An introduction to GMM estimation using Stata

David M. Drukker

StataCorp

German Stata Users' Group Berlin June 2010

Outline

A quick introduction to GMM

2 Using the gmm command

What is GMM?

- The generalize method of moments (GMM) is a general framework for deriving estimators
- Maximum likelihood (ML) is another general framework for deriving estimators.

GMM and ML I

- ML estimators use assumptions about the specific families of distributions for the random variables to derive an objective function
 - We maximize this objective function to select the parameters that are most likely to have generated the observed data
- GMM estimators use assumptions about the moments of the random variables to derive an objective function
 - The assumed moments of the random variables provide population moment conditions
 - We use the data to compute the analogous sample moment conditions
 - We obtain parameters estimates by finding the parameters that make the sample moment conditions as true as possible
 - This step is implemented by minimizing an objective function

GMM and ML II

- ML can be more efficient than GMM
 - ML uses the entire distribution while GMM only uses specified moments
- GMM can be produce estimators using few assumptions
 - More robust, less efficient
- ML is a special case of GMM
 - Solving the ML score equations is equivalent to maximizing the ML objective function
 - The ML score equations can be viewed as moment conditions

What is generalized about GMM?

- In the method of moments (MM), we have the same number of sample moment conditions as we have parameters
- In the generalized method of moments (GMM), we have more sample moment conditions than we have parameters

Method of Moments (MM)

- We estimate the mean of a distribution by the sample, the variance by the sample variance, etc
- We want to estimate $\mu = E[y]$
 - The population moment condition is $E[y] \mu = 0$
 - The sample moment condition is

$$(1/N) \sum_{i=1}^{N} y_i - \mu = 0$$

- Our estimator is obtained by solving the sample moment condition for the parameter
- Estimators that solve sample moment conditions to produce estimates are called method-of-moments (MM) estimators
 - This method dates back to Pearson (1895)

Ordinary least squares (OLS) is an MM estimator

- We know that OLS estimates the parameters of the condtional expectation of $y_i = \mathbf{x}_i \boldsymbol{\beta} + \epsilon_i$ under the assumption that $E[\epsilon|\mathbf{x}] = 0$
- Standard probability theory implies that

$$E[\epsilon|\mathbf{x}] = 0 \Rightarrow E[\mathbf{x}\epsilon] = \mathbf{0}$$

So the population moment conditions for OLS are

$$E[\mathbf{x}(y-\mathbf{x}\boldsymbol{\beta})]=\mathbf{0}$$

The corresponding sample moment condtions are

$$(1/N)\sum_{i=1}^N \mathbf{x}_i(y_i - \mathbf{x}_i\beta) = \mathbf{0}$$

Solving for β yields

$$\widehat{\boldsymbol{\beta}}_{OLS} = \left(\sum_{i=1}^{N} \mathbf{x}_i' \mathbf{x}_i\right)^{-1} \sum_{i=1}^{N} \mathbf{x}_i' y_i$$

Generalized method-of-moments (GMM)

- The MM only works when the number of moment conditions equals the number of parameters to estimate
 - If there are more moment conditions than parameters, the system of equations is algebraically over identified and cannot be solved
 - Generalized method-of-moments (GMM) estimators choose the estimates that minimize a quadratic form of the moment conditions
 - GMM gets as close to solving the over-identified system as possible
 - GMM reduces to MM when the number of parameters equals the number of moment condtions

Definition of GMM estimator

Our research question implies q population moment conditions

$$E[\mathbf{m}(\mathbf{w}_i, \boldsymbol{\theta})] = \mathbf{0}$$

- $oldsymbol{ ext{m}}$ is q imes 1 vector of functions whose expected values are zero in the population
- **w**_i is the data on person i
- θ is $k \times 1$ vector of parmeters, $k \leq q$
- The sample moments that correspond to the population moments are

$$\overline{\mathbf{m}}(\boldsymbol{\theta}) = (1/N) \sum_{i=1}^{N} \mathbf{m}(\mathbf{w}_i, \boldsymbol{\theta})$$

• When k < q, the GMM choses the parameters that are as close as possible to solving the over-identified system of moment conditions

$$\widehat{m{ heta}}_{\mathit{GMM}} \equiv \mathop{\mathsf{arg}} \ \mathop{\mathsf{min}}_{m{ heta}} \ \ \overline{\mathbf{m}}(m{ heta})' \mathbf{W} \overline{\mathbf{m}}(m{ heta})$$

Some properties of the GMM estimator

$$\widehat{m{ heta}}_{\mathit{GMM}} \equiv \mathsf{arg} \; \mathsf{min}_{m{ heta}} \; \; \; \overline{m{m}}(m{ heta})' m{W} \overline{m{m}}(m{ heta})$$

- When k=q, the MM estimator solves $\overline{\mathbf{m}}(\theta)$ exactly so $\overline{\mathbf{m}}(\theta)'\mathbf{W}\overline{\mathbf{m}}(\theta)=\mathbf{0}$
- W only affects the efficiency of the GMM estimator
 - Setting W = I yields consistent, but inefficent estimates
 - Setting $\mathbf{W} = \mathsf{Cov}[\overline{\mathbf{m}}(\theta)]^{-1}$ yields an efficient GMM estimator
 - We can take multiple steps to get an efficient GMM estimator
 - lacksquare Let $\mathbf{W} = \mathbf{I}$ and get

$$\widehat{m{ heta}}_{\mathit{GMM}1} \equiv \mathsf{arg} \; \mathsf{min}_{m{ heta}} \quad \overline{m{ extbf{m}}}(m{ heta})' \overline{m{ extbf{m}}}(m{ heta})$$

- ② Use $\widehat{\boldsymbol{\theta}}_{GMM1}$ to get $\widehat{\mathbf{W}}$, which is an estimate of $Cov[\overline{\mathbf{m}}(\theta)]^{-1}$
- Get

$$\widehat{\boldsymbol{\theta}}_{GMM2} \equiv \operatorname{arg\ min}_{\boldsymbol{\theta}} \quad \overline{\mathbf{m}}(\boldsymbol{\theta})' \widehat{\mathbf{W}} \overline{\mathbf{m}}(\boldsymbol{\theta})$$

1 Repeat steps 2 and 3 using $\widehat{\theta}_{GMM2}$ in place of $\widehat{\theta}_{GMM1}$

The gmm command

- The command gmm estimates paramters by GMM
- gmm is similar to nl, you specify the sample moment conditions as substitutable expressions
- \bullet Substitutable expressions enclose the model parameters in braces $\{\}$

The syntax of gmm I

For many models, the population moment conditions have the form

$$E[ze(\beta)] = 0$$

where **z** is a $q \times 1$ vector of instrumental variables and $e(\beta)$ is a scalar function of the data and the parameters β

• The corresponding syntax of gmm is

```
gmm (eb_expression) [if][in][weight],
instruments(instrument_varlist) [options]
```

where some options are

onestep use one-step estimator (default is two-step estimator)
 winitial(wmtype) initial weight-matrix W
 wmatrix(witype) weight-matrix W computation after first step
 vce(vcetype) vcetype may be robust, cluster, bootstrap, hac

Modeling crime data I

We have data

```
. use cscrime, clear
```

. describe

Contains data from cscrime.dta

obs: 10,000

vars: 5

size: 480,000 (98.6% of memory free)

24 May 2008 17:01 (_dta has notes)

variable name	storage type	display format	value label	variable label
policepc arrestp convictp legalwage crime	double double double	%10.0g %10.0g %10.0g %10.0g %10.0g		police officers per thousand arrests/crimes convictions/arrests legal wage index 0-20 scale property-crime index 0-50 scale

Sorted by:

Modeling crime data II

We specify that

$$crime_i = \beta_0 + policepc_i\beta_1 + legalwage_i\beta_2 + \epsilon_i$$

We want to model

$$E[\text{crime}|\text{policepc}, \text{legalwage}] = \beta_0 + \text{policepc}\beta_1 + \text{legalwage}\beta_2$$

• If $E[\epsilon|\text{policepc}, \text{legalwage}] = 0$, the population moment conditions

$$E\left[\begin{pmatrix} \text{policepc} \\ \text{legalwage} \end{pmatrix} \epsilon\right] = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

hold

OLS by GMM I

	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
/b1	4203287	.0053645	-78.35	0.000	4308431	4098144
/b2	-7.365905	.2411545	-30.54	0.000	-7.838559	-6.893251
/b3	27.75419	.0311028	892.34	0.000	27.69323	27.81515

Instruments for equation 1: policepc legalwage _cons

OLS by GMM I

. regress crime policepc legalwage, robust Linear regression $% \left(1\right) =\left(1\right) \left(1\right)$

Number of obs = 10000 F(2, 9997) = 4422.19 Prob > F = 0.0000 R-squared = 0.6092 Root MSE = 1.8032

crime	Coef.	Robust Std. Err.	t	P> t	[95% Conf	. Interval]
policepc	4203287	.0053653	-78.34	0.000	4308459	4098116
legalwage	-7.365905	.2411907	-30.54	0.000	-7.838688	-6.893123
_cons	27.75419	.0311075	892.20	0.000	27.69321	27.81517

IV and 2SLS

- For some variables, the assumption $E[\epsilon|x]=0$ is too strong and we need to allow for $E[\epsilon|x]\neq 0$
- If we have q variables z for which $E[\epsilon|z] = 0$ and the correlation between z and x is sufficiently strong, we can estimate β from the population moment conditions

$$E[\mathbf{z}(y-\mathbf{x}\boldsymbol{\beta})]=\mathbf{0}$$

- z are known as instrumental variables
- If the number of variables in z and x is the same (q = k), solving the the sample moment contions yield the MM estimator known as the instrumental variables (IV) estimator
- If there are more variables in **z** than in **x** (q > k) and we let $\mathbf{W} = \left(\sum_{i=1}^{N} \mathbf{z}_{i}'\mathbf{z}_{i}\right)^{-1}$ in our GMM estimator, we obtain the two-stage least-squares (2SLS) estimator

2SLS on crime data I

- The assumption that $E[\epsilon|policepc] = 0$ is false, if communities increase policepc in response to an increase in crime (an increase in ϵ_i)
- ullet The variables arrestp and convictp are valid instruments, if they measure some components of communities' toughness-on crime that are unrelated to ϵ but are related to policepc
- We will continue to maintain that $E[\epsilon| legalwage] = 0$

2SLS by GMM I

	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
/b1	-1.002431	.0455469	-22.01	0.000	-1.091701	9131606
/b2	-1.281091	.5890977	-2.17	0.030	-2.435702	1264811
/b3	30.0494	.1830541	164.16	0.000	29.69062	30.40818

Instruments for equation 1: arrestp convictp legalwage _cons

2SLS by GMM II

crime	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
policepc	-1.002431	.0455469	-22.01	0.000	-1.091701	9131606
legalwage	-1.281091	.5890977	-2.17	0.030	-2.435702	1264811
_cons	30.0494	.1830541	164.16	0.000	29.69062	30.40818

Instrumented: policepc

Instruments: legalwage arrestp convictp

Count-data model with endogenous variables

 Consider a model for count data in which some of the covariates are exogenous

$$\mathsf{E}[y|x,\nu] = \exp(\mathbf{x}\boldsymbol{\beta} + \beta_0)\nu$$

- By conditioning on the unobserved ν , we are allowing for ν to be related to \mathbf{x} .
- Mullahy (1997) showed we can estimate the parameters of this model using the moment conditions

$$\mathsf{E}[y/\exp(\mathbf{x}\boldsymbol{\beta}+\beta_0)-1]=0$$

Numerically more stable moment conditions

$$\mathsf{E}[y/\exp(\mathbf{x}\boldsymbol{\beta})-\gamma]=0$$

Count-data model with endogenous variables

	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
/traffic	.6468395	.1473377	4.39	0.000	.3580628	.9356161
/tickets	.2488043	.0839933	2.96	0.003	.0841805	.4134282
/cons	.3854079	.0097498	39.53	0.000	.3662985	.4045172

Instruments for equation 1: traffic cvalue kids _cons

More complicated moment conditions

- The structure of the moment conditions for some models is too complicated to fit into the interactive syntax used thus far
- For example, Wooldridge (1999, 2002); Blundell, Griffith, and Windmeijer (2002) discuss estimating the fixed-effects Poisson model for panel data by GMM.
- In the Poisson panel-data model we are modeling

$$E[y_{it}|\mathbf{x}_{it},\eta_i] = \exp(\mathbf{x}_{it}\boldsymbol{\beta} + \eta_i)$$

• Hausman, Hall, and Griliches (1984) derived a conditional log-likelihood function when the outcome is assumed to come from a Poisson distribution with mean $\exp(\mathbf{x}_{it}\boldsymbol{\beta} + \eta_i)$ and η_i is an observed component that is correlated with the \mathbf{x}_{it}

 Wooldridge (1999) showed that you could estimate the parameters of this model by solving the sample moment conditions

$$\sum_{i} \sum_{t} \mathbf{x}_{it} \left(y_{it} - \mu_{it} \frac{\overline{y}_{i}}{\overline{\mu}_{i}} \right) = \mathbf{0}$$

- These moment conditions do not fit into the interactive syntax because the term $\overline{\mu}_i$ depends on the parameters
- Need to use moment-evaluator program syntax

Moment-evaluator program syntax

An abreviated form of the syntax for gmm is

```
gmm moment_progam [if][in][weight],
    equations(moment_cond_names)
    parameters(parameter_names)
    [ instruments() options]
```

• The moment_program is an ado-file of the form

```
program gmm_eval
    version 11
    syntax varlist if, at(name)
    quietly {
        <replace elements of varlist with error
        part of moment conditions>
    }
```

```
program xtfe
    version 11
    syntax varlist if, at(name)
    quietly {
        tempvar mu mubar ybar
        generate double 'mu' = exp(kids*'at',[1,1] ///
                                                     111
            + cvalue * 'at' [1,2]
            + tickets*'at'[1,3]) 'if'
        egen double 'mubar' = mean('mu') 'if', by(id)
        egen double 'ybar' = mean(accidents) 'if', by(id)
        replace 'varlist' = accidents
                                                    ///
                               - 'mu'*'ybar'/'mubar' 'if'
```

end

FE Poisson by gmm

```
. use xtaccidents
. by id: egen max_a = max(accidents)
. drop if max_a ==0
(3750 observations deleted)
. gmm xtfe , equations(accidents) parameters(kids cvalue tickets)
                                                                    ///
                                                                    111
         instruments(kids cvalue tickets, noconstant)
         vce(cluster id) onestep nolog
Final GMM criterion Q(b) = 1.50e-16
GMM estimation
Number of parameters = 3
Number of moments
                                                      Number of obs =
Initial weight matrix: Unadjusted
                                                                         1250
                                   (Std. Err. adjusted for 250 clusters in id)
```

	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
/kids	4506245	.0969133	-4.65	0.000	6405711	2606779
/cvalue	5079946	.0615506	-8.25	0.000	6286315	3873577
/tickets	.151354	.0873677	1.73	0.083	0198835	.3225914

Instruments for equation 1: kids cvalue tickets

FE Poisson by xtpoisson, fe

```
. xtpoisson accidents kids cvalue tickets, fe nolog vce(robust)
Conditional fixed-effects Poisson regression
                                                Number of obs
                                                                           1250
Group variable: id
                                                Number of groups
                                                                            250
                                                Obs per group: min =
                                                                            5.0
                                                                avg =
                                                                max =
                                                Wald chi2(3)
                                                                          84.89
Log pseudolikelihood = -351.11739
                                                Prob > chi2
                                                                         0.0000
                                     (Std. Err. adjusted for clustering on id)
```

ac	cidents	Coef.	Robust Std. Err.	z	P> z	[95% Conf.	Interval]
	kids	4506245	.0969133	-4.65	0.000	6405712	2606779
	cvalue	5079949	.0615506	-8.25	0.000	6286319	3873579
	tickets	.151354	.0873677	1.73	0.083	0198835	.3225914

References

- Blundell, Richard, Rachel Griffith, and Frank Windmeijer. 2002. "Individual effects and dynamics in count data models," *Journal of Econometrics*, 108, 113–131.
- Hausman, Jerry A., Bronwyn H. Hall, and Zvi Griliches. 1984. "Econometric models for count data with an application to the patents—R & D relationship," *Econometrica*, 52(4), 909–938.
- Mullahy, J. 1997. "Instrumental variable estimation of Poisson Regression models: Application to models of cigarette smoking behavior," *Review of Economics and Statistics*, 79, 586–593.
- Pearson, Karl. 1895. "Contributions to the mathematical theory of evolution—II. Skew variation in homogeneous material," *Philosophical Transactions of the Royal Society of London, Series A*, 186, 343–414.
- Wooldridge, Jeffrey. 2002. Econometric Analysis of Cross Section and Panel Data, Cambridge, Massachusetts: MIT Press.

Wooldridge, Jeffrey M. 1999. "Distribution-free estimation of some nonlinear panel-data models," *Journal of Econometrics*, 90, 77–90.