
 

 

 

    Developing with Node.js on iMX Developer’s Kit 
Copyright 2017 © Embedded Artists AB 

 

  

 

 

 

 

Develop with Node.js  

on iMX Developer’s Kits 
 

 

  

 



Develop with Node.js on iMX Developer’s Kits Page 2  

 

 

Copyright 2017 © Embedded Artists AB Rev A 

 

Embedded Artists AB 
Davidshallsgatan 16 
SE-211 45 Malmö 
Sweden 

http://www.EmbeddedArtists.com 

 

Copyright 2017 © Embedded Artists AB. All rights reserved. 

No part of this publication may be reproduced, transmitted, transcribed, stored in a retrieval system, or 
translated into any language or computer language, in any form or by any means, electronic, 
mechanical, magnetic, optical, chemical, manual or otherwise, without the prior written permission of 
Embedded Artists AB. 

 

Disclaimer 

Embedded Artists AB makes no representation or warranties with respect to the contents hereof and 
specifically disclaim any implied warranties or merchantability or fitness for any particular purpose. 
Information in this publication is subject to change without notice and does not represent a 
commitment on the part of Embedded Artists AB. 

 

Feedback 

We appreciate any feedback you may have for improvements on this document. Send your comments 
by using the contact form: www.embeddedartists.com/contact. 

 

Trademarks 

All brand and product names mentioned herein are trademarks, services marks, registered 
trademarks, or registered service marks of their respective owners and should be treated as such. 

http://www.embeddedartists.com/


Develop with Node.js on iMX Developer’s Kits Page 3  

 

 

Copyright 2017 © Embedded Artists AB Rev A 

 

Table of Contents 
1 Document Revision History ................................. 4 

2 Introduction ........................................................... 5 

2.1 Conventions .................................................................................... 5 

3 Getting started ...................................................... 6 

3.1 Add Node.js to Yocto image .......................................................... 6 

3.2 Hello world ...................................................................................... 6 

3.3 Simple web server .......................................................................... 7 

4 WebStorm .............................................................. 9 

4.1 Install Node.js ................................................................................. 9 

4.2 Install WebStorm ............................................................................ 9 

4.3 ECMAScript 6 ................................................................................ 13 

4.4 Local debugging ........................................................................... 14 

4.5 Remote deployment ..................................................................... 14 

4.6 Run application on target ............................................................ 18 

5 Troubleshooting .................................................. 20 

5.1 Allow user “root” to use an SSH connection ............................. 20 

 



Develop with Node.js on iMX Developer’s Kits Page 4  

 

 

Copyright 2017 © Embedded Artists AB Rev A 

 

1  Document Revision History 
Revision Date Description 

A 2017-01-16 First release 

   

   

   

   

   

 



Develop with Node.js on iMX Developer’s Kits Page 5  

 

 

Copyright 2017 © Embedded Artists AB Rev A 

 

2  Introduction 
Node.js is a Javascript runtime environment that has become quite popular when developing different 
kinds of applications, for example, web server applications.    

This document shows you how to install Node.js on the target file system and how to get started with 
your development. If you need to learn how to develop with Node.js or Javascript there are many 
resources online. A few of these are listed below. 

https://nodejs.org/en/docs/ 

https://www.tutorialspoint.com/nodejs/index.htm 

https://www.tutorialspoint.com/javascript/ 

 

Additional documentation you might need: 

 The Getting Started document for the board you are using. 

 The Working with Yocto document 

2.1  Conventions 

A number of conventions have been used throughout to help the reader better understand the content 
of the document. 

Constant width text – is used for file system paths and command, utility and tool names.  
 

$ This field illustrates user input in a terminal running on the 

development workstation, i.e., on the workstation where you edit, 

configure and build Linux 

 

# This field illustrates user input on the target hardware, i.e., 

input given to the terminal attached to the COM Board 

 

TThhiiss  ffiieelldd  iiss  uusseedd  ttoo  iilllluussttrraattee  eexxaammppllee  ccooddee  oorr  eexxcceerrpptt  ffrroomm  aa  

ddooccuummeenntt..  

This field is used to highlight important information 

  

https://nodejs.org/en/docs/
https://www.tutorialspoint.com/nodejs/index.htm
https://www.tutorialspoint.com/javascript/


Develop with Node.js on iMX Developer’s Kits Page 6  

 

 

Copyright 2017 © Embedded Artists AB Rev A 

 

3  Getting started 
The instructions in this document have been tested on a virtual machine running lubuntu 16.04. The 
document “Working with Yocto to build Linux” has a chapter that explains how to create a VMware 
based virtual machine running lubuntu.  

If you are an experienced Linux user it shouldn’t be a problem using another Linux distribution with the 
instructions below as a guideline.  

3.1  Add Node.js to Yocto image 

The default Yocto images provided by Embedded Artists don’t contain Node.js support. This can be 
added by modifying the local.conf file in your build. See the document “Working with Yocto to 

build Linux” for more details about building images. These instructions will add Node.js version 6.9.2. 

1. Open local.conf. Replace <build dir> with your build directory. 

$ nano <build dir>/conf/local.conf 

2. Find the IMAGE_INSTALL_append variable and add the lines below. The package called 

“nodejs-npm” installs a package manager for Node.js. Using this package manager you can 
install additional packages/modules. The third line installs build tools (compiler, linker) on the 
target file system. This can be needed if a Node.js module must be built from source during 
installation (when using npm). The last line isn’t really related to Node.js. This line installs a 

SFTP server which can be useful when doing remote deployment. 

      nnooddeejjss  \\  

      nnooddeejjss--nnppmm  \\  

      ppaacckkaaggeeggrroouupp--ccoorree--bbuuiillddeesssseennttiiaall  \\  

      ooppeennsssshh--ssffttpp--sseerrvveerr  \\  

3. There are two more lines to add to local.conf. The first selects which version of Node.js 

to use. The second line was needed to solve “openssl” related build issues. 

PPRREEFFEERRRREEDD__VVEERRSSIIOONN__nnooddeejjss  ??==  ""66..99..22""  

PPAACCKKAAGGEECCOONNFFIIGG__aappppeenndd__ppnn--nnooddeejjss  ==  ""  ooppeennssssll""  

4. Save the file and exit the editor: CTRL+X followed by Y and Enter. 

5. Now build your image. In this example we are using a “core-image-base” build, but replace 
this with the image you are building. 

$ bitbake core-image-nase 

6. When the image has been built don’t forget to deploy the image on the target. For more 
information see the “Working with Yocto” document. 

NOTE: Node.js layers are only included in the 4.1.15 branch and were added to ea-yocto-base 
January 11, 2017. If you are using an older branch or revision you need to update.  

3.2  Hello world 

It is now time to create the first application and verify that Node.js is working. Please note that you 
must have deployed the new image on the target, booted into Linux, and having a console/terminal 



Develop with Node.js on iMX Developer’s Kits Page 7  

 

 

Copyright 2017 © Embedded Artists AB Rev A 

 

application connected to the target. The “Getting Started” document contains instructions of how to use 
a console/terminal application. 

1. Create an application file 

# nano hello.js 

2. Add the line below to the file. This line prints “Hello world”. 

ccoonnssoollee..lloogg((''HHeelllloo  wwoorrlldd''))  

3. Save the file and exit: CTRL+X followed by Y and Enter. 

4. Start the application 

# node hello.js 

Hello world 

3.3  Simple web server 

It is common to use Node.js when developing web applications. This example shows how a really 
simple web server can be created. 

1. First get the IP address of the target since this is needed in a later step. In the example below 
the IP address is 192.168.1.130. 

# ifconfig 

eth0      Link encap:Ethernet  HWaddr CA:71:64:BD:1A:20 

          inet addr:192.168.1.130  Bcast:192.168.1.255  Mask:255.255.255.0 

          inet6 addr: fe80: 

2. Create the application file. 

# nano web.js 

3. Add the code below to the file. This code is originally from https://nodejs.org/dist/latest-
v6.x/docs/api/synopsis.html. Please note that you may need to change the IP address 
(hostname variable) to the IP address retrieved in step 1.  

ccoonnsstt  hhttttpp  ==  rreeqquuiirree((''hhttttpp''));;  

ccoonnsstt  hhoossttnnaammee  ==  ''119922..116688..11..113300'';;  

ccoonnsstt  ppoorrtt  ==  33000000;;  

ccoonnsstt  sseerrvveerr  ==  hhttttpp..ccrreeaatteeSSeerrvveerr((((rreeqq,,  rreess))  ==>>  {{  

    rreess..ssttaattuussCCooddee  ==  220000;;  

    rreess..sseettHHeeaaddeerr((''CCoonntteenntt--TTyyppee'',,  ''tteexxtt//ppllaaiinn''));;  

    rreess..eenndd((''HHeelllloo  WWoorrlldd\\nn''));;  

}}));;  

sseerrvveerr..lliisstteenn((ppoorrtt,,  hhoossttnnaammee,,  (())  ==>>  {{  

    ccoonnssoollee..lloogg((`̀SSeerrvveerr  rruunnnniinngg  aatt  hhttttpp::////$${{hhoossttnnaammee}}::$${{ppoorrtt}}//`̀));;  

}}));;  

4. Save the file and exit: CTRL+X followed by Y and Enter. 

5. Start the application. 

https://nodejs.org/dist/latest-v6.x/docs/api/synopsis.html
https://nodejs.org/dist/latest-v6.x/docs/api/synopsis.html


Develop with Node.js on iMX Developer’s Kits Page 8  

 

 

Copyright 2017 © Embedded Artists AB Rev A 

 

# node web.js 

Server running at http://192.168.1.130:3000/ 

6. Start a web browser and enter the address shown in the console. You should see the 
message “Hello World” in the web browser. 



Develop with Node.js on iMX Developer’s Kits Page 9  

 

 

Copyright 2017 © Embedded Artists AB Rev A 

 

4  WebStorm 
There are many different editors and development environments for Node.js. For minor applications a 
basic text editor, such as nano or vi (on Linux), can be used. For more complex applications a more 
complete development environment, supporting for example syntax highlighting, code completion, and 
debugging, is often preferred. In this chapter we are going to describe how to install and use 
WebStorm from JetBrains. 

4.1  Install Node.js 

Before installing WebStorm it is recommended to install Node.js on your development computer. A lot 
of the development can be done on the computer and then deployed to the target board. As previously 
mentioned lubuntu 16.04 is used as development computer when writing these instructions.  

You can use the package manager to install Node.js. This will give you Node.js version 4.2.6. 

$ sudo apt-get install nodejs 

Since the target file system will have version 6.9.2 it is however recommended to use the same version 
on the development computer. It is possible to download and install this version directly from the 
Node.js website. 

On this link you can find different versions: https://nodejs.org/en/download/releases/. 

The instructions below download and unpacks version 6.9.2 for a 64-bit Linux computer. 

$ wget https://nodejs.org/download/release/v6.9.2/node-v6.9.2-

linux-x64.tar.gz 

$ tar –xzvf node-v6.9.2-linux-x64.tar.gz 

4.2  Install WebStorm 

Please note that WebStorm is a commercial tool, but it can be used for 30 days for free. 

1. Go to https://www.jetbrains.com/webstorm/ and click the “Download” button. A tar.gz file will 
then be downloaded (when writing these instructions the file was called WebStorm-

2016.3.2.tar.gz). 

2. Unpack the file. This will create a new directory (for these instructions the directory was called 
WebStorm-163.9166.30) 

3. The directory contains a file called Install-Linux-tar.txt that describes how to 

install/start WebStorm. Basically what you need to do is run the webstorm.sh script. 

$ ./webstorm.sh 

4. When WebStorm is started you will be asked to activate the license. In this case we are 
evaluating WebStorm and choose “Evaluate for free” as shown in Figure 1. You must also 
accept the license agreement. 

https://nodejs.org/en/download/releases/
https://nodejs.org/download/release/v6.9.2/node-v6.9.2-linux-x64.tar.gz
https://nodejs.org/download/release/v6.9.2/node-v6.9.2-linux-x64.tar.gz
https://www.jetbrains.com/webstorm/


Develop with Node.js on iMX Developer’s Kits Page 10  

 

 

Copyright 2017 © Embedded Artists AB Rev A 

 

 

Figure 1 - WebStorm License activation 

 

Figure 2 - Accept agreement 

5. You will then be asked for the initial configuration. We used the default settings as shown in 
Figure 3. 

 

Figure 3 - WebStorm initial configuration 

6. Click on “Create New Project” as shown in Figure 4 to create a new project. Select the type 
“Empty Project” and specify a location as shown in Figure 5. When the project has been 
created it will look like Figure 6. 



Develop with Node.js on iMX Developer’s Kits Page 11  

 

 

Copyright 2017 © Embedded Artists AB Rev A 

 

 

Figure 4 - Create a WebStorm project 

 

Figure 5 - Empty WebStorm project 

 

Figure 6 - WebStorm project 



Develop with Node.js on iMX Developer’s Kits Page 12  

 

 

Copyright 2017 © Embedded Artists AB Rev A 

 

7. We need to specify which version of Node.js to use when running the application locally. Go 
to File  Settings in the menu and then select “Languages & Frameworks”  “Node.js and 
NPM”. In the “Node interpreter” field specify the path to Node.js we installed in section 4.1 
above. Figure 7 shows how the “Settings” dialog can look like when the interpreter has been 
chosen. Before closing the window click the “Enable” button in the “Code Assistance” field. 

 

Figure 7 - Node.js settings dialog 

8. Click the OK button to close the “Settings” dialog.  

9. It is now time to create the application file. Go to File  New and click “JavaScript File” in the 
menu. Enter a name of the file. In this example we call it “hello”.  

 

Figure 8 - New Javascript file 

10. The file will only contain a header when created. Add the line shown in Figure 9. This is the 
same application as show in section 3.2 above. 



Develop with Node.js on iMX Developer’s Kits Page 13  

 

 

Copyright 2017 © Embedded Artists AB Rev A 

 

 

Figure 9 - Hello world application 

11. Right-click on “hello.js” in the Project view and select “Run hello.js” to start the application. 
The output will be shown in the console window as illustrated in the bottom of Figure 9. 

4.3  ECMAScript 6 

If you try to run the application described in 3.3 you will get some errors as shown in Figure 10. The 
reason is that the code contains JavaScript constructs that was introduced in the JavaScript version 
called ECMAScript 6. By default WebStorm is using ECMAScript 5.1.  

 

Figure 10 - Simple web server with errors 

To change the version, go to File  Settings in the menu. Then select “Languages & Frameworks”  
JavaScript and change the version to ECMAScript 6 as shown in Figure 11. 



Develop with Node.js on iMX Developer’s Kits Page 14  

 

 

Copyright 2017 © Embedded Artists AB Rev A 

 

 

Figure 11 - Change JavasScript language version 

4.4  Local debugging 

Debugging on the development computer is quite simple. All you need to do is set a breakpoint in the 
code by clicking on the row. Then right-click on “hello.js” in the project view and select “Debug hello.js”. 
Figure 12 shows a debug session where the debugger has stopped on a breakpoint. 

 

Figure 12 - Debug session in WebStorm 

4.5  Remote deployment 

It is possible to deploy the application from within WebStorm, that is, upload it to the target. 

Go to File  Settings and then “Build, Execution, Deployment”  Deployment and click on the plus 
icon as shown in Figure 13. 



Develop with Node.js on iMX Developer’s Kits Page 15  

 

 

Copyright 2017 © Embedded Artists AB Rev A 

 

 

Figure 13 - Create a deployment 

Give the connection a name and then choose “SFTP” as server type as shown in Figure 14. Click 
“OK”.  

 

Figure 14 - Add server 

In the “Connection” settings window specify the IP address of the target in the “SFTP host” field. Set 
the user name (root) and password (pass). When this has been done click on the “Test SFTP 
connection” button to verify that the connection is working. If it is working you can click in the browse 
button (three dots) by the “Root path” field and choose where to upload the files. In this case we have 
chosen the home directory of the user “root”. All of this is shown in Figure 15. 

NOTE: By default the user “root” is not permitted to use an SSH connection. See section 5.1  how 
to permit the user “root” to login. 

 



Develop with Node.js on iMX Developer’s Kits Page 16  

 

 

Copyright 2017 © Embedded Artists AB Rev A 

 

 

Figure 15 - Deployment connection settings 

Go to the “Mappings” tab and select the “Deployment path” as shown in Figure 16. 

 

Figure 16 - Deployment mappings 

To deploy the application right-click on the project and then go to Deployment  “Upload to iMX 
Target” as shown in Figure 17. 



Develop with Node.js on iMX Developer’s Kits Page 17  

 

 

Copyright 2017 © Embedded Artists AB Rev A 

 

 

Figure 17 - Deploy application 

It is also possible to automatically deploy the application, for example, each time you save the project. 
Go to File  Settings and then “Build, Execution, Deployment”  Deployment Options. As shown 
in Figure 18 you can select to automatically upload the files.  

 

Figure 18 - Deployment options 



Develop with Node.js on iMX Developer’s Kits Page 18  

 

 

Copyright 2017 © Embedded Artists AB Rev A 

 

4.6  Run application on target 

Besides deploying an application to the target it is also possible to start the application on the target 
from within WebStorm. Go to Run  “Edit Configurations” in the menu as shown in Figure 19. 

 

Figure 19 - Edit "Run configurations" 

Click on the “Browse” button beside the “Node interpreter” field as shown in Figure 20. 

 

Figure 20 - New node interpreter 

Click on the “plus” icon and select “Add Remote” as shown in Figure 21. 



Develop with Node.js on iMX Developer’s Kits Page 19  

 

 

Copyright 2017 © Embedded Artists AB Rev A 

 

 

Figure 21 - Add remote interpreter 

Specify the IP address as well as user name (root) and password (pass). Finish by clicking on OK.  

 

Figure 22 - Remote interpreter settings 

You can now run the application on target by right-clicking on the target and select “Run hello.js”. 
Please note that you must have deployed the application before you can run it. 



Develop with Node.js on iMX Developer’s Kits Page 20  

 

 

Copyright 2017 © Embedded Artists AB Rev A 

 

5  Troubleshooting 
5.1  Allow user “root” to use an SSH connection 

By default the user “root” is not permitted to login via an SSH connection. By following these 
instructions “root” will be permitted to login through an SSH connection. It is, however, not 
recommended to use on a final application, but during development it can be permitted. 

1. Open the  configuration file for the SSH server 

# nano /etc/ssh/sshd_config 

2. Find the line that starts with #PermitRootLogin and remove the ‘#’ (hash) character. If you 
cannot find this line just add it to the file (without the hash) 

PPeerrmmiittRRoooottLLooggiinn  yyeess  

3. Save the file and exit the editor (in nano it is Ctrl-X followed by Y and Enter). 

4. Restart the SSH server 

# /etc/init.d/sshd restart 

 


