MC

Fluidic τF = = RFCF; RF = RF, CF =

Electrical τE = RC = RECE; RE = R, CE = C

Mechanical τM = = RMCM; RM = λ, CM = 1
k

λ
k

AF

ρg
AF RF

ρg

1
UA

MC
UA

Table 4.2 Analogous first-order elements.

Fluidic

Electrical

Mechanical
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4.1.2 Second-order elements
The elastic sensor shown in Figure 4.4, which converts a force input F into a displacement
output x, is a good example of a second-order element. The diagram is a conceptual
model of the element, which incorporates a mass m kg, a spring of stiffness k N m−1,
and a damper of constant λ N s m−1. The system is initially at rest at time t = 0− so
that the initial velocity x(0−) = 0 and the initial acceleration y(0−) = 0. The initial
input force F(0−) is balanced by the spring force at the initial displacement x(0−), i.e.

F(0−) = kx(0−) [4.13]

If the input force is suddenly increased at t = 0, then the element is no longer in a
steady state and its dynamic behaviour is described by Newton’s second law, i.e.

resultant force = mass ×× acceleration

i.e.

F − kx − λx = my [4.14]

and

my + λx + kx = F

Defining ∆F and ∆x to be the deviations in F and x from initial steady-state conditions:

∆F = F − F(0−), ∆x = x − x(0−) [4.15]

∆x = x, ∆y = y

the differential equation now becomes:

m∆y + λ∆x + kx(0−) + k∆x = F(0−) + ∆F

which, using [4.13], reduces to:

m∆y + λ∆x + k∆x = ∆F

i.e.

+ + ∆x = ∆F [4.16]

This is a second-order linear differential equation in which ∆x and its derivatives
are multiplied by constant coefficients and the highest derivative present is d2∆x/dt2.
If we define

undamped natural frequency ωn =
k

m
 rad/s

1

k

d∆x

dt

λ
k

d2∆x

dt2

m

k

Figure 4.4
Mass–spring–damper
model of elastic force
sensor.
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and

damping ratio ξ = [4.17]

then m/k = 1/ω 2
n, λ/k = 2ξ/ωn, and [4.16] can be expressed in the standard form:

Linear second-order 
differential equation [4.18]

In order to find the transfer function for the element we require the Laplace trans-
form of eqn [4.18]. Using Table 4.1 we have:

[s2∆P(s) − s∆x(0−) − ∆x(0−)] + [s∆P(s) − ∆x(0−)] + ∆P(s) 

= ∆,(s) [4.19]

Since ∆x(0−) = x(0−) = 0 and ∆x(0−) = 0 by definition, [4.19] reduces to:

s2 + s + 1 ∆P(s) = ∆,(s) [4.20]

Thus

= G(s)

where l/k = steady-state sensitivity K, and

Transfer function for a 
second-order element [4.21]

Figure 4.5 shows an analogous electrical element, a series L–C–R circuit.
Comparing eqns [4.14] and [4.22] we see that q is analogous to x, V is analogous

to F, and L, R and 1/C are analogous to m, λ and k respectively (see Table 5.1). The
electrical circuit is also described by the above second-order transfer function with
ωn = 1/êLúCú and ξ = (R/2)êC/úLú .

G s

s s
n n

( )  

    

=
+ +

1

1 2
1

2

2

ω
ξ

ω

1

k

∆P(s)

∆,(s)

1

k

J
L

2ξ
ωn

1

ω 2
n

G
I

1

k

2ξ
ωn

1

ω 2
n

1 2 1
2

2

2ω
ξ

ωn n

x

t

x

t
x

k
F

d

d

d

d

∆ ∆
∆ ∆      + + =

λ
2 km

Figure 4.5
Series L–C–R circuit.

[4.22]
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4.2 Identification of the dynamics of an element
In order to identify the transfer function G(s) of an element, standard input signals
should be used. The two most commonly used standard signals are step and sine wave.
This section examines the response of first- and second-order elements to step and
sine wave inputs.

4.2.1 Step response of first- and second-order elements

From Table 4.1 we see that the Laplace transform of a step of unit height u(t) is 
g (s) = 1/s. Thus if a first-order element with G(s) = 1/(1 + τs) is subject to a unit step
input signal, the Laplace transform of the element output signal is:

go(s) = G(s) g i(s) = [4.23]

Expressing [4.23] in partial fractions, we have:

go(s) = = + 

Equating coefficients of constants gives B = 1, and equating coefficients of s gives 
0 = A + Bτ, i.e. A = −τ. Thus:

go(s) = − = − [4.24]

Using Table 4.1 in reverse, i.e. finding a time signal f(t) corresponding to a trans-
form g (s), we have:

fo(t) = u(t) − exp

and since u(t) = 1 for t > 0:

Response of first-order 
element to unit step [4.25]

The form of the response is shown in Figure 4.6.
As an example of the use of eqn [4.25], consider the temperature sensor of

Section 4.1.1. Initially the temperature of the sensor is equal to that of the fluid, 
i.e. T(0−) = TF (0−) = 25 °C, say. If TF is suddenly raised to 100 °C, then this 
represents a step change ∆TF of height 75 °C. The corresponding change in sensor
temperature is given by ∆T = 75(1 − e−t/τ ) and the actual temperature T of the sensor
at time t is given by:

T(t) = 25 + 75(1 − e−t/τ ) [4.26]

Thus at time t = τ, T = 25 + (75 × 0.63) = 72.3 °C. By measuring the time taken for
T to rise to 72.3 °C we can find the time constant τ of the element.

f t
t

o( )    exp= −
−





1
τ

D
F

−t

τ
A
C

1

(s + 1/τ)

1

s

τ
(1 + τs)

1

s

B

s

A

(1 + τs)

1

(1 + τs)s

1

(1 + τs)s
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If the second-order element with transfer function

is subject to a unit step input signal, then the Laplace transform of the element out-
put signal is:

[4.27]

Expressing [4.27] in partial fractions we have:

[4.27]

where A = −1/ωn
2, B = −2ξ/ωn, C = 1. This gives:

go(s) = −

= −

= − − [4.28]

There are three cases to consider, depending on whether ξ is greater than 1, equal to
1, or less than 1. For example, if ξ = 1 (critical damping) then:

go(s) = − − [4.29]
ωn

(s + ωn)2

1

s + ωn

1

s

ξωn

(s + ξωn)2 + ωn
2(1 − ξ2)

(s + ξωn)

(s + ξωn)2 + ωn
2(1 − ξ2)

1

s

(s + 2ξωn)

(s + ξωn)2 + ωn
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1
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Figure 4.6 Response of a
first-order element to a
unit step.
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Using Table 4.1 we have:

Response of second-
order element to a 
unit step, critical 
damping ξ = 1 Using standard tables it can be shown that if ξ < 1 (underdamping) then:

Second-order 
step response, 

[4.31]underdamping ξ < 1 

and if ξ > 1 (overdamping) then:

Second-order 
step response, 
overdamping ξ > 1

[4.32]

We consider the case of the underdamped response with ξ < 1, given by eqn [4.31].
Here the damped angular frequency of the oscillations is given by:

ωd = ωn

where ωn is the natural or undamped angular frequency. The corresponding period
Td of the damped oscillations is given by:

Td =

The time Tp at which the first oscillation peak occurs is correspondingly given by:

Tp = Td/2 =

The settling time Ts taken for the response to settle out at the steady-state value is gov-
erned by the exponential decay term e−ξωnt. When t = 5/ξωn, i.e. ξωnt = 5, then e−5 =
0.0067. The time for the response to settle out approximately within 1% is therefore:

Ts = 5/ξωn

From Figure 4.7, we see that Ts is minimum when ξ = 0.7. The response fo(t) has a
maximum value f o

p at the peak of the first oscillation. The difference ( f o
p − 1)

between maximum and steady-state values of fo(t), for ξ < 1, is termed the 
maximum overshoot and is given by:

and depends only on ξ. Thus for ξ < 1, an estimate of ξ can be found from measurement
of maximum overshoot and then, knowing ξ, ωn can be estimated from measurements
of Td, Tp and/or Ts.
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fo(t) = 1 − e−ωnt(1 + ωnt) [4.30]
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The form of the responses is shown in Figure 4.7. As an example consider the 
step response of a force sensor with stiffness k = 103 N m−1, mass m = 10−1 kg and
damping constant λ = 10 N s m−1. The steady-state sensitivity K = 1/k = 10−3 m N−1,
natural frequency ωn = êkú/úmú = 102 rad s−1 and damping coefficient ξ = λ/2êkúmú = 0.5.
Initially at time t = 0−, a steady force F(0−) = 10 N causes a steady displacement of
(1/103) × 10 metre, i.e. 10 mm. Suppose that at t = 0 the force is suddenly increased
from 10 to 12 N, i.e. there is a step change ∆F of 2 N. The resulting change ∆x(t) in
displacement is found using

∆x(t) = steady-state sensitivity × step height × unit step response fo(t) [4.33]

i.e.

∆x(t) = × 2 × [1 − e−50t (cos 86.6t + 0.58 sin 86.6t)] metre

= 2[1 − e−50t(cos 86.6t + 0.58 sin 86.6t)] mm [4.34]

Here the damped angular frequency ωd = 86.6 rad/s and the period of the damped
oscillations Td = 72.6 ms. The maximum overshoot is 0.16, giving f o

p = 1.16 so that
the maximum value of ∆x is 2.32 mm. This occurs at time Tp = 36.3 ms. Eventually
as t becomes large ∆x tends to 2 mm, i.e. x settles out at a new steady-state value of
12 mm with a settling time Ts of 100 ms.

4.2.2 Sinusoidal response of first- and second-order elements

From Table 4.1 we see that the Laplace transform of sine wave f (t) = sin ωt, with
unit amplitude and angular frequency ω, is g (s) = ω /(s2 + ω 2). Thus if a sine wave
of amplitude Î is input to a first-order element, then the Laplace transform of the 
output signal is

1

103

Figure 4.7 Response of a
second-order element to a
unit step.
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go(s) = [4.35]

Expressing [4.35] in partial fractions we have

go(s) = + [4.36]

where:

A = , B = , C = 

so that:

go(s) 

[4.37]

where

Using Table 4.1 we have:

[24.38]

In a sine wave test experiment, we wait until the transient term has decayed to zero
and measure the sinusoidal signal:

[4.39]

which remains. We see therefore that the output signal is also a sine wave of frequency
ω but with amplitude Î/ê1úú ú+ú úτ ú

2
úωú

2
úú , and shifted in phase by φ = − tan−1(ωτ) relative to

the input sine wave. These amplitude and phase results can be found directly from
the transfer function G(s) = 1/(1 + τs) without having to use the table of transforms.
If we replace s by jω ( j = ê−ú1ú ) in G(s) we form the complex number G( jω) =
1/(1 + jτω). The magnitude |G( jω) | = 1/ê1úú ú+ú úτ ú

2
úωú

2
úú of this complex number is equal

to the ratio of output amplitude to input amplitude, and the angle or argument 
arg G( jω) = − tan−1(ωτ) is equal to the phase difference φ between output and input
sine waves. Figure 4.8 shows amplitude ratio versus frequency and phase versus fre-
quency graphs for a first-order element; these are known as the frequency response
characteristics of the element. From the above equations we see that when ωτ = 1,
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i.e. ω = 1/τ, the amplitude ratio = 1/ê2 and phase difference φ = −45°. These results
enable the value of τ to be found from experimental frequency response data.

The above results can be generalised to an element with steady-state sensitivity
K (or ∂O/∂I ) and transfer function G(s), subject to a sinusoidal input signal I = Î sin ωt
as in Figure 4.9. In the steady state we can make four statements about the output
signal:

(a) O is also a sine wave.
(b) The frequency of O is also ω.
(c) The amplitude of O is Ô = K |G( jω) |Î.
(d) The phase difference between O and I is φ = arg G( jω).

Using the above rules we can quickly find the amplitude ratio and phase relations
for a second-order element with:

Here we have:
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Figure 4.8 Frequency
response characteristics of
first-order element with 

G(s) = .1
1 + τs

Figure 4.9 Frequency
response of an element
with linear dynamics.
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so that

Amplitude ratio = |G( jω) | =

Phase difference = arg G( jω) = − tan−1 [4.40]

These characteristics are shown graphically in Figure 4.10; both amplitude ratio and
phase characteristics are critically dependent on the value of ξ.

We note that for ξ < 0.7, |G( jω) | has a maximum value which is greater than unity.
This maximum value is given by:

|G( jω) |MAX =

and occurs at the resonant frequency ωR where:

ωR = ω ξ ξn 1 2 1 22  ,      /− <

1

2 1 2ξ ξ  −

2

1 2 2

ξω ω
ω ω

/

  /
n

n−











1

1 4
2

2

2

2
2

2
    −







+

ω
ω

ξ ω
ωn n

Frequency response 
characteristics of 
second-order element

Figure 4.10 Frequency
response characteristics of
second-order element with

G(s) = 1

1 2
1

2

2

ω
ξ

ωn n

s s    + +

        



4.3  DYNAMIC ERRORS IN MEASUREMENT SYSTEMS 65

Thus by measuring |G( jω) |MAX and ωR, ξ and ωn can be found. An alternative to 
plotting |G( jω) | versus ω is a graph of the number of decibels N dB versus ω, where
N = 20 log10|G( jω) |. Thus if |G( jω) | = 1, N = 0 dB; if |G( jω) | = 10, N = +20 dB;
and if |G( jω) | = 0.1, N = −20 dB.

4.3 Dynamic errors in measurement systems
Figure 4.11 shows a complete measurement system consisting of n elements. Each
element i has ideal steady-state and linear dynamic characteristics and can therefore
be represented by a constant steady-state sensitivity Ki and a transfer function Gi(s).

Figure 4.11 Complete
measurement system 
with dynamics.

We begin by assuming that the steady-state sensitivity K1 K2 . . . Ki . . . Kn for the
overall system is equal to 1, i.e. the system has no steady-state error (Section 3.1).
The system transfer function G(s) is the product of the individual element transfer
functions, i.e.

= G(s) = G1(s)G2(s) . . . Gi(s) . . . Gn(s) [4.41]

In principle we can use eqn [4.41] to find the system output signal ∆O(t) corresponding
to a time-varying input signal ∆I(t). We first find the Laplace transform ∆-(s) of ∆I(t),
then using [4.9] the Laplace transform of the output signal is ∆/(s) = G(s)∆-(s). By
expressing ∆/(s) in partial fractions, and using standard tables of Laplace transforms,
we can find the corresponding time signal ∆O(t). Expressing this mathematically:

∆O(t) = �−1[G(s)∆-(s)] [4.42]

where �−1 denotes the inverse Laplace transform. The dynamic error E(t) of the 
measurement system is the difference between the measured signal and the true 
signal, i.e. the difference between ∆O(t) and ∆I(t):

Dynamic error of a 
measurement system

Using [4.42] we have:

E(t) = �−1[G(s)∆-(s)] − ∆I(t) [4.44]

The simple temperature measurement system (Figure 4.12), first introduced in
Section 3.1, provides a good example of dynamic errors. The thermocouple has a time
constant of 10 s, the amplifier has a time constant of 10−4 s (Chapter 9), and the recorder
(Chapter 11) is a second-order element with ωn = 200 rad/s and ξ = 1.0. The overall
steady-state sensitivity of the system is unity.

E(t) = ∆O(t) − ∆I(t) [4.43]

∆/(s)

∆-(s)

Transfer function for 
complete measurement 
system
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We can now calculate the dynamic error of the system for a step input of +20 °C,
i.e. ∆TT (t) = 20u(t) and ∆>T (s) = 20(1/s). Thus the Laplace transform of the output
signal is:

∆>M(s) =

= [4.45]

Using Table 4.1 and eqn [4.30],

∆TM(t) = 20{u(t) − A e−0.1t − B e−104t − E e−200t(l + 200t)}

and the dynamic error:

E(t) = ∆TM(t) − ∆TT (t)

= −20{A e−0.1t + B e−104t − E e−200t(1 + 200t)} [4.46]

where the negative sign indicates too low a reading. The B e−104t term decays to zero
after about 5 × 10−4 s, and the E e−200t(1 + 200t) term decays to zero after about 25 ms.
The A e−0.1t term, which corresponds to the 10 s time constant of the thermocouple,
takes about 50 s to decay to zero and so has the greatest effect on the dynamic error.

We can use the rules developed in Section 4.2.2 to find the dynamic error of a
system, with transfer function G(s) subject to a sinusoidal input ∆I(t) = Î sin ω t. From
Figure 4.9 we have:

∆O(t) = |G( jω) | Î sin(ω t + φ)

giving

E(t) = Î{|G( jω) | sin(ω t + φ) − sin ω t} [4.47]

where φ = arg G( jω).
Suppose that the above temperature measurement system is measuring a sinusoidal

temperature variation of amplitude ñT = 20 °C and period T = 6 s, i.e. angular fre-
quency ω = 2π/T ≈ 1.0 rad s−1. The frequency response function G( jω) is:

G( jω) = [4.48]

so that at ω = 1

|G( jω) |ω=1 =

and [4.49]

arg G( jω)ω=1 ≈ 0 − tan−1(10) − tan−1(10−4) − tan−1(10−2) ≈ −85°
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We note from the above equations that the values of |G( jω) | and arg G( jω) at ω = 1
are determined mainly by the 10 s time constant; the dynamic characteristics of the
other elements will only begin to affect the system performance at much higher 
frequencies. Since TT(t) = 20 sin t and TM(t) = 0.1 × 20 sin(t − 85°), the error is:

E(t) = 20{0.1 sin(t − 85°) − sin t} [4.50]

We note that in the case of a sine wave input, the output recording is also a sine wave,
i.e. the waveform of the signal is unaltered even though there is a reduction in
amplitude and a phase shift.

In practice the input signal to a measurement system is more likely to be periodic
rather than a simple sine wave. A periodic signal is one that repeats itself at equal
intervals of time T, i.e. f (t) = f (t + T ) = f (t + 2T ) etc. where T is the period. 
One example of a periodic measurement signal is the time variation of the temper-
ature inside a diesel engine; another is the vibration of the casing of a centrifugal 
compressor. In order to calculate dynamic errors for periodic signals, we need to use
Fourier analysis. Any periodic signal f (t) with period T can be expressed as a series
of sine and cosine waves; these have frequencies which are harmonics of the funda-
mental frequency ω1 = 2π /T rad s−1, i.e.

Fourier series for 
periodic signal f (t) = a0 + an cos nω1t + bn sin nω1t [4.51]

where

an = �
+T/2

−T/2

f (t) cos nω1t dt

[4.52]

bn = �
+T/2

−T/2

f (t) sin nω1t dt

and

a0 = �
+T/2

−T/2

f (t) dt = average value of f (t) over T

If f(t) = ∆I(t), where ∆I(t) is the deviation of measurement input signal I(t) from steady-
state or d.c. value I0, then a0 = 0. If we also assume that f (t) is odd, i.e. f (t) = − f (−t),
then an = 0 for all n, i.e. there are only sine terms present in the series. This simpli-
fying assumption does not affect the general conclusions drawn in the following 
section. The system input signal is thus given by

∆I(t) = În sin nω1t [4.53]

where În = bn is the amplitude of the nth harmonic at frequency nω1. In order to find
∆O(t), let us first suppose that only the nth harmonic În sin nω1t is input to the 
system. From Figure 4.9 the corresponding output signal is

În |G( jnω1) | sin(nω1t + φn)

where φn = arg G( jnω1).
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We now require to use the principle of superposition, which is a basic property
of linear systems (i.e. systems described by linear differential equations). This can
be stated as follows:

If an input I1(t) causes an output O1(t) and an input I2(t) causes an output O2(t),
then an input I1(t) + I2(t) causes an output O1(t) + O2(t), provided the system is
linear.

This means that if the total input signal is the sum of many sine waves (equation [4.53]),
then the total output signal is the sum of the responses to each sine wave, i.e.

∆O(t) = În |G( jnω1) | sin(nω1t + φn) [4.54]

The dynamic error is thus

Dynamic error of 
system with periodic 
input signal 

As an example, suppose that the input to the temperature measurement system is a
square wave of amplitude 20 °C and period T = 6 s (i.e. ω1 = 2π/T ≈ 1 rad s−1). The
Fourier series for the input signal is:

∆TT(t) = [sin t + 1–3 sin 3t + 1–5 sin 5t + 1–7 sin 7t + . . . ] [4.56]

Figure 4.13 shows the waveforms of the input square wave and the first four Fourier
components with frequencies 1, 3, 5 and 7 rad s−1.

Figure 4.14 shows the amplitude–frequency and phase–frequency relationships 
for the input temperature; these define the frequency spectrum of the signal. The 
spectrum consists of a number of lines at frequencies ω1, 3ω1, 5ω1, etc., of decreas-
ing length to represent the smaller amplitudes of the higher harmonics. In practical
cases we can terminate or truncate the series at a harmonic where the amplitude 
is negligible; in this case we choose n = 7. In order to find the output signal, i.e. the
recorded waveform, we need to evaluate the magnitude and argument of G( jω) at 
ω = 1, 3, 5 and 7 rad s−1. Thus

|G( j) | ≈ 0.100, |G(3j) | ≈ 0.033, |G(5j) | ≈ 0.020, |G (7j ) | ≈ 0.014

and

arg G( j) ≈ −85°, arg G(3j) ≈ −90°,

arg G(5j) ≈ −92°, arg G(7j) ≈ −93°
[4.57]

Again the above values are determined mainly by the 10 s thermocouple time con-
stant; the highest signal frequency ω = 7 is still well below the natural frequency of
the recorder ωn = 200. The system output signal is:

∆TM(t) = [0.100 sin(t − 85°) + 0.011 sin(3t − 90°)

+ 0.004 sin(5t − 92°) + 0.002 sin(7t − 93°)] [4.58]

80

π

80

π

n ∞

∆E(t) = ∑ În{|G( jnω1) | sin(nω1t + φn) − sin nω1t} [4.55]
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Figure 4.14 shows the system frequency response characteristics, the output signal
frequency spectrum and the output waveform. We note that, in the output signal, 
the amplitudes of the 3rd, 5th and 7th harmonics have been reduced relative to the
amplitude of the fundamental. The recorded waveform has therefore a different shape
from the input signal as well as being reduced in amplitude and changed in phase.

Figure 4.13 Waveforms
for input square wave and
Fourier components.
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The above ideas can be extended to calculating the dynamic error for random
input signals. Random signals can be represented by continuous frequency spectra
(Chapter 6).

4.4 Techniques for dynamic compensation
From eqn [4.55] we see that in order to have E(t) = 0 for a periodic signal, the 
following conditions must be obeyed:

|G( jω1) | = |G( j2ω1) | = . . . = |G( jnω1) | = . . . = |G( jmω1) | = 1

arg G( jω1) = arg G( j2ω1) = . . . = arg G( jnω1) = . . . = arg G( jmω1) = 0
[4.59]

Figure 4.14 Calculation
of dynamic errors with
periodic input signal.
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where m is the order of the highest significant harmonic. For a random signal
(Chapter 6) with a continuous frequency spectrum containing frequencies between
0 and ω MAX, we require:

|G( jω) | = 1 and arg G( jω) = 0 for 0 < ω ≤ ω MAX [4.60]

The above conditions represent a theoretical ideal which will be difficult to realise
in practice. A more practical criterion is one which limits the variation in |G( jω) | to
a few per cent for the frequencies present in the signal. For example the condition

0.98 < |G( jω) | < 1.02 for 0 < ω ≤ ω MAX [4.61]

will ensure that the dynamic error is limited to ≈ ±2 per cent for a signal containing
frequencies up to ω MAX/2π Hz (Figure 4.15).

Another commonly used criterion is that of bandwidth. The bandwidth of an ele-
ment or a system is the range of frequencies for which |G( jω) | is greater than 1/ê2.
Thus the bandwidth of the system, with frequency response shown in Figure 4.15, is
0 to ωB rad s−1. The highest signal frequency ω MAX must be considerably less than
ωB. Since, however, there is a 30% reduction in |G( jω) | at ωB, bandwidth is not a 
particularly useful criterion for complete measurement systems.

Bandwidth is commonly used in specifying the frequency response of amplifiers
(Chapter 9); a reduction in |G( jω) | from 1 to 1/ê2 is equivalent to a decibel change
of N = 20 log(1/ê2) = −3.0 dB. A first-order element has a bandwidth between 0 and
l/τ rad s−1.

If a system fails to meet the specified limits on dynamic error E(t), i.e. the system
transfer function G(s) does not satisfy a condition such as [4.61], then the first step
is to identify which elements in the system dominate the dynamic behaviour. In 
the temperature measurement system of the previous section, the dynamic error is
almost entirely due to the 10 s time constant of the thermocouple.

Having identified the dominant elements in the system, the most obvious method
of improving dynamic response is that of inherent design. In the case of a first-order
temperature sensor with τ = MC/UA, τ can be minimised by minimising the mass/
area ratio M/A – for example by using a thermistor in the form of a thin flake. In 
the case of a second-order force sensor with ωn = êk ú/úmú , ωn can be maximised by 
maximising k/m, i.e. by using high stiffness k and low mass m. Increasing k, how-
ever, reduces the steady-state sensitivity K = 1/k.

Figure 4.15 Percentage
limits and bandwidth.
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From second-order step and frequency response graphs we see that the optimum
value of damping ratio ξ is around 0.7. This value ensures minimum settling time
for the step response and |G( jω) | closest to unity for the frequency response.

Another possible method is that of open-loop dynamic compensation (Figure 4.16).
Given an uncompensated element or system GU (s), a compensating element GC (s) is
introduced into the system, such that the overall transfer function G(s) = GU (s)GC (s)
satisfies the required condition (for example eqn [4.61]). Thus if a lead/lag circuit
(Figure 9.12) is used with a thermocouple (Figure 4.16), the overall time constant is
reduced to τ2 so that |G( jω) | is close to unity over a wider range of frequencies. The
main problem with this method is that τ can change with heat transfer coefficient U,
thus reducing the effectiveness of the compensation (Chapter 14).

Another method is to incorporate the element to be compensated into a closed-
loop system with high-gain negative feedback. An example of this is the constant
temperature anemometer system for measuring fluid velocity fluctuations (Section 14.3).
Another example is the closed-loop accelerometer shown in schematic and block 
diagram form in Figure 4.17.

Figure 4.16 Open-loop
dynamic compensation.

Figure 4.17 Schematic
and block diagram 
of closed-loop
accelerometer.
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The applied acceleration a produces an inertia force ma on the seismic mass m
(Chapter 8). This is balanced by the force of the permanent magnet on the current
feedback coil. Any imbalance of forces is detected by the elastic force element to
produce a displacement which is detected by a potentiometric displacement sensor
(Chapter 5). The potentiometer output voltage is amplified, giving a current output
which is fed to the feedback coil through a standard resistor to give the output 
voltage.

Analysis of the block diagram shows that the overall system transfer function is:

[4.62]

If KA is made large so that KAKD KF/k � 1 (Chapter 3), then the system transfer 
function can be expressed in the form:

where

system steady-state sensitivity Ks

system natural frequency ωns

system damping ratio ξs [4.63]

We see that the system natural frequency ωns is now much greater than that of the
elastic force element itself. The system damping ratio ξs is much less than ξ, but 
by making ξ large a value of ξs ≈ 0.7 can be obtained. Furthermore the system 
steady-state sensitivity depends only on m, KF and R, which can be made constant
to a high degree.

Conclusion

The dynamic characteristics of typical measurement system elements were initially
discussed; in particular the transfer functions of first- and second-order elements
were derived. The response of both first- and second-order elements to step and sine
wave inputs was then studied. A general description of the dynamic error of a 
complete measurement system was then developed and applied to a temperature
measurement system subject to step, sine wave and periodic input signals. Finally
methods of dynamic compensation, which reduce dynamic error, were explained.
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Problems

A temperature measurement system consists of linear elements and has an overall steady-state
sensitivity of unity. The dynamics of the system are determined by the first-order transfer func-
tion of the sensing element. At time t = 0, the sensing element is suddenly transferred from
air at 20 °C to boiling water. One minute later the element is suddenly transferred back to air.
Using the data given below, calculate the system dynamic error at the following times: t = 10,
20, 50, 120 and 300 s.

Sensor data
Mass = 5 × 10−2 kg
Surface area = 10−3 m2

Specific heat = 0.2 J kg−1 °C−1

Heat transfer coefficient for air = 0.2 W m−2 °C−1

Heat transfer coefficient for water = 1.0 W m−2 °C−1

A force sensor has a mass of 0.5 kg, stiffness of 2 × 102 N m−1 and a damping constant of 
6.0 N s m−1.

(a) Calculate the steady-state sensitivity, natural frequency and damping ratio for the sensor.
(b) Calculate the displacement of the sensor for a steady input force of 2 N.
(c) If the input force is suddenly increased from 2 to 3 N, derive an expression for the 

resulting displacement of the sensor.

A force measurement system consists of linear elements and has an overall steady-state 
sensitivity of unity. The dynamics of the system are determined by the second-order transfer
function of the sensing element, which has a natural frequency ωn = 40 rad s−1 and a damping
ratio ξ = 0.1. Calculate the system dynamic error corresponding to the periodic input force
signal:

F(t) = 50(sin 10t + 1–3 sin 30t + 1–5 sin 50t)

An uncompensated thermocouple has a time constant of 10 s in a fast-moving liquid.

(a) Calculate the bandwidth of the thermocouple frequency response.
(b) Find the range of frequencies for which the amplitude ratio of the uncompensated 

thermocouple is flat within ±5%.
(c) A lead/ lag circuit with transfer function G(s) = (1 + 10s)/(1 + s) is used to compensate

for thermocouple dynamics. Calculate the range of frequencies for which the amplitude
ratio of the compensated system is flat within ±5%.

(d) The velocity of the liquid is reduced, causing the thermocouple time constant to
increase to 20 s. By sketching |G( jω) | explain why the effectiveness of the above 
compensation is reduced.

An elastic force sensor has an effective seismic mass of 0.1 kg, a spring stiffness of 
10 N m−1 and a damping constant of 14 N s m−1.

(a) Calculate the following quantities:

(i) sensor natural frequency
(ii) sensor damping ratio
(iii) transfer function relating displacement and force.

(b) The above sensor is incorporated into a closed-loop, force balance accelerometer. The 
following components are also present:

Potentiometer displacement sensor: sensitivity 1.0 V m−1

Amplifier: voltage input, current output, sensitivity 40 A V−1

Coil and magnet: current input, force output, sensitivity 25 N A−1

Resistor: 250 Ω.

4.5

4.4

4.3

4.2

4.1
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(i) Draw a block diagram of the accelerometer.
(ii) Calculate the overall accelerometer transfer function.
(iii) Explain why the dynamic performance of the accelerometer is superior to that of

the elastic sensor.

A load cell consists of an elastic cantilever and a displacement transducer. The cantilever has
a stiffness of 102 N m−1, a mass of 0.5 kg and a damping constant of 2 N s m−1. The displace-
ment transducer has a steady-state sensitivity of 10 V m−1.

(a) A package of mass 0.5 kg is suddenly dropped onto the load cell. Use eqn [4.31] to derive
a numerical equation describing the corresponding time variation of the output voltage 
(g = 9.81 m s−2).

(b) The load cell is used to weigh packages moving along a conveyor belt at the rate of 
60 per minute. Use the equation derived in (a) to explain why the load cell is unsuit-
able for this application. Explain what modifications to the load cell are necessary.

A force measurement system consisting of a piezoelectric crystal, charge amplifier and
recorder is shown in Figure Prob. 7.

(a) Calculate the system dynamic error corresponding to the force input signal:

F(t) = 50(sin 10t + 1–3 sin 30t + 1–5 sin 50t)

(b) Explain briefly the system modifications necessary to reduce the error in (a) (hint: see 
Figure 8.22).

4.7

4.6

A thermocouple is used to measure the temperature inside a vessel, which is part of a 
high-speed batch process. At time t = 0, with the vessel at an initial temperature of 50 °C, the
vessel is instantaneously filled with gas at 150 °C. One minute later, instantaneously the gas
is removed and the vessel is filled with liquid at 50 °C. The thermocouple can be regarded as
having linear steady-state characteristics and first-order dynamics.

(a) Use the data given below to sketch a graph of how the thermocouple e.m.f. changes
with time. The axes of the graph should have suitable scales and the answer should include
supporting numerical calculations.

(b) Comment on whether the thermocouple is suitable for this application.
(c) What modifications should be made?

Data
Thermocouple sensitivity = 40 µV °C−1

Thermocouple mass = 5 × 10−2 kg
Thermocouple specific heat = 0.2 J kg−1 °C−1

Thermocouple surface area = 10−3 m2

Heat transfer coefficient for gas = 0.2 W m−2 °C−1

Heat transfer coefficient for liquid = 1.0 W m−2 °C−1

Response of first-order element, with unit sensitivity, to unit step:

F 0(t) = 1 − exp
D
F

−t

τ
A
C

4.8

Figure Prob. 7.
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A temperature measurement system for a gas reactor consists of linear elements and has 
an overall steady-state sensitivity of unity. The temperature sensor has a time constant of 
5.0 s; an ideal low-pass filter with a cut-off frequency of 0.05 Hz is also present. The input
temperature signal is periodic with period 63 s and can be approximated by the Fourier series:

T (t) = 10(sin ω0t + 1–2 sin 2ω0t + 1–3 sin 3ω0t + 1–4 sin 4ω0t)

where ω0 is the angular frequency of the fundamental component.

(a) Calculate expressions for the time response of:

(i) the system output signal
(ii) the system dynamic error.

(b) Explain what modifications are necessary to the system to minimise the dynamic error 
in (a).

Note
An ideal low-pass filter has a gain of one and zero phase shift up to the cut-off frequency. The
gain is zero above the cut-off frequency.

4.9

        



5 Loading Effects and
Two-port Networks

In our discussion of measurement systems no consideration has yet been given to the
effects of loading. One important effect is that of inter-element loading where a given
element in the system may modify the characteristics of the previous element (for
example by drawing current). In turn, the characteristics of this element may be modified
by the following element in the system. Inter-element loading is normally an 
electrical loading effect which is described in the first section of this chapter using
Thévenin and Norton equivalent circuits. The second section begins by discus-
sing the analogies between electrical and non-electrical variables. This means that
mechanical and thermal systems can be described by equivalent circuits and sensing
elements by two-port networks. Two-port networks are then used to describe 
process loading; here the introduction of the sensing element into the process or 
system being measured causes the value of the measured variable to change. Finally
two-port networks are used to describe bilateral transducers which use reversible
physical effects.

5.1 Electrical loading
We have so far represented measurement systems as blocks connected by single lines
where the transfer of information and energy is in terms of one variable only. Thus in
the temperature measurement system of Figure 3.2 the information transfer between
elements is in terms of voltage only. No allowance can therefore be made for the
amplifier drawing current from the thermocouple and the indicator drawing current
from the amplifier. In order to describe both voltage and current behaviour at the con-
nection of two elements, we need to represent each element by equivalent circuits
characterised by two terminals. The connection is then shown by two lines.

5.1.1 Thévenin equivalent circuit

Thévenin’s theorem states that any network consisting of linear impedances and
voltage sources can be replaced by an equivalent circuit consisting of a voltage
source ETh and a series impedance ZTh (Figure 5.1). The source ETh is equal to the open
circuit voltage of the network across the output terminals, and ZTh is the impedance
looking back into these terminals with all voltage sources reduced to zero and
replaced by their internal impedances. Thus connecting a load ZL across the output
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terminals of the network is equivalent to connecting ZL across the Thévenin circuit.
The current i in ZL is then simply given by:

i = [5.1]

and the voltage VL across the load by:

Loading of Thévenin 
equivalent circuit [5.2]

From eqn [5.2] we see that if ZL � ZTh, then VL → ETh; i.e. in order to get maximum
voltage transfer from the network to the load, the load impedance should be far greater
than the Thévenin impedance for the network. In order to get maximum power 
transfer from network to load, the load impedance should be equal to the network
impedance; i.e. ZL = ZTh.

[1] (An example of the calculation of ETh and ZTh for a 
potentiometer displacement transducer is given in the following section and for a
deflection bridge in Section 9.l.)

We can now discuss the Thévenin equivalent circuit for the temperature measurement
system of Figure 3.2. The thermocouple may be represented by ZTh = 20 Ω (resistive)
and ETh = 40T µV, where T is the measurement junction temperature, if non-linear
and reference junction temperature effects are ignored. The amplifier acts both as a
load for the thermocouple and as a voltage source for the indicator. Figure 5.2 shows
a general equivalent circuit for an amplifier with two pairs of terminals. Using 
typical amplifier data (Chapter 9), we have input impedance Z IN = R IN = 2 × 106 Ω,
closed-loop voltage gain A = 103, and output impedance ZOUT = ROUT = 75 Ω. The
indicator is a resistive load of 104 Ω. The complete equivalent circuit for the system
is shown in Figure 5.3, and using eqn [5.2] we have:

VIN = 40 × 10−6T

VL = 1000 VIN

[5.3]

If the indicator scale is drawn so that a change of 1 V in VL causes a change in deflection
of 25 °C, then the measured temperature TM = 25VL. This gives:
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A
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D
F

2 × 106

2 × 106 + 20

A
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V iZ E
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= =
+

ETh

ZTh + ZL

Figure 5.1 Thévenin
equivalent circuit.
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TM = T = 0.9925T [5.4]

i.e. we have to introduce the factor ZL/(ZTh + ZL) at every interconnection of two 
elements to allow for loading. The loading error = −0.0075T; this is in addition to
the steady-state error due to element inperfections calculated in Chapter 3.

The loading error in the above example is small, but if care is not taken it can be
very large. Suppose a pH glass electrode (Chapter 8), with sensitivity 59 mV per pH,
i.e. ETh = 59pH mV and ZTh = RTh = 109 Ω, is directly connected to an indicator with
ZL = RL = 104 Ω and a scale of sensitivity 1–59 pH/mV. The measured pH is:

pHM = 59pH ≈ 10−5pH [5.5]

i.e. there will be effectively a zero indication for any non-zero value.
This problem is solved by connecting the electrode to the indicator via a buffer

amplifier. This is characterised by large Z IN, small ZOUT and unity gain A = 1. For
example, an operational amplifier with a field effect transistor (FET) input stage 
connected as a voltage follower (Figure 9.9) would have Z IN = 1012 Ω, ZOUT = 10 Ω.
The indicated pH value for the modified system (Figure 5.4) is:

pHM = × pH [5.6]

and the loading error is now −0.002pH, which is negligible.

104

104 + 10

1012

1012 + 109

1

59
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F

104
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C

D
F
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104 + 75

A
C

D
F

2 × 106

2 × 106 + 20

A
C

Figure 5.3 Thévenin
equivalent to temperature
measurement system.

Figure 5.2 Equivalent
circuit for amplifier.

Figure 5.4 Equivalent
circuit for pH
measurement system.
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An example of a.c. loading effects is given in Figure 5.5, which shows the equiv-
alent circuit for a variable reluctance tachogenerator connected to a recorder. The
Thévenin voltage ETh for the tachogenerator is a.c. with an amplitude : and angular
frequency ω, both proportional to the mechanical angular velocity ωr (Section 8.4).
In this example, : = (5.0 × 10−3) ωr volts and ω = 6ωr rad s−1. The Thévenin imped-
ance ZTh for the tachogenerator is an inductance and resistance in series (coil surrounding
magnet), i.e. ZTh = RTh + jωLTh. Thus if ωr = 103 rad s−1:

: = 5 V, ω = 6 × 103 rad s−1

and

ZTh = 1.5 + 6.0j kΩ

so that the amplitude of the recorded voltage is

[5.7]

If the recorder scale sensitivity is set at 1/(5 × 10−3) rad s−1 V−1, then the recorded 
angular velocity is 770 rad s−1. This error can be removed either by increasing the
recorder impedance, or by changing the recorder sensitivity to allow for loading effects.
A better alternative is to replace the recorder by a counter which measures the fre-
quency rather than the amplitude of the tachogenerator signal (Section 10.3).

5.1.2 Example of Thévenin equivalent circuit calculation:
potentiometric displacement sensor

Figure 5.6 shows a schematic diagram of a potentiometric sensor for measuring dis-
placements d. The resistance of the potentiometer varies linearly with displacement.
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Figure 5.5 A.C. loading
of tachogenerator.

Figure 5.6 Potentiometer
displacement sensor and
Thévenin equivalent
circuit.
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Thus if x = d/dT is the fractional displacement, the corresponding resistance is RPx,
where RP Ω is the total resistance of the potentiometer. The Thévinin voltage ETh is
the open circuit voltage across the output terminals AB. The ratio between ETh and
supply voltage VS is equal to the ratio of fractional resistance RPx to total resistance
RP; that is

, giving ETh = VS x [5.8]

The Thévenin impedance ZTh is found by setting supply voltage VS = 0, replacing the
supply by its internal impedance (assumed to be zero), and calculating the impedance
looking back into the terminals AB as shown in Figure 5.7. Thus:

giving

RTh = RPx(1 − x) [5.9]

Thus the effect of connecting a resistive load RL (recorder or indicator) across the 
terminals AB is equivalent to connecting RL across the Thévenin circuit. The load 
voltage is thus:

i.e.

Voltage–displacement 
relationship for a [5.10]
loaded potentiometer

The relationship between VL and x is non-linear, the amount of non-linearity depending
on the ratio RP /RL (Figure 5.8). Thus the effect of loading a linear potentiometric
sensor is to introduce a non-linear error into the system given by:

i.e.

[5.11]N x V
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Figure 5.7 Calculation of
RTh for potentiometer.
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which reduces to:

N(x) ≈ VS (RP /RL)(x
2 − x3)

if RP /RL � 1 (the usual situation). N(x) has a maximum value of ; = 4––27VS(RP /RL) when
x = 2–3 , corresponding to dN/dx = 0 and negative d2N/dx2. Expressing ; as a percentage
of full-scale deflection or span VS volts gives:

; = % ≈ 15 % [5.12]

Non-linearity, sensitivity and maximum power requirements are used to specify the
values of RP and VS for a given application. Suppose that a 10 cm range potentio-
meter is to be connected to a 10 kΩ recorder. If the maximum non-linearity must 
not exceed 2%, then we require 15RP /RL ≤ 2, i.e. RP ≤ 20––15 × 103 Ω; thus a 1 kΩ
potentiometer would be suitable.

Since sensitivity dVL /dx ≈ VS, the greater VS the higher the sensitivity, but we must
satisfy the requirement that power dissipation VS

2/RP should not exceed maximum value
Å watts. If Å = 0.1 W we require VS ≤ ê0.ú1ú ú×ú ú1ú0ú

3
ú , i.e. VS ≤ 10 V; if VS = 10 V, then

corresponding sensitivity = 1.0 V cm−1.

5.1.3 Norton equivalent circuit

Norton’s theorem states that any network consisting of linear impedances and volt-
age sources can be replaced by an equivalent circuit consisting of a current source 
iN in parallel with an impedance ZN (Figure 5.9). ZN is the impedance looking back
into the output terminals with all voltage sources reduced to zero and replaced by
their internal impedances, and iN is the current which flows when the terminals are
short circuited. Connecting a load ZL across the output terminals of the network is
equivalent to connecting ZL across the Norton circuit. The voltage VL across the load
is given by VL = iNZ, where 1/Z = 1/ZN + 1/ZL, giving:

RP

RL

RP

RL

400

27

Figure 5.8 Non-linear
characteristics of loaded
potentiometer.
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Loading of Norton 
equivalent circuit [5.13]

From eqn [5.13] we note that if ZL � ZN, then VL → iN ZL; i.e. in order to develop the
maximum current through the load, the load impedance should be far smaller than
the Norton impedance for the network.

A common example of a current source is an electronic differential pressure
transmitter giving an output current signal, range 4 to 20 mA, proportional to an input
differential pressure, typical range 0 to 2 × 104 Pa (Section 9.4). Figure 5.10 shows
a typical equivalent circuit for the transmitter connected to a recorder via a cable.
Using eqn [5.13], the voltage across the total load RC + RR of recorder and cable is

VL = iN [5.14]

and the ratio VR/VL = RR /(RC + RR), giving the recorder voltage:

VR = iN RR [5.15]

Using the data given, we have VR = 0.9995iN RR, so that the recorded voltage deviates
from the desired range of 1 to 5 V by only 0.05%.

A second example of a current generator is provided by a piezoelectric crystal 
acting as a force sensor. If a force F is applied to any crystal, then the atoms of the
crystal undergo a small displacement x proportional to F. For a piezoelectric mater-
ial the crystal acquires a charge q proportional to x, i.e. q = Kx. The crystal can 
therefore be regarded as a Norton current source of magnitude iN = dq/dt = K(dx/dt),

RN

RN + RC + RR

RN (RC + RR)

RN + RC + RR

  
V i

Z Z

Z Z
L N

N L

N L

  
 

 
=

⋅
+

Figure 5.9 Norton
equivalent circuit.

Figure 5.10 Typical
current source and load.
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where dx/dt is the velocity of the atomic deformations. This effect is discussed more
fully in Section 8.7, where we see that the crystal acts as a capacitance CN in paral-
lel with the current source iN . Figure 5.11 shows the equivalent circuit and typical
component values for a crystal connected via a capacitive cable CC to a recorder 
acting as a resistive load RL. The voltage VL across the load is given by iN Z, where 
Z is the impedance of CN, CC and RL in parallel. Since

= CN s + CC s +

Z =

where s denotes the Laplace operator. The transfer function relating dynamic
changes in source current and recorder voltage is thus:

= [5.16]

Thus the effect of electrical loading in this example is to introduce a first-order transfer
function into the force measurement system; this will affect dynamic accuracy.

5.2 Two-port networks

5.2.1 Generalised effort and flow variables

We have seen in the previous section how electrical loading effects can be described
using a pair of variables, voltage and current. Voltage is an example of an across or
effort variable y; current is an example of a through or flow variable x. An effort
variable drives a flow variable through an impedance. Other examples of effort/flow
pairs are force/velocity, torque/angular velocity, pressure difference/volume flow rate
and temperature difference/heat flow rate.[2] Each y–x pair has the following properties:

(a) The product yx represents power in watts.
(b) The ratio y/x represents impedance.

The only exception is the thermal variables where the product has the dimensions of
watts and temperature. Table 5.1 lists the effort/flow pairs for different forms of energy
and for each pair defines the related quantities of impedance, stiffness, compliance

RL

1 + RL(CN + CC)s

∆\L(s)

∆jN (s)

RL

1 + RL(CN + CC)s

1

RL

1

Z

Figure 5.11 Piezoelectric
force measurement
system.
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and inertance. Thus we see that the concept of impedance is applicable to mechan-
ical, fluidic and thermal systems as well as electrical. For a mechanical system, mass
is analogous to electrical inductance, damping constant is analogous to electrical 
resistance, and 1/stiffness is analogous to electrical capacitance. For a thermal system,
thermal resistance is analogous to electrical resistance, and thermal capacitance 
is analogous to electrical capacitance. This means we can generalise the electrical
equivalent circuits of Thévenin and Norton to non-electrical systems.

Figure 5.12(a) shows a parallel mechanical system consisting of a mass m, spring
stiffness k and damper constant λ. Figure 5.12(b) shows a series electrical circuit 
consisting of an inductance L, a capacitance C and a resistance R. Since mechanical
impedance is the ratio of force/velocity, the mechanical impedance transfer func-
tion is

ZM(s) = = ms + λ + [5.17]

The impedance transfer function for the electrical circuit is

ZE(s) = + Ls + R + [5.18]

We see that these have a similar form, with m corresponding to L, λ corresponding
to R, and k corresponding to 1/C. Thus the parallel mechanical system can be repres-
ented by an equivalent circuit consisting of an inductive element m, a resistive element
λ and a capacitive element 1/k in series (Figure 5.12(c)).

Figure 5.13(a) shows a thermal system consisting of a body at temperature T
immersed in a fluid at temperature TF. The body has a mass M, specific heat CH

and surface area A; U is the heat transfer coefficient between the body and the fluid.
Figure 5.13(b) shows a series electrical circuit with resistance R, capacitance C,
input voltage VIN and output voltage VOUT. The differential equation for the thermal
system is:

1

Cs

∆\

∆j

k

s

∆,

∆á

Figure 5.12 Equivalent
circuit for a mechanical
system:
(a) Parallel mechanical
system
(b) Series electrical circuit
(c) Equivalent mechanical
circuit.
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MCH = UA(TF − T ) [5.19]

and the differential equation for the electrical circuit is:

C = (VIN − VOUT) [5.20]

We see that the equations have a similar form and the temperature effort variables
TF and T are analogous to the voltage effort variables VIN and VOUT. Heat flow W is
analogous to current flow i, UA is analogous to 1/R, i.e. the reciprocal of electrical
resistance, and MCH is analogous to electrical capacitance C. Thus the thermal 
system can be represented by an equivalent circuit consisting of a resistive element
1/UA in series with a capacitive element MCH as in Figure 5.13(c).

5.2.2 Two-port networks

We saw in Section 5.1 that the electrical output of a sensing element such as a thermo-
couple or piezoelectric crystal can be represented by a Thévenin or Norton equiv-
alent circuit. The sensor has therefore two output terminals which allow both voltage
and current flow to be specified; this is referred to as an electrical output port. The
sensing element will have a mechnical, thermal or fluidic input; we saw in the pre-
vious section that mechanical and thermal systems can be represented by equivalent
circuits which show the relation between the corresponding effort and flow variables.
Thus the input to a mechanical or thermal sensor can be represented by two input
terminals which allow both the effort and flow variables to be specified; this is either
a mechanical or a thermal input port. Thus a sensing element can be represented by
a two-port or four-terminal network. Figure 5.14(a) shows a two-port representa-
tion of a mechanical sensor with input mechanical port and output electrical port; 
Figure 5.15(a) shows the two-port representation of a thermal sensor.

Figures 5.14(b) and (c) show the detailed two-port networks for a range of mech-
anical sensing elements. Figure 5.14(b) shows the equivalent circuit for sensing 
elements with a Thévenin equivalent circuit at the electrical output port. ZM is the
input mechanical impedance; ETh and ZTh are the Thévenin voltage and impedance.
For a displacement sensor ETh is proportional to displacement x, i.e.

1

R

dVOUT

dt

dT

dt

Figure 5.13 Equivalent
circuit for a thermal
system:
(a) Thermal system 
(b) Electrical circuit 
(c) Equivalent thermal
circuit.
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ETh = Kx x [5.21]

where Kx is the sensitivity and x = ∫ x dt.
For a potentiometer displacement sensor (Section 5.1.2) Kx = VS (supply voltage),

and for a linear variable differential transformer (LVDT, Section 8.3.2) Kx is the 
slope of the linear portion of the a.c. voltage versus displacement characteristics. For
a velocity sensor, ETh is proportional to velocity x, i.e.

Figure 5.14 Mechanical
sensing elements as 
two-port networks:
(a) Overall two-port
representation
(b) Equivalent circuit 
with Thévenin output
(c) Equivalent circuit 
with Norton output.

Figure 5.15 Thermal
sensing elements as 
two-port networks:
(a) Overall two-port
representation
(b) Equivalent circuit 
with Thévenin output
(c) Equivalent circuit 
with Norton output.
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ETh = KV x [5.22]

For an electromagnetic linear velocity sensor (Section 12.5.1) KV = Bl where B is the
applied magnetic field and l the length of the conductor. In the case of an electro-
magnetic angular velocity sensor or tachogenerator (Section 8.4) we have ETh = KVωr,
where ωr is the angular velocity and KV = dN/dθ the rate of change of flux N with
angle θ. Figure 5.14(c) shows the equivalent circuit for sensing elements with a
Norton equivalent circuit iN, ZN at the electrical output port. For a piezoelectric 
sensor iN is proportional to velocity x (Section 8.7), i.e.

iN = Kx [5.23]

where K = dk, d is the charge sensitivity to force and k is the stiffness of the crystal.
Figures 5.15(b) and (c) show the detailed two-port networks for two examples of

thermal sensing elements. Figure 5.15(b) shows the equivalent circuit for a sensing
element with a Thévenin equivalent circuit ETh, ZTh at the electrical output port; ZH

is the thermal input impedance. For a thermocouple temperature sensor (Section 8.5)
with the reference junction at 0 °C we have ETh = ET,0 where ET,0 is the e.m.f. at the
measured junction at T °C and is given by the power series

ET,0 = a1T + a2T 2 + a3T 3 + . . . [5.24]

Figure 5.15(c) shows the equivalent circuit for a sensing element with a Norton
equivalent circuit iN, ZN at the electrical output port. For a pyroelectric detector
(Section 15.5.1) iN is proportional to rate of change of temperature dT/dt, i.e.

iN = K [5.25]

where K = A(dP/dT ), A is the area of the electrodes and dP/dT is the slope of the
polarisation temperature characteristics.

5.2.3 Process loading

Having introduced the concepts of equivalent circuits and two-port networks for
mechanical and thermal systems, we can now use these concepts to study examples
of how a primary sensing element can ‘load’ the process or element being measured.

Figure 5.16 shows a mechanical system or ‘process’ represented by a mass,
spring and damper. The force F applied to the ‘process’ is being measured by a force
sensor, consisting of an elastic element in conjunction with a potentiometric displacement
sensor. The elastic force sensor can also be represented by a mass spring and damper
(Section 4.1.2). Under steady-state conditions when both velocity x = 0 and accelera-
tion y = 0, we have the following force balance equations:

process F = kP x + FS [5.26]

sensor FS = kS x

showing that the relationship between the measured force FS and the true force F is:

Steady-state loading 
of mechanical system [5.27]
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We see that in order to minimise the loading error in the steady state the sensor 
stiffness kS should be very much greater than the process stiffness kP.

Under unsteady conditions when x and y are non-zero, Newton’s second law
gives the following differential equations:

process F − kP x − λP x − FS = mP y [5.28]

sensor FS − kS x − λS x = mS y

i.e.

mP + λP x + kP ∫ x dt = F − FS

[5.29]

mS + λS x + kS ∫ x dt = FS

Using the analogues given earlier, the sensor can be represented by FS driving x through
the mechanical L, C, R circuit mS, 1/kS, λS; and the process can be represented by 
F − FS driving x through the mechanical L, C, R circuit mP, 1/kP, λP. If ∆x, ∆F and
∆FS are deviations from initial steady conditions, then the Laplace transforms of 
eqns [5.29] are:

mPs + λP + ö = ∆, − ∆,S

[5.30]

mSs + λS + ö = ∆,S

Using Table 5.1 we can define mechanical impedance transfer functions by ZM(s) =
∆,(s)/ö(s), so that:

process impedance ZMP(s) = mP s + λP +

sensor impedance ZMS(s) = mS s + λS +

[5.31]
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Figure 5.16 Loading of
mechanical system by
force sensor.
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From [5.30] and [5.31] the relationship between measured and actual dynamic
changes in force is:

Dynamic loading of 
mechanical system [5.32]

Thus in order to minimise dynamic loading effects, sensor impedance ZMS should be
very much greater than process impedance ZMP. Figure 5.17 shows the equivalent 
circuit for the system: process, force sensor and recorder.

Figure 5.18 shows a hot body, i.e. a thermal ‘process’ whose temperature TP is
being measured by a thermocouple sensor. Under unsteady conditions, heat flow rate
considerations give the following differential equations (Section 4.1):

process MPCP = WP − WS, WP = UP AP(TF − TP)

sensor MSCS = WS, WS = US AS (TP − TS)

[5.33]
dTS

dt

dTP

dt
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Figure 5.18 Loading 
of thermal ‘process’ by
thermocouple temperature
sensor.

Figure 5.17 Equivalent
circuit for complete
system showing a force
sensor as a two-port
network.
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where M denotes masses
C denotes specific heats
U denotes heat transfer coefficients
A denotes heat transfer areas.

The quantities MPCP and MSCS have the dimensions of heat/temperature and are
analogous to electrical capacitance. The quantities UP AP and US AS have the dimen-
sions of heat flow rate/temperature and are analogous to 1/(electrical resistance). The
equivalent circuit for the process and thermocouple is shown in Figure 5.19. We see
that the relationship between TF and TP depends on the potential divider 1/UP AP, MPCP,
and the relationship between TP and TS depends on the potential divider 1/(US AS),
MS CS. Again the thermocouple can be represented as a two-port network with a 
thermal input port and an electrical output port.

In conclusion we see that the representation of measurement system elements 
by two-port networks enables both process and inter-element loading effects to be
quantified.

5.2.4 Bilateral transducers

Bilateral transducers are associated with reversible physical effects. In a revers-
ible effect the same device can, for example, convert mechanical energy into elec-
trical energy and also convert electrical energy into mechanical energy. When the
device converts electrical energy into mechanical energy it acts as a transmitter or
sender.

This can be represented by a two-port network with an input electrical port and an
output mechanical port as in Figure 5.20(a), When the device converts mechanical
energy into electrical energy it acts as a receiver or sensor, and can be represented
by an input mechanical port and an output electrical port as in Figure 5.20(b).

The piezoelectric effect is a common example of a reversible effect (Section 8.7).
In the direct effect a force F applied to the crystal produces a charge q, proportional
to F, according to:

q = dF [5.34]

Figure 5.19 Equivalent
circuit for thermal system
showing thermocouple as
a two-port network.
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i.e. this is a conversion of mechanical energy to electrical energy and the device acts
as a receiver or sensor. In the inverse effect a voltage V applied to the crystal 
produces a mechanical deformation x, proportional to V, according to:

x = dV [5.35]

This is a conversion of electrical energy to mechanical energy and the device acts as
a transmitter or sender. The detailed equivalent circuits for a piezoelectric transmit-
ter and receiver are given in Section 16.2.1.

Another reversible physical effect is the electromagnetic effect. In the direct
effect, a conductor of length l moving with velocity x perpendicular to a magnetic
field B has a voltage

E = Blx [5.36]

induced across the ends of the conductor. This is a conversion of mechanical to 
electrical energy and the device acts as a receiver or sensor. In the inverse effect a
conductor of length l carrying a current i in a transverse magnetic field B experiences
a force

F = Bli [5.37]

This is a conversion of electrical to mechanical energy and the device acts as a trans-
mitter or sender. Figure 5.21 gives the detailed equivalent circuits for an electromagnetic
transmitter and receiver. At the electrical ports the applied voltage drives a current
through the electrical impedance L, R; at the mechanical ports the applied force
drives a velocity through the mechanical impedance m, 1/k, λ. The transmitter can
be used as a voltage indicator (Section 11.2) and the receiver as a velocity sensor
(Sections 5.1.1 and 8.4).

Figure 5.20 Bilateral
transducers:
(a) Transmitter/sender
(b) Receiver/sensor.

Figure 5.21 Equivalent
circuits for bilateral
electromagnetic
transducers:
(a) Transmitter/sender
(b) Receiver/sensor.
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Conclusion
We have seen how the use of equivalent circuits and two-port networks has enabled
both inter-element and process loading effects to be described.
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Problems

A glass pH electrode with a sensitivity of 59 mV pH −1 and a resistance of 109 Ω is used to
measure pH in the range 0 to 15. The electrode is to be connected to a recorder of input range
0 to 100 mV and resistance 100 Ω using a buffer amplifier of unity gain and output resistance
100 Ω.

(a) Calculate the input impedance of the amplifier, and the sensitivity of the recorder scale
necessary to obtain an accurate recording of pH.

(b) The resistance of the electrode increases to 2 × 109 Ω due to chemical action. Calculate
the resulting measurement error in the above system, as a percentage of full scale, for
a true pH of 7.

The motion of a hydraulic ram is to be recorded using a potentiometer displacement sensor
connected to a recorder. The potentiometer is 25 cm long and has linear resistance dis-
placement characteristics. A set of potentiometers with maximum power rating of 5 W and
resistance values ranging from 250 to 2500 Ω in 250 Ω steps is available. The recorder has a
resistance of 5000 Ω and the non-linear error of the system must not exceed 2% of full scale.
Find:

(a) the maximum potentiometer sensitivity that can be obtained;
(b) the required potentiometer resistance and supply voltage in order to achieve maximum

sensitivity.

An electronic differential transmitter gives a current output of 4 to 20 mA linearly related to
a differential pressure input of 0 to 104 Pa. The Norton impedance of the transmitter is 105 Ω.
The transmitter is connected to an indicator of impedance 250 Ω via a cable of total resistance
500 Ω. The indicator gives a reading between 0 and 104 Pa for an input voltage between 1 
and 5 V. Calculate the system measurement error, due to loading, for an input pressure of 
5 × 103 Pa.

A sensor with mass 0.1 kg, stiffness 103 N m−1 and damping constant 10 N s m−1 is used to
measure the force on a mechanical structure of mass 5 kg, stiffness 102 N m−1 and damping
constant 20 N s m−1. Find the transfer function relating measured and actual changes in 
force.

5.4

5.3

5.2

5.1
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Basic problems

A linear thermocouple with a sensitivity of 0.04 mV/°C and resistance of 100 Ω is con-
nected to a load with a resistance of 1 kΩ. Find the voltage across the load for a temperature
of 250 °C.

A potentiometer displacement sensor has a supply voltage of 15 V and a resistance of 50 kΩ.
The fractional displacement of the wiper is 0.3. Find the Thévenin voltage and resistance for
the circuit.

A potentiometer has a supply voltage of 10 V, a resistance of 10 kΩ and a length of 10 cm. 
A recorder of resistance 10 kΩ is connected across the potentiometer. Calculate the 
Thévenin equivalent circuit for the sensor and the recorder voltage for each of the following
displacements:

(a) 2 cm
(b) 5 cm
(c) 8 cm.

A potentiometer has a total length of 10 cm and a resistance of 100 Ω.

(a) Calculate the supply voltage so that power dissipation = 1 W.
(b) Draw the Thévenin equivalent circuit for 7 cm displacement.
(c) The potentiometer is connected to a recorder with a resistance RL. Find RL such that the

recorder voltage is 5% less than the open circuit voltage at 7 cm displacement.

A pressure transducer consists of a Bourdon tube elastic element connected to a potentio-
meter displacement sensor. The input range of the Bourdon tube is 0 to 104 Pa and the 
output range is 0 to 1 cm. The potentiometer has a length of 1 cm, a resistance of 10 kΩ and
a supply voltage of 10 V. If the input pressure is 5 × 103 Pa, calculate:

(a) the displacement of the potentiometer wiper (assume a linear Bourdon tube)
(b) the open circuit transducer output voltage
(c) the voltage indicated by a voltmeter of resistance 10 kΩ connected across the 

potentiometer.

5.9

5.8

5.7

5.6

5.5

        



        



6 Signals and Noise
in Measurement
Systems

6.1 Introduction
In Chapter 4 we studied the dynamic response of measurement systems to step, sine
wave and square wave input signals. These signals are examples of deterministic
signals: a deterministic signal is one whose value at any future time can be exactly
predicted. Thus if we record these signals for an observation period TO (Figure 6.1),
the future behaviour of the signal, once the observation period is over, is known exactly.
The future behaviour of real processes, such as chemical reactors, blast furnaces and
aircraft, will depend on unknown factors such as the type of feedstock, reliability of
equipment, changes in throughput and atmospheric conditions, and cannot be known
in advance. This means that the future value of measured variables, such as reactor
temperature, flow in a pipe and aircraft speed, cannot be exactly predicted. Thus 
in real measurement applications the input signal to the measurement system is not
deterministic but random. If a random signal is recorded for an observation period
TO (Figure 6.1) the behaviour of the signal, once the observation period is over, is
not known exactly. However, five statistical quantities – mean, standard deviation,
probability density function, power spectral density and autocorrelation function –
are used to estimate the behaviour of random signals. These are defined and explained
in Section 6.2.

Random variations in the measured input variable produce corresponding random
variations in the electrical output signals of elements in the system. More precisely
the Thévenin voltage and Norton current signals defined in Chapter 5 vary randomly
with time and will be referred to as the measurement signal. Examples are random
fluctuations in the millivolt output of a thermocouple, random fluctuations in the 
current output of a differential pressure transmitter, and random fluctuations in the
amplitude and frequency of the a.c. output voltage of a variable reluctance tacho-
generator. However, unwanted electrical signals may also be present in the measure-
ment circuit. These may be due to sources inside the measurement circuit or caused
by coupling to sources outside the circuit. The magnitude of the unwanted signal may
be comparable to or larger than that of the measurement signal itself, resulting in a
measurement error for the overall system. This is an example of the interfering inputs
discussed in Chapter 2. The unwanted signal then may be either random, e.g. signals
caused by the random motion of electrons, or deterministic, e.g. sinusoidal signals
at 50 Hz caused by power cables. Unwanted random signals are usually referred 
to as noise signals and unwanted deterministic signals as interference signals.
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Sections 6.3 and 6.4 discuss the sources of noise and interference signals and how
they affect the measurement circuit. Section 6.5 examines ways of reducing the
effects of noise and interference.

6.2 Statistical representation of random signals
Figure 6.2 shows a recording of a section of a random signal obtained during an 
observation period TO. Since the signal is random we cannot write down a continu-
ous algebraic equation y(t) for the signal voltage y at time t. We can, however, write
down the values y1 to yN of N samples taken at equal intervals ∆T during TO. The first
sample y1 is taken at t = ∆T, the second y2 is taken at t = 2∆T, and the ith yi is taken
at t = i∆T, where i = 1, . . . , N. The sampling interval ∆T = TO /N must satisfy the
Nyquist sampling theorem, which is explained in Section 10.1. We can now use 
these samples to calculate statistical quantities for the observed section of the signal.
These observed statistical quantities will provide a good estimate of the future
behaviour of the signal, once the observation period is over, provided:

Figure 6.2 Sampling of a
random signal.

Figure 6.1 Deterministic
and random signals.
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(a) TO is sufficiently long, i.e. N is sufficiently large;
(b) the signal is stationary, i.e. long-term statistical quantities do not change with

time.

6.2.1 Mean æ

For a signal defined in terms of a continuous function y(t) in the interval 0 to TO, the
mean is given by:

Mean for continuous 
signal [6.1]

If, however, the signal is represented by the set of sampled values yi we have

Mean for sampled 
signal [6.2]

6.2.2 Standard deviation σσ
This is a measure of the average spread or deviation of the signal from the mean value
R. In the continuous case:

Standard deviation for 
continuous signal [6.3]

and in the sampled case:

Standard deviation for 
sampled signal [6.4]

In the special case that R = 0, the standard deviation σ is equal to the root mean square
(r.m.s.) value yrms, where:

[6.5]

or

[6.6]y
N

yi
i

i N

rms =
=

=

∑  
1 2

1

y
T

y t
O

TO

rms d=  
1

0

2�

   
σ 2

1

21
= −

=

=

∑  (   )
N

yi
i

i N

R

    
σ 2

0

21
= −  [ ( )  ]

T
y t t

O

TO

� R d

   
R  =

=

=

∑1

1N
yi

i

i N

    
R   ( )=

1

0T
y t t

O

TO

� d

        



100 SIGNALS AND NOISE IN MEASUREMENT SYSTEMS

6.2.3 Probability density function p( y)

This is a function of signal value y and is a measure of the probability that the signal
will have a certain range of values. Figure 6.3 shows the set of sample values yi and
the y axis divided into m sections each of width ∆y. We can then count the number
of samples occurring within each section, i.e. n1 in section 1, n2 in section 2, nj in
section j, etc., where j = 1, . . . , m. The probability Pj of the signal occurring in the
jth section is thus:

Pj = [6.7]

= , j = 1, . . . , m

The cumulative probability Cj is the total probability that the signal will occur in
the first j sections and is given by:

nj

N

number of times sample occurs in the jth section

total number of samples

Figure 6.3 Probability
and probability density.
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Cumulative probability

[6.8]

Figure 6.3 shows the corresponding forms of Pj and Cj. The final value of Cj when 
j = m is:

Cm = (n1 + n2 + . . . + nm)

= × N = 1 (since n1 + n2 + . . . + nm = N ) [6.9]

i.e. the total probability of finding the signal in all m sections is unity. In the limit 
as the interval ∆y tends to zero the discrete cumulative probability Cj tends to a 
continuous function (Figure 6.3). This is the cumulative probability distribution
function (c.d.f.) P( y), which is defined by:

Cumulative probability 
distribution function 

[6.10]

The probability density function (p.d.f.) p( y) is more commonly used and is the
derivative of P( y), i.e.

Probability density 
function [6.11]

Thus the probability Py,y+∆y that the signal will lie between y and y + ∆y is given by:

Py, y +∆y = ∆P = p( y)∆y [6.12]

i.e. by the area of a strip of height p( y) and width ∆y. Similarly the probability Py1,y2

that the signal will lie between y1 and y2 is given by:

Py1,y2
= �

y1

y2

p( y) dy [6.13]

i.e. the area under the probability density curve between y1 and y2. The total area 
under the probability density curve is equal to unity, corresponding to the total prob-
ability of the signal having any value of y. The normal probability density function
(Section 2.3), i.e.

[6.14]

usually provides an adequate description of the amplitude distribution of random 
noise signals.
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6.2.4 Power spectral density φ(ωω)

If we record a random signal for several observation periods, each of length TO

(Figure 6.4), the waveform will be different for each period. However, the average
signal power will be approximately the same for each observation period. This
means that signal power is a stationary quantity which can be used to quantify ran-
dom signals. In Section 4.3 we saw that a periodic signal can be expressed as a Fourier
series, i.e. a sum of sine and cosine waves with frequencies which are harmonics of
the fundamental frequency. The power in a periodic signal is therefore distributed
amongst these harmonic frequencies. A random signal is not periodic and cannot be
represented by Fourier series but does contain a large number of closely spaced fre-
quencies. Power spectral density is a stationary quantity which is a measure of how
the power in a random signal is distributed amongst these different frequencies.

In order to explain the meaning of φ(ω) we approximate the random signal by a
periodic signal (Figure 6.4) in which the waveform recorded during the first observa-
tion period TO is exactly repeated during each subsequent observation period. This
periodic approximation is valid:

(a) in the limit that the observation period, i.e. the signal period TO, becomes 
large,

(b) provided we use it to calculate the power distribution in the signal.

Figure 6.4 Power
spectrum and power
spectral density.
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The Fourier series for a voltage signal with period TO is

y(t) = a0 + an cos nω1t + bn sin nω1t [4.51a]

where the fundamental frequency ω1 = 2π/TO, a0 = mean R, and

Fourier series 
coefficients for 
sampled signal

[6.15]

Equations [6.15] use the set of sample values y1 and are equivalent to eqns [4.52] 
for the Fourier coefficients of a continuous signal. If the nth harmonic an cos nω1t 
is applied across a 1 Ω resistor, the instantaneous power in the resistor at time t is 
a2

n cos2nω1t watts, and the average power over period TO is:

a2
n �

0

TO

cos2nω1t dt = [6.16]

Similarly the average power in a 1 Ω resistor due to bn sin nω1t is b2
n /2, so that the

power due to the nth harmonic at frequency nω1 is:

Power due to  
nth harmonic

Figure 6.4 shows that the relationship between wn and ω is a series of lines at the 
harmonic frequencies nω1. This is referred to as the power spectrum of the signal and
is terminated at ω MAX, the harmonic frequency beyond which wn becomes negligible.
The cumulative power Wn is the total power in a 1 Ω resistor due to the first n har-
monics and the d.c. component a0, i.e.

Cumulative power

The diagram shows the relation between Wn and ω; it is in the form of a staircase,
each step having width ω1. At ω = ω MAX, Wn = WTOT, the total power in the signal.
However, in the limit that signal period TO → ∞, ω1 → 0 and Wn becomes a con-
tinuous function of ω. This is the cumulative power function (c.p.f.) W(ω), which
is defined by:

Cumulative power 
function

[6.19]

The power spectral density (PSD) φ(ω) is more commonly used and is the derivative
of W(ω) (Figure 6.4), i.e.
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Power spectral density
[6.20]

The PSD φ has units watt s rad−1 or W/Hz. Thus the power produced in a 1 Ω
resistor due to frequencies between ω and ω + ∆ω is:

Wω,ω +∆ω = ∆W = φ(ω)∆ω watts [6.21]

i.e. the area of a strip of height φ(ω) and width ∆ω. Similarly the power due to fre-
quencies between ω1 and ω2 is:

Wω1,ω2
= �

ω1

ω 2

φ(ω) dω watts [6.22]

i.e. the area under the power spectral density curve between ω1 and ω 2. The total area
under the PSD curve is the total power in the signal, i.e.

WTOT = �
0

ω MAX

φ(ω) dω watts [6.23]

Internal noise sources in electrical circuits can often be regarded as white noise, which
has a uniform PSD over an infinite range of frequencies, i.e.

φ(ω) = A, 0 ≤ ω ≤ ∞ [6.24]

Another useful representation for both noise and measurement signals is a power 
spectral density which is constant up to a cut-off frequency ωC and zero for higher
frequencies (band limited white noise):

φ(ω) = [6.25]

i.e. WTOT = AωC.
The maximum frequency ωMAX for a measurement signal depends on the nature

of the measured variable. Thus the vibration displacement of part of a machine 
may contain frequencies up to many kHz, whereas the temperature variations in a
chemical reactor may only contain frequencies up to 0.01 Hz. In order to accurately
measure random fluctuations in a measured variable, the transfer function G(s) for
the measurement system must satisfy the conditions of Section 4.4, i.e. |G( jω) | = 1
and arg G( jω) = 0 for all ω up to ωMAX.

6.2.5 Autocorrelation function

Figure 6.5 shows a block diagram of a simple correlator. The input signal y(t) is passed
through a variable time delay unit to give a delayed signal y(t − β). The signals 
y(t) and y(t − β) are multiplied together to give the product waveform y(t)y(t − β).
This product waveform is passed through an averager and the average value 

is displayed on a meter: this is the autocorrelation coefficient Ryy. If the
time delay β is altered, the shape of the product waveform changes, causing the meter
reading Ryy to change. The relationship between Ryy and time delay β is the auto-
correlation function Ryy(β) of the signal. We note that Ryy(β) has a maximum value

y(t)y(t − β)

!A, 0 ≤ ω ≤ ωC

@0, ω > ωC

  
φ ω

ω
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Ryy(0) when β = 0; this is because the corresponding product waveform is y2(t), which
is always positive and has a maximum average value.

If the signal is defined by a continuous function y(t) in the interval 0 to TO, then
Ryy(β) can be evaluated using:

Autocorrelation 
function of a 
continuous signal 

[6.26]

Thus, if y(t) = b sin(ω1t + φ),

Ryy(β) = b2 �
0

TO

sin(ω1t + φ)sin[ω1(t − β) + φ] dt

= b2 �
0

TO

1–2 {cos ω1β − cos[ω1(2t − β) + 2φ]} dt

= cos ω1 β �
0

TO

dt − �
0

TO

cos[ω1(2t − β) + 2φ] dt

= cos ω1 β [6.27] 

since the average value of cos[ω1(2t − β) + 2φ] is zero. Thus the autocorrelation func-
tion of a sinusoidal signal is a cosine function of the same frequency, but the phase
information φ in the sine wave is lost. The autocorrelation function of any periodic
signal has the same period as the signal itself (see Problem 6.2).
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Figure 6.5
Autocorrelation 
and evaluation of
autocorrelation coefficient
Ryy(3∆T).
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A random signal is usually characterised by a set of N sample values yi. Since 
information is only available at discrete time intervals, the time delay β is normally
an integer multiple of the sampling interval ∆T, i.e.

β = m∆T, m = 0, 1, 2 . . . [6.28]

In this case the autocorrelation function of the signal is found by evaluating the set
of autocorrelation coefficients Ryy(m∆T ), which are given by:

Autocorrelation 
coefficient for 
sampled signal

[6.29]

where yi is the sample value at time i∆T and yi−m the value at time (i − m)∆T (m sampling
intervals earlier). Figure 6.5 shows the evaluation of Ryy(3∆T ) for a sampled wave-
form; this involves calculating the products y1 y−2, y2 y−1, y3 y0, . . . yN yN−3, summing,
and dividing by N.

The autocorrelation function of a random signal can also be found from the power
spectral density φ(ω). To illustrate this we first consider a periodic signal which is
the sum of three harmonics:

y(t) = b1 sin ω1t + b2 sin 2ω1t + b3 sin 3ω1t

Using eqn [6.27] the autocorrelation function is:

Ryy(β) = cos ω1β + cos 2ω1β + cos 3ω1β

which has period 2π /ω1 (Figure 6.6). Using eqn [6.17], the power spectrum of the
signal consists of three lines at frequencies ω1, 2ω1 and 3ω1 with heights b2

1 /2, b2
2 /2

and b2
3 /2 respectively. Thus the power spectrum can be obtained from the auto-

correlation function by Fourier analysis. Similarly the autocorrelation function can
be obtained from the power spectrum by adding the harmonics together as in Fourier
synthesis. For random signals, Ryy(β) and φ(ω) are related by the Fourier transform
or Wiener–Khinchin relations:
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Figure 6.6 Relationships
between power spectrum
and autocorrelation
function for periodic 
and random signals.

        



6.3  EFFECTS OF NOISE AND INTERFERENCE ON MEASUREMENT CIRCUITS 107

Ryy(β) = �
0

∞

φ(ω) cos ωβ dω

φ(ω) = �
0

∞

Ryy(β) cos ωβ dβ
[6.30]

Thus for a signal with φ(ω) constant up to ωC and zero for higher frequencies we
have:

Ryy(β) = �
0

ωC

A cos ωβ dω = A
0

ωC

= A [6.31]

The form of both functions is shown in Figure 6.6; we see that Ryy(β) has its first
zero crossings at β = ±π /ωC, i.e. the width of the central ‘spike’ is 2π /ωC. Thus a
rapidly varying random signal has a high value of ωC, i.e. a broad power spectrum
but a narrow autocorrelation function, that falls off sharply as β is increased. A
slowly varying random signal, however, has a low value of ωC, i.e. a narrow power
spectrum but a broad autocorrelation function that falls slowly as β is increased.

6.2.6 Summary

In order to specify a random signal we need to know:

and

Important relations between these different quantities can be derived by consider-
ing Ryy(0), the autocorrelation coefficient at zero time delay. From eqns [6.26] and
[6.30] we have

Ryy(0) = �
0

TO

y 2 dt = �
0

∞

φ(ω) dω [6.32]

From eqn [6.5], the first expression is equal to y 2
RMS in the limit of infinitely long obser-

vation time TO. From equation [6.23] the second expression is equal to WTOT, the total
power produced by the signal in a 1 Ω resistor. Thus:

6.3 Effects of noise and interference on
measurement circuits
In Section 5.1 we saw that the interconnection of two measurement system elements,
e.g. a thermocouple and an amplifier, or a differential pressure transmitter and a recorder,
could be represented by an equivalent circuit in which either a Thévenin voltage 

Ryy(0) = y 2
RMS = WTOT [6.33]

1

TO

lim
TO→∞

!either power spectral density # to specify frequency/time
@or autocorrelation function $ behaviour

!either probability density function # to specify amplitude
@or mean and standard deviation $ behaviour

sin ωCβ
β

J
L

sin ωβ
β

G
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108 SIGNALS AND NOISE IN MEASUREMENT SYSTEMS

source or a Norton current source is connected to a load. In industrial installations,
source and load may be typically 100 metres apart and noise and/or interference 
voltages may also be present.

Figure 6.7(a) shows a voltage transmission system subject to series mode inter-
ference; here a noise or interference voltage VSM is in series with the measurement
signal voltage ETh. The current i through the load is:

i =

and the corresponding voltage across the load is:

VL = (ETh + VSM) [6.34]

Normally we make ZL � RC + ZTh to obtain maximum voltage transfer to the load 
(Section 5.1.1); under these conditions eqn [6.34] becomes:

VL ≈ ETh + VSM [6.35]

This means that with a voltage transmission system all of VSM is across the load; this
affects the next element in the system and possibly results in a system measurement
error. We define signal-to-noise or signal to interference ratio S/N in decibels by:

ZL

ZTh + RC + ZL

ETh + VSM

ZTh + RC + ZL

Figure 6.7 Effects 
of interference on
measurement circuit:
(a) Voltage transmission
– series mode interference
(b) Current transmission
– series mode interference
(c) Voltage transmission
– common mode
interference.
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Signal-to-noise ratio

[6.36]

where ETh and VSM are the r.m.s. values of the voltages, and WS and WN are the 
corresponding total signal and noise powers. Thus if ETh = 1 V and VSM = 0.1 V, 
S/N = +20 dB.

Figure 6.7(b) shows a current transmission system subject to the same series mode
interference voltage VSM. The Norton source current iN divides into two parts, one part
through the source impedance ZN, the other part through ZL. Using the current divider
rule, the current through the load due to the source is:

i = iN

In addition there is an interference current

iSM =

through the load due to the interference voltage. The total voltage across the load is
therefore:

VL = iZL + iSM ZL

= iN ZL ⋅ + VSM ⋅ [6.37]

Normally we make RC + ZL � ZN to obtain maximum current transfer to the load 
(Section 5.1.3); under these conditions eqn [6.37] becomes:

VL ≈ iN ZL + VSM [6.38]

Since ZL/ZN � 1, this means that with a current transmission system only a small 
fraction of VSM is across the load. Thus a current transmission system has far greater
inherent immunity to series mode interference than a voltage transmission system.
In a thermocouple temperature measurement system, therefore, it may be better to
convert the thermocouple millivolt e.m.f. into a current signal (Section 9.4.1) prior
to transmission, rather than transmit the e.m.f. directly.

Figure 6.7(c) shows a voltage transmission system subject to common mode
interference in which the potentials of both sides of the signal circuit are raised by
VCM relative to a common earth plane. If, as above, ZL � RC + ZTh, then current i → 0
so that the potential drops iRC/2, etc., can be neglected. Under these conditions:

Potential at B = VCM

Potential at A = VCM + ETh

and

VL = VB − VA = ETh

This means that the voltage across the load is unaffected by VCM; there is, however,
the possibility of conversion of a common mode voltage to series mode.
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ZN

ZL

ZN + RC + ZL
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6.4 Noise sources and coupling mechanisms

6.4.1 Internal noise sources

The random, temperature-induced motion of electrons and other charge carriers in
resistors and semiconductors gives rise to a corresponding random voltage which is
called thermal or Johnson noise. This has a power spectral density which is uniform
over an infinite range of frequencies (white noise) but proportional to the absolute
temperature θ K of the conductor, i.e.

φ = 4Rkθ W/Hz [6.39]

where RΩ is the resistance of the conductor and k is the Boltzmann constant =
1.4 × 10−23 J K−1. From eqn [6.22] the total thermal noise power between frequen-
cies f1 and f 2 is:

W = �
f1

f2

4Rkθ d f = 4Rkθ( f 2 − f 1) W [6.40]

and from [6.33] the corresponding r.m.s. voltage is:

[6.41]

Thus if R = 106 Ω, f 2 − f 1 = 106 Hz and θ = 300 K, VRMS = 130 µV and is therefore
comparable with low-level measurement signals such as the output from a strain gauge
bridge.

A similar type of noise is called shot noise; this occurs in transistors and is due to
random fluctuations in the rate at which carriers diffuse across a junction. This is again
characterised by a uniform power spectral density over a wide range of frequencies.

6.4.2 External noise and interference sources[1]

The most common sources of external interference are nearby a.c. power circuits
which usually operate at 240 V, 50 Hz. These can produce corresponding sinusoidal
interference signals in the measurement circuit, referred to as mains pick-up or
hum. Power distribution lines and heavy rotating machines such as turbines and 
generators can cause serious interference.

D.C. power circuits are less likely to cause interference because d.c. voltages are
not coupled capacitively and inductively to the measurement circuit.

However, switching often occurs in both a.c. and d.c. power circuits when equip-
ment such as motors and turbines is being taken off line or brought back on line. 
This causes sudden large changes in power, i.e. steps and pulses, which can produce
corresponding transients in the measurement circuit.

The air in the vicinity of high voltage power circuits can become ionised and a
corona discharge results. Corona discharge from d.c. circuits can result in random
noise in the measurement circuit and that from a.c. circuits results in sinusoidal 
interference at the power frequency or its second harmonic.

Fluorescent lighting is another common interference source; arcing occurs twice
per cycle so that most of the interference is at twice the power frequency.

V W Rk f fRMS V    (   )  = = −4 2 1θ

        



6.4  NOISE SOURCES AND COUPLING MECHANISMS 111

Radio-frequency transmitters, welding equipment and electric arc furnaces can 
produce r.f. interference at frequencies of several MHz.

6.4.3 Coupling mechanisms to external sources

Inductive coupling[2]

Figure 6.8(a) shows inductive or electromagnetic coupling between the measure-
ment circuit and a nearby power circuit. If the circuits are sufficiently close together,
then there may be a significant mutual inductance M between them. This means that
an alternating current i in the power circuit induces a series mode interference volt-
age in the measurement circuit of magnitude

VSM = M [6.42]

Thus if M ≈ 1 µH and di/dt ≈ 103 A s−1 (possible in a 1 horsepower motor) then VSM

≈ 1 mV, which can be comparable with the measurement signal. The mutual induc-
tance M depends on the geometry of the two circuits, namely on the overlapping length
and separation, but is distributed over the entire length of the circuits rather than the
‘lumped’ equivalent value shown in Figure 6.8. Inductive coupling will occur even
if the measurement circuit is completely isolated from earth.

di

dt

Figure 6.8 Coupling
mechanisms to 
external sources:
(a) Electromagnetic
coupling
(b) Electrostatic coupling
(c) Multiple earths.
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Capacitive coupling[1,2]

Another important coupling mechanism is capacitive or electrostatic coupling,
which is illustrated in Figure 6.8(b). The diagram shows the measurement circuit close
to an a.c. power cable which is at a potential of 240 V (r.m.s.) relative to the earth
plane. The power cable, earth plane and signal leads are all conductors, so that there
may be some capacitance between the power cable and the signal leads and between
the signal leads and the earth plane. These capacitances will be distributed over the
entire length of the measurement circuit, but are represented by ‘lumped’ equivalents.
C1 and C2 are the capacitances between the power cable and signal leads, and C1E

and C2E the capacitances between the signal lead and the earth plane; all four 
capacitances will be proportional to the length of the measurement circuit, which 
could be tens of metres in an industrial installation. Ignoring the measurement 
signal voltage ETh for the moment, the potentials at B and E are determined by the
potential dividers ABC and DEF:

[6.43]

Thus we have a common mode interference voltage VCM = VE and a series mode 
interference voltage:

[6.44]

Thus series mode interference is zero only if there is perfect balance between the 
coupling capacitances, i.e. C1 = C2 and C1E = C2E; in practice small imbalances are
present due to slightly different distances between each signal lead and the power
cable/earth plane.

Multiple earths[1]

The above explanation assumes an earth plane having a potential of 0 volts at every
point on its surface. Heavy electrical equipment can, however, cause currents to 
flow through the earth, causing different potentials at different points. If the measure-
ment circuit is completely isolated from the earth plane there is no problem. In prac-
tice, however, there may be a leakage path connecting the signal source to one earth 
point and another leakage path connecting the recorder or indicator to a different 
earth point, some distance away. If the two earth points are at different potentials,
then common and series mode interference voltages are produced in the measurement
circuit.

Figure 6.8(c) illustrates the general problem of multiple earths. The measurement
signal source ETh is connected via a resistive cable to a receiver represented by a 
resistive load RL. Provided RL � RC + RTh, the current flow in PQRS is negligible and
VL ≈ ETh, provided the circuit is completely isolated from earth. However, leakage
paths ZSE and ZRE exist between source/source earth and receiver/receiver earth. If 
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VE is the difference in potential between source earth and receiver earth, then a cur-
rent iE flows in the circuit UPST, given by:

iE = [6.45]

Thus

Potential at P = VE − iE(ZE + ZSE)
Potential at Q, R = VE − iE(ZE + ZSE) + ETh

Potential at S = iEZRE

Thus there is a common mode interference voltage:

VCM = VS = VE [6.46]

To find the series mode interference voltage we need to calculate the voltage across
RL:

VL = VR − VS = VE − iE(ZE + ZSE + ZRE) + ETh = ETh + iERC/2

i.e. there is a series mode interference voltage:

VSM = VE [6.47]

Ideally we require both ZSE and ZRE to be as large as possible in order to minimise iE

and VSM; this, however, is not always possible in an industrial application. A com-
mon example is a thermocouple installation where in order to achieve as good a speed
of response as possible the tip of the thermocouple touches the thermowell or sheath
(Section 14.2). The thermowell is itself bolted to a metal vessel or pipe which is 
in turn connected to one point in the earth plane. Thus ZSE will be very small, say 
ZSE = 10 Ω (resistive), so that the receiver must be isolated from earth to minimise
VSM. Taking ZE = 1 Ω, RC/2 = 10 Ω, VE = 1 V and ZRE = 106 Ω, we have:

VSM = 1 × V ≈ 10 µV

The worst case is when the receiver is also directly connected to earth, i.e. ZRE ≈ 0,
giving VSM = 0.48 V. Thus if the measurement circuit must be connected to earth, the
connection must be made at one point only.

6.5 Methods of reducing effects of noise and interference

6.5.1 Physical separation

Since mutual inductances and coupling capacitances between measurement and
power circuits are inversely proportional to the distance between them, this distance
should be as large as possible.

10

1 + 10 + 10 + 106

RC /2

ZE + ZSE + (RC /2) + ZRE

ZRE

ZE + ZSE + (RC /2) + ZRE

VE

ZE + ZSE + (RC /2) + ZRE
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6.5.2 Electromagnetic shielding

The simplest way of reducing the effects of inductive coupling to an external inter-
ference source is shown in Figure 6.9. The two conductors A and B of the measure-
ment circuit are twisted into loops of approximately equal area. This arrangement is
commonly known as twisted pairs and is explained in ref. [2]. The magnitude of the
interference voltage induced in a given loop is proportional to the area of the loop
and the rate of change of the external magnetic field. The sign of the induced 
voltage depends on the orientation of conductors A and B. Thus if a voltage VXY

is induced in the j th loop between points X and Y, then an opposing voltage VYZ is
induced in the ( j + 1)th loop between Y and Z. In the ideal case of both loops having
the same area and experiencing the same magnetic fields, |VXY | = |VYZ |, i.e. there is a
zero resultant induced voltage between X and Z. This process is repeated for the whole
length of the twisted pair, giving a reduced overall interference voltage.

6.5.3 Electrostatic screening and shielding

The best method of avoiding the problem of capacitive coupling to a power circuit
(Section 6.4.3) is to enclose the entire measurement circuit in an earthed metal
screen or shield. Figure 6.10(a) shows the ideal arrangement; the screen is connected
directly to earth at a single point, at either the source or the receiver. There is no direct
connection between the screen and the measurement circuit, only high impedance leak-
age paths via the small (screen/measurement circuit) capacitances CSM. The screen
provides a low impedance path to earth for the interfering currents i; the currents through
CSM and CE are small, thus reducing series and common mode interference.

The above ideal of the measurement circuit completely insulated from the screen
and the screen earthed at one point only may be difficult to achieve in practice for
the following reasons:

(a) The signal source may be directly connected to a local earth point via the
structure on which it is mounted; an example is the thermocouple installation
mentioned in Section 6.4.3.

(b) The receiver may be directly connected to a local earth; an example is in a 
computer-based system where the receiver must be directly connected to the
computer earth.

(c) There may be indirect connections via leakage impedances.

Figure 6.10(b) illustrates the general problem. The measurement circuit PQRS is con-
nected to the screen (impedance ZS) via source/screen impedance ZSS and receiver/
screen impedance ZRS. The screen is connected to earth point U at the source end 
via ZSU and to earth point T at the receiver end via ZST. The measurement circuit 
can be affected by interference voltages from both VE (potential difference between
U and T ) and nearby power circuits.

Figure 6.9 Reduction of
electromagnetic coupling
by twisted pairs.
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Analysis of circuits UXYT and XPSY using Kirchhoff’s laws gives:

UXYT VE = i1ZE + i1ZSU + (i1 − i2)ZS + i1ZST [6.48]

XPSY 0 = −(i1 − i2)ZS + i2ZSS + i2RC/2 + i2ZRS [6.49]

Solution of these equations gives:

i1 = [6.50]

i2 = [6.51]

The series mode interference voltage in the measurement circuit PQRS is the 
voltage drop across PS, i.e.

ZSVE

(ZE + ZSU + ZS + ZST)(ZS + ZSS + RC /2 + ZRS) − ZS
2

(ZS + ZSS + RC/2 + ZRS)VE

(ZE + ZSU + ZS + ZST)(ZS + ZSS + RC /2 + ZRS) − ZS
2

Figure 6.10 Reduction 
of electrostatic coupling
using screening:
(a) Ideal arrangement
(b) Practical equivalent
circuit.
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VSM = i2RC/2 = [6.52]

The common mode interference voltage is the voltage drop across ST, i.e.

VCM = VST = VSY + VYT = i2ZRS + i1ZST [6.53]

=

To minimise VSM and VCM, we want the product term:

(ZE + ZSU + ZS + ZST)(ZS + ZSS + RC/2 + ZRS)

to be large. Since in practice the earth impedance ZE, screen impedance ZS and cable
resistance RC/2 are all small, the above condition reduces to:

(ZSU + ZST) (ZSS + ZRS) to be large [6.54]

However, we cannot have both ZSU and ZST large; either ZST or ZSU must be small, other-
wise the screen will not be earthed and there is therefore no low impedance path to
earth for the capacitively coupled interference currents. Condition (6.54) therefore
reduces to the two conditions:

ZSU(ZSS + ZRS) = HIGH; ZST = LOW
OR [6.55]

ZST(ZSS + ZRS) = HIGH; ZSU = LOW

which are satisfied if:

ZSU = HIGH AND (ZSS OR ZRS OR both = HIGH), ZST = LOW 
OR [6.56]

ZST = HIGH AND (ZSS OR ZRS OR both = HIGH), ZSU = LOW

As mentioned above, in many practical situations it may be impossible to have the
measurement circuit completely isolated from the screen, i.e. both ZSS and ZRS high.
In this situation, possible confusion is avoided if ZSU and ZSS are both high, or ZST

and ZRS are both high.
In this situation the conditions become:

ZSU = HIGH AND ZSS = HIGH, ZRS = LOW AND ZST = LOW
(Isolated source)

OR [6.57]
ZST = HIGH AND ZRS = HIGH, ZSS = LOW AND ZSU = LOW

(Isolated receiver)

6.5.4 Use of differential amplifiers

Common mode interference voltages can be successfully rejected by the use of a dif-
ferential amplifier (Figure 6.11 and Section 9.2). An ideal differential amplifier has
an output:

VOUT = (V2 − V1) = − ETh [6.58]
RF

R1

RF

R1

[ZRSZS + ZST (ZS + ZSS + RC/2 + ZRS)]VE

(ZE + ZSU + ZS + ZST)(ZS + ZSS + RC /2 + ZRS) − ZS
2

ZS (RC/2)VE

(ZE + ZSU + ZS + ZST)(ZS + ZSS + RC /2 + ZRS) − ZS
2
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i.e. only the sensor voltage ETh is amplified. The output of a practical amplifier
(Section 9.2.2) contains a contribution proportional to VCM; from eqn [9.39] we have:

[6.59]

The common mode rejection ratio (CMRR) of the amplifier is the ratio of differen-
tial voltage gain to common mode voltage gain and should be as large as possible to
minimise this effect. Thus if we have ETh = 1 mV, R1 = 1 kΩ, RF = 1 MΩ, VCM = 1 V
and CMRR = 105 (100 dB) then:

VOUT ≈ −1.0 + 0.01 V

i.e. the resultant series mode interference is only 1%.

6.5.5 Filtering

A filter is an element which transmits a certain range (or ranges) of frequencies and
rejects all other frequencies. An analogue filter is an electrical network, consisting
usually of resistors, capacitors and operational amplifiers, which conditions con-
tinuous signals. A digital filter is usually a digital computer programmed to process
sampled values of a signal (Chapter 10). Provided that the power spectrum of the 
measurement signal occupies a different frequency range from that of the noise or
interference signal, then filtering improves the signal-to-noise ratio.

Figures 6.12(a)–(d) show the use of low pass, high pass, band pass and band
stop filters in rejecting noise. In all cases the filter transmits the measurement signal
but rejects the noise signal, which occupies a different frequency range. The diagrams
show the amplitude ratio |G( jω) | for each filter and the power spectral densities φ(ω)
for signal and noise. In order to transmit the measurement signal without distortion
the transfer function G(s) of the filter must, ideally, satisfy the conditions of Sec-
tion 4.4, i.e. that |G( jω) | = 1 and argG( jω) = 0 for all the frequencies present in the 
measurement signal spectrum. Analogue filtering can be implemented at the signal
conditioning stage; the a.c. amplifier of Figure 9.12 is an example of a band pass filter.
Digital filtering can be implemented at the signal processing stage (Chapter 10).

If, however, measurement signal and noise spectra overlap, filtering has limited
value. Figure 6.13(a) shows a measurement signal affected by wide band noise; a 
low-pass filter with bandwidth matched to the signal spectrum removes as much of the
noise as possible, but the noise inside the filter bandwidth still remains. Figure 6.13(b)

V
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R
E

R

R

VF
Th
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OUT

CMRR
      = − + +


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

1 1
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Figure 6.11 Use of
differential amplifier.
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shows the measurement signal affected by 50 Hz interference; a narrow band-stop
filter centred on 50 Hz rejects the interference but also rejects measurement signal
frequencies around 50 Hz and causes amplitude and phase distortion over a wider
range of frequencies.

6.5.6 Modulation

The problem of Figure 6.13(b) can be solved by modulating the measurement signal
onto a higher frequency carrier signal, e.g. a 5 kHz sine wave as shown in Figure 6.13(c).
The simplest form of modulation is amplitude modulation; this involves the 
multiplication of measurement and carrier signals and is discussed in detail in
Section 9.3.

Modulation causes the spectrum of the measurement signal to be shifted to
around 5 kHz (Figure 6.13(d)). If the 50 Hz interference is added after modulation,
i.e. during transmission from sensor/modulator to a remote amplifier/demodulator,
the interference spectrum is not shifted. The interference can then be easily rejected
by an a.c. amplifier, i.e. a band pass filter with bandwidth matched to the spectrum
of the amplitude modulated signal. Modulation, however, does not help the problem

Figure 6.12 Use of
filtering to reject noise.
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of Figure 6.13(a); the noise has a uniform power spectral density over a wide band of
frequencies, so that moving the measurement signal to a different frequency range
does not improve the signal-to-noise ratio.

6.5.7 Averaging

Signal averaging can be used to recover a repetitive measurement signal affected 
by random noise, even if the signal r.m.s. value is much less than that of the noise.[3]

The process is shown in Figure 6.14.
Suppose that T is the time for each complete cycle of the repetitive signal; p

sections of the noise-affected signal, each of duration T, are fed into the averager. N
samples from each section are taken and stored, giving pN samples in total; typically

Figure 6.13 Limitations
of filtering and use of
modulation.
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we may have p = 50, N = 100. The sampling is exactly synchronised: i.e. if the ith
sample of the 1st section is taken at time t0, the ith sample of the 2nd section is taken
at t0 + T, the ith sample of the 3rd at t0 + 2T, and so on. Corresponding samples from
each section are then averaged: e.g. the first sampled values from each of the p sections
are added together and divided by p. Thus the average value of the ith sample is:

y i
AV = (yi1 + yi2 + . . . + yip), i = 1, . . . , N [6.60]

Each of these N average sample values are then displayed at the appropriate time to
give the averaged signal. Corresponding sample values A, B, C, . . . of the signal com-
ponent are approximately equal, so that the average value Z has a similar magnitude.
Corresponding sample values A′, B′, C ′, . . . of the noise component are very differ-
ent, some positive and some negative, so that the average value Z′ is reduced in 
magnitude. Averaging therefore maintains the r.m.s. value of the measurement signal
while reducing the r.m.s. value of the random noise.

This improvement in signal-to-noise ratio can be readily calculated for random
noise with a normal probability density function. Suppose we have p normal signals
y1(t) to yp(t), with standard deviations σ1 to σp respectively; then from Section 2.3 the
average signal

yAV(t) = [y1(t) + y2(t) + . . . + yp(t)] [6.61]

is also normal with standard deviation

[6.62]

If σ1 = σ2 = σp = σ, then

σ σ σ σ
AV      . . .  = + + +1

2

2

2
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Figure 6.14 Signal
averaging.
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Reduction in noise 
standard deviation 

[6.63]
due to averaging 

Thus if we average 50 sections σAV = σ/ê50ú ≈ σ/7, i.e. the noise r.m.s. value is reduced
by a factor of 7, giving an increase in signal-to-noise ratio of 17dB.

6.5.8 Autocorrelation

Autocorrelation can be used to detect the presence of a sinusoidal or any periodic
signal buried in random noise. The actual waveform of the measurement signal 
cannot be recovered because phase information is lost in correlation, but we can 
measure the amplitude and period of the signal from the autocorrelation function 
(ACF) of the noise-affected signal. The ACF for the (signal + noise) is the sum of
the signal ACF and noise ACF, i.e.

Ryy
S+N(β) = RS

yy(β) + RN
yy(β) [6.64]

Thus using eqns [6.27] and [6.31] the ACF for a sinusoidal signal affected by band-
limited white noise is:

Ryy
S+N(β) = cos ω1β + A [6.65]

The form of Ryy
S+N(β) is shown in Figure 6.15; at large values of β the A(sin ωcβ)/β

term due to the noise decays to zero, leaving the (b2/2) cos ω1β term due to the signal.
Thus the amplitude b and period 2π/ω1 of the original signal can be found from the
amplitude and period of the autocorrelation function at large values of time delay.
This method can be used in the vortex flowmeter (Chapter 12) to measure the vortex
frequency in the presence of random flow turbulence.

sin ωCβ
β

b2

2

σ σ σ
AV     = =

p

p p

2

2

Figure 6.15
Autocorrelation detection
of periodic signal buried
in noise.
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Conclusion
The chapter began by defining random signals and deterministic signals and explained
that in many practical situations the wanted signal may be random. Unwanted sig-
nals may also be present in the measurement circuit; these can be classified as either
interference (deterministic) or noise (random).

The chapter then explained how random signals can be quantified using the fol-
lowing statistical functions: mean, standard deviation, probability density func-
tion, power spectral density and autocorrelation function.

The effects of noise and interference voltage on measurement circuits using 
both voltage and current transmission were then discussed. In the following section 
internal noise and external interference sources were discussed and the mechanisms
whereby external sources are coupled to the measurement circuit were explained. 
The chapter concluded by explaining methods of reducing the effects of noise and
interference, including electromagnetic shielding, electrostatic screening, filtering,
modulation, averaging and autocorrelation.
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Problems

Table Prob. 1 gives 50 sample values of a random signal.

(a) Estimate the mean and standard deviation of the signal.
(b) Using an interval ∆y = 0.5 V, draw the Pj and Cj discrete probability distributions for

the signal.

Table Prob. 1.
−0.59 1.02 −0.25 −0.34 0.95 1.24 −0.30 0.21 −0.89
−1.00 1.36 0.03 0.04 −0.13 −0.71 −1.23 0.03 −1.00

0.65 0.11 0.99 0.17 0.39 2.61 −0.08 −0.33 0.99
2.15 0.91 0.89 1.43 −1.69 −0.25 2.47 −1.97 −2.26
0.42 0.05 0.26 0.33 −0.42 0.79 −0.07 −0.32 −0.66

−0.63 −0.06 −0.61 0.77 1.90

Two complete periods of a square wave can be represented by the following 20 sample values:

+1+1+1+1+1 −1−1−1−1−1 +1+1+1+1+1 −1−1−1−1−1

Find the autocorrelation function of the signal over one complete period by evaluating the
coefficients Ryy(m∆T ) for m = 0, 1, 2, . . . ,10.

6.2

6.1
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A sinusoidal signal of amplitude 1.4 mV and frequency 5 kHz is ‘buried’ in Gaussian noise
with zero mean value. The noise has a uniform power spectral density of 100 pW Hz−1 up to
a cut-off frequency of 1 MHz.

(a) Find the total power, r.m.s. value and standard deviation for the noise signal.
(b) What is the signal-to-noise ratio in dB?
(c) Sketch the autocorrelation function for the combined signal and noise.
(d) The combined signal is passed through a band-pass filter with centre frequency 5 kHz

and bandwidth 1 kHz. What improvement in signal-to-noise ratio is obtained?
(e) The filtered signal is then passed through a signal averager which averages corres-

ponding samples of 100 sections of signal. What further improvement in signal-to-noise
ratio is obtained?

A thermocouple giving a 10 mV d.c. output voltage is connected to a high impedance digital
voltmeter some distance away. A difference in potential exists between earth at the thermo-
couple and earth at the voltmeter. Using the equivalent circuit given in Figure Prob. 4.

(a) Calculate the r.m.s. values of the series mode and common mode interference voltages
at the voltmeter input.

(b) If the digital voltmeter has a common mode rejection ratio of 100 dB, find the 
minimum and maximum possible measured voltages.

6.4

6.3

A sinusoidal signal is transmitted over a noisy transmission link to a remote correlator acting
as a receiver. Figure Prob. 5 shows a typical autocorrelation function. Use the figure to 
estimate the following quantities:

(a) Signal power
(b) Noise power
(c) Signal-to-noise ratio in decibels
(d) Signal amplitude
(e) Signal frequency
(f) Noise standard deviation (assume zero mean).

Hint: use eqns [6.27] and [6.33].

6.5

Figure Prob. 4.
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Figure Prob. 5.

        



7 Reliability, Choice
and Economics of
Measurement
Systems

In Chapters 3 and 4 we defined the accuracy of a measurement system and explained
how measurement error can be calculated, under both steady-state and dynamic con-
ditions. Reliability is another important characteristic of a measurement system; it
is no good having an accurate measurement system which is constantly failing and
requiring repair. The first section of this chapter deals with the reliability of measurement
systems, first explaining the fundamental principles of reliability and the reliability
of practical systems, then failure rate data, and finally examining ways of improving
reliability. The following section examines the problems of how to choose the most
appropriate measurement system, for a given application, from several competing 
possibilities. Initially a specification for the required application can be drawn up:
this will be a list of important parameters such as accuracy, reliability, etc., each with
a desired value. This can then be compared with the manufacturer’s specification 
for each of the competing measurement systems and the system with the closest
specification is chosen. Even if all the required information is available this pro-
cedure is far from satisfactory because it takes no account of the relative importance
of each parameter. A better method, explained in the final section, is to choose the
system with minimum total lifetime operating cost.

7.1 Reliability of measurement systems

7.1.1 Fundamental principles of reliability

Probability P

If a large number of random, independent trials are made, then the probability of a
particular event occurring is given by the ratio:

P = [7.1]
number of occurrences of the event

total number of trials
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in the limit that the total number of trials tends to infinity. Thus the probability of a
tossed coin showing heads tends to the theoretical value of 1–2 over a large number of
trials.

Reliability R(t)

The reliability of a measurement element or system can be defined as: ‘the prob-
ability that the element or system will operate to an agreed level of performance, 
for a specified period, subject to specified environmental conditions’. In the case of
a measurement system ‘agreed level of performance’ could mean an accuracy of ±1.5%.
If the system is giving a measurement error outside these limits, then it is considered
to have failed, even though it is otherwise working normally. The importance of envir-
onmental conditions on the reliability of measurement systems will be discussed 
more fully later. Reliability decreases with time; a measurement system that has 
just been checked and calibrated should have a reliability of 1 when first placed 
in service. Six months later, the reliability may be only 0.5 as the probability of 
survival decreases.

Unreliability F(t)

This is ‘the probability that the element or system will fail to operate to an agreed
level of performance, for a specified period, subject to specified environmental con-
ditions’. Since the equipment has either failed or not failed the sum of reliability and
unreliability must be unity, i.e.

Unreliability also depends on time; a system that has just been checked and calibrated
should have an unreliability of zero when first placed in service, increasing to, say,
0.5 after six months.

7.1.2 Practical reliability definitions

Since R(t) and F(t) are dependent on time, it is useful to have measures of reliabil-
ity which are independent of time. We will consider two cases: in the first the items
are non-repairable and in the second the items are repairable.

Non-repairable items

Suppose that N individual items of a given non-repairable component are placed in
service and the times at which failures occur are recorded during a test interval T.
We further assume that all the N items fail during T and that the ith failure occurs at
time Ti, i.e. Ti is the survival time or up time for the ith failure. The total up time for
N failures is therefore Ti and the mean time to failure is given by

Mean time to fail =
total up time

number of failures

i=N∑ i=1

R(t) + F(t) = 1 [7.2]
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i.e.

[7.3]

The mean failure rate õ is correspondingly given by:

Mean failure rate =

i.e.

[7.4]

i.e. mean failure rate is the reciprocal of MTTF.
There are N survivors at time t = 0, N − i at time t = Ti, decreasing to zero 

at time t = T; Figure 7.1(a) shows how the probability of survival, i.e. reliability, 
Ri = (N − i) /N decreases from Ri = 1 at t = 0, to Ri = 0 at t = T. The ith rectangle has
height 1/N, length Ti and area Ti /N. Therefore from eqn [7.3] we have:

MTTF = total area under the graph

In the limit that N → ∞, the discrete reliability function Ri becomes the continuous
function R(t). The area under R(t) is ∫T

0 R(t) dt so that we have in general:

MTTF = �
0

∞

R(t) dt [7.5]

The upper limit of t = ∞ corresponds to N being infinite.

Repairable items

Figure 7.1(b) shows the failure pattern for N items of a repairable element observed
over a test interval T. The down time TDj associated with the jth failure is the 
total time that elapses between the occurrence of the failure and the repaired item
being put back into normal operation. The total down time for NF failures is there-
fore TDj and the mean down time is given by

Mean down time =

i.e.

[7.6]
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Figure 7.1
Failure patterns:
(a) Non-repairable items
(b) Repairable items.
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The total up time can be found by subtracting the total down time from NT, i.e.:

Total up time = NT − TDj

= NT − NF MDT

The mean up time or the mean time between failures (MTBF) is therefore given
by:

Mean time between failures =

i.e.

[7.7]

The mean failure rate õ is correspondingly given by:

Mean failure rate =

i.e.

[7.8]

Again mean failure rate is the reciprocal of MTBF.
Thus if 150 faults are recorded for 200 transducers over 1.5 years with a mean

down time of 0.002 years, then the observed MTBF is 1.998 years and the mean 
failure rate is 0.5005 yr−1.

The availability A of the element is the fraction of the total test interval over which
it is performing within specification, i.e. up; thus we have:

Availability =

=

=

i.e.

[7.9]

Using the above data of MTBF = 1.998 years and MDT = 0.002 years gives A = 0.999.

  
A  
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+
MTBF

MTBF MDT

NF × MTBF

NF × MTBF + NF × MDT
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total up time + total down time

total up time

test interval
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−
N

NT N
F

F MDT
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Unavailability U is similarly defined as the fraction of the total test interval over
which it is not performing to specification, i.e. failed or down; thus we have:

Unavailability =

giving:

U = [7.10]

It follows from eqns [7.9] and [7.10] that:

7.1.3 Instantaneous failure rate and its relation to reliability

We assume to begin with that n items of an element survive up to time t = ξ and that
∆n items fail during the small time interval ∆ξ between ξ and ξ + ∆ξ. The probability
of failure during interval ∆ξ (given survival to time ξ) is therefore equal to ∆n/n.
Assuming no repair during ∆ξ the corresponding instantaneous failure rate or
hazard rate at time ξ is, from eqn [7.8], given by:

[7.12]

The unconditional probability ∆F that an item fails during the interval ∆ξ is:

∆F = probability that item survives up to time ξ

AND

probability that item fails between ξ and ξ + ∆ξ (given survival to ξ ).

The first probability is given by R(ξ ) and from eqn [7.12] the second probability is
λ(ξ )∆ξ. The combined probability ∆F is the product of these probabilities:

∆F = R(ξ )λ(ξ )∆ξ

i.e.

= R(ξ )λ(ξ )

Thus in the limit that ∆ξ → 0, we have:

= R(ξ )λ(ξ ) [7.13]

Also since F(ξ ) = 1 − R(ξ ), dF/dξ = −(dR/dξ ), giving:

− = R(ξ )λ(ξ )
dR

dξ

dF

dξ

∆F

∆ξ

  
λ ξ

ξ ξ
( )    = =

∆
∆ ∆
n

n

failure probability

A + U = 1 [7.11]

MDT

MTBF + MDT

total down time

test interval
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i.e.

�
R(0)

R(t)

= −�
t

0

λ(ξ ) dξ [7.14]

In eqn [7.14], the left-hand integral is with respect to R and the right-hand integral
with respect to ξ. Since at t = 0, R(0) = 1, we have:

[logeR]1
R(t) = −�

t

0

λ(ξ ) dξ

logeR(t) = −�
t

0

λ(ξ ) dξ

i.e.

Relation between 
reliability and 
instantaneous [7.15]

failure rate

7.1.4 Typical forms of failure rate function

In the previous section instantaneous failure rate or hazard rate λ(t) was defined. 
Figure 7.2 shows the most general form of λ(t) throughout the lifetime of an element.
This is the so-called bathtub curve and consists of three distinct phases: early 
failure, useful life and wear-out failure. The early failure region is characterised by
λ(t) decreasing with time. When items are new, especially if the element is of a new
design, early failures can occur due to design faults, poor quality components, manu-
facturing faults, installation errors, operator and maintenance errors; the latter may
be due to unfamiliarity with the product. The hazard rate falls as design faults are rectified,
weak components are removed, and the user becomes familiar with installing, oper-
ating and maintaining the element. The useful life region is characterised by a low,
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Figure 7.2 Typical
variation in instantaneous
failure rate (hazard rate)
during the lifetime of
element – ‘bathtub curve’.
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constant failure rate. Here all weak components have been removed: design, manu-
facture, installation, operating and maintenance errors have been rectified so that 
failure is due to a variety of unpredictable lower-level causes. The wear-out region
is characterised by λ(t) increasing with time as individual items approach the end of
the design life for the product; long-life components which make up the element are
now wearing out.

Many measurement elements have a useful life region lasting many years, so that
a constant failure rate model is often a good approximation. Here we have:

λ(t) = λ(ξ ) = λ = constant [7.16]

so that:

[7.17]

Thus a constant failure or hazard rate gives rise to an exponential reliability time
variation or distribution as shown in Figure 7.3.

7.1.5 Reliability of systems

Series systems

We saw in Chapter 1 that a complete measurement system consists of several ele-
ments usually in series or cascade. Figure 7.4 shows a series system of m elements
with individual reliabilities R1, R2, . . . , Ri, . . . , Rm respectively. The system will 
only survive if every element survives; if one element fails then the system fails.
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Figure 7.3 Reliability
and unreliability with
constant failure rate
model.

Figure 7.4 Reliability of
series system.

        



7.1  RELIABILITY OF MEASUREMENT SYSTEMS 133

Assuming that the reliability of each element is independent of the reliability of 
the other elements, then the probability that the system survives is the probability that
element 1 survives and the probability that 2 survives and the probability that 3 
survives, etc. The system reliability RSYST is therefore the product of the individual
element reliabilities, i.e.

Reliability of 
series system

If we further assume that each of the elements can be described by a constant 
failure rate λ (Section 7.1.4), and if λ i is the failure rate of the ith element, then Ri

is given by the exponential relation (eqn [7.17]):

Ri = e−λ it [7.19]

Thus

RSYST = e−λ1t e−λ2t . . . e−λ it . . . e−λ mt [7.20]

so that if λSYST is the overall system failure rate:

RSYST = e−λ SYST t = e−(λ1+λ2+...+λ i +...+λ m)t [7.21]

and

Failure rate of system 
of m elements in series 

This means that the overall failure rate for a series system is the sum of the indi-
vidual element or component failure rates. Equations [7.18] and [7.22] show the 
importance of keeping the number of elements in a series system to a minimum; 
if this is done the system failure rate will be minimum and the reliability maximum.
A measurement system consisting of a thermocouple (λ1 = 1.1), a millivolt to 
current converter (λ2 = 0.1) and a recorder (λ3 = 0.1) in series will therefore have a
failure rate λSYST = 1.3.

Parallel systems

Figure 7.5 shows an overall system consisting of n individual elements or systems
in parallel with individual unreliabilities F1, F2, . . . , Fj, . . . , Fn respectively. Only 
one individual element or system is necessary to meet the functional requirements
placed on the overall system. The remaining elements or systems increase the reliab-
ility of the overall system; this is termed redundancy. The overall system will only
fail if every element/system fails; if one element/system survives the overall system
survives. Assuming that the reliability of each element/system is independent of 
the reliability of the other elements, then the probability that the overall system fails
is the probability that element/system 1 fails and the probability that 2 fails and the
probability that 3 fails, etc. The overall system unreliability FSYST is therefore the 
product of the individual element system unreliabilities, i.e.

Unreliability of 
parallel system

FSYST = F1F2 . . . Fj . . . Fn [7.23]

λSYST = λ1 + λ2 + . . . + λ i + . . . + λm [7.22]

RSYST = R1R2 . . . Ri . . . Rm [7.18]
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Comparing eqns [7.18] and [7.23] we see that, for series systems, system reliability
is the product of element reliabilities, whereas for parallel systems system unreliab-
ility is the product of element unreliabilities. Often the individual elements/systems
are identical, so that F1 = F2 = . . . = Fi = . . . = Fn = F, giving:

FSYST = Fn [7.24]

The temperature measurement system of the previous section has a failure rate 
λSYST = 1.3 yr−1; the corresponding unreliability F is given by

F = 1 − e−λ SYSTt

Thus if t = 0.5 year then F = 0.478. Figure 7.6 shows a redundant system consisting
of three single temperature measurement systems in parallel. The overall system 
unreliability is therefore:

FOVERALL = F 3 = 0.109

so that the probability of a failure with the overall system is less than a quarter of
that of a single system.

The above parallel system, while reliable, is expensive. Since the thermocouple
failure rate is 11 times greater than the converter and recorder failure rates, a more

Figure 7.5 Reliability of
parallel system.

Figure 7.6 Reliability 
of three thermocouple
temperature measurement
systems in parallel.
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cost-effective redundant system would have three thermocouples in parallel and
only one converter and recorder. One possible system is shown in Figure 7.7. The
three thermocouple e.m.f.’s E1, E2 and E3 are input into a middle value selector 
element. The selector output signal is that input e.m.f. which is neither the lowest
nor the highest; thus if E1 = 5.0 mV, E2 = 5.2 mV and E3 = 5.1 mV, the output 
signal is E3. If, however, thermocouple 3 fails so that E3 = 0 mV, the selector output
signal is E1. The reliability of this system can be analysed by replacing the three thermo-
couples by a single element of unreliability

F1 = (1 − e−λ1t )3 = (1 − e−0.55)3 = 0.076

or reliability R1 = 1 − 0.076 = 0.924. The reliability of the other elements with 
λ = 0.1 is:

R2 = R3 = R4 = e−λ t = e−0.05 = 0.951

Using [7.18], the overall system reliability is:

ROVERALL = R1R2 R3R4 = 0.924(0.951)3 = 0.795

i.e. FOVERALL = 0.205. This is almost twice the unreliability of the parallel system but
less than half that of a single system.

7.1.6 Failure rate data and models

A distinction must now be made between components and elements. A component
is defined as a ‘non-repairable’ device, i.e. when it fails it is removed and thrown
away. Examples are a resistor or an integrated circuit. An element, however, is 
a repairable part of a system, which is usually made up of several components.
Examples are a pressure sensor, a temperature transmitter and a recorder.

Failure rate data for both components and elements can be found experimentally
by direct measurements of the frequency of failure of a number of items of a given
type. Equation [7.4] can be used to find the observed failure rate of non-repairable
components and eqn [7.8] to find õ for repairable elements.

Table 7.1 gives observed average failure rates for typical instruments. These data
have been taken from the UK data bank operated by the Systems Reliability Service
(SRS).[1] The table specifies the environment in which each type of instrument is located.
For an element located in the process fluid, the environment is determined by the nature
of the fluid, e.g. temperature, corrosion properties, presence of dirt or solid particles.

Figure 7.7 Reliability 
of system with three
thermocouples and 
middle value selector.
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For an element located in the atmosphere, the environment is determined by atmo-
spheric conditions, e.g. temperature, humidity, salinity, presence of dust. The failure
rate of a given type of element will depend on the environment in which it is located:
an iron–copper thermocouple will have a higher failure rate in a corrosive acid than
in water.

Table 7.2 shows the observed failure rates for given types of elements at three works
A, B, C which process different materials and fluids and have different background
environments.[2] The observed failure rates can be regarded as the product of a base
failure rate λB and an environmental correction factor πE:

Element failure 
rate model

Here λB corresponds to the best environmental conditions and πE has values 1, 2, 3
or 4, the highest figure corresponding to the worst environment.

The failure rate of elements can alternatively be calculated from the failure rate
data/models for the basic components which make up the element.

Table 7.3 shows the calculation of the overall failure rate, from basic component
data, for an electronic square root extractor module.[3] The module gives an output
voltage signal in the range 1–5 V, proportional to the square root of the input signal
with range 4–20 mA; this type of module is commonly used in fluid flow rate con-
trol systems. The module is made up from basic electronic components of various
types, all connected in series. Several components of each type are present. From 

λOBS = πE × λB [7.25]

Instrument Environment Experience No. of Failure rate 
(item-years) failures (failures/yr)

Chemical analyser, Oxygen Poor, chemical/ship 4.34 30 6.92
pH meter Poor, chemical/ship 28.08 302 10.75

Conductivity indicator Average, industrial 7.53 18 2.39
Fire detector head Average, industrial 1 470 128 0.09
Flow transmitter, pneumatic Average, industrial 125 126 1.00
Level indicator, pneumatic Average, industrial 898 201 0.22
Pressure controller Average, industrial 40 63 1.58
Pressure indicator, dial, mechanical Average, industrial 575 178 0.31
Pressure sensor, differential, 

electronic Poor, chemical/ship 225 419 1.86
Pressure transmitter Average, industrial 85 045 806 0.01
Recorder, pen Average, industrial 26.02 7 0.27
Temperature indicator and alarm Fair, laboratory 47.2 101 2.14
Temperature indicator, resistance 

thermometer Fair, laboratory 212.3 68 0.32
Temperature indicator, bimetal Average, industrial 165 215 1.30
Temperature trip unit Average, industrial 120 70 0.58
Thermocouple Poor, chemical/ship 317 127 0.40
Valve, gate Poor, chemical/ship 11 564 841 0.07

non-return Poor, chemical/ship 1 530 101 0.07
solenoid Poor, chemical/ship 1 804 66 0.04

Source: after Wright[1].

Table 7.1 Observed
average failure rates for
instruments.
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eqn [7.22] the failure rate λ of a module containing m different component types in
series with failure rates λ1, λ2, . . . , λ i, . . . , λm, and one of each type present is:

λ = λ1 + λ 2 + . . . + λ i + . . . + λm [7.26]

If there are multiple components of each type, all connected in series, then the 
module failure rate is given by:

Module failure rate – 
multiple components 
of each type

where N1, N2, . . . , Ni, . . . , Nm are the quantities of each component type. The 
failure rate of each component type is calculated using the model equation:

λ i = (F1i + F2i + F3i) × Kli × K2i × K3i × K4i [7.28]

Table 7.3 gives values of F1, F2, F3, K1, K2, K3, K4 and failure rate λ i for each com-
ponent. Each failure rate is then multiplied by the appropriate quantity Ni and the Niλ i

values are added together to give a total module failure rate of 3.01 × 10−6 per hour.

λ = N1λ1 + N2 λ2 + . . . + Niλ i + . . . + Nmλm [7.27]

Instrument Observed  Environmental Base failure 
(p = pneumatic) failure rate, correction rate,

faults/year factor faults/year

Control valve (p)
– 0.25 1 0.25
Works A 0.57 2 0.29
Works B 2.27 4 0.57
Works C 0.127 2 0.064

Differential pressure transmitter (p)
– 0.76 1 0.76
Works A (flow) 1.86 3 0.62
Works A (level) 1.71 4 0.43
Works B (flow) 2.66 4 0.67
Works C (flow) 1.22 2 0.61

Variable area flowmeter transmitter (p)
– 0.68 1 0.68
Works A 1.01 3 0.34

Thermocouple
Works A 0.40 3 0.13
Works B 1.34 4 0.34
Works C 1.00 4 0.25

Controller
– 0.38 1 0.38
Works A 0.26 1 0.26
Works B 1.80 1 1.80
Works C 0.32 1 0.32

Pressure switch
– 0.14 1 0.14
Works A 0.30 2 0.15
Works B 1.00 4 0.25

Source: after Lees[2].

Table 7.2 Observed
failure rates for
instruments in different
chemical plant
environments.
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Component Failure rates per 1010 hours

F1 F2 F3 K1 K2 K3 K4 Rateb Qty Value

RESISTORS
Carbon film

0 < R ≤ 100 K 100 0 0 1 1 1 1 100 17 1700
100 K < R ≤ 1 M 100 0 0 1 1.1 1 1 110 2 220
1 M < R ≤ 10 M 100 0 0 1 1.6 1 1 160 3 480

Metal film
0 < R ≤ 100 K 150 0 0 1 1 1 1 150 17 2550
100 K < R ≤ 1 M 150 0 0 1 1.1 1 1 165 3 495

POTENTIOMETERS
0 < R ≤ 50 K 700 0 0 1 1 1 1 700 8 5600
50 K < R ≤ 100 K 700 0 0 1 1 1.1 1 770 1 770

CAPACITORS
Metal film

0 < C ≤ 33 nF 200 0 0 1 1 1 1 200 3 600
33 nF < C ≤ 1 µF 200 0 0 1 1 1.3 1 260 2 520
1 µF < C ≤ 10 µF 200 0 0 1 1 1.5 1 300 1 300

Ceramic
0 < C ≤ 3.3 nF 150 0 0 1 1 1 1 150 1 150

Electrolytic
3.2 < C ≤ 62 µF 500 0 0 0.29 1 0.7 1 102 1 102

DIODES
Silicon LP 200 0 0 0.55 1 1 1 110 2 220
Zener 1000 0 0 1.3 1 1 1 1300 1 1300

TRANSISTORS
NPN LP 400 0 0 1.4 1 1 1 560 2 1120

INTEGRATED CIRCUITS
OP AMP 160 50 600 1 1 1 1 810 9 7290
Quad switch 38 320 560 1 1 1 1 918 1 918

OTHERS
Edge connectors 300 0 0 1 1 1 1 300 8 2400
Soldered joints 20 0 0 1 1 1 1 20 167 3340
PCB 60 0 0 1 1 1 1 60 1 60

Total rate: 3.01 × 10−6 per hour
MTBF: 3.32 × 105 hours

a Data sources:
1: Electronic Reliability Data, National Centre of Systems Reliability, Application Code 2, 25C
2: Reliability Prediction Manual for Guided Weapon Systems, MOD
3: Component supplier’s information.

b Rate = (F1 + F2 + F3) × K1 × K2 × K3 × K4.

Source: after Hellyer[3].

Table 7.3 Calculation of
overall failure rate for
electronic square root
module.a
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7.1.7 Design and maintenance for reliability

Design for reliability

The following general principles should be observed.

Element selection. Only elements with well-established failure rate data/models
should be used. Furthermore some technologies are inherently more reliable than 
others. Thus an inductive LVDT displacement sensor (Chapter 8) is inherently more
reliable than a resistive potentiometer; the latter involves a contact sliding over a wire
track, which will eventually become worn. A vortex flowmeter (Chapter 12) involves
no moving parts and is therefore likely to be more reliable than a turbine flowmeter
which incorporates a rotor assembly.

Environment. The environment in which the element is to be located should first 
be defined and the element should consist of components and elements which are 
capable of withstanding that environment. Thus the diaphragm of a differential pres-
sure transmitter on a sulphuric acid duty should be made from a special alloy, e.g.
Hastelloy C, which is resistant to corrosion.

Minimum complexity. We saw above that, for a series system, the system failure 
rate is the sum of the individual component/element failure rates. Thus the number
of components/elements in the system should be the minimum required for the 
system to perform its function.

Redundancy. We also saw that the use of several identical elements/systems con-
nected in parallel increases the reliability of the overall system. Redundancy should
be considered in situations where either the complete system or certain elements of
the system have too high a failure rate.

Diversity. In practice faults can occur which cause either more than one element 
in a given system, or a given element in each of several identical systems, to fail 
simultaneously. These are referred to as common mode failures and can be caused
by incorrect design, defective materials and components, faults in the manufacturing
process, or incorrect installation. One common example is an electronic system
where several of the constituent circuits share a common electrical power supply; fail-
ure of the power supply causes all of the circuits to fail. This problem can be solved
using diversity; here a given function is carried out by two systems in parallel, 
but each system is made up of different elements with different operating principles.
One example is a temperature measurement system made up of two subsystems in
parallel, one electronic and one pneumatic.

Maintenance

The mean down time, MDT, for a number of items of a repairable element has been
defined as the mean time between the occurrence of the failure and the repaired 
element being put back into normal operation. It is important that MDT is as small
as possible in order to minimise the financial loss caused by the element being out
of action.
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There are two main types of maintenance strategy used with measurement system
elements. Breakdown maintenance simply involves repairing or replacing the 
element when it fails. Here MDT or mean repair time, TR, is the sum of the times
taken for a number of different activities. These include realisation that a fault has
occurred, access to the equipment, fault diagnosis, assembly of repair equip-
ment, components and personnel, active repair/replacement and finally checkout.
Preventive maintenance is the servicing of equipment and/or replacement of 
components at regular fixed intervals; the corresponding maintenance frequency is
m times per year. Here MDT or mean maintenance time, TM, is the sum of times
for access, service/replacement and checkout activities and therefore should be
significantly less than mean repair time with breakdown maintenance.

7.2 Choice of measurement systems

The methods to be used and problems involved in choosing the most appropriate mea-
surement system for a given application can be illustrated by a specific example. The
example used will be the choice of the best system to measure the volume flow rate
of a clean liquid hydrocarbon, range 0 to 100 m3 h−1, in a 0.15 m (6 inch) diameter
pipe. The measured value of flow rate must be presented to the observer in the form
of a continuous trend on a chart recorder. The first step is to draw up a specification
for the required flow measurement system. This will be a list of all important par-
ameters for the complete system such as measurement error, reliability and cost, each
with a desired value or range of values. The first two columns of Table 7.4 are an
example of such a ‘job specification’. As explained in Chapter 3, system measure-
ment error in the steady state can be quantified in terms of the mean + and standard
deviation σE of the error probability distribution p(E). These quantities depend on the
imperfections, e.g. non-linearity and repeatability, of every element in the system.
System failure rate λ and repair time TR were defined in Section 7.1. Initial cost CI

is the cost of purchase, delivery, installation and commissioning of the complete 
system. CR is the average cost of materials for each repair.

Parameter Job System 1 System 2 System 3 System 4 
specification Orifice plate Vortex Turbine Electromagnetic

Measurement  + ≤ 0.25 0.2 0.1 0.03
error σE ≤ 0.8 0.7 0.3 0.1
(at 50 m3 h−1) m3 h−1

Initial cost CI ≤ £4000 3500 3000 4200
Not technically

Annual failure rate λ ≤ 2.0 1.8 1.0 2.0 feasible
failures yr−1

Average repair time TR ≤ 8 h 6 5 7

Material repair cost CR ≤ £200 100 100 300 

5
4
4
4
4 
6
4 
4
4
4
7

Table 7.4 Comparison
table for selection of flow
measurement system.
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In this example the choice could be between four competing systems based on 
the orifice plate, vortex, turbine and electromagnetic primary sensing elements. The
principles and characteristics of all four elements are discussed in Chapter 12. The
configuration of the four systems could be:

1. Orifice plate – electronic D/P transmitter – square rooter – recorder.
2. Vortex element – frequency to voltage converter – recorder.
3. Turbine element – frequency to voltage converter – recorder.
4. Electromagnetic element – recorder.

The next step is to decide whether all the competing systems are technically feasible.
The electromagnetic device will not work with electrically non-conducting fluids 
such as hydrocarbons, so that system 4 is technically unsuitable. Systems 1, 2 and 3
are feasible and the specification for each competing system must then be written down
to see whether it satisfies the job specification. Table 7.4 gives possible specifica-
tions for the orifice plate, vortex and turbine systems. This data is entirely fictitious
and is given only to illustrate the problems of choice. In practice a prospective user
may not have all the information in Table 7.4 at his disposal. The manufacturer will
be able to give estimates of initial cost CI and the limits of measurement error, e.g.
±2% of full scale, for the orifice plate system at 50 m3 h−1. He will not, however, be
able to give values of mean error +, failure rates and repair times. The last two 
quantities will depend on the environment of the user’s plants and the maintenance
strategy used. This information may be available within the user’s company if 
adequate maintenance records have been kept. From Table 7.4 we see that the tur-
bine flowmeter system 3 does not satisfy the job specification; both initial cost and
material repair cost are outside the limits set. This would appear to rule out system 3,
leaving 1 and 2. Both these systems satisfy the job specification but the vortex 
system 2 is cheaper, more accurate and more reliable than the orifice plate system 1.
Thus, based on a straightforward comparison of job and system specification, the 
vortex measurement system 2 would appear to be the best choice for this application.

Under certain circumstances, however, the above conclusion could be entirely wrong.
The turbine system is more expensive and less reliable than the vortex system, but
is three times more accurate. We must now ask how much this increased accuracy is
worth. Suppose the market value of the hydrocarbon is £100 m−3. A measurement error
of one standard deviation in the turbine system, where σE = 0.1 m3 h−1, represents 
a potential cash loss of £10 per hour or approximately £80 000 per annum. A corres-
ponding error in the vortex system, where σE = 0.3 m3 h−1, represents an approximate
potential loss of £240 000 per annum. The difference between these two figures far
outweighs the extra initial and maintenance costs, so that the turbine system 3 is 
the best choice in this case. We can conclude, therefore, that in order to choose the
correct system for a given application, the financial value of each parameter in the
job specification must be taken into account. In a costing application of this type, a
digital printout of flow rate is more suitable than an analogue trend record.

7.3 Total lifetime operating cost
The total lifetime operating costing (TLOC) of a measurement system is the total cost
penalty, incurred by the user, during the lifetime of the system. The TLOC is given by
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TLOC = initial cost of system (purchase, delivery, installation and commissioning)

+ cost of failures and maintenance over lifetime of the system

+ cost of measurement error over lifetime of the system [7.29]

and therefore takes account of the financial value of each parameter in the job
specification. The best system for a given application is then the one with minimum
TLOC. This method also enables the user to decide whether a measurement system
is necessary at all. If no system is installed, TLOC may still be very large because
no measurement implies a large measurement error. A measurement system should
be purchased if it produces a significant reduction in TLOC.

Using eqn [7.29], we can derive an algebraic expression for TLOC using the
parameters listed in Table 7.4. The initial cost of the system is £CI. If the system life-
time is T years and average failure rate λ faults yr−1, then the total number of faults
is λT. Since the average repair time is TR hours then the total ‘downtime’ due to repair
is λTTR hours. The total lifetime cost of failures is the sum of the repair cost (mater-
ials and labour) and the process cost, i.e. the cost of lost production and efficiency
while the measurement system is withdrawn for repair. If we define

£CR = average materials cost per repair
£CL = repair labour cost per hour
£CP = process cost per hour

then the total repair cost is (CRλT + CLTRλT ) and the total process cost is CPTRλT,
giving:

Total lifetime cost of failures = [CR + (CL + CP)TR]λT [7.30]

The above costs only apply to breakdown maintenance; many users also practise 
preventive maintenance in order to reduce failure rates. Suppose preventive mainten-
ance is carried out on a measurement system m times yr−1, the average maintenance
time is TM hours and the materials cost per service is £CM. The total number of 
services is mT and the total time taken for preventive maintenance is mTTM hours.
Usually preventive maintenance of measurement systems is carried out at a time when
the process or plant itself is shut down for repair and maintenance. This means that
no process costs are incurred during preventive maintenance, giving:

Total lifetime maintenance cost = (CM + CLTM)mT [7.31]

The last term in eqn [7.29] involves the total lifetime cost of measurement error.
In order to evaluate this we first need to evaluate the cost penalty function C(E) 
(£ yr−1) associated with a given steady-state measurement system error E. The form
of C(E) depends on the economics of the process on which the measurement is being
made. A good example is temperature measurement in a chemical reactor where a
degradation reaction is taking place.[4] Here two reactions occur simultaneously: 
the feedstock A is converted into a desired product B but B is also degraded to an
undesired product C. The rates of both reactions increase sharply with temperature,
the rate of B to C being more temperature sensitive than the rate of A to B.

There is an optimum temperature at which the yield of B is maximum. If the 
reactor is operated at either above or below this optimum temperature, then the yield
of B is sharply reduced and a cost penalty is incurred. This situation will occur if
there is a measurement system error E between measured and true values of reactor
temperature: the system tells the operator that the reactor is at optimum temperature
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when it is not. Figure 7.8(a) shows the form of the cost penalty function C(E) in 
this case. We see that when E = 0, C(E) = 0 corresponding to optimum temperature;
but C(E) increases rapidly with positive and negative values of E as the yield of 
B decreases.

In Figure 7.8(b) C(E) represents the cost penalty, due to imperfect flow measurement,
incurred by a customer receiving a fluid by pipeline from a manufacturer. If E is 
positive, the customer is charged for more fluid than he actually receives and so 
is penalised, i.e. C(E) is positive. If E is negative, the customer is charged for less
fluid than was actually received and C(E) is negative. Figure 7.8(c) refers to a non-
critical liquid level measurement in a vessel. The vessel should be about half full,
but plant problems will occur if the vessel is emptied or completely filled. Thus a
cost penalty is incurred only if there is gross measurement error, i.e. the measure-
ment system shows the vessel to be half full when almost empty.

We saw in Chapter 3 that the exact value of measurement error E, for a given 
measurement system at a given time, cannot be found. We can, however, find the 
probability that the system will have a certain error. This is quantified using a 
normal probability density function p(E), with mean + and standard deviation σE

(Table 3.1). The probability of getting a measurement error between E and E + dE is
p(E) dE; the corresponding cost penalty is C(E)p(E) dE per year, or TC(E)p(E) dE
throughout the system lifetime. The total lifetime cost of measurement error is then
found by integrating the above expression over all possible values of E, i.e.

Total lifetime cost of measurement error = T�
∞

−∞

C(E)p(E) dE [7.32]

The integral has a finite value, because the value of p(E ) becomes negligible for |E |
greater than 3 or 4 standard deviations; it can be evaluated numerically[4] using 
values of the normalised Gaussian distribution.[5]

From eqns [7.29]–[7.32] we have

TLOC = CI + [CR + (CL + CP)TR]λT + (CM + CMTM)mT

+ T�
∞

−∞

C(E)p(E) dE [7.33]

Figure 7.8 Error cost
penalty function C(E ) 
for different processes.
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The relative importance of the terms in the above equation will depend on the 
application. In the chemical reactor C(E) and CP will be the major factors so that 
accuracy and reliability will be far more important than initial cost. In the tank level 
application, measurement error is unimportant and minimum TLOC will be obtained
by the best trade-off between initial cost, reliability, and maintainability.

Conclusion

The first section of this chapter discussed the reliability of measurement systems. The
fundamental principles and practical definitions of reliability were first explained 
and the relationship between reliability and instantaneous failure rate was derived.
The typical variation in instantaneous failure rate throughout the lifetime of an element
was then discussed and the reliability of series and parallel systems examined. The
section concluded by looking at failure rate data and models and general strategies
in design and maintenance for reliability.

The second section dealt with the problem of choice of measurement systems
approached by comparing the job specification with those of the competing systems.
This method does not take account of the financial value of each item in the speci-
fication. A better method, discussed in the final section, is to choose the systems with
minimum lifetime operating cost.
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Problems

A batch of 100 identical thermocouples were tested over a 12-week period. Twenty failures
were recorded and the corresponding down times in hours were as follows:

5, 6, 7, 8, 4, 7, 8, 10, 5, 4, 8, 5, 4, 5, 6, 5, 4, 9, 8, 6

7.1
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Calculate:

(a) Mean down time
(b) Mean time between failures
(e) Mean failure rate
(d) Availability.

A flow measurement system consists of an orifice plate (λ = 0.75), differential pressure 
transmitter (λ = 1.0), square root extractor (λ = 0.1) and recorder (λ = 0.1). Calculate the 
probability of losing the flow measurement after 0.5 year for the following:

(a) A single flow measurement system
(b) Three identical flow measurement systems in parallel
(c) A system with three orifice plates, three differential pressure transmitters and a middle

value selector relay (λ = 0.1). The selected transmitter output is passed to a single square
root extractor and recorder.

Annual failure rate data are given in brackets; assume that all systems were initially checked
and found to be working correctly.

Use the data given in Table Prob. 3 to decide which level measurement system should be 
purchased. Assume a breakdown maintenance only strategy is practised, each system has the
same measurement error, and there is a 10-year total lifetime.

7.3

7.2

Parameter System 1 System 2

Initial cost £ 1000 2000
Materials cost per repair £ 20 15
Labour cost per hour £ 10 10
Process cost per hour £ 100 100
Repair time h 8 12
Annual failure rate yr−1 2.0 1.0

Table Prob. 3.
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