
1

Introduction and Use Cases ... 2

Current Proposal ... 4

Support for Custom Fields in the Web Application ... 5

Denormalized Views .. 6

Normalized View ... 6

Integrity and Usability Issues ... 7

Access and Security ... 7

Web Services XML Format .. 8

Previous Discussions.. 10

Add GUIDs ... 10

Alternative Proposal, Sep 22, 2010 ... 10

More Discussion, Oct 1, 2010 .. 11

Alternatives ... 11

Discovering CFs for a Project ... 11

Notes from August 6 meeting ... 12

Predicted Error Rate and “Opportunity” ... 12

Appendix A .. 13

2

In our API review in March, we suggested that we should enable users to annotate at both the

transaction and step levels. Interviews with some users suggested that the step level was the

only useful level for them to annotate. Other researchers suggested enabling annotation at the

student level, and recent interviews with the SimStudent team revealed that many of their

columns, which they now represent as transaction-level custom fields, could be modeled at

other levels (see Table 1). We believe that supporting custom fields that can reference any of a

variety of levels should be a requirement for web services (and later, the DataShop web

application).

Table 1 - Sample of Current SimStudent Transaction Custom Fields

Custom Field Name Description Proposed Level

CF(ACTION) a description of what was done – e.g.,
SimStudent asked for confirmation, Student
gave input

CF(ACTION_TYPE) a designation of category that the
CF(ACTION) falls into

CF(DETAILS) General free text type info
CF(EXPECTED_INPUT) True SAI's Input that should have been

used

CF(SAI_AGENT) Who is the one doing the SAI, student or
SimStudent

CF(STEP) the step name in terms of the state of the
algebra instead of the component used, e.g.
x-2=3[add 2] would be a step when the
state of the equation is at x-2=3 and the
student has declared they will add 2 next.

Student-Step

CF(USERID) researchers’ own anonymized ID that
corresponds with the ID they put on their
pre/post tests

Student

CF(DURATION) duration to complete the noted activity,
does not necessarily correspond with time
since last log message

Student-Step-
Problem View

Abstract Problem Type abstract the type of problems used. for
example, if the problems were of type
3x+4=5 or of type 3x-8=9 they would fall
into the category of Ax+B= C and similar for
other types of problems.

Problem

Completed / Incomplete This was to figure out if the students
completed a problem fully or not. Also to
calculate how many problems were
actually completed vs. the number or
problems entered.

Student-
Problem-
Problem View

3

Additional use cases:

 One researcher wants student-level measures. He also would like to correlate measures

(e.g., exam questions?) by time (transaction) and KC.

 Will enable researchers to use output from existing models

o Gaming Detector [Arnon Hershkovitz, Mihaela Cocea, Summer 2008]

o Bayesian Knowledge Tracing. [Hao Cen, migrated from feature wish list]

 Needed for M&M and CMDM clusters [Ryan Baker, October 2008]

 We want to enable someone to attach the results of an LFA-like model to a dataset

[Ken]

4

Under this proposal, a custom field would have a name, description, data type, shared flag,

and a level—one or more of transaction, student, step, problem, problem view, KC model,

and KC (see Table 2). Then a custom field could reference any of those levels by ID. Some of

these are a new GUID (guaranteed unique ID) and some are referred to by name. We don’t

want to force the user to use GUIDs for everything and we do not necessarily want to expose

more database IDs to the user. We already expose database IDs for the dataset, sample, and KC

models in web services now.

Table 2

Granularity Key Number of columns in key

transaction transaction_ID 1
student student_ID 1
problem problem_hierarchy,

problem_name
2

step step_ID 1
student, problem student_ID,

problem_hierarchy,
problem_name,

3

student, problem,
problem view

student_ID,
problem_hierarchy,
problem_name,
problem_view

4

student, step student_ID,
step_ID

2

student, step, problem
view

student_ID,
step_ID,
problem_view

3

kc_model kc_model 1
kc kc_model,

kc
2

student, kc model student_ID,
kc_model

2

student, kc student_ID,
kc_model,
kc

3

student, step, problem
view, kc

student_ID,
step_ID,
problem_view,
kc_model,
kc

5

For example, a custom field could assign a value to a student but within the context of a KC

model (e.g., a student intercept). The custom field’s level would be “KC model, student”.

5

To reference values, the user would use a key composed of column values instead of a GUID for

some types of annotation. This would entail the following changes:

 Add a “Transaction ID” column to the transaction export

 Add a “Problem View” column to the transaction export

 Add a “Problem Hierarchy” column to the transaction export

 Add a “Step ID” column to transaction, student-step, and problem breakdown exports

For the following values, the user would use existing fields:

 Anonymous Student ID

 Problem Name

 KC Model Name

 KC Name

One would then use the sets of columns to reference values of those types, as shown in Table 2.

There are a variety of ways we could support custom fields in the web application:

 Enable export of custom fields in existing export formats (denormalized)

 Enable export of custom fields in new normalized views

 Allow users to select custom fields

 Allow users to upload/modify/delete custom fields

 Enable sampling by custom field (custom field as a sample filter type)

o Would need to consider that:

 some columns may not appear in the current export being viewed

 a custom field is composed of many columns possibly, so which of the

columns are you searching?

 a sample on kc model or kc does not make sense as the kc model is a

separate selection from sample.

 Enable graphing of custom field values

6

The locations where a denormalized view would be available are shown below:

Table 3 – Where we’d show (export) custom fields of the various level types in the web application and web services

 DataShop Export Types

CF Level

transaction

student-
step

student-
problem

kc
model

student* dataset
service

(kc
model)

transaction 
student    

problem   
step  

student,
problem

  

student,
problem,

problem view
  

student, step  
student, step,
problem view

 

kc model  
kc    

student, kc
model

student, kc
student, step,

problem view,
kc

  

* The student export is a possible export we could implement in the future.

We are considering making available a normalized view of custom fields. The current design

proposal is to make this available from:

1. a page in the web application where the user can both select custom fields for inclusion

in reports or export a normalized view; and

2. a web services call to get custom-field data

Table 4 - Normalized table example

KC Model KC Anon Student
Id

Step Id Problem
View

CF (lfa-predicted-
error-rate)

KTracedSkills Find square… Stu_4a7d1… 975d454f… 1 0.232

KTracedSkills Find square… Stu_4a7d1… 975d454f… 2 0.112

KTracedSkills Find square… Stu_4a7d1… 3259f905… 1 0.891

KTracedSkills Find square… Stu_4a7d1… e42b0069… 1 0.233

7

When users can create custom fields that reference objects in the dataset such as KCs and KC

models, and the DataShop web application allows deleting KC models, a potential usability

issue can occur. Currently, we overlooked this issue in the design and implementation of KC

“sets”: if a user deletes a KC model that has KCs included in a KC set, the system does not

prompt the user about this issue, it just allows the deletion without warning.

We should design custom fields (and revise the KC sets feature) so that deleting a KC model

prompts the user if a custom field exists that references any KCs in that model. But should

deletion be allowed? Similarly but from the opposite end, should we prevent a user from

creating a custom field if one or more rows reference an object that doesn’t exist?

We think column-based (custom-field-based) access control is too fine-grained. For now, let’s

consider that anyone with “view” permission on a dataset can add custom fields, and delete

their own. In addition, a user should be allowed to specify whether a custom field is shared or

not (as a sample in DataShop can be shared or not) with others who have the ability to view the

dataset.

Modifying “logged” custom fields: We think that logged custom fields should be immutable.

Other ideas proposed:

- Anyone can add vs. Only those with edit can add (a project setting)

- Later have UI for access in general, including setting what a PI can do.

8

The following example demonstrates a possible implementation of custom fields that supports

the upper end of complexity. The thing being described is the results of an LFA-like model.

1. Create the custom field for predicted error rate, student values, KC values:

<?xml version="1.0" encoding="UTF-8"?>

<pslc_datashop_message>
 <custom_field>
 <name>lfa-predicted-error-rate</name>

<description>Output of LFA model: predicted error. This model has an AIC
of 22, BIC of 21.41, a Log Likelihood of -0, and 11 total
parameters.</description>

 <type>number</type>
 <level>student, step, problem_view, kc, kcm</level>
 </custom_field>
</pslc_datashop_message>

<pslc_datashop_message>
 <custom_field>
 <name>lfa-student-values</name>

<description>Output of LFA model: student intercept
values.</description>

 <type>number</type>
 <level>student, kcm</level>
 </custom_field>
</pslc_datashop_message>

<pslc_datashop_message>
 <custom_field>
 <name>lfa-kc-intercept-logit</name>

<description>Output of LFA model: kc intercept (logit)
values.</description>

 <type>number</type>
 <level>kc, kcm</level>
 </custom_field>
</pslc_datashop_message>

<pslc_datashop_message>
 <custom_field>
 <name>lfa-kc-intercept-probability</name>

<description>Output of LFA model: kc intercept (probability) values.
</description>

 <type>number</type>
 <level>kc, kcm</level>
 </custom_field>
</pslc_datashop_message>

<pslc_datashop_message>
 <custom_field>
 <name>lfa-kc-slope</name>

<description>Output of LFA model: kc slope values.</description>
 <type>number</type>
 <level>kc, kcm</level>
 </custom_field>
</pslc_datashop_message>

9

2. Set the predicted-error-rate data:

<custom_field student_ID="Stu_b7e5d96b529ef095fa8534700ec5a536"
step_id="69c84447b0e89a3cf67c39e280b63ba9" problem_view="1" kc="enter-least-
common-denominator" kcm="Default">

<value>0.232</value>

</custom_field>

etc.

3. Set the student intercept values:

<custom_field student_id="11" kcm="Default" id="46">

<value>0.232</value>

</custom_field>

<custom_field student_id="12" kcm="Default" id="46">

<value>0.441</value>

</custom_field>

<custom_field student_id="13" kcm="Default" id="46">

<value>0.123</value>

</custom_field>

4. Set the KC intercept (logit) values and KC intercept (probability) values:

<custom_field kc="kc-a" kcm="Default" id="47">

<value>-64.1</value>

</custom_field>

<custom_field kc="kc-b" kcm="Default" id="47">

<value>-58.97</value>

</custom_field>

<custom_field kc="kc-a" kcm="Default" id="48">

<value>0</value>

</custom_field>

<custom_field kc="kc-b" kcm="Default" id="48">

<value>1</value>

</custom_field>

5. Set the KC slope values:

<custom_field kc="kc-a" kcm="Default" id="49">

<value>0</value>

</custom_field>

<custom_field kc="kc-b" kcm="Default" id="49">

<value>39.15</value>

</custom_field>

10

Under the older proposal, a custom field would have a name, description, data type, and a

level—one or more of transaction, step, student, KC model, KC, and problem. Then a

custom field could reference any of those levels by GUID (a guaranteed unique ID, not a

database ID).

For example, a custom field could assign a value to a student but within the context of a KC

model (e.g., a student intercept). The custom field’s level would be “KC model, student”.

To support this type of system, DataShop would need to provide IDs for objects of these

various levels to users (through exporting, most likely). With KC model importing, we

introduced a “step ID”, a 33-character string that uniquely identifies the step. We would need

to do something similar for transaction, student, KC model, KC, and problem.

Initially, we thought we would need to add GUIDs for the following columns so that users could

identify the following values uniquely:

 Transaction

 Step

 Problem

 Student

 KC

 KC Model

 Student-Step

 Student-Problem

We found that this could potentially double the size of a transaction export file and would be

very unwieldy for users, especially those that prefer to use Excel.

On Sep 22, we proposed a simpler approach: use a key composed of column values instead of a

GUID for some types of annotation. The proposal is as follows:

 Add a transaction ID to the transaction export

 We don’t need a new anonymous student ID GUID as anonymous ID is already unique

 Add a “Problem View” column to the transaction export

 Add a “Problem Hierarchy” column to the transaction export

 Use the following sets of columns to reference values of those types:

We also discussed valid combinations of levels for custom fields. We listed the following

(number of columns in parentheses):

 Transaction (1)

11

 Problem (2)

 Step (3)

 Student (1)

 Student-Step-Problem View (5)

 Student-Problem-Problem View (4)

 KC model (1)

 KC (2)

 Student-KCM (2)

 Student-KC (3)

 Student-Step-Problem View-KC (7)

For other combinations, do we prevent the user from creating such a custom field?

We wondered about the idea of a “primary” level, but agreed it wasn’t needed. If a custom field

references various levels, the value for the custom field appears in the column for that row only

if all other referenced values exist.

On Oct 1, we suggested that we continue to use a step ID as opposed to representing step ID

with 3 columns (problem hierarchy, problem name, and step name). That would simplify

things a bit, and we already export a step GUID with the KC Model export.

The main alternatives to this proposal are to allow custom fields that describe steps and

transactions only, or only transactions. The main benefits are that the custom fields can be

exported more simply; custom fields have fewer unique IDs to reference; and the user has

fewer unique IDs present in web-service exports. The main argument against this approach is

that we’re missing an opportunity to consider a very flexible system that would let users

annotate almost any aspect of the data precisely. There is already some evidence that they

would want to do this.

How would a user get a list of all the custom fields for all the datasets for a given project?

Currently, we have proposed a way to get the custom fields for a dataset

/datasets/[id]/customfields/[?id]. For a project, it could be similar

/projects/[id]/customfields/[?id].

Also, should the user be able to add custom fields to a project? Would a project-level CF a single

entity saved amongst datasets or just an attribute of a CF?

o Single entity: Define it once for the project and then add data using that CFs ID.

o Attribute: Define the custom field each time you use it. It becomes “shared” within

a project by virtue of it having the same name, type, level, project as another CF.

12

 Uniqueness criteria for a custom field: a custom field’s name only needs to be unique

within a dataset

 We should allow a custom field that is shared amongst datasets within a project, which

promotes standardization. How does a user define that a field is shared within a project?

(See Discovering CFs, below.)

 Can a student custom field be shared across datasets? What does that mean again?

Something about referring to the same student from different datasets. That’s a student

addressability issue, not a CF issue; ie, what’s a student ID?

Predicted error rate is, in the case of LFA, supplied in terms of student, KC, step, and opportunity.

But we wondered whether opportunity is a valid column for a custom field. It’s just a column

derived from other columns, so one could specify opportunity for a predicted error rate by giving

other columns. We wondered if this was confusing since a transaction export of that custom field

wouldn’t have opportunity. But one could export by step and include the custom field to see

opportunity.

13

 [OLDER PROPOSAL] The following example demonstrates a possible implementation of

custom fields that supports the upper end of complexity. The thing being described is the

results of an LFA-like model.

1. Create the custom field for predicted error rate, student values, KC values:

<?xml version="1.0" encoding="UTF-8"?>
<pslc_datashop_message>
 <custom_field>
 <name>lfa-predicted-error-rate</name>

<description>Output of LFA model: predicted error. This model has an AIC
of 22, BIC of 21.41, a Log Likelihood of -0, and 11 total
parameters.</description>

 <type>number</type>
 <level>student-step,kc,kcm</level>
 </custom_field>
</pslc_datashop_message>

<pslc_datashop_message>
 <custom_field>
 <name>lfa-student-values</name>

<description>Output of LFA model: student intercept
values.</description>

 <type>number</type>
 <level>student,kcm</level>
 </custom_field>
</pslc_datashop_message>

<pslc_datashop_message>
 <custom_field>
 <name>lfa-kc-intercept-logit</name>

<description>Output of LFA model: kc intercept (logit)
values.</description>

 <type>number</type>
 <level>kc,kcm</level>
 </custom_field>
</pslc_datashop_message>

<pslc_datashop_message>
 <custom_field>
 <name>lfa-kc-intercept-probability</name>

<description>Output of LFA model: kc intercept (probability) values.
</description>

 <type>number</type>
 <level>kc,kcm</level>
 </custom_field>
</pslc_datashop_message>

<pslc_datashop_message>
 <custom_field>
 <name>lfa-kc-slope</name>

<description>Output of LFA model: kc slope values.</description>
 <type>number</type>
 <level>kc,kcm</level>
 </custom_field>
</pslc_datashop_message>

14

2. Set the predicted-error-rate data:
<custom_field student_step_id="123" kcm_id="321" id="45">

<value>0.232</value>

</custom_field>

<custom_field student_step_id="124" kcm_id="321" id="45">

<value>0.112</value>

</custom_field>

<custom_field student_step_id="125" kcm_id="321" id="45">

<value>0.891</value>

</custom_field>

<custom_field student_step_id="126" kcm_id="321" id="45">

<value>0.233</value>

</custom_field>

etc.

3. Set the student intercept values:

<custom_field student_id="11" kcm_id="321" id="46">

<value>0.232</value>

</custom_field>

<custom_field student_id="12" kcm_id="321" id="46">

<value>0.441</value>

</custom_field>

<custom_field student_id="13" kcm_id="321" id="46">

<value>0.123</value>

</custom_field>

4. Set the KC intercept (logit) values and KC intercept (probability) values:

<custom_field kc_id="11" kcm_id="321" id="47">

<value>-64.1</value>

</custom_field>

<custom_field kc_id="12" kcm_id="321" id="47">

<value>-58.97</value>

</custom_field>

<custom_field kc_id="13" kcm_id="321" id="47">

<value>46.22</value>

</custom_field>

<custom_field kc_id="11" kcm_id="321" id="48">

<value>0</value>

</custom_field>

<custom_field kc_id="12" kcm_id="321" id="48">

<value>1</value>

</custom_field>

<custom_field kc_id="13" kcm_id="321" id="48">

<value>0</value>

</custom_field>

5. Set the KC slope values:

<custom_field kc_id="11" kcm_id="321" id="49">

15

<value>0</value>

</custom_field>

<custom_field kc_id="12" kcm_id="321" id="49">

<value>39.15</value>

</custom_field>

<custom_field kc_id="13" kcm_id="321" id="49">

<value>46.22</value>

</custom_field>

Output the entire thing in a tabular format:

lfa-predicted-error-rate (id=45)

Output of LFA model: predicted error. This model has an AIC of 22, BIC of 21.41, a Log

Likelihood of -0, and 11 total parameters.
kcm_id kc_id step_id problem_view lfa-predicted-

error-rate
321 11 123 1 0.232

321 12 124 1 0.112

321 13 125 1 0.891

321 14 126 1 0.233

[OLDER IDEA]

Output of LFA model: predicted error. This model has an AIC of 22, BIC of 21.41, a Log

Likelihood of -0, and 11 total parameters.

kcm_id kc_id student_step_id lfa-predicted-error-
rate

321 11 123 0.232

321 12 124 0.112

321 13 125 0.891

321 14 126 0.233

[FOLLOWING IS UNCHANGED]

lfa-student-values (id=46)

Output of LFA model: student intercept values.
kcm_id student_id lfa-student-values

321 11 0.232

321 12 0.441

321 13 0.123

lfa-kc-intercept-logit (id=47)

Output of LFA model: kc intercept (logit) values.
kcm_id kc_id lfa-kc-intercept-logit

321 11 -64.1

16

321 12 -58.97

321 13 46.22

lfa-kc-intercept-probability (id=48)

Output of LFA model: kc intercept (proability) values.
kcm_id kc_id lfa-kc-intercept-

probability
321 11 0

321 12 1

321 13 0

lfa-kc-slope (id=49)

Output of LFA model: kc slope values.
kcm_id kc_id lfa-kc-slope

17

	Introduction and Use Cases
	Current Proposal
	Support for Custom Fields in the Web Application
	Denormalized Views
	Normalized View

	Integrity and Usability Issues
	Access and Security
	Web Services XML Format

	Previous Discussions
	Add GUIDs
	Alternative Proposal, Sep 22, 2010
	More Discussion, Oct 1, 2010
	Alternatives
	Discovering CFs for a Project
	Notes from August 6 meeting
	Predicted Error Rate and “Opportunity”

	Appendix A

