
Learning  to program  simulations  in 
Mathematica.
by W. Garrett Mitchener

In[1]:= Date[]

Out[1]= 82005 , 8, 9, 17, 17, 40.140521 <

Basics

à Definitions

Mathematica allows you to define things in three ways.

First: Direct assignment.  This is done with the : = symbol, and it creates a global definition.  The 
pattern you give on the left of the := will  be replaced with exactly the expression you give on the right.

Here’s an example that defines y 
to be a linear expression with an 
x in it.

In[2]:= y := 5 x + 3

In[3]:= y

Out[3]= 3 + 5 x

To see all definitions associated 
with a symbol, you can enter a ? 
followed by the symbol’s name.

In[4]:= ? y

Gl obal ‘ y

y : = 5 x + 3

Now suppose we define x to be 
-8:

In[5]:= x := -8

Now when you ask for the value 
of y, you get the expression 
3 + 5 x evaluated with whatever 
other definitions Mathematica 
has been given, in this case, with 
x := -8.

In[6]:= y

Out[6]= -37



But if you ask to see the defini-
tion of y, it’s still an expression:

In[7]:= ? y

Gl obal ‘ y

y : = 5 x + 3

So if you re−define x and ask for 
the value of y, you get some-
thing different than we got 
before.

In[8]:= x := 10

In[9]:= y

Out[9]= 53

The second kind of assignment is assignment with evaluation, which is done with the = symbol.  This 
is very much like direct assignment, but the pattern on the left of the = is assigned to be the value of 
the expression on the right.  In other words, Mathematica does work on the right−hand−side before 
making the assignment.

Let’s define z like this. In[10]:= z = y^2 + x

Out[10]= 2819

Now the definition of z is: In[11]:= ? z

Gl obal ‘ z

z = 2819

So if we change x, it causes a 
change in the value of the expres-
sion y, but doesn’t change the 
definition of y.  But, it doesn’t 
change the value of z because 
there is no x or y  in the defini-
tion of z.  Mathematica has 
already replaced all the x’s and 
y’s in the expression we used to 
define z with the value they had 
at the time we made the 
definition.

In[12]:= x := 2

In[13]:= y

Out[13]= 13

In[14]:= ? y

Gl obal ‘ y

y : = 5 x + 3

In[15]:= z

Out[15]= 2819

In[16]:= ? z

Gl obal ‘ z

z = 2819

You sometimes need to remove definitions because you made a mistake, or perhaps you’ve re−written 
something and an old definition is in the way. 

You erase a definition by assign-
ing "nothing" to a symbol, which 
is done with the =. operator:

In[17]:= x =.

In[18]:= ? x

Gl obal ‘ x
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Now watch what happens if we 
ask for the value of y.  Mathemat-
ica does the best it can with 
evaluating y, but since x is no 
longer defined, it evaluates to 
itself rather than a number.

In[19]:= y

Out[19]= 3 + 5 x

You can also get rid of unwanted 
definitions with the Cl ear  
function.

In[20]:= Clear@yD
In[21]:= ? y

Gl obal ‘ y

The  third kind of definition is through a rule table.  Mathematica applies all the definitions you’ve 
given it through := and = whenever it has to evaluate an expression.  But a rule table gives a list of 
definitions that only apply when you decide to use them.  A rule table is a list of rules, and is entered 
as rules separated by commas between curly braces.

Here’s an example of a rule table 
that defines a to be 2, b to be 3, 
and c to be 47.  The arrow ® is 
entered by typing -> and Mathe-
matica magically replaces the - 
and > with an arrow symbol 
when you type the next character.

In[22]:= 8a ® 2, b ® 3, c ® 47<
Out[22]= 8a ® 2, b ® 3, c ® 47<

The definitions in a rule table aren’t used until you apply them to an expression with the / .  operator.  
Then, the expression is evaluated with those definitions.

Here’s an example using the rule 
table from before.  Without the 
rule table, this expression evalu-
ates to itself because we haven’t 
define a, b, or c.

In[23]:= a + b^2 + c^3

Out[23]= a + b2 + c3

But if we apply the rule table, it 
evaluates to a number:

In[24]:= a + b^2 + c^3 �. 8a ® 2, b ® 3, c ® 47<
Out[24]= 103834

Rules made with the arrow ® behave like assignments made with = in that the right hand side is 
evaluated.

To illustrate this, notice that in 
this rule table, all the expres-
sions on the right hand side of its 
arrows are evaluated.

In[25]:= 8u ® x^2, v ® 1 - y<
Out[25]= 8u ® x2 , v ® 1 - y<
In[26]:= u - v �. 8u ® x^2, v ® 1 - y<
Out[26]= -1 + x2 + y

Occasionally, you need rules that don’t evaluate their right−hand−side.  To do that, you enter  :> 
instead of -> and it produces a different kind of arrow ¦.  These definitions behave like :=.  You 
don’t need these rules very often.  I’ll  show an example later.
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à Functions

The concept of a function is central: Most of the work done in Mathematica takes place through func-
tions.  A function is a definition that defines an expression of the form f @x, y, z, ...D to have a value 
that’s an expression in x, y, z... 

Note that this is the computational notion of the term function.  In calculus, you use the 
analytical definition of the term function, which is a mapping between two sets with 
particular properties, and it may or may not be anything easy to write down or compute.  
Sorry about the confusing terminology but there’s nothing I can do about it.

Here’s how to define a function 
that gives two times a number 
plus 3.  I’ve used x for the 
argument.

In[27]:= f@x_D = 2 x + 3

Out[27]= 3 + 2 x

In[28]:= f@10D
Out[28]= 23

A couple of things to note.

è Mathematica uses square brackets @D to indicate the arguments of a function.  That’s because it 
allows you to put two expressions next to each other with a space to indicate multiplication, as 
in x y.  If you used parentheses, then the expression sHx + yL could either mean the product of s 
and x + y or the value of the function s at x + y.

è The left hand side of the assignment should be a pattern.  A plain symbol like x in a pattern only 
matches itself.  You have to indicate that a symbol is to be replaced by the argument’s value by 
making it a pattern variable.  There are several ways to do this, but the easiest is by adding an 
underscore _.

Here’s what happens if you 
forget the _ :

In[29]:= g@xD = 5 x - 8

Out[29]= -8 + 5 x

So far so good: In[30]:= ? g

Gl obal ‘ g

g@xD = -8 + 5 x

In[31]:= g@xD
Out[31]= -8 + 5 x

But this is clearly wrong: In[32]:= g@8D
Out[32]= g@8D

Here’s the same problem using a 
rule table:

In[33]:= h@8D �. 8h@xD ® 2 x^2<
Out[33]= h@8D
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What’s happened is that by 
defining g@xD and h@xD we’ve 
given a definition that only 
applies when the argument is the 
symbol x.  Instead, what we 
usually want is to make x a 
pattern variable, so that the 
definition applies no matter what 
the argument to the function is.

In[34]:= Clear@gD
In[35]:= g@x_D = 5 x - 8

Out[35]= -8 + 5 x

In[36]:= ? g

Gl obal ‘ g

g@x_ D = -8 + 5 x

In[37]:= g@xD
Out[37]= -8 + 5 x

In[38]:= g@yD
Out[38]= -8 + 5 y

In[39]:= g@8D
Out[39]= 32

In[40]:= h@8D �. 8h@x_D ® x^2<
Out[40]= 64

Again, we can get rid of 
unwanted definitions by calling 
Cl ear :

In[41]:= Clear@f, gD
à Exercises

Exercise 1

Define a function that gives the square of a number plus seven.

Exercise 2

Define a function that takes the radius of a circle and gives its area.  To get  Π, type Pi or click 
on the  Π  symbol in the basic input palette.

In[42]:= Pi

Out[42]= Π
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A random  walk  simulation

Let’s say you want to simulate a random walk on the numbers 1, 2, ..., n.  Imagine these numbers 
written out in a line and an ant that can crawl from one number to the next.  At each instant in time, the 
ant can either step left, step right, or stay put, based on a random number.  We want to simulate paths 
the ant takes.

à First  simulation

We’ll  keep the first implementation very simple.  The ant goes left or right or stays with probability 1�����3 , 
and if it gets to the end a tries to walk off the end, it stays put instead.  We’ll represent the ant’s loca-
tion as a number between 1 and n = 10.

Conditional  functions

We need to define a function that takes the ant from one step to the next.  Mathematically, we imagine 
taking the current location of the ant k, and a random number u, uniformly distributed between 0 and 
1.  Our update function should do something like this:

f@k, uD =

loooomnoooo
min @k + 1, 10D if u < 1����3

max@1, k - 1D if u > 2����3

k otherwise

So if u < 1�����3 , the ant tries to move right, but if it tries to go past 10, it has to stay put.  If u > 2�����3 , the ant 
tries to move left, but if it tries to go past 1, it has to stay put.  That gives us the transition rule we 
wanted.  Now how do we explain this to Mathematica?

The function will  take the current location k, and a number u between 0 and 1 as arguments.  The 
number u is how we’ll decide whether the ant moves right or left or stays put.  (We’ll give our function 
a random number in a minute.)  We’ll also call it MoveAnt instead of f .  The more descriptive the 
function name, the easier it is to remember what it’s supposed to do.  This is what we have so far:

MoveAnt @k_ , u_D : =

Now we have to express a decision.  If u < 1�����3 , then try to go right:
MoveAnt @k_ , u_D : = If @u < 1 � 3, Min @k + 1, 10D, ... D

This introduces two built−in Mathematica functions, Mi n and I f , and the comparison operators.
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The Mi n function returns the 
smallest of its arguments.  It also 
works on lists.  Notice that if 
you give Mi n non−numeric 
arguments, it doesn’t know quite 
what to do, so it remains unevalu-
ated.  There’s also a Max  func-
tion that returns the largest of its 
arguments.

In[43]:= Min@1, 2, 3D
Out[43]= 1

In[44]:= Min@-10, -11, -30D
Out[44]= -30

In[45]:= Min@81, 2, -1<D
Out[45]= -1

In[46]:= Min@a, b, cD
Out[46]= Min @a, b, cD

The I f  function is one way to 
express decisions.  It takes three 
arguments: (1) a Boolean expres-
sion (that is, something that 
evaluates to Tr ue or Fal se), 
(2) an expression to evaluate if 
the first argument is Tr ue, and 
(3) an expression to evaluate if 
the first argument is Fal se.

In[47]:= If@True, 4, 5D
Out[47]= 4

In[48]:= If@False, 4, 5D
Out[48]= 5

You often use comparison opera-
tors as the first argument to I f .  
These compare two numbers and 
return Tr ue or Fal se.  Less−
than < and greater−than > are 
pretty obvious.  If you want 
less−than−or−equal−to, type <= 
and when you type the next 
character, it will  magically turn 
into £.  Same for >= which turns 
into ³.  If you just want 
equal−to, you have to be careful.  
Remember that = makes a defini-
tion, so you can’t use that.  
Instead, Mathematica has a 
separate notation, a double 
equals sign == that magically 
turns into �.  This is the proper 
way to check for equality.  For 
not−equal−to, you enter !=, 
which magically turns into ¹.

In[49]:= 5 < 10

Out[49]= True

In[50]:= 5 > 10

Out[50]= False

In[51]:= 10 < 10

Out[51]= False

In[52]:= 10 £ 10

Out[52]= True

In[53]:= Sqrt@2D < 2

Out[53]= True

In[54]:= 10 � 10

Out[54]= True

In[55]:= 10 � 9

Out[55]= False

In[56]:= 10 = 9

From In[56]:= Set :: setraw  :  Cannot assign to raw object 10. More¼

Out[56]= 9

In[57]:= 10 ¹ 9

Out[57]= True

So that gives us the first branch of the decision, that is, when to move right.  But we have to handle 
another decision, which is when to move left.  First, you should know that you can make your program 
more readable by hitting the Enter key and putting in some line breaks:
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MoveAnt @k_ , u_D : = If @u < 1 � 3,
Min @k + 1, 10D,
... D

Now for when to move left:
MoveAnt @k_ , u_D : = If @u < 1 � 3,

Min @k + 1, 10D,
If @u > 2 � 3,

Max@k - 1, 1D,
... DD

Notice that Mathematica will  automatically indent things based on how they’re nested.  That also 
makes your program more readable.  The last case is that the ant stays still, and we’re done:

In[58]:= MoveAnt@k_, u_D := If@u < 1 � 3,
Min@k + 1, 10D,
If@u > 2 � 3,
Max@k - 1, 1D,
kDD

Let’s test it out:

In[59]:= MoveAnt@3, 1 � 10D
Out[59]= 4

In[60]:= MoveAnt@3, 9 � 10D
Out[60]= 2

In[61]:= MoveAnt@3, 1 � 2D
Out[61]= 3

In[62]:= MoveAnt@10, 1 � 10D
Out[62]= 10

In[63]:= MoveAnt@1, 9 � 10D
Out[63]= 1

Uniform  random  numbers

We want the ant to move at random, so we need to pass our MoveAnt function some random numbers.  
Luckily, Mathematica has a built in function called Random.
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Every time you call Random, it 
produces a number between 0 
and 1 that is for all intents and 
purposes random.  It takes no 
arguments, just creates a num-
ber, and it’s different each time.  
The brackets [] are necessary.

In[64]:= Random@D
Out[64]= 0.0305317

In[65]:= Random@D
Out[65]= 0.453709

In[66]:= Random@D
Out[66]= 0.283504

So when you evaluate this expression, it simulates the ant moving at random:

In[67]:= MoveAnt@5, Random@DD
Out[67]= 4

In[68]:= MoveAnt@5, Random@DD
Out[68]= 5

In[69]:= MoveAnt@5, Random@DD
Out[69]= 5

We can define a new function that moves the ant at random:

In[70]:= MoveAntRandom@k_D := MoveAnt@k, Random@DD
This is a place where you need 
the :=. Watch what happens if 
you use =.  Essentially what 
goes wrong, is that the Random[]  
gets evaluated before the defini-
tion is made, which means the 
same u will  always be used, 
which makes the ant always 
move the same direction.  And 
that’s not what we want.

In[71]:= Wrong@k_D = MoveAnt@k, Random@DD
Out[71]= Max@1, -1 + kD
In[72]:= ? Wrong

Gl obal ‘ Wr ong

Wrong@k_ D = Max@1, -1 + kD

Simulating  many  steps

The real power of a computer is that it can automatically do something over and over without getting 
bored.  So how do we encode repetition?  And in particular how do we keep up with the location of the 
ant?

There are lots of ways to do this.  One is with the Mathematica function Nest Li st .
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The Nest Li st  function takes a 
function, and a starting point, 
and a count.  It then creates a list 
consisting of your starting point, 
then the function applied to the 
starting point, then the function 
applied to that, and so on. 

In[73]:= NestList@f, x, 3D
Out[73]= 8x, f @xD, f @f @xDD, f @f @f @xDDD<
In[74]:= f@x_D = x + 1

Out[74]= 1 + x

In[75]:= NestList@f, 10, 3D
Out[75]= 810, 11, 12, 13<
In[76]:= Clear@fD

So let’s try this:

In[77]:= NestList@MoveAntRandom, 5, 10D
Out[77]= 85, 6, 7, 7, 6, 5, 6, 7, 7, 8, 7<

Let’s see if we can get a picture.  We’ll move the any many steps now.

In[78]:= antPath = NestList@MoveAntRandom, 5, 40D
Out[78]= 85, 6, 5, 6, 6, 5, 6, 5, 5, 6, 5, 4, 3, 2, 3, 3, 3, 4, 5, 4,

5, 4, 3, 3, 4, 3, 4, 4, 3, 4, 3, 2, 2, 1, 2, 1, 1, 2, 1, 2, 3<
The simplest way to get a picture is with Li st Pl ot , which has the unfortunate side effect of drawing 
the picture sideways.  I’d really like to see the ant moving left and right, with time going up, but we’ll 
leave that for later.

In[79]:= ListPlot@antPath, PlotJoined ® TrueD

10 20 30 40

1

2

3
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5

6

Out[79]= � Graphics  �
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Using  anonymous  functions

Here’s a very useful thing to know:  You can define anonymous functions in Mathematica.  That may 
not seem very useful, after all, how can you use a function if it has no name.  But, very often you need 
to pass a function as an argument to another function, as in Nest Li st , and you need to specify some of 
its arguments.

Here’s how to create an anony-
mous function that takes a num-
ber x and returns x2 + 1.  The 
first item is a list of argument 
names, and the second is an 
expression for the return value.

In[80]:= Function@8x<, x^2 + 1D
Out[80]= Function @8x<, x2 + 1D

Suppose the function you want 
to iterate takes extra arguments.  
Then, this is how you can call 
Nest Li st  and specify a particu-
lar value for that extra argument.  
You use Funct i on to create a 
function that takes one value, 
and passes it to h, but the other 
arguments to h are fixed.  This 
construction is really useful 
when you want to define a 
function that uses Nest Li st  and 
you want to pass in that extra 
argument.  In this example, hIter 
takes an initial x, the value of c 
to use when calling h, and how 
many steps to iterate.   You will  
write functions like hIter all the 
time when using functions like 
Nest Li st  and Map.

In[81]:= h@x_, c_D = x^2 + c

Out[81]= c + x2

In[82]:= NestList@Function@8x<, h@x, 1 � 4DD, 0, 3D
Out[82]= 80, 1����4 , 5������16 , 89��������256 <
In[83]:= hIter@xInitial_, c_, nSteps_D :=

NestList@Function@8x<, h@x, cDD, xInitial, nStepsD
In[84]:= hIter@0, 1 � 4, 3D
Out[84]= 80, 1����4 , 5������16 , 89��������256 <
In[85]:= Clear@h, hIterD

Exercises

Exercise 3

Write a new MoveAnt function that takes two additional arguments, pleft  and pright , so that 
the ant moves left with probability pleft  and right with probability pright .

Exercise 4

Extend your MoveAnt function from the previous problem so that it also takes n, the number 
of positions our ant can occupy, as an argument.
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Exercise 5

Using your MoveAnt function, plot a sample path of an ant that moves left with probability 
1�����2 , right with probability 1�����3 , walking on the numbers 1 to 50.  Plot 50 steps.  Try to do this 
using NestList and an anonymous function, as in the example.

à Second  simulation  

Let’s try something different.  Instead of the previous simulation, where the ant moved left or right 
with some probability, let’s make it so that the ant is facing left or right, and at each time step, it either 
moves forward or turns around.  This means that the ant has state in addition to its location, so we have 
to keep up with more information.

Representing  multi−part  data (records)

Records are a useful concept that most programming languages support.  A record allows you to com-
bine several pieces of information into a single place.  A classic example is that a simple address 
consists of a person’s name, a street with a house or building number, a city, a state, and a zip code.  
To represent an address in a computer, you need to keep up with these five pieces of information, so 
it’s common to use some feature of the language to keep all the parts of an address together.

Records are called "structures" in C and C++ and related languages.

In Mathematica, there are a couple of ways to represent a record.  The simplest is to take advantage of 
the fact that if Mathematica encounters an expression for which there are no definitions, that expres-
sion evaluates to itself.  So you can represent an address as an expression (that looks like function 
application) whose head is "Address" and whose arguments are strings of characters that represent the 
parts of the address.

In[86]:= Address@"Elmo", "123 Sesame St.", "New York", "NY", "10023"D
Out[86]= Address @Elmo, 123 Sesame St . , New York , NY, 10023 D

Since an ant now has to have a 
direction as well as a location, 
we need to use a record with two 
pieces of information.  We can 
use the symbols Left and Right 
for the orientation.  So this, for 
example, represents an ant on 
space number 5, facing left.

In[87]:= Ant@5, LeftD
Out[87]= Ant @5, Left D

Now we have to encode the rule for moving an ant: It takes a step with probability 1� 2, that is, if the 
random number u is less than 1� 2, otherwise it turns around.  Again we have to use Max and Mi n to 
make sure it doesn’t step out of bounds.

f@Ant @k, Left D, uD =
lomno Ant @Max@1, k - 1D, Left D if u < 1����2

Ant @k, Right D otherwise
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f@Ant @k, Right D, uD =
lomno Ant @Min @10, k + 1D, Right D if u < 1����2

Ant @k, Left D otherwise

Again, we’ll call the update 
function MoveAnt because f  is 
such an uninformative name.  
You can see here that we use 
Left instead of Left_.  That’s 
because we want to give a defini-
tion that applies when the ant’s 
second item is the symbol Left, 
so we don’t want to use Left as a 
pattern variable.  We also leave 
the underscore off Right for the 
same reason.

Also, you can see that we can 
give Mathematica several defini-
tions for MoveAnt.  It remem-
bers the pattern we used in each 
definition, and that’s how it 
keeps them straight.

In[88]:= MoveAnt@Ant@k_, LeftD, u_D := If@u < 1 � 2,
Ant@Max@1, k - 1D, LeftD,
Ant@k, RightDD

In[89]:= MoveAnt@Ant@k_, RightD, u_D := If@u < 1 � 2,
Ant@Min@10, k + 1D, RightD,
Ant@k, LeftDD

Let’s test our new definition of 
MoveAnt:

In[90]:= MoveAnt@Ant@5, LeftD, 0.1D
Out[90]= Ant @4, Left D
In[91]:= MoveAnt@Ant@1, LeftD, 0.1D
Out[91]= Ant @1, Left D
In[92]:= MoveAnt@Ant@8, RightD, 0.1D
Out[92]= Ant @9, Right D
In[93]:= MoveAnt@Ant@8, RightD, 0.9D
Out[93]= Ant @8, Left D

Exercises

Exercise 6

Write a new MoveAnt function that takes two additional arguments, pstep and n, so that the 
ant steps forward with probability pstep and turns around with probability 1 - pstep.  The 
argument n is the number of positions our ant can occupy.

Exercise 7

Write a new definition for MoveAntRandom that takes an ant, pstep, and n, and moves the ant 
at random.
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Exercise 8

Create a path with 20 random steps of an ant that moves with probability 2�����3  and turns with 
probability 1�����3  on the numbers 1 to 15.  (Consider using an anonymous function.)

Solution  (hidden)

Transforming  lists  of  data

We now have a way to produce a list of all the states our ant has been in.  But we can’t just plot this 
list because it’s a list of Ant@k, directionD,  not a list of numbers.  Let’s try to plot a list of just the 
positions of the ant.

So we’ll have something to work with, here’s a sample path I created.

In[99]:= randomAntPath = 8Ant@5, RightD, Ant@6, RightD,
Ant@7, RightD, Ant@8, RightD, Ant@8, LeftD, Ant@7, LeftD,
Ant@6, LeftD, Ant@6, RightD, Ant@6, LeftD, Ant@6, RightD,
Ant@7, RightD, Ant@8, RightD, Ant@9, RightD, Ant@10, RightD,
Ant@11, RightD, Ant@12, RightD, Ant@12, LeftD,
Ant@11, LeftD, Ant@10, LeftD, Ant@9, LeftD, Ant@8, LeftD<

Out[99]= 8Ant @5, Right D, Ant @6, Right D, Ant @7, Right D,
Ant @8, Right D, Ant @8, Left D, Ant @7, Left D, Ant @6, Left D,
Ant @6, Right D, Ant @6, Left D, Ant @6, Right D, Ant @7, Right D,
Ant @8, Right D, Ant @9, Right D, Ant @10, Right D,
Ant @11, Right D, Ant @12, Right D, Ant @12, Left D,
Ant @11, Left D, Ant @10, Left D, Ant @9, Left D, Ant @8, Left D<

Usually we don’t want to see the long output of a calculation like this.  Mathematica can be told not to 
show the output:  Just end the command with a semi−colon (;)  Later, when we do some very long 
simulations, you’ll definitely want to use the semi−colon.  Otherwise your notebook will  be full of 
useless output.

In[100]:= randomAntPath = 8Ant@5, RightD, Ant@6, RightD,
Ant@7, RightD, Ant@8, RightD, Ant@8, LeftD, Ant@7, LeftD,
Ant@6, LeftD, Ant@6, RightD, Ant@6, LeftD, Ant@6, RightD,
Ant@7, RightD, Ant@8, RightD, Ant@9, RightD, Ant@10, RightD,
Ant@11, RightD, Ant@12, RightD, Ant@12, LeftD,
Ant@11, LeftD, Ant@10, LeftD, Ant@9, LeftD, Ant@8, LeftD<;

We need a function that will  take 
an ant and give just its position.

In[101]:= AntPosition@Ant@k_, dir_DD := k
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To go from a list of Ant records 
to a list of positions, we need to 
apply AntPosition to each entry 
in the list.  The best way to do 
that is to use the Map function.  
Map takes a function and a list, 
and returns the list you get by 
applying that function to each 
item in the list.

In[102]:= Map@f, 8a, b, c<D
Out[102]= 8f @aD, f @bD, f @cD<

So here’s how to get just the 
positions out of our list of ants:

In[103]:= Map@AntPosition, randomAntPathD
Out[103]= 85, 6, 7, 8, 8, 7, 6, 6, 6, 6, 7, 8, 9, 10, 11, 12, 12, 11, 10, 9, 8<

And this we know how to plot:

In[104]:= ListPlot@Map@AntPosition, randomAntPathD, PlotJoined ® TrueD
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Out[104]= � Graphics  �

You’ll  notice that this ant behaves very differently from our first ant.  It tends to walk in one direction 
for a while, then turn around and walk the other way for a while.

Exercises

Exercise 9

Create a path with 50 random steps of an ant that moves with probability 2�����3  and turns with 
probability 1�����3  on the numbers 1 to 15.  Plot just the positions.

Exercise 10

Write a function AntOrientation that takes an ant and gives just its orientation.
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Exercise 11

Using the path you created, find a way to plot the just the ant’s orientation.  This means you’ll 
need to come up with a graphical representation for Left and Right.

à Third  simulation

We’ve seen our ant move around on a line, but what about on a plane?  Let’s write a new simulation 
where the ant is facing some orientation.  It steps forward with some probability pstep, and turns with 
probability pturn = 1 - pstep.  If the ant decides to turn, it turns left with probability pleft  and right with 
probability pright = 1 - pleft .  The ant is moving around on an n´ n grid.

As before we need to keep track 
of the ant’s position and orienta-
tion.  It’s best to represent the 
ant’s location as an ordered pair 8x, y< because this is the form 
that points should be in for 
Li st Pl ot  and other built−in 
function.  The orientation can’t 
be just left and right anymore.  
Let’s use the symbols North, 
South, East, and West.  So in 
this new simulation, ants will  be 
represented as 
Ant@8x, y<, directionD.

In[105]:= Ant@83, 7<, SouthD
Out[105]= Ant @83, 7<, South D

Exercises

Since this simulation is more complicated, we’ll break up the MoveAnt function into smaller parts.  If 
you try to write the MoveAnt function all at once, you’ll find yourself drowning in all the different 
cases.

Exercise 12

Write a function TakeStep that takes a point 8x, y< and a direction North, South, East, or 
West, and returns the point 8xnext, ynext< you get by taking a step of size 1 in that direction.  
(Don’t worry about the boundary. We’ll handle that in the next exercise.)

Exercise 13

Write a function EnforceBoundary that takes a point 8x, y< and n and returns a point 8xfixed, yfixed<.  The new point must satisfy 1 £ xfixed £ n and 1 £ yfixed £ n.  If 8x, y< is 
already inside the box, then you shouldn’t change it.  But if 8x, y< is outside the box, you 
should return the point on the boundary closest to 8x, y<.  Your function should satisfy the 
properties that

EnforceBoundary@8n + 1, y<, nD = 8n, y<
EnforceBoundary@80, y<, nD = 81, y<
etc.

The idea is that when we write MoveAnt, there will  be a case where the ant must take a step.  
To write that case, we’ll first have the ant try to take a step, and use the EnforceBoundary 
function to make sure it doesn’t step outside the box.
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Exercise 13

Write a function EnforceBoundary that takes a point 8x, y< and n and returns a point 8xfixed, yfixed<.  The new point must satisfy 1 £ xfixed £ n and 1 £ yfixed £ n.  If 8x, y< is 
already inside the box, then you shouldn’t change it.  But if 8x, y< is outside the box, you 
should return the point on the boundary closest to 8x, y<.  Your function should satisfy the 
properties that

EnforceBoundary@8n + 1, y<, nD = 8n, y<
EnforceBoundary@80, y<, nD = 81, y<
etc.

The idea is that when we write MoveAnt, there will  be a case where the ant must take a step.  
To write that case, we’ll first have the ant try to take a step, and use the EnforceBoundary 
function to make sure it doesn’t step outside the box.

Exercise 14

Write a function Turn that takes an orientation (North, South, East, or West), and a direction 
(Left or Right), and returns the new orientation the ant gets by making a turn in the given 
direction.  For instance, if it’s facing north and has to turn right, it will  now be facing east.

Exercise 15

Now write the MoveAnt function.  It should take an ant, pstep, pleft , and the box size n.  How 
many random numbers should it take?  Be sure to use your TakeStep, EnforceBoundary, and 
Turn functions, as they will  make this function much shorter and easier to write.

Exercise 16

Write the MoveAntRandom function to go with your new MoveAnt function.

Exercise 17

Write a MakeRandomPath function that takes a record representing the initial position and 
orientation of the ant, pstep and pleft , the box size n, and the number of random steps for the 
ant to take.  It should return a list of ant records for the history of the ant’s steps.

Exercise 18

Make a random path where pstep = 2�����3 , pleft = 1�����2 , the box size is 100, and the ant takes 10000 
steps. (Hint: You really don’t want to see all the ant records on the screen, so end the com-
mand that creates the path with a semi−colon.)

  Now plot the path.

Solution  (hidden)

Example  random  ant path

Here’s a picture from my solution.  This is pretty ant−like.  (Well, ant’s don’t move on grids, but this is 
pretty good.)  I used the PlotRange option so that the entire box is visible, and that there’s a little bit of 
a gap between the box and the axes and the edges of the picture.  I used the AspectRatio option to 
make the plot square, that way, the grid isn’t squished into a TV−shaped rectangle.

In[122]:= antPathInPlane =
MakeRandomPath@Ant@84, 4<, NorthD, 2 � 3, 1 � 2, 100, 10000D;
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In[123]:= ListPlot@Map@AntPosition, antPathInPlaneD, PlotJoined ® True,
PlotRange ® 880, 101<, 80, 101<<, AspectRatio ® 1D
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Out[123]= � Graphics  �

A stratified  population  model  in  discrete  time.

à A model  with  adults  and children

Let’s suppose we want to model a population consisting of children and adults, with time being dis-
crete.  Each time step will  represent a year.  So we might say that each year, 1�������16  of all children are old 
enough to become adults, and each adult has a 1�������20  chance of becoming a parent.  To keep things sim-
ple, parents will  just have one child per year at most.  We’ll also include mortality: 1�������50 of the children 
die each year, and 1�������30 of the adults die each year.  (*By the way, I’m making these numbers up.)  This 
leads to the following discrete time model:

x1@tD = the number of children at time t

x2@tD = the number of adults at time t

x1@t + 1D = HthenumberfromlastyearL +Hthenumberof newbornsL - HthenumberthatgrowupL - HthenumberthatdieL
x2@t + 1D = HthenumberfromlastyearL + Hthenumberof childrenwhogrewupL - HthenumberthatdieL
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x1@tD = the number of children at time t

x2@tD = the number of adults at time t

x1@t + 1D = HthenumberfromlastyearL +Hthenumberof newbornsL - HthenumberthatgrowupL - HthenumberthatdieL
x2@t + 1D = HthenumberfromlastyearL + Hthenumberof childrenwhogrewupL - HthenumberthatdieL

x1 @t + 1D = x1 @tD +
1

��������
20

 x2 @tD -
1

��������
16

 x1 @tD -
1

��������
50

 x1 @tD
x2 @t + 1D = x2 @tD +

1
��������
16

 x1 @tD -
1

��������
30

 x2 @tD
You can represent this model in terms of matrices and vectors.  We’ll represent the population as a 
vector:

x@tD = J x1@tD
x2@tD N

The transition from one year to the next is a linear transformation of x1  and x2  so we can represent it 
as a vector:

M =
ikjjjjj 1 - 1�������16 - 1�������50

1�������20
1�������16 1 - 1�������30

y{zzzzz 

In Mathematica, vectors are represented as lists with two items.  Matrices are represented as lists of 
lists, where the entries in the matrix are grouped into rows.  The special Mat r i xFor m function dis-
plays a matrix nicely laid out.

In[124]:= A = 88a, b<, 8c, d<<
Out[124]= 88a, b<, 8c, d<<
In[125]:= MatrixForm@AD

Out[125]//MatrixForm=J a b
c d

N
Thus, to define the linear transformation for going from one year to the next, we have two options.  
One is to define M  as a list of lists, and the other is to use the matrix button on the Basic Input palette.  
When you click it, it inserts a matrix with four open slots:J � �

� �
N

You must replace the empty boxes with expressions.  You can also go to the Input menu, and choose 
Insert Table/Matrix/Palette.  That opens up a dialog box where you can specify the number of rows 
and columns.

In the end, either way produces the same definition of M .
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In[126]:= M = 881 - 1 � 16 - 1 � 50, 1 � 20<, 81 � 16, 1 - 1 � 30<<
Out[126]= 99 367

����������
400

,
1

�������
20

=, 9 1
�������
16

,
29
�������
30

==
In[127]:= MatrixForm@MD

Out[127]//MatrixForm=ikjjjj 367��������400
1������20

1������16
29������30

y{zzzz
In[128]:= MUsingPalette = J 1 - 1 � 16 - 1 � 50 1 � 20

1 � 16 1 - 1 � 30 N
Out[128]= 99 367
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�������
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�������
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==
The transition rule can now be represented as matrix multiplication.  In Mathematica, you have to be 
careful about multiplication and lists.  If you just put two terms for a matrix product next to each other, 
it treats them as lists rather than matrices and you get strange results.  This example shows that we get 
something horribly wrong from the expression A x.  It’s not even a column, which is what we wanted.  
Instead, matrix multiplication is handled with the dot operator that is, just a period (.)  So the expres-
sion A . x gives us what we want.

In[129]:= x = 8x1, x2<
Out[129]= 8x1 , x2 <
In[130]:= MatrixForm@xD

Out[130]//MatrixForm=J x1
x2

N
In[131]:= A x

Out[131]= 88a x1 , b x1 <, 8c x2 , d x2 <<
In[132]:= MatrixForm@A xD

Out[132]//MatrixForm=J a x1 b x1
c x2 d x2

N
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In[133]:= A.x

Out[133]= 8a x1 + b x2 , c x1 + d x2 <
In[134]:= MatrixForm@A.xD

Out[134]//MatrixForm=J a x1 + b x2
c x1 + d x2

N
Let’s say that we start with a 
population of 20 adults and 5 
children.  What does the popula-
tion look like the next year?

In[135]:= M.85, 20<
Out[135]= 8 447��������80 , 943��������48 <

Hmm.  Now is a good time to 
introduce the N  function, which 
evaluates an expression down to 
decimal numbers and gets rid of 
all the fractions.

In[136]:= N@M.85, 20<D
Out[136]= 85.5875 , 19.6458 <

What if we wanted the state after 
two years?  We just apply the 
transition matrix twice:

In[137]:= N@M.M.85, 20<D
Out[137]= 86.10882 , 19.3402 <

What about after 50 years?  We need to take M50  but the power operator (^) doesn’t work like we 
want: It returns a matrix consisting of powers of the entries.   Instead, we have to use the Mat r i x-
Power  function.

In[138]:= MatrixForm@A^2D
Out[138]//MatrixForm=ikjj a2 b2

c2 d2

y{zz
In[139]:= MatrixForm@A.AD

Out[139]//MatrixForm=ikjj a2 + b c a b + b d

a c + c d b c + d2

y{zz
In[140]:= MatrixForm@MatrixPower@A, 2DD

Out[140]//MatrixForm=ikjj a2 + b c a b + b d

a c + c d b c + d2

y{zz
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Back to our example, if we want 
to see the population in 50 years, 
this is what we should do.

In[141]:= N@MatrixPower@M, 50D.85, 20<D
Out[141]= 811.3224 , 19.416 <

Let’s say we want to plot the trajectory of the population over time.  We’d like the number of children 
as a function of time, and the number of adults as a function of time.

First, we’ll generate a list of 
population states.  Let’s start by 
doing this with the Tabl e 
function.  Table takes  an expres-
sion and a range for a variable, 
then produces a list of all values 
of that expression for different 
values of the variable.  The 
range is specified as 8variable, first, last<.  You can 
also specify 8variable, last< to 
mean that the first is 1, and 8variable, first, last, size< to 
mean that it should take steps of 
the given size, rather than just 1.

In[142]:= Table@f@jD, 8j, 10<D
Out[142]= 8f @1D, f @2D, f @3D, f @4D, f @5D, f @6D, f @7D, f @8D, f @9D, f @10D<
In[143]:= Table@f@jD, 8j, 2, 10<D
Out[143]= 8f @2D, f @3D, f @4D, f @5D, f @6D, f @7D, f @8D, f @9D, f @10D<
In[144]:= Table@f@jD, 8j, 0, 10, 2<D
Out[144]= 8f @0D, f @2D, f @4D, f @6D, f @8D, f @10D<

So to get our list of states, we want a list of Mt  x0  where t  goes from 0 to 50.  But we’d like to eventu-
ally plot x and y as functions of time, so rather than just the value of Mt  x0 , we’ll make the entries in 
our table pairs of 8t, Mt  x0<.  It’s a good idea to try out functions with a small number of iterations to 
be sure you’re getting it right, then do a bigger calculation and use a semi−colon to keep it from being 
displayed.

In[145]:= x0 = 85, 20<
Out[145]= 85, 20<
In[146]:= Table@N@MatrixPower@M, tD.x0D, 8t, 0, 10<D

Out[146]= 885. , 20. <, 85.5875 , 19.6458 <, 86.10882 , 19.3402 <,86.57185 , 19.0773 <, 86.98354 , 18.8521 <,87.35001 , 18.6602 <, 87.67664 , 18.4976 <, 87.9682 , 18.3608 <,88.22886 , 18.2468 <, 88.46232 , 18.1529 <, 88.67182 , 18.0767 <<
In[147]:= Table@8t, N@MatrixPower@M, tD.x0D<, 8t, 0, 10<D

Out[147]= 880, 85. , 20. <<, 81, 85.5875 , 19.6458 <<, 82, 86.10882 , 19.3402 <<,83, 86.57185 , 19.0773 <<, 84, 86.98354 , 18.8521 <<,85, 87.35001 , 18.6602 <<, 86, 87.67664 , 18.4976 <<,87, 87.9682 , 18.3608 <<, 88, 88.22886 , 18.2468 <<,89, 88.46232 , 18.1529 <<, 810, 88.67182 , 18.0767 <<<
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In[148]:= populationStates =
Table@8t, N@MatrixPower@M, tD.x0D<, 8t, 0, 50<D;

Now that we have the states, how do we get a list of 8t, x1@tD< so we can plot the number of children?  
We’ll  write a function that takes a data point 8t, 8x1@tD, x2@tD<< and gives 8t, x1@tD<.  Then we can use the 
Map function to apply it to our list of population states.

In[149]:= TimeAndNumChildren@8t_, 8x1_, x2_<<D = 8t, x1<
Out[149]= 8t , x1 <
In[150]:= TimeAndNumChildren@80, 8x1@0D, x2@0D<<D

Out[150]= 80, x1 @0D<
In[151]:= childrenInTime = Map@TimeAndNumChildren, populationStatesD

Out[151]= 880, 5. <, 81, 5.5875 <, 82, 6.10882 <, 83, 6.57185 <,84, 6.98354 <, 85, 7.35001 <, 86, 7.67664 <, 87, 7.9682 <,88, 8.22886 <, 89, 8.46232 <, 810, 8.67182 <, 811, 8.86023 <,812, 9.03006 <, 813, 9.18355 <, 814, 9.32264 <,815, 9.44907 <, 816, 9.56434 <, 817, 9.66981 <, 818, 9.76665 <,819, 9.8559 <, 820, 9.93847 <, 821, 10.0152 <, 822, 10.0867 <,823, 10.1537 <, 824, 10.2168 <, 825, 10.2763 <, 826, 10.3328 <,827, 10.3866 <, 828, 10.438 <, 829, 10.4874 <, 830, 10.5349 <,831, 10.5809 <, 832, 10.6255 <, 833, 10.6689 <, 834, 10.7113 <,835, 10.7528 <, 836, 10.7934 <, 837, 10.8334 <, 838, 10.8728 <,839, 10.9118 <, 840, 10.9502 <, 841, 10.9883 <, 842, 11.0262 <,843, 11.0637 <, 844, 11.101 <, 845, 11.1382 <, 846, 11.1752 <,847, 11.2121 <, 848, 11.2489 <, 849, 11.2857 <, 850, 11.3224 <<
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In[152]:= ListPlot@childrenInTime, PlotJoined ® TrueD
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Out[152]= � Graphics  �

Exercises

Exercise 19

Plot the number of adults as a function of time.

Exercise 20

Make a picture with two curves, one for the number of children as a function of time, and one 
for the number of adults.

Eigenvalue  solution

Computing powers of a matrix is much easier if we put the matrix into Jordan canonical form (that is, 
diagonalize it).  That’s because powers of a diagonal matrix are easy to take:

In[153]:= MatrixFormAMatrixPowerAJ a 0
0 b

N, nEE
Out[153]//MatrixForm=J an 0

0 bn N
And with diagonalization, the following happens:

A = P J P-1

An = HP J P-1 L HP J P-1 L ...  HP J P-1 L
An = P Jn  P-1
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To compute the Jordan canonical form A = PJ P-1 , we need the eigenvalues and eigenvectors of the 
matrix A.  Then we stack the eigenvectors to create P and make a diagonal matrix out of the eigenval-
ues for J.

A v1 = Λ1  v1
A v2 = Λ2  v2

A 
ikjjjjjj ­½½ ­½½
v1 v2

¯ ¯

y{zzzzzz =
ikjjjjjj ­½½ ­½½
v1 v2

¯ ¯

y{zzzzzz J Λ1 0
0 Λ2

N
Here are some functions you might find useful. Mathematica can compute eigenvalues and eigenvec-
tors through the functions Ei genval ues  and Ei genvect or s .  The function that computes both is 
Ei gensyst em.  There’s also a Jor danDecomposi t i on function that assembles the eigenvectors 
into the matrices P and J.

In[154]:= 88lambda1, lambda2<, 8v1, v2<< = Eigensystem@MD
Out[154]= 99 2261 + �!!!!!!!!!!!!!!!21481

�������������������������������������
2400

,
2261 - �!!!!!!!!!!!!!!!21481
�������������������������������������

2400
=,99-

232
����������
15

+
1

����������
150

I2261 +
�!!!!!!!!!!!!!!!21481 M, 1=,9-

232
����������
15

+
1

����������
150

I2261 -
�!!!!!!!!!!!!!!!21481 M, 1===

In[155]:= MatrixForm@Simplify@M.v1DD
Out[155]//MatrixForm=ikjjjjjj

-18653 +367 �!!!!!!!!!!!!!!!!21481������������������������������������60000

2261 +�!!!!!!!!!!!!!!!!21481�������������������������2400

y{zzzzzz
In[156]:= MatrixForm@Simplify@lambda1 v1DD

Out[156]//MatrixForm=ikjjjjjj
-18653 +367 �!!!!!!!!!!!!!!!!21481������������������������������������60000

2261 +�!!!!!!!!!!!!!!!!21481�������������������������2400

y{zzzzzz
In[157]:= 8P, J< = JordanDecomposition@MD

Out[157]= 999 1
����������
150

I-59 -
�!!!!!!!!!!!!!!!21481 M,

1
����������
150

I-59 +
�!!!!!!!!!!!!!!!21481 M=, 81, 1<=,

99 2261 - �!!!!!!!!!!!!!!!21481
�������������������������������������

2400
, 0=, 90,

2261 + �!!!!!!!!!!!!!!!21481
�������������������������������������

2400
===
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In[158]:= MatrixForm@PD
Out[158]//MatrixForm=ikjjjj 1��������150 I-59 - �!!!!!!!!!!!!!!!21481 M 1��������150 I-59 + �!!!!!!!!!!!!!!!21481 M

1 1

y{zzzz
In[159]:= MatrixForm@JD

Out[159]//MatrixForm=ikjjjjjj
2261 -�!!!!!!!!!!!!!!!!21481�������������������������2400 0

0 2261 +�!!!!!!!!!!!!!!!!21481�������������������������2400

y{zzzzzz
Just to check that everything’s right:

In[160]:= MatrixForm@MD
Out[160]//MatrixForm=ikjjjj 367��������400

1������20
1������16

29������30

y{zzzz
In[161]:= MatrixForm@Simplify@P.J.Inverse@PDDD

Out[161]//MatrixForm=ikjjjj 367��������400
1������20

1������16
29������30

y{zzzz
Suppose we write our population state as x = av1 + bv2 .  Then 
M x = a M v1 + b M v2 = a Λ1  v1 + b Λ2  v2 .  Continuing inductively, we see that:

Mt x = a Mt v1 + b Mt v2 = a Λ1
t  v1 + b Λ2

t  v2

Let’s see what the numerical 
values of the eigenvalues are.

In[162]:= N@8lambda1, lambda2<D
Out[162]= 81.00315 , 0.881015 <

Since Λ1 > 1 and Λ2 < 1, the power Λ2
t ® 0 as t ® ¥, which means that the v2 component of the 

population state is disappearing.  However, the v1 component of the population is growing.  So that 
means that over time, the population state will  look more and more like a multiple of v1 .

Let’s see what v1  looks like 
numerically.  This means that in 
the limit there will  be about 0.6 
children for each adult in the 
population.

In[163]:= N@v1D
Out[163]= 80.58376 , 1. <
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Exercises

Suppose we have a population with four age groups: children, adolescents, adults, and elderly.  Chil-
dren are born at a yearly rate of 1�������50  per adolescent (for a few teenage pregnancies), and 1�������20 per adult.  
Each year, 1�������14  of the children become old enough to become adolescents, 1�����4 of the adolescents become 
adults, and 1�������40 of the adults become elderly.  Each year, 1�������50 of the children die, 1�������40 of the adolescents 
die, 1�������50 of the adults die, and 1�����5 of the elderly die.

Exercise 21

Starting from an initial population of 20 children, 10 adolescents, 50 adults, and 4 elderly, plot 
the number of each age group in the population as a function of time for 100 years.

Hint: Instead of writing TimeAnd-
NumChildren with patterns, try 
using the Par t  function, or the 
equivalent notation v@@nDD.  This 
will  allow you to write a single 
function TimeAndNthGroup, 
rather than 4 functions TimeAnd-
Children, TimeAndAdoles-
cents....

In[164]:= z = 81, 2, 3, a, b, c<
Out[164]= 81, 2, 3, a, b, c<
In[165]:= Part@z, 3D
Out[165]= 3

In[166]:= Part@z, 6D
Out[166]= c

In[167]:= z@@3DD
Out[167]= 3

In[168]:= z@@6DD
Out[168]= c

Exercise 22

Using eigenvectors, what proportions will  the population tend to as time increases?

Now let’s make the problem a little more interesting.  Suppose that with probability pepidemic there’s an 
epidemic of the flu in any given year.  When there’s an epidemic, the death rates of children and eld-
erly are tripled, and the death rates of adolescents and adults are doubled.  Now we can’t just use Mt  
because there’s a different matrix for years when there’s an epidemic, and a year has an epidemic or 
not based on a random number.

Exercise 23

Simulate the population with pepidemic = 1�������10 .
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