Andy Nicholls

Richard Pugh
Aimee Gott

SamsTeach Yourself

FREE SAMPLE CHAPTER
SHARE WITH OTHERS

f 9 85 @ W

http://www.facebook.com/share.php?u=http://www.informIT.com/title/9780672338489
http://twitter.com/?status=RT: download a free sample chapter http://www.informit.com/title/9780672338489
https://plusone.google.com/share?url=http://www.informit.com/title/9780672338489
http://www.linkedin.com/shareArticle?mini=true&url=http://www.informit.com/title/9780672338489
http://www.stumbleupon.com/submit?url=http://www.informit.com/title/9780672338489/Free-Sample-Chapter

Andy Nicholls
Richard Pugh
Aimee Gott

SamsTeach Yourself

R in 24 Hours

N
Ours

SAMS 800 East 96th Street, Indianapolis, Indiana, 46240 USA

Sams Teach Yourself R in 24 Hours
Copyright © 2016 by Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by
copyright, and permission must be obtained from the publisher prior to any prohibited reproduc-
tion, storage in a retrieval system, or transmission in any form or by any means, electronic,
mechanical, photocopying, recording, or likewise. For information regarding permissions, request
forms, and the appropriate contacts within the Pearson Education Global Rights & Permissions
Department, please visit www.pearsoned.com/permissions/. No patent liability is assumed with
respect to the use of the information contained herein. Although every precaution has been taken
in the preparation of this book, the publisher and author assume no responsibility for errors or
omissions. Nor is any liability assumed for damages resulting from the use of the information
contained herein.

ISBN-13: 978-0-672-33848-9
ISBN-10: 0-672-33848-3

Library of Congress Control Number: 2015913320
First Printing December 2015

Trademarks

All terms mentioned in this book that are known to be trademarks or service marks have been
appropriately capitalized. Sams Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the validity of any trademark or service
mark.

Warning and Disclaimer

Every effort has been made to make this book as complete and as accurate as possible, but no
warranty or fitness is implied. The information provided is on an “as is” basis. The authors and
the publisher shall have neither liability nor responsibility to any person or entity with respect to
any loss or damages arising from the information contained in this book.

Special Sales

For information about buying this title in bulk quantities, or for special sales opportunities (which
may include electronic versions; custom cover designs; and content particular to your business,
training goals, marketing focus, or branding interests), please contact our corporate sales depart-
ment at corpsales@pearsoned.com or (800) 382-3419.

For government sales inquiries, please contact governmentsales@pearsoned.com.
For questions about sales outside the U.S., please contact international@pearsoned.com.

Editor-in-Chief
Mark Taub
Acquisitions Editor
Trina MacDonald
Development
Editor

Songlin Qiu
Managing Editor
Kristy Hart

Project Editor
Elaine Wiley

Copy Editor
Bart Reed

Indexer

Tim Wright
Proofreader
Katie Matejka

Technical Editor
Stephanie Locke

Editorial Assistant
Olivia Basegio
Cover Designer
Mark Shirar

Compositor
Nonie Ratcliff

http://www.pearsoned.com/permissions

Contents at a Glance

HOUR 1

© 0 N OO 00~ WODN

N NNNRRBRRBRRRRIRBRERHAR
W NR OO ®NO®OO h WNR O

24
APPENDIX

Preface

The R Community

The R Environment

Single-Mode Data Structures
Multi-Mode Data Structures

Dates, Times and Factors

Common R Utility Functions

Writing Functions: Part I

Writing Functions: Part 11

Loops and Summaries

Importing and Exporting

Data Manipulation and Transformation
Efficient Data Handling in R

Graphics

The ggplot2 Package for Graphics
Lattice Graphics

Introduction to R Models and Object Orientation
Common R Models

Code Efficiency

Package Building

Advanced Package Building

Writing R Classes

Formal Class Systems

Dynamic Reporting

Building Web Applications with Shiny
Installation

Index

Xii

11

33

67
103
115
129
151
173
217
235
261
287
313
345
379
411
455
471
489
505
523
547
561
573
579

Table of Contents

Preface

HOUR 1: The R Community
A Concise History of R
The R Community
R Development
Summary
Q&A
Workshop
Activities

HOUR 2: The R Environment
Integrated Development Environments
R Syntax
R Obijects
Using R Packages
Internal Help
Summary
Q&A
Workshop

Activities

HOUR 3: Single-Mode Data Structures
The R Data Types
Vectors, Matrices, and Arrays
Vectors
Matrices
Arrays
Relationship Between Single-Mode Data Objects
Summary
Q&A
Workshop

Activities

Xii

O O 0 0 N W~

11
11
14
16
23
28
29
30
30
32

33
33
34
35
49
58
60
62
62
63
64

Contents

HOUR 4: Multi-Mode Data Structures 67
Multi-Mode Structures 67
Lists 68
Data Frames 86
Exploring Your Data 93
Summary 98
Q&A 98
Workshop 100
Activities 101
HOUR 5: Dates, Times, and Factors 103
Working with Dates and Times 103
The lubridate Package 107
Working with Categorical Data 108
Summary 112
Q&A 112
Workshop 113
Activities 114
HOUR 6: Common R Utility Functions 115
Using R Functions 115
Functions for Numeric Data 117
Logical Data 121
Missing Data 122
Character Data 123
Summary 125
Q&A 126
Workshop 126
Activities 127
HOUR 7: Writing Functions: Part | 129
The Motivation for Functions 129
Creating a Simple Function 130
The If/Else Structure 136

Summary 146

vi

Sams Teach Yourself R Programming in 24 Hours

Q&A
Workshop

Activities

HOUR 8: Writing Functions: Part Il

Errors and Warnings
Checking Inputs

The Ellipsis

Checking Multivalue Inputs
Using Input Definition
Summary

Q&A

Workshop

Activities

HOUR 9: Loops and Summaries

Repetitive Tasks

The “apply” Family of Functions
The apply Function

The 1apply Function

The sapply Function

The tapply Function

Summary

Q&A

Workshop

Activities

HOUR 10: Importing and Exporting

Working with Text Files
Relational Databases
Working with Microsoft Excel
Summary

Q&A

Workshop

Activities

147
148
149

151
151
155
157
162
164
168
168
170
171

173
173
181
183
195
204
208
213
213
214
216

217
217
223
226
231
232
232
233

Contents vii

HOUR 11: Data Manipulation and Transformation 235
Sorting 236
Appending 237
Merging 238
Duplicate Values 241
Restructuring 242
Data Aggregation 249
Summary 258
Q&A 258
Workshop 259
Activities 259

HOUR 12: Efficient Data Handling in R 261
dplyr: A New Way of Handling Data 261
Efficient Data Handling with data.table 273
Summary 282
Q&A 283
Workshop 283
Activities 284

HOUR 13: Graphics 287
Graphics Devices and Colors 287
High-Level Graphics Functions 289
Low-Level Graphics Functions 298
Graphical Parameters 304
Controlling the Layout 305
Summary 308
Q&A 309
Workshop 309
Activities 311

HOUR 14: The ggplot2 Package for Graphics 313
The Philosophy of ggplot2 313
Quick Plots and Basic Control 314

Changing Plot Types 317

viii Sams Teach Yourself R Programming in 24 Hours

Aesthetics 320
Paneling (a.k.a Faceting) 328
Custom Plots 333
Themes and Layout 338
The ggvis Evolution 342
Summary 342
Q&A 343
Workshop 343
Activities 344
HOUR 15: Lattice Graphics 345
The History of Trellis Graphics 345
The Lattice Package 346
Creating a Simple Lattice Graph 346
Graph Options 356
Multiple Variables 358
Groups of Data 360
Using Panels 362
Controlling Styles 372
Summary 376
Q&A 377
Workshop 378
Activities 378
HOUR 16: Introduction to R Models and Object Orientation 379
Statistical Models in R 379
Simple Linear Models 380
Assessing a Model in R 382
Multiple Linear Regression 391
Interaction Terms 396
Factor Independent Variables 398
Variable Transformations 402
R and Object Orientation 405

Summary 407

Contents ix

Q&A 408
Workshop 408
Activities 409
HOUR 17: Common R Models 411
Generalized Linear Models 411
Nonlinear Models 423
Survival Analysis 430
Time Series Analysis 441
Summary 452
Q&A 452
Workshop 452
Activities 453
HOUR 18: Code Efficiency 455
Determining Efficiency 455
Initialization 458
Vectorization 459
Using Alternative Functions 462
Managing Memory Usage 463
Integrating with C++ 464
Summary 468
Q&A 469
Workshop 469
Activities 470
HOUR 19: Package Building 471
Why Build an R Package? 471
The Structure of an R Package 472
Code Quuality 476
Automated Documentation with roxygen2 477
Building a Package with devtools 482
Summary 485
Q&A 485
Workshop 486

Activities 487

Sams Teach Yourself R Programming in 24 Hours

HOUR 20: Advanced Package Building 489
Extending R Packages 489
Developing a Test Framework 490
Including Data in Packages 494
Including a User Guide 496
Code Using Rcpp 501
Summary 502
Q&A 502
Workshop 503
Activities 504

HOUR 21: Writing R Classes 505
What Is a Class? 505
Creating a New S3 Class 509
Generic Functions and Methods 511
Inheritance in S3 516
Documenting S3 518
Limitations of S3 518
Summary 519
Q&A 519
Workshop 520
Activities 520

HOUR 22: Formal Class Systems 523
S4 523
Reference Classes 535
R6 Classes 542
Other Class Systems 544
Summary 544
Q&A 545
Workshop 545

Activities 546

HOUR 23: Dynamic Reporting
What Is Dynamic Reporting?
An Introduction to knitr
Simple Reports with RMarkdown
Reporting with LaTeX
Summary
Q&A
Workshop

Activities

HOUR 24: Building Web Applications with Shiny
A Simple Shiny Application
Reactive Functions
Interactive Documents
Sharing Shiny Applications
Summary
Q&A
Workshop

Activities

APPENDIX: Installation
Installing R
Installing Rtools for Windows
Installing the RStudio IDE

Index

Contents

547
547
548
548
553
557
558
558
559

561
561
566
569
570
571
571
571
572

573
573
575
577

579

xi

Preface

Mango Solutions has been teaching face-to-face R training courses to business professionals
and academics alike for over 13 years. In this time, we’ve seen R grow from its early days

as a low cost alternative to S-PLUS and SAS to become the leading analytical programming
language in the world today, with several thousand contributors and somewhere upward of
a million users. R is widely used throughout academia and is commercially supported by the
likes of Microsoft, Google, HP, and Oracle.

In Mango's face-to-face training program we teach R to statisticians, data scientists, physi-
cists, biologists, chemists, geographers, and psychologists among others. All are looking

to R to help improve the way they analyze their data in a professional environment. Our
aim with this book was to take tried and tested training material and turn it into a lasting
resource for anyone looking to learn R for analysis.

Who Should Read This Book?

This book is designed for professional statisticians, data scientists, and analysts looking to
widen the scope of analytical tools available to them by learning R. Although it is expected
that you might have some programming knowledge in another analytical application

or language for data analysis, such as SAS, Python, or Excel/VBA, this is not a prerequi-
site. This book is suitable for complete novices in programming. From the start, we do not
assume any prior knowledge of R; however, those familiar with the basics may find that
they can jump straight to later chapters.

What Should You Expect from This Book?

This book is designed to take you from the basics of the R language through common tasks
in data science, including data manipulation, visualization, and modeling, to elements of
the language that will allow you to produce high-quality, production-ready code. As with
our face-to-face training, this book is structured around simple and easy-to-follow examples,
all of which are available to download from the book’s website (http://www.mango-
solutions.com/wp/teach-yourself-r-in-24-hours-book). Throughout, we introduce good
practices for writing code as well as provide tips and tricks from our combined experience

in R development.

http://www.mango-solutions.com/wp/teach-yourself-r-in-24-hours-book
http://www.mango-solutions.com/wp/teach-yourself-r-in-24-hours-book

Preface xiii

By the end of this book, you should have a good understanding of the fundamentals of R as
well as many of the most commonly used packages. You should have a good understanding
of what makes well written R code and how to implement this yourself.

How Is This Book Organized?

This book is designed to guide you through everything you need to know to get started with
the R language and then introduce additional elements of the language for specific tasks.

The following is an outline of each of the hours and what to expect:

Hour 1, “The R Community”—In this hour, we start by looking at how R evolved from
the S language to become the all-purpose data science programming language that it is
today. The R community offers a plethora of help and support options for users. We look at
some of the better-known options during this hour.

Hour 2, “The R Environment”—In this hour, we start a new R session via RStudio, type
some basic commands, and explore the idea of an R “object.” You will be more formally
introduced to the concept of an R package.

Hour 3, “Single-Mode Data Structures”—In this hour, we describe the standard types
of data found in R and introduce three key structures that can be used to store these data
types: vectors, matrices, and arrays. We illustrate the ways in which these structures can be
created and manage these data structures with a focus on how we can extract data from
them.

Hour 4, “Multi-Mode Data Structures”—The majority of data sources contain a mix-
ture of data types, which we need to store together in a simple, effective format. In this hour,
we focus on two key data structures that allow us to store “multi-mode” data: lists and data
frames. We illustrate the ways in which these structures can be created and manage these
data structures with a focus on how we can extract data from them. We also look at how
these two data structures can be effectively used in our day-to-day work.

Hour 5, “Dates, Times, and Factors”—In this hour, you learn more about some of the
special data types in R that enable us to work with dates and times and with categorical
data.

Hour 6, “Common R Utility Functions”—In this hour, we introduce you to some of the
most common utility functions in R that you will find yourself using every day.

Hour 7, “Writing Functions: Part I”—One of the strengths of R is that we can extend
it by writing our own functions, allowing us to create utilities that can perform a variety
of tasks. In this hour, we look at ways in which we can create our own functions, specify

Xiv Sams Teach Yourself R Programming in 24 Hours

inputs, and return results to the user. We also discuss the “if/else” structure in R and use it to
control the flow of code within a function.

Hour 8, “Writing Functions: Part II”’—This hour looks at a range of advanced function-
writing topics, such as returning error messaging, checking whether inputs are appropriate
to our functions, and the use of function “ellipses.”

Hour 9, “Loops and Summaries”—In this hour, you see how we can apply simple func-
tions and code in a more “applied” fashion. This allows us to perform tasks repeatedly over
sections of our data without the need to produce verbose, repetitive code.

Hour 10, “Importing and Exporting”—In this hour, we introduce common methods for
importing and exporting data. By the end of the hour you will have seen how R can be used
to read and write flat files and connect to database management systems (DBMSs) as well as
Microsoft Excel.

Hour 11, “Data Manipulation and Transformation”—As data scientists and stat-
isticians, we rarely get to control the structure and format of our data. Now we will look a
little closer at the structure of our data. Several approaches to data manipulation in R have
evolved over time. In this hour, we start by looking at what could be called “traditional”
approaches to the data manipulation tasks of sorting, setting, and merging. We then look at
the popular packages reshape, reshape2, and tidyr for data restructuring.

Hour 12, “Efficient Data Handling in R”—We begin the hour by looking at the incred-
ibly popular dplyr package. The data.table package is a standalone package for data
manipulation that offers greater efficiency for very large data.

Hour 13, “Graphics”—After all the manipulations to our data, we want to be able to start
to do something with it. In this hour, we look at how we can create graphics using the base
graphics functionality, including how to send your graphics to devices such as a PDF and
the standard graphics functions. We finally look at how to control the layout of graphics on
the page.

Hour 14, “The ggplot2 Package for Graphics”—In this hour, we look at the hugely
popular ggplot2 package, developed by Hadley Wickham for creating high-quality
graphics.

Hour 15, “Lattice Graphics”—Here we will look at a third way of creating graphics:
using the lattice package. This graphic system is well suited to graphing highly grouped
data, with the code designed to closely resemble the modeling capabilities of R.

Hour 16, “Introduction to R Models and Object Orientation”—In this hour, we see
how to fit a simple linear model and assess its performance using a range of textual and

Preface

graphical methods. Beyond this, we introduce “object orientation” and see how the R statis-
tical modeling framework is built on this concept.

Hour 17, “Common R Models”—In this hour, we extend the ideas of the previous hour
to other modeling approaches. Specifically, we look at Generalized Linear Models, non-
linear models, time series models, and survival models.

Hour 18, “Code Efficiency”—In this hour, we look at some of the techniques we can use
to improve the efficiency and, importantly, the professionalism of our R code.

Hour 19, “Package Building”—When we put our code into a package, it forces us to
ensure that our code is of a high standard and we are adhering to good practices, such as
documenting our code. We focus here on making sure our code is well written and docu-
mented, the starting point for high-quality, professional code that is easy to share and reuse.

Hour 20, “Advanced Package Building”—There are a number of ways we can extend
a package to make it more robust to changes and easier for users to get started with. You
learn the most common of these extra components in this hour.

Hour 21, “Writing R Classes”—In this hour, we take a general look at some key features
of object-oriented programming before focusing in on R’s S3 implementation.

Hour 22, “Formal Class Systems”—During this hour, we look at the more formal 54
and Reference Class systems in R. Along the way, you will be introduced to concepts such
as validity checking, multiple dispatch, message-passing object orientation, and mutable
objects.

Hour 23, “Dynamic Reporting”—Up to this point we have seen the fundamentals of the
R language as well as the aspects of R that allow us to ensure that we write high-quality,
well-documented, and easily shareable code. In this hour, we take a look at one of the ways
you can extend your use of R, specifically for simplifying the generation of reports that rely
heavily on R-generated output.

Hour 24, “Building Web Applications with Shiny”—Although you may initially be
put off by the idea of building a web application, we introduce a package that allows you
to generate web applications entirely in R, writing only R code. This is currently one of the
most popular packages available in R, with more and more packages being added to CRAN
that use this framework.

About the Sample Code

Throughout this book, we have included examples of the concepts that are being intro-
duced. You may notice that the code is prefixed with the symbols “>"” and “+”. These are the

Xvi Sams Teach Yourself R Programming in 24 Hours

R prompt and continuation characters and do not need to be entered when writing code. We
have used the formatting conventions of function for a function name and package for a
package name.

All of the code examples included in this book are available from our web page:
http://www.mango-solutions.com/wp/teach-yourself-r-in-24-hours-book/

NOTE

Code-Continuation Arrows and Listing Line NumbersYou might see code-continuation arrows (=)
occasionally in this book to indicate when a line of code is too long to fit on the printed page.
Also, some listings have line numbers and some do not. The listings that have line numbers
have them so that we can reference code by line; the listings that do not have line numbers are
not referenced by line.

Contacting the Authors

If you have any comments or questions about this book, please drop us an email at
rin24hours@mango-solutions.com.

http://www.mango-solutions.com/wp/teach-yourself-r-in-24-hours-book
mailto:rin24hours@mango-solutions.com

About the Authors

Andy Nicholls has a Master of Mathematics degree from the University of Bath and Master
of Science in Statistics with Applications in Medicine from the University of Southampton.
Andy worked as a Senior Statistician in the pharmaceutical industry for a number of years
before joining Mango Solutions as an R consultant in 2011. Since joining Mango, Andy has
taught more than 50 on-site R training courses and has been involved in the development
of more than 30 R packages. Today, he manages Mango Solution’s R consultancy team and
continues to be a regular contributor to the quarterly LondonR events, by far the largest R
user group in the UK, with over 1,000 meet-up members. Andy lives near the historical city
of Bath, UK with his wonderful, tolerant wife and son.

Richard Pugh has a first-class Mathematics degree from the University of Bath. Richard
worked as a statistician in the pharmaceutical industry before joining Insightful, the devel-
opers of S-PLUS, joining the pre-sales consulting team. Richard’s role at Insightful included

a variety of activities, providing a range of training and consulting services to blue-chip cus-
tomers across many sectors. In 2002, Richard co-founded Mango Solutions, developing the
company and leading technical efforts around R and other analytic software. Richard is now
Mango’s Chief Data Scientist and speaks regularly at data science and R events. Richard
lives in Bradford on Avon, UK with his wife and two kids, and spends most of his “spare”
(ha!) time renovating his house.

Aimee Gott has a PhD in Statistics from Lancaster University where she also completed her
undergraduate and master’s degrees. As Training Lead, Aimee has delivered over 200 days
of training for Mango. She has delivered on-site training courses in Europe and the U.S. in
all aspects of R, as well as shorter workshops and online webinars. Aimee oversees Mango’s
training course development across the data science pipeline, and regularly attends R user
groups and meet-ups. In her spare time, Aimee enjoys learning European languages and
documenting her travels through photography.

Dedications

This book is dedicated to my wife, for her love and support and for putting up with
losing our summer to all the late nights, and to my baby boy who learnt to sit up,
eat, crawl, and walk whilst this book was being written! —Andy Nicholls

This book is dedicated to my family for having to put up with me
writing the book at weekends. —Richard Pugh

To Stephen, Carol, Richard, and Kirstie. —Aimee Gott

Acknowledgments

Throughout the process of writing, many people have taken time to assist us, guide us, and
shape this book. First of all, thanks go to Andy Miskell, Jeff Stagg, Mike K. Smith, and Susan
Duke, who took the time to review our initial outline. Thanks also go to the consultancy
team at Mango and Stephen Kaluzny of TIBCO who were all able to answer our questions
while writing.

We would also like to thank all those who have been involved in the production of

this book. In particular we would like to thank Elaine Wiley (production editor), Trina
MacDonald (acquisitions editor), Songlin Qiu (development editor), Olivia Basegio (pub-
lisher assistant), Stephanie Locke (technical editor), Bart Reed (copyeditor), and Katie
Matejka (proofreader).

We Want to Hear from You!

As the reader of this book, you are our most important critic and commentator. We value
your opinion and want to know what we’re doing right, what we could do better, what areas
you’d like to see us publish in, and any other words of wisdom you're willing to pass our
way.

We welcome your comments. You can email or write to let us know what you did or didn’t
like about this book—as well as what we can do to make our books better.

Please note that we cannot help you with technical problems related to the topic of this
book.

When you write, please be sure to include this book’s title and author as well as your name
and email address. We will carefully review your comments and share them with the author
and editors who worked on the book.

Email: errata@informit.com

Mail: Addison-Wesley/Prentice Hall Publishing
ATTN: Reader Feedback
330 Hudson Street
7th Floor
New York, New York, 10013

Reader Services

Register your copy of Teach Yourself R in 24 Hours at informit.com for convenient access to
downloads, updates, and corrections as they become available. To start the registration pro-
cess, go to informit.com/register and log in or create an account.* Enter the product ISBN,
9780672338489, and click Submit. Once the process is complete, you will find any available
bonus content under Registered Products.

*Be sure to check the box that you would like to hear from us in order to receive exclusive
discounts on future editions of this product.

This page intentionally left blank

This page intentionally left blank

HOUR 4

Multi-Mode Data Structures

What You’ll Learn in This Hour:
» What a list object is
» How to create and manipulate a data frame
» How to perform an initial investigation in the structure of our data

The majority of data sources contain a mixture of data types, which we need to store together
in a simple, effective format. The “single-mode” structures introduced in the last hour are use-
ful basic data objects, but are not sufficiently sophisticated to store data containing multiple
“modes.” In this hour, we focus on two key data structures that allow us to store “multi-mode”
data: lists and data frames. We will illustrate the ways in which these structures can be created
and managed, with a focus on how to extract data from them. We also look at how these two
data structures can be effectively used in our day-to-day work.

Multi-Mode Structures

In the last hour, we examined the three structures designed to hold data in R:
» Vectors—Series of values
» Matrices—Rectangular structures with rows and columns

» Arrays—Higher dimension structures (for example, 3D and 4D arrays)

Although these objects provide us with a range of useful functionality, they are restricted in that
they can only hold a single “mode” of data. This is illustrated in the following example:

> c(l, 2, 3, "Hello") # Multiple modes
[1] nin ngn n3n "Hello"

> ¢(1, 2, 3, TRUE, FALSE) # Multiple modes
[1] 12310

> c¢(1, 2, 3, TRUE, FALSE, "Hello") # Multiple modes

[1] mwin nwon n3n "TRUE" "FALSE" "Hello"

68 Multi-Mode Data Structures

As you can see, when we attempt to store more than one mode of data in a single-mode struc-
ture, the object (and its contents) will be converted to a single mode.

The preceding example uses a vector to illustrate this behavior, but let’s suppose we want to
store a rectangular “dataset” using a matrix. For example, we might attempt to create a matrix
that contains the forecast temperatures for New York over the next five days:

> weather <- cbind(

+ Day = c("Saturday", "Sunday", "Monday", "Tuesday", "Wednesday"),
+ Date = c¢("Jul 4", "Jul 5", "Jul 6", "Jul 7", "Jul 8"),

+ TempF = c(75, 86, 83, 83, 87)

+)

> weather

Day Date TempF
[1,] "Saturday" "Jul 4" "75"
[2,] "Sunday" nJul 5" ngen
[3,] "Monday" nJul 6" ng3n
[4,] "Tuesday" "Jul 7" "83"
[5,] "Wednesday" "Jul 8" "87"

From the quotation marks, it is clear that R has converted all the data to character values, which
can be confirmed by looking at the mode of this matrix structure:

> mode (weather) # The mode of the matrix
[1] "character"

This reinforces the need for data structures that allow us to store data of multiple modes. R pro-
vides two “multi-mode” data structures:
» Lists—Containers for any objects

» Data frames—Rectangular structures with rows and columns

Lists

The list is considered perhaps the most complex data object in R, and many R programmers will
go to great lengths to avoid the use of lists in their structures. This perceived complexity, per-
haps, stems from a lack of clarity over what a list “looks like.” Other structures, such as vectors
and matrices, are relatively easy to visualize, and are therefore easier to adopt and manage.

Despite this, lists are simple structures that can be used to perform a number of complex
operations.

Lists 69

What Is a List?

Lists are simply containers for other objects. The objects stored in a list can be of any type (for
example, “matrix” or “vector”) and any mode. Therefore, you can create a list containing the
following, for example:

» A character vector

» A numeric matrix

v

A logical array

» Another list

When discussing lists, some people use the analogy of a box. For example, you might do the
following:

» Create an empty box.
» Put some “things” into the box.
» Look into the box to see what things are in there.

» Take things back out of the box.

In a similar way, in this section, we will look at how to do the following:
» Create an empty list.
» Put objects into the list.
» Look at the number (and names) of objects in the list.

» Extract elements from the list.

Creating an Empty List

You create a list using the 1ist function. The simplest list you can create is an empty list, like
this:

> emptyList <- list ()

> emptyList

list ()

Later, you will see how to add elements to this empty list.

70 Multi-Mode Data Structures

Creating a Non-Empty List

More commonly, you'll create a list and add initial elements to it at the same time. You achieve
this by specifying a comma-separated set of objects within the 1ist function:

> aVector <- c¢(5, 7, 8, 2, 4, 3, 9, 0, 1, 2)

> aMatrix <- matrix(LETTERS[1:6], nrow = 3)

> unnamedList <- list (aVector, aMatrix)

> unnamedList

(111
[11 57 82439012

[[211]

[,11 [,2]
[1,] "A" vpv
[2,1 "B" vE"
[3,1 ncv wEpn

In this example, we created two objects (aVector and aMatrix) and then created a list
(unnamedList) containing copies of these objects.

NOTE

Original Objects

When you create lists in this way, you take copies of the objects (aVector and aMatrix in this
example). The original objects are not impacted by this action (that is, they are not edited, moved,
changed, or deleted).

If you only need the objects within the list, you could create the objects as you specify the list,
like this:

> unnamedList <- list(c(5, 7, 8, 2, 4, 3, 9, 0, 1, 2),
+ matrix(LETTERS[1:6], nrow = 3))
> unnamedList

[[1]]

[1] 57 82439012

[[2]1]

[,11 [,2]
[1,1 "A" vDv
[2,1 "B" vE"
[3,1 ncr wEn

Lists 71

Creating a List with Element Names

When you create a list, you can optionally assign names to the elements. This helps you when
you're referencing elements in the list later.
> namedList <- list (VEC = aVector, MAT = aMatrix)
> namedList
$VEC
[11 5782439012

$MAT

[,11 [,2]
[1,] "a" D"
[2,] "B" "“E"
[3,1 "cv vpn

As before, you can also create the (named) objects as you're creating the list:

> namedList <- list (VEC = c(5, 7, 8, 2, 4, 3, 9, 0, 1, 2),
+ MAT = matrix(LETTERS[1:6], nrow = 3)
> namedList
SVEC

[1] 5782439012

$MAT

[,11 [,2]
[1,] "a" D"
[2,] "B" "“E"
[3,1 "cv vE"

Creating a List: A Summary

You have now seen a few different ways of creating a list. It is worth recapping the ways in
which we created the lists with some code examples:

> # Create an empty list
> emptyList <- list()

> # 2 Ways of Creating an unnamed list containing a vector and a matrix
> unnamedList <- list (aVector, aMatrix)

> unnamedList <- list(c(5, 7, 8, 2, 4, 3, 9, 0, 1, 2),

+ matrix(LETTERS([1:6], nrow = 3))

> # 2 Ways of Creating a named list containing a vector and a matrix
> namedList <- list (VEC = aVector, MAT = aMatrix)

> namedList <- list (VEC c(5, 7, 8, 2, 4, 3, 9, 0, 1, 2),

+ MAT matrix(LETTERS[1:6], nrow = 3))

72 Multi-Mode Data Structures

In these examples, we created three lists that we will use as examples over the next few sections:

> emptyList # An empty list

list ()

> unnamedList # A list with unnamed elements
[[1]]

[1] 57 82439012

[[21]
[,11 [,2]
[1,] "a" D"
[2,] "B" ME"
[3,] "C" |IFII
> namedList # A list with element names
SVEC

[1] 57 82439012

SMAT

[,11 [,2]
[l’] |IA|I |lDll
[2’] npn nEn
[3,] HCH |IFII
NOTE
Printing Style

Notice the difference in printing when a list has element names versus when there are no element
names: Elements are indexed with double square brackets (for example, [[1]1]1) for “unnamed”
lists, and with dollar symbols (for example, $VEC) for “named” lists. This gives you a hint as to how
you'll be able to reference the elements of a list later.

List Attributes

As with single-mode structures, a set of functions allows you to query some of the list attributes.
Specifically, you can use the length function to query the number of elements in the list, and
the names function to return the element names.

The length function returns the number of elements in the list, as shown here:

> length (emptyList)

[11 O
> length (unnamedList)
[1] 2

> length (namedList)
[1] 2

Lists 73

The names function returns the names of the elements in the list, or NULL if there are no ele-
ments or no element names assigned:

> names (emptyList)

NULL

> names (unnamedList)

NULL

> names (namedList)

[1] "VEC" "MAT"

With single-mode data structures, we additionally used the mode function to return the type of
data they held. Because lists are multi-mode structures, there is no longer a single mode of data
being stored, so the word “list” is returned:

> mode (emptyList)
[1] "list™

> mode (unnamedList)
[1] "list™

> mode (namedList)
[1] "list™

Subscripting Lists

Two types of list subscripting can be performed:
» You can create a subset of the list, returning a shorter list.

» You can reference a single element within the list.

Subsetting the List

You can use square brackets to select a subset of an existing list. The return object will itself be
a list.

LIST [Input specifying the subset of list to return]

As with vectors, you can put one of five input types in the square brackets, as shown in
Table 4.1.

TABLE 4.1 Possible List Subscripting Inputs

Input Effect
Blank All values of the list are returned.
A vector of positive integers Used as an index of list elements to return.

A vector of negative integers Used as an index of list elements to omit.

74 Multi-Mode Data Structures

Input Effect
A vector of logical values Only corresponding TRUE elements are returned.
A vector of character values Refers to the names of elements to return.

To illustrate the subsetting of lists, we will use the namedList object created earlier.

Blank Subscripts
If you use a blank subscript, the whole of the list is returned:

> namedList [] # Blank subscript
SVEC
[1] 5782439012

$MAT

[,11 [,2]
[1,1 "A" vDv
[2,1 "B" vE"
[3,1 ncr wEn

Positive Integer Subscripts

If you use a vector of positive integers, it is used as an index of elements to return:

> subList <- namedList [1] # Return first element
> subList # Print the new object
SVEC

[1] 57 82439012

> length (subList) # Number of elements in the list
[1] 1

> class (subList) # Check the "class" of the object
[1] "list"

As you can see from this example, the return object (saved as subList here) is itself a list. You
can also use the class function to check the type of object, and it confirms subList is a list
object.

NOTE

An Object’s Class

This is the first time in this book you’ve seen the class function used. It returns the type of
objects, whereas the mode function returns the type of data held in an object. Let’s illustrate this
distinction with a numeric matrix:

Lists 75

> aMatrix <- matrix(l:6, nrow = 2) # Create a numeric matrix
> aMatrix # Print the matrix
[,11 [,21 [,3]
[1,] 1 3
[2,1 2 4
> mode (aMatrix) # Mode of data held in this object

[1] "numeric"

> class (aMatrix) # Type (or "class") of object
[1] "matrix"

Negative Integer Subscripts
You can provide a vector of negative integers to specify the index of list elements to omit:

> namedList
SVEC
[1] 5782439012

SMAT

[,11 [,2]
[1,]1 "am vwpn
[2,] "B" "E"
[3,1 "cv nEp"
> namedList [-1] # Return all but the first element
SMAT

[,11 [,2]
[1,]1 "am vpn
[2,] "B" "E"
[3,1] "cv np"

Logical Value Subscripts
You can provide a vector of logical integers to specify the list elements to return and omit:

> namedList
SVEC
[1] 5782439012

SMAT

[,11 [,21]
[1,1 "A" Do
[2,] "B" v“E"

[3,]1 "Cn nEn

> namedList [c(T, F) 1] # Vector of logical values
SVEC
[1] 5782439012

76 Multi-Mode Data Structures

Character Value Subscripts
If your list has element names, you can provide a vector of character values to identify the
(named) elements you wish to return:

> namedList
SVEC
[1] 5782439012

SMAT

[,11 [,2]
[1,] "A" "D
[2,17 "B" "E"
[3,17 "cn "gEn
> namedList ["MAT"] # Vector of Character values
SMAT

[,11 [,2]
[1,]1 "a" D"
[2,] "B" "E"
[3,1 "cv "E"

Reference List Elements

In the last section, you saw that you can reference a list using square brackets to “subset” the list
(that is, return a list containing only a subset of the original elements). More commonly, you'll
want to reference a specific element within your list.

You can reference elements of a list in two ways:
» You can use “double” square brackets.

» If there are element names, you can use the $ symbol.

Double Square Bracket Referencing

You can directly reference an element of a list using double square brackets. Although there are
a number of uses of the double square brackets, the most common use is to supply a single inte-
ger index to refer to the element to extract:

> namedList # The original list

$VEC
[11 57 82439012

$MAT
(11 [,2]
[1,] npn npn

Lists 77

[2,] "B" nEn
[3’] el ngn

> namedList [[1]] # The first element
[1] 5782439012
> namedList [[2]] # The second element
[,11 [,2]
[1,] "an D"
[2,] "B" M"E"
[3,] "cv wpn

> mode (namedList [[2]]) # The mode of the second element
[1] "character"

When you use double square brackets in this way, you are directly referencing the objects con-
tained within the list, as supported by the result of the mode function call. This is in contrast to
the use of the single square bracket earlier, where we extracted a subset of the list itself:

> namedList [1] # Return a list containing 1 element

SVEC
[1] 57 82439012

> namedList [[1]] # Return the first element of the list (a vector)
[1] 5782439012

Referencing Named Elements with $

If the elements of your list are named, you can use the $ symbol to directly reference them. As
such, the following lines of code are equivalent ways of referencing the first (the “VEC”) element
of our namedList object:

> namedList # Print the original list

$VEC
[11 57 82439012

SMAT
[,11 [,2]
[1,] "a" vwDn
[2,] "B" "E"
[3,] "cv wpn
> namedList [[1]] # Return the first element
[1] 5782439012
> namedList$VEC # Return the "VEC" element

[1] 57 82439012

78 Multi-Mode Data Structures

Double Square Brackets versus $

The $ symbol provides a more intuitive way of referencing named list elements, which is also
more aesthetically pleasing than the use of double square brackets. We tend to use double
square brackets when there are no element names assigned, and use $ when names exist. Here’s
an example:

> unnamedList # List with no element names

(11l
[11 57 82439012

[[2]]
[,11 [,2]
[1,] "A" "D"
[2,1] "B" "E"
[3,1 "C" "En
> unnamedList [[1]] # First element

[1] 57 82439012

> namedList # List with element names
SVEC
[1] 5782439012

SMAT
[,11 [,2]
[1,7 "a" D"
[2,] "B" vE"
[3,1 ncn vwEn
> namedList$VEC # The "VEC" element

[1] 57 82439012

TIP

Shortened $ Referencing

When you use the $ symbol, you only need to provide enough of the name so that R understands
which element you are referring to. This is illustrated in the following example:

> aList <- list(first = 1, second = 2, third = 3, fourth = 4)
> alListss # Returns the second

[1] 2

> aList$fi # Returns the first

[1] 1

Lists 79

> aListsfo # Returns the fourth
[1] 4

Although it is possible to use shortened referencing in this way, it can lead to less maintainable and
readable code, and should be avoided where possible when creating scripts.

Adding List Elements

You can add elements to a list in one of two ways:
» By directly adding an element with a specific name or in a specific position

» By combing lists together

Directly Adding a List Element

You can add a single element to a list by assigning it into a specific index or name. The syntax
mirrors that of the “Double Square Brackets versus $” section earlier. For example, let’s add a
single element to our empty list:

> emptyList # Empty list

[[1]]
[1] "Am nBn nwgw wpn wgn

> emptyList [[1]] <- LETTERS[1:5] # Add an element
> emptyList # Updated (non)empty list
[[1]1]

[1] "Am ngn nwgQw wpn wgn

Instead of using the double square brackets, we can use the $ symbol to add a “named” element
to a list:

> emptyList <- list() # Recreate the empty list
> emptyList # Empty list

list ()

> emptyList$ABC <- LETTERS[1:5] # Add an element

> emptyList # Updated (non)empty list
SABC

[1] "Am™ nBn nwgQw wpw wgn

80 Multi-Mode Data Structures

NOTE

Adding Nonconsecutive Elements

The preceding examples uses either square brackets or the $ symbol to add elements to the “first”
position of an empty list. If we add an element to a later index, R interpolates a number of NULL
elements to fill any gaps in the list:

> emptyList <- list() # Recreate the empty list
> emptyList # Empty list

list ()

> emptyList[[3]] <- "Hello" # Assign to third element

> emptyList
[[11]
NULL

(211
NULL

(311
[1] "Hello"

Combining Lists

You can grow lists by combining them together using the c¢ function, as shown here:

> listl <- list(A = 1, B = 2) # Create listl
> list2 <- list(C = 3, D = 4) # Create list2
> c(listl, 1list2) # Combine the lists
57

[1] 1

$B

[1] 2

scC

[1] 3

$D

[1] 4

A Summary of List Syntax

As you have seen so far in this hour, the way we use lists varies slightly based on whether the
elements of the list are named. At this point, it is worth reviewing the syntax to create and man-
age “unnamed” and “named” list structures.

Lists 81

Overview of Unnamed Lists

An overview of the key syntax covered is shown here, using a list without named elements as an
example. First, let’s create a list and look at the list attributes:

> unnamedList <- list (aVector, aMatrix) # Create the list
> unnamedList # Print the list
[[11]

[1] 57 82439012

(211

[1,1] 3

[2,] 4

> length (unnamedList) # Number of elements
[1] 2

> names (unnamedList) # No element names
NULL

We can subset the list or extract list elements using single/double square brackets:

> unnamedList [1] # Subset the list
[[11]
[1] 5782439012

> unnamedList [[1]] # Return the first element
[1] 5782439012

> unnamedList [[3]] <- 1:5 # Add a new element
> unnamedList
[[11]

[1] 57 82439012

(211

(311
[11 123 45

Overview of Named Lists

Let’s look at a similar example using a list with element names. First, let’s create the list and
view the list attributes:

82 Multi-Mode Data Structures

> namedList <- list (VEC = aVector, MAT = aMatrix) # Create the list
> namedList # Print the list
SVEC

[1] 57 82439012

SMAT
[,11 [,21 [,3]
[1,] 1 3 5
[2,1] 2 4 6
> length (namedList) # Number of elements
[1] 2
> names (namedList) # Element names

[1] "VEC" "MAT"

We can subset the list using single square brackets, or reference elements directly with the $
symbol:
> namedList [1] # Subset the list

SVEC
[1] 57 824390012

> namedList$VEC # Return the first element
[1] 5782439012

> namedListSNEW <- 1:5 # Add a new element
> namedList

$VEC
[11 57 82439012

$MAT

[,11 [,21 [,3]
[1,] 1 3 5
[2,1] 2 4 6
SNEW

[1] 1 23 45

Motivation for Lists

A good understanding of lists helps you to accomplish a number of useful tasks in R. To illus-
trate this, we will briefly look at two use cases that rely on list structures. Note that this section
includes syntax that will be covered later in this book, but we include it here to illustrate “the art
of the possible” at this stage.

Lists 83

Flexible Simulation

Consider a situation where we want to simulate a number of extreme values (for example,
large financial losses by day, or particularly high values of some measure for each patient in a
drug study). For each iteration, we may simulate any number of numeric values from a given
distribution.

A list provides a flexible structure to hold all the simulated data. Consider the following code

example:

> nExtremes <- rpois (100, 3) # Simulate number of extreme values by
day from a Poisson distribution

> nExtremes[1:5] # First 5 numbers

[1] 0 3 57 3

> # Define function that simulates "N" extreme values
> exFun <- function(N) round(rweibull (N, shape = 5, scale = 1000))

> extremeValues <- lapply (nExtremes, exFun) # Apply the function to our simulated
numbers

> extremeValues[1:5] # First 5 simulated outputs
[[1]1]
numeric (0)

(211
[1] 1305 948 1077

(311
[1] 676 516 865 614 970

[[a]]
[1] 618 1217 818 1173 1205 1105 519

[rs11
[1] 1026 933 657

From this example, note that the first simulated output generated no “extreme” values, resulting
in the output containing an empty numeric vector (signified by numeric (0)). The “unnamed”
list structure allows us to hold, in the same structure:

» This empty vector (indicating no “extreme values” for a particular day)

» Large vectors holding a number of simulated outputs (for days where many “extreme val-
ues” were simulated)

Given that we have stored this information in a list, we can query it to summarize the average
number and average of extreme values:

84 Multi-Mode Data Structures

> median (sapply (extremeValues, length)) # Average number of simulated extremes
[1] 3

> median (sapply (extremeValues, sum)) # Average extreme value

[1] 2634

TIP

The apply Functions

In the preceding examples, we used functions such as lapply (which applies a function to each
element of a list) and sapply (which performs the same action but simplifies the outputs). We
cover the apply family of functions later in Hour 9, “Loops and Summaries.”

Extracting Elements from Named Lists
In R, most objects are, fundamentally, lists. For example, let’s use the t . test function to per-
form a simple T-test. We will take the example straight from the t . test help file:

> theTest <- t.test(1:10, y = c(7:20)) # Perform a T-Test
> theTest # Print the output

Welch Two Sample t-test

data: 1:10 and c(7:20)
t = -5.4349, df = 21.982, p-value = 1.855e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

-11.052802 -4.9471098
sample estimates:
mean of x mean of y

5.5 13.5

The output is printed as a nicely formatted text summary informing us of the significant T-test.
But what if we wanted to use one of the elements of this output in further work (for example, the
p-value). Consulting the help file, we see the return value is described as follows:

Value

A list with class htest containing the following components:
> statistic The value of the t-statistic.
> parameter The degrees of freedom for the t-statistic.
» p.value The p-value for the test.

» conf.int A confidence interval for the mean appropriate to the specified alternative
hypothesis.

Lists 85

> estimate The estimated mean or difference in means, depending on whether it was a
one-sample test or a two-sample test.

» null.value The specified hypothesized value of the mean or mean difference, depending
on whether it was a one-sample test or a two-sample test.

> alternative A character string describing the alternative hypothesis.
» method A character string indicating what type of t-test was performed.

> data.name A character string giving the name(s) of the data.

The key thing to note here is that the return object is “a list.” Given that the output is a list, we
can query the named elements of this list and see that the result matches the description of ele-
ments in the help file:

> names (theTest) # Names of list elements
[1] "statistic" "parameter" "p.value" "conf.int" "estimate"
[6] "null.value" T"alternative" "method" "data.name"

Given that this is a named list, and we know the names of the elements, we can use the $ sym-
bol to directly reference the information we need:
> theTestS$p.value # Reference the p-value

[1] 1.855282e-05

Using this approach, we can reference a wide range of elements from R outputs.

NOTE

Print Methods

In the preceding example, we created a complex object (fundamentally, a named list) that printed in
a neat manner:

> theTest # Print the output
Welch Two Sample t-test

data: 1:10 and c(7:20)
t = -5.4349, df = 21.982, p-value = 1.855e-05
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:

-11.052802 -4.9471098
sample estimates:
mean of x mean of y

5.5 13.5

86 Multi-Mode Data Structures

The neat printout is generated by a print “method” associated with outputs from t.test. If we want
to see the “raw” underlying structure, we can use the print.default function, which confirms
that the structure is list based:

> print.default (theTest)
$statistic

t
-5.43493

Sparameter
dat
21.98221

Sp.value
[1] 1.855282e-05

Data Frames

In the last section, we introduced the “list” structure, which allows you to store a set of objects of
any mode. A data frame is, like many R objects, a named list. However, a data frame enforces a
number of constraints on this named list structure. In particular, a data frame is constrained to
be a named list that can only hold vectors of the same length.

Creating a Data Frame

We create a data frame by specifying a set of named vectors to the data. frame. For example,
let’s create a data frame containing New York temperature forecasts over the next five days:

> weather <- data.frame (# Create a data frame

+ Day = c("Saturday", "Sunday", "Monday", "Tuesday", "Wednesday"),
+ Date = c¢("Jul 4", "Jul 5", "Jul é&", "Jul 7", "Jul 8"),

+ TempF = c (75, 86, 83, 83, 87)

+)

> weather # Print the data frame

Day Date TempF

1 Saturday Jul 4 75
2 Sunday Jul 5 86
3 Monday Jul 6 83
4 Tuesday Jul 7 83
5 Wednesday Jul 8 87

Data Frames 87

NOTE

Print Methods

As discussed earlier, the neat printing of this object is caused by a print “method” for data frames.
We can see the raw structure using print.default, which again confirms that a data frame is fun-
damentally a named list of vectors:

> print.default (weather)

$hay

[1] Saturday Sunday Monday Tuesday Wednesday
Levels: Monday Saturday Sunday Tuesday Wednesday

SDate
[1] Jul 4 Jul 5 Jul 6 Jul 7 Jul 8
Levels: Jul 4 Jul 5 Jul 6 Jul 7 Jul 8

STempF
[1] 75 86 83 83 87

attr(,"class")

[1] "data.frame"

CAUTION

Nonmatching Vector Lengths
If we try to create a data frame using vectors with nonmatching lengths, we get an error message:

> data.frame(X = 1:5, Y = 1:2)
Error in data.frame(X = 1:5, Y = 1:2)
arguments imply differing number of rows: 5, 2

Querying Data Frame Attributes

Because a data frame is simply a named list, the functions we used to query list attributes will
work the same way:

» The length function returns the number of elements of the list (that is, the number of
columns).

» The names function returns the element (column) names.

The following example illustrates the use of these functions:

> length (weather) # Number of columns
[1] 3
> names (weather) # Column names

[1] "Day" "Date" "TempF"

88 Multi-Mode Data Structures

Selecting Columns from the Data Frame

As with lists, we can reference a single element (vector) from our data frame using either double
squared brackets or the $ symbol:

> weather # The whole data frame
Day Date TempF

1 Saturday Jul 4 75
2 Sunday Jul 5 86
3 Monday Jul 6 83
4 Tuesday Jul 7 83
5 Wednesday Jul 8 87
> weather[[3]] # The "third" column

[1] 75 86 83 83 87
> weather$TempF # The "TempF" column
[1] 75 86 83 83 87

Selecting Columns from the Data Frame

Because we can reference columns in this way, we can also use these approaches to add new
columns. For example, let’s add a new column called TempC to our data containing the tempera-
ture in degrees Celsius:

> weather$TempC <- round((weather$TempF - 32) * 5/9)

> weather
Day Date TempF TempC

1 Saturday Jul 4 75 24
2 Sunday Jul 5 86 30
3 Monday Jul 6 83 28
4 Tuesday Jul 7 83 28
5 Wednesday Jul 8 87 31

Subscripting Columns

Because the columns of data frames are vectors, we can subscript them using the approaches
from Hour 3, “Single-Mode Data Structures.” Specifically, we can subscript the columns using
square brackets:

DATASCOLUMN [Input specifying the subset to return]

As before, we can reference using blank, positive, negative, or logical inputs. Character inputs do
not make sense for referencing columns because the individual elements within columns are not
associated with element names.

Data Frames 89

Blank, Positive, and Negative Subscripts
If we use a blank subscript, all the values of the vector are returned:

> weather
Day Date TempF TempC

1 Saturday Jul 4 75 24
2 Sunday Jul 5 86 30
3 Monday Jul 6 83 28
4 Tuesday Jul 7 83 28
5 Wednesday Jul 8 87 31
> weathersTempF [] # All values of TempF column

[1] 75 86 83 83 87

If we use a vector of positive integers, it refers to the elements of the column (vector) to return:

> weather$TempF [1:3 1 # First 3 values of the TempF column
[1] 75 86 83

If we use a vector of negative integers, it refers to the elements of the column (vector) to omit:

> weathersTempF [-(1:3)] # Omit the first 3 values of the TempF column
[1] 83 87

Logical Subscripts

As you saw in the last hour, we can provide a vector of logical values to reference a vector, and
only the corresponding TRUE values are returned. Here’s an example:

> weather$TempF

[1] 75 86 83 83 87

> weathersTempF [c(F, T, F, F, T)] # Logical subscript

[1] 86 87

Of course, we usually generate the logical vector with a logical statement involving a vector. For
example, we could return all the TempF values greater than 85 using this statement:

> weather$TempF [weather$TempF > 85] # Logical subscript
[1] 86 87

Instead, we could reference a column of a data frame based on logical statements involving one
or more other columns (because all columns are constrained to be the same length):
> weather$Day [weather$TempF > 85] # Logical subscript

[1] Sunday Wednesday
Levels: Monday Saturday Sunday Tuesday Wednesday

90 Multi-Mode Data Structures

NOTE

Factor Levels

In the last example, you can see that the days where the forecast is greater than 85°F are Sunday
and Wednesday. However, you should note two things about the output:

» There are no quotation marks around the returned values (Sunday and Wednesday).

» Additional “Levels” information has been printed.
This strange output is produced because, when you create a data frame using character columns,
those columns are converted to “factors,” which are “category” columns that are automatically

derived from character vectors when used in a data frame. You’ll see more on factors later in Hour
5, “Dates, Times, and Factors.”

Referencing as a Matrix

Although a data frame is structured as a named list, its rectangular output is more similar to the
matrix structure you saw earlier. As such, R allows us to reference the data frame as if it was a
matrix.

Matrix Dimensions

Because we can treat a data frame as a matrix, we can use the nrow and ncol functions to
return the number of rows and columns:

> nrow (weather) # Number of rows

[1] 5

> ncol (weather) # Number of columns
[1] 4

Subscripting as a Matrix

In Hour 3, you saw that you can subscript a matrix using square brackets and two inputs (one
for the rows, one for the columns). We can use the same approach to subscript a data frame,
where each input can be one of the standard five input types:

DATA.FRAME [Rows to return , Columns to return]

Blanks, Positives, and Negatives

We can use blank subscripts to return all rows and columns from a data frame:

> weather[, 1 # Blank, Blank
Day Date TempF TempC

1 Saturday Jul 4 75 24

2 Sunday Jul 5 86 30

3 Monday Jul 6 83 28

4 Tuesday Jul 7 83 28

5 Wednesday Jul 8 87 31

Data Frames 91

If we use vectors of positive integers, they are used to provide an index of the rows/columns
to return. This example uses positive integers to return the first four rows and the first three
columns:

> weather[1:4, 1:3] # +ive, +ive
Day Date TempF

1 Saturday Jul 4 75
2 Sunday Jul 5 86
3 Monday Jul 6 83
4 Tuesday Jul 7 83

We can use vectors of negative integers to indicate the rows and columns to omit in the return
result, as shown in this example:

> weather[-1, -3] # -ive, -ive
Day Date TempC

2 Sunday Jul 5 30
3 Monday Jul 6 28
4 Tuesday Jul 7 28
5 Wednesday Jul 8 31

In the preceding examples, we have used the same input type for both rows and columns.
However, we can mix up the input types, as illustrated in this example, where we select the first
four rows and all the columns:

> weather[1:4,] # +ive, Blank
Day Date TempF TempC

1 Saturday Jul 4 75 24
2 Sunday Jul 5 86 30
3 Monday Jul 6 83 28
4 Tuesday Jul 7 83 28

Logical Subscripts

We often use logical subscripts to reference specific rows of the data to return. To perform this
action, we need to provide a logical value for each row of the data:

> weather # The original data
Day Date TempF TempC

1 Saturday Jul 4 75 24

2 Sunday Jul 5 86 30

3 Monday Jul 6 83 28

4 Tuesday Jul 7 83 28

5 Wednesday Jul 8 87 31

> weather[c(F, T, F, F, T), 1 # Logical, Blank
Day Date TempF TempC

2 Sunday Jul 5 86 30

5 Wednesday Jul 8 87 31

92 Multi-Mode Data Structures

As before, we more commonly apply a logical statement to a column (vector) contained in the
data frame to generate the logical vector:

> weather [weather$TempF > 85, 1] # Logical, Blank
Day Date TempF TempC

2 Sunday Jul 5 86 30

5 Wednesday Jul 8 87 31

> weather [weather$Day != "Sunday",] # Logical, Blank
Day Date TempF TempC

1 Saturday Jul 4 75 24

3 Monday Jul 6 83 28

4 Tuesday Jul 7 83 28

5 Wednesday Jul 8 87 31

Character Subscripts

We often use vectors of character strings to specify the columns we wish to return. Although a
data frame has “row names,” we tend not to reference rows using character strings. This exam-
ple selects the Day and TempC columns from the data, filtering so that only rows with tempera-
tures greater than 85°F are returned:
> weather [weather$TempF > 85, c("Day", "TempC")] # Logical, Character

Day TempC
2 Sunday 30
5 Wednesday 31

Summary of Subscripting Data Frames

At this point, it is worth a quick review of some of the key syntax used to select subsets of a data
frame. In particular, consider the following lines of code:
> weather$Day [weather$TempF > 85] # Days where TempF > 85

[1] Sunday Wednesday
Levels: Monday Saturday Sunday Tuesday Wednesday

> weather [weather$TempF > 85 , | # All data where TempF > 85
Day Date TempF TempC

2 Sunday Jul 5 86 30

5 Wednesday Jul 8 87 31

> weather [weather$TempF > 85 , c("Day", "TempF")] # 2 columns where TempF > 85
Day TempF

2 Sunday 86

5 Wednesday 87

Exploring Your Data 93

In the first example, we are subscripting weather$Day. This is a vector, so we provide a single
input (a logical vector in this case). It returns the two values of the Day column where the corre-
sponding TempF column is greater than 85.

In the second example, we are now referencing data from the whole weather dataset. As such,
we need two subscripts (one for rows, one for columns). In this example, we use a logical vec-
tor for the rows and blank for the columns, returning all columns but only rows where TempF is
greater than 85. Attention should be paid to the use of the comma in the first example versus
the second example, driven by the fact that we are referencing data from a vector (first example)
versus the whole data frame (second example).

The third example extends the second example to pick only columns Day and TempF using a
character vector for the column input.

Exploring Your Data

Later in this book, you'll see a range of functionality for manipulating data frames. For now, it is
useful for you to look at a few simple functions that will help you to quickly understand the data
stored in a data frame.

The Top and Bottom of Your Data

A function called head allows you to return the first few rows of the data. This is particularly
useful when you have a large data frame and only want to get a high-level understanding of
the structure of the data frame. The head function accepts any data frame and will return (by
default) only the first six rows. For this example, we use the built-in iris data frame (for more
information, open the help file for the iris data frame using the ?iris command):

> nrow(iris) # Number of rows in iris

[1] 150

> head(iris) # Return only the first 6 rows
Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

This immediately gives us a view on the structure of the data. We can see that the iris data
frame has five columns: Sepal .Length, Sepal.Width, Petal.Length, Petal.Width, and
Species. All columns seem to be numeric, except the Species column, which appears to be
character (or a “factor,” as briefly discussed earlier).

94 Multi-Mode Data Structures

The second argument to the head function is the number of rows to return. Therefore, we could
look at more or fewer rows if we wish:

> head(iris, 2) # Return only the first 3 rows
Sepal.Length Sepal.Width Petal.Length Petal.Width Species
1 5.1 3.5 1.4 0.2 setosa
4.9 3.0 1.4 0.2 setosa

If instead we wanted to look at the last few rows, we could use the tail function. This works in
the same way as the head function, with the data frame as the first input and (optionally) the
number of rows to return as the second input:

> tail(iris) # Return only the last 6 rows

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
145 6.7 3.3 5.7 2.5 virginica
146 6.7 3.0 5.2 2.3 virginica
147 6.3 2.5 5.0 1.9 virginica
148 6.5 3.0 5.2 2.0 virginica
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica
> tail (iris, 2) # Return only the last 2 rows

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
149 6.2 3.4 5.4 2.3 virginica
150 5.9 3.0 5.1 1.8 virginica

Viewing Your Data

If you are using the RStudio interface, you can use the View function to open the data in a
viewing grid. This feature in RStudio is evolving quickly, so readers of this book may find the
functionality richer than that presented here (the version of RStudio being used is 0.99.441). See
Figure 4.1 for an example.

If we use the View function, our data frame is opened in the data grid viewer in RStudio:

> View(iris) # Open the iris data in the data grid viewer

This window allows us to scroll around our data, and tells us the range of data we are viewing
(for example, in Figure 4.1 the message at the bottom of the viewer tells us that we are looking
at rows “1 to 19 of 150”).

The search bar (top right of the window) allows us to input search criteria that will be used to
search the entire dataset. This is used to interactively filter the data based on a partial match-
ing of the search term. As a quick example, look at the result of typing 4.5 in the search bar, as
shown in Figure 4.2.

Exploring Your Data 95

) RStudia

Q- - (=]

2] Untitiedt*

| E- i Filter
Sepallength

51

43

4

Shewing 1 1o 12 of 130 entries
ERTTIIT
> 7iris
> view(iri
=

-

Sepal Width

w Aralysis!

s)

Petallength
35 14
3 14
32 13
31 15
35 14
38 17
34 14
34 15
28 14
31 15
37 15
34 15

iﬂl Edlt Q'ld-! b_u; Plots Jession Build Debug Tools Help

FetalWidth
02
02
0z
0z
0z
04
03
0z
0z
01
0z
0z

Species
2etose
etosa
setoza
setoza
setosa

setosa

setosa
setosa
zetosa
setosa

setosa

=]

& Project: {Mone) =
Environment History [el |

Files Plots Packages Help =7

B -3 lC

|| R Edgar Anderson's Iris Data ~

s [datasets] R Documentation

Edgar Anderson's Iris Data

Description

This famous (Fisher's or Anderson's) s data set gives the measurements in centimeters of |

the variables sepal length and width and petal length and width, respectively, for 50 flowers

from each of 3 species of iris. The species are Ins sefosa, versicolor, and virginica

Usage |

iris
iri=3

Format

irisis a data frame with 150 cases {rows) and 5 variables (columns) named
HSepal.Length, Sepal.Width, Bstal.Length, Betal.Width, and Species

FIGURE 4.1

The iris dataset viewed in the RStudio data grid viewer

€ RStudio
File Edit Code View Plots Session Build Debug Tools Help
ol-lx- L B 2 (4
7] Untitledl* x | iris]
] " Filter L 45
Sepallength = SepalWidth - Petallength - PetalWidth -~ Species
42 45 23 13 03 setosa
52 64 32 45 1.5 | versicolor
! 56 57 28 45 13 | versicolor
67 56 30 45 15 | versicelor
69 6.2 22 45 1.5 | versicolor
79 6.0 29 45 15 | versicolor
85 54 30 45 15 wersicolor
86 6.0 34 45 16 wversicolor
107 49 25 45 1.7 | virginica
FIGURE 4.2

Using the search bar in the data grid viewer

96 Multi-Mode Data Structures

If we click the Filter icon from the top of the data grid viewer window, we will see a number of
filtering fields appear, which we can use to interactively subset the data in a more data-driven
manner. This example uses the filter feature to look only at rows for the “setosa” species with
Sepal.Length greater than 5.5 (see Figure 4.3).

€3 RStudio
| File Edit Code View Plots Session Build Debug Tools Help
+ = - [
27 Untitled1* | iris ==
Filter
| Sepal.Length Sepal Width Petallength PetalWidth Species
[setosa

15 58 40 12 0.2 szetosa
16 57 44 15 04 setosa
19 57 38 17 03 setosa
34 55 42 14 0.2 setosa
37 55 35 13 0.2 setesa

FIGURE 4.3

Filtering data in the data grid viewer

Summarizing Your Data

We can use the summary function to produce a range of statistical summary outputs to summa-
rize our data. The summary function accepts a data frame and produces a textual summary of
each column of the data:

> summary (iris) # Produce a textual summary

Sepal.Length Sepal.Width Petal.Length Petal.Width Species
Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100 setosa :50
1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300 versicolor:50
Median :5.800 Median :3.000 Median :4.350 Median :1.300 virginica :50
Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199

3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800

Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

Note that the summaries produced are suitable for each column type (statistical summary for
numeric columns, frequency count for factor columns).

Exploring Your Data 97

Visualizing Your Data

In this book, you will see a number of functions for creating sophisticated graphical outputs.
However, let’s look at one simple function that creates an immediate visualization of the struc-
ture of our data.

We can create a scatter-plot matrix plot of our data frame using the pairs function as follows:

> pairs(iris) # Scatter-plot matrix of iris

In the graphic shown in Figure 4.4, each variable in the data is plotted against each other. For
example, the plot in the top-right corner is a plot of Sepal.Length (y axis) against Species

(x axis).
20 25 30 35 40 05 10 15 20 25
1 1 1 1 1 1 1 1 1 1
cog g %o T
-] o ~
B2 e o F 028y g
o ©.838, o 288 oo B Beo 8
oo agg 2Bag 5o § B0 §87°8g00 ©
Sepal.Length 8 ooHg oo R N 8 ° o o otege B,
agsies * o 000 |98 %?@ g by e g “
o a0 o o o o
o 03 ggotifa D ® o g% @ o B a
o 58 5 o o H 9
0g°0 A o0 2
5 B g 5
o o o °
24 ° s o® % 8
3 oo oo oo | | goB oo | |2 o
o] e ° ° g ° oo o 8 °
1 S e || w2 el 1
9 1aT8 sgap Wi, w " o oEed o | |98 ogllool ooB” | |8 g g
° P e %o o © o o 8 0% o ° 2888 EHoooo o ° g g
a ® ol % ™ o o ®Pp 982, o § 895 = 29 g 8 8
o] g0 B0 . oS Bm 830" oasa g g
o % 8 _o ° 8% o o 8% o ° H
. oo 8% o 3 °¢ g o
= o o o o
ol e e 23 o .
%Séﬁg % Dogggga] Esgoﬂ =
8 o 8 §E §B Enugés L w
o e || o, i st f
o o o golle Petal Length PR =
8 ° og° ° g
> o B H ®
s o
e, o ogogfacefs e o afie i -
@ =55 5 5o =
® % B o o2 oo 8 oo o g
% H o 8 ° 3° o H
s w, GHEee d e f ol i
oot g o ogo0 zodo g
a ° oo % o “a B oo B% o 8 8
B o0 Bodnoo o o %godoo o iBab g g
- ® g B 87 o o0888E°° o Gl Petal Width 2 2
- L BB § 288°8 g g
2] o Fao o 008%0 odt g
o o B
E - % oga of | ode H
d % ° oBoooBBool o o odibfo 8
Pk g o 1 H
5 ComomNn GO eEH 90| [§ 6560506805 § O 50550 E
o
a
0000 OCDONOO0O0000000 0 0000000000000 0 oo 000000000 Species g
«
-] 00000000000000 O o =1=-1-]--] 2
T T T T T T T T T T T T T T -
45 50 55 7.0 75 80 12 3 4 5 &8 7 10 15 20 25 30

Scatter-plot Matrix of the iris data frame

98 Multi-Mode Data Structures

From this plot we can quickly identify a number of characteristics of our data:

» We see that the data has five columns, whose names are printed on the diagonal of the
plot.

» We can again see that Species is a factor column, whereas the rest are numeric.

» If we look at the plots on the right side of the chart, we can see each numeric variable plot-
ted against Species and note that the numeric data would seem to vary across each level
of Species.

» Columns Petal.Length and Petal.Width would seem to be highly correlated.

Summary

In this hour, we focused on two structures that store “multi-mode” data (that is, data containing
more than one data type). First, we looked at lists, which allow us to store any number of objects
of varying modes. Then, we looked at data frames as a special “type” of list that stores rectangu-
lar datasets in an effective manner.

Although lists are very powerful structures, when we import data into R (which you'll see in Hour
10, “Importing and Exporting”), it will be stored as a data frame. Therefore, you need to be very
comfortable manipulating this structure in particular. You should practice the syntax relating
the subscripting of data frames using square brackets and the $ symbol, because this is a funda-
mental skill useful across all R tasks.

Q&A

Q. Can we create nested lists?

A. Yes. Because lists can store any type of object, they can themselves store other lists.
Here’'s an example:

> nestedList <- list(A = 1, B = 1list(C = 3, D = 4)) # Create a nested list
> nestedList # Print the nested list
SA

[1] 1

SB
SBSC
[1] 3

$SBSD
[1] 4

Q&A 99

> nestedList$BsSC # Extract the C element within the B element
[1] 3

What other inputs can we use within the double square brackets?

In the last hour, you saw that you can use integers to directly reference elements of a list.
Refer to the help file (opened using 2" [[") for a complete list of possible inputs. However,
it is worth nothing that you can use single-character strings to reference columns. Here’s an
example:

> weather # The full dataset
Day Date TempF TempC
1 Saturday Jul 4 75 24
2 Sunday Jul 5 86 30
3 Monday Jul 6 83 28
4 Tuesday Jul 7 83 28
5 Wednesday Jul 8 87 31
> col <- "TempC" # The column we want to select
> weather [[col]] # Return the TempC column

[1] 24 30 28 28 31

What is the difference between DF[1 and DF[, 1?

As shown previously, you subscript data from a data frame using square brackets. Here’s
an example:

> weather [, c("Day", "TempC")] # All rows, 2 columns
Day TempC

1 Saturday 24

2 Sunday 30

3 Monday 28

4 Tuesday 28

5 Wednesday 31

In this example, we provide two subscripts for the data frame: blank for the rows (so all
rows are returned) and a character vector to select two columns. The subscripts are sepa-
rated by a comma. If we omit the comma, we appear to get the same result:

> weather [c("Day", "TempC")] # 2 vector elements
Day TempC

1 Saturday 24

2 Sunday 30

3 Monday 28

4 Tuesday 28

5 Wednesday 31

Here, we are using the fact that a data frame is actually a named list of vectors. In this
case, we are creating a “sub-list” containing only the two columns specified.

100 Multi-Mode Data Structures

Q. Why, when | select a single column, is it returned as a vector?

A. When you select a single column via the square brackets approach, it is indeed returned as

a vector:

> weather [, c("Day", "TempC")] # 2 columns - returns a data frame
Day TempC

1 Saturday 24

2 Sunday 30

3 Monday 28

4 Tuesday 28

5 Wednesday 31

> weather [, "TempC"] # 1 column - returns a vector

[1] 24 30 28 28 31

In this case, the last line is equivalent to weather$TempC. When you select a single col-
umn of data, R simplifies the output in a way that’s similar to how you saw matrix dimen-
sions dropped in Hour 3. If you specifically want to retain the dimensional structure, you
can use the argument drop within the square brackets, as follows:

> weather [, "TempC", drop = F] # 1 column - retain dimensions
TempC

24

30

28

28

31

Ul w N R

As you can see from the output, the use of drop = F retains the structure, returning a
5x1 data frame.

Workshop

The workshop contains quiz questions and exercises to help you solidify your understanding of
the material covered. Try to answer all questions before looking at the “Answers” section that
follows.

iz
What is a “list” object?

Q

How do we reference elements from a list?
What is the “mode” of a list?

What’s the difference between a list and a data frame?

o & ©o M P Qg

Name two ways we can return the number of columns of a data frame.

Activities 101

If we run the following code, what would the contents and structure of result1 and
result2 contain?

> myDf <- data.frame(X = -2:2, Y = 1:5)

> resultl <- myDf$Y [myDES$SX > 0]

> result2 <- myDf [myDfs$X > 0,]

What is the difference between the head and tail functions?

Answers

1.
2.

A “list” is a simple R object that can contain any number of objects of any “class.”

We can reference elements of a list using the “double square brackets” notation. Most
commonly, we provide the index of the element we want to return from the list (for example,
myList [[2]] for the second element). If a list has element names, we can alternatively
use the dollar notation, specifying the name of the list element (for example, myList$X to
return the X element of myList).

Because a list is a “multi-mode” object, it has no explicit “mode.” If you ask for a list’s
mode, it simply returns “list.”

A list can contain any number of objects of any class—its elements may be named or
unnamed. A data frame is a “named” list that is restricted to contain only same-length
vectors—when printing a data frame, it uses a specific method so the data is presented
in a more formatted manner.

We can use the length function to return the number of columns in a data frame, because
this returns the number of vector elements in the underlying “list” structure. Alternatively,
because we can treat a data frame as a matrix, we can use the ncol function to achieve
the same result.

The resultl object will contain a vector of those values from the Y column where the cor-
responding X column is greater than O—specifically, this will be a vector containing values
4 and 5. The result2 object will contain a data frame with two rows, corresponding to the
rows where X is greater than O (so rows 4 and 5 of the original data frame).

The head function returns the first six rows (by default) of a data frame. The tail function
returns the last six rows (by default) of a data frame.

Activities

1.

Create a “named” list containing a numeric vector with 10 values (called X) and a character
vector with 10 values (called Y) and a sequence of values from 1 to 10 (called Z). Use this
list:

» Print the number of elements and the element names.
» Select the X element.

» Select the Y element.

102

>

>

Multi-Mode Data Structures

Select values of the X element that are greater than the median of X.

Select values of the Y element where the corresponding X element is greater than the
median of X.

2. Adapt your code to instead create a data frame containing two columns (X = a numeric
vector with 10 elements, Y = a character column containing 10 elements, Z = integers 1
to 10). Use this structure:

| 2

>

Print the number of columns and the column names.

Select the X column.

Select the Y column.

Select values of the X column that are greater than the median of X.

Select values of the Y column where the corresponding X value is greater than the
median of X.

3. Further subset the data in the data frame created in the last exercise as follows:

>

>

>

Select all rows of the data where Z is greater than 5.

Select all rows of the data where Z is greater than 3 and X is greater than the median
of X.

Select just the X and Z columns from the data where Z is greater than 5.

4. Print the built-in mtcars data frame. Look at the help file for mtcars to understand the
origin of the data. Use this data frame:

| 2

>

Print only the first five rows.

Print the last five rows.

How many rows and columns does the data have?

Look at the data in the RStudio data viewer (if you are using RStudio).

Print the mpg column of the data.

Print the mpg column of the data where the corresponding cy1 column is 6.
Print all rows of the data where cyl is 6.

Print all rows of the data where mpg is greater than 25, but only for the mpg and
cyl columns.

Create a scatter-plot matrix of your data.

Create a scatter-plot matrix of your data, but only using the first six columns of
the data.

Symbols &
Numerics

%>% (pipe operator), 271-273

: (colon), interaction terms, 396
... (ellipsis), 157-159

= (equal sign), 19

$ (dollar sign)

referencing list elements,
77-79

shortened $ referencing,
7879

\\ (double backslash), 21
/ (forward slash), 21

& operator, 144-145

[1 (square brackets), 43

double square bracket
referencing, 76-77

~ (tilde), formula relationships,
381

3D lattice graphics, 352-354

Index

A

abline function, 389-390
acf function, 448
active bindings, 544
adding
columns, 266, 277-278
list elements, 79-80
rows, 278-279
aggregate function, 252
specifying variables,
254-256

using with a formula,
252-254

multiple return values,
253-254

summarizing by multiple
variables, 252-253

summarizing multiple
columns, 253

aggregating data, 246

data.table package,
280-282

dplyr package, 268-271
grouped data, 269-270

580 analysis of variance, comparing nested models

analysis of variance, comparing
nested models, 395

anova function, 395

appending, 237-238. See also
combining
applications, Shiny
server component, 564-566
sharing, 570
structure, 561-562
ui component, 562-564

apply functions, 181-195,
250-251

applying to data frames,
193-195

example, 184-186
lapply, 195-204

order of “apply” inputs,
201-203

using with vectors,
199-201

margin values, 183-184
multiple margins, 186-187

passing extra arguments
to “applied” function,
188-191

sapply function, 204-208
returns, 205-207
tapply
multiple grouping
variables, 209-210

multiple returns,
210-212

return values, 212

using with higher dimension
structures, 187-188

xapply, 182

arguments, 116
apply function, 183
breaks, 111
defining, 132-133
ellipsis, passing graphical
parameters, 159-161
for merge function, 238
named arguments, 131
arima function, 449

ARIMA models, in time series
analysis, 448-451

arrange function, 263
arrays, 34, 58-60
creating, 58-60
subscripting, 60
as.numeric function, 121
assessing models, 382
abline function, 389-390

extractor functions, 385-386
interaction terms, 396-398

as list objects, 386-388
plot function, 383-385
predict function, 390-391

summary function, 382-383

assignment arrows, 19-20

attributes

of data frames, querying, 87

of lists, 72-73
of matrices, 52-54

of single mode data
structures, comparing,
60-62

of vectors, 41-43

autocorrelations, in time series

analysis, 448

axis limits, setting for plots,
294-295

bar charts, 291

Becker, Rick, 345
benchmarking, 457-458
bigmemory package, 282

binaries, installing packages
from, 26

bivariate lattice graphics,
350-351

blank inputs, 44-45, 74
boxplots, 290

breaks argument, 111
bugs, reporting, 8

building packages, 471-472,
482-485

C

¢ function, creating vectors,
35-36
C++

incorporating code in R,
501-502

integrating with, 464-468

using R functions in,
467-468

capturing input definitions,
164-167

case sensitivity for file
paths, 219

cast function, 245-246
categorical data, 108-112
chind function, 49

censoring in survival analysis,
431-432

Chambers, John, 2, 535
character data
manipulating, 123-124

searching and replacing,
124-125

character value inputs, 48,
57-58, 76
checking

function inputs, 136,
155-157

multivalue inputs, 162-164
packages, 482-484
classes, 505-509

creating, constructor
functions, 510-511

example of, 507-508
extending, 518
generics, 511-516
creating, 515-516
naming conventions, 512
methods

defining for arithmetic
operators, 513-514

updating, 513
object orientation, 506-508
inheritance, 508
R6, 542-544
active bindings, 544
example of, 543-544
private members, 542
public members, 542
Reference Classes, 535-542
creating, 535-537
documenting, 542
methods, defining,
537-540
objects, copying,
540-542

removing, 510

S3, 509
creating, 509-511
documenting, 518
inheritance, 516-518
limitations of, 518-519

lists versus attributes,
514-515

naming conventions, 512
S4, 523535

defining, 525-529

documenting, 534-535

inheritance, 532-534

methods, 529-530

multiple dispatch,
531-532

summary function and, 405
writing, 505
Cleveland, William, 345
clipboard, 219
closing graphics devices, 288
code
C++, incorporating in R,
501-502
improving efficiency
benchmarking, 457-458
initialization, 458-459
integrating with C++,
464-468

with memory
management, 463-464

using alternative
functions, 462-463

vectorization, 459-462
including in documents
LaTex documents, 556

RMarkdown documents,
550-552

constructor functions

profiling, 456
quality of, 476-477
coef function, 385-386

coefficients from logistic
regression, 419-420

colon (:), interaction terms, 396

color function, 288

colors, specifying, 288

column index, 55

columns
adding, 266, 277-278
referencing, 179-180
selecting, 264-266

selecting from data
frames, 88

subscripting, 88-90
combining

data.tables, 279-280

lists, 80

plot types, 318-321

vectors, 49-51
comment blocks, 15
comparing

attributes and lists,

514-515
nested models, 393-395
R and C++, 465-466

reshape and reshape2
packages, 245

single mode data structures,
60-62

conferences, 6
confint function, 420
connecting
to Excel from R, 228
to R from Excel, 226

constructor functions, 510-511

581

582 continuation prompts

continuation prompts, 15

continuous variables, creating
factors, 111-112

contrast methods, 400
controlling

aesthetics in ggplot2
package, 322-324

layout, 305-308
grid layouts, 306-307

layout function, 307-308

strip headers, 363-364

styles for lattice graphics,
372-376

converting objects, 156-157
coordinate systems, 338-339

copying Reference Class
objects, 540-542

core packages, 23
counting records, 281
covariates, in survival
analysis, 436
coxph function, 438-439
CRAN, 7
METACRAN website, 24
navigating to, 573
packages
finding, 23-24
installing, 25-26
create function, 472-474
creating
arrays, 58-60
classes

constructor functions,
510-511

S3, 509-511
data frames, 86-87
data.tables, 273-274

date objects, 103-104
factors, 108-110

from continuous data,
111112

functions, 130-136,
151-155

error messages, 152-153
warnings, 153-155
generics, 515-516
lattice graphs, 346-355
lists, 71-72
with element names, 71
empty lists, 69
non-empty lists, 70
matrices, 49-52

with a single vector,
51-52

package structure, 472-474
reactive functions, 567-568
Reference Classes, 535-537
sequence of integers, 37-38

sequence of numeric values,
38-39

sequence of repeated
values, 39-41

tbl_df objects, 262-263

themes for lattice graphics,
374-376

time objects, 104-105
vectors, 35-41
with ¢ function, 35-36
CSV files, reading, 220
custom functions
applying over dimensions,
191-192
passing extra arguments,
192-193

custom plots, 333-339
aes function, 333-336

coordinate systems,
338-339

ggplot function, 333

multiple data frames,
336-338

cut function, 111

data, including in packages,
494-496
data aggregation
aggregate function, 252
apply functions, 250-251

calculating differences from
baseline, 257-258

“for” loops, 250

data argument (Im function),
381

data frames, 86-93

apply functions, 193-195

attributes, querying, 87

columns, selecting, 88

creating, 86-87

factors, creating, 108-110

graphing, 97-98

lapply function, 203-204

referencing as a matrix,
90-92

returning top and bottom of
data, 93-94

sorting, 236-237

splitting, 197-199

subscripting, 92-93

summarizing, 96

viewing, 94-96

working with multiple,

336-338

“data” lattice graphics, 354-355
data munging, 235
data types, 33-34

factors, 108-112

manipulating levels,
110-111

numeric factors, 109
reordering, 110
DataCamp, 5
data.table package, 273-282
aggregation, 280-282
columns
adding, 277-278
renaming, 277-278
rows, adding, 278-279
setting a key, 274-275
subscripting, 275-276
data.tables
counting records, 281
creating, 273-274
merging, 279-280
date objects, creating, 103-104
dates
lubridate package, 107-108
manipulating, 105-106

DBI (database interface),
225-226

decomposition, in time series
analysis, 443-445
defining
function arguments,
132-133
keys, 274-275

methods

for arithmetic operators,
513-514

for Reference Classes,
537-540

S4 classes, 525-529

S4 generics, 530-531

time zones, 105
deleting packages, 24
deparse function, 166
dependencies, 27
descending sorts, 237
DESCRIPTION file, 474-475

developing a test framework,
490-494

incorporating tests into
packages, 493-494

test_that function, 490-493
devices (graphics)

closing, 287-288

creating, 287-288

devtools, building packages,
482-485

diagnostic plots, 383-385
comparing, 387-394
in GLM framework, 416

for time series analysis,
449-450

diff function, 106
difftime function, 106
dimensions

dropping, 56

functions, applying, 191-192
dimnames function, 53-54

distribution types, GLM
framework, 412

dplyr package 583

distributions
hist function, 160-162

statistical distributions,
119-120

documentation. See also
dynamic reporting; reporting
interactive documents,
569-570

package documentation,
generating, 477-482

function headers,
478-480

help pages, 480-482
R Documentation, 5
R manuals, 4-5
Reference Classes, 542
S3 class system, 518
S4 class system, 534-535
vignettes
including in packages,
496-498
markdown notation, 499
writing, 498-501

double square bracket
referencing, 76-77

dplyr package, 261-273

aggregation, 268-271
grouped data, 269-270

merge function, 267-268

mutate function, 266

pipe operator, 271-273

sorting, 263

subscripting, 264-266
with filter function, 264
with select function,

264-265
tbl_df objects, creating,
262-263

584 dropping dimensions

dropping dimensions, 56

duplicated function, 241-242

dynamic reporting, 547-548
LaTex, 553-556
RMarkdown, 548-552

code chunks, including,
550-552

HTML files, building, 550
dynamic typing, 19

EARL (Effective Applications of
the R Language) conference, 6

Eclipse, 13
efficiency of code, improving
benchmarking, 457-458
initialization, 458-459
integrating with C++,
464-468

with memory management,
463-464

profiling, 456

using alternative functions,
462-463

vectorization, 459-462
elements

extracting from named lists,
84

list elements
adding, 79-80
referencing, 76-79
ellipsis, 157-159

passing graphical
parameters, 159-161

empty lists, creating, 69

errors
bugs, reporting, 8
returning, 152-153

escape sequences, 21

estimating survival function in
survival analysis, 432-436

example
of apply function, 184-186
of classes, 507-508
of merge function, 239

of R6 class system,
543-544

Excel
connecting to R, 226

reading structured data,
226-227

XLConnect package,
228231

exporting text files, 220
extending

classes, 518

packages, 489-490
extensions

to GLM framework, 422-423

to nonlinear models, 430

to survival analysis, 441

to time series analysis, 452

extracting elements from
named lists, 84

extractor functions, 385-386

F

facet_grid function, 329-331
facet_wrap function, 331-332

factor variables
in linear models, 398-401
in logistic regression, 419
factors, 108-112
creating, 108-110

from continuous data,
111112

manipulating levels,
110111

numeric factors, 109
reordering, 110
ff package, 282
file.choose function, 217
filter function, 264
finding
duplicate values, 241-242
packages, 23-24
fitted function, 385-386

flow control, if/else statements,
136-146

& and | operators, 144-145
example, 145-146
mixing conditions, 143

multiple test values,
139-140

nested statements,
138-139

returning early, 145

reversing logical values,
142-143

summarizing to a single
logical, 140-141
switching with logical input,
141-142
using one condition, 139
for function, 174-176
loop variable, 175-176

“for” loops, 174, 250
foreign package, 222

formulas, using with aggregate
function, 252-254

multiple return values,
253-254

summarizing by multiple
variables, 252-253

summarizing multiple
columns, 253

fread function, 221

function keyword, 130-131

functions

abline, 389-390

acf, 448

aes, 333-336

aggregate, 252-254

aggregate function,
specifying variables,
254-256

anova, 395

apply, 181-195, 250-251

applying to data frames,
193-195

example, 184-186

margin values, 183-184

multiple margins,
186-187

passing extra arguments
to “applied” function,
188-191

using with higher
dimension structures,
187-188

arguments, 116
defining, 132-133
named arguments, 131

arima, 449

arrange, 263

as.numeric, 121

c, creating vectors, 35-36
calling, 116

shortened argument
calling, 162-161

cast, 245-246
cbind, 49
coef, 385-386
color, 288
confint, 420

constructor functions,
510-511

coxph, 438-439

create, 472-474

creating, 130-136, 151-155
cut, 111

deparse, 166

diff, 106

difftime, 106

dimnames, 53-54

distribution functions,
119-120

duplicated, 241-242
error handling, 462

error messages, creating,
152-153

extractor functions, 385-386
facet_grid, 329-331
facet_wrap, 331-332
file.choose, 217
filter, 264
fitted, 385-386
for, 174-176

loop variable, 175-176

functions 585

fread, 221
gather, 247-248
gc, 464

get, 164

ggplot, 333
gim, 413

logistic regression,
418419

methods for, 415-416

Poisson regression,
420-422

grep, 124-125

group_by, 269-271

gsub, 124-125

head, 93-94

help, 28-29

hist, 160-162

HoltWinters, 446-447

|, 404

ifelse, 461

if/else structure, 136-146
example, 145-146
mixing conditions, 143

multiple test values,
139-140

nested statements,
138-139

returning early, 145

reversing logical values,
142-143

summarizing to a single
logical, 140-141

switching with logical
input, 141-142

using one condition, 139

functions

inputs
capturing, 164-167

checking, 136, 155-157,
162-164

ellipsis, 157-159
is.x, 122
lapply, 195-204

order of “apply” inputs,
201-203

using with data frames,
203-204

using with vectors,
199-201

layout, 307-308
legend, 302-304
length, 41-42, 53
library, 27
lines, 299-300
in nonlinear models, 428
Im, 380-381
methods for, 406-407
logRange, 155
Is.str, 18-19

mathematical functions,
117-118

matrix, 51-52

melt, 243-245

merge, 238-241, 267-268
inner joins, 240
outer joins, 240-241

missing data functions,
122-123

mode, 34

mutate, 266

names, 42-43, 386-388
naming, 132

nchar, 123

ncol, 53

nested calls, 41

nls, 423-425

nrow, 53

objects, 18

odbcConnectAccess, 224

order, 236-237

output, saving, 131

pacf, 448

panel functions, 365-371

par, 304-305

paste, 124, 157-158

plot, 291-299, 383-385
in GLM framework, 416

parameters, setting,
304-305

in proportional hazards
regression, 439-441

in survival analysis, 434

in time series analysis,
442-443

plyr, 213
points, 299-300
predict, 390-391

in ARIMA models,
450-451

in logistic regression,
419

in nonlinear models, 428

in survival analysis, 435

in time series analysis,
447

qgplot, 314-315
layers, 316
rbind, 50, 237-238
reactive, 566-568

read.table, 218

remove.packages, 24

rep, 39-41

replace, 122

resid, 385-386

return objects, 134-136

Rprof, 456

runif, 157

sapply, 204-208
returns, 205-207

save, 22

scoping rules, 133-134

searchpaths, 17-18

select, 264-265

self-starting, 427

separate, 249

seq, 38-39

split, 195-197

spread, 248

sglcolumns, 224

statistical summary
functions, 118-119

stl, 443-445

stop, 152

structure, 129-130
substitute, 166

substring, 123

summary, 96, 382-383, 405

classes and methods,
405

in GLM framework,
415-416

with names function, 388

in survival analysis,
433-434

sunvfit, 433-434

in proportional hazards
regression, 439-441

switch, 159
table function, 121
tail, 94
tapply, 208-213
multiple grouping
variables, 209-210

multiple returns,
210-212

return values, 212
test_that, 490-493
text, 300-302

package documentation with
roxygen headers, 477-482

function headers,
478-480

help pages, 480-482
reports, 547-548

generics, 511-516

creating, 515-516

multiple dispatch, 531-532
naming conventions, 512
S4, defining, 530-531

graphics

plots
changing, 317-320
as objects, 316-317
qgplot function, 314-315
layers, 316
theme layers, 339-340
ggvis package, 342
GitHub, installing packages
from, 26-27

587

GLM (Generalized Linear Model)

framework

ts, 441-443

tsdiag, 449-450
update, 392-393
UseMethod, 512

Gentleman, Robert, 3
get function, 164
ggplot function, 333
ggplot2 package, 313

defined, 412-413
distribution types, 412
extensions, 422-423
Gaussian model fitting, 414

warning, 153 aes function, 333-336 glm function, 413

warnings, 153-155 aesthetics, 321-329 logistic regression, 417-420

while, 180-181 controlling, 322-324 methods for, 415-416

window, 443 grouped data, 327-329 Poisson regression,

xapply, 182 legend, 324-327 420-422

combining plot types, glm function, 413
318-321 logistic regression, 418-419

G custom plots, 333-339 methods for, 415-416

garbage collection, 464
gather function, 247-248
Gaussian model fitting, 414
gc function, 464

generating

classes with constructor
function, 510-511

documentation
with LaTex, 553-556

with RMarkdown,
548-552

coordinate systems,
338-339

working with multiple
data frames, 336-338

ggplot function, 333
global themes, 340-341
legend layout, 341
paneling, 329-333

facet_grid function,
329-331

facet_wrap function,
331-332

philosophy of, 313-314

Poisson regression,
420-422

Global Environment. See
workspaces

global themes, 340-341

graphical parameters, passing,

159-161
graphics
colors, 288
devices
closing, 288
creating, 287-288

graphics

ggplot2 package, 313
aes function, 333-336
aesthetics, 321-329

combining plot types,
318-321

custom plots, 333-339
ggplot function, 333
global themes, 340-341
legend layout, 341
philosophy of, 313-314

plots as objects,
316-317

gplot function, 314-315
theme layers, 339-340
ggvis package, 342
high-level graphics functions,
plot, 291-299

lattice graphics, 345

3D, 352-354

bivariate, 350-351

“data” graphics, 354-355

graph options, 356-358

graph types, 347

graphs, creating,
346-355

groups of data,
representing, 360-362

panels, 362-371

plotting multiple
variables, 358-360

plotting subsets of data,
355

styles, controlling,
372-376

themes, creating,
374-376

transposing the axes,
351-352

univariate, 348-350
layout, controlling, 305-308
grid layouts, 306-307

layout function, 307-308

low-level graphics functions,
299-304

legend, 302-304
lines, 299-300
points, 299-300
text, 300-302
parameters, 304-305
trellis graphics, 345
univariate graphics, 289-291
graphing
bar charts, 291
data frames, 97-98
hist function, 160-162

Greek letters, adding to
plots, 294

grep function, 124-125

grid layouts, 306-307
group_by function, 269-271
grouped data, 327-329
gsub function, 124-125

head function, 93-94
help function, 28-29

help pages, generating,
480-482

Help pane (RStudio), 28-29

high-level graphics functions,
plot, 291-299

hist function, 160-162
histograms, 289

HoltWinters function, 446-447
Holt-Winters method, 446-447
HTML files, building, 550

| function, 404

IDEs (integrated development
environments), 13

Eclipse, 13
Notepad++, 13
R GUI, 11-12
RStudio, 12-13
ifelse function, 461
if/else statements
& and | operators, 144-145
example, 145-146
mixing conditions, 143

multiple test values,
139-140

nested statements,
138-139

returning early, 145

reversing logical values,
142-143

structure, 136-146

summarizing to a single
logical, 140-141

switching with logical input,
141-142

using one condition, 139

lhaka, Ross, 3

Import Wizard, 218

importing text files, 218

improving code efficiency
benchmarking, 457-458
initialization, 458-459
integrating with C++,

464-468

with memory management,
463-464

profiling, 456

using alternative functions,
462-463

vectorization, 459-462

incorporating tests into
packages, 493-494

independent variables

factor variables as, 398-401
indexed printing, 36
inheritance, 508

in S3, 516-518

in S4, 532-534

inhibiting formula interpretation,
404

initialization, 458-459
inner joins, 240
inputs
ellipsis, 157-159
function inputs
capturing, 164-167
checking, 136, 155-157,
162-164
order of “apply” inputs,
201-203

list subscripting inputs
blank inputs, 74
negative integer
inputs, 75

positive integer inputs,
74-75

vector subscripting inputs,
44

blank inputs, 44-45
character values, 48
logical values, 46-47
negative integer, 45-46
positive integers, 45
installing
packages, 24-27
from binaries, 26
from CRAN, 25-26
from source, 26-27
R, 573
on Linux, 574-575
on Mac OS X, 574
on Windows, 573-574
RStudio, 577-578
Rtools on Windows, 575577
integers, creating sequence
of, 37-38
interaction terms, 396-398
interactive documents, 569-570
intercepts, removing, 381
is.x functions, 122
iteration, loops
“for” loops, 250
nested loops, 177-179
performance, 180

referencing data with,
176-177

“while” loops, 176-177

lattice graphics 589

J

J function, 275-276
joins
inner joins, 240
merging data in dplyr
package, 267-268
outer joins, 240-241

K

Kaplan-Meier estimates,
433-434

keys
defining, 274-275
numeric keys, 276-277
keywords, function, 130-131
knitr package, 548

L

lapply function, 195-204

order of “apply” inputs,
201-203

using with data frames,
203-204

using with vectors, 199-201
LaTex, 548

dynamic reporting, 553-556
lattice graphics, 345

3D, 352-354

bivariate, 350-351

“data” graphics, 354-355

590 lattice graphics

graph options
plot types and formatting,
357-358

title and axes, 356-357
graphs

creating, 346-355

types, 347

groups of data,
representing, 360-362

panels, 362-371

controlling strip headers,
363-364

functions, 365-371

multiple “by” variables,
364-365

plotting multiple variables,
358-360

plotting subsets of
data, 355

styles
controlling, 372-376
previewing, 373
themes, creating, 374-376

transposing the axes,
351-352

univariate, 348-350
layers in quick plots, 316
layout

controlling, 305-308

layout function, 307-308

grid layouts, 306-307
legend function, 302-304
length function, 41-42, 53
library function, 27
licenses for R packages, 475
limitations of S3, 518-519

linear models, 380-381
assumptions, 411-412
factor variables, 398-401
interaction terms, 396-398
methods for, 406-407
multiple linear regression

comparing nested
models, 393-395

creating new models,
391-392

updating existing models,
392-393

variable transformations,
402-404

lines function, 299-300
in nonlinear models, 428
lines on plots, adding, 389-390
Linux
installing R, 574-575
installing Rtools, 575
list objects, models as, 386-388
listing
empty lists, creating, 69
non-empty lists, creating, 70
objects, 18-19
lists, 68-86
attributes, 72-73
combining, 80
creating, 71-72

with element names,
creating, 71

elements
adding, 79-80
referencing, 76-79

motivation for using, flexible
simulation, 83-84

named lists, 81-82

extracting elements
from, 84

printing, 72, 85-86
subscripting, 73
blank inputs, 74
character value
inputs, 76
logical value inputs, 75
negative integer
inputs, 75

positive integer inputs,
74-75

subsetting, 73

unnamed lists, 81
Im function, 380-381

methods for, 406-407
loading packages, 27-28
logical values

as list subscripting input, 75

as matrix subscripting input,
56-57

reversing, 142-143

specifying, 36

as vector subscripting input,
46-47

logistic regression, 417-420
logRange function, 155
loop variable, 175-176
loops
in C++, 467
“for” loops, 174, 250
initialization, 458-459
nested loops, 177-179
performance, 180

referencing data with,
176-177

“while” loops, 174

low-level graphics functions,
299-304

legend, 302-304

lines, 299-300

points, 299-300

text, 300-302
Is.str function, 18-19
lubridate package, 107-108

Mac OX S
installing R, 574
installing RStudio, 577-578
installing Rtools, 575

mailing lists, 4

manipulating. See also sorting
character data, 123-124
dates, 105-106
factor levels, 110-111
times, 105-106

manuals, 4-5

margin values (apply function),
183-184

Markdown, 548. See also
RMarkdown

masking, 27-28

mathematical functions,
117-118

matrices, 34, 49-58
attributes, 52-54
column index, 55

creating, 49-52

with a single vector,
51-52

dropping dimensions, 56

referencing data frames as,
9092

subscripting, 55
character values, 57-58
logical values, 56-57
transposing, 50-51
matrix function, 51-52
melt function, 243-245
memory management, 463-464

merge function, 238-241,
267-268

inner joins, 240

outer joins, 240-241
merging data.tables, 279-280
METACRAN website, 24
methods, 512

defining for arithmetic
operators, 513-514

for GLM framework,
415-416

for linear models, 406-407

parametric methods in
survival analysis, 434-435

for Reference Classes,
defining, 537-540

S4, 529-530
summary function and, 405
updating, 513

microbenchmark package,
457-458

Microsoft Excel. See Excel

models 591

missing data functions,
122-123

mode function, 34
models, 379
assessing, 382
abline function, 389-390

extractor functions,
385-386

interaction terms,
396-398

as list objects, 386-388
plot function, 383-385
predict function, 390-391

summary function,
382-383

GLM framework
defined, 412-413
distribution types, 412
extensions, 422-423

Gaussian model fitting,
414

glm function, 413

logistic regression,
417-420

methods for, 415-416

Poisson regression,
420-422

linear models, 380-381
assumptions, 411-412
factor variables, 398-401

interaction terms,
396-398

methods for, 406-407

variable transformations,
402-404

592 models

multiple linear regression

comparing nested
models, 393-395

creating new models,
391-392

updating existing models,
392-393

nonlinear regression
assumptions, 423
extensions, 430
nls function, 423-425

Puromycin data example,
425-429

survival analysis, 430
censoring in, 431-432

estimating survival
function, 432-436

extensions, 441

ovarian data frame
example, 431

proportional hazards
regression, 437-441

time series analysis

ARIMA models, 448-451
autocorrelations, 448
decomposition, 443-445
extensions, 452
smoothing, 446-447
ts function, 441-443

modes. See data types

motivation for using lists,
flexible simulation, 83-84

multimode data structures, 36,
67-68

data frames, 86-93
apply functions, 193-195
attributes, querying, 87

columns, selecting, 88

columns, subscripting,
88-90

creating, 86-87
graphing, 97-98
lapply function, 203-204

referencing as a matrix,
90-92

returning top and bottom
of data, 93-94

sorting, 236-237

splitting, 197-199

subscripting, 92-93

viewing, 94-96

working with multiple,
336-338

lists, 68-86
attributes, 72-73
creating, 71-72

with element names,
creating, 71

empty lists, creating, 69

motivation for using,
83-84

named lists, 81-82

non-empty lists, creating,
70

printing, 72, 85-86
subscripting, 73
unnamed lists, 81
multiple dispatch, 531-532
multiple linear regression
comparing nested models,
393-395
creating new models,
391-392
updating existing models,
392-393

Murrell, Paul, 313
mutable objects, 538-539
mutate function, 266

named arguments, 131
named lists, 81-82

extracting elements
from, 84

names function, 42-43,
386-388

NAMESPACE file, 475-476
naming
functions, 132
generics, 512
objects, 20
S3 classes, 512
variables, 241
navigating to CRAN, 573
nchar function, 123
ncol function, 53
negative integer inputs,
45-46, 75
nested calls, 41
nested loops, 177-179

nested models, comparing,
393-395

nicknames, 7

nls function, 423-425

non-empty lists, creating, 70

nonlinear regression
assumptions, 423
extensions, 430

nls function, 423-425

Puromycin data example,
425-429

Notepad++, 13
nrow function, 53
numeric factors, 109
numeric keys, 276-277
numeric values
creating sequence of, 38-39
simulating, 83-84

o

object orientation, 505-508
inheritance, 508
R and, 405-406

objects, 16-22. See also
packages

converting, 156-157

date objects, creating,
103-104

listing, 1819
mutable objects, 538-539
naming, 20
packages, 17
search path, 17-18
plots as, 316-317
Reference Class objects,
copying, 540-542
removing from
workspace, 20
return objects, 134-136
saving, 22

tbl_df objects, creating,
262-263

time objects, creating,
104-105

workspaces, 19-22
objects function, 18

odbcConnectAccess
function, 224

online resources, 4-5
operating systems
Mac OX S
installing R, 574

installing RStudio,
577578

installing Rtools, 575
Windows
building packages, 482
clipboard, 219
operators, 117-118
&, 144-145

arithmetic operators,
defining methods for,
513-514

pipe, 248, 271-273
order function, 236-237
outer joins, 240-241
output of functions, saving, 131

ovarian data frame example
(survival analysis), 431

P

pacf function, 448
packages, 7, 17, 23-28
bigmemory, 282
building, 471-472
with devtools, 482-485
checking, 482-484

packages 593

code quality, 476-477
data, including, 494-496
data.table, 273-282
aggregation, 280-282
columns, adding,
277278

columns, renaming,
277-278

merging data tables,
279-280

rows, adding, 278-279

setting a key, 274-275

subscripting, 275-276
deleting, 24
dependencies, 27

documentation, generating
with roxygen headers,
477-482

dplyr, 261-273
aggregation, 268271
merge function, 267-268
mutate function, 266
pipe operator, 271-273
sorting, 263
subscripting, 264-266

dplyr package, creating

tbl_df objects, 262-263

extending, 489-490

ff, 282

finding, 23-24

foreign, 222

ggplot2, 313
aes function, 333-336
aesthetics, 321-329

combining plot types,
318321

paneling, 329-333

594 packages

philosophy of, 313-314 reactive functions, parametric methods in survival
plots as objects, 566-568 analysis, 434-435
316-317 sharing applications, 570 passing graphical parameters,
gplot function, 314-315 structure, 472-476 159-161
ggplot2 package creating, 472-474 paste function, 124, 157-158
ggplot function, 333 DESCRIPTION file, performance, loop performance,
global themes, 340-341 474475 180
legend layout, 341 NAMESPACE file, pipe operator, 248, 271-273
theme layers, 339-340 475-476 plot function, 291-299, 383-385
govis package, 342 tests, incorporating, in GLM framework, 416
installing, 24-27, 485 493-494 paneling, facet_grid function,
o tidyr, 246-249 329-331
from binaries, 26
from CRAN. 25-26 gather function, 247-248 parameters, setting,
' separate function, 249 304-305
from source, 26-27))
initr. 548 spread function, 248 in proportional hazards
’ vignettes, 496-498 regression, 439-441
lattice, 346 '
i 475 markdown notation, 499 gplots, layers, 316
icenses, writing, 498-501 in survival analysis, 434
loading, 27-28 XLConnect. 228-231 in time series analysis,
lubridate, 107-108 oo, 193 ’ 442-443
masking, 28 ' plots
Pack RStudio), 24
METACRAN website, 24 :;e:§e5§:;'63;3 udio) custom plots, 333339
microbenchmark, 457-458 P & aes function, 333-336
facet_grid function, 329-331
proto, 544 facet_wrap function coordinate systems,
Repp, 501-502 i 2p ’ 338339
itories, 23 .) . lot function, 333
repositories with lattice graphics, ggplot function
reshape, 243 362-371 mulltiple data frames,
i . 336-338
cast function, 245-246 controlling strip headers,) i
melt function, 243-245 363-364 diagnostic plots, 383-385
RODBC, 223-225 functions, 365-371 comparing, 387-394
sas7bdat, 223 multiple “by” variables, in GLM framework, 416
search path, 17-18 364-365 for time series analysis,
Shiny, 561-566 par function, 304-305 449-450
applications, 561-566 parameters, setting for plotting lines on, adding, 389-390
interactive documents, functions, 304-305 in nonlinear models,

569-570 428-429

as objects, 316-317
paneling, 329-333
quick plots, 314-315
faceting, 333
layers, 316
symbols, 296-297
types, 298-299
changing, 317-320
types, combining, 318-321
plyr function, 213
points function, 299-300
Poisson regression, 420-422

positive integer inputs, 45,
74-75
POSIX functions, 105
pre-allocation, 458-459
predict function, 390-391
in ARIMA models, 450-451
in logistic regression, 419
in nonlinear models, 428
in survival analysis, 435
in time series analysis, 447
previewing lattice graphics
styles, 373
printing
indexed printing, 36
lists, 72, 85-86
profiling code, 456
proportional hazards regression,
437-441
proto package, 544
Puromycin data example
(nonlinear regression),
425-429

Q

gplot function, 314-315
faceting, 333
layers, 316
QQ plots, 289
quality of code, 476-477
querying
data frame attributes, 87
vector attributes, 41-43
quotes, 34

object naming conventions,
20

development of, 3, 7-8
installing, 573

on Linux, 574-575

on Mac OS X, 574

on Windows, 573-574
nicknames, 7

object orientation and,
405-406

resources, 4-6
syntax, 14-16
user events, 6
versions, 7-8

R Console, 14-15

R Consortium, 3, 5-6

R Development Core Team, 3
R Documentation, 5

R GUI, 11-12

regular expressions 595

R models. See models

R6 class system, 542-544
active bindings, 544
example of, 543-544
private members, 542
public members, 542

rbind function, 50, 237-238

Rcpp package, 464-468,
501-502

.RData format, 221
reading
CSV files, 220

structured data from Excel,
226-227

text files, 218-220
read.table function, 218
recommended packages, 23
records, counting, 281

re-creating simulated values,
120

Reference Classes, 535-542
creating, 535-537
documenting, 542
methods, defining, 537-540
objects, copying, 540-542

referencing
columns, 179-180

data frames as a matrix,
90-92

data with loops, 176-177
list elements, 76-79
with $, 77-79

double square bracket
referencing, 76-77

regular expressions, 124, 182

596 relational databases

relational databases, 223-226

DBI, 225-226

RODBC package, 223-225
remove.packages function, 24
removing

classes, 510

intercepts, 381

objects from workspace, 20
renaming columns, 277-278
reordering factors, 110
rep function, 39-41

repeated values, creating
sequence of, 39-41

replace function, 122
reporting
bugs, 8
dynamic reporting, 547-548
LaTex, 553-556
RMarkdown, 548-552
repositories
CRAN
METACRAN website, 24
packages, finding, 23-24
for packages, 23

representing groups of data,
360-362

reshape package, 243
cast function, 245-246
melt function, 243-245
resid function, 385-386
restoring R sessions, 221
restructuring, 242-249
with reshape package, 243
cast function, 245-246
melt function, 243-245

with tidyr package, 246-249
gather function, 247-248
spread function, 248

return objects, 134-136

returning error messages,
152-153

reversing logical values,
142-143

RExcel, 13

RMarkdown, dynamic reporting,
548-552

code chunks, including,
550-552

HTML files, building, 550
RODBC package, 223-225
rows, adding, 278-279

roxygen headers, generating
documentation with, 477-482

function headers, 478-480
help pages, 480-482
Rprof function, 456
RStudio, 12-13
data frames, viewing, 94-96
Help pane, 28-29
Import Wizard, 218
Installing, 577-578
packages, loading, 27-28
Packages pane, 24
script window, 132
sessions, restoring, 221
Source pane, 16
text files
importing, 218
reading, 218-220

Rtools, installing on Windows,
575577

runif function, 157

R Console, 14-15

R Consortium, 3, 5-6

R Development Core Team, 3

R Documentation, 5

R GUI, 11-12

R models. See models

R6 class system, 542-544
active bindings, 544
example of, 543-544
private members, 542
public members, 542

rbind function, 50, 237-238

Rcpp package, 464-468,
501-502

.RData format, 221
reading
CSV files, 220

structured data from Excel,
226-227

text files, 218-220
read.table function, 218
recommended packages, 23
records, counting, 281

re-creating simulated values,
120

Reference Classes, 535-542
creating, 535-537
documenting, 542
methods, defining, 537-540
objects, copying, 540-542

referencing
columns, 179-180

data frames as a matrix,
90-92
data with loops, 176-177

list elements, 76-79
with $, 77-79
double square bracket
referencing, 76-77

regular expressions, 124, 182
relational databases, 223-226

DBI, 225-226

RODBC package, 223-225
remove.packages function, 24
removing

classes, 510

intercepts, 381

objects from workspace, 20
renaming columns, 277-278
reordering factors, 110
rep function, 39-41

repeated values, creating
sequence of, 39-41

replace function, 122
reporting
bugs, 8
dynamic reporting, 547-548
LaTex, 553-556
RMarkdown, 548-552
repositories
CRAN
METACRAN website, 24
packages, finding, 23-24
for packages, 23

representing groups of data,
360-362

reshape package, 243
cast function, 245-246
melt function, 243-245

resid function, 385-386

restoring R sessions, 221

restructuring, 242-249
with reshape package, 243
cast function, 245-246
melt function, 243-245
with tidyr package, 246-249
gather function, 247-248
spread function, 248
return objects, 134-136

returning error messages,
152-153

reversing logical values,
142-143

RExcel, 13

RMarkdown, dynamic reporting,
548-552

code chunks, including,
550-552

HTML files, building, 550
RODBC package, 223-225
rows, adding, 278-279

roxygen headers, generating
documentation with, 477-482

function headers, 478-480
help pages, 480-482
Rprof function, 456
RStudio, 12-13
data frames, viewing, 94-96
Help pane, 28-29
Import Wizard, 218
Installing, 577-578
packages, loading, 27-28
Packages pane, 24
script window, 132
sessions, restoring, 221
Source pane, 16

saving 597

text files
importing, 218
reading, 218-220

Rtools, installing on Windows,
575-577

runif function, 157

S

S, development of, 1-3

S3 class system, 406, 509
classes, creating, 509-511
documenting, 518
inheritance, 516-518
limitations of, 518-519

lists versus attributes,
514-515

naming conventions, 512

S4 class system, 523-535
defining classes, 525-529
documenting, 534-535
generics, defining, 530-531
inheritance, 532-534
methods, 529-530
multiple dispatch, 531-532

sapply function, 204-208
returns, 205-207

Sarkar, Deepayan, 346

sas7bdat package, 223

save function, 22

saving
function output, 131
workspace objects, 22
workspaces, 221-222

598 scoping rules for functions

scoping rules for functions,
133-134

script window (RStudio), 132

scripting, 16

search path, 17-18
masking, 28

searching and replacing
character data, 124-125

searchpaths function, 17-18
select function, 264-265

selecting columns from data
frames, 88

self-starting functions, 427
separate function, 249
seq function, 38-39

sequence of repeated values,
creating, 39-41

server component of Shiny
applications, 564-566

sharing Shiny applications, 570
Shiny package, 561-566
applications

server component,
564-566

sharing, 570
structure, 561-562
ui component, 562-564

interactive documents,
569-570

reactive functions, 566-568
shortened $ referencing, 78-79
simulated values,

re-creating, 120
simulating numeric values,
83-84

single mode data structures,
34-35. See also multimode
data structures

arrays, 58-60
creating, 58-60
comparing, 60-62
matrices, 49-58
attributes, 52-54
column index, 55
creating, 49-52
dropping dimensions, 56
subscripting, 55
transposing, 50-51
vectors, 35-49
attributes, 41-43
combining, 49-51
creating, 35-41
lapply function, 199-201
subscripting, 43-49

smoothing in time series
analysis, 446-447

sorting
with arrange function, 263
data frames, 236-237
descending sorts, 237
Source pane (RStudio), 16
special characters, adding to
plots, 294
specifying
colors, 288
logical values, 36

variables for aggregate
function, 254-256

split function, 195-197
splitting data frames, 197-199

S-PLUS, 3

spread function, 248
sqlcolumns function, 224
statistical distributions, 119-120
statistical models. See models
Statistical Sciences, Inc., 3

statistical summary functions,
118-119

missing data, 122-123
stl function, 443-445
stop function, 152
structure

of functions, 129-130

of if/else statements,
136-146

of R packages, 472-476
creating, 472-474

DESCRIPTION file,
474-475

NAMESPACE file,
475476

of Shiny applications,
561-562

tidy structure, 243

structured data, reading from
Excel, 226-227

styles for lattice graphics
controlling, 372-376
previewing, 373
subscripting, 60-62
arrays, 60
columns, 88-90
data frames, 92-93
data.tables, 275-276
with filter function, 264

lists, 73
blank inputs, 74
character value
inputs, 76
logical values, 75
negative integer
inputs, 75
positive integer
inputs, 74-75
matrices, 55
character values, 57-58
logical values, 56-57

with select function,
264-265

vectors, 43-49
blank inputs, 44-45
character values, 48
logical values, 46-47
negative integers, 45-46
positive integers, 45
subsets of time series, 443
subsetting lists, 73
substitute function, 166
substring function, 123
summarizing data frames, 96

summary function, 96,
382-383, 405

classes and methods, 405

in GLM framework, 415-416

with names function, 388

in survival analysis, 433-434
survfit function, 433-434

in proportional hazards
regression, 439-441

survival analysis, 430
censoring in, 431-432

estimating survival function,
432-436

extensions, 441

ovarian data frame example,
431

proportional hazards
regression, 437-441

switch function, 159

symbols, plotting symbols,
296-297

syntax
comment blocks, 15
continuation prompts, 15
lists
named lists, 81-82
unnamed lists, 81
R Console, 14-15

T

table function, 121
tail function, 94
tapply function, 208-213

multiple grouping variables,
209-210

multiple returns, 210-212
return values, 212
Task Views, 23-24

tbl_df objects, creating,
262-263

time zones, defining 599

test framework, developing,
490-494

incorporating tests into
packages, 493-494

test_that function, 490-493
test_that function, 490-493
test-driven development, 494
text files, 217-223

exporting, 220

importing, 218

reading, 218-220
text function, 300-302
theme layers, 339-340
themes, creating for lattice

graphics, 374-376
tidy data, 243
tidyr package, 246-249

gather function, 247-248

separate function, 249

spread function, 248

tilde (~), formula relationships,
381

time
lubridate package, 107-108
manipulating, 105-106
time objects, creating, 104-105
time series analysis
ARIMA models, 448-451
autocorrelations, 448
decomposition, 443-445
extensions, 452
smoothing, 446-447
ts function, 441-443
time zones, defining, 105

600 titles, labeling on plots

websites
METACRAN, 24
R Documentation, 5

titles, labeling on plots,
293-294

transforming variables, 402-404

specifying for aggregate
function, 254-256
transforming, 402-404
univariate graphics, 289-291
lattice, 348-350

transposing matrices, 50-51 R Project website, 3

trellis graphics, 345 which argument (plot function),

ts function, 441-443
tsdiag function, 449-450

U

ui component of Shiny
applications, 562-564

univariate graphics, 289-291
lattice, 348-350

unnamed lists, 81

update function, 392-393

updating methods, 513

UseMethod function, 512

user events, 6

\'/

variables

continuous variables,
creating factors, 111-112

factor variables

in linear models,
398-401

in logistic regression,
419
loop, 175-176
naming, 241
plotting, 358-360

vectorization, 459-462
vectors, 15, 34-49
attributes, 41-43
combining, 49-51
creating, 35-41
with ¢ function, 35-36
lapply function, 199-201
subscripting, 43-49
blank inputs, 44-45
character values, 48
logical values, 46-47
negative integers, 45-46
positive integers, 45
versions of R, 7-8
nicknames, 7
viewing data frames, 94-96
vignettes, 477
including in packages,
496-498
markdown notation, 499
writing, 498-501
Visualizing Data, 345

visualizing data frames, 97-98

w

warnings for functions,
returning, 153-155

385
while function, 180-181
“while” loops, 174
white space, 45

Wickham, Hadley, 213, 242,
261, 313

window function, 443
Windows operating system
building packages, 482
clipboard, 219
installing R, 573-574
installing RStudio, 577-578
installing Rtools, 575
working directory, 21
workspaces, 19-22
objects
removing, 20
saving, 22
saving, 221-222
working directory, 21
writing
classes, 505
generics, 511-516

object orientation,
506-508

S3, 509
vignettes, 498-501

X

xapply function, 182
X-axis, labeling on plots,
293-295

XCode, installing Rtools, 575
XLConnect package, 228-231

Y-Z

Y-axis, labeling on plots,
293-295

zo0 package, 123

Z00 package

601

	Cover
	Table of Contents
	Preface
	HOUR 4: Multi-Mode Data Structures
	Multi-Mode Structures
	Lists
	Data Frames
	Exploring Your Data
	Summary
	Q&A
	Workshop
	Activities

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y-Z

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier (CGATS TR 001)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /Description <<
 /ENU ([Based on '[RRD Book 20050524\(1\).joboptions2]'] Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug true
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks true
 /AddPageInfo true
 /AddRegMarks true
 /BleedOffset [
 9
 9
 9
 9
]
 /ConvertColors /NoConversion
 /DestinationProfileName (U.S. Web Coated \(SWOP\) v2)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MarksOffset 6
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
 /SyntheticBoldness 1.000000
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

