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What Drives the Disposition Effect? An Analysis
of a Long-Standing Preference-Based
Explanation

NICHOLAS BARBERIS and WEI XIONG*

ABSTRACT

We investigate whether prospect theory preferences can predict a disposition effect.
We consider two implementations of prospect theory: in one case, preferences are
defined over annual gains and losses; in the other, they are defined over realized
gains and losses. Surprisingly, the annual gain/loss model often fails to predict a
disposition effect. The realized gain/loss model, however, predicts a disposition effect
more reliably. Utility from realized gains and losses may therefore be a useful way of
thinking about certain aspects of individual investor trading.

ONE OF THE MOST ROBUST FACTS ABOUT THE TRADING of individual investors is the
“disposition effect”: when an individual investor sells a stock in his portfolio,
he has a greater propensity to sell a stock that has gone up in value since pur-
chase than one that has gone down. The effect has been documented in all the
available large databases of individual investor trading activity and has been
linked to important pricing phenomena such as post-earnings announcement
drift and stock-level momentum. Disposition effects have also been uncovered
in other settings—in the real estate market, for example, and in the exercise of
executive stock options.!

While the disposition effect is a fundamental feature of trading, its underlying
cause remains unclear. Why do individual investors have a greater propensity to
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1 Odean (1998), Grinblatt and Keloharju (2001), and Feng and Seasholes (2005) document the
disposition effect for individual investors in the U.S., Finland, and China, respectively. Frazzini
(2006) finds a disposition effect in the trading of U.S. mutual fund managers, albeit weaker than that
for individual investors. Grinblatt and Han (2005) and Frazzini (2006) produce evidence linking
the disposition effect to momentum and post-earnings announcement drift. Genesove and Mayer
(2001) and Heath, Huddart, and Lang (1999) uncover disposition effects in the real estate market
and in the exercise of executive stock options.
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sell stocks trading at a paper gain rather than those trading at a paper loss? In a
careful study of the disposition effect, Odean (1998) shows that the most obvious
potential explanations—explanations based on informed trading, rebalancing,
or transaction costs—fail to capture important features of the data.

Given the difficulties faced by standard hypotheses, an alternative view based
on prospect theory has gained favor. Prospect theory, a prominent theory of
decision-making under risk proposed by Kahneman and Tversky (1979) and
extended by Tversky and Kahneman (1992), posits that people evaluate gam-
bles by thinking about gains and losses, not final wealth levels, and that they
process these gains and losses using a value function that is concave for gains
and convex for losses. The value function is designed to capture the experimen-
tal finding that people tend to be risk-averse over moderate-probability gains
(they typically prefer a certain $100 to a 50:50 bet to win $0 or $200), but tend to
be risk-seeking over moderate-probability losses (they typically prefer a 50:50
bet to lose $0 or $200 to a certain loss of $100).

Prospect theory is potentially a useful ingredient in a model of the disposition
effect. If an investor is holding a stock that has risen in value since purchase,
he may think of the stock as trading at a gain. If he is risk-averse over gains,
he may then be inclined to sell the stock. Similarly, if he is risk-seeking over
losses, he may be inclined to hold on to a stock that has gone down in value.

While prospect theory does seem to offer a promising framework for thinking
about the disposition effect, the link has almost always been discussed in infor-
mal terms. This leaves a number of questions unanswered: Can a link between
prospect theory and the disposition effect be formalized in a rigorous model?
Under what conditions does prospect theory predict a disposition effect? What
other predictions does prospect theory make about trading activity? To answer
these questions, some formal modeling is needed.

In this paper, we take up this task, and study the trading behavior of an
investor with prospect theory preferences. We consider two implementations
of prospect theory. The first implementation, which is the focus of Section II,
applies prospect theory to annual stock-level trading profits. Specifically, we
consider an investor who, at the beginning of the year, buys shares of a stock.
Over the course of the year, he trades the stock, and, at the end of the year,
receives prospect theory utility based on his trading profit. The year is di-
vided into T > 2 trading periods. We use the prospect theory value function
proposed by Tversky and Kahneman (1992). For much of the analysis, we
also use the preference parameters these authors estimate from experimental
data.

For any T, we obtain an analytical solution for the optimal trading strategy.
This allows us to simulate artificial data on how prospect theory investors would
trade over time, and then to check, using Odean’s (1998) methodology, whether
prospect theory predicts a disposition effect. We pay particular attention to how
the results depend on the expected stock return u and the number of trading
periods T

Our analysis leads to a surprising finding. While for some values of © and
T this implementation of prospect theory does predict a disposition effect, for
many other values of 1 and T it predicts the opposite of the disposition effect,
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namely that investors will be more inclined to sell stocks with prior losses than
stocks with prior gains. We explain the intuition for this result in Section II.B
by way of a detailed example.

In Section III, we consider a second implementation of prospect theory, one
in which prospect theory is defined over realized gains and losses. In this case,
if an investor buys some shares of a stock at the start of the year, and then, a
few months later, sells some of the shares, he receives a jolt of prospect theory
utility right then, at the moment of sale, where the utility term depends on the
size of the realized gain or loss. We find that this implementation leads more
readily to a disposition effect, although even here, we occasionally observe the
opposite of the disposition effect.

Of the two implementations, the second, which applies prospect theory to
realized gains and losses, represents a more significant departure from the
standard finance paradigm: It assumes not only prospect theory, but also that
investor preferences distinguish between paper and realized gains. Our anal-
ysis shows that, even if this implementation is more radical, it deserves to
be taken seriously: It predicts a disposition effect reliably, while a more stan-
dard model—one that applies prospect theory to annual gains and losses—does
not.

In Section I, we review the evidence on the disposition effect and the elements
of prospect theory. In Section II, we analyze trading behavior in a model that
applies prospect theory to annual stock-level trading profits. In Section III,
we consider an alternative implementation in which prospect theory is defined
over realized gains and losses. Section IV discusses related research and other
applications, and Section V concludes.

I. The Disposition Effect: Evidence and Interpretation

Odean (1998) analyzes the trading activity over the 1987 to 1993 period of
10,000 households with accounts at a large discount brokerage firm. He finds
that, when an investor in his sample sells shares, he has a greater propensity
to sell shares of a stock that has risen in value since purchase rather than of
one that has fallen in value. Specifically, for any day on which an investor in
the sample sells shares of a stock, each stock in his portfolio on that day is
placed into one of four categories. For every stock in the investor’s portfolio
on that day that is sold, a “realized gain” is counted if the stock price exceeds
the average price at which the shares were purchased, and a “realized loss” is
counted otherwise. For every stock in the investor’s portfolio on that day that
is not sold, a “paper gain” is counted if the stock price exceeds the average price
at which the shares were purchased, and a “paper loss” is counted otherwise.
From the total number of realized gains and paper gains across all accounts
over the entire sample, Odean (1998) computes the proportion of gains realized

(PGR):

no. of realized gains

PGR = (1D

no. of realized gains + no. of paper gains’
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In words, PGR computes the number of gains that were realized as a fraction
of the total number of gains that could have been realized. A similar ratio,
no. of realized losses

PLR = 2
no. of realized losses + no. of paper losses’ @

is computed for losses. The disposition effect is the empirical fact that PGR is
significantly greater than PLR. Odean (1998) reports PGR = 0.148 and PLR =
0.098.

Robust as this effect is, its cause remains unclear: The most obvious poten-
tial explanations fail to capture important features of the data. Perhaps the
most obvious hypothesis of all is the information hypothesis, namely that in-
vestors sell stocks with paper gains because they have private information that
these stocks will subsequently do poorly, and hold on to stocks with paper losses
because they have private information that these stocks will rebound. This hy-
pothesis is refuted, however, by Odean’s (1998) finding that the average return
of prior winners that investors sell is 3.4% higher, over the next year, than the
average return of the prior losers they hold on to.

Tax considerations also fail to shed light on the disposition effect: Such con-
siderations predict a greater propensity to sell stocks with paper losses because
the losses thus realized can be used to offset taxable gains in other assets.?

Odean (1998) also casts doubt on the hypothesis that the disposition effect is
nothing more than portfolio rebalancing of the kind predicted by a model with
power utility preferences and i.i.d. returns. He does so by showing that the
disposition effect remains strong even when the sample is restricted to sales
of investors’ entire holdings of a stock. If rebalancing occurs at all, it is more
likely to manifest itself as a partial reduction of a stock position that has risen
in value, rather than as a sale of the entire position. Another difficulty with
the rebalancing view is that, since, under this view, rebalancing is the “smart”
thing to do, the disposition effect should be stronger for more sophisticated
investors. In actuality, however, it is the less sophisticated investors who exhibit
the disposition effect more strongly (Dhar and Zhu (2006)).

Given the difficulties faced by these standard hypotheses, an alternative view
of the disposition effect based on Kahneman and Tversky’s (1979) prospect
theory has gained favor. We now briefly review the main features of prospect
theory.

A. Prospect Theory
Consider the gamble
(x, p;¥,9),

to be read as “gain x with probability p and y with probability q, independent of
other risks,” wherex < 0 <yory < 0 < x, and where p + ¢ = 1. In the expected

2 Odean (1998) finds that, in one month of the year, December, PLR exceeds PGR. This suggests
that tax factors play a larger role as the end of the tax year approaches.
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utility framework, an agent with utility function U(.) evaluates this risk by
computing

pUW +x)+qUW + y), 3

where W is his current wealth. By contrast, in the framework of prospect theory,
the agent assigns the gamble the value

7(pv(x) + 7 (@v(y), 4

where v(-) and w(-) are known as the value function and the probability
weighting function, respectively. These functions satisfy v(0) = 0, #(0) = 0, and
7(1) =1

There are four important differences between expressions (3) and (4). First,
the carriers of value in prospect theory are gains and losses, not final wealth
levels: The argument of v(-) in (4) is x, not W + x. Second, while U(-) is typically
concave everywhere, v(-) is concave only over gains; over losses, it is convex:
People tend to be risk-averse over moderate-probability gains but risk-seeking
over moderate-probability losses. Third, while U(.) is typically differentiable
everywhere, v(-) has a kink at the origin, so that the agent is more sensitive to
losses, even small losses, than to gains of the same magnitude. This feature,
known as loss aversion, is inferred from the widespread aversion to gambles
such as a 50:50 bet to win $110 or lose $100. Finally, the prospect theory agent
does not use objective probabilities, but rather, transformed probabilities ob-
tained from objective probabilities via the weighting function 7 (-). The primary
effect of this weighting function is to overweight low probabilities, a feature that
parsimoniously captures the simultaneous demand many individuals have for
both lottery tickets and insurance.

Tversky and Kahneman (1992) propose a specific form for the value function,
namely

w=1 for “Z0 (5)
= or .
v —M—x)P x <0

Fora, B € (0,1) and A > 1, this function is indeed concave over gains and convex
over losses, and does indeed exhibit a greater sensitivity to losses than to gains.
Using experimental data, Tversky and Kahneman (1992) estimate « = 8 = 0.88
and A = 2.25. Since the estimated values of « and B are the same, we will work,
from this point on, with the specification

w=1" or 2% 1, a>1 6)
— T .
X _)L(_x)a (0) x<0, <o < 5 >

Figure 1 plots the function in equation (6) for « = 0.88 and 1 = 2.25. An « of
0.88 means that the function is only mildly concave for gains and only mildly
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Figure 1. The prospect theory value function. The figure plots the prospect theory value
function v(-) proposed by Tversky and Kahneman (1992). In the region of gains, v(x) = x*, and in
the region of losses, v(x) = —A(—x)%, where « = 0.88 and A = 2.25. The graph shows that, for these
parameter values, the concavity in the region of gains and the convexity in the region of losses are
both mild, while the kink at the origin is sharp.

convex for losses, while a A of 2.25 implies much greater sensitivity to losses
than to gains. This will be important in what follows.?

As noted in the introduction, prospect theory is potentially a useful ingredient
in a model of the disposition effect. In the past, however, the link has almost
always been discussed in informal terms. In Sections II and III, we investigate
more formally whether, and under what conditions, prospect theory predicts a
disposition effect.

II. A Model That Applies Prospect Theory to Annual Trading Profits

We consider a portfolio choice setting with 7'+ 1 dates, ¢ = 0,1, ..., T. There
are two assets: a risk-free asset, which earns a gross return of R > 1 in each
period, and a risky asset, which we think of as an individual stock. The price

3 Strictly speaking, the function in equation (6) does not have a kink at the origin: v'(x) — oo as
x — 0 from above or below. However, for A > 1, it does satisfy v(x) < —v(—x) for x > 0. In this sense,
the agent is more sensitive to losses than to gains.
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of the stock at time ¢ is P;. Its gross return from ¢ to ¢t + 1, R; 1, is distributed
according to

R, > R with probability =

, 1id. iods, (7
Ry < R with probability 1 — = i4.d. across periods,  (7)

Rt,t+1 =

so that the stock price evolves along a binomial tree. We assume
JTRu+(1—JT)Rd>Rf, (8)

so that the expected stock return exceeds the risk-free rate. When we calibrate
the model in Section II.A, we take the interval from 0 to T to be a year.

We study the trading behavior of an investor with prospect theory prefer-
ences, who, in particular, uses the value function v(:) in equation (6). The ar-
gument of v(-) is the investor’s “gain” or “loss”. Defining the gain or loss is an
important step.

In the stock market context, a gain or loss can be defined in a number of ways.
We consider two possibilities. In Section II, we take the gain or loss to be the
profit from trading the stock over the year-long interval between time 0 and time
T. We refer to this as the “annual gain/loss” implementation of prospect theory.
A similar implementation, one in which prospect theory is defined over annual
gains and losses, has been used with some success in earlier applications of
prospect theory to phenomena such as the equity premium and the low average
return on IPOs (Benartzi and Thaler (1995), Barberis and Huang (2008)).

In Section III, we consider a second implementation in which prospect theory
is defined over realized gains and losses: If the investor sells some shares at
timet, 0 < ¢t < T, hereceives ajolt of prospect theory utility right then, at time ¢,
where the argument of the utility function is the size of the realized gain or loss.

Of the two implementations, the annual gain/loss model is closer to the
standard finance paradigm: The realized gain/loss model appeals not only to
prospect theory but also to a distinction between realized and paper gains, a dis-
tinction that finance models do not normally make when specifying preferences.
There is a tradition in economic modeling that departures from the standard
model are made incrementally, so that we can understand which assumptions
are truly necessary in order to explain the facts. We follow this tradition by
studying the annual gain/loss model first, and only then turning to the realized
gain/loss model.

In Section II, then, we take the gain or loss to be the profit from trading the
stock over the interval from 0 to 7'. One possible candidate for the argument of
the value function v(.) is therefore W — Wy, where W; is the investor’s wealth
at time ¢: After all, Wr — W is, quite literally, the profit from trading between
0 and 7. In our analysis, we actually define the gain or loss to be

AWr = Wr — WoR7. (9)

This is the investor’s trading profit over the interval from 0 to T relative to the
profit he could have earned by investing in the risk-free asset. This definition is
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more tractable and may also be more plausible: The investor may only consider
his trading a success if it earns him more than just the compounded risk-free
return. We refer to WOR/? as the “reference” level of wealth, so that the gain or
loss is final wealth minus this reference wealth level.

For simplicity, we ignore probability weighting, so that the investor uses ob-
jective rather than transformed probabilities. The primary effect of probability
weighting is to overweight low probabilities; it therefore has its biggest impact
on securities with highly skewed returns (Barberis and Huang (2008)). Since
most stocks are not highly skewed, we do not expect probability weighting to
be central to the link between prospect theory and the disposition effect. We
discuss this issue further in Section IV.*

At each date from ¢ = 0to¢ = T — 1, the investor must decide how to split his
wealth between the risk-free asset and the risky asset. If x; is the number of
shares of the risky asset he holds at time ¢, his decision problem is

max E[(AWr)] = E[v(Wr — WoR7)], (10)

X0,X15--,XT -1
where v(-) is defined in equation (6), subject to the budget constraint

Wi =Weoi — 1P )Rp + 2 1P 1 Rye_1y
=W, 1Ry +x, 1P 1(Ry1y—Ryp), t=1,...,T, 11

and a nonnegativity of wealth constraint
Wrp > 0. (12)

The problem in (10) to (12) assumes just one risky asset. However, under two
conditions, its solution also describes optimal trading in a multi-stock setting.
The first condition is that the investor engages in what is sometimes called
“narrow framing” or “mental accounting,” so that, even if he trades several
stocks, he gets utility separately from the annual trading profit on each one.
This assumption is always present in the informal arguments that have been
used to link prospect theory and the disposition effect and we adopt it here,
too. The second condition is that we reinterpret W, as the maximum amount
the investor is willing to lose from trading any one of his stocks. Under these
conditions, the investor’s trading strategy for each stock is independent of his
other holdings and is therefore given by the solution to (10) to (12).

A. The Optimal Trading Strategy

The problem in (10) to (12) can be solved analytically for any number of
trading periods 7. To obtain the solution, we use the insight of Cox and
Huang (1989) who demonstrate that, when markets are complete, an investor’s

4 At the risk of causing confusion, we have used the notation 7 () for the probability weighting
function that forms part of prospect theory and n for the probability of a good stock return. The
function 7 (-) will not appear again in the paper; the variable = will.
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dynamic optimization problem can be rewritten as a static problem in which the
investor directly chooses his wealth in the different possible states at the final
date. An optimal trading strategy is one that generates these optimal wealth
allocations. In a complete market, such a trading strategy always exists.

To implement this technique in our context, some notation will be helpful. In
our model, the price of the risky asset evolves along a binomial tree. At date ¢,
there are ¢t + 1 nodes in the tree, j = 1,2,...,¢t + 1, where j = 1 corresponds to
the highest node in the tree at that date and j = ¢ + 1 to the lowest. The price
of the risky asset in node j at time ¢, P, ;, is PoR},” HRf;l.

We denote the optimal share allocation in node j at time ¢ by x; ;, the optimal
wealth in that node by W, ;, and the ex-ante probability of reaching that node
by m; j, so that

Y my=1 (13)

If p;,j is the time 0 price of a contingent claim that pays $1 if the stock price
reaches node j at time ¢, the state price density for that node is

;= L. (14)

The state price density is linked to the risk-free rate by

> 1 19
Tt,j4t,j = T e
j=1 T Ry

With this notation in hand, we apply Cox and Huang’s (1989) insight and
rewrite the problem in (10) to (12) as

T+1
max ZT[T,J'U(WT,J' — W()R]Tc‘), (16)
=1

subject to the budget constraint
T+1
Z?TT,J'QT,J'WT,J' =Wy amn
j=1

and a nonnegativity of wealth constraint

Wr;>0, j=1,...,T+1. (18)

This static problem can be solved using the Lagrange multiplier method.
We present the solution in Proposition 1 below. For simplicity, the proposition
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assumes T = %, so that, in each period, a good stock return and a poor stock

return are equally likely. Under this assumption,

t12t

L= . 19
i = G+ DI = D) (19)
In the proof of Proposition 1, we also show that, under this assumption,
;= a7 q) (20)
where
2(Rr — Ry) 2(R, — R¢)
0 = f- ) u” (21)

““R;fR,-Ry) T R;R,-Ry

so that the state price density increases as we go down the ¢+ 1 nodes at
date ¢.

ProposiTioN 1: For m = 1, the optimal wealth allocations W, ; and optimal
share holdings of the risky asset x; ; can be obtained as follows. Let

k } - /iy o T+1
*_ = _
\% _kel{rllaxT} E qp) 7T E qriTT] A E nry |, (22)
=1 I=h+1 I=k+1

and let k* be the k € {1, ..., T} at which the maximum in (22) is attained.
Then, the optimal wealth allocation Wr j in node j at final date T is given by

T+1
Z qar.7T,]
1
WoRT [ 14gp 5" 284 if j < k*
Wpy = o I B = (23)

> ar)
=1

0 if j > k*

if V¥ > 0, and by
WT,J‘ZWORT, J:l,,T+1, (24)

if V* < 0. The optimal share holdings x; j are given by

v Wi, — Wi,
6 = —jt2 51 —itl iy’
Py(RS7P R — RLIRY)

0<t<T-1,1<j<t+1, (25
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where the intermediate wealth allocations can be computed by working back-
wards from date T using

1 1
EWtJrl,thJrl,j + §Wt+1,j+1q)5+1,j+1
W, =
t,J QtJ ’
0<t<T-1,1<j<t+1 (26)

Proof: See the Appendix.

Before analyzing the optimal share holdings x; ;, we note some features of
the optimal date T' wealth allocations W7 ; in (23) and (24). We find that the
investor’s optimal policy is either to choose an allocation equal to the refer-
ence wealth level WOR;F in all date T nodes, as in (24); or, as in (23), to use a
“threshold” strategy in which, for some £* : 1 < k* < T, he allocates a wealth
level greater than the reference level Wng to the £* date T nodes with the low-
est state price densities—in other words, the £* date T' nodes with the highest
risky asset prices—and a wealth level of zero to the remaining date 7' nodes. To
find the best threshold strategy, equation (22) maximizes the investor’s utility
across the T possible values of £*. If the best threshold strategy offers nonposi-
tive utility, that is, if V* < 0, which occurs when the expected risky asset return
is low, then the investor does not use a threshold strategy and instead chooses
a wealth level of WOR? in all final date nodes; otherwise, he adopts the best
threshold strategy.

The results in Proposition 1 are similar to those of Berkelaar, Kouwenberg,
and Post (2004) who solve the continuous-time analog of (10) to (12), also using
the Cox and Huang (1989) technique. In their model, the investor trades con-
tinuously from time O to time 7" and, at time 7", derives prospect theory utility
from the difference between time 7" wealth and a reference wealth level. As in
our model, probability weighting is ignored. The continuous-time and discrete-
time solutions are similar: In both cases, so long as the investor is willing to
buy the risky asset at time 0, his optimal wealth at time 7" is either zero or
some amount that exceeds the reference wealth level.

In this paper, we use a discrete-time framework because we want to be able
to vary how often the investor can change his share holdings and hence to see
whether the link between prospect theory and the disposition effect depends on
trading frequency. Berkelaar, Kouwenberg, and Post (2004) do not discuss the
disposition effect; their focus is instead on how the investor’s time 0 allocation
depends on the variable 7".

We now illustrate Proposition 1 with an example. We set the initial price of
the risky asset to Py = 40, the investor’s initial wealth to Wy = 40, the gross
risk-free rate to Ry = 1, the number of periods to T'= 4, and the preference
parameters to («, A) = (0.88, 2.25), the values estimated by Tversky and Kah-
neman (1992) from experimental data.

We also need to assign values to R, and R;. To do this, we take the inter-
val from t = 0 to ¢t = T to be a fixed length of time, namely a year. We choose
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plausible values for the annual gross expected return u and standard deviation
o of the risky asset and then, for any T', back out the implied values of R, and
Ry. For m = %, R, and R, are related to 4 and o by

Ru+Ra\" R2+R3\"
( u > _— ( u d) — % to? 27)
2 2
which imply
R,=puT + \/(Mz + 0T — (u2)7T (28)
Ry = pt — (a2 +02)F — (u2)F. (29)

In our example, we set (i, o) = (1.1, 0.3), which, from (28) and (29), corresponds
to (R,, Rq) = (1.16, 0.89).

For these parameter values, the top-left panel in Table I shows the binomial
tree for the price of the risky asset. The top-right panel reports the state price
density at each node in the tree, computed using equations (20) and (21). The
bottom-left and bottom-right panels report optimal share holdings and optimal
wealth allocations at each node, respectively.

The right-most column in the bottom-right panel illustrates one of the results
in Proposition 1: The wealth allocation at the final date is either zero or a
positive amount that exceeds the reference wealth level of $40. Meanwhile, the
optimal share holdings in the bottom-left panel provide an early hint of the
results to come. If anything, the investor has a greater propensity to sell shares
after a drop in the stock price rather than after a rise. This is the opposite of
the disposition effect.’

We now investigate more carefully whether the annual gain/loss implementa-
tion of prospect theory predicts a disposition effect. In brief, we use Proposition 1
to simulate an artificial data set of how prospect theory investors would trade
over time. We then apply Odean’s (1998) methodology to see if, in the simulated
data, investors exhibit a disposition effect.

Odean’s (1998) data cover 10,000 households. We therefore generate trading
data for 10,000 prospect theory investors, each of whom holds 1NS stocks. For

each investor, we use the binomial distribution in (7) with 7 = 5 to simulate a

> Beyond the lack of an obvious disposition effect, the predicted trading in Table I differs from
the actual trading of individual investors in two other ways. First, it involves partial adjustments
to risky asset holdings, while, in reality, sales of entire positions are more common. Second, the
share allocations require leverage, while, in reality, few individuals use leverage. The leverage is a
consequence of our assumption that stock returns are binomially distributed. From the perspective
of tractability, the binomial assumption is very useful, but, because it specifies a positive lower
bound for the gross stock return, it leads to aggressive allocations. We have solved a two-period
version of the decision problem in (10) to (12) using a lognormal return distribution and find that,
in this case, the investor uses far less leverage. We discuss the lognormal case further in Section
II.C.
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Table I
An Example of Optimal Trading under Prospect Theory

We solve a portfolio problem with a risk-free asset and a binomially distributed risky asset. There
are five dates, t = 0, ..., 4, and the interval between time 0 and time 4 is a year. The investor has
prospect theory preferences defined over the trading profit he accumulates between time 0 and
time 4. The top-left panel shows how the risky asset price evolves along a binomial tree. The top-
right panel shows the state price density at each node in the tree. The bottom-left and bottom-right
panels report, for each node, the optimal number of shares held in the risky asset and the optimal
wealth, respectively. The investor’s initial wealth is $40, the net risk-free rate is zero, and the initial
price, annual net expected return, and annual standard deviation of the risky asset are $40, 0.1,
and 0.3, respectively.

Risky Asset Price P; ; State Price Density q; ;
72.9 0.46
62.7 0.56
54.0 55.6 0.68 0.66
46.5 47.9 0.83 0.80
40 41.2 424 1 0.97 0.94
35.5 36.5 1.18 1.14
314 32.4 1.38 1.34
27.9 1.62
24.7 1.91
Risky Asset Shares Held x; ; Wealth W, ;
- 163.39
6.8 94.70
3.5 - 64.25 46.47
1.8 0.5 50.75 42.87
1.7 0.2 - 40 41.27 40.34
1.5 0.0 32.45 40.15
2.7 - 26.26 40.02
5.2 16.51
- 0

T-period stock price path for each of the investor’s Ng stocks. We assume that
all stocks have the same annual gross expected return ¢ and standard deviation
o, and that each one is distributed independently of the others. Given return
process parameters, preference parameters, and the 10,000 x Ng simulated
stock price paths, we can use Proposition 1 to construct a data set of how the
10,000 prospect theory investors trade each of their Ng stocks over the 7" periods.
For example, if one of an investor’s stocks follows the

40 — 46.5 - 54.0 > 479 — 424

price path through the binomial tree in Table I, we know that the investor will
hold 1.7, 1.8, 3.5, and 0.5 shares of the stock at trading dates ¢ = 0, 1, 2, and 3,
respectively.

To see if there is a disposition effect in our simulated data, we follow the
method of Odean (1998) described in Section I. For each investor, we look at
each of the T' — 1 trading dates, t = 1,..., T — 1. If the investor sells shares in
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any of his stocks at date ¢ € {1,...,T — 1}, we place each stock in his portfolio
on that date into one of four categories. For every stock in his portfolio on date #
that is sold, we count a realized gain if the stock price exceeds the average price
at which the shares were purchased, and a realized loss otherwise. For every
stock in the investor’s portfolio on date ¢ that is not sold, we count a paper gain
if the stock price exceeds the average price at which the shares were purchased,
and a paper loss otherwise. We count up the total number of paper gains and
losses and realized gains and losses across all investors and all trading dates
and compute the PGR and PLR ratios in equations (1) and (2). As in Odean
(1998), we say that there is a disposition effect if PGR > PLR.

To implement this analysis, we fix the values of Py, Wy, Ry, o, «, 1, and Npg,
and consider a range of values for u and T'. Specifically, we set the initial price
of each stock to Py = 40, the initial wealth allocated to trading each stock by
each investor to Wy = 40, the gross risk-free rate to Bf = 1, the annual stan-
dard deviation of each stock to o = 0.3, and the preference parameters for each
investor to («, 1) = (0.88, 2.25). Odean (1998) does not report the mean number
of stocks held by the households in his sample, but Barber and Odean (2000),
who use very similar data, report a mean value slightly above four. We therefore
set Ng = 4. Our results are relatively insensitive to the value of Ng.

Table I reports PGR and PLR for various values of i« and T'. Given a value for
u, avalue for T, and the other parameter values from the previous paragraph,

Table I1
Simulation Analysis of the Disposition Effect

For a given (u, T') pair, we construct an artificial data set of how 10,000 investors trade stocks
when they have prospect theory preferences defined over end-of-year stock-level trading profits;
each investor trades four stocks, each stock has an annual gross expected return u, and the year is
divided into T trading periods. For each (u, T') pair, we use the artificial data set to compute PGR
and PLR, where PGR is the proportion of gains realized by all investors over the course of the year
and PLR is the proportion of losses realized. The table reports “PGR/PLR” for each (u, T') pair. An
asterisk identifies a case in which there is no disposition effect (PGR < PLR). A dash indicates that
the expected return u is so low that the investor does not buy any stock at all.

Number of Trading Periods within the Year

Expected Return

" T=2 T=4 T=6 T=12
1.03 - - - 0.55/0.51
1.04 - - 0.52/0.55* 0.54/0.52
1.05 - - 0.54/0.53 0.59/0.45
1.06 - 0.70/0.25 0.54/0.53 0.58/0.47
1.07 - 0.70/0.25 0.54/0.53 0.57/0.49
1.08 - 0.70/0.25 0.49/0.59* 0.47/0.60*
1.09 - 0.43/0.70* 0.49/0.59* 0.46/0.61*
1.10 0.0/1.0* 0.43/0.70* 0.49/0.59* 0.36/0.69*
1.11 0.0/1.0* 0.43/0.70* 0.49/0.59* 0.37/0.68*
1.12 0.0/1.0* 0.28/0.77* 0.24/0.81* 0.40/0.66*

1.13 0.0/1.0* 0.28/0.77* 0.24/0.83* 0.25/0.78*
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we simulate an artificial data set and compute PGR and PLR for that data set.
An asterisk identifies a case in which PGR is less than PLR, that is, a case in
which the model fails to predict a disposition effect. Since the investors are loss-
averse, they do not buy any stock at time 0 if the expected stock return is too low;
these cases are indicated by dashes. The table shows that the threshold expected
return at which investors buy the risky asset falls as the number of trading
periods T rises. When there are many trading periods within the year, the kink
in the utility function at time 7' is smoothed out from the perspective of time
0. This lowers investors’ initial risk aversion and increases their willingness to
buy the risky asset.

The table summarizes our analysis of the annual gain/loss implementation
of prospect theory. The results are surprising. While this implementation does
predict a disposition effect in some cases—in some cases, PGR does exceed
PLR—we also see that, in many cases, PGR is lower than PLR. In other words,
the annual gain/loss implementation of prospect theory often predicts the op-
posite of the disposition effect, namely that investors have a greater propensity
to sell a stock trading at a paper loss than one trading at a paper gain.

For some readers, the most reasonable values of 1 and T' may be those that
correspond to the top-right part of the table, where the disposition effect does
hold. Even for these readers, however, there is an important conceptual point
to take away from the table, a point that has not been noted in the literature
to date: For some parameter values, the current implementation of prospect
theory can predict the opposite of the disposition effect.

The table also shows us when the disposition effect is more likely to fail:
when the expected risky asset return is high, and when the number of trading
periods T is low. For example, when T = 2 the model always fails to predict a
disposition effect, while for T'= 12 it fails to do so in about half the cases we
report. In the next section, we explain the intuition behind these findings.

B. An Example

To explain the results in Table II, we present a simple two-period example.
In other words, we solve the problem in (10) to (12) for the case of T' = 2, so that
there are just three dates, ¢ = 0, 1, and 2, and two allocation decisions, at £ = 0
and ¢ = 1. The two-period case is instructive because here, as Table IT shows,
the model always fails to predict a disposition effect, at least for the Tversky
and Kahneman (1992) parameter values. As before, we set the gross risk-free
rate to By = 1.

The two-period setting allows us to simplify the notation. We now use x, for
the optimal share allocation at time 0, x, for the optimal allocation at time 1
after a good stock return, and x4 for the optimal allocation at time 1 after a poor
stock return. (The subscripts u and d refer to movements “up” or “down” the
binomial tree.) The time 0 stock price is Py while P, = PyR, and P; = PyR; are
the time 1 stock prices after a good stock return and after a poor stock return,
respectively.
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We will refer to the change in the investor’s wealth between time 0 and time
1 as the time 1 gain/loss. It can take one of two values, AW, or AWy, depending
on whether the stock goes up or down at time 1:

AW, =xoPy(R, — 1), AWz =xoPy(Rg —1). (30)

We will also be interested in the argument of the value function in equation (10).
Since T = 2, we refer to this as the time 2 gain/loss. For Ry = 1, it equals the
change in wealth between time 0 and time 2 and can take one of four values,
AW, AW,q, AWy, or AW,,, depending on whether the stock goes up at time 1
and up at time 2, up then down, down then up, or down then down, respectively:

AW, = AW, +x,P,(R,—1) AW,q = AW, +x,P,(Rg — 1) 31)
AWgy = AWg +x4Pg(R, — 1)  AWgq = AWg +x4P3(Rq — 1).

We say that there is a disposition effect in this two-period setting if and only
if

Xy <Xo<Xqg. (32)

In words, there is a disposition effect if the investor sells shares after a time
1 increase in the stock price (x, < x¢) and buys shares or maintains the same
position after a time 1 drop in the stock price (xg < xg). It is straightforward
to check that condition (32) is consistent with the definition of the disposition
effect in Section II.A and in Odean (1998), namely that PGR > PLR.

In the example we now present, we set (P, W) = (40, 40), (1, o) = (1.1, 0.3),
and (a, A) = (0.88, 2.25). When T = 2, this choice of u and o implies (R,, Ry) =
(1.25, 0.85). Given these parameter values, we can use Proposition 1 to compute
the investor’s optimal trading strategy. We find that

(%0, %4, xq) = (4.0, 5.05, 3.06).

Initially, then, the investor buys 4.0 shares of the risky asset. After a good stock
return at time 1, he increases his position to 5.05 shares; and after a poor stock
return at time 1, he decreases his position to 3.06 shares. Consistent with the
T = 2 column of Table II, the investor’s strategy is the opposite of the disposition
effect. We now explain why.

Figure 2 plots the prospect theory value function in (6) for («, A) = (0.88, 2.25)
and marks on the graph the time 1 and time 2 gains/losses defined in (30) and
(31). This figure will be the focus of our discussion.

Since the time 0 allocation is x¢ = 4.0 shares, the investor’s time 1 gain/loss
after a good stock return is

AW, = xoPo(R, — 1) = (4.0)(40)(0.25) = 39.9.

This is point A. If the investor arrives at point A at time 1, we know that he
increases his allocation to x, = 5.05 shares. Points B and B’ mark the time 2
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Time 1 and time 2 gains/losses plotted on the value function
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Figure 2. An example in which prospect theory fails to predict a disposition effect. The
figure shows why an investor who derives prospect theory utility from the end-of-year profit he
earns from trading a stock may exhibit the opposite of the disposition effect. There are three dates,
t =0, 1, and 2, and the interval between time 0 and time 2 is a year. The figure plots the Tversky
and Kahneman (1992) prospect theory value function from Figure 1 and marks on it the various
possible gains and losses in wealth at time 1 and time 2. If the stock does well at time 1, the investor
moves to A. His optimal strategy is then to gamble to the edge of the concave region: If the stock
does well (poorly) at time 2, he moves to point B’ (B). If the stock instead does poorly at time 1,
the investor moves to C. His optimal strategy is then to gamble to the edge of the convex region:
If the stock does well (poorly) at time 2, he moves to point D’ (D). Since the investor is loss-averse,
the expected return on the stock needs to be reasonably high for him to buy it at all at time 0: A
is therefore further from the vertical axis than C, and hence it takes a larger share allocation to
gamble from A to the edge of the concave region than from C to the edge of the convex region. Thus,
the investor is more likely to sell the stock after a loss, which is the opposite of the disposition
effect.

gains/losses that this allocation could lead to. Specifically, point B’ marks the
time 2 gain/loss if the stock does well at time 2, namely
AW, = AW, +x,P,(R, — 1) = 39.9 + (5.05)(40)(1.25)(0.25) = 102.7,

while point B marks the time 2 gain/loss if the stock does poorly at time 2,
namely

AWyq = AW, +x,P,(Rg — 1) = 39.9 + (5.05)(40)(1.25)(—0.15) = 1.6.

The figure shows that, after a gain at time 1, the investor takes a position in
the stock such that, even if the stock subsequently does poorly, he still ends up
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with a slight gain at time 2 (point B). Put differently, after an initial gain, the
investor gambles to the edge of the concave region.

Why does the investor follow this strategy? First, note that, since the investor
is loss-averse, the expected return on the stock needs to be reasonably high for
him to buy it at all at time 0. After a time 1 gain, he is in the concave region of
the value function (point A). However, for the Tversky and Kahneman (1992)
parameter values, the value function is only mildly concave over gains. Since
the investor is almost risk-neutral in this region and since the expected stock
return is reasonably high, he is willing to gamble almost to the edge of the
concave region. He is not willing to take a larger gamble than this, however—
in other words, a gamble that would bring point B to the left of the kink. If
he did, he would risk ending up with a loss at time 2, which, given that he is
loss-averse, would be very painful.

We now think about what happens if the stock does poorly at time 1. Given
the time 0 allocation of xy = 4.0 shares, the investor’s time 1 gain/loss after a
poor stock return is

AWg = x9Py(Rg — 1) = (4.0)(40)(—0.15) = —24.3.

This is point C. If the investor arrives at point C at time 1, we know that he
decreases his allocation to x4 = 3.06 shares. Points D and D’ mark the time 2
gains/losses that this allocation could lead to. Specifically, point D’ marks the
time 2 gain/loss if the stock does well at time 2, namely®

AWgy, = AWg + x4 P3(R, — 1) = —24.3 + (3.06)(40)(0.85)(0.25) = 1.6,

while point D marks the time 2 gain/loss if the stock does poorly at time 2,
namely”’

AWgg = AWy + x4 Pg(Rg — 1) = —24.3 + (3.06)(40)(0.85)(—0.15) = —40.

The figure shows that, after a loss at time 1, the investor takes a position in
the stock such that, if the stock subsequently does well, he ends up with a small
gain at time 2 (point D’). Why does he follow this strategy? After a time 1 loss,
he is in the convex region of the value function (point C). He is therefore willing
to gamble at least as far as the edge of the convex region. He is not willing to
take a much larger gamble than this, however—in other words, a gamble that
would bring point D’ much to the right of the kink: To the right of the kink, the
marginal utility of additional gains is significantly lower.

6 Points B and D’ are the same point. In our example, the optimal portfolio strategy is “path
independence”: The optimal wealth allocation at any date 2 node is independent of the path the
stock price takes through the binomial tree to reach that node. The wealth allocation in the middle
node at date 2 is therefore the same, whether the stock did well at date 1 and poorly at date 2, or
vice versa.

"The time 2 gains/losses marked by D, B/D’, and B’ satisfy the prediction of Proposition 1 that
the optimal final date wealth is either zero or a positive quantity that exceeds the reference wealth
level. Here, the reference level is initial wealth, W, = 40. The $40 loss at D therefore represents a
final wealth of zero, while B/D’ and B’, by virtue of lying to the right of the kink, represent final
wealth levels in excess of the reference level.
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We can now complete the intuition for why, in this example, we obtain the
opposite of the disposition effect. Since the investor is loss-averse, the stock
must have a reasonably high expected return for him to buy it at all at time 0.
In other words, R, — 1 must be somewhat larger than 1 — R;. This means that
the magnitude of the potential time 1 gain, | xoPy(R, — 1)| = 39.9, is larger than
the magnitude of the potential time 1 loss, |xoPo(Rgy — 1) | = 24.3; in graphical
terms, A is further from the vertical axis than C is. We know that after arriving
at A, the investor gambles to the edge of the concave region. We also know that
after arriving at C, he gambles to the edge of the convex region. However, since
A is further from the vertical axis than C, it takes a larger share allocation to
gamble from A to the edge of the concave region than it does to gamble from C
to the edge of the convex region. The investor therefore takes more risk after
a gain than after a loss. The propensity to sell is therefore lower after a gain
than after a loss, contrary to the disposition effect.®

The fact that we obtain the opposite of the disposition effect is surprising
because, at first sight, it seems that the annual gain/loss implementation of
prospect theory should predict a disposition effect. The logic underlying this
view—the flawed logic, as we soon explain—is this: Since the value function
v(-) is concave over gains, an investor with a time 1 gain (point A) should take a
relatively small gamble. Moreover, since the value function v(-) is convex over
losses, an investor with a time 1 loss (point C) should gamble at least to the
edge of the convex region, a relatively large gamble. It therefore seems that the
investor should take less risk after a gain than after a loss, in other words, that
he should have a greater propensity to sell a stock after a gain than after a loss
and hence that the disposition effect should hold.

Where is the flaw in this argument? Since v(-) is only mildly concave in
the region of gains, the only reason an investor would take a small position
in the stock after a gain is if the expected stock return were unattractive; in
other words, if it were only slightly higher than the risk-free rate. In this case,
however, the investor would not have bought the stock at time 0! For him to buy
the stock in the first place, its expected return must be reasonably high. But
this, in combination with the mild concavity of v(-) in the region of gains, means
that after a time 1 gain, the investor takes a large gamble, one that brings him
almost to the edge of the concave region. Since this gamble is large, there is no
disposition effect: The investor takes more risk after a gain than after a loss
and therefore has a greater propensity to sell prior losers than prior winners.

This discussion also explains why, in Table II, the disposition effect does
sometimes hold; specifically, when there are many trading periods 7' and the
expected stock return p is low. A key step in our explanation for why, in a
two-period setting, the disposition effect fails is that, after a gain, the investor

8 The intuition that the investor gambles to the edge of the concave region after a gain, or to
the edge of the convex region after a loss, is appropriate when the stock return has a binomial
distribution. We have also studied the case of a lognormally distributed stock return and find that,
there, the investor uses strategies with a similar flavor: For example, after a gain at time 1, he
takes a position in the stock so that much of the probability mass of the time 2 wealth distribution
lies above the reference wealth level. We discuss the lognormal case in more detail in Section II.C.
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gambles to the edge of the concave region. This relies on the fact that the
expected stock return is quite high, which, in turn, is because otherwise, the
investor would not buy the stock in the first place.

For large T, this logic can break down: When there are many trading periods
before the final date, the kink in the time T utility function is smoothed over
from the perspective of time 0, lowering the investor’s initial risk aversion. He
is therefore willing to buy the stock at time 0 even if its expected return is only
slightly higher than the risk-free rate. When the expected return is this low,
the concavity of v(-) in the region of gains leads the investor to take only a small
position in the stock after a gain. As a result, the disposition effect can hold.

C. Robustness

Our analysis so far shows that, surprisingly, the annual gain/loss implemen-
tation of prospect theory often predicts the opposite of the disposition effect.
How sensitive is this result to our modeling assumptions?

In our explanation for why our model can fail to predict a disposition effect,
an important step was to note that, since the expected return on the stock must
be high for the investor to buy it at all, the potential time 1 gain exceeds the
potential time 1 loss in magnitude. This step is valid under our maintained as-
sumption that 7 = %; in words, our assumption that, in each period, a good stock
return and a poor stock return are equally likely. If 7 > %, however, a stock can
have a high expected return by offering a small gain with high probability and
a large loss with small probability. In this case, the disposition effect may hold:
The share allocation needed to gamble to the edge of the concave region after
the small gain is lower than the allocation needed to gamble to the edge of the
convex region after the large loss. We caution, however, that individual stocks
exhibit positive skewness in their returns rather than the negative skewness
that this argument requires (Fama (1976)).

In our model, the risky asset return has a binomial distribution. This is a
very useful assumption: For any number of periods 7', it leads to an analytical
solution for the optimal trading strategy and hence allows us to conduct the
simulations summarized in Table II. At the same time, we want to be sure that
our results are not special to the binomial case. We therefore solve the two-
period version of the problem in (10) to (12) for the case where the risky asset
return from time ¢ to ¢ + 1, R; 41, has a lognormal distribution, rather than a
binomial one:

log(Rs 11 —0) =+ 0641
&41 ~ N(0,1), 1ii.d.across periods,

where 6, which satisfies 0 < 6 < 1, is the lowest gross return the risky asset
can earn in any period.

Recall that, for the binomial distribution and the Tversky and Kahneman
(1992) preference parameter values, the disposition effect never holds in the
two-period case. We find that, for the lognormal distribution, the results are
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less extreme: There are some return process parameter values for which the
disposition effect holds. However, once again, for a wide range of parameter val-
ues, there is no disposition effect. The intuition parallels that for the binomial
case.

In our calculations, we have always set « and A to the values estimated by
Tversky and Kahneman (1992). What happens when we vary the values of «
and A? In the multi-period binomial model, but also in the two-period lognormal
model, we find that, as the degree of loss aversion A falls towards one, the
disposition effect is less likely to hold. The reason is that, as A falls, the investor
takes a more aggressive, levered position in the risky asset at time 0. If the risky
asset then does poorly, the investor cuts back on his holdings so as to prevent
his final wealth from turning negative. This is the opposite of the disposition
effect.

Our results also depend on «, which governs the curvature of the value func-
tion v(-), both in the region of gains and in the region of losses. When « falls
substantially below the benchmark level of 0.88, we observe a disposition effect
more often. It is easiest to see the intuition in the two-period binomial model. A
lower o« means greater concavity in the region of gains. This means that, after
a time 1 gain, the investor takes a smaller position than before: He no longer
gambles all the way to the edge of the concave region. Since a lower « also
increases convexity over losses, the investor takes a larger position than before
after a time 1 loss. Once « falls sufficiently—for (1, o) = (1.1, 0.3), once « falls
below 0.77—the investor holds more shares after a loss than after a gain, and
we obtain a disposition effect.

A very useful feature of our framework is that we can use the solution to
the one-stock problem in (10) to (12) even in the multi-stock simulation of
Section II.A. We can do this because we follow the prior literature in assuming
narrow framing, so that the investor receives a separate component of utility
from the trading profit on each of the stocks that he trades; and because we
assume that the investor puts a limit, equal to Wy, on how much he is willing
to lose between time 0 and time T from trading any one stock. An alternative
assumption is that the investor instead puts a limit on how much he is willing
to lose, in total, between time 0 and time T, from all of his stock trading activ-
ity. This alternative assumption significantly complicates the analysis, but we
have been able to impose it in a two-stock, two-period model. We find that this
model produces similar results: Once again, it often fails to predict a disposition
effect.

The model of Section IT assumes that, once the investor has decided, at time
0, on the maximum amount Wy he is willing to lose from trading the risky
asset, he sticks to that decision. We find that relaxing this assumption does not
affect our conclusions. Specifically, suppose that, at time 1, the investor decides
that he is willing to lose more than just the initial W and that this decision is
not anticipated at time 0. We find that, under this alternative assumption, the
model again fails to predict a disposition effect.

Finally, in our model, the expected stock return is constant over time. If
instead, after a time 1 gain, the investor for some reason lowers his estimate
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of the stock’s expected return, he will be more inclined to sell and we may see
a disposition effect after all.

The difficulty with this argument is that it requires that beliefs change in a
way that cannot be considered rational: Odean (1998) finds that the average
return of prior winners is high, not low, after they are sold. In this paper, we are
investigating whether it is possible to understand the disposition effect with-
out appealing to irrational beliefs. We therefore maintain a constant expected
return throughout.

III. A Model That Applies Prospect Theory
to Realized Gains and Losses

In the model of Section II, the investor receives prospect theory utility de-
fined over annual stock-level trading profits. We now consider an alternative
framework based on utility from realized gains and losses. In this case, if the
investor buys shares of a stock at the start of the year and then, a few months
later, sells some of the shares, he receives a jolt of prospect theory utility right
then, at the moment of sale, where the argument of the prospect theory value
function is the size of the realized gain or loss.

For simplicity, we work in a two-period model, so that there are three dates,
t =0,1, and 2. As in Section II, there is a risk-free asset, which earns a gross
return of Ry = 1 in each period, and a risky asset—a stock, say—whose gross
return between time ¢t and ¢ + 1, R; .1, is given by (7) and (8) with = = %

The difference between the model of this section and that of Section II lies in
the investor’s utility function. The investor now solves®

max Eo{v[(xo — x1)(P1 — Po)llix, <xo) + VIx1(P2 — Pp)l 1 ~01), (33)
X0,X1
where
Py x1 < Xo
Py =\ xoPy + (x1 — x0)P; for , (34)
X1 X1 > Xo
subject to
Wo = Wo +x0Po(Ro1 — 1)+ x1Pi(R12—1) > 0. (35)

Fort € {0, 1, 2}, x;, P;, and W, are the share allocation at time ¢, the risky asset
price at time ¢, and wealth at time ¢, respectively. The variable P is the cost
basis of any shares that the investor is still holding at time 2 and 1;; is an
indicator function that takes the value one if the condition in parentheses is
satisfied and zero otherwise.

® For simplicity, our formulation assumes that the investor takes nonnegative positions in the
risky asset. This will be true so long as the expected risky asset return exceeds the risk-free rate.
It is straightforward to formulate the model in a way that accommodates short positions.
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To understand the decision problem in (33) to (35), suppose that the investor
buys xo shares at time 0. If, at time 1, he sells some shares—in other words, if
x1 < xo—then he receives a jolt of prospect theory utility right then, at time 1.
The argument of the value function v(-) is the size of the realized gain or loss,
(xg — x1)(P1 — Py), or the number of shares sold multiplied by the difference
between the sale price and the purchase price.

For simplicity, we assume that, at time 2, the investor sells any remaining
shares in his possession. At that time, he receives prospect theory utility from
the realized gain or loss, namely x1(Py — P}), the number of shares sold multi-
plied by the difference between the sale price and the cost basis of the shares
sold. Equation (34) says that, if the investor sells some shares at time 1, the
cost basis of any remaining shares held until time 2 is still the initial purchase
price, Py. It also says that, if the investor buys additional shares at time 1,
then the cost basis of the shares held until time 2 is the average price at which
they were bought: A fraction xo/x; were bought at a price of Py, while a fraction
(x1 — x0)/x1 were bought at a price of P;.

The time 1 state variables for the decision problem in (33) to (35) are xy and
P;. At time 1, then, the investor solves

J (xo, P1) = max E1{vl(xg — x1)(P1 — Po)l1ix, <xy)
x1€[0,W1/(P1(1-Rg))]

+vlx1(Pe — Pp)llig,~0p}, (36)

where J(-, -) is the time 1 value function. To ensure that time 2 wealth is non-
negative, the time 1 share allocation can be at most Wy /(P1(1 — Ry)). At time
0, the investor solves

max E()J(xo, P1). (37)
x0€l0,Wo/(Po(1-Rg))]
The time 0 share allocation can be at most Wy/(Py(1 — Ry)) to ensure that time
1 wealth, and hence time 2 wealth, is nonnegative.

We solve (36) and (37) numerically. As in Section II, we set (Py, Wy) =
(40, 40), 0 = 0.3, (o, A) = (0.88, 2.25), and consider several values of 1, the an-
nual gross expected return on the risky asset. For given u and o, equations (28)
and (29) with T' = 2 allow us to compute R, and R.

Panel B of Table III reports the optimal share holdings at time 0, the time 1
share holdings after a good risky asset return, and the time 1 share holdings
after a poor risky asset return. In the notation of Section II.B, these three
quantities are xg, x,, and x4, respectively. A dash indicates a case in which
the investor does not take a position in the risky asset at time 0. An asterisk
indicates a case in which the model does not predict a disposition effect. For
comparison, Panel A of Table III reports the results, using the same parameter
values, for the two-period version of the annual gain/loss implementation of
Section II.

The table shows that a model that applies prospect theory to realized gains
and losses predicts a disposition effect more readily than the earlier model,
which applied prospect theory to annual trading profit. At the same time, for
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Table IIT
Optimal Share Allocations for Prospect Theory Investors

We solve a portfolio problem with a risk-free asset and a binomially distributed risky asset. There
are three dates, t =0, 1, and 2, and the interval between time 0 and time 2 is a year. Panel A
corresponds to an investor who has prospect theory preferences defined over the trading profit
he accumulates between time 0 and time 2. Panel B corresponds to an investor who has prospect
theory preferences defined over realized gains and losses on the risky asset. The investor’s initial
wealth is $40, the net risk-free rate is zero, and the initial price, annual gross expected return,
and annual standard deviation of the risky asset are $40, u, and 0.3, respectively. xg is the optimal
share allocation at time 0; x,, and x; are the optimal time 1 share allocations after a good risky asset
return and after a poor risky asset return, respectively. For example, when © = 1.09, an investor
who derives prospect theory utility from realized gains and losses buys 3.4 shares of the risky asset
at time 0. If the risky asset does well at time 1, he decreases his allocation to 2.6 shares. If the risky
asset does poorly at time 1, he keeps the same allocation, namely 3.4 shares. An asterisk identifies
a case in which there is no disposition effect. A dash indicates that the expected return on the risky
asset is so low that the investor does not buy any of it at time 0.

Panel A Panel B

Expected Return Share Allocation Share Allocation

" X0 Xy Xd X0 Xy Xd
1.06 - - - - - -
1.07 - - - - - -
1.08 - - - - - -
1.09 - - - 3.4 2.6 3.4
1.10 4.0* 5.1* 3.1* 3.6 2.8 3.6
1.11 4.3* 5.7* 3.0* 3.7 3.0 3.7
1.12 4.6* 6.5* 3.0* 3.8* 5.5% 3.8*
1.13 4.9* 7.4* 3.0* 4.0* 6.0* 4.0%

high values of 1, we again observe the opposite of the disposition effect. Some
of the intuition of the earlier model therefore carries over here as well.

Why does the realized gain/loss implementation of prospect theory predict
a disposition effect more reliably than the annual gain/loss implementation?
Note first that, for R = 1 and T = 2, the sum of the arguments of the two v(.)
terms in (33) is equal in value to the argument of the v(-) term in equation
(10), namely Wy — Wy. The difference between the two models is therefore that,
while the annual gain/loss model forces the investor to derive utility from the
trading profit in a single lump at time 2, the realized gain/loss model allows
the investor to split the trading profit into two components and to derive utility
from each component separately, first at time 1 and then at time 2.

In the domain of losses, the investor in the realized gain/loss model would
not want to divide the trading profit into two components: Since v(-) is convex
over losses, losses are best experienced in one go, rather than in two separate
pieces. In the domain of gains, however, the concavity of v(-) means that the
investor is often keen to divide the trading profit into two pieces and to savor
each one separately. After a gain at time 1, then, he often sells some shares.
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IV. Related Research and Other Applications

The academic literature on the disposition effect starts with Shefrin and Stat-
man (1985), who propose a framework with several elements: prospect theory,
narrow framing/mental accounting, utility from realized gains and losses, re-
gret utility, and a self-control problem. Each element is designed to explain
a separate piece of empirical evidence: Prospect theory defined over realized
gains and losses explains the basic disposition effect; narrow framing explains
why investors don’t like “tax swaps,” in other words, selling their position in
a losing stock and immediately transferring the proceeds to another, similar
stock; regret utility explains why some individual investors do not display a
disposition effect; and the self-control problem explains some rules of thumb
used by professional traders.

Our analysis provides new support for Shefrin and Statman’s (1985) decision
to implement prospect theory over realized gains and losses. The assumption
that the investor derives utility from realized gains and losses is a significant
departure from the traditional framework, but without it, it is much harder to
generate a disposition effect: The analysis in Section II shows that a model that
applies prospect theory to annual gains and losses does not predict a disposition
effect very reliably.

Hens and Vlcek (2005) also investigate the link between prospect theory and
the disposition effect, albeit in a somewhat different framework. They consider
a two-period model with three dates, ¢t = 0, 1, and 2, and two assets, a risk-free
asset and a risky asset. At time 1, the investor receives prospect theory utility
defined over the trading profit earned between time 0 and time 1. At time 2,
he receives prospect theory utility defined over the total trading profit earned
between time 0 and time 2. Hens and Vlcek (2005) assume that the investor acts
myopically: At time 0, he chooses a share allocation to maximize time 1 utility;
at time 1, he chooses a share allocation to maximize time 2 utility. Echoing our
own results, the authors find that this model often fails to predict a disposition
effect.

The analysis in Hens and Vlcek (2005) complements the analysis in our pa-
per: We consider some dimensions that they do not and they consider some
dimensions that we do not. For example, in our analysis of the annual gain/loss
implementation of prospect theory, we allow for any number of trading periods,
rather than just two, and for full dynamic optimization, rather than just myopic
decision-making. Our ability to explore cases with many trading periods turns
out to be useful: Qualitatively, the results are different for high T in that the
disposition effect tends to hold more often. We also study a realized gain/loss
implementation of prospect theory, which Hens and Vlcek (2005) do not.

At the same time, Hens and Vlcek’s (2005) simplifying assumption of my-
opic decision-making allows them to take prospect theory’s probability weight-
ing feature into account. They find that probability weighting plays only a
minor role in determining whether prospect theory predicts a disposition ef-
fect. It plays a larger role in determining whether prospect theory predicts a
related concept, the “ex post disposition effect”—the investor’s propensity to
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realize gains as opposed to losses, without conditioning on the initial purchase
decision.

Gomes (2005) studies a two-period economy in which some investors have
preferences that are related to, but different from, prospect theory. Specifically,
for losses below some specific point, the convex section of the prospect theory
value function is replaced with a concave segment. Gomes (2005) is primarily
interested in volume and volatility but also includes a short discussion of the
disposition effect. He finds that, for a particular range of preference parame-
ter values, the investors in his framework do exhibit a disposition effect. Our
analysis shows that this result may be special to his model: For unmodified
prospect theory and for the Tversky and Kahneman (1992) parameter values, a
two-period model that defines utility over annual gains and losses always fails
to predict a disposition effect. As with Hens and Vlcek (2005), Gomes (2005)
does not explore beyond the two-period case.

Kyle, Ou-Yang, and Xiong (2006) consider an investor who is endowed with
a project, or indivisible asset, and who is trying to decide when to liquidate the
project. On liquidation, the investor receives prospect theory utility defined
over the difference between the project’s liquidation value and the amount in-
vested in the project. This analysis differs from ours in a number of ways. Most
importantly, it does not take the investor’s initial buying decision into account.
As soon as we do, we recognize that the expected risky asset return must ex-
ceed a certain level. This, in turn, affects the likelihood that prospect theory
will predict a disposition effect.

So far, we have applied our analysis in one particular context: the trading
of individual stocks. However, researchers have also uncovered disposition ef-
fects in other settings. Genesove and Mayer (2001) find that homeowners are
reluctant to sell their houses at prices below the original purchase price. Heath,
Huddart, and Lang (1999) find that executives are more likely to exercise their
stock options when the underlying stock price exceeds a reference point, the
stock’s highest price over the previous year, than when it falls below that
reference point. Coval and Shumway (2005) show that futures traders who
have accumulated trading profits by the midpoint of the day take less risk
in the afternoon than traders who, by the midpoint of the day, have trading
losses.

Our analysis can be applied in all of these settings. A model that defines
prospect theory over the gains and losses an investor earns over a fixed interval,
whether a day or a year, often predicts the opposite of the disposition effect.
Such a model is therefore not well suited to explaining the above findings. A
model that defines prospect theory over realized gains and losses explains the
evidence more readily.

V. Conclusion

In this paper, we investigate whether prospect theory preferences can predict
a disposition effect. We consider two implementations of prospect theory: In one
case, preferences are defined over annual gains and losses; in the other, they
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are defined over realized gains and losses. Surprisingly, the annual gain/loss
model often fails to predict a disposition effect. The realized gain/loss model,
however, predicts a disposition effect more reliably.

The idea that investors might derive utility from the act of realizing a gain
or loss on a specific asset that they own has not received much attention in the
finance literature to date. Our analysis shows that, while an unusual feature
of preferences, utility from realized gains and losses nonetheless offers a sim-
ple way of thinking about a puzzling phenomenon, the disposition effect. This
suggests that it may be useful to conduct a more comprehensive analysis of
realized gain/loss utility and to see whether it can shed light on other aspects
of investor trading, or even on asset prices. Barberis and Xiong (2008) take a
first step in this direction.

Appendix

Proof of Proposition 1: We use the insight of Cox and Huang (1989) that,
when markets are complete, an investor’s dynamic optimization problem can
be rewritten as a static problem in which the investor directly allocates wealth
across final period states.

When the investor’s utility function is concave, the final period wealth allo-
cation is not path dependent: The optimal wealth allocation to node j at time
T does not depend on the path the stock price takes through the binomial tree
before arriving at that node. In our case, however, the investor has a prospect
theory utility function, which is not concave. His final period wealth allocation
could therefore be path dependent. To accommodate this possibility, we allow
the investor to allocate wealth across stock price paths. Later, we will argue
that it is reasonable to restrict our attention to final period wealth allocations
that are not path dependent.

There are M = 27 paths that the stock price can take to reach one of the date
T nodes. We denote these paths by i € {1, 2, ..., M}. The ex-ante probability of
path i is #;, so that

#i=1.

=

Il
—

13

The price of a contingent claim that pays $1 at time T if the stock price evolves
along path i is p;. The state price density at the endpoint of the path is therefore
q; = pi/#;. In addition, Wy is the investor’s initial wealth at time 0, R is the
per-period gross risk-free rate, and {W; }i]‘i , are the investor’s wealth allocations
at the end of each path. Hats indicate variables that are indexed by path,
rather than by node. While the optimal date T' wealth allocations may be path
dependent, the state price densities are not: If paths i and j end at the same
date T node, then §; = ¢;. We compute the state price density explicitly later
in the proof.

Applying the reasoning of Cox and Huang (1989), we can rewrite the problem
in (10) to (12) as
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M
V= max Zﬁiv(Wi — WoR?), (A1)
subject to the budget constraint
M
Zﬁiéi Wi =W, (A2)
i=1
and the nonnegativity of wealth constraint
W, >0, 1<i<M. (A3)

We write the reference level of wealth WOR]? as W, for short, and define

; = W; — W to be the investor’s gain/loss relative to that reference level. The
problem in (A1) to (A3) then becomes'?

M
V= 7 0(W;), A4
I&%}}X ;n v(;) (A4)
subject to
M
> #igib; =0 (A5)
i=1
w;>-W, 1<i<M. (A6)

We now prove the proposition through a series of lemmas.

LeEmMA Al:  There exists at least one optimum.

Proof of Lemma Al: The set of feasible {tb;} defined by constraints (A5) and
(A6) is compact. The existence result then follows directly from Weierstrass’s
theorem. Q.E.D.

We now describe some of the properties of the optimum. Without loss of gen-
erality, we assume

~l—an—a ~l—as—o ~Al—as—a
Ty gy =Ty 4y = =Ty Gy -

Lemma A2: If ﬁz%[“(j]ff‘ > )»7%117"‘@1*“, {i; = O}f‘i1 cannot be the optimum.

10T what follows, the term “wealth allocation” sometimes refers to a wealth level, such as W;,
and sometimes to a gain/loss, such as ;. It will always be clear from the context which of the two
meanings applies.
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Proof of Lemma A2: We prove the lemma by contradiction. Suppose that
(; = O}f‘i 1 is the optimum, so that the investor’s value function takes the value
V = 0. Consider the strategy

. . N . 141
W =—-x,We=---=wWy_-1=0,by = X

’

AmMqm
where x € (0, W]. By construction, this strategy satisfies the budget constraint.
The associated value function is

Al—aan—a

Aa A Al—aA—a
. A7qY . iy q .
V’=nMAa1Ai x“—knlx“=<u—k #1x% >V =0.
%4 7
MM 1 4

Thus, we obtain a contradiction; {{D; = O}f‘i , cannot be the optimum. Q.E.D.

LemmA A3:  If the investor’s optimal gain/loss W; is different from zero at the
end of some path, then it is different from zero at the end of all paths.

Proof of Lemma A3: We prove the lemma by contradiction. Suppose that the
investor’s gain/loss is zero at the end of path i, so that ; = 0. If the investor’s
gain/loss is negative at the end of one path, it must be positive at the end of an-
other path. We therefore assume, without loss of generality, that the investor’s
gain/loss is positive at the end of path j, so that tv; = x > 0. The contribution of
pathsi and j to total utility is J = 7 ;x*. We now modify this strategy by moving
a small amount of wealth § > 0 from path j to path i, so that

Tiqi

T4

Lbi=8, Zi)j =X —

The contribution of paths i and j to total utility is now

J(8) = #;8° + #; (x - a) .
It is straightforward to verify that

J'(0) > 0,

so that moving wealth from path j to path i increases the investor’s value func-
tion. This contradicts the initial assumption that @; = 0 is optimal. Hence, the
optimal gain/loss is different from zero at the end of all paths. Q.E.D.

LemmA A4:  If the optimal allocation is nonzero, there must be at least one

path at the end of which the gain/loss is —W, so that the investor is wealth
constrained.

Proof of Lemma A4: Suppose that @0 = (i1, e, ..., Wy) is a nonzero optimal
allocation, so that the value function J(w) > J(0) = 0. Suppose also that the
wealth constraint is never binding, so that ; > —W, Vi. This implies that there
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exists k£ > 1 such that kw is a feasible allocation, which, in turn, means that
J(kw) = k*J (W) > J (). Thus, we have a contradiction. Q.E.D.

In any nontrivial optimum—any optimum in which @; does not equal zero for
all i—there are three possible wealth allocations at the end of a path: a positive
allocation (i; > 0), an unconstrained negative allocation (—W < w; < 0), or a
constrained negative allocation (i0; = —W). In particular, from Lemma A3, we
know that @; = 0 cannot be an optimal allocation.

To solve for the optimal allocation, we use the Lagrange multiplier method.
The Lagrangian is

M M M
L=7% &) — o ) Mgt + Y wii + W),
i=1 i=1 =1

where 1o > 0is the multiplier associated with the budget constraint and u; > 0
is the multiplier associated with the wealth constraint on path i. The first-order
condition for ; is

V') = poGi — wi/fi, 1<i<M.
Since u; is associated with an inequality constraint,

wi=0if w; >-W, 1<i<M,
and

Mi>0ifﬁ)i=—W, 1<i<M.

Since v'(-) ranges from zero to infinity in both the negative and positive do-
mains, there are three possible solutions to the first-order condition:

1. A positive wealth allocation:

1

T—a

wi=< Oﬁ) . (A7)
Hog;

2. An unconstrained negative wealth allocation:

1
A\ e A=
; = _< il ) | if g > W), (A8)
Hogi Ho
3. A constrained negative wealth allocation:
= A A (1
Wi = —W, if g > LW, (A9)
o
For any solution to the first-order condition, we sort the M paths based
on their respective wealth allocations: paths {1, ..., k} have a positive alloca-
tion, paths {£ + 1, ..., m} have an unconstrained negative allocation, and paths

{m+1,..., M} have a constrained negative allocation.
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The multiplier uo can be determined from the budget constraint
k m M ~
Zﬁ'iéilfbi—i- Z ﬁj@jlfi)j = Z ﬁ'lqlW.
i=1 j=k+1 I=m+1

Substituting in the values of i;, we obtain

M
4 W Y aa
<i>” _ ol (A10)
Mo k N 1 m A AT
D il AT ) A4
i=1 Jj=k+1
The value function is therefore
k m M
V=Y my - Y i) = Y amWe
i=1 Jj=k+1 l=m+1
M «(p o, m L\ M
I=m+1 i-1 Jj=h+1 I=m+1

(A11)

The optimal date 7' wealth allocation is determined by comparing all possi-
ble solutions. Such a comparison reveals several additional properties of the
optimal allocation.

Lemma A5: It is not optimal to have a path with an unconstrained negative
allocation, w; : —W < w; < 0.

Proof of Lemma A5: From equation (Al11), we see that replacing an uncon-
strained negative wealth allocation with a positive wealth allocation strictly
improves the value function. Thus, it is not optimal to have a path with an
unconstrained negative allocation. Q.E.D.

Lemma A5 implies that we can write the value function as

k L\ « M
V=W <Zﬁiqi ) (Z ﬁ,ql) DI A (A12)
i=1 [

l=k+1 =k+1

LemmA A6: Suppose that, in each period, a good stock return and a poor stock
return are equally likely. Then any path with a constrained negative wealth
allocation must have a state price density not lower than that of any path with
a positive allocation.
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Proof of Lemma A6: Given the equal probability of a good or poor return in
each period, each price path has the same probability: #; =27, i=1,..., M.
The value function is then

A 3 -« M o
V=2Twe (quﬂ-”) (Z ql> —AM =k |. (A13)

l=k+1

Suppose that §; <§; for some ie{l,...,k} and le{k+1,...,M}.
Equation (A13) shows that assigning path / a positive wealth allocation and
path i a constrained negative allocation —W strictly improves the value func-
tion. Thus, we obtain a contradiction. Any path with a constrained negative
allocation must therefore have a state price density not lower than that of any
path with a positive allocation. Q.E.D.

Lemma A6 shows that the optimal wealth allocation has a threshold property:
Paths with a state price density higher than a certain level have a constrained
negative allocation, while paths with a state price density lower than that level
have a positive allocation. This threshold property may not hold if the proba-
bilities of a good or poor return in each period are not the same.

Another corollary of Lemma A6 is that the final date wealth allocations can be
path dependent at, at most, one node. If they were path dependent at more than
one node, we could find a path with a constrained negative wealth allocation
that had a state price density lower than that of a path with a positive wealth
allocation. This would contradict the lemma.

In Barberis and Xiong (2006), the NBER working paper version of this paper,
we show that if the wealth allocation is path dependent at even one final date
node, it is impossible to clear markets in a simple equilibrium model with both
expected utility investors and prospect theory investors. Since, in our view, this
is an undesirable property, we now restrict our attention to path independent
wealth allocations. We can therefore revert to the notation of Section II where
P.;, W;;, x;;, and q;; denote the stock price, optimal wealth allocation, optimal
share allocation, and state price density in node i at date ¢.

The final ingredient we need to complete the proof is the state price density
g:,i- Since the price process for the risky asset is homogeneous, the state price
process q;; must also be homogeneous. We therefore assume that, from one
period to the next, q;; changes either by a factor of g, or by a factor of qq,
where, as usual, the subscripts © and d refer to movements up and down the
binomial tree, respectively. A standard property of the state price density is
that it correctly prices the stock and the risk-free asset at each node, given
next-period prices:

1 1
Eq;tJrl,iPtJrl,i + 5Qt+1,i+1Pt+1,i+1

P ; =
Qt,i

1 1
- R — 1R
1 2‘1t+1,z F+ 2Qt+1,z+1 f
Qt,i ’
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which are equivalent to
2= unu +qq Rq

2 =q,+
Rf ={qu 1t4q-

We therefore obtain

L= 2y mRd) - ST By Al4
W= R Ra—Ry) %7 R (Ry— Ry (ALD)

Since (Rf — Rq) < (R, — Rr), we have q,, < qq.

We can now complete the proof. From (A14), we know that the state price den-
sity increases as we go down the 7'+ 1 date T' nodes, so that qr1 < qr2 <--- <
qr,7+1. From Lemma A6, equation (A7), and equation (A10), and remembering
that we are now summing over nodes, not paths, we know that, for the £* top
nodes in the final period, where 1 < 2* < T, the investor chooses an optimal
wealth level of

. T+l

ar; " Z qrimT,
1=k"+1

k* o
> dri T
=1

where 77 is the probability of reaching node / on date T

Wr; =W |1+

. *
, 1<k%,

T12-T
(T -1+ -1

Tl

For the bottom 7" + 1 — £* nodes, he chooses an optimal wealth level of zero.

To determine k£*, we compute the investor’s utility for each of the T possible
values of k*, 1 < k < T, and look for the wealth allocation strategy that maxi-
mizes utility. Suppose that the investor chooses a positive wealth allocation for
the top £ nodes. From equation (A12), utility is then given by

ko, I—a /pyg “ T+1
V=W Y gr) > qramrg) =Y wr |
=1 l=k+1 I=k+1

k* is the value of & that maximizes this utility.

Given the optimal wealth levels in the final period, W7 ;, we can compute
optimal wealth levels at all earlier dates using the state price density, as shown
in equation (26).

The final step is to compute optimal share holdings at each node. Suppose
that, in node i at date ¢, the investor holds x;; shares of stock and B dol-
lars of the risk-free asset. His wealth in node i at date ¢ + 1 will therefore be
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%P1 + BRr, and in node i + 1 at date ¢ + 1, x;;P;y1,,+1 + BRr. The difference
must equal Wy 1; — Wii1i41, so that

. Werti — Wegtim Werti — Werniv1
ti= =

, = T e
P — Priivn Po(RLPPRY — RMRY)

which is equation (25). This completes the proof of Proposition 1. Q.E.D.
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