Double and Half Angle Formulas

Recall:
$$\sin(x+y) = \cos(x+y) = \tan(x+y) = \tan(x+y) = \sin(x+y)$$

$$\sin(2\theta) =$$

$$\cos(2\theta) =$$

$$\tan(2\theta) =$$

Double Formulas

Example: If $\sin(\theta) = \frac{3}{5}$, $\frac{\pi}{2} < \theta < \pi$, find the exact value of $\sin(2\theta)$ and $\cos(2\theta)$

Example: Find an expression for the triple angle formula $\cos(3x)$ in terms of cosine only.

Example: Find the exact value of the following expression: $\sin \left[2\cos^{-1} \left(\frac{5}{13} \right) \right]$

Double Angle Formulas

As a consequence of the double angle formulas from $\cos(2\theta)$, we can construct the following useful identities.

$$\sin^2(\theta) =$$

$$\cos^2(\theta) =$$

$$\tan^2(\theta) =$$

<u>Example:</u> Simplify the following using the double angle formulas until the powers of sine and cosine are not greater than 1:

$$\sin^2(2x)\cos^2(2x)$$

Half Angle Formulas

As a consequence of the double angle formulas on the previous page, we can construct the **half-angle formulas**:

$$\sin\left(\frac{1}{2}u\right) = \pm\sqrt{\frac{1}{2}\left(1-\cos\left(u\right)\right)} \qquad \cos\left(\frac{1}{2}u\right) = \pm\sqrt{\frac{1}{2}\left(1+\cos\left(u\right)\right)}$$

$$\tan\left(\frac{1}{2}u\right) = \frac{1-\cos(u)}{\sin(u)} = \frac{\sin(u)}{1+\cos(u)}$$

The +/- depends on the *quadrant* in which $\frac{1}{2}u$ lies.

Example: Find the exact value of

(a)
$$\cos(15^\circ)$$
 (b) $\csc\left(\frac{7\pi}{8}\right)$

Example: Find the exact value of the expression: $\cos^2 \left[\frac{1}{2} \sin^{-1} \left(\frac{3}{5} \right) \right]$

Double and Half Angle Formulas

Establish the identity:
$$\frac{\cot(\theta) - \tan(\theta)}{\cot(\theta) + \tan(\theta)} = \cos(2\theta)$$

Example: If $x = 8 \tan(\theta)$, express $\sin(2\theta)$ as a function of x.