COURSE INFORMATION

Course Title	Continuum Mechanics 1	
Instructor	Dr. Ahmad Ghasemi Ghalebahman	
Email Address	ghasemi@semnan.ac.ir	
Telephone Number	+98 23 3153 3349	
Office Location	Mechanical Engineering Department, Semnan University, Semnan, Iran	
Duration	16-week period	
Grading Policy	Midterm Exam: 35%,	
	Final Exam: 45%,	
	Homework: 10%	
	Project: 10%	
Textbook(s)	G. T. Mase and G. E., Mase, Continuum Mechanics for Engineers , 2nd Ed.	
	A. J. M. Spencer, Continuum mechanics , 1st Ed.	
	W. M. Lai, D. Rubin and E. Krempl, Introduction to Continuum Mechanics , 4th Ed.	
	J. N. Reddy, An Introduction to Continuum Mechanics , 2nd Ed.	

COURSE OUTLINE

Topic	Week
Introduction	
Continuum Theory	1
Contents of Continuum Mechanics	1
Vector and matrix algebra	
TENSORS	
The Indicial Notation	2
Summation Convention	2
Dummy and Free Indices	
The Kronecker Delta	3
The Permutation Symbol	3
Components of a Tensor	
Tensor Calculus	4
Dyadic Product of Vectors	
Orthogonal Tensors	5
Transformations Law for Cartesian Vectors and Tensors	<u> </u>
Eigenvalues and Eigenvectors of Tensors	_
Principal Values and Principal Directions of Symmetric Tensors	6
Tensor Invariants	
Scalar Field and Gradient of a Scalar Function	
Vector Field and Gradient of a Vector Function	7
Gradient and Divergence	•
Curl and Laplacian	
Polar Coordinates	0
Cylindrical Coordinates	8
Spherical Coordinates	
Kinematics of a Continuum	0
Motion Description of a Continuum	9
Lagrangean (Material) and Eulerian (Spatial) Descriptions	
Material Derivative and Acceleration	10
Kinematic of a Rigid Body	10
Infinitesimal Deformation and Infinitesimal Strain Tensor	
The Rate of Deformation Tensor	14
The Spin Tensor and the Angular Velocity Vector	11
The Conservation Equation of Mass	
The Equations of Compatibility	12
Deformation Gradient Pelor Decomposition Theorem	12
Polar Decomposition Theorem	

Stretch and Rotation Tensors Green's Deformation Tensor	13	
Lagrangian and Eulerian Strain Tensors		
The Current and the Reference Configurations	_	
Necessary and Sufficient Conditions for Strain Compatibility	14	
Positive Ďefinite Symmetric Tensors		
Stress Formulations	<u> </u>	
Stress Vector and Stress Tensor	15	
Energy Equation	13	
Entropy Inequality based on Helmholtz Energy Function		
Linear Elasticity	<u> </u>	
Linearly Elastic Šolid	16	
Isotropic and Anisotropic Constitutive Laws		
Navier Equations of Motion		
·		