
Building cheat sheets in Eclipse
How to provide interactive tutorials for your Eclipse product

Skill Level: Intermediate

Philipp Tiedt (philipp_tiedt@de.ibm.com)
Software Engineer
IBM

13 Dec 2005

Cheat sheets help your customers get their hands dirty with your product and learn
about its features interactively. This tutorial shows you how to develop interactive
tutorials, called cheat sheets, for your Eclipse-based product or plug-in.

Section 1. Before you start

This tutorial is written for developers who want to provide interactive tutorials
explaining complex Eclipse tasks. You will learn how to make use of the cheat
sheets technology and get the best out of it for your tutorial.

About this tutorial

The goal of this tutorial is to get you started with Eclipse cheat sheets, an emerging
technology that allows you to create interactive tutorials within Eclipse. The tutorial
will give a general overview of the features of cheat sheets and how to implement
them.

System requirements

To run the examples, you need to have Eclipse V3.0 or higher installed on your
computer. Get more advice on choosing the correct materials for your needs in
Resources.

Building cheat sheets in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 1 of 42

mailto:philipp_tiedt@de.ibm.com
http://www.ibm.com/legal/copytrade.shtml

Section 2. Introduction to cheat sheets

You probably know the following scenario. You are providing a new Eclipse plug-in
or even an Eclipse-based product and need the users to get their hands dirty with it.
So you start writing some step-by-step examples explaining the new capabilities and
features of your product. Your tutorial may be delivered as a .pdf document or as
part of the Eclipse help. The user now has to switch between things -- either the
sheet of paper in his hand and Eclipse or between the Eclipse help and Eclipse.
Wouldn't it be better if there was some view in Eclipse telling the user what the next
step is to perform while they stay within the Eclipse workbench? Well there is: cheat
sheets.

What are cheat sheets?

Cheat sheets is a new emerging technology within Eclipse V3.0 that is meant to
guide a developer through a series of complex tasks to achieve some overall goal.
Some tasks can be performed automatically, such as launching the required tools for
the user. Other tasks need to be completed manually by the user. Cheat sheets
tasks can be hooked up with the Eclipse help so no long search for documentation is
required. You will find some sample tutorials in Eclipse under Help > Cheat Sheets.

A good example is the "Hello World" cheat sheet of the Java™ Tools in Eclipse,
which guides a user through the creation of his first Java program. Clicking on Help
> Cheat Sheets will open a dialog where you can choose a tutorial.

Figure 1. Cheat sheets selection dialog

developerWorks® ibm.com/developerWorks

Building cheat sheets in Eclipse
Page 2 of 42 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Select Hello, World Application and click OK. Eclipse will now open the cheat
sheet view, most likely on the right-hand side of the workbench, and show the
selected tutorial.

Figure 2. The cheat sheets view

ibm.com/developerWorks developerWorks®

Building cheat sheets in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 3 of 42

http://www.ibm.com/legal/copytrade.shtml

You will see a short introduction into the tutorial and a couple of steps. Once started,
you can perform the listed task one after another. Some tasks can be performed
automatically. Tools like the wizard for new Java projects are launched
automatically, or a perspective is opened automatically. Other steps must be
completed manually and marked as completed in the cheat sheet.

Why use cheat sheets?

Tutorials are actually one of the best and most convenient ways of documentation.
Users get their hands dirty very quickly and learn a lot about your product. Cheat
sheets integrates tutorials and how-tos with your plug-in or Eclipse-based product.
This will speed up the training curve and make the users feel more comfortable
learning about it. Cheat sheets tops off the integration of your functionality into
Eclipse because the tutorial becomes a part of your product.

developerWorks® ibm.com/developerWorks

Building cheat sheets in Eclipse
Page 4 of 42 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Section 3. A first cheat sheet

In this part, you will learn how to create and run a new cheat sheet with a few basic
steps. First, we will set up a small scenario to have context for our new tutorial.

The library model tutorial

Suppose you want to teach a user how to create a simple Java API and package it
using the Eclipse Java Tools. Let's take a simple library model as a sample our
users should develop. The user needs to develop three classes:

1. A Library class, which has a name field, a list of writers, and a list of
books

2. A Book class, which has a name field, a reference to a writer, and a
number of pages field

3. A Writer class, which has a name field and a list of books that the writer
has written

Now, the idea is to let the user learn about the Java Tools, so we want to teach as
much as possible and use as many features as we can. Let's set up a basic outline
of the tutorial:

1. Opening the Java Perspective

2. Creating a Java Project

3. Creating a Java Package

4. Creating the three Java classes

5. Create a JAR file, including all three classes

Now that we have our first outline set, we can start creating our first simple cheat
sheet.

Creating the cheat sheet plug-in

The first thing to do is to switch to the Plug-in Development perspective in Eclipse
via Window > Open Perspective > Other ... > Plug-in Development.

Figure 3. The Perspective Selection dialog

ibm.com/developerWorks developerWorks®

Building cheat sheets in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 5 of 42

http://www.ibm.com/legal/copytrade.shtml

Now we will create a new Eclipse Plug-in. Open the New Project Wizard via File >
New > Project ... and select Plug-in Project.

Figure 4. The New Project wizard

developerWorks® ibm.com/developerWorks

Building cheat sheets in Eclipse
Page 6 of 42 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Clicking Next will take you to the Plug-in Project wizard, where you enter a project
name and continue to the next page via Next.

NOTE: Choose 3.0 as target version for your plug-in if you are developing with
Eclipse V3.0, as opposed to V3.1 or V3.1.1.

Figure 5. The New Plug-in Project wizard

ibm.com/developerWorks developerWorks®

Building cheat sheets in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 7 of 42

http://www.ibm.com/legal/copytrade.shtml

On the next page, you may enter a provider name and click Finish.

Figure 6. Plug-in content page

developerWorks® ibm.com/developerWorks

Building cheat sheets in Eclipse
Page 8 of 42 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The wizard has created a new plug-in and will open the manifest file in an editor. We
can continue to create our first cheat sheet.

Creating a new cheat sheet extension

The next step is to create an extension. Eclipse provides an extension point called
org.eclipse.ui.cheatsheets.cheatSheetContent that can be used to
register a new cheat sheet. To create an extension, go to the Extensions tab on the
bottom of the manifest editor and click Add. This will bring up a list of extension
points.

Figure 7. The extension point selection dialog

ibm.com/developerWorks developerWorks®

Building cheat sheets in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 9 of 42

http://www.ibm.com/legal/copytrade.shtml

Uncheck the checkbox at the bottom and select the
org.eclipse.ui.cheatsheets.cheatSheetContent extension point before
you click Finish. If asked to add the org.eclipse.ui.cheatsheets plug-in to
your dependency list, select Yes.

Figure 8. Add to dependencies dialog

developerWorks® ibm.com/developerWorks

Building cheat sheets in Eclipse
Page 10 of 42 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

You have now created your first cheat sheet extension, and your manifest file should
look like Figure 9.

Figure 9. New cheat sheet extension

Creating a category

Cheat sheets can be located in categories. You can add your cheat sheet to an
existing category or create a new one. If neither are done, your cheat sheet will be
located in a default category. To create a new category, right-click the newly created
extension in your manifest editor and select New > category.

Figure 10. Creating a new category

ibm.com/developerWorks developerWorks®

Building cheat sheets in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 11 of 42

http://www.ibm.com/legal/copytrade.shtml

Now you can enter a category ID and a name for your new category.

Figure 11. Category attributes

Creating the cheat sheet content

developerWorks® ibm.com/developerWorks

Building cheat sheets in Eclipse
Page 12 of 42 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Now that we have a category, we want to add a new cheat sheet. Right-click on the
extension and select New > Cheat Sheet.

Figure 12. Creating a new cheat sheet

Enter a unique ID for the cheat sheet and a name. For the category, type in the ID of
the category you created before. Last but not least, specify the file that includes the
content of the cheat sheet.

Figure 13. Cheat sheet atributes

ibm.com/developerWorks developerWorks®

Building cheat sheets in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 13 of 42

http://www.ibm.com/legal/copytrade.shtml

As the content file does not exist, yet we will create it now. Select File > New > File,
enter the file name and select the plug-in project in the tree before clicking Finish.

Figure 14. The New File wizard

developerWorks® ibm.com/developerWorks

Building cheat sheets in Eclipse
Page 14 of 42 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The new file will be opened in the Eclipse text editor automatically. You may use an
XML editor if you have one installed in Eclipse.

Now we are ready to enter the content. Think of the steps we have defined before.
You might enter something like Listing 1; you can simply copy and paste the content
into your file.

Listing 1. content.xml

<?xml version="1.0" encoding="UTF-8"?>
<cheatsheet title="Library model tutorial">
<intro>

<description>This tutorial guides you through the creation of a simple Java
model with three Java classes.

ibm.com/developerWorks developerWorks®

Building cheat sheets in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 15 of 42

http://www.ibm.com/legal/copytrade.shtml

</description>
</intro>
<item title="Open the Java Perspective">

<description>Select Window > Open Perspective > Java in the menubar at the
top of the workbench. This step changes the perspective to set up the
Eclipse workbench for Java development.

</description>
</item>
<item title="Create a Java project" skip="true">

<description>The first thing you will need is a Java Project. If you
already have a Java project in your workspace that you would like to use,
you may skip this step by clicking the "Click to Skip" button. If not,
select File > New > Project... and choose Java Project in the list.
Complete the subsequent pages as required.

</description>
</item>
<item title="Create a Java package" skip="true">

<description>You should now have a Java project in your workspace. The next
thing to do is creating a package. Use the Eclipse tools by selecting
File > New > Package action. Give the package a name for example
"tutorial.library.model" and click the "Finish" button. If you already
have a project with a package you might as well skip this step.

</description>
</item>
<item title="Create the library model classes">

<description>Now you should be set up for creating your library model. The
library model consists of three Java classes, a library class, a writer
class and a book class. Use the Java class wizard by selecting
File > New > Class. Repeat this for every class.

</description>
</item>
<item title="Package your classes into an archive">

<description>In the last step of this tutorial you will package the created
classes into a Java archive or JAR file. Therefore, right-click your Java
project and select the "Export..." action. In the wizard select "JAR file"
and click the "Next" button. On the next page specify a location and name
for the JAR file and click "Finish". You have now successfully created a
little Java model and packaged that into a JAR file.

</description>
</item>

</cheatsheet>

Let's have a look at the content in detail. The root element is cheatsheet. A cheat
sheet must have an introduction, represented by the intro element; and one or
more steps, represented by item elements. In the content file above, you can see
one intro element and five item elements representing the five steps of the
tutorial.

The intro element contains a description element, which is used to enter the
introduction text. You should shortly explain what the user will learn and what the
result of the cheat sheet is.

Every item element contains a description element, as well. Here, the
description describes what has to be done in this step and how. In the title
attribute of the item element, you can enter a step title. In some cases, the user has
performed a step before starting a cheat sheet; for example, in our case, they might
have created a Java project already. You can set the skip attribute of the item
element to true if you want the user to be able to skip a step.

After saving the file, we can try out our first simple cheat sheet.

Testing the cheat sheet

developerWorks® ibm.com/developerWorks

Building cheat sheets in Eclipse
Page 16 of 42 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

To test our cheat sheet, we have to run Eclipse with our plug-in. This is as easy as
launching a Java application from within Eclipse. We just use the Eclipse run-time
workbench instead.

First, open the Run dialog by navigating to Run > Run.... Select Eclipse
Application and New. This will open a configuration page on the right side of the
selection. If desired, you can enter a name for your run configuration. To run Eclipse
with our cheat sheet, simply click Run.

Figure 15. Eclipse Run dialog

Eclipse launches a new run-time workbench, including our cheat sheet plug-in.
When the workbench is launched, click Help > Cheat Sheets..., and the cheat sheet
selection dialog will pop up.

Figure 16. Cheat sheet Selection with new tutorial

ibm.com/developerWorks developerWorks®

Building cheat sheets in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 17 of 42

http://www.ibm.com/legal/copytrade.shtml

You should now see the new category, including your Library model tutorial cheat
sheet. Click OK to open it.

Figure 17. Library Model cheat sheet

developerWorks® ibm.com/developerWorks

Building cheat sheets in Eclipse
Page 18 of 42 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

The result should look something like this. If so, congratulations! You have created
your first cheat sheet with five simple steps.

Section 4. Automating your cheat sheet

Now that you have created your first cheat sheet, we want to extend it a little bit and
make the user feel more comfortable. Cheat sheets have the possibility of
automatically performing a step. In this section, you will learn how. We will automate
as many steps as possible.

Let's try to automate the first step: opening the Java Perspective. We need to add an
action element to our item. The action element requires two attributes:

ibm.com/developerWorks developerWorks®

Building cheat sheets in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 19 of 42

http://www.ibm.com/legal/copytrade.shtml

1. class -- The name of the class that implements the action

2. pluginId -- The ID of the plug-in that contains the Java class

The class that implements the action to be executed must implement the interface
org.eclipse.jface.action.IAction. If the action we implement also
implements the org.eclipse.ui.cheatsheets.ICheatSheetAction, it will
be invoked via its run(String[],ICheatSheetManager) method. With the
String array, the action gets passed parameters from the cheat sheet. To specify
parameters for the action, you can use the attributes param1 to param9 in the
action element.

Linking steps with existing actions

So, for our step, we have to create a new class implementing the action interface
and make sure the Java Perspective is open when the action is executed. Luckily,
there are other plug-ins that have implemented actions like this before, so we can
reuse them. In our case, this is the cheat sheet plug-in that implements an action to
open a perspective. The perspective to be opened can be defined by a parameter.
So we add the following action element to our first item element.

Using nonpublic APIs
In the sample above, we made use of the class
OpenPerspective, defined in the package
org.eclipse.ui.internal.cheatsheets.actions. Classes
defined in such internal packages (all packages that contain an
"internal" segment) are non-public APIs and, thus, their use is
discouraged. You should not use those classes in your application.
However, for the purpose of this tutorial, we can overlook it because
we want to easily reuse existing functionality without
reimplementation.

Listing 2. Adding an action

...
<item title="Open the Java Perspective">
<action pluginId="org.eclipse.ui.cheatsheets"

class="org.eclipse.ui.internal.cheatsheets.actions.OpenPerspective"
param1="org.eclipse.jdt.ui.JavaPerspective"/>
<description>Select Window > Open Perspective > Java in the menubar at the top

of the workbench. This step changes the perspective to set up the Eclipse
workbench for Java development.
</description>

</item>
...

The action to be performed is implemented in
org.eclipse.ui.internal.cheatsheets.actions.OpenPerspective. We
have to specify the ID of the containing plug-in, which is
org.eclipse.ui.cheatsheets, pointing to the cheat sheet plug-in. And finally,
to tell the action which perspective to open, we hand over a parameter with the ID of
the perspective.

developerWorks® ibm.com/developerWorks

Building cheat sheets in Eclipse
Page 20 of 42 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Tip: To find out which actions exist, simply open the Java™ Type Hierarchy for the
IAction interface and browse.

Figure 18. The Type Hierarchy

NOTE: Cheat sheets can only use action implementations that provide a
no-argument constructor. Eclipse V3.2 will hopefully provide some help to find
available actions.

For steps 2 and 3, we add the following actions to the items.

Listing 3. Open the Java Project wizard

<item title="Create a Java project" skip="true">
<action pluginId="org.eclipse.jdt.ui"

class="org.eclipse.jdt.internal.ui.wizards.OpenProjectWizardAction"/>
<description>The first thing you will need is a Java Project. If you already

have a Java project in your workspace that you would like to use, you may
skip this step by clicking the Click to Skip" button. If not, select
File > New > Project... and choose Java Project in the list. Complete the
subsequent pages as required.
</description>

</item>

Listing 4. Open the Java Package wizard

<item title="Create a Java package" skip="true">

ibm.com/developerWorks developerWorks®

Building cheat sheets in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 21 of 42

http://www.ibm.com/legal/copytrade.shtml

<action pluginId="org.eclipse.jdt.ui"
class="org.eclipse.jdt.internal.ui.wizards.OpenPackageWizardAction"/>
<description>You should now have a Java project in your workspace. The next

thing to do is creating a package. Use the Eclipse tools by selecting
File > New > Package action. Give the package a name for example
"tutorial.library.model" and click the Finish button. If you already have
a project with a package you might as well skip this step.
</description>

</item>

We will take a look at the automation of creating the three Java classes next.

For the last step, we would like to open the Export JAR file wizard. Unfortunately,
there is no existing action we can make use of, so we have to implement our own.

Implementing a cheat sheet action

First, we want to create a new package where our action will reside. Therefore,
right-click on your project and select New > Package, which will open the New
Package Wizard.

Figure 19. Creating new Package

Enter a package name -- for example,
devworks.tutorial.cheatsheets.library.actions -- and click Finish.
The next step is to create the action class. Right-click the new package and select
New > Class.

Figure 20. Creating a new Class

developerWorks® ibm.com/developerWorks

Building cheat sheets in Eclipse
Page 22 of 42 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

This will open the New Class Wizard. Type a name for your class -- for example,
OpenJARExportWizard.

Figure 21. The New Class wizard

ibm.com/developerWorks developerWorks®

Building cheat sheets in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 23 of 42

http://www.ibm.com/legal/copytrade.shtml

We will let our action class extend the org.eclipse.jface.action.Action
class, which implements the required IAction interface. You can type the class
name directly into the superclass field and use the code assistant (CTRL+SPACE) to
resolve the full qualified name or you can browse for the action class using Browse.
Click Finish, and the new class is created and opened in the Java editor.

We could now add this action to our cheat sheet, but nothing would happen when
the action would be executed as the default implementation of the IAction.run()
method does nothing. So we need to override the run() method. In the Java Editor,

developerWorks® ibm.com/developerWorks

Building cheat sheets in Eclipse
Page 24 of 42 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

press CTRL+SPACE and select the run() method in the content assistant.

Figure 22. Implementing the run method

The assistant will create a method body. Your code should look similar to this now.

Listing 5. Auto-generated run() method

package devworks.tutorial.cheatsheets.library.actions;

import org.eclipse.jface.action.Action;

/**
* @author philip tiedt, philipp_tiedt@de.ibm.com
*
*/
public class OpenJARExportWizardAction extends Action {

public void run() {
// TODO Auto-generated method stub
super.run();

}

}

We will implement the run() method now so it opens the JAR Export Wizard. The
wizard is part of the JDT UI plug-in, so at first, we need to add a dependency to
org.eclipse.jdt.ui in our plug-in manifest file. Go to the Dependencies tab in
the manifest editor and click Add. In the dialog, type org.eclipse.jdt.ui and
click OK.

ibm.com/developerWorks developerWorks®

Building cheat sheets in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 25 of 42

http://www.ibm.com/legal/copytrade.shtml

Figure 23. Adding the JDT dependency

The implementation for the run() method looks like Listing 6.

Listing 6. Implemented run() method

public void run() {
IWorkbench workbench = PlatformUI.getWorkbench();
Shell shell = workbench.getActiveWorkbenchWindow().getShell();
JarPackageWizard wizard= new JarPackageWizard();
wizard.init(workbench,new StructuredSelection());
WizardDialog dialog= new WizardDialog(shell, wizard);
dialog.create();
dialog.open();
//did the wizard succeed?
notifyResult(dialog.getReturnCode()==Dialog.OK);

}

In code in Listing 6 works as follows:

1. We get a reference to the workbench and to the current active shell on
the workbench.

2. Then we construct the JarPackageWizard and initialize it with the
workbench.

3. The second argument is a selection the wizard can use to pre-select a
project to be packaged. We keep it simple and pass an empty selection.

4. Now we create and open a wizard dialog that displays the wizard.

5. Finally, we check the return code of the dialog to see if the wizard was
actually finished or canceled. We notify the success of the wizard using
notifyResult(boolean). This will, for example, notify our cheat sheet
of success or otherwise so it can mark the step as done or not.

6. Don't forget to list the import statements for the classes you use. The
whole implementation of the class is shown below.

developerWorks® ibm.com/developerWorks

Building cheat sheets in Eclipse
Page 26 of 42 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Listing 7. The OpenJARExportWizardAction

/**
*
*/
package devworks.tutorial.cheatsheets.library.actions;

import org.eclipse.jdt.internal.ui.jarpackager.JarPackageWizard;
import org.eclipse.jface.action.Action;
import org.eclipse.jface.dialogs.Dialog;
import org.eclipse.jface.viewers.StructuredSelection;
import org.eclipse.jface.wizard.WizardDialog;
import org.eclipse.swt.widgets.Shell;
import org.eclipse.ui.IWorkbench;
import org.eclipse.ui.PlatformUI;

/**
* @author philip tiedt, philipp_tiedt@de.ibm.com
*
*/
public class OpenJARExportWizardAction extends Action {

public void run() {
IWorkbench workbench = PlatformUI.getWorkbench();
Shell shell = workbench.getActiveWorkbenchWindow().getShell();
JarPackageWizard wizard= new JarPackageWizard();
wizard.init(workbench,new StructuredSelection());
WizardDialog dialog= new WizardDialog(shell, wizard);
dialog.create();
dialog.open();
//did the wizard succed ?
notifyResult(dialog.getReturnCode()==Dialog.OK);

}
}

Finally, you need to register your action with your item in the context.xml file.

Listing 8. Adding the action to the cheat sheet

<item title="Package your classes into an archive">
<action pluginId="devworks.tutorial.cheatsheets.library"

class="devworks.tutorial.cheatsheets.library.actions.OpenJARExportWizardAction"/>
<description>In the last step of this tutorial you will package the created

classes into a Java archive or JAR file. Therefore right-click your Java
project and select the "Export..." action. In the wizard select "JAR file"
and click the "Next" button. On the next page, specify a location and name
for the JAR file and click "Finish". You have now successfully created a
little Java model and packaged that into a JAR file.
</description>

</item>

If you run the run-time workbench now, your cheat sheet should look similar to this.
Check your actions by clicking the green arrow buttons.

Figure 24. Cheat sheet with actions

ibm.com/developerWorks developerWorks®

Building cheat sheets in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 27 of 42

http://www.ibm.com/legal/copytrade.shtml

We have now automated our cheat sheet. We will now have a look at how to
structure the content.

Section 5. Structuring and composing the cheat sheet

You will learn how to define substeps for a step in your tutorial. Also, there are steps
that can be repeated or executed on special conditions. You will learn how to use
them, as well.

developerWorks® ibm.com/developerWorks

Building cheat sheets in Eclipse
Page 28 of 42 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Subitems

Let's start with simple subitems. Suppose you want the user to set up the workbench
before starting with creating projects, packages, and classes. We first will create a
new step using the element.

Listing 9. Adding a new item

<item title="Set up
the Workbench">
<description>Before we really get
started,
let's set up the Workbench.

</description>
</item>

Now we will add three substeps to the task, using the subitem element.

Listing 10. Adding subitems

<item title="Set up the
Workbench">
<description>Before we really get started,

let's set up the Workbench.
</description>
<subitem label="Build the Workspace"/>
<subitem label="Customize the Java Editor"

skip="true"/>
<subitem label="Change the system font"

skip="true"/>
</item>

Subitems have a short label similar to a title, but no lengthy description like items.
Subitems can be skipped by setting the skip attribute to true. Unlike items,
subitems do not have to be performed in a strict sequence but can be executed in
any order.

You can attach an optional action to a subitem to automate its execution. For
example, we could add an action that invokes a whole workspace build to the first
subitem. As this is similar to adding an action to an item, we will skip this here.

If you run your cheat sheet in the run-time workbench, it should look like this now.

Figure 25. Cheat sheet with subitems

ibm.com/developerWorks developerWorks®

Building cheat sheets in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 29 of 42

http://www.ibm.com/legal/copytrade.shtml

Note that an item is only completed if all subitems are completed or skipped within
the given item.

Repeated subitems

Let's have a look at our current item for creating the library classes. For now, we tell
the user to create three classes using the New Class Wizard. We could split this up
into three substeps, each creating a different one of the classes. Therefore, we
would probably add three subitem elements and attach an action to each that
creates the class.

Cheat sheets comes up with a better solution here. As the task for the three
subitems is similar, we could put it in a loop each time that is then repeated three
times. Cheat sheets offers the repeated-subitem element for this.

At first, we go to the item element that describes the task and change its

developerWorks® ibm.com/developerWorks

Building cheat sheets in Eclipse
Page 30 of 42 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

description a little bit and add a repeated-subitem element.

Listing 11. Adding a repeated subitem

<item title="Create the library model classes">
<description>Now you should be set up for creating your library model. The

library model consists of three Java classes, a library class, a writer class
and a book class. In this step you will create the three classes.
</description>
<repeated-subitem values="Library, Book, Writer">

<subitem label="Create the class ${this}."/>
</repeated-subitem>

</item>

The repeated-subitem element requires one subitem element and the values
attribute. The values attribute provides a list of comma-separated Strings, and
the subitem element acts as a template for similar steps. You can access the
current String value in the loop using the ${this} variable.

For the sample above, the repeated subitem would expand to something equivalent
to:

Listing 12. Expanded repeated subitem

<subitem label="Create the class Library."/>
<subitem label="Create the class Book."/>
<subitem label="Create the class Writer."/>

To automate the creation of each task, we can add an action to the subitem. The
action needs to open the wizard to create the class. It would be even better if we
could fill in the type name of the class automatically. In Implementing a cheat sheet
action, you learned how to implement an action using the IAction interface.
Additionally, to the IAction interface, our new action will also implement the
ICheatSheetAction interface, so we can pass parameters to the run() method.

Use File > New > Class to open the New Class Wizard.

Figure 26. Creating the cheat sheet action class

ibm.com/developerWorks developerWorks®

Building cheat sheets in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 31 of 42

http://www.ibm.com/legal/copytrade.shtml

Fill in the name of the action -- for example, OpenNewClassWizardAction. For
the superclass, enter org.eclipse.jface.action.Action or simply type
Action and use the auto-completion. Add the ICheatSheetAction interface to
the class and click Finish. The generated code should look similar to Listing 13.

Listing 13. Auto-generated cheat sheet action class

/**
*
*/

developerWorks® ibm.com/developerWorks

Building cheat sheets in Eclipse
Page 32 of 42 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

package devworks.tutorial.cheatsheets.library.actions;

import org.eclipse.jface.action.Action;
import org.eclipse.ui.cheatsheets.ICheatSheetAction;
import org.eclipse.ui.cheatsheets.ICheatSheetManager;

/**
* @author philip tiedt, philipp_tiedt@de.ibm.com
*
*/
public class OpenNewClassWizardAction extends Action implements

ICheatSheetAction {

/* (non-Javadoc)
* @see org.eclipse.ui.cheatsheets.ICheatSheetAction#run(java.lang.String[],
* org.eclipse.ui.cheatsheets.ICheatSheetManager)
*/

public void run(String[] params, ICheatSheetManager manager) {
//TODO Auto-generated method stub

}
}

We now have to implement the run(String[] params, ICheatSheetManager
manager) method. As you can see, the method gets passed a String array and
an ICheatSheetManager. We will focus on the String array, as it contains the
parameters passed to this action via the cheat sheet.

Listing 14. Implementing the action

public void run(String[] params, ICheatSheetManager manager) {
String typeName = null;
if (params!=null && params.length > 0)

typeName = params[0];
NewClassCreationWizard wizard = new NewClassCreationWizard();
WizardDialog dialog = new
WizardDialog(PlatformUI.getWorkbench().getActiveWorkbenchWindow().
getShell(), wizard);

dialog.create();
if (typeName != null) {

NewClassWizardPage page = \
(NewClassWizardPage) wizard.getStartingPage();
page.setTypeName(typeName, false);
page.setErrorMessage(null);

}
dialog.open();
//did the wizard succed ?
notifyResult(dialog.getReturnCode()==Dialog.OK);

}

At first, we check the String array that we get passed. If it is not null and not
empty, we assume the first parameter is the type name. So we copy it to a String
object.

Then we instantiate the New Class Creation Wizard and a Wizard Dialog to open it.
After we create the dialog, we can be sure that the first wizard page was created, as
well. The wizard has one page only, which is of type NewClassWizardPage, so we
get that instance. At the page, we can preset the Type Name. We call
setTypeName() with the Type Name we got from the params array. The second
method parameter is a Boolean value specifying whether the text field for the type
should be editable. We pass false, as we want the type name not to be changed
by the user.

ibm.com/developerWorks developerWorks®

Building cheat sheets in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 33 of 42

http://www.ibm.com/legal/copytrade.shtml

As we set the type name, the page checks if all values in the whole page are correct.
We only specified a type name, but not a package or a folder to create the type in,
so the page would be invalid, and the user would be presented with an error
message from start on without having entered anything. So we call
setErrorMessage(null), which will suppress the error message and show the
page description.

Finally, we open the dialog and verify that it was finished successfully. Now we have
to hook this action into our cheat sheet content.

Listing 15. Hooking in the action

<repeated-subitem values="Library,Book,Writer">
<subitem label="Create the class ${this}.">

<action pluginId="devworks.tutorial.cheatsheets.library"
class="devworks.tutorial.cheatsheets.library.actions.
OpenNewClassWizardAction" param1="${this}"/>
</subitem>

</repeated-subitem>

We add an action element to the subitem, and specify pluginId and class, as
usual. Additionally, we pass one parameter. Therefore, we use the param1 attribute.
The value is the current class name carried by the ${this} variable.

Run the cheat sheet in a run-time workbench, and the result should look like Figure
27.

Figure 27. Cheat sheet with repeated subitem

developerWorks® ibm.com/developerWorks

Building cheat sheets in Eclipse
Page 34 of 42 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Note that the Name field is not editable. You have now structured your content with
different types of subitems.

Conditions

There are more possibilities to structure your content and make it interactive. Cheat
sheets provide a mechanism to show subitems depending on a special condition, or
to perform an action if a special condition is matched. Conditions can be based on
so-called cheat sheet variables. Advanced users should refer to the DTD of the
cheat sheet content and the following elements:

1. conditional-subitem

2. perform-when

This tutorial will not explain those elements.

ibm.com/developerWorks developerWorks®

Building cheat sheets in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 35 of 42

http://www.ibm.com/legal/copytrade.shtml

Section 6. Linking the tutorial with the Eclipse help

Usually, cheat sheets do not offer the space to write extensive instruction or
information about a step in your tutorial. Details about a topic reside in the Eclipse
help. With cheat sheets, you can link the different steps of your tutorial with help
topics.

Help is optional and can be displayed in two ways: as a help document or as
context-based help. Help only applies to the introduction and the main steps of your
tutorial (the intro and the item elements).

Linking help documents

Let's start with our tutorial introduction and provide the user with a little help about
cheat sheets. We want to open the Eclipse help showing the help document for
cheat sheets. So we simply add a href attribute to our intro element.

Listing 16. Linking a help document

<intro href="/org.eclipse.platform.\
doc.user/reference/ref-cheatsheets.htm">

<description>This tutorial guides you through \
the creation of a simple Java

model with three Java classes.
</description>

</intro>

The value of the attribute must be a link to a help document in the Eclipse help. In
our case, it's the cheat sheets help reference. Saving the content and running the
tutorial should show a little question mark on the upper-right side of the introduction.

Figure 28. Cheat sheet introduction with help

Clicking the help icon should bring up the Eclipse help showing the expected help
document.

developerWorks® ibm.com/developerWorks

Building cheat sheets in Eclipse
Page 36 of 42 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

Figure 29. Cheat sheet help document

Linking with dynamic help

Suppose you want to provide context-sensitive help for example help associated
with opening the Java perspective. This can be done linking dynamic help to your
introduction or a step. This help is shown in the Eclipse help view or as a pop-up,
depending on your help preference settings.

Let's add context-based help to our step that opens the Java perspective. Therefore,
we add the contextId attribute to the item element.

<item title="Open the Java Perspective"
contextId="org.eclipse.jdt.ui.open_java_perspective_action">

The value of the attribute must be a fully qualified help context ID. In our case, we
use the context ID for the action that opens the Java perspective.

Saving the content and running the tutorial should now result in a second help icon
at the step that opens the Java perspective. Clicking the icon should bring up a small
pop-up or the help view.

Figure 30. Cheat sheet with help pop-up

ibm.com/developerWorks developerWorks®

Building cheat sheets in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 37 of 42

http://www.ibm.com/legal/copytrade.shtml

Figure 31. Cheat sheet with help view

Note that only one type of help should be supplied for a step or introduction. If
specifying a contextId and href attribute the href attribute will be ignored.

Section 7. Summary

developerWorks® ibm.com/developerWorks

Building cheat sheets in Eclipse
Page 38 of 42 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.ibm.com/legal/copytrade.shtml

At this point, you should have a simple Eclipse cheat sheet running. You learned
how to create a simple cheat sheet plug-in, contribute to the cheat sheet extension
point and provide the content for a tutorial. The tutorial showed how to automate
your cheat sheet by implementing or reusing cheat sheet actions. Finally, you
learned how to structure and compose your tutorial and how to link different help
mechanisms with it.

The complete sample plug-in, including all source, can be downloaded from
Downloads.

ibm.com/developerWorks developerWorks®

Building cheat sheets in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 39 of 42

http://www.ibm.com/legal/copytrade.shtml

Downloads

Description Name Size Download method

Complete sources of the sample plug-in os-cheatsheets.zip9KB HTTP

Information about download methods

developerWorks® ibm.com/developerWorks

Building cheat sheets in Eclipse
Page 40 of 42 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://download.boulder.ibm.com/ibmdl/pub/software/dw/opensource/os-cheatsheets.zip
http://www.ibm.com/developerworks/library/whichmethod.html
http://www.ibm.com/legal/copytrade.shtml

Resources

Learn

• For an update to this tutorial, see the developerWorks article "Building cheat
sheets in Eclipse V3.2."

• Read the "Getting started with the Eclipse Platform" to get an overview of
Eclipse, including its origin and architecture, and details on how to install it and
its plug-ins.

• Learn more about cheat sheets in the Cheat sheet help.

• Visit developerWorks' Eclipse project resources to learn more about Eclipse.

• Check out Eclipse projects, which lists a bunch of fast-growing and interesting
Eclipse subprojects.

• Find out about Contributing a cheat sheet.

• The specification of the cheat sheet content can be found in the Cheat sheet
content DTD.

• The Cheat sheet extension point description provides basic information about
how to contribute to the cheat sheet extension point.

• Check out the "Recommended Eclipse reading list."

• Browse all the Eclipse content on developerWorks.

• New to Eclipse? Read the developerWorks article "Get started with Eclipse
Platform" to learn its origin and architecture, and how to extend Eclipse with
plug-ins.

• Expand your Eclipse skills by checking out IBM developerWorks' Eclipse project
resources.

• To listen to interesting interviews and discussions for software developers,
check out check out developerWorks podcasts.

• For an introduction to the Eclipse platform, see "Getting started with the Eclipse
Platform."

• Stay current with developerWorks' Technical events and webcasts.

• Watch and learn about IBM and open source technologies and product
functions with the no-cost developerWorks On demand demos.

• Check out upcoming conferences, trade shows, webcasts, and other Events
around the world that are of interest to IBM open source developers.

• Visit the developerWorks Open source zone for extensive how-to information,
tools, and project updates to help you develop with open source technologies
and use them with IBM's products.

Get products and technologies

ibm.com/developerWorks developerWorks®

Building cheat sheets in Eclipse
© Copyright IBM Corporation 1994, 2008. All rights reserved. Page 41 of 42

http://www.ibm.com/developerworks/opensource/library/os-ecl-cheatsheets/
http://www.ibm.com/developerworks/opensource/library/os-ecl-cheatsheets/
http://www.ibm.com/developerworks/library/os-ecov/
http://help.eclipse.org/help30/index.jsp?topic=/org.eclipse.platform.doc.user/reference/ref-cheatsheets.htm
http://www.ibm.com/developerworks/opensource/top-projects/eclipse.html
http://www.eclipse.org/projects/
http://help.eclipse.org/help30/index.jsp?topic=/org.eclipse.platform.doc.isv/guide/workbench_advext_cheatsheets.htm
http://help.eclipse.org/help30/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/cheatSheetContentFileSpec.html
http://help.eclipse.org/help30/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/cheatSheetContentFileSpec.html
http://help.eclipse.org/help30/index.jsp?topic=/org.eclipse.platform.doc.isv/reference/extension-points/org_eclipse_ui_cheatsheets_cheatSheetContent.html
http://www.ibm.com/developerworks/library/os-ecl-read
http://www.ibm.com/developerworks/views/opensource/libraryview.jsp?search_by=eclipse
http://www.ibm.com/developerworks/opensource/library/os-eclipse-platform/
http://www.ibm.com/developerworks/opensource/library/os-eclipse-platform/
http://www.ibm.com/developerworks/opensource/top-projects/eclipse.html
http://www.ibm.com/developerworks/opensource/top-projects/eclipse.html
http://www.ibm.com/developerworks/podcast/
http://www.ibm.com/developerworks/opensource/library/os-ecov/
http://www.ibm.com/developerworks/opensource/library/os-ecov/
http://www.ibm.com/developerworks/offers/techbriefings/
http://www.ibm.com/developerworks/offers/lp/demos/
http://www.ibm.com/developerworks/views/opensource/events.jsp
http://www.ibm.com/developerworks/opensource
http://www.ibm.com/legal/copytrade.shtml

• Download the latest version of Eclipse from Eclipse.org.

• Check out the latest Eclipse technology downloads at IBM alphaWorks.

• Download Eclipse Platform and other projects from the Eclipse Foundation.

• Download IBM product evaluation versions, and get your hands on application
development tools and middleware products from DB2®, Lotus®, Rational®,
Tivoli®, and WebSphere®.

• Innovate your next open source development project with IBM trial software,
available for download or on DVD.

Discuss

• The Eclipse Platform newsgroups should be your first stop to discuss questions
regarding Eclipse. (Selecting this will launch your default Usenet news reader
application and open eclipse.platform.)

• The Eclipse newsgroups has many resources for people interested in using and
extending Eclipse.

• Participate in developerWorks blogs and get involved in the developerWorks
community.

About the author

Philipp Tiedt
Philipp Tiedt is a software engineer in IBM's Development Lab in Boeblingen
Germany. He holds a bachelor's degree in computer science from the Open
University. Before joining IBM Germany in 2004, he completed his bachelor's study at
IBM's T.J. Watson Research Center in Hawthorne, N.Y. His areas of interest are
Eclipse, user interface design, Java technology, and service-oriented architecture.

developerWorks® ibm.com/developerWorks

Building cheat sheets in Eclipse
Page 42 of 42 © Copyright IBM Corporation 1994, 2008. All rights reserved.

http://www.eclipse.org/downloads/
http://www.eclipse.org/
http://www.alphaworks.ibm.com/eclipse
http://www.alphaworks.ibm.com/
http://www.eclipse.org/downloads/
http://www.ibm.com/developerworks/downloads/
http://www.ibm.com/developerworks/downloads/
news://news.eclipse.org/eclipse.platform
http://www.eclipse.org/newsgroups/
http://www.ibm.com/developerworks/blogs
http://www.ibm.com/legal/copytrade.shtml

	Table of Contents
	Before you start
	About this tutorial
	System requirements

	Introduction to cheat sheets
	What are cheat sheets?
	Why use cheat sheets?

	A first cheat sheet
	The library model tutorial
	Creating the cheat sheet plug-in
	Creating a new cheat sheet extension
	Creating a category
	Creating the cheat sheet content
	Testing the cheat sheet

	Automating your cheat sheet
	Linking steps with existing actions
	Implementing a cheat sheet action

	Structuring and composing the cheat sheet
	Subitems
	Repeated subitems
	Conditions

	Linking the tutorial with the Eclipse help
	Linking help documents
	Linking with dynamic help

	Summary
	Downloads
	Resources
	About the author

