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Abstract. In this work we use a commutative generalization of complex numbers, called bicomplex numbers,
to introduce a holomorphic Riemann zeta function of two complex variables satisfying the complexified Cauchy-
Riemann equations. Furthermore, we establish a bicomplex Riemann hypothesis equivalent to the complex Riemann
hypothesis of one variable and we obtain a bicomplex Euler Product.

1. Introduction

There exist several ways to generalize complex numbers into a real algebra of dimension
four. However, it seems that perhaps only quaternions ([2], [4], [5], [12], [13]) and bicomplex
numbers ([7], [9], [11]) enable us to well define analysis with such kind of generalizations. In
fact, by the famous Frobenius theorem, we know that quaternions are the only possible four
dimensional algebra without zero divisors (the same theorem says that there are no algebras
without zero divisors in R3). However, quaternions are not commutative instead of bicomplex
numbers which are commutative but with zero divisors.

Now, it is well known that the Riemann’s Conjecture for the zeta function is presently
one the most important conjecture in the whole mathematics. In that context, it is natural
to look for a Riemann zeta function for such kind of hypercomplex numbers. In the case of
quaternions, it is not obvious to generalize the Riemann zeta function because quaternions are
not commutative. However, there exist a definition of a quaternionic Riemann zeta function
using the Dirichlet series (see [16]).

In this article, we introduce a Riemann zeta function for bicomplex numbers. More
precisely, we obtain a holomorphic Riemann zeta function of two complex variables satis-
fying the complexified Cauchy-Riemann equations. Furthermore, we establish a bicomplex
Riemann hypothesis equivalent to the complex Riemann hypothesis of one variable and we
obtain a bicomplex Euler Product. Finally, as corollary, we treat our results for the specific
case of hyperbolic numbers ([3], [17]).
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2. Preliminaries

Here we introduce some of the basic results of the theory of bicomplex numbers. In
1892, in search for special algebras, Corrado Segre (1860–1924) published a paper [14] in
which he treated an infinite family of algebras whose elements are called bicomplex numbers,
tricomplex numbers,· · · , n-complex numbers. We define bicomplex numbers (also called
tetranumbers) as follows:

T := {a + bi1 + ci2+dj | i21 = i22 = −1, j2 = 1

and

i2j = ji2 = −i1, i1j =ji1 = −i2, i2i1 = i1i2 = j}

where a, b, c, d ∈ R. The topology used on T is the topology of R4 induced by the Euclidean
norm (also noted | |).

We remark that we can write a bicomplex number a+ bi1 + ci2 + dj as (a+ bi1)+ (c+
di1)i2 = z1 + z2i2 where z1, z2 ∈ C(i1) := {x + yi1 | i12 = −1}. Thus, T can be viewed as a
kind of “duplication” of C(i1). In particular, a bicomplex number can be seen as an element

of C2 � C2(i1). It is easy to see [7] that T is a commutative unitary ring with the following
characterization for the non-invertible elements:

PROPOSITION 1. Let w = a+ bi1 + ci2 + dj ∈ T. Then w is non-invertible if and only
if

(a = −d and b = c) or (a = d and b = −c) .
It is also possible to define differentiability of a function at a point of T [7]:

DEFINITION 1. Let U be an open set of T and w0 ∈ U . Then, f : U ⊆ T → T is said
to be T-differentiable at w0 with derivative equal to f ′(w0) ∈ T if

lim
w→w0

(w−w0 inv.)

f (w)− f (w0)

w −w0
= f ′(w0) .

We also say that the function f is T-holomorphic on an open set U if and only if f is
T-differentiable at each point of U .

As we saw, a bicomplex number can be seen as an element of C2, so a function
f (z1+z2i2) = f1(z1, z2)+f2(z1, z2)i2 of T can be seen as a mapping f (z1, z2) = (f1(z1, z2),

f2(z1, z2)) of C2. Here we have a characterization of such mappings:

THEOREM 1. Let U be an open set and f : U ⊆ T → T such that f ∈ C1(U). Let
also f (z1 + z2i2) = f1(z1, z2)+ f2(z1, z2)i2. Then f is T-holomorphic on U if and only if:

f1 and f2 are holomorphic in z1 and z2
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and,

∂f1

∂z1
= ∂f2

∂z2
and

∂f2

∂z1
= −∂f1

∂z2
on U .

Moreover, f ′ = ∂f1
∂z1

+ ∂f2
∂z1

i2 and f ′(w) is invertible if and only if detJf (w) �= 0.

This theorem can be obtained from results in [7] and [10]. Moreover, by the Hartogs

theorem [15], it is possible to show that “f ∈ C1(U)” can be dropped from the hypotheses.

Hence, it is natural to define the corresponding class of mappings for C2:

DEFINITION 2. The class of T-holomorphic mappings on a open set U ⊆ C2 is defined
as follows:

TH(U) :=
{
f : U ⊆ C2 → C2|f ∈ H(U) and

∂f1

∂z1
= ∂f2

∂z2
,
∂f2

∂z1
= − ∂f1

∂z2
on U

}
.

It is the subclass of holomorphic mappings of C2 satisfying the complexified Cauchy-
Riemann equations.

We remark that f ∈ TH(U) in terms of C2 if and only if f is T-differentiable on U . It
is also important to know that every bicomplex number z1 + z2i2 has the following unique
idempotent representation:

z1 + z2i2 = (z1 − z2i1)e1 + (z1 + z2i1)e2

where e1 = 1+j
2 and e2 = 1−j

2 .
This representation is very useful because: addition, multiplication and division can be

done term-by-term. Also, an element will be non-invertible if and only if z1 − z2i1 = 0 or
z1 + z2i1 = 0.

The notion of holomorphicity can also be seen with this kind of notation. For this we
need to define the projections P1, P2 : T → C(i1) as P1(z1 + z2i2) = z1 − z2i1 and P2(z1 +
z2i2) = z1 + z2i1. Also, we need the following definition:

DEFINITION 3. We say that X ⊆ T is a T-cartesian set determined by X1 and X2 if
X = X1 ×e X2 := {z1 + z2i2 ∈ T : z1 + z2i2 = w1e1 + w2e2, (w1, w2) ∈ X1 ×X2}.

In [7] it is shown that if X1 and X2 are domains of C(i1) thenX1 ×e X2 is also a domain
of T. Now, it is possible to state the following striking theorems [7]:

THEOREM 2. If fe1 : X1 → C(i1) and fe2 : X2 → C(i1) are holomorphic functions
of C(i1) on the domains X1 andX2 respectively, then the function f : X1 ×e X2 → T defined
as

f (z1 + z2i2) = fe1(z1 − z2i1)e1 + fe2(z1 + z2i1)e2 , ∀ z1 + z2i2 ∈ X1 ×e X2

is T-holomorphic on the domain X1 ×e X2 and

f ′(z1 + z2i2) = f ′
e1(z1 − z2i1)e1 + f ′

e2(z1 + z2i1)e2
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∀ z1 + z2i2 ∈ X1 ×e X2.

THEOREM 3. LetX be a domain in T, and let f : X → T be a T-holomorphic function
on X. Then there exist holomorphic functions fe1 : X1 → C(i1) and fe2 : X2 → C(i1) with
X1 = P1(X) and X2 = P2(X), such that:

f (z1 + z2i2) = fe1(z1 − z2i1)e1 + fe2(z1 + z2i1)e2 ∀ z1 + z2i2 ∈ X .

We note here that X1 and X2 will also be domains of C(i1).

3. Bicomplex Riemann zeta function

In this section we want to give a meaning of an expression of the form
∑∞
n=1

1
nw

wherew
is a bicomplex number. For this, we need to define what we mean by an integer to a bicomplex
power.

DEFINITION 4. Let n ∈ N\{0} and w = z1 + z2i2 ∈ T. We define

nw := ew·ln(n)

where

ez1+z2i2 := ez1 · ez2i2 and ez2i2 := cos(z2)+ i2 sin(z2) .

Hence,

nz1+z2i2 = ez1·ln(n) · [cos(z2 · ln(n))+ i2 sin(z2 · ln(n))]

REMARK (see [7] and [10]).
• ew1+w2 = ew1 · ew2 ∀w1, w2 ∈ T
• ew is invertible ∀w ∈ T
• ez1+z2i2 = (ez1−z2i1)e1 + (ez1+z2i1)e2 ∀z1 + z2i2 ∈ T

We are now able to define a bicomplex Riemann zeta function.

DEFINITION 5. Let w = z1 + z2i2 ∈ T with Re(z1) > 1 and |Im(z2)| < Re(z1) − 1.
We define a bicomplex Riemann zeta function ζ (w) by the following convergent series:

ζ(w) =
∞∑
n=1

1

nw
.

The last definition can be well justified by the following theorem.

THEOREM 4. Let w = z1 + z2i2 ∈ T with Re(z1 − z2i1) > 1 and Re(z1 + z2i1) > 1.

Then
∑∞
n=1

1
nw

converges and
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∞∑
n=1

1

nw
=

[ ∞∑
n=1

1

nz1−z2i1

]
e1 +

[ ∞∑
n=1

1

nz1+z2i1

]
e2 .

Moreover,

{w ∈ T | Re(z1 − z2i1) > 1 and Re(z1 + z2i1) > 1}
= {w ∈ T | Re(z1) > 1 and |Im(z2)| < Re(z1)− 1} .

PROOF. From the last remarks, we obtain

nz1+z2i2 = n(z1−z2i1)e1+(z1+z2i1)e2

= e((z1−z2i1)e1+(z1+z2i1)e2) ln(n)

= e(z1−z2i1) ln(n)e1+(z1+z2i1) ln(n)e2

= e(z1−z2i1) ln(n)e1 + e(z1+z2i1) ln(n)e2

= nz1−z2i1e1 + nz1+z2i1e2 (invertible) .

Hence,

1

nz1+z2i2
= 1

nz1−z2i1
e1 + 1

nz1+z2i1
e2 .

Now, from the theory of the Riemann zeta function of one complex variable, it is well
known that the series

∞∑
n=1

1

ns

converges in the half-plane Re(s) > 1. Therefore,
∑∞
n=1

1
nz1−z2i1

and
∑∞
n=1

1
nz1+z2 i1

converge,

respectively, for Re(z1 − z2i1) > 1 and Re(z1 + z2i1) > 1. Hence,

∞∑
n=1

1

nw
=

[ ∞∑
n=1

1

nz1−z2i1

]
e1 +

[ ∞∑
n=1

1

nz1+z2i1

]
e2

on {w ∈ T | Re(z1 − z2i1) > 1 and Re(z1 + z2i1) > 1}. Moreover, let w = z1 + z2i2 =
a + bi1 + ci2 + dj (i.e. z1 = a + bi1 and z2 = c + di1). Then, Re(z1) = a, Im(z2) = d ,
Re(z1 − z2i1) = a + d and Re(z1 + z2i1) = a − d . Now, {w ∈ T | Re(z1 − z2i1) >
1 and Re(z1 + z2i1) > 1} = {w ∈ T | Re(z1) > 1 and |Im(z2)| < Re(z1)− 1} since

a + d > 1 and a − d > 1 ⇐⇒ a > 1 and |d| < a − 1 . �
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We will now determine the whole domain of existence of our bicomplex Riemann zeta
function. In fact, if O2 denotes the set of non-invertible elements in T, we extend ζ (w) as
follows:

ζ (w) := ζ (z1 − z2i1)e1 + ζ (z1 + z2i1)e2

on the set T\{1 + O2}.
REMARK.
• 1 = 1e1 + 1e2

• w ∈ 1 + O2 ⇔ z1 − z2i1 = 1 or z1 + z2i1 = 1

The next theorems of this section will help us to better understand why we choose T\{1+
O2} to define our analytic continuation of ζ (w).

THEOREM 5. The set T\{1 + O2} is open and connected in C2.

PROOF. It is easy to show that T\{1 + O2} = (C(i1)\{1}) ×e (C(i1)\{1}). Hence,

T\{1 + O2} must be a domain in C2 because C(i1)\{1} is a domain in the complex plane. �

THEOREM 6. The bicomplex Riemann zeta function ζ (w) is T-holomorphic on T\{1 +
O2} .

PROOF. Let fe1(z1 − z2i1) = ζ (z1 − z2i1) and fe2(z1 + z2i1) = ζ (z1 + z2i1) on X1 =
X2 = C(i1)\{1}. Now, by analytic continuation, the Riemann zeta function is holomorphic on
C(i1)\{1} and, by Theorem 2, ζ (w) = fe1(z1 − z2i1)e1+fe2(z1 + z2i1)e2 is a T-holomorphic
mappings on the domain X1 ×e X2 = (C(i1)\{1})×e (C(i1)\{1}) = T\{1 + O2}. Therefore,
ζ (w) ∈ TH(T\{1 + O2}) . �

THEOREM 7. The analytic continuation of ζ(w) = ∑∞
n=1

1
nw

on T\{1+O2} is unique.

PROOF. From Theorems 5 and 6, ζ (w) := ζ (z1 − z2i1)e1 + ζ (z1 + z2i1)e2 is, in par-
ticular, holomorphic on the open and connected set T\{1 + O2}. Hence, by the identity

theorem of C2 (see [8]), the analytic continuation of
∑∞
n=1

1
nw

from the nonempty open set
{w ∈ T | Re(z1) > 1 and |Im(z2)| < Re(z1) − 1} to T\{1 + O2} must be unique. In
particular, ζ (w) := ζ (z1 − z2i1)e1 + ζ (z1 + z2i1)e2 is the only one possible T-holomorphic
continuation. �

Finally, the following theorem will confirm that the domain T\{1 + O2} is the best pos-
sible.

THEOREM 8. Let w0 ∈ 1 + O2 then

lim
w→w0
(w �∈1+O2)

|ζ (w)| = ∞ .

PROOF. Letw = (z1 −z2i1)e1 + (z1 +z2i1)e2 andw0 = (z0
1 −z0

2i1)e1 + (z0
1 +z0

2i1)e2.

By hypothesis, w0 ∈ 1 + O2. Hence, z0
1 − z0

2i1 = 1 or z0
1 + z0

2i1 = 1. Without loss of
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generality, let us suppose that z0
1 − z0

2i1 = 1. Now, from this identity (see [7])

|z1 + z2i2| =
( |z1 − z2i1|2 + |z1 + z2i1|2

2

)1/2

∀z1 + z2i2 ∈ T

it follows that w → w0 ⇒ z1 − z2i1 → 1 and z1 + z2i1 → z0
1 + z0

2i1.
Moreover, as shown by Riemann, ζ(s) extends to C as a meromorphic function with only

a simple pole at s = 1. Therefore,

lim
z1−z2i1→1

|ζ (z1 − z2i1)| = ∞ .

Then,

lim
w→w0
(w �∈1+O2)

|ζ (w)| = lim
w→w0
(w �∈1+O2)

|ζ (z1 − z2i1)e1 + ζ (z1 + z2i1)e2|

= lim
w→w0
(w �∈1+O2)

( |ζ (z1 − z2i1)|2 + |ζ (z1 + z2i1)|2
2

)1/2

= ∞ . �

4. Zeros of ζ (w)

Let w = z1 + z2i2 ∈ T\{1 + O2}. Then,

ζ (w) = 0 ⇐⇒ ζ (z1 − z2i1) = 0 and ζ (z1 + z2i1) = 0 .

Hence, from the trivial zeros of the complex Riemann zeta function we can obtain trivial
zeros for ζ (w). More specifically:

THEOREM 9. Let w = z1 +z2i2 ∈ T\{1+O2}. Then z1 −z2i1 and z1 +z2i1 are trivial
zeros of the complex Riemann zeta function if and only if z1+z2i2 = (−n1−n2)+(−n1+n2)j,
where n1, n2 ∈ N\{0}.

PROOF. The complex Riemann zeta function has zero at the negative even integers and
one refers to them as the trivial zeros. Now, z1 − z2i1 = −2n1 and z1 + z2i1 = −2n2

where n1, n2 ∈ N\{0} if and only if z1 = −2n1−2n2
2 = −(n1 + n2) and z2 = (−2n1+2n2)i1

2 =
(−n1 +n2)i1, that is z1 + z2i2 = (−n1 −n2)+ (−n1 +n2)i1i2 = (−n1 −n2)+ (−n1 +n2)j.

�

The definition of trivial zeros for the bicomplex Riemann zeta function follows from the
last theorem.

DEFINITION 6. The set z1 + z2i2 ∈ T such that

z1 + z2i2 = (−n1 − n2)+ (−n1 + n2) j ,

where n1, n2 ∈ N\{0}, will be defined as the set of the trivial zeros for the bicomplex Riemann
zeta function.
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5. Bicomplex Riemann hypothesis

Let us recall the Riemann hypothesis.

Riemann hypothesis:

The nontrivial zeros of ζ(s) have real part equal to 1
2 .

In this section, we will establish a bicomplex Riemann hypothesis for ζ (w) equivalent to
the Riemann hypothesis for ζ(s).

CONJECTURE 1. Let w = z1 + z2i2 ∈ T\{1 + O2}. If w is a nontrivial zeros of the
bicomplex Riemann zeta function then:

(Re(z1), Im(z2)) =
(

1

2
, 0

)

or

(Re(z1), Im(z2)) =
(

1

4
− n,±

(
1

4
+ n

))
where n ∈ N\{0}.

THEOREM 10. The Conjecture 1 is equivalent to the Riemann hypothesis.

PROOF. If we supposed that all nontrivial zeros of ζ(s) have real part equal to 1
2 then

the bicomplex Riemann zeta function has nontrivial zeros if and only if

z1 − z2i1 = −2n1 , n1 ∈ N\{0} and z1 + z2i1 = 1

2
+ y1i1 , y1 ∈ R (1)

or

z1 − z2i1 = 1

2
+ y2i1 , y2 ∈ R and z1 + z2i1 = −2n2 , n2 ∈ N\{0} (2)

or

z1 − z2i1 = 1

2
+ y2i1 , y2 ∈ R and z1 + z2i1 = 1

2
+ y1i1 , y1 ∈ R (3)

Now, from (1) we obtain that z1 = 1
2 (−2n1 + ( 1

2 + y1i1)) = −n1 + 1
4 + y1

2 i1 and

z2 = 1
2 (−2n1−( 1

2+y1i1))i1 = −n1i1− i1
4 + y1

2 . Hence, z1+z2i2 = (−n1+ 1
4+ y1

2 i1)+(−n1i1−
i1
4 + y1

2 )i2= ( 1
4 −n1)+( y1

2 )i1+( y1
2 )i2−( 1

4 +n1)j , i.e. (Re(z1), Im(z2)) = ( 1
4 −n1,−( 1

4 +n1)).

In the same way, from (2) we obtain that z1 + z2i2=( 1
4 + y2

2 i1 − n2) + (
i1
4 − y2

2 + n2i1)i2
=( 1

4 − n2)+ (
y2
2 )i1 − (

y2
2 )i2 + ( 1

4 + n2)j , i.e. (Re(z1), Im(z2)) = ( 1
4 − n2,

1
4 + n2). Finally,

from (3) we obtain that z1+z2i2= 1
2 + (y1+y2)

2 i1+ (y1−y2)
2 i2+0j i.e. (Re(z1), Im(z2)) = ( 1

2 , 0).
Conversely, we want to prove that if Conjecture 1 is true then the Riemann hypothesis

must be true. For that, we will suppose that there exist a nontrival zero for ζ(s) with real part

different from 1
2 and we will find a contadiction with Conjecture 1. Let s∗ be a nontrivial zero

for ζ(s) with Re(s∗) = a �= 1
2 . Hence, w∗ = z∗1 + z∗2i2 := s∗e1 + s∗e2 must be a nontrival
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zero for ζ (w). However, w∗ = s∗ = Re(s∗)+ Im(s∗)i1 + 0i2 + 0j = (a+ Im(s∗)i1)+ (0)i2.

Then, Re(z∗1) = a �= 1
2 and Im(z∗2) = 0 �= ±( 1

4 + n) ∀n ∈ N\{0}. Therefore,

(Re(z∗1), Im(z∗2)) �=
(

1

2
, 0

)

and

(Re(z∗1), Im(z∗2)) �=
(

1

4
− n,±

(
1

4
+ n

))
∀n ∈ N\{0} . �

6. Bicomplex Euler product

In the complex plane, an infinite product is said to converge if and only if at most a
finite number of the factors are zero, and if the partial products formed by the nonvanishing
factors tend to a finite limit which is different from zero. In the bicomplex case we have to
pay attention to the divisors of zero.

DEFINITION 7. A bicomplex infinite product is said to converge if and only if at most
a finite number of the factors are non-invertible, and if the partial products formed by the
invertible factors tend to a finite limit which is invertible.

The following lemma establishes a connection between the bicomplex infinite product
and the complex infinite product for sequences.

LEMMA 1. Let wn = z1,n + z2,ni2 ∈ T\O2 be a sequence of invertible bicomplex
numbers. Then,

∏∞
n=1wn converges if and only if

∞∏
n=1

(z1,n − z2,ni1) and
∞∏
n=1

(z1,n + z2,ni1) converge.

Moreover, in case of convergence, we obtain:

∞∏
n=1

wn =
∞∏
n=1

(z1,n − z2,ni1)e1 +
∞∏
n=1

(z1,n + z2,ni1)e2 .

PROOF. By definition,
∏∞
n=1 wn=limn→∞

∏n
k=1wk=limn→∞

∏n
k=1(z1,k+z2,ki2)=

limn→∞
∏n
k=1[(z1,k − z2,ki1)e1 + (z1,k + z2,ki1)e2] where z1,k − z2,ki1 �= 0 and z1,k +

z2,ki1 �= 0 ∀k ≥ 1. Moreover, the idempotent representation implies that
∏n
k=1[(z1,k −

z2,ki1)e1 + (z1,k + z2,ki1)e2] = [∏n
k=1(z1,k − z2,ki1)]e1 + [∏n

k=1(z1,k + z2,ki1)]e2 ∀n ≥ 1.
This complete the proof because a sequence of bicomplex numbers {sn} = {s1,ne1 + s2,ne2}
converges to a point s = s1e1 + s2e2 whenever n → ∞ if and only if {s1,n} and {s2,n}
converge respectively to s1 and s2 in the complex plane (see [7]). �
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Using this last result, we are able to establish a bicomplex Euler product:

THEOREM 11. Let w = z1 + z2i2 ∈ T with Re(z1) > 1 and |Im(z2)| < Re(z1) − 1.
Then

ζ(w) =
∞∑
n=1

1

nw
=

∞∏
n=1

1

1 − 1
pwn

.

Where p1, p2, · · · , pn, · · · is the ascending sequence of prime numbers.

PROOF. From Theorem 4, we know that the bicomplex Riemann zeta function will
converges at w and

∞∑
n=1

1

nw
=

[ ∞∑
n=1

1

nz1−z2i1

]
e1 +

[ ∞∑
n=1

1

nz1+z2i1

]
e2 .

Moreover, it is well known (see [1]) that Riemann has extended Euler’s formula to a complex
variable. In fact, in the complex plane we have:

ζ(s) =
∞∑
n=1

1

ns
=

∞∏
n=1

1

1 − 1
psn

,

for every complex number s with Re(s) > 1. Therefore,

ζ (w) =
[ ∞∏
n=1

1

1 − 1

p
z1−z2 i1
n

]
e1+

[ ∞∏
n=1

1

1 − 1

p
z1+z2i1
n

]
e2 .

Hence, by Lemma 1,

ζ (w) =
∞∏
n=1

[[
1

1 − 1

p
z1−z2i1
n

]
e1+

[
1

1 − 1

p
z1+z2i1
n

]
e2

]
=

∞∏
n=1

1

1 − 1
pwn

. �

7. Hyperbolic Riemann zeta function

It has been proven (see [3]) that there exist essentially three possible ways to “naturally”
generalize real numbers into real algebras of dimension two. In fact, each possible system can
be reduced to one of the following:

1. numbers a + bi with i2 = −1 (the complex numbers);
2. numbers a + bj with j2 = 1 (the hyperbolic numbers);

3. numbers a + bk with k2 = 0 (the dual numbers).
Now, from the definition of bicomplex numbers, we remark that the complex num-

bers and the hyperbolic numbers (also called duplex numbers) are included in T as subrings.
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Hence, it is also possible to define a Riemann zeta function for the specific sub-case of hy-
perbolic numbers. In fact, most of the properties will come directly from the properties of the
bicomplex Riemann zeta function.

Let D := {c + dj : c, d ∈ R, j2 = 1}. Using Definition 4, we obtain

nh = eh·ln(n) ∀h ∈ D,

where

ec+dj = ec · edj

= ec · e(d i1)i2

= ec · [cos(di1)+ i2 sin(di1)]

= ec · [cosh(d)+ i2(i1 sinh(d))]

= ec · [
cosh(d)+ j sinh(d)

]
.

Therefore, by Theorems 4 and 11, if c > 1 and |d| < c − 1 then

ζ (c+ dj) =
∞∑
n=1

1

nc+dj =
∞∏
n=1

1

1 − 1
p
c+dj
n

converge ,

where p1, p2, · · · , pn, · · · is the ascending sequence of prime numbers. It is also possible to
define differentiability of a function at a point of D as follows:

DEFINITION 8. Let U be an open set of D and h0 ∈ U . Then, f : U ⊆ D → D is said
to be D-differentiable at h0 with derivative equal to f ′(h0) ∈ D if

lim
h→h0

(h−h0 inv.)

f (h)− f (h0)

h− h0
= f ′(h0) .

We will also say that the function f is D-holomorphic on an open set U if and only if f
is D-differentiable at each point of U .

In particular, from Theorems 6 and 8, ζ (c + dj) can be D-holomorphically “extended”
on D\{D ∩ {1 + O2}} = D\{(1 + c)+ dj : |c| = |d|}=D\{1 + O1} as follows:

ζ (c + dj) := ζ (c + d)e1 + ζ (c− d)e2

with

lim
h→h0
(h �∈1+O1)

|ζ (h)| = ∞ whenever h0 ∈ 1 + O1

where O1 := D ∩ O2.
However, such kind of hyperbolic extension is not unique. For example, let us consider:

Υ (x) :=
{
ζ (x), if x > 1, x ∈ R

− 1
1−x if x < 1, x ∈ R .
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Let, Υ (c + dj) := Υ (c + d)e1 + Υ (c − d)e2. Hence, if c > 1 and |d| < c − 1, then

Υ (c + dj) = ∑∞
n=1

1
nc+dj . Moreover, Υ (c + dj) is D-holomorphic on D\{1 + O1}. In fact,

lim
c+dj→c0+d0j

[(c+dj)−(c0+d0j) inv.]

Υ (c+ dj)− Υ (c0 + d0j)
(c+ dj)− (c0 + d0j)

= lim
c+dj→c0+d0j

[(c+dj)−(c0+d0j) inv.]

[
Υ (c + d)− Υ (c0 + d0)

(c − c0)+ (d − d0)
e1 + Υ (c − d)− Υ (c0 − d0)

(c − c0)− (d − d0)
e2

]

= lim
c+dj→c0+d0j

[(c+dj)−(c0+d0j) inv.]

[
Υ (c + d)− Υ (c0 + d0)

(c + d)− (c0 + d0)
e1 + Υ (c − d)− Υ (c0 − d0)

(c − d)− (c0 − d0)
e2

]

= lim
c+dj→c0+d0j

[(c+dj)−(c0+d0j) inv.]

[
Υ (c + d)− Υ (c0 + d0)

(c + d)− (c0 + d0)

]
e1

+ lim
c+dj→c0+d0j

[(c−dj)−(c0−d0j) inv.]

[
Υ (c − d)− Υ (c0 − d0)

(c − d)− (c0 − d0)

]
e2

= Υ ′(c0 + d0)e1 + Υ ′(c0 − d0)e2

because c+dj → c0 +d0j ⇔ c+d → c0 +d0 and c−d → c0 −d0 ((c+dj)− (c0 +d0j) is
invertible if and only if c+ d �= c0 + d0 and c− d �= c0 − d0), and c0 + d0j ∈ D\{1 +O1} ⇔
c0 + d0 �= 1 and c0 − d0 �= 1. Finally, we can see that

lim
c+dj→c0+d0j
(c+dj �∈1+O1)

|Υ (c + dj)| = ∞ whenever c0 + d0j ∈ 1 + O1

since |ζ (x)| → ∞ and | − 1
1−x | → ∞ whenever x → 1.

Hence, the bicomplex Riemann zeta function enable us to give a “natural” definition
of the Riemann zeta function for the hyperbolic case. Moreover, the trivial zeros for our
hyperbolic Riemann zeta function are exactly the same than for the bicomplex Riemann zeta
function, i.e.

{(−n1 − n2)+ (−n1 + n2)j : n1, n2 ∈ N\{0}} ∈ D .

However, in this case, it is not possible to obtain a Riemann hypothesis:

THEOREM 12. Every zeros of the hyperbolic Riemann zeta function are trivial.

PROOF. By definition ζ (c+ dj) := ζ (c + d)e1 + ζ (c− d)e2 ∀c + dj ∈ D\{1 + O1}.
We note that c+ d and c− d are real. Moreover, on the real line, ζ (σ ) = 0 ⇔ σ = −2n with
n ∈ N\{0} (see [6]). Therefore, ζ (c + dj) = 0 ⇔ c + dj ∈ {(−n1 − n2) + (−n1 + n2)j :
n1, n2 ∈ N\{0}}. �
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