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Abstract

This paper provides a brief introduction to Loop Quantum Gravity which is the main competitor

of String Theory for a quantized theory of gravity. It is formulated on the basis of a Hamiltonian

formalism of General Relativity with quantization performed in a non-perturbative and background

independent manner. Coupling to matter fields as they appear in the Standard Model is also

considered. Canonically quantizing General Relativity, it is shown that spacetime is discretized

at Planckian scales and such a result leads to applying Loop Quantum Gravity to calculations of

black hole entropy values. An alternative method to the Hamiltonian formalism of Loop Quantum

Gravity called the spin foam formalism is also discussed.
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1 Introduction

The formulation of Quantum Mechanics, hence ultimately of Quantum Field Theory (QFT), has

successfully described three of the four fundamental forces of nature to give the Standard Model

(SM). On the other hand, General Relativity (GR) has triumphed in providing the mechanism of

gravity, the remaining fundamental force.

Although effective in their respective domains, QFT and GR fail to be compatible with one

another; namely GR cannot be applied to scales on which QFT becomes effective. Attempts

to overcome this problem and produce a self-consistent theory applicable to both quantum and

astrophysical scales naturally led to the quantization of gravity, a problem which has occupied

physicists for decades. Looking through the history of the development of physics, it is evident

that coalescing two apparently different theories into a unified structure gives rise to new physics;

the fusion of Newtonian mechanics and Maxwell’s electromagnetism gave birth to special relativity

while placing quantum mechanics and special relativity on the same footing led to QFT. It is likely

that the unity of GR and QFT will again shed light on new physics which will, for instance, allow

for the description of the final stages of a black hole evaporation.

Today there exist many candidates for the theory of quantum gravity including Twistor Theory,

Causal Set Theory, String Theory and Loop Quantum Gravity (LQG); of these, String Theory and

LQG are two candidates which are predominantly researched on.

It should be noted that String Theory is fundamentally different from LQG in that it is a

theory which unifies all four fundamental forces. String Theory’s such success, however, comes at

the cost of extra dimensions (the theory is 10 or 11 dimensional) and an infinite number of particles

beyond those predicted by the SM; the theory is also necessarily supersymmetric, a property that

has not been experimentally verified. In contrast, LQG is a theory purely of quantized gravity

rather than one of unification. Thus it does not suffer from the extra complications that String

Theory is exposed to as stated above. More importantly, unlike String Theory, whose quantization

of gravity stems from perturbative calculations, LQGs quantization is non-perturbative. This

non-perturbative quantization delivers two benefits: background independence and avoidance of

non-renormalizability.

Since the quantization of electromagnetism, weak and strong force are perturbative, it is a

natural step forward to consider the quantization of gravity via perturbation as well. The process

is similar to ordinary QFT and defines a functional integral for GR. This involves splitting the

metric as a sum of the Minkowski metric and some small fluctuation which plays the role of the

dynamical field as in QFT. The outline of this attempt is given in [1]. The generic outcome is

a non-renormalizable field theory whose quanta are interpreted as gravitons. It should be noted,

however, that it is possible to formulate a renormalizable theory of gravity by considering an

effective field theory. This is essentially the basis of String Theory. Details of this are given in [2].
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The non-renormalizable result is no surprise as the non-renormalizability of gravity is expected by

power counting. Non-renormalizable theories are generally considered undesirable as they produce

divergences which cannot be handled systematically. LQG, however, is independent of perturbative

calculations, hence is free from this illness.

Another crucial feature of GR which must be preserved upon quantization is background in-

dependence. In QFT, the implied metric (background) on which calculations are performed is

the Minkowski metric; in other words, the theory is background dependent. QFT primarily deals

with point particles hence back-reaction is negligible meaning background dependence poses no

problems. GR, however, is a theory describing the interaction of matter and the metric (or the

background) itself; therefore, neglecting back-reaction makes no sense. As no structure on the met-

ric can be assumed before calculations, GR is a background independent theory. LQG is formulated

in accordance with this property of GR and is built up on a background independent quantum

structure called spin network states, the details of which become apparent in later discussions.

Such formalism of LQG ensures that the background independence of GR is preserved.

Looking at the Einstein equation, one is able to deduce another key property of GR: diffeo-

morphism covariance (also known as diffeomorphism invariance or general covariance). This is the

technical statement about the independence of the laws of physics on coordinates. Because the

Einstein equation is a tensor equation, it is necessarily coordinate independent. This property,

along with background independence, is central in developing the ADM formalism as is apparent

from the following chapter.

The steps taken in LQG to quantize GR are similar to that of ordinary quantum mechanics,

namely a Hamiltonian formulation of classical mechanics for GR is constructed, and then the

Poisson brackets are promoted to commutators. A thorough formulation of this is given in chapter

2 where the 4-dimensional spacetime is split into 3-dimensional space and 1-dimensional time. The

formulation reveals that the 3-metric and its conjugate momentum are the dynamical variables of

the theory. However, due to background independence, one runs into problems when one naively

quantizes GR this way. In particular, because GR is a fully constrained theory, one finds that no

evolution can be generated upon canonical quantization.

To overcomes this problem, chapter 3 constructs the theory of GR in a different formalism

using the Palatini action, consisting of tetrads and spin connections instead of the metric. Then in

chapter 4, manipulating the Palatini action, an extra term holding the Barbero-Immirzi parameter

is introduced which gives rise to the Holst action. The Barbero-Immirzi parameter is shown

to play no significant role classically, although it would later act as a key quantity in quantum

theory. The tetrad and spin connection of the new formalism of GR are then used to compose new

variables called the Ashtekar new variables comprising of the Ashtekar-Barbero connection, which

is an SU(2) connection and its conjugate quantity, the densitized triad. One finds that the action
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constructed in terms of the new variables gives rise to a new SU(2) gauge symmetry.

With the new variables allowing for a background independent theory, the quantization proce-

dure of them is carried out in chapter 5. Using the notion of holonomies, hence of Wilson loops,

a Hilbert space comprised of spin network states are designed such that background independence

is preserved. The succeeding subsection of chapter 5, then introduces the concept of geometric

operators such as the area and volume operators that, when acted on spin network states, give

physically observable areas and volumes. The key result is that the induced areas and volumes are

discretized suggesting space itself is quantum at Planck scale.

The dynamics of LQG are discussed in the section that follows which provides a method of

overcoming the problem of the Hamiltonian not generating any evolution when the theory was

formulated in terms of the metric. It is revealed that a Hilbert space in accordance with the

diffeomorphism invariant nature of GR can be created by using knots. In order to promote the

Hamiltonian to an operator which satisfies the physical Hilbert space, the components in the

Hamiltonian are reexpressed in terms of loop variables. This leads to formal solutions of spin

networks in the physical Hilbert space. Chapter 5 is concluded with a brief overview of standard

couplings to matter such as the Higgs and fermions.

The next chapter, chapter 6, delves into an appliaction of LQG, or more specifically, an ap-

plication to the calculation of black hole entropies. One of the direct consequences of applying

LQG to black holes is the mechanism of the existence of event horizons. Event horizons are in-

terpreted as areas induced by the edges of spin network states piercing through surfaces, which

mathematically is decribed by the eigenvalues of the area operator. In terms of entropy, LQG

allows for a logarithmic correction to the semiclassical picture of a horizon’s entropy described by

the Bekenstein-Hawking formula. It is revealed that for a consistent picture of entropy calculations,

the Barbero-Immirzi parameter must take a specific value unlike in the classical case.

Finally, chapter 7 introduces the notion of spin foam formalism before the paper is concluded.

This formalism provides an alternative method of describing LQG from the Hamiltonian approach.

Unlike the Hamiltonian approach that focuses on the evolution of states in a Hilbert space, the

spin foam formalism puts the spotlight on the transition amplitudes or probabilities of states. The

formalism builds up on the notion of discretized space taken from the eigenvalues of geometric

operators to give rise to dicretized spacetimes. Due to its similarity to the Feynman path integral

formalism from quantum mechanics, the spin foam formalism is insightful in providing correla-

tion functions for gravity which allow for a particle interpretation of gravitation through graviton

propagators. The succeeding chapters explores in detail the brief overview of this paper given so

far.
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2 The ADM Formalism

The ADM formalism, first formulated by Arnowitt, Deser and Misner, is an attempt to formulate

GR in terms of Hamiltonian mechanics by splitting the 4-dimensional spacetime manifold, M, into

a 3-dimensional spatial manifold, S, and 1-dimensional temporal manifold, R. This procedure,

known as the 3+1 decomposition of GR, breaks the symmetry between space and time, hence

may appear to break the diffeomorphism invariance property of GR. However, it was shown by N.

Kiriushcheva and S.V. Kuzmin [3] that diffeomorphism invariance is preserved despite the splitting.

The decomposition can be done by defining a diffeomorphism, ϕ, such that

ϕ : M → S × R.

This means that one can use the pullback of ϕ, to define a value t ∈ R for τ on M as

τ = ϕ∗t.

Defining slices of spatial submanifolds Σ ⊂ M for constant τ values, one can foliate M into

hypersurfaces of Σ. Then the metric, g, on M can naturally be reduced to the 3-metric, 3g, on

Σ. It is worth noting that for manifolds that are globally hyperbolic, or manifolds which admit a

Cauchy surface, it is proven by R. Geroch [4] that M must be isomorphic to a product manifold of

Σ and R such that M ≃ Σ × R. This is a fairly powerful statement as, excluding extreme regions

such as the centers of black holes, spacetimes are generally globally hyperbolic.

As the metric is the dynamical variable whose evolution determines the physics of GR, it is

necessary to consider evolutions of the metric in a systematic way; for this one must know how

the vectors flow in M. To elucidate this idea, take a particular slice of the spatial manifold Σ and

take a timelike vector ∂τ on Σ by pushing foward the vector ∂t on S × R using ϕ−1. The vector

∂τ can then be decomposed into a part normal to and tangential to Σ:

∂τ = Nn+ N⃗

where N = −g(∂τ , n) is called the lapse and N⃗ = ∂τ + g(∂τ , n)n is called the shift. Such

parametrizations of lapse and shift allows for a physical picture of how a metric evolves over

time and space respectively.

2.1 Constraints on General Relativity

Before canonically quantizing gravity, it is insightful to consider the constraints imposed on GR.

Of the 10 equations in Einstein equations, 4 are statements of constraints on the curvature of

the manifold and only 6 describe the dynamics. To look into this in more detail, one must first

understand the concept of extrinsic curvature. Defining a timelike unit vector, n, which is normal

to Σ and tangent vectors v, u ∈ TpM along with their associated vector fields, one can write the

extrinsic curvature as
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Figure 1: ∂τ split into normal and tangential components. Figure from [5]

K(u, v)n = −g(∇uv)n

where ∇ is the Levi-Civita connection. The derivation of this can be found in [5] and a more

mathematically rigorous definition of the extrinsic curvature can be found in [6]. The extrinsic

curvature is extrinsic in the sense that it measures the degree to which a vector tangent to Σ will

fail to stay tangent after parallel transporting it using the Levi-Civita connection. In fact as is

shown in the following section, the extrinsic curvature is directly related to the time derivative

of the 3-metric. With this in mind, the Riemann tensor, R, on M can be expressed in terms of

the extrinsic curvature, K, and the Riemann tensor on Σ which will be denoted 3R to give the

Gauss-Codazzi equations:

R(∂i, ∂j)∂k = (3∇iKjk −3 ∇jKik)n+ (3Rmijk +KjkK
m
i −KikK

m
j )∂m,

the derivation of which can also be found in [5]; the superscripts, 3, on the connections denote their

action on Σ while the Roman alphabet sub/superscripts denote spatial components. Assuming that

the lapse is 1 and the shift is 0 (∂0 = n), then applying the 1-forms dx0 and dxm in turn to the

Gauss-Codazzi equations, one reduces the equations to the Gauss equation and Codazzi equation

respectively as

R0
ijk =3 Rmijk +KjkK

m
i −KikK

m
j (Gauss) (2.1)

Rmijk =3 Rmijk +KjkK
m
i −KikK

m
j (Codazzi) (2.2)

Using 2.1 and 2.2, the fact that 4 of Einstein’s equations are constraints is easily revealed. Manip-

ulating the Einstein tensor, Gµν = Rµν − 1
2gµνR, to give

Gµν = Rµανα − 1

2
δµνR

αβ
αβ , (2.3)

one can set µ = ν = 0 to obtain G0
0 = −(R12

12 +R23
23 +R31

31), from which one can apply 2.2 to

obtain

G0
0 = −1

2
(3R+ (Ki

i )
2 −KijK

ij). (2.4)
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As the i and j indices on 2.4 are all contracted, the K’s can be regarded as traces of matrices

resulting in the RHS of 2.4 to be a constant. This gives the first constraint, G0
0 = 8πκT 0

0 , on the

Einstein equations which reveals that the extrinsic curvature on Σ is related to the scalar curvature

on Σ. Setting µ = 0 and ν = i from 2.3 gives the remaining 3 constraints

G0
i =3 ∇jK

j
i −

3 ∇iK
j
j (2.5)

implying the Einstein equations G0
i = 8πκT 0

i are also not dynamical but are constraints on the

extrinsic curvatures. Generalizing the lapse and shift to any values, one can obtain the generalized

constraint that

Gµνn
µnν = −1

2
(3R+ (trK)2 − tr(K2)). (2.6)

In fact, [10] shows that 2.6 is actually an initial value formulation of GR; it gives an extensive

comparison between 2.6 and its analogue in Maxwell’s theory, ∇ · E⃗ = 0, to show that 2.6 is an

initial value constraint.

The remaining 6 equations Gij = 8πκTij describe the dynamics of 3g hence describe how space

warps over time. Since the vacuum solutions of the Einstein equations are much simpler to deal

with, this paper only discusses such solutions initially and leave the insight to matter-coupling for

a later chapter. Thus the equation governing the evolution of 3g comes down to Gij = 0.

2.2 Canonical Quantization

As stated in the Introduction, LQG quantizes the metric canonically. Given the simple relation

between Poisson brackets and commutators in canonical quantization, this means it is necessary

to first formulate a Hamiltonian formalism of GR. Drawing analogy to the dynamics of a free

particle where the phase space is described by the position qi and its canonical momentum pi, the

Hamiltonian formulation of GR replaces the qi with the 3-metric, 3gij and pi with the canonical

momentum of 3gij . However, to emphasize the analogy with the free particle system, it is conven-

tional to use the same alphabets for the 3-metric and its canonical momentum such that they are

depicted as qij and pij . The configuration space for GR, which is also known as the super space, is

then Met(Σ), the space in which the 3-metric can evolve in.

To define the canonical momentum, pij = ∂L
∂q̇ij

, one must first deal with the time derivative of

the spatial metric as can be seen by the momentum’s expression. Recalling the spacetime manifold

M is diffeomorphic to S × R, one can use the diffeomorphism map to define the time derivative

∂τ = ∂0 such that ∂1, ∂2, ∂3 are tangential to Σ hence obtain an expression for q̇ij . In particular,

this allows the extrinsic curvature to be expressed as

Kij = 1
2N

−1(q̇ij −3 ∇iNj −3 ∇jNi),

the derivation of which is in [6]. Note that Ni represents the shift vector, N⃗ , which is denoted

in component form. This expression shows the close link between the time derivative of the
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3-metric and the extrinsic curvature as mentioned in the previous section therefore suggests a

connection between the extrinsic curvature and the canonical momentum. In fact, the Einstein-

Hilbert lagrangian

L = R
√
−det g

can be expressed in terms of the 3-metric and the lapse function as

L =
√
qNR

where q = det q. Also rewriting the Ricci scalar in terms of the 3-metric and extrinsic curvature,

the Lagrangian becomes

L =
√
qN(3R+ tr(K2) − tr(K)2). (2.7)

In fact a direct calculation results in 2 additional total derivative terms which may be dropped if

Σ is assumed to be compact. Refer to [7] for details of this. Details regarding non-compact Σ can

be found in [8] and [9]. The momentum conjugate to qij can explicitly be calculated as

pij =
√
q(Kij − tr(K)qij) (2.8)

using 2.7. Carrying out a Legendre transformation, the Hamiltonian for GR is obtained: H =∫
Σ
H d3x, where the Hamiltonian density, H, is given by

H(pij , qij) = pij q̇
ij − L

and L is the lagrangian density given by 2.7. As it is customary to express the Hamiltonian in terms

of conjugate pairs, after some calculations, one can show that the Hamiltonian density becomes

H =
√
q(NC +N iCi) (2.9)

where C = −3R + q−1(tr(p2) − 1
2 tr(p)

2) and Ci = −2 3∇j(q−1/2pij). Note that 2.9 shows terms

proportional to the lapse and shift. This is expected of the Hamiltonian as its role in Hamiltonian

mechanics is to generate time evolution which in GR is defined by diffeomorphisms via the lapse and

the shift. Detailed calculations of this result is given in the Appendix of [1]. Another interesting

feature of 2.9 is that, using 2.8, C and Ci can be rewritten in terms of the extrinsic curvature from

which then on can be written as

C = −2Gµνn
µnν

and

Ci = −2Gµin
µ

employing 2.6. For vacuum solutions of the Einstein equations discussed in this paper, the above

implies C = Ci = 0. This statement is exactly identical to the statement for the four constraints
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for vacuum solutions given by 2.6; for this reason C is called the Hamiltonian constraint while Ci

is called the diffeomorphism constraint or vector constraint. This type of Hamiltonian formulation

exposed to constraints is called a constrained Hamiltonian formulation whose characteristic is that

it contains non-dynamical variables such as N and Ni which act as Lagrange multipliers. Con-

strained Hamiltonian systems are fairly common in Physics. In fact, the Hamiltonian formulation

of Maxwell’s theory is another example of a constrained Hamiltonian formulation, details of which

can be found in [10]. From the constraints, it is then straightforward that H = 0. It is crucial

the reader does not confuse the equation H = 0 as an implication that the dynamics of the theory

is trivial. Because H = 0 arises from the constraints of GR, it is only a statement of the initial

constraints posed by 2.6; the dynamics of the theory is actually very complicated and expressed as

q̇ij = {H, qij}, ṗij = {H, pij}.

It should be pointed out that the constraint H = 0 is called a first class Dirac constraint.

This is a constraint whose Poisson bracket with any other constraints vanishes. Second class

constraints are those which do not have a vanishing Poisson bracket. In this paper only first class

constraints are dealt with. For details on this matter refer to [11]. What is special about a first

class constraint is that it is analogous to having a Dirac algebra, which is a Poisson bracket relation

of the diffeomorhism and Hamiltonian constraints. For the case at hand, the Dirac algebra is given

by

{C(N⃗), C(N⃗ ′)} = C([N⃗ , N⃗ ′])

{C(N⃗), C(N)} = C(∂N ′/∂N⃗)

{C(N), C(N ′)} = C(q−1(N∂iN ′ −N ′∂iN))

(2.10)

where C(N⃗) and C(N) denote smearing of Ci and C respectively as

C(N⃗) =

∫
Σ

N iCiq
1/2d3x

C(N) =

∫
Σ

NCq1/2d3x

.

It is worth observing that the last equation of 2.10 is of the form of a Lie algebra with the “struc-

ture constant”, q−1; hence one may consider relating this algebra to the Hamiltonian generator

associated to the spacetime diffeomorphism group. However, the fact that q−1 is not a constant,

but rather a phase space dependent quantity, differentiates this algebra from the Lie algebra.

With all the Poisson relations defined, quantization is fairly straightforward due to Dirac’s

quantization procedure. This procedure is applicable to any constrained system but a succint
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outline of it for GR is described below based on [1]. For a more in-depth approach the reader is

encouraged to look into [12].

Dirac’s quantization procedure

1. Define phase space variables, qij and pij , of the classical Hamiltonian theory as operators,

q̂ij and p̂ij in a kinematical Hilbert space, Hkin, such that standard commutation relations

are satisfied.

{·, ·} → 1

i~
[·, ·]

2. Promote the constraints H to operators Ĥ which act on states in Hkin

3. Identify the physical Hilbert space of solutions to the constraints as Hphy such that the

solutions, ψ, satisfy

Ĥψ = 0 ∀ψ ∈ Hphy. (2.11)

After the second step of the quantization program, the Hamiltonian is promoted to an operator

but the relation H = 0 is not yet imposed. For this reason, states in Hkin do not necessarily satisfy

the constraint set by the classical counterpart of the Hamiltonian; namely Ĥψ ̸= 0, ∀ψ ∈ Hkin

in general. It is only after the third step of the program that one is able obtain quantum states

which actually relate to physical states of the system. In the case of GR, the equation representing

physical states given by 2.11 is known as the Wheeler-DeWitt equation.

Despite simple systematic steps given by Dirac’s procedure, quantizing gravity this way leads

to a few major problems. The first is that solutions to 2.11 are very difficult to find even at a

formal level, although solutions for gravity coupled to electromagnetism in a spherically symmetric

spacetime have been found; for details refer to [13]. Secondly, because the configuration space for

gravity, Met(Σ), is infinite-dimensional, there is no well-defined manner to determine a Lebesgue

measure on the configuration space. Then taking the L2 space of the configuration space to define

a Hilbert space as is usually done in canonical quantization, one finds defining an inner product

in L2(Met(Σ)) is ambiguous. This problem, due to its nature, is called the inner product problem.

Furthermore the background independent nature of GR also leads to the problem of time. This

arises due to the conceptual difference of time in quantum theory and GR; as mentioned in the

introduction, in quantum theory time is a fixed measure whose role is a form of a background,

while in GR time is a dynamical variable whose dynamics takes part in the physics. In fact

2.11 is in the form of the Schrödinger equation with no time dependence and may seem to be

in contradiction with everyday experiences (although there is actually no paradox because 2.11
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applies to the universe as a whole and our everyday experiences come from local parts of the

universe). Constructing a time evolution by the usual Heisenberg equation for a generic operator

Ô(t) in Hphy also apparently gives no dynamics:

d

dt
Ô(t) = i[Ĥ, Ô(t)] = 0

.

An explanation for this and the discrepancy in the notion of time is an active area of research,

details of which can be found in [14], [15] and [16]. The final setback to note from canonical

quantization is the operator ordering problem. Recalling that the statement, H = 0, was classically

analogous to the Dirac algebra, 2.10, one would wish to have the quantum version of 2.10 to give

canonical commutation relations:

[Ĉ(N⃗), Ĉ(N⃗ ′)] = −iĈ([N⃗ , N⃗ ′])

[Ĉ(N⃗), Ĉ(N ′)] = −iĈ(∂N ′/∂N⃗)

[Ĉ(N), Ĉ(N ′)] = −iĈ(q−1(N∂iN ′ −N ′∂iN)),

(2.12)

where the quantum versions of the constraints, Ĉ(N⃗) and Ĉ(N), contain the promoted conjugate

pair q̂ij and p̂ij . This way the Wheeler-Dewitt equation would have a “Dirac algebra” associated

to it. However, in quantum theories the order of the operators give different outcomes and to order

q̂ij and p̂ij in a way such that 2.12 can be achieved has proven to be very challenging.

Indeed these problems created a deadlock in the advancement of a quantum theory for gravity

for many years. Nonetheless, they were overcome when “new variables” were introduced by A.

Ashtekar in the early 80s. To investigate this in further detail, a different formalism of GR must

first be acknowledged. The following chapter provides the preliminaries required to quantize GR

in terms of the new variables.

3 General Relativity

Recall that the Hamiltonian formulation of GR that was discussed in the previous chapter was

constructed by a Legendre transformation of the Einstein-Hilbert action,

S(g) =

∫
M
R
√

|g| dnx, (3.1)

where
√

|g| =
√
|detg| for an n-dimensional manifold, M. This naturally led to the dynamical

variables being the metric and its conjugate momentum. Due to the background independent

nature of GR, however, the quantization of these variables led to a deadlock. The key around

this setback is to formulate the action for GR in terms of different variables in the first place; this

action is the Palatini action.
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3.1 The Palatini Action

For an n-dimensional manifold, M, chapter 2 showed that there is a diffeomorphism between M

and Rn. Then since R admits a trivial tangent bundle1, so does TM , the tangent bundle of M.

Trivializing TM , one defines an isomorphism

e : M× Rn → TM .

The isomorphism, e, is also called a frame field and for a 4-dimensional M it is specifically called

a tetrad or vierbein while for a 3-dimensional M it is called a triad or dreibein.

The fiber of the trivial bundle, Rn, is called the internal space and indices associated to it is

denoted by capital Latin letters to differentiate them from spacetime indices which are signified

by lower-case letters. In particular, since a section2 in the bundle, M × R, is just a function on

M, sections can be expressed in terms of a basis, ξI . This allows vector fields to be mapped onto

M from the frame field acting on the basis of sections and are denoted e(ξI)
3. For the sake of

simplicity e(ξI) is often written as eI in relativity and this paper will from here onwards follow

this convention.

A feature to note after the trivialization of TM is that because of the appearance of R, a

canonical Lorentzian metric can be defined on M × R hence a canonical inner product can be

defined. This metric is called the internal metric and is given by

ηIJ =



−1 0 . . . 0

0 1
. . . 0

...
. . .

. . .
...

0 . . . . . . 1.


which can be used to define the inner product as

η(s, s′) = ηIJs
Is′J

where s and s′ are sections living in R. If M is equipped with a Lorentzian metric, g, as is normally

the case in GR, then inner products of vector fields, v and v′, are definable via

g(v, v′) = gαβv
αv′β .

For orthonormal frame fields satisfying

g(eI , eJ ) = ηIJ ,

1A trivial bundle is one which can be expressed as a Cartesian product of a manifold and a vector space. An

example of a non-trivial bundle is the Möbius strip.
2A section is a map that assigns a point in the vector bundle to an associated vector in M.
3Coframe fields, eIµ, can also be defined as the inverse of frame fields. They act as maps from the vectors on Rn

to sections on the base space.
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a simple calculation reveals that there is a relation between the inner product defined by the

spacetime metric and the internal metric, namely

g(e(s), e(s′)) = η(s, s′),

recalling that e(s) and e(s′) are vector fields on M. Then the Palatini formalism allows one to

construct theories using orthonormal frame fields rather than metrics. This already sheds light on

how the Palatini formalism will replace the troublesome metric for new variables when quantizing

gravity.

Another quantity crucial in developing the Palatini action is the Lorentz connection or spin

connection; it is a 1-form whose components will be denoted ωIJµ . The spin connection is a G-

connection or more specifically a SO(n, 1)-connection. A G-connection is a connection whose

component values live in a Lie algebra. For a SO(n, 1)-connection, the values live in the Lorentz

Lie algebra. With a connection, it is possible to define the curvature of the connection, which for

the spin connection is given by

F IJ = dωIJ + ωIK ∧ ωKJ

whose components are

F IJµν = ∂µω
IJ
ν − ∂νω

IJ
µ + ωIKµω

KJ
ν − ωJKµω

KI
ν .

Further details regarding the spin connection and its link to curvature and torsion can be found

in [17]. Using the curvature and the frame field, the Palatini action is given by

S(ω, e) =

∫
M
e ∧ e ∧ ∗F =

∫
M
eµI e

ν
JF

IJ
µν vol

where the ∗ denotes the Hodge star and the vol depicts the volume form which is written no longer

in terms of the metric, g, but rather in terms of the frame field. In the case of a 4-dimensional

manifold the action explicitly becomes

S(ω, e) =
1

2

∫
d4x ϵIJKL ϵ

µνρσeIµe
J
νF

KL
ρσ .

Gravity formulated in terms of tetrads as above is known as the tetrad formalism of GR. The

absence of the metric in the Palatini formalism will prove to be very useful when formulating GR

in a quantum mechanical framework as will be apparent in the following chapter.
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3.2 Gauge Invariance

Digressing from gravity for a while, recall that the remaining 3 fundamental forces are described

by QFT under the framework of the SM; more precisely, the theories which describe these forces

are gauge theories of the Yang-Mills type.

Gauge theories of the Yang-Mills type can be formulated using a G-bundle. A G-bundle is a

principal bundle whose fibers are compatible with the action of a group G and is a vector bundle.

In other words, these theories have a spacetime manifold, M, as the base space and a vector

space, Rn, as the fibers with a projection map, π, that “projects” every vector living in Rn onto

an associated point in M. A gauge tranformation is then tantamount to acting with the inverse

projection map, π−1, such that a point on a fiber is mapped to a different point on the fiber. The

group G acting on the vector space is identified as the gauge group and the interpretation of a

gauge field then naturally comes about as the cross-section of the bundle.

Because gauge theories provide a path to a direct interpretation of gauge bosons and give insight

to conservation laws, it is worth attempting to formulate GR as a gauge theory as well. However,

GR is a theory that possesses a diffeomorphism group, not a gauge group. A diffeomorphism

transformation, similarly to a gauge transformation, leaves the physics of the theory invariant,

but a diffeomorphism group cannot be formulated in terms of a G-bundle for the reason that

diffeomorphisms do not generate changes in the field at a point but instead map the point itself to

another point. For a detailed discussion on the discrepancies between Yang-Mills gauge theories

and diffeomorphism invariant theories the reader is encouraged to look into [18].

The diffeomorphism symmetry in GR is nonetheless considered a gauge theory, just not a gauge

theory of the Yang-Mills type. To see how this unfamiliar symmetry gives rise to gauge symmetries

similar to the type of Yang-Mills, consider the Palatini action from the previous section. It is

evident that the action entails a SO(n, 1) symmetry, or more precisely a SO(3, 1) symmetry in the

case of a 4-dimensional spacetime manifold, and GR is, in this sense, regarded to have a SO(3, 1)

gauge invariance. This symmetry is due to the nature of the tetrad formalism and is associated to

the freedom to choose different bases for different spacetime points. This gauge invariance plays a

crucial role in providing an additional constraint to the existing Hamiltonian and diffeomorphism

constraints. The following chapter attempts to analyze the implications of such new features by

introducing the Ashtekar new variables.

4 The Ashtekar New Variables

Recall that the usage of the metric and its canonical momentum as dynamical variables failed in

canonical quantization due to the background independent nature of GR leading to the problem

of time. To overcome this problem, GR was formulated in terms of a different set of variables,
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the tetrad and the spin connection, via the Palatini formalism. It is natural then to attempt a

Legendre tranformation on the Palatini action with hopes that a Hamiltonian formalism of these

novel variables will solve the problems encountered previously.

However, this attempt leads to complexities. The constraint algebra becomes second class and

the Dirac algebra is no longer closed unlike 2.10. Second class constraints may be solved via the

steps given in [19], but because the old conjugate variables are now functions of the tetrad and the

spin connection, the anlysis is complicated. This complication can be overcome by first introducing

a new term in the Palatini action such that it becomes the Holst action:

S(ω, e) =

∫
M

(
1

2
ϵIJKL ϵ

µνρσ +
1

γ
δIJKL δ

µνρσ) eIµ ∧ eJν ∧ FKLρσ (4.1)

where δIJKL = δI[KδL]J . The γ is called the Barbero-Immirzi parameter, sometimes also known

as just the Immirzi parameter, and an appropriate choice of this parameter allows one to simplfy

one’s calculations by reducing the second class constraints to first class as explained in [22]. One

can also check that at a classical level the introduction of the new term does not affect the field

equations in any way as long as there is no torsion in the manifold (in the case that torsion exists

this is correspondent to fermionic field coupling, the details of which can be found in [20] and

[21]). The Holst action, just like the Palatini action, is free in its expression of the metric thus is

a perfect candidate for the construction of appropriate dynamical variables for a quantum theory.

In fact defining the densitized triad as

Ẽai =
1

2
ϵijkϵ

abcejbe
k
c (4.2)

and the Ashtekar-Barbero connection or Ashtekar connection as

Aia = γω0i
a +

1

2
ϵijkω

jk
a , (4.3)

one constructs a new canonically conjugate pair of dynamical variables whose indices a, b, c pertain

to 3-dimensional spatial spacetime indices while i, j, k pertain to the 3-dimensional internal space.

These are the Ashtekar (new) variables. The densitized triad is the substitute for the 3-metric

in the old formalism and is the 3-dimensional coframe field multiplied by the determinant of the

metric:

Ẽai =
√
detq eai (4.4)

and it is densitized so that it is readily integrable on any curved manifold. The tilde on the triad is

a conventional notation for densitized quantities, but for the sake of simplicity it will be dropped

from this point onwards.

Expressing 4.1 in terms of the Ashtekar variables, one obtains

S(A,E) =
1

γ

∫
M
d4x(ȦiaE

a
i −Ai0Gi −NC −NaCa) (4.5)
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where

Gi ≡ DaE
a
i = ∂aE

a
i + ϵjilA

j
aE

al,

Ca =
1

γ
F jabE

b
j −

1 + γ2

γ
Ki
aGi,

C = [F jab − (γ2 + 1)ϵjmnK
m
a K

n
b ]
ϵjklE

a
kE

b
l

detE
+

1 + γ2

γ
Gi∂a

Eai
detE

.

(4.6)

The latter 2 equations of 4.6 are the Hamiltonian and diffeomorphism constraints which the reader

was exposed to in the 2nd chapter of this paper. The first equation of 4.6, however, is a new

constraint called the Gauss constraint. Recall from Lagrangian mechanics that a symmetry in the

Lagrangian is associated to a conserved quantity which in Hamiltonian mechanics manifests itself

as a constraint. The appearance of this new constraint is then not a surprise; it was rather foreseen

from the moment the Palatini action, and thus the Holst action, was formulated as these actions

gave rise to a new SO(3, 1) gauge symmetry.

What may strike the reader as a surprise is the fact that despite the SO(3, 1) symmetry, the

densitized triad and the Ashtekar connection behave as a SU(2) vector and SU(2) connection

respectively. The source of this peculiarity comes from the change of variables in 4.2 and 4.3.

Observing the constraints, the reader familiar with gauge theories will recognize that the Gauss

constraint in 4.6 is associated to a SU(2) gauge tranformation with the SU(2) structure constants

ϵijk.

It is also worth noting that this gauge theory formulation discussed above is only true for

the Immirzi parameter, γ = i. This was the original choice of the parameter when Ashtekar

first developed his theory. However, because any physical theory must be imposed with a reality

condition, a complex-valued Immirzi parameter induced complications for physical interpretations.

In 1994, J. Barbero introduced a method of imposing a reality condition by choosing the Immirzi

parameter to be real hence resulting in a real SU(2) connection or a SO(3) connection, which in

terms of the Lorentz connection reflects to a self-dual connection. For details of this formulation

refer to [5]. It is then consequential that the theory based on a SO(3) connection is no longer

diffeomorphism invariant when interpreted as a gauge theory, details of whose approach are given

in [23] and [24].

Despite the downsides of a real Immirzi parameter, this paper will henceforth stick to using a

real Immirzi parameter as it offers an easy route to the imposition of reality conditions. Using the

new conjugate variables, Aia and Eai , one can then construct the usual Poisson bracket relations as

{Aia(x), Ebj (y)} = γδbaδ
i
jδ

3(x, y). (4.7)

The next step would then be to follow the Dirac quantization procedure as before thus formulating

a quantized formalism of this theory. Before taking this step, the reader is reminded of the current

situation of the classical theory, namely the development of GR as a SU(2) gauge theory with a
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Poisson bracket relation defined by 4.7 and 3 constraints given by

Gi = 0

Ca = 0

C = 0.

(4.8)

5 Quantization of the New Variables

Since the formulation of GR as an SU(2) gauge theory has equipped the theory with a connection,

drawing analogy with the quantization process of Yang-Mills gauge theories, one is inclined to

follow the subsequent steps, reminiscent of the Gupta-Bleuler quantization [25], [26].

1. On the space of connections modulo gauge transformations, the space of G-connections that

are classified with a class of equivalent gauge transformations, define a Gaussian measure

thus a Lebesgue measure via the Minkowski metric.

2. Construct a Hilbert space using a L2 space defining operators in the Schrödinger picture as

Âiaψ(A) = Aiaψ(A),

Êai ψ(A) = −i~γ δ
δAi

a
ψ(A),

with a factor of 8πG set to 1, such that they satisfy the commutation relation

[Âia(x), Êbj (y)] = i~γδbaδijδ3(x, y).

Then this provides the usual canonical quantization associated to promoting 4.7 to a quantum

relation.

3. Pick out the gauge-invariant states in the Hilbert space constructed in step 2 by implementing

the Gauss constraint:

Ĝiψ(A) = 0

4. Apply the Hamiltonian on the gauge-invariant states to study the dynamics of the theory:

i∂tψ(A) = Ĥψ(A)

For the case at hand, however, step 1 of the above procedure poses a problem. Due to the

background independent nature of GR, it is not possible to define a Lebesgue measure through a

fixed background such as the Minkowski metric. The goal then is to define a measure on the space

of connections without having to resort to a fixed background. In order to do this the reader is

first exposed to the concept of holonomies given in the following section.
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5.1 Holonomies

For the sake of familiarity, consider a vector, Ea, in a Yang-Mills theory and parallel transport it

along a curve γa(t) where t is the parameter on the curve. This would correspond to the covariant

derivative of Ea being zero along γa(t):

γ̇a(t)DaE
b = 0

where γ̇a(t) = dγa(t)/dt is the vector tangent to γa(t) and Da is the Yang-Mills covariant derivative.

Expanding out the covariant derivative one is left with

γ̇a(t)∂aE
b(t) = −igγ̇a(t)Aa(t)Eb(t) (5.1)

with g, the coupling constant, and Aa, the vector potential (or the gauge field). This is a differential

equation whose variable, Ea, that needs to be solved for is given in terms of that variable itself

thus is insoluble analytically. However, one may obtain a solution formally by integrating both

sides from t′ = 0 to t′ = t to obtain

Eb(t) = Eb(0) − ig

∫ t

0

dt′γ̇a(t′)Aa(t′)Eb(t′),

then carrying out iterative methods, namely substituting the LHS of the equation for the RHS of

the same equation. The first iteration gives

Eb(t) = Eb(0) − ig

∫ t

0

dt′γ̇a(t′)Aa(t′)Eb(0) − g2
∫ t

0

dt′γ̇a(t′)Aa(t′)

∫ t′

0

dt′′γ̇a(t′′)Aa(t′′)Eb(t′′)

and an indefinite iteration gives the sum

Eb(t) =
∞∑
n=0

(−ig)n
∫

t1≥···≥tn≥0

γa1(t1)Aa1(t1) · · · γan(tn)dt1 · · · dtn

Eb(0) (5.2)

which happen to converge, thereby providing an adequate solution to 5.1. The quantity in the

brackets with the summation sign is called the parallel propagator and it gives a unique solution

to 5.1 for a given connection and a curve. If a parallel propagator is a solution to a differential

equation whose curve is closed, then the parallel propagator is called a holonomy. It is, however,

worth keeping in mind that Physicists tend to be lenient with this terminology and extend its

usage to open curves as well. For the sake of simplicity, the integral in 5.2 is often expressed in

terms of a path ordered product. A path ordered product, denoted P(· · · ), is defined such that the

quantities with larger values of ti appear on the left of quantities with smaller values of ti. For

instance, if t1 > t2 > · · · > tn then a path ordered product gives
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P(Aa1(t1)Aa2(t2) · · ·Aan(tn)) = Aa1(t1)Aa2(t2) · · ·Aan(tn).

Applying this notation to the integral in 5.2, one finds

∫
t1≥···≥tn≥0

γa1(t1)Aa1(t1) · · · γan(tn)dt1 · · · dtn =
1

2
P

(∫ t

0

γ̇a(t)Aa(t)dt

)n
.

Then including the summation sign, one may define the holonomy to be a path ordered exponential

given by

∞∑
n=0

(−ig)n

n!
P

(∫ t

0

γ̇a(t)Aa(t)

)n
≡ P

exp

(
−ig

∫ t

0

γ̇a(t′)Aa(t′)dt′

) .
Notice that if the gauge group was to be Abelian, the vector potentials would commute and

the path-ordering would play no role; thus the path-ordering generalizes the Abelian case to the

non-Abelian case. It is also worth noting that the parallel propagator hence the path ordered

exponential is a matrix whose trace is a gauge-invariant scalar. This provides an insight that the

trace may be related to an observable quantity. In fact the trace of the holonomy is known as a

Wilson loop and according to Giles’ theorem [27], the information about the trace of a holonomy

along all possible loops is enough to extract all the gauge-invariant information about a given

vector potential.

Now consider applying the notion of holonomies to gravity by carrying out the same procedure

as above but for a SU(2)-connection, the key quantity at hand with the tetrad formalism of GR.

Then the holonomy of the connection, Aia, along a curve, γ, is defined as

hγ ≡ P

exp

(∫
γ

A

) ≡
∞∑
n=0

∫
t1≥···≥tn≥0

γ̇a(t)Aia(t)Ti dt (5.3)

where Ti are the generators of the group SU(2). Similarly to the Dirac algebra given previously

by 2.10, the variables must be smeared such that they can be given in such a form. The holonomy

of the Ashtekar-Barbero connection given by 5.3 already depicts a smearing of the connection and

one is left with the densitized triad to do the same. Using the fact that the densitized triad is a

2-form, one may smear it over a surface, S, to obtain the flux of E over S:

Ei(S) =

∫
S

naE
a
i d

2σ (5.4)

in which na is the normal to the surface and σ is the quantity parametrizing the surface. With the

2 smeared quantities, hγ and Ei(S), it is possible to construct an algebra known as the holonomy

flux algebra.

The next step forward is to use the notions of holonomies and holonomy flux algebra discussed

in this chapter to develop an entity called spin network states which enables the description of

quantized geometry without resorting to a fixed background.
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5.2 Spin Network States

Recall that the quantization of the new variables, Aia and Eai , posed a problem due to the non-

existent Lebesgue measure on a background indepedent formalism. This problem can be overcome

by relying on a loop transform. At the beginning of this chapter when the new variables were

quantized, a Shrödinger representation of the Ashtekar connection was given as ψ(A); this is

known as the connection representation and a loop transform of this representation results in a loop

representation which solves the problem at hand; for details refer to chapter 3 of [28]. The name

Loop Quantum Gravity in fact comes from the loops in this loop representation. The origin of loop

transformations comes from Giles’ theorem. Because the trace of a holonomy encodes all the gauge-

invariant information about the connection at hand and the Gauss constraint naturally imposes a

gauge-invariance on the connection representation of wavefunctions (as shown at the begining of

this chapter), it is almost intuitive that the wavefunction in the connection representation can be

expanded in terms of traces of holonomies or Wilson loops. The expansion is given as

ψ(A) =
∑
γ

ψ(γ)Wγ(A) (5.5)

with

Wγ(A) = Tr

P

exp

(
−
∫
γ

γ̇a(t)Aa(t)dt

)


denoting Wilson loops over the closed curves, γ, and ψ(γ) denoting expansion coefficients. The

expansion 5.5 is then known as the loop transform and the coefficients, ψ(γ), as the loop represen-

tation. The meticulous reader may have recognized that 5.5 is very similar to the tranformation

of position representation to momentum representation in ordinary quantum mechanics. One may

think that the loop representation is in fact equivalent to the original connection representation in

the sense that the position and momentum representations are equivalent in quantum mechanics.

The advantage of using loops is that loops are intimately connected to knots in knot theory,

a well-researched branch of mathematics. The diffeomorphism invariance property of GR implies

that a deformation in a loop keeps the wavefunction in the loop representation invariant. This is

related to knot invariants in knot theory, details of which can be found in chapter 5 of [5]. For the

reader who is interested, a detailed review of how knots play a role in LQG can also be found in

[29].

Despite advantages, loops themselves are also problematic because the basis in the loop space

are over-complete; in other words certain traces of holonomies on a manifold can be formulated

from combinations of traces of other holonomies and there is a sense of redundancy. To see how

this problem arises, one must first be assured that for SU(2) matrices, such as those considered

by the formalism of Ashtekar new variables, the identity
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Tr(A)Tr(B) = Tr(AB) + Tr(AB−1)

is satisfied ∀A,B ∈ SU(2). In terms of Wilson loops, this is translated as

Wγ(A)Wη(A) = Wγ◦η(A) +Wγ◦η−1

where the circle denotes a composition of going around the loop γ after the loop η. Due to the

unitary nature of the matrices in SU(2), Wη−1(A) = Wη(A). Also the fact that Wilson loops are

traces of holonomies imply that Wγ◦η(A) = Wη◦γ(A) by the cyclic property of the trace. The

above properties are known as the Mandelstam identities whose specifics are in [30]. They provide

a relation between different Wilson loops therefore projecting redundancies in the loop space.

Overcoming the problem of the over-complete basis of the loop space, leads to a spin network.

To understand spin networks, first consider cynlindrical functions; they are functionals of fields

which only depend on cetain components of the fields. For instance, for the Ashtekar formalism of

GR, the field is the Ashtekar connection and the cylindrical function would be a functional only

of the holonomies of the connection. To be more rigorous, a cylindrincal function is a pair, (Γ, f),

of a graph in Σ and a smooth function f : SU(2)L → C in which the superscript L depicts the

number of links in the graph showing the number of cartesian products of SU(2) present. This

function is then defined as

f(he1(A), . . . , heL(A)) = ψ(Γ,f)(A) = ⟨A | Γ, f⟩ ∈ CylΓ

where the subscripts ei denote the oriented paths making up the links of the graph and CylΓ

represents the space of cylindrical functions. Notice that the function is a functional of the Ashtekar

connection but only dependent on the holonomies as stated previously. Figure 2 provides a pictorial

diagram of the graphs involved in the cylindrical functions.

Figure 2: A graph with oriented paths ei. Figure from [1]

Then the space of functionals made up of these graphs can be converted into a Hilbert space if

one defines a scalar product over the space. Noting the fact that the holonomies are elements of

SU(2), a Lie group, one can use the Haar measure, dh, to define the scalar product on CylΓ as

⟨ψ(Γ,f) | ψ(Γ,g)⟩ ≡
∫ ∏

e

dhe f
∗(he1(A), . . . , heL(A)) g(he1 , . . . , heL(A)) (5.6)
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where the asterisk denotes complex conjugation. With this scalar product, CylΓ becomes HΓ, a

Hilbert space associated to the graph Γ. Then the Hilbert space for all cylindrical functions is

defined to be the direct sum over all such HΓ for all graphs:

Hkin =
⊕
Γ

HΓ. (5.7)

If there are 2 cylindrical functions ψ and ψ′ which share the same graph, then an inner product

is defined according to 5.6. However, when constructing a direct sum over all HΓ, two cylindrical

functions which have different graphs, Γ1 and Γ2, may overlap. In such a case, a new graph is

forged as the union of the existing ones such that Γ3 ≡ Γ1 ∪ Γ2 and the functions associated to

each graph, f1 and f2 are extended trivially on Γ3. Then using the definition given by 5.6, the

inner product between functionals of two different graphs are given as

⟨ψ(Γ1,f1) | ψ
′
(Γ2,f2)

⟩ ≡ ⟨ψ(Γ1∪Γ2,f1) | ψ
′
(Γ1∪Γ2,f2)

⟩. (5.8)

Equipped with such a scalar product, one is able to obtain a Hilbert space through 5.7 through a L2

space over the connections with an integration measure, dµAL, called the Ashtekar-Lewandowski

measure4:

Hkin = L2(A, dµAL).

The Ashtekar-Lewandowski measure provides the Lebesgue measure that was ill-defined due to

the absence of a fixed background. In particular, describing the kinematical Hilbert space as a

L2 space over the connections with the measure dµAL allows for an explicit expression of the dot

product of cylindrical functionals; for instance, 5.8 may be written as

⟨ψ(Γ1,f1) | ψ
′
(Γ2,f2)

⟩ ≡
∫
dµAL ψ

∗
(Γ1,f1)

(A) ψ′
(Γ2,f2)

(A)

Now that a kinematical Hilbert space has been constructed, the next step is to obtain a repre-

sentation of the holonomy-flux algebra or of hei , which will allow to solve the problem of over-

completeness of the basis mentioned previously. In order to do this, consider employing the Peter-

Weyl theorem and hence decomposing the function f : SU(2)L → C from a cylindrical function

into unitary irreducible representations of SU(2) as

f(g) =
∑
j

f̂ jmnD
j
mn(g)

for j = 0, 12 , 1, . . . m = −j, . . . , j
4More details on the construction of integration measures are given in [31] and an extension of the connection

space to differential geomoetry can be found in [32]
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where Dj
mn(g) are the Wigner matrices giving the spin-j irreducible representation of the group

element g. Then for a cylindrical function, ψ(Γ,f)(A), which contains a graph with numerous SU(2)

functions and holonomies, the decomposition is as

ψ(Γ,f)(A) =
∑

ji,mi,ni

f̂ j1,...,jnm1,...,mn,n1,...,nn
Dj1
m1n1

(he1(A)) . . . Djn
mnnn

(hen(A))

with the Wigner matrices related by a tensor product. The links are now irreducible representations

and more importantly they are unique as proven by [33]. The ends of the links known as nodes

are “tied up” by contracting the indices of the representations with what is known as intertwiners.

The details of this process is given in pages 43-48 of [1]. Ultimately, such graphs form cylindrical

functions that give states to the Hilbert space known as spin network states and are expressed as

ψ(Γ,jm,In)(he) =
⊗
m

Djm(he)
⊗
n

In (5.9)

with In depicting the intertwiners at the end points of the links. 5.9 then clearly demonstrates

that the loop representation can be expressed as a non-redundant basis ironing out the problem of

a over-complete basis. This new concept also reveals that a Wilson loop is just a special case of a

spin network state with only 1 link and 1 intertwiner. To obtain a physical Hilbert space from the

kinematical Hilbert space formed by the spin network states, one would implement the constraints

as was described in the Dirac quantization procedure.

5.3 Geometric Operators

With a background independent Hilbert space, the next step is to develop operators which can

act on the space to give physical observables. Since the focus of the theory for quantum gravity

in this paper is on quantizing GR, a classical theory which entails the background as a dynamical

variable, it is natural to ask what the quantum version of the background would be. Drawing

analogy to ordinary quantum mechanics, one would expect the existence of some sort of operators

that give physical observables pertaining to geometry such that they reflect the quantum nature

of the background. Such operators exist and are called geometric operators.

The first geometric operator is the area operator, which is as manifested by its name, the

operator that measures quanta of area. Over a certain surface, Σ, of a manifold, the area operator

provides a value of the physical area over that surface. For simplicity, consider a surface whose x3

coordinate is zero and x1, x2 ̸= 0. The classical expression for an area on a manifold is then given

by

AΣ =

∫
Σ

dx1dx2
√
detq(2) (5.10)

in which detq(2) denotes the determinant of the metric over a 2 dimensional surface spanned by x1

and x2. Since the canonical formulation of GR has proven to be more useful in terms of Ashtekar
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variables, using 4.4 one may rewrite the expression 5.10 as

AΣ =

∫
Σ

dx1dx2
√
E3
i E

3i. (5.11)

To obtain an operator version of 5.11, one would then go on to quantize it canonically using the

definition given previously as Êai = −i~γ δ
δAi

a
which, bringing in the factor of 8πG, is −8πGi~γ δ

δAi
a

.

The latter form clarifies that 5.11 does indeed have units of area. However, this poses a problem

because there are two densitized triads in the expression. The densitized triads, being functional

derivatives, upon acting on a state will form Dirac delta functions. One of the Dirac delta functions

can be treated with the integration but the other will remain. Since both triads will act on the

same point from a state, the Dirac delta which remains will be of the form δ(x−x) = δ(0). This is

an ill-defined quantity which hinders the process of quantizing 4.4. Moreover the presence of the

square root further complicates the situation. One way to overcome this problem is via what is

known as regularization [34].

Consider smearing the triad with a function fϵ(x, y) which in the limit ϵ→ 0 becomes a Dirac

delta. The smeared triad is then given by[
E3
i

]
f

(x) =

∫
Σ

d2y fϵ(x, y)E3
i (y), (5.12)

which upon promoting to an operator and subbing into 5.11 gives the area operator,

ÂΣ =

∫
Σ

dx1dx2
√[

Ê3
i

]
f

[
Ê3
i

]
f

(5.13)

In order to study the action of the area operator, one simply has to act 5.13 on a spin network

state developed in the previous section. For the ease of mathematical calculation, first consider

investigating the action of Ê3
i on a spin network state, ψs. The expression of interest is then[

Ê3
i

]
f

(x) ψs = −8πGi~γ
∫
Σ

d2yfϵ(x, y)
δψs

δAi3(y)
. (5.14)

The key factor to handle is δψs

δAi
3(y)

, which suggests, if zero, the action of the area operator also

gives zero. For a non-zero value, the spin network states must depend on the connection Ai3 and

along the curves on the spin network states. In other words, for a non-zero value, a curve on a

spin network state must pierce through the surface Σ. Taking this into account, one may write the

functional derivative as
δψs

δAi3(y)
= Tr

(
δDjm

δAi3(y)

δψs
δDjm

)
(5.15)

where the Djm denotes the spin jm representation of the holonomy lines in the spin network state

and the “trace” is given in a generalized sense to ensure all free indices are contracted. Further

progress from here can be made by carrying out the functional derivative of the Wigner matrix with

respect to the connection. Recalling the expression for a holonomy as given by 5.3 and expanding
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the expression, one may perform the derivative with respect to the connection to obtain

δhγ
δAi3(y)

=
∞∑
n=0

∫
t1≥···tk···≥tn≥0

dt1 · · · dtnγ̇a1(t1)Aa1(t1) · · · γ̇3(tk)δ3(y − γ(tk))Ti · · · γ̇an(tn)Aan(tn)

(5.16)

in which Ti shows the SU(2) generator as was defined in the holonomy chapter. 5.16 can be

simplified by recognizing that the integral from the parameter value t1 to tk−1 is just a parallel

propagator from the starting point of the curve to tk and the integral from tk+1 to tn is just a

parallel propagator from the point of the curve tk to the end of the curve. Therefore 5.16 becomes

δhγ
δAi3(y)

=

∫
dtk D

jm(0, tk)γ̇3(tk)Tiδ3(y − γ(tk))Djm(tk, 1). (5.17)

Using the result of 5.17 with 5.15 and 5.14, the triad operator becomes[
Ê3
i

]
f

(x) ψs = 8πGiγγ̇3(x)Tr
(

Tiψs(x)
)
fϵ(x, y) (5.18)

in which care should be taken to avoid confusion between the γ which is the Immirzi parameter

and γ̇3(x) which is the tangent of the holonomy.

As the area operator, 5.13, contains two triad operators, another triad operator given by 5.18

will result in two generators giving

TiTi = jm(jm + 1).

Then the action of 5.13 on a spin network state can be rewritten as

ÂΣψs = 8πℓ2plγ
∑
I

√
jI(jI + 1)ψs (5.19)

where the index I represents all the lines in the spin network state that pierce Σ to produce physical

areas. The jI are known as the color associated to the lines I. Notice the spin network state is

an eigenstate of the area operator with eigenvalues 8πl2plγ
∑
I

√
jI(jI + 1), which contains the

planck length, ℓpl =
√

G~
c3 ≈ 10−33cm. The factor of ~ suggests the quantum nature of this length

scale and indeed the planck length is associated to the quantum structure of the spacetime; more

precisely it is characteristic of the minimum length scale that a geometric structure in spacetime

can be related to. Then the natural interpretation one can infer is that spacetime itself is discrete,

much like matter is on quantum scales. A pictorial diagram of a quantum of area produced by a

certain color of a line piercing through Σ is given by figure 3.

Recall that the value of the Immirzi parameter in the classical theory given by the Holst action,

did not affect the theory’s physical interpretation in any way. By comparison in the quantum

theory, 5.19 suggests that the eigenvalue of the area is dependent on the value of the Immirzi

parameter. This is due to the nature of the quantization at hand which does not involve canonical

transformations in the classical theory translating to unitary transformations in the quantum
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Figure 3: A quantum of area is obtained by a line in a spin network piercing through Σ. Figure

from p 115 of [35]

theory; an in-depth discussion of the origin of this problem is given in [36]. Although the value of

the Immirzi parameter is important in interpreting the physical quantities in the quantum theory,

there are no experiments to date which verify the parameter’s value. An insight to a possible value

is, however, inferred when one considers black hole entropies, the specifics of which are discussed

in the succeeding chapter.

The second geometric operator is the volume operator. The volume operator is the operator

which upon acting on a spin network will endow a physical volume over a 3-dimensional region,

R. Classically, a volume on a manifold over a 3-dimensional region is given by

V (R) =

∫
R

d3x
√
detq =

1

6

∫
R

d3x
√
|ϵabcϵijkEai EbjEck|. (5.20)

The quantization process of 5.20 is much more complex than that of the area operator. In

particular, there exist two different methods of quantization: one which was developed by Ashtekar

and Lewandowski [37] and the other which was developed by Rovelli and Smolin [38]. Both methods

utilize the technique of smearing triad operators as was the case for the area operator but the choice

of the surface over which the triad is smeared is different. Consequentially, the results differ in that

the former gives an operator sensitive to the differential structure of the spin network states while

the latter gives one sensitive only to topological features. Unlike the area operator, the volume

operator induces a physical volume when a vertex or node of a spin network state is enclosed inside

the region R. With the links of the graphs providing areas and the nodes of the graphs providing

volumes, it is evident that spin network states are the rudimentary building blocks of a discretized

spacetime.

5.4 Dynamics of LQG

This section is concerned with operators related to the dynamics of LQG, namely operators which

are classically given as constraints such as the diffeomorphism constraint and the Hamiltonian

constraint.
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Recall from chapter 2 that the Dirac quantization procedure involves identifying states of a

Hilbert space which satisfy constraints of the system. Then the vector space becomes a physical

space from a kinematical one. To be pedantic about the different Hilbert spaces, the Hilbert spaces

which arise after an imposition of each constraint will be labelled differently such that they are as

below:

Hkin
Ĝi=0−−−→ H 0

kin
Ĉa=0−−−−→ HDiff

Ĉ=0−−−→ Hphy.

An important property of spin network states is that they are SU(2) invariant (chapter 3.1 of [1]);

in other words they fulfill the classical Gauss constraint even after quantization:

Ĝiψs = 0.

The natural succeeding step from the quantization procedure is then to impose the remaining two

other constraints, starting with the diffeomorphism constraint.

Defining an operator for a diffeomorphism, ϕ, is simple given that it acts on a spin network

state or more generally a cylindrical function. Using the fact that a diffeomorphism acts as

hγ(ϕ∗A) = hϕ◦γ(A)

on a holonomy, the operator ϕ̂ would act on a cylindrical function as

ϕ̂ψΓ = ψϕ◦Γ

such that the space of cylindrical functions is mapped from CylΓ to Cylϕ◦Γ.

The problem, however, is that this does not give the desired Hilbert space, HDiff . The reason

is that diffeomorphisms form a non-compact group. Because diffeomorphisms move the graphs

themselves, the only element which can be used to implement invariance after the group action

is a constant functional. This is very similar to a wavefunction, ψ(x) ∈ L2(R, dx), in quantum

mechanics exposed to a condition of translation invariance, which is also a non-compact group.

The only element which can achieve translational invariance is a constant function. Similarly

solutions to the diffeomorphism constraint can only be achieved by constant functionals on H 0
kin

and the space of such solutions is denoted H 0∗
kin. Then by construction, η ∈ H 0∗

kin is diffeomorphism

invariant:

η(ϕ̂ψ) = η(ψ) ∀ψ ∈ H 0
kin. (5.21)

The space of diffeomorphism invariant functionals satisfying 5.21 is denoted H ∗
Diff and the

desired Hilbert space, HDiff , can be constructed by its duality. The resulting spin network states

are equivalence classes of graphs under diffeomorphisms which are also called knots. The knots, as

mentioned in the spin network states chapter, is invariant under diffeomorphisms thereby providing

the desired solutions to HDiff . In fact the solutions of HDiff are more precisely called knotted

spin networks and are illustrated by figure 4.
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Figure 4: The left depicts the relation of a diffeomorphism for a given knot. The right depicts

different types of knotted spin network states. Figure from p 55 of [1]

In order to formulate Hphy from HDiff , the classical Hamiltonian constraint which is the

smearing over the lapse function, N , given by

C(N) =

∫
d3x Nϵijk

Eai E
b
j√

detE

(
F kab − 2(1 + γ2)Ki

[aK
j
b]

)
(5.22)

must be promoted to an operator. For notational simplicity, the two terms in 5.22 are given new

labels, CE(N) and T (N), such that 5.22 becomes

C(N) = CE(N) − 2(1 + γ2)T (N). (5.23)

The immediate problem apparent from 5.22 is that it is non-linear, posing a problem similar to

that which arose when geometric operators were being quantized. A way around this problem is

to encapsulate the non-linearity into the Poisson bracket relation using 4.7. Labelling the volume

of Σ as V =
∫ √

detE and the smeared extrinsic curvature as K̄ =
∫
Ki
aE

a
i , one may construct the

following relations:

Ki
a =

1

γ
{Aia, K̄},

K̄ =
1

γ3/2
{CE(N = 1), V },

Eai E
b
j√

detE
ϵijkϵabc =

4

γ
{Aka, V }

where CE(N = 1) denotes the density of CE(N) with the lapse set to 1. These relations then

allows one to rewrite CE(N) and T (N) as

CE(N) =

∫
d3x NϵabcδijF

i
ab{Ajc, V },

T (N) =

∫
d3x

N

γ3
ϵabcϵijk{Aia, {CE(N = 1), V }}{Ajb, {C

E(N = 1), V }}{Akc , V }.
(5.24)
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Since the goal is to formulate a theory in terms of loop variables, the connection and curvature

in 5.24 must be reexpressed in terms of holonomies. Expanding 5.3, over a path ea of length ϵ, one

obtains hea(A) ≃ 1 + ϵAiaTi +O(ϵ2) and therefore

h−1
ea {hea, V } = ϵ{Aia, V } +O(ϵ2).

The curvature, F iab, may also be expressed in a similar manner by considering an infinitesimal

trianglular loop:

hαab
= 1 +

1

2
ϵ2F iabT

i +O(ϵ4)

where αab represents the triangular loop lying on the plane ab and ϵ2 denotes the area enclosed by

the triangle. Then this leads to

hαab
− h−1

αab
= ϵ2F iabT

i +O(ϵ4).

Using the triangular loops, consider a lattice regularization procedure in which Σ is partitioned

into small 3-dimensional regions much alike to the steps taken in developing the volume operator.

Due to the triangular topology of the loops, however, the regions here are enclosed by tetrahedra.

This then produces triangulations of tetrahedra as shown in figure 5. The integral given by the

Figure 5: A tetrahedron formed via triangulation. Figure from p 57 of [1]

first of 5.24 can then be regularized by a Riemann sum as

CE = lim
ϵ→0

∑
I

NIϵ
abcTr

(
(hαab

− h−1
αab

)h−1
ec {hec , V }

)
, (5.25)

in which the subscript I denotes the Ith tetrahedral cell. With regards to the regularization of the

second equation of 5.24, details are given by [12], [39].

With the Hamiltonian constraint revealed in the form of holonomies of Poisson brackets, the

quantization process is simple: promote the holonomies to opeartors and the Poisson brackets to

commutators as

ĈE = lim
ϵ→0

∑
I

NIϵ
abc Tr

(
(ĥαab

− ĥ−1
αab

) ĥ−1
ec [ĥec , V̂ ]

)
. (5.26)
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When promoting the constraint to a quantum operator, a caveat is that the spin network state on

which the operator acts on must be “in line” with the vertices and lines of the triangulation as

depicted by the blue lines in figure 5. This ensures that the property of the volume operator acting

on the nodes of the spin network is inherited. At a vertex from which the dynamics is exhibited,

one can form “dressed nodes” by aligning additional lines from the lines entering the vertex. Note

that there is no ambiguity in positioning new lines dressing the node because the space HDiff is

insensitive to the position of links.

The quantum versions of 5.24 then give a well-defined operator Ĉ(N) which is also compatible

with the classical Poisson brackets of the Dirac algebra, 2.10. In other words, one may achieve the

relation

⟨ϕ| [Ĉ(N1), Ĉ(N2)] |ψ⟩ = 0, ∀|ψ⟩ ∈ Hkin, ∀⟨ϕ| ∈ HDiff (5.27)

in which Ĉ(Ni) represent the densities of the Hamiltonian constraint operator. Showing 5.27 is

straightforward upon realizing that the additional lines added via 5.26 carry no volume therefore

are insensitive to further action by 5.26 A key point to note here is that this property is only

obtainable from using the Ashtekar Lewandowski version of the volume operator [40], [37], due to

its sensitivity to the structure of graphs.

Moreover, there exists an infinite number of states that are compatible as solutions of Ĉ [41] (any

graph with no nodes is in the kernel of ĈE and T̂ ). To find meaningful solutions, one may consider

spin networks with an arbitrary number of links from 5.26 and construct linear combinations of

these states carrying different coefficients. An illustration is given by figure 6. Such solutions,

Figure 6: A linear combination of spin networks with arbitrary number of links. Figure from p 58

of [1]

however, are only formal and have not been explicitly discovered.

Nonetheless, a method for a well-defined quantized Hamiltonian has been devised in a non-

perturbative manner. Although, no explicit form of a solution is known, the success in developing

the discreteness of geometry is expected to hold through to physical states as well.

5.5 Matter Coupling

As the reader should be aware, the theory of LQG aims to quantize the physics of gravity, in other

words GR. And since GR encompasses the dynamics of both spacetime and matter, successfully
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quantizing the spacetime manifold (or gravitational field in a field theory sense) brings on the next

natural task which is to do it with matter.

The first and simplest matter field one can consider is the scalar field. Scalar field coupling is

especially useful in Loop Quantum Cosmology (or LQC) which is a quantum theory of cosmology

whose origin is from the application of LQG to classical cosmology (In this paper, the focus of

applications of LQG is on black holes; for details regarding LQC, refer to [43], [44], [45], in which

the scalar field acts as a “time” or “clock” variable [42]). In order to couple the theory with matter,

one must first backtrack to the Lagrangian formalism such that the action of the scalar field theory

can be combined with the theory of gravity which this paper has developed in its former half. The

scalar field theory action is given by

S =

∫
d4x

(
−gµν∂µφ∂νφ− V (φ)

)√
−detg (5.28)

in which φ denotes the scalar field and the metric gµν has been explicitly put in to remind the

reader the metric is not neccessarily flat. Defining the canonical momentum conjugate to φ as

usual as π = δL/δφ̇, one may construct a Hamiltonian whose variables, π and φ, can be changed

to Ashtekar’s:

H =

∫
d3x

N√
detq

(
π2 + Eai E

bi∂aφ∂bφ+ detqV (φ)
)

+Naπ∂aφ. (5.29)

From 5.29 one can show that the first term contributes to the Hamiltonian constraint while the

second contributes to the diffeomorphism constraint:

C(N⃗)φ =

∫
d3x Naπ∂aφ

C(N)φ =

∫
d3x

N√
detq

(
π2 + Eai E

bi∂aφ∂bφ+ detqV (φ)
)
.

(5.30)

Then adding C(N⃗)φ and C(N)φ to the diffeomorphism and Hamiltonian constraints of gravity

respectively, the scalar field becomes coupled to gravity.

For other types of matter fields such as Yang-Mills, fermionic and Higgs, the Hamiltonian

constraints are as follows:

CYM =
qab

2g2YM
√
detq

(Eai E
b
i +Bai B

b
i )

CDirac =
Eai

2
√
detq

(
iπTiDaξ + Da(πTiξ) +

i

2
Kj
aπξ + c.c

)
CHiggs =

1

2

[
pipi

G
√
detq

+
√
detq

(
qab(Daϕi)(Dbϕi)/G+ P (ϕiϕi)/(~G2)

)] (5.31)

with gYM denoting the Yang-Mills coupling constant, Da showing the covariant derivative over

SU(2)×GYM 5, Bai denoting the magnetic field of the Yang-Mills connection, G denoting Newton’s

gravitational constant and Ti representing the su(2) Lie algebra generators. Note also that the

5GY M depicts the Yang-Mills group.
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fermionic (Dirac) field is labelled by ξ and its conjugate momentum by π whereas the Higgs field

and its conjugate momentum is given by ϕi and pi respectively. For details regarding the derivation

of 5.31, refer to [46]. Again, similarly to the scalar field described earlier, the constraints given by

5.31 can be combined with that of gravity’s to give matter-coupled theories.

6 Black Hole Entropy

The development of LQG has allowed for quantum mechanical applications of general relativity,

mainly in cosmology and black holes. This section focuses on the application of LQG to the latter.

For applications regarding the former the reader is introduced to [43, 44, 45].

This chapter starts with a motivation for a quantum picture of black hole entropy. In 1973,

Barden, Carter and Hawking used GR as a stepping stone to devise the laws of black hole mechanics

[47] by drawing analogy to the laws of thermodynamics. In particular, it was postulated by

Bekenstein and confirmed by Hawking that the entropy of a black hole and its surroundings are

separate and it is only the combined entropy which must increase accordingly to the 2nd law of

thermodynamics. This led to a semiclassical picture of black hole entropy, S, being related to its

horizon area, A, through the Bekenstein-Hawking formula as:

S = C
kB
~G

A =
kBA

4ℓ2pl
(6.1)

where kB is the Boltzmann constant and C is a constant of proportionality. It was, however,

argued that based on thermodynamics, a black hole should have a temperature. Hawking proved

that, in a quantum mechanical picture, there indeed is a black hole temperature through what

is known as Hawking radiation[48], although classically such radiation cannot be found because a

black hole’s area cannot reduce due to Hawking’s area theorem [49, 50]. Then the temperature

is indicative of a black hole’s statistical entropy giving relation to its quantum microstates that

correspond to the black hole’s macroscopic configuarations (very similarly to ordinary statistical

mechanics). Comparing the values of the thermodynamic entropy from the Hawking temperature

with the Bekenstein-Hawking entropy from the horizon area [35], one finds that the latter value is

approximately an order of 22 times larger than the former value. This indicates that the entropy

of a black hole cannot completely be comprised of the entropy of the matter that formed it. An

explanation of this can only be given by considering quantum properties of black holes and this

provides a good reason to develop a quantum picture for black hole entropy. Another motivation

is to reconcile the information paradox [51] which arises from the enigma of physical information

being lost permanently into a black hole as the black hole evaporates.

To apply LQG to black hole entropy, one must first acknowledge that the black holes subject to

investigation must be very large such that the Hawking radiation of the black holes is negligible; for

a small black hole, the Hawking radiation is large due to its small horizon area and the black hole
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is quickly evaporated away. Secondly, the notion of an isolated horizon [52] must be understood.

An isolated horizon is a horizon that is “isolated” in the sense that the Hamiltonian operator does

not generate any evolution on the boundary which also implies a vanishing lapse function. It is

said to be a quasilocal [53] definition of a black hole that is in equilibrium with its interior and

exterior. An immediate consequence then is that, in terms of statistical mechanics, the only factor

affecting the black hole entropy is the macroscopic configurations of the black hole itself and not

that of the surroundings or the black hole’s interior. Another condition which must be met for an

isolated horizon is the following. For a spin connection ωia defined in spacetime, one can define

Wa ≡ −ω̄iari for ω̄ia equal to the pull back of the spin connection onto the boundary B and ri a

constant vector. Then using an antisymmetric tensor Eci ≡ Σiabϵ
abc, one states that the condition

required is

∂aWb − ∂bWa = −2γΣ̄iabri (6.2)

where the bar on Σ again denotes the pull back onto B.

Keeping the above conditions in mind, the calculation of entropy in LQG begins with applying

the usual definition of entropy from statistical mechanics, namely S = kBlog(Ni) in which Ni are

the microstates of a black hole. To understand the physical significance of the microstates in terms

of black hole entropy, recall that the source of different microstates in statistical mechanics was

the different configurations of each particle in a system; in the case of black holes, the different

configurations of “particles” are given by the small discretized areas resulting from punctures made

by spin networks. To be more precise, black hole microstates stem from different possibilities of

assigning a certain area to the quanta of surfaces punctured by spin network states. To progress,

one needs the fact that the entropy is a function of area as given by 6.1 or more fundamentally by

[54]. Then consider a black hole with an area A0 and the number of quantum states required to

induce the area A0. The number of states comes from the links, jI , of the spin network states in

the outer spacetime puncturing the boundary according to 5.19 as pictorially depicted by figure

7. But since the condition 6.2 must be satisfied on the horizon, there is a contribution from the

operator version of Σ̄ which is similar to the Ê3 operator which was mentioned when developing

the area operator. The ˆ̄Σ eigenvalues are given by mI such that −jI ≤ mI ≤ jI and
∑
I mI = 0,

the latter condition stemming from the fact that the horizon must be topologically spherical.

Implementing the condition of diffeomorphism invariance on the boundary as well, one finds that

there is invariance under the interchange of the integer pairs (jI , mI). The task at hand to find

the entropy of a black hole is then to determine the allowed number of sequences or configurations

assembled by the puncturing of spin network states that give a certain macrostate depicted by an

area. There are two methods of approach to this, one introduced by C. Rovelli and the other using

the number theoretical approach.
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Figure 7: Spin network lines puncturing the horizon to endow it an area. Figure from p 142 of [35]

6.1 Rovelli’s Counting

First recall that from 5.19, one may reorganize the expression to obtain

M ≡ A

4πγℓ2pl
=
∑
I

√
kI(kI + 2) ∈ [A+ δA,A− δA] (6.3)

where kI shows the value from the half integer values of jI from jI = kI/2 and A denotes the area

associated to a macroscopic state. The number of sequences, N , may then be written as N (M)

with each sequence of {kI} satisfying 6.3. To proceed consider the following inequalities:∑
I

√
k2I <

∑
I

√
kI(kI + 2) ≡

∑
I

√
(kI + 1)2 − 1 <

∑
I

√
(kI + 1)2. (6.4)

Denoting the number of configurations satisfying
∑
I kI = M as N+(M) and the number of

configurations satisfying
∑
I(kI + 1) = M as N−(M), one finds that 6.4 implies

N−(M) < N (M) < N+(M). (6.5)

Following the steps given in [68] from 6.5, one finds that the number of ordered positive integers

giving the sum in 6.3, or N+(M), is C2M where C is a constant.

6.2 Number Theoretical Approach

The second approach entails two steps: establishing the allowed sequences and then learning how

many different ways such allowed sequences can be labelled. Setting 4πγℓ2pl = 1, the total area

given by N punctures from spin network edges can be expressed as

A =
N∑
I=1

AI =
N∑
I=1

√
(kI + 1)2 − 1. (6.6)
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Then letting gk equal to the number of punctures giving the eigenvalue associated to every possible

I = 1, . . . ,N from kI , the above expression can be rewritten as

A =

Imax∑
I=1

gkI
√

(kI + 1)2 − 1. (6.7)

Using a mathematical trick described in Appendix G of [68], one may reexpress the square root to

be √
(kI + 1)2 − 1 = ykI

√
pkI

where ykI ∈ Z and pkI ∈ A, the set of square-free integers. Noting that ykI is an integer and

absorbing gkI into it, one obtains the relation

Imax∑
I=1

gkI
√

(kI + 1)2 − 1 =

Imax∑
I=1

ykI
√
pkI .

Determining the number of allowed sequences would then amount to solving for the uknowns,

kI and ykI . For the sake of simplicity, consider having just one puncture such that gkI = 1. Then

the equation to solve is √
(kI + 1)2 − 1 = ykI

√
pkI

which upon making the substitution xI = kI + 1 gives the Pell equation or Brahmagupta-Pell

equation:

x2I − pkIy
2
kI = 1.

The exact methods of solving this equation is omitted in this paper but can be found in Appendix

H of [68]. The next step is to then figure out the number of different ways the sequences allowed by

solving the Pell equation can be oriented. This comes down to resorting to the Number Partitioning

Problem, whose details are given by [69] and [70].

6.3 The Entropy

Going through the process delineated by the previous two sections, one obtains the value [55]

S(A) =
A

4ℓ2pl
− 3

2
log

(
A

ℓ2pl

)
+O(1) + · · · (6.8)

whose first term is equal to 6.1 and second term acts as a quantum correction. To obtain 6.8 the

value of the Immirzi parameter must be assumed as γ = 0.274067. The calculation of this value

stems from solving the equation [56]

1 =

∞∑
k=1

(k + 1) exp

(
−1

2
γ
√
k(k + 2)

)
. (6.9)

The fixing of the Immirzi parameter as such should then carry on to be in accordance with pre-

dictions of other physical calculations. However, there are no other known physical calculations in
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which the Immirzi parameter can be employed hence this speculation is yet to be confirmed. An

upside is that the Immirzi parameter value stated above is consistent with the Bekenstein-Hawking

formula for a wide range of black holes including charged, rotating and ones coupled to matter

fields [57]. In terms of a more fundamental reason that the Immirzi parameter must be fixed at

the given value is unknown. In fact there has been studies which have attempted to calculate the

entropy of a black hole with the statistical mechanics treamtment of LQG without having to fix a

specific value for the Immirzi parameter [58].

7 Spin Foam Formalism

In this final chapter, the reader is introduced to a different perspective of the dynamics of LQG

from the Hamiltonian formalism discussed to this point. The reader should be aware that ordinary

quantum mechanics can be formulated in terms of the Shrödinger or Heisenberg picture, which

is based on the Hamiltonian formalism, or the Feynman path integral formalism that is focused

on the transition amplitudes from state to state. In LQG the case is similar in that there is an

analogue of the path integral formalism of GR called the spin foam formalism which was first

developed by Rovelli and Reisenberger [59].

As spin networks have shown to be the underlying structure of a background independent

quantum space, spin foams are the underlying structure of a background independent quantum

spacetime. It is a sum-over-histories approach that attempts to calculate the transition probability

that a certain 3-dimensional spatial geometric configuration evolves to another. In fact one can

think of a spin foam as a “world surface” swept out by a spin network that evolves over a “time”

variable.

As is shown by figure 8, a spin foam is a simplicial complex built from vertices, edges and

polygonal faces. The name spin foam comes from its soapsud-like appearance due to its structure.

As the lines of spin networks are labelled by group representations, the faces of a spin foam are

labelled by group representations. The edges of a spin foam are labelled by intertwiners in a similar

fashion to the nodes of a spin network. Noting again that a spin foam is a “world surface” of a spin

network, it is easily inferred that the cross section of a spin foam is a spin network. The goal of the

spin foam model of qauntum gravity is then to allow for the computation of transition amplitudes

of one state to another by summing over all the spin foams which result in the transition at hand.

The formal definition of a spin foam, W , that sets the stepping stone for this calculation is

W (s, s′) =
∑
σ

A(σ) A(σ) =
∏
v

Av(σ)

where s and s′ are initial and final spin network states respectively, A(σ) are the amplitudes which

are summed over for every surface, σ, swept out by the spin network states and Av(σ) charac-

terize the single step evolution of the states; for details refer to [59]. To calculate the transition
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Figure 8: Bottom slice of spin network evolving to the top slice of spin network to create a spin

foam. Figure from p 155 of [35]

amplitudes, however, is a very complex task and progress has been made more significantly in a

simplified model of GR called the BF theory.

A 4-dimensional BF theory has the Lagrangian,

L =

∫
d3x ϵµνλκTr(BµνFλκ),

where Fµν is the field strength tensor as in Yang-Mills theories and Bµν is an antisymmetric tensor

that are elements of the su(2) algebra. The reason BF theory is much easier to deal with than

GR is that upon varying the Lagrangian to produce the field equations, the vector potential turns

out not to have any gauge invariance. This implies there is no local degrees of freedom and the

only degrees of freedom available are those which are topological. It is worth noting that GR is a

special case of BF theory in which B is chosen to be a product of 2 tetrads as BIJab ≡ eI[ae
J
b] [60].

The majority of new research breakthroughs in LQG nowadays come from models based on

spin foams, though it should be noted much of the activities are based on Euclidean space. In

particular, the paper by Engle, Pereira and Rovelli [61] made significant contributions in developing

modern spin foam models which are formulated using Regge calculus [62]. The formulation of GR

via spin foams is likely to shed light on simplicity regarding different types of calculations as the

functional path integral formalism does in quantum mechanics. Although it is speculated that the

spin foam formalism is equivalent to the Hamiltonian formalism, there is only rigorous proof for

this equivalence in 3 dimensions [63] and not in 4 dimensions.

The applications of spin foams to physical calculations seem promising as well. In particular,

spin foams have been used to produce an explicit expression for the Minkowski vacuum [64]. More-
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over, a technique for defining an n-point function in a background independent context has also

been devised [65]. This allows for a particle-scattering interpretation for transitions of geometric

states therefore leading to the graviton propagator [66, 67], the quanta which mediates the force

of gravity.

8 Conclusion

To summarize, Loop Quantum Gravity is a theory which quantizes General Relativity in a back-

ground independent and diffeomorphism invariant manner. It is formulated in terms of the Hamil-

tonian formalism in which spacetime is split into 3-dimensional space and 1-dimensional time.

Despite the apparent loss of diffeomorphism invariance, this key property of General Relativity is

in fact still preserved. The classical theory of gravity turns out to be a completely constrained

theory which when quantized gives rise to many problems, of which the crux is the problem of

time. To get around this problem, General relativity is reexpressed using the Palatini action and

hence the Holst action and the notion of Ashtekar new variables are introduced whose elements

contain an SU(2) Ashtekar-Barbero connection and its conjugate momentum. Such a formulation

gives rise to a parameter called the Barbero-Immirzi parameter which, although classically plays

no significant role, in quantum theory determines the characteristics of discretized spacetime.

To solve for the constraints of General relativity, the notion of holonomies and hence of Wilson

loops are introduced. These are obtained by performing a loop transform from the original Ashtekar

variables to express them in loop representation. These loops, with intertwining operators, are then

networked to give a graph corresponding to spin network states which allows for a basis of a Hilbert

space that is background independent. The spin network states are eigenvalues of the area and

volume operators whose actions are interpreted as endowments of an incremental physical area and

volume respectively. The Planckian nature of areas and volumes from these operators imply that

spacetime is discretized. The theory of quantium gravity has also been successful in incorporating

matter consistently hence consistency with the Standard Model seems promising.

An application of Loop Quantum Gravity discussed in this paper was on black hole entropy.

From the Bekenstein-Hawking formula, it was motivated that the black hole entropy is related to

the black hole’s horizon area, which could be described by lines of spin network states puncturing

the surface of the boundary. It was found that Loop Quantum Gravity provided a logarithmic

correction to the semiclassical description of a black hole entropy and such a result mandated a

prerequisite value of the Barbero-Immirzi parameter. Finally a brief discussion on spin foams was

given to provide the reader with an alternative formalism, other than that of Hamiltonian, of Loop

Quantum Gravity. The spin foam formalism was shown to be the analogue of the path integral

formalism in ordinary quantum mechanics, focusing on the transition amplitudes between states
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of geometric configuration rather than the states themselves. The formalism has allowed for the

development of an n-point function in a background independent way and led to the development

of the graviton propagator.

In spite of the large breakthroughs and progress made in the field of Loop Quantum Gravity,

there still remains much room for further developments. First and foremost is the lack of exper-

imental evidence supporting the theory as is the case with all theories of quantum gravity. For

instance despite the theory’s prediction of quantized geometry, there is no way for a verification as

the energy scale required is approximately 1019GeV or 15 orders of magnitude larger than what

the world’s current strongest particle accelerators can generate. Overcoming this energy barrier

experimentallly does not seem to be a feasible option in the foreseeable future hence employing an

indirect method to confirm the validity of Loop Quantum Gravity via considering the low-energy

limit seems much more appropriate. Since phenomena predicted by Loop Quantum Gravity all

occur at high energies, and the theory stems from its classical counterpart, General Relativity,

it is expected that in the low-energy limit of Loop Quantum Gravity, General Relativity should

be recovered. This statement may sound very matter-of-fact as replacing the quantum operators

and commutators with their classical counterparts produce General Relativity easily. Nevertheless,

Loop Quantum Gravity is background independent and its structure is unconventional in quantum

theories calling for a more rigourous proof that the quantum theory and its classical correspondent

are equivalent at low energies.

Moreover it was found that although a formal solution to the Hamiltonian constraint is known,

no explicit form of it is and further work regarding this area seems crucial in understanding the

dynamics of Loop Quantum Gravity. Having said this, further investigating the problem of time

also seems to be at the heart of understanding the dynamics of the theory one step ahead.

For spin foams, the most vital aspect for progress seems to be in proving the equivalence of Loop

Quantum Gravity’s Hamiltonian formalism with the spin foam formalism. It was mentioned in this

paper that the equivalence was expressed only for the 3-dimensional case. Future work regarding

the proof for the equivalence in one dimension higher then seems imperative since the majority

of existing theories describing the universe are formulated in 4-dimensions. The augmentation of

spin foam models to Lorentzian systems rather than those that are Euclidean is also another area

for research.

In terms of applications to black hole entropy, there is no explanation as to why the Barbero-

Immirzi parameter must be the value it is; further research into this field will be necessary in

answering questions that are more fundamental in nature of a quantum theory of gravity. To

go a step further, to understand black hole entropy more solidly, one must clarify the notion of

energy at a more fundamental level. As were the steps taken in this paper, to elucidate the nature

of black hole entropy, concepts from statistical mechanics were employed. However, statistical
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mechanics (as well as thermodynamics) is heavily depedent on the notion of energy and in the case

of black holes, a natural approach to defining local energies does not exist. This poses problems in

importing ideas from statistical mechanics (and thermodynamics) in a general covariant fashion.

Given successful future pogress in this field, it seems promising then that there will be further

elucidations on black holes at Planckian scales.
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