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A quick introduction to GMM

What is GMM?

The generalize method of moments (GMM) is a general
framework for deriving estimators

Maximum likelihood (ML) is another general framework for
deriving estimators.
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A quick introduction to GMM

GMM and ML I

ML estimators use assumptions about the specific families of
distributions for the random variables to derive an objective
function

We maximize this objective function to select the parameters
that are most likely to have generated the observed data

GMM estimators use assumptions about the moments of the
random variables to derive an objective function

The assumed moments of the random variables provide
population moment conditions
We use the data to compute the analogous sample moment
conditions
We obtain parameters estimates by finding the parameters that
make the sample moment conditions as true as possible

This step is implemented by minimizing an objective function
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A quick introduction to GMM

GMM and ML II

ML can be more efficient than GMM

ML uses the entire distribution while GMM only uses specified
moments

GMM can be produce estimators using few assumptions

More robust, less efficient

ML is a special case of GMM

Solving the ML score equations is equivalent to maximizing the
ML objective function
The ML score equations can be viewed as moment conditions
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A quick introduction to GMM

What is generalized about GMM?

In the method of moments (MM), we have the same number of
sample moment conditions as we have parameters

In the generalized method of moments (GMM), we have more
sample moment conditions than we have parameters
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A quick introduction to GMM

Method of Moments (MM)

We estimate the mean of a distribution by the sample, the
variance by the sample variance, etc

We want to estimate µ = E [y ]

The population moment condition is E [y ]− µ = 0
The sample moment condition is

(1/N)
N∑
i=1

yi − µ = 0

Our estimator is obtained by solving the sample moment
condition for the parameter

Estimators that solve sample moment conditions to produce
estimates are called method-of-moments (MM) estimators

This method dates back to Pearson (1895)
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A quick introduction to GMM

Ordinary least squares (OLS) is an MM estimator

We know that OLS estimates the parameters of the condtional
expectation of yi = xiβ + εi under the assumption that
E [ε|x] = 0

Standard probability theory implies that

E [ε|x] = 0⇒ E [xε] = 0

So the population moment conditions for OLS are

E [x(y − xβ)] = 0

The corresponding sample moment condtions are

(1/N)
∑N

i=1 xi(yi − xiβ) = 0

Solving for β yields

β̂OLS =
(∑N

i=1 x
′
ixi
)−1∑N

i=1 x
′
iyi
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A quick introduction to GMM

Generalized method-of-moments (GMM)

The MM only works when the number of moment conditions
equals the number of parameters to estimate

If there are more moment conditions than parameters, the
system of equations is algebraically over identified and cannot
be solved
Generalized method-of-moments (GMM) estimators choose the
estimates that minimize a quadratic form of the moment
conditions

GMM gets as close to solving the over-identified system as
possible
GMM reduces to MM when the number of parameters equals
the number of moment condtions
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A quick introduction to GMM

Definition of GMM estimator

Our research question implies q population moment conditions

E [m(wi ,θ)] = 0

m is q × 1 vector of functions whose expected values are zero in
the population
wi is the data on person i
θ is k × 1 vector of parmeters, k ≤ q

The sample moments that correspond to the population
moments are

m(θ) = (1/N)
∑N

i=1m(wi ,θ)

When k < q, the GMM choses the parameters that are as close
as possible to solving the over-identified system of moment
conditions

θ̂GMM ≡ arg minθ m(θ)′Wm(θ)
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A quick introduction to GMM

Some properties of the GMM estimator

θ̂GMM ≡ arg minθ m(θ)′Wm(θ)

When k = q, the MM estimator solves m(θ) exactly so
m(θ)′Wm(θ) = 0

W only affects the efficiency of the GMM estimator

Setting W = I yields consistent, but inefficent estimates
Setting W = Cov[m(θ)]−1 yields an efficient GMM estimator
We can take multiple steps to get an efficient GMM estimator

1 Let W = I and get

θ̂GMM1 ≡ arg minθ m(θ)′m(θ)

2 Use θ̂GMM1 to get Ŵ, which is an estimate of Cov[m(θ)]−1

3 Get

θ̂GMM2 ≡ arg minθ m(θ)′Ŵm(θ)

4 Repeat steps 2 and 3 using θ̂GMM2 in place of θ̂GMM1
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Using the gmm command

The gmm command

The command gmm estimates paramters by GMM

gmm is similar to nl, you specify the sample moment conditions
as substitutable expressions

Substitutable expressions enclose the model parameters in braces
{}
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Using the gmm command

The syntax of gmm I

For many models, the population moment conditions have the
form

E [ze(β)] = 0

where z is a q × 1 vector of instrumental variables and e(β) is a
scalar function of the data and the parameters β

The corresponding syntax of gmm is

gmm (eb expression)
[
if
][

in
][

weight
]
,

instruments(instrument varlist)
[
options

]
where some options are

onestep use one-step estimator (default is two-step estimator)
winitial(wmtype) initial weight-matrix W
wmatrix(witype) weight-matrix W computation after first step
vce(vcetype) vcetype may be robust, cluster, bootstrap, hac
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Using the gmm command

Modeling crime data I

We have data

. use cscrime, clear

. describe

Contains data from cscrime.dta
obs: 10,000

vars: 5 24 May 2008 17:01
size: 480,000 (98.6% of memory free) (_dta has notes)

storage display value
variable name type format label variable label

policepc double %10.0g police officers per thousand
arrestp double %10.0g arrests/crimes
convictp double %10.0g convictions/arrests
legalwage double %10.0g legal wage index 0-20 scale
crime double %10.0g property-crime index 0-50 scale

Sorted by:
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Using the gmm command

Modeling crime data II

We specify that

crimei = β0 + policepciβ1 + legalwageiβ2 + εi

We want to model

E [crime|policepc, legalwage] = β0 + policepcβ1 + legalwageβ2

If E [ε|policepc, legalwage] = 0, the population moment
conditions

E

[(
policepc

legalwage

)
ε

]
=

(
0
0

)
hold

15 / 29



Using the gmm command

OLS by GMM I

. gmm (crime - policepc*{b1} - legalwage*{b2} - {b3}), ///
> instruments(policepc legalwage) nolog

Final GMM criterion Q(b) = 6.61e-32

GMM estimation

Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 10000
GMM weight matrix: Robust

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/b1 -.4203287 .0053645 -78.35 0.000 -.4308431 -.4098144
/b2 -7.365905 .2411545 -30.54 0.000 -7.838559 -6.893251
/b3 27.75419 .0311028 892.34 0.000 27.69323 27.81515

Instruments for equation 1: policepc legalwage _cons
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Using the gmm command

OLS by GMM I

. regress crime policepc legalwage, robust

Linear regression Number of obs = 10000
F( 2, 9997) = 4422.19
Prob > F = 0.0000
R-squared = 0.6092
Root MSE = 1.8032

Robust
crime Coef. Std. Err. t P>|t| [95% Conf. Interval]

policepc -.4203287 .0053653 -78.34 0.000 -.4308459 -.4098116
legalwage -7.365905 .2411907 -30.54 0.000 -7.838688 -6.893123

_cons 27.75419 .0311075 892.20 0.000 27.69321 27.81517
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Using the gmm command

IV and 2SLS

For some variables, the assumption E [ε|x ] = 0 is too strong and
we need to allow for E [ε|x ] 6= 0

If we have q variables z for which E [ε|z] = 0 and the correlation
between z and x is sufficiently strong, we can estimate β from
the population moment conditions

E [z(y − xβ)] = 0

z are known as instrumental variables

If the number of variables in z and x is the same (q = k),
solving the the sample moment contions yield the MM estimator
known as the instrumental variables (IV) estimator

If there are more variables in z than in x (q > k) and we let

W =
(∑N

i=1 z
′
izi
)−1

in our GMM estimator, we obtain the

two-stage least-squares (2SLS) estimator
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Using the gmm command

2SLS on crime data I

The assumption that E [ε|policepc] = 0 is false, if communities
increase policepc in response to an increase in crime (an
increase in εi)

The variables arrestp and convictp are valid instruments, if
they measure some components of communities’ toughness-on
crime that are unrelated to ε but are related to policepc

We will continue to maintain that E [ε|legalwage] = 0
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Using the gmm command

2SLS by GMM I

. gmm (crime - policepc*{b1} - legalwage*{b2} - {b3}), ///
> instruments(arrestp convictp legalwage ) nolog onestep

Final GMM criterion Q(b) = .001454

GMM estimation

Number of parameters = 3
Number of moments = 4
Initial weight matrix: Unadjusted Number of obs = 10000

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/b1 -1.002431 .0455469 -22.01 0.000 -1.091701 -.9131606
/b2 -1.281091 .5890977 -2.17 0.030 -2.435702 -.1264811
/b3 30.0494 .1830541 164.16 0.000 29.69062 30.40818

Instruments for equation 1: arrestp convictp legalwage _cons
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Using the gmm command

2SLS by GMM II

. ivregress 2sls crime legalwage (policepc = arrestp convictp) , robust

Instrumental variables (2SLS) regression Number of obs = 10000
Wald chi2(2) = 1891.83
Prob > chi2 = 0.0000
R-squared = .
Root MSE = 3.216

Robust
crime Coef. Std. Err. z P>|z| [95% Conf. Interval]

policepc -1.002431 .0455469 -22.01 0.000 -1.091701 -.9131606
legalwage -1.281091 .5890977 -2.17 0.030 -2.435702 -.1264811

_cons 30.0494 .1830541 164.16 0.000 29.69062 30.40818

Instrumented: policepc
Instruments: legalwage arrestp convictp
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Using the gmm command

Count-data model with endogenous variables

Consider a model for count data in which some of the covariates
are exogenous

E[y |x , ν] = exp(xβ + β0)ν

By conditioning on the unobserved ν, we are allowing for ν to be
related to x.

Mullahy (1997) showed we can estimate the parameters of this
model using the moment conditions

E[y/ exp(xβ + β0)− 1] = 0

Numerically more stable moment conditions

E[y/ exp(xβ)− γ] = 0
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Using the gmm command

Count-data model with endogenous variables

. use accidents2, clear

. gmm (accidents/(exp({traffic}*traffic+{tickets}*tickets)) - {cons}) , ///
> instruments(traffic cvalue kids) nolog

Final GMM criterion Q(b) = .0000881

GMM estimation

Number of parameters = 3
Number of moments = 4
Initial weight matrix: Unadjusted Number of obs = 9999
GMM weight matrix: Robust

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/traffic .6468395 .1473377 4.39 0.000 .3580628 .9356161
/tickets .2488043 .0839933 2.96 0.003 .0841805 .4134282

/cons .3854079 .0097498 39.53 0.000 .3662985 .4045172

Instruments for equation 1: traffic cvalue kids _cons
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Using the gmm command

More complicated moment conditions

The structure of the moment conditions for some models is too
complicated to fit into the interactive syntax used thus far

For example, Wooldridge (1999, 2002); Blundell, Griffith, and
Windmeijer (2002) discuss estimating the fixed-effects Poisson
model for panel data by GMM.

In the Poisson panel-data model we are modeling

E [yit |xit , ηi ] = exp(xitβ + ηi)

Hausman, Hall, and Griliches (1984) derived a conditional
log-likelihood function when the outcome is assumed to come
from a Poisson distribution with mean exp(xitβ + ηi) and ηi is
an observed component that is correlated with the xit
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Using the gmm command

Wooldridge (1999) showed that you could estimate the
parameters of this model by solving the sample moment
conditions ∑

i

∑
t xit

(
yit − µit

y i

µi

)
= 0

These moment conditions do not fit into the interactive syntax
because the term µi depends on the parameters

Need to use moment-evaluator program syntax
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Using the gmm command

Moment-evaluator program syntax

An abreviated form of the syntax for gmm is

gmm moment progam
[
if
][

in
][

weight
]
,

equations(moment cond names)

parameters(parameter names)[
instruments() options

]
The moment program is an ado-file of the form

program gmm_eval

version 11

syntax varlist if, at(name)

quietly {

<replace elements of varlist with error

part of moment conditions>

}

end
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Using the gmm command

program xtfe

version 11

syntax varlist if, at(name)

quietly {

tempvar mu mubar ybar

generate double ‘mu’ = exp(kids*‘at’[1,1] ///

+ cvalue*‘at’[1,2] ///

+ tickets*‘at’[1,3]) ‘if’

egen double ‘mubar’ = mean(‘mu’) ‘if’, by(id)

egen double ‘ybar’ = mean(accidents) ‘if’, by(id)

replace ‘varlist’ = accidents ///

- ‘mu’*‘ybar’/‘mubar’ ‘if’

}

end
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Using the gmm command

FE Poisson by gmm

. use xtaccidents

. by id: egen max_a = max(accidents )

. drop if max_a ==0
(3750 observations deleted)

. gmm xtfe , equations(accidents) parameters(kids cvalue tickets) ///
> instruments(kids cvalue tickets, noconstant) ///
> vce(cluster id) onestep nolog

Final GMM criterion Q(b) = 1.50e-16

GMM estimation

Number of parameters = 3
Number of moments = 3
Initial weight matrix: Unadjusted Number of obs = 1250

(Std. Err. adjusted for 250 clusters in id)

Robust
Coef. Std. Err. z P>|z| [95% Conf. Interval]

/kids -.4506245 .0969133 -4.65 0.000 -.6405711 -.2606779
/cvalue -.5079946 .0615506 -8.25 0.000 -.6286315 -.3873577

/tickets .151354 .0873677 1.73 0.083 -.0198835 .3225914

Instruments for equation 1: kids cvalue tickets
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Using the gmm command

FE Poisson by xtpoisson, fe

. xtpoisson accidents kids cvalue tickets, fe nolog vce(robust)

Conditional fixed-effects Poisson regression Number of obs = 1250
Group variable: id Number of groups = 250

Obs per group: min = 5
avg = 5.0
max = 5

Wald chi2(3) = 84.89
Log pseudolikelihood = -351.11739 Prob > chi2 = 0.0000

(Std. Err. adjusted for clustering on id)

Robust
accidents Coef. Std. Err. z P>|z| [95% Conf. Interval]

kids -.4506245 .0969133 -4.65 0.000 -.6405712 -.2606779
cvalue -.5079949 .0615506 -8.25 0.000 -.6286319 -.3873579

tickets .151354 .0873677 1.73 0.083 -.0198835 .3225914
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