>

A

(e€ S: P(e)): subsequence of'all element quesitet fulfill the predicate.
|x|: the absolute value of

|X]: the largest integex x.

[X]: the smallest integer x.

[a,b] ;== {xeR:a<x<b}.

i..j: abbreviation fori,i+1,...,]j}.

AB: whenA andB are sets, this is the set of all
A x B: the set of pairga,b) with ac Aandb € B.

1: an undefined value.

(—)oo: (minus) infinity.
vx: P(x): for all values ofx, the propositiorP(x) is true.

Ix: P(x): thereexistsa value ofx such that the propositid®(x) is tr
N: nonnegative integers{ = {0,1,2,...}.

Ny: positive integersiN,. = {1,2,...}.
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Z: integers.

R:

Hn == 31,
logx: The logarith

~<: some ordering relation. In Sect.
marked during depth-first searc

1, 0: the boolean values “true” and *

A.2 Mathematical Concepts

antisymmetric: a relation~ is antisymmetriafifo db, a~ bandb~a
impliesa = b.

asymptotic notation:

O(f(n)) :={g(n):3c>0:3nge N, :
Q(f(n)) :={g(n):3c>0:3nge N, :
O(f(n) := O(f (M) NQ(f(n)).

o(f(n)) :={g(n):vc>0:3npe N, :
w(f(n)) (nN):ve>0:3nge Ny :

(0
=g
1.

See also Sect. 2.
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concave a functionf is concave on an intervéa, bJ if

a,b]: vt €[0,1]: f(tx+ (1—-t)y) >tf(x)+ (1—1)f(y).

con i convex on an intervaé, bJ if

equivalence re 1sitive, reflexive, symmetric relation.
field: a set'of ele at support addition, subtraction,ipligiation, and divi-
sion by nonze eménts. Addition and multiplication assaziative and com-

iff :

ments to tuples, stri
(by,by,...,by) ifand o

over that set. We(ha\®, ..., ax) <
by and(ay,...,ak) < (bz,...,by).

X, we obtainx-x ! = 1 — the neu
afield, every element except zer
multiplicative inverse.

thatn=a-b.

rank: a one-to-one mapping: S— l..nis ara
setS={ey,...,en} if r(x) <r(y) whenevex

reflexive: a relation~C A x Ais reflexive ifvac A: (a,a) ¢

relation: a set of pairR. Often, we write relations as opera ampley if
is a relationa ~ b meanga, b) e~.

symmetric relation: a relation~ is symmetridf for all aandb, a~ bimpli
total order: a reflexive, transitive, antisymmetric relation.
transitive: arelation~ is transitiveif for all a, b, ¢, a~ b andb ~ plya~c.

weakly antisymmetric: a relation< is weakly antisymmetrii for all a,b,a<bor
b<a.lfa<bandb< a, we writea= h. Otherwise, we writaa < borb < a.
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A.3 Basic Probability Theory

Probability the@ry rests on the concept ofample space”. For example, to de-
scribe thefrolls of two dice, we would use the 36-element $aspace(l,...,6} x

{1, g6}, 1.e., the elements of the sample space are the payswith 1 <x,y <6
andx,y € N.'Generally, a sample space is any set. In this book, all sasgalces are
finite. In arandem expetimengany element o € . is chosen with some elemen-
tary probability psgtheredi. - ps = 1. A sample space together with a probability
distribution isg€alled grobability spaceln this book, we us@niform probabilities
almost exclusivelyin this ¢cages = p = 1/|.”|. Subsets’ of the sample space are
calledevents The probability of arevents C . is the sum of the probabilities of
its elements, i.e. prap’) = |&| e in the uniform case. So the probability of the
event{ (x,y) : x+Hy= 7} = {{@6)(2,5),...,(6,1)} is equal to 636=1/6, and the
probability of the'evenf(Xy): X+ V= 8} is equal to 1336=5/12.

A random varidbleis a mapping from the sample space to the real numbers.
Random variables are usually, denoted by capital lettersstinduish them from
plain values. For example, the randomgvaria¥leould give the number shown by
the first die, the randomjvariabl@€ould give the number shown by the second
die, and the random variabf@€ould, give the sum of the two numbers. Formally,
if (xy) €., thenX((x,y)) TX, Y((Q)) = YvandS((x,y)) = x+y=X((xy)) +
Y((x,Y))-

We can define new randomVariables as expressions involtirey candom vari-
ables and ordinary values. For example¥ifand\ are random variables, then
(V+W)(s) =V(s) +W(s), (V-W)(s) sM(s)-W(s), and(V + 3)(s) =V(s) + 3.

Events are often specified by predicates involving randonabkes. For exam-
ple, X < 2 denotes the everdt(1,y), (2,¥) : 1 <y < 6},/and hence prgiX < 2) =
1/3. Similarly, profX +Y = 11) = prob({(5.6), (6,5)}) = 1/18.

Indicator random variablesire random-variablesithantake only the values zero
and one. Indicator variables are an extremely uSeful tagh®probabilistic analysis
of algorithms because they allow us to encode the behavigamilex algorithms
into simple mathematical objects. We frequently use therdekandJ for indicator
variables.

Theexpected valuef a random variabl& : .7 “<IRjis

E[Z] = z ps-Z(s) = Z z-probhZ =2)f, (A1)
se.” ZER
i.e., every sampls contributes the value & atstimes its probability#Alternatively,
we can group als with Z(s) = zinto the evenZ = zand then sum over tr@e'R.
Inourexample, X]=(14+2+3+4+5+6)/6=21/6=3.5, i.e., thelexpected
value of the first die is %. Of course, the expected value of the second die is also
3.5. For an indicator random variablewe have

E[l] =0-prok(l =0)+1-prok(l =1) =prob(l =1).

Often, we are interested in the expectation of a random ierihat is defined
in terms of other random variables. This is easy for sums gwnthelinearity of
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expectation®f random variables: for any two random variableandw,

EV +W] = ENV] +EW] . (A2)

]+E]Y]=35+35=7.

Observe that we ob ult with almost no computatigithout knowing
about the linearity of
tion:

E[§=2%+32+4 3
2:1+3.24+4-3+5-

4
£ +82+9 %+...+12 %

7.

Exercise A.1.What is the expected s

We shall now give another exam omplex sangalees We con-
sider the experiment of throwingballs mbins. The balls are thrown at random
and distinct balls do not influence each mple space is the set of
all functionsf from 1..n to 1..m. This sample sp, andf(i),1<i<n
indicates the bin into which the ballis throw f the sample space
are equally likely. How many balls should we expect in bin 1€ \gel to denote
the number of balls in bin 1. To determingl E e mtrod indicator variables

li, 1<i < n. The variabld; is 1, if ball i is thro 0 otherwise.

Formally,li(f) = 0iff f(i) # 1. Thenl = ;1;. We have
—E[y 1] = Y Ell| = ¥ prob

where the first equality is the linearity of expectations tredsecond equali
from thel;’s being indicator variables. It remains to determine theb
l; = 1. Since the balls are thrown at random, balhds up in any bihwit
probability. Thus proflj = 1) = 1/m, and hence

1
mm'

| >

Zprob(l. =1)=

1 Formally, there are exactiy™1 functionsf with f(i) = 1.
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Products of random variables behave differently. In gdnemahave EX - Y] #
E[X]-E[Y]. There is one important exception:XfandY areindependentequality

Xy =X A AXe=%) = [] prob(X =x). (A.3)

1<i<k

As an exampl : roll two dice, the value of the first die e value of the
second die ared dent random variables. Howeverathe wof the first die and
e not independent random variables.

Exercise A.2.Let| J dependentindicator variables and{et (1 +J) mod
ifferent. Show thdtandX are independent, but that

=EX-Y].

How likely is it that a random variable will 0
value?Markov’s inequalitygives a useful bound
variable and let be any constant. Then

from its expected
no ative random

Ol

prob(X > c-E[X]) < (A4)

The proof is simple. We have

E[X] = z z-probX = 2)

ZeR

> z z-prob(X =2)

z>CE[X]
>c-E[X]-probhX >c-E[X]),
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where the first inequality follows from the fact that we sumeowa subset of the
possible values and is nonnegative, and the second inequality follows from the
fact that the the second line ranges only awerch thaz > cE[X].

nds are possible for some special casesndbra variables.
arises several times, in the boolk. Mdve a sunX = X; +

—£)E[X]) < e EXI2, (A.5)

X]) < ¢ - A.6
X]) < m . (A.6)

il boundbecause it estimates the “tail” of
the probability distri rt for whieéhdeviates considerably from its
expected value.
Let us see an exa ins and lefX; be the indicator variable
for thei-th coin coming up -+ X is the total number of heads.
Clearly, EX] = n/2. The bound abo hat pb< (1— €)n/2) < e €4,
In particular, fore = 0.1, we h 0.9-n/2) < e 0014 50, forn=10000,
the expected number of heads'is 5000 and the probabilitythieagum is less than
4500 is smaller thaa 25, a very .

Exercise A.3.Estimate the probabili i ove example is larger than
5050.

(A7)

Exercise A.4 (balls and bins continued)Let, as abe mber of balls

in bin 1. Show )
n 1 1
ot == (i) (7) (—7F

and then attempt to computélEas , prob(l = k)k.

A.4 Useful Formulae

We shall first list some useful formulae and then prove sontbeyh.
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e A simple approximation to the factorial:

ny\n
_ | n
(e) <n<n" (A.8)
° ng'siapproxXimation to the factorial:
0 — <1+o<1>> \/2nn(9>n. (A.9)
n e

e An approximatic

(A.10)

(A11)

(A.12)

(A.13)

27=2 and (A.14)

e Jensen’s inequality:
(A.15)

for any concave functiofi. Similarly, for any convex functioff,

éfm) >n-f (z'lTl)“> (A.16)
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A.4.1 Proofs

ni> /1nlnxdx: [x(lnx— 1)})(=n >n(lnn—-1).

x=1

Thus
Equation (A.
1
1+2+...+n=§((1 +(N+n—1+4...+2+1))

1

:5((n+ 2+n-1)+...+(n—=14+2)+(n+1))

_n(n+1)

2

The sums of higher powers are esti
available. For examplg; ;x?dx<i2 <

s < [ea= 5]

15<n 1

i”> /onXZdX: [g;o 3

~ For (A.12), we also use estimation by integral. We hav <1/i<
JiL1(1/x)dx and hence

n+1

and

1<i<n

n1 1 ni
Innz/ —dx< .—§1+/ —dx=1+Inn.
1 X 15= | 1 X

n

Equation (A.13) follows from

1-9)- 5 d= 5 d- 5 d=1-1"
o<i<n-1

o<i<n-1
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Letting n pass to infinity yieldsi~oq = 1/(1—q) for0< g < 1. Forq=1/2, we
obtainy -2~ =2. Also,

) j.2 :i;Z“Jri;z“ +i;2“+...

=(1+1/2+1/4+ 1/8+...)-212*i

>

2-1=2.

For the first'equal e that the term Bccurs in exactly the firstsums of

the right-hand side

1<i<n

uses the definition of concavity
convex functions is immediate, sinc



