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A love and respect of trees has been characteristic of mankind since the beginning
of human evolution. Instinctively, we understood the importance of trees to our
lives before we were able to ascribe reasons for our dependence on them.

— James and Louise Bush-Brown, America’s Garden Book
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Preface

This book is concerned with certain aspects of discrete probability on infinite graphs that
are currently in vigorous development. Of course, finite graphs are analyzed as well, but
usually with the aim of understanding infinite graphs and networks. These areas of discrete
probability are full of interesting, beautiful, and surprising results, many of which connect to
other areas of mathematics and theoretical computer science. Numerous fascinating questions
are still open.

Our major topics include random walks and their intimate connection to electrical networks;
uniform spanning trees, their limiting forests, and their marvelous relationships with random
walks and electrical networks; branching processes; percolation and the powerful, elegant
mass-transport technique; isoperimetric inequalities and how they relate to both random walks
and percolation; minimal spanning trees and forests and their connections to percolation;
Hausdorff dimension, capacity, and how to understand them via trees; and random walks
on Galton-Watson trees. Connections among our topics are pervasive and rich, making for
surprising and enjoyable proofs.

There are three main classes of graphs on which discrete probability is most interesting,
namely, trees, Cayley graphs of groups (or, more generally, transitive, or even quasi-transitive,
graphs), and planar graphs. More classical discrete probability has tended to focus on the
special and important case of the Euclidean lattices, Z¢, which are prototypical Cayley graphs.
This book develops the general theory of various probabilistic processes on graphs and then
specializes to the three broad classes listed, always seeing what we can say in the case of Z¢.

Besides their intrinsic interest, there are several reasons for a special study of trees. Since
in most cases, analysis is easier on trees, analysis can be carried further. Then one can
often either apply the results from trees to other situations or transfer to other situations the
techniques developed by working on trees. Trees also occur naturally in many situations,
either combinatorially or as descriptions of compact sets in Euclidean space, R?.

In choosing our topics, we have been swayed by those results we find most striking as well
as by those that do not require extensive background. Thus, the only prerequisite is basic
knowledge of Markov chains and conditional expectation with respect to a o-algebra. For
Chapter 17, basic knowledge of ergodic theory is also required, though we review it there. Of
course, we are highly biased by our own research interests and knowledge. We include the
best proofs available of recent as well as classic results.

Most exercises that appear in the text, as opposed to those at the ends of the chapters, are
ones that will be particularly helpful to do when they are reached. They either facilitate one’s
understanding or will be used later in the text. These in-text exercises are also collected at the
end of each chapter for easy reference, just before additional exercises are presented. In each
chapter, the additional exercises appear in the order that the corresponding material appears
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in the text.

Some general notation we use is (- - -) for a sequence (or, sometimes, more general function),
I for the restriction of a function or measure to a set, E[X ; A] for the expectation of X on
the event A, and | - | for the cardinality of a set. Also, “decreasing” will mean “nonincreasing”
unless we say “strictly decreasing,” and likewise “increasing” will mean “nondecreasing.”
Defined terms are in bold italics. Some definitions are repeated in different chapters to enable
more selective reading.

A question labeled as Question m.n is one to which the answer is unknown, where m and
n are numbers. Unattributed results are usually not due to us. Items such as theorems are
numbered in this book as C.n, where C is the chapter number and 7 is the item number in
that chapter.

Major chapter dependencies are indicated in the following:

1: Intro

3: Spec Net

15: Hdim

11: MSF

It is possible to choose only small parts of various chapters to make a coherent course on
specific subjects. For example, a judicious choice of material from the following sections can
be used for a one-semester course on relationships of probability to geometric group theory:
34,7.1,6.1-3,6.6,6.7,13.1-2, 14.1-4,5.1,7.2-7,8.1, 8.3, 8.4, 11.1-4, 11.6, 2.1-5, 6.9, 4.1,
4.2,9.1,9.3,9.4,10.1, 10.2, 10.9.



PREFACE XV

In the electronic version of this book, most symbols that are used with a fixed meaning
are hyperlinked to their definitions, although the fact that such hyperlinks exist is not made
visible.

Many exercises at varying levels of difficulty are included, with many comments, hints, or
solutions in the back of the book.

This book began as lecture notes for an advanced graduate course called “Probability
on Trees” that Lyons gave in Spring 1993, but its emphasis has been transformed over the
intervening years. We are grateful to Rabi Bhattacharya for having suggested that he teach
such a course. We have attempted to preserve the informal flavor of lectures.

After Peres joined as a coauthor, writing and research became intertwined, and many delays
ensued. Over the course of many months together in Jerusalem, Berkeley, and Redmond, the
authors planned the content of most chapters, but the great majority of the actual writing was
done by Lyons. Exceptions include especially Chapters 13 and 14 as well as a few sections
of other chapters that were mostly written by Peres. Several chapters are based on joint
works with Itai Benjamini, Robin Pemantle, and Oded Schramm. A few of the authors’ new
results appear here for the first time; they are due to both authors in about equal measure.
Lyons was responsible for all other aspects of authorship of the book, such as drawing figures,
preparing the index, ensuring consistent notation, and typography; most remaining errors can
be attributed to him.

Lyons is grateful to the Institute for Advanced Studies and the Institute of Mathematics,
both at the Hebrew University of Jerusalem, and to Microsoft Research for support during
some of the writing. We are grateful to Brian Barker, Jochen Geiger, Janko Gravner, Yiping
(Kenneth) Hu, Svante Janson, Tri Minh Lai, Steve Morrow, Peter Morters, Minwoo Park,
Perla Sousi, Jason Schweinsberg, Jeff Steif, Pengfei Tang, and Adam Timdr for noting several
corrections to the manuscript. Section 6.6 and much of Chapter 13 are based on lectures
that Peres gave in Berkeley, which were scribed by Asaf Nachmias. In addition, Gabor Pete
helped with editing a few sections and provided a careful reading and thoughtful comments
throughout. Special thanks are due to Jacob Magnusson for his very thorough and careful
reading, which uncovered many small mistakes and possible improvements.

RusseLL Lyons YuvaL PERES
Indiana University Microsoft Corporation
rdlyons@indiana.edu peres@microsoft.com

http://pages.iu.edu/~rdlyons/ http://research.microsoft.com/en-us/um/people/peres/
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Some
Highlights

This chapter surveys a few of the highlights to be encountered in this book, mainly,
Chapters 2, 3, 4, 5, 15, and 16. Several of the topics in the book do not appear at all here
since they are not as suitable to a quick overview. Also, we concentrate in this overview on
trees, since it is easiest to use them to illustrate many of our themes.

1.1 Graph Terminology

For later reference, we introduce in this section the basic notation and terminology for
graphs. A graph is a pair G = (V,E), where V is a set of vertices and E is a symmetric
irreflexive subset of V X V, called the edge set. Irreflexive means that E contains no element
of the form (x, x). The word symmetric means that (x, y) € E iff (y, x) € E; here, x and y are
called the endpoints of (x, y). The symmetry assumption is usually phrased by saying that
the graph is undirected or that its edges are unoriented. Without this symmetry assumption,
the graph is called directed. 1If we need to distinguish the two, we write an unoriented edge
as [x, y], whereas an oriented edge is written as (x, y). An unoriented edge can be thought
of as the pair of oriented edges with the same endpoints. If (x, y) € E, then we call x and
v adjacent or neighbors, and we write x ~ y. The degree of a vertex is the number of its
neighbors. If this is finite for each vertex, we call the graph locally finite. If the degree of
every vertex is the same number d, then the graph is called regular or d-regular. If x is
an endpoint of an edge e, then we also say that x and e are incident, whereas if two edges
share an endpoint, then we call those edges adjacent. If we have more than one graph under
consideration, we distinguish the vertex and edge sets by writing V(G) and E(G). A subgraph
of a graph G is a graph whose vertex set is a subset of V(G) and whose edge set is a subset of
E(G). One can define the product of two graphs G; = (V;, E;) (i = 1,2) in various ways. The
one we use almost exclusively is the Cartesian product G = (V,E) with V := V| X V; and

E:= {((xl,x2)9(yl,)’2)) : (1= y1 (x2.32) € Ba) or ((x1,31) € By, 23 = yz)};

this product graph is denoted G = G| O G,.
A path* in a graph is a sequence of vertices where each successive pair of vertices is an
edge in the graph; it is said to join its first and last vertices. When a path does not pass

* In graph theory, a path is necessarily self-avoiding. What we call a path is called in graph theory a walk.
However, to avoid confusion with random walks, we do not adopt that terminology.
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through any vertex (resp., edge) more than once, we will call it vertex simple (resp., edge
simple). We’ll just say simple also to mean vertex simple, which implies edge simple. A
finite path with at least one edge and whose first and last vertices are the same is called a
cycle. A cycle is called simple if no pair of vertices are the same except for its first and last
ones. A graph is connected if, for each pair x # y of its vertices, there is a path joining x to
y. The distance between x and y is the minimum number of edges among all paths joining
x and y, denoted either d(x, y) or dist(x, y). A graph with no cycles is called a forest; a
connected forest is a tree.

If there are numbers (weights) c(e) assigned to the edges e of a graph, the resulting object is
called a network. Given a network G = (V, E) with weights c(+) and a subset K of its vertices,
the induced subnetwork G| K is the subnetwork with vertex set K, edge set (K X K)NE, and
weights ¢ (K X K) N E).

Sometimes we work with objects more general than graphs, called multigraphs. A
multigraph is a pair of sets, V and E, together with a pair of maps E — V, denoted ¢ > e~
and e — e*. The images of e are called the endpoints of e, the former being its fail and the
latter its head. If e~ = e* = x, then e is a loop at x. Edges with the same set of endpoints
are called parallel or multiple. If the multigraph is undirected, then for every edge e € E,
there is an edge —e € E such that (—e)™ = e* and (—e)*™ = ¢~. For a vertex x of an undirected
multigraph, its degree is |{e; ¢~ = x}|. Sometimes we use paths of edges rather than of
vertices; in this case, the head of each edge must equal the tail of the next edge. Given a
subset K C V, the multigraph G/K obtained by identifying K to a single vertex z ¢ V is
the multigraph whose vertex set is (V \ K) U {z} and whose edge set is obtained from E by
replacing the tail and head maps so that every tail or head that took a value in K now takes the
value z. A similar operation is contraction of an edge e, which is the result of first deleting e
and then identifying e~ and e*; we denote this graph by G/e. A multigraph that is a graph is
called a simple graph.

Let G| = (V1,E ) and G, = (V2, E;) be two (multi)graphs. A homomorphism of G, to G,
is a map ¢: G; — G, such that whenever x and e are incident in Gy, then so are ¢(x) and
¢(e) in G,. When the graph is directed, then ¢ must also preserve orientation of edges, that
is, if the head and tail of e are x and y, respectively, then the head and tail of ¢(e) must be
¢(x) and ¢(y), respectively. If in addition, these graphs come with weight functions ¢; and
2, so that they are networks, then a network homomorphism is a graph homomorphism ¢
that satisfies c1(e) = c2(¢(e)) for all edges e € E;. If ¢ induces bijections of V; to V, and
of E; to Ey, then ¢ is called an isomorphism. When G| = G,, an isomorphism is called an
automorphism. A homomorphism ¢: G; — G, extends to map each subset A of G| to a
subset ¢(A) of G, by mapping all elements of A by ¢. We also extend ¢ to collections A of
subsets of G| by applying ¢ to all elements of A.

1.2 Branching Number

Our trees will usually be rooted, meaning that some vertex is designated as the root,
denoted 0. We imagine the tree as growing (upward) away from its root. Each vertex then
has branches leading to its children, which are its neighbors that are farther from the root.
For the purposes of this chapter, we do not allow the possibility of leaves, that is, vertices
without children.
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How do we assign an average branch-
ing number to an arbitrary infinite locally
finite tree? If the tree is a binary tree, as
in Figure 1.1, then clearly the answer will
be 2. But in the general case, since the
tree is infinite, no straight average is avail-
able. We must take some kind of limit or
use some other procedure, but we will be Figure 1.1. The binary tree.
amply rewarded for our efforts.

One simple idea is as follows. Let 7}, be the set of vertices at distance n from the root, o,
called the nth level of T. Define the lower (exponential) growth rate of the tree to be

grT := liminf |T,,|'/" .
_— n—oo

This certainly will give the number 2 to the binary tree. One can also define the upper
(exponential) growth rate

gr T := lim sup |T;,|'/"

n—oo

and the (exponential) growth rate
grT := lim |T,|'/"
n—oo

when the limit exists. However, notice that these notions of growth barely account for the
structure of the tree: only |T},| matters, not how the vertices at different levels are connected to
each other. Of course, if T is spherically symmetric, meaning that for each n, every vertex at
distance n from the root has the same number of children (which may depend on #), then there
is really no more information in the tree than that contained in the sequence (|7, |; n > 0).
For more general trees, however, we will use a different approach.

Consider the tree as a network of pipes and imagine water entering the network at the root.
However much water enters a pipe leaves at the other end and splits up among the outgoing
pipes (edges). Formally, this means that we consider a nonnegative function 8 on the edges of
T, called a flow, with the property that for every vertex x other than the root, if x has parent z
and children yy, ..., y4, then 6((z, x)) = Zil 6((x, y;)). We say that 6(e) is the amount of
water flowing along e and that the total amount of water flowing from the root to infinity is
Zﬁ] 6((o, xj)), where the children of the root o are x, . .., x.

Consider the following sort of restriction on a flow: given 4 > 1, suppose that the amount
of water that can flow through an edge at distance n from o is only A™". In other words, if
x € T, has parent z, then the restriction is that 8((z, x)) < A™". If 4 is too big, then perhaps
no positive amount of water can flow from the root to infinity. Indeed, consider the binary
tree. Then the equally splitting flow that sends an amount 27" through each edge at distance
n from the root will satisfy the restriction imposed when 4 < 2 but not for any 4 > 2. In fact,
it is intuitively clear that there is no way to get any water to flow when 4 > 2. Obviously,
this critical value of 2 for 4 is the same as the branching number of the binary tree — if the
tree were ternary, then the critical value would be 3. So let us make a general definition: the
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branching number of a tree T is the supremum of those A that admit a positive total amount
of water to flow through 7'; denote this critical value of A by brT.

Let’s spend some time on this new concept. For a vertex x other than the root, let e(x)
denote the edge that joins x to its parent. The total amount of water flowing is, by definition,
> xer, 0(e(x)). If we apply the flow condition to each x in 7j, then we see that this sum
also equals ) . 6(e(x)). Induction shows, in fact, that it equals } ;- 6(e(x)) for every
n > 1. When the flow is constrained in the way we have specified, then this sum is at most
Y oxer, A" = |Ta]A™". Now if we choose 4 > grT, then liminf, ., |T,]4A™" = 0, whence for
such 4, no water can flow. Conclusion: o

brT < grT. (1.1)

Often, as in the case of the binary tree, equality holds here. However, there are many examples
of strict inequality.

Before we give an example of strict inequality, here is another example where equality
holds in (1.1).

Example 1.1. If T is a tree such that vertices at even distances from o have two children
whereas the rest have three children, then br7 = gr7 = V6. Why? It is easy to see that
erT = V6, whence by (1.1), it remains to show that br 7’ > V6. In other words, it remains to
show that, given 4 < V6, a positive amount of water can flow to infinity under the constraints
described. Indeed, we can use the water flow with amount 6™/ flowing on those edges at
distance n from the root when 7 is even and with amount 6~"~/2/3 flowing on those edges
at distance n from the root when # is odd.

More generally, one can show (Exercise 1.2) that equality holds in (1.1) whenever T is
spherically symmetric.
Now we give an example where strict inequality holds in (1.1).

Example 1.2. (The 1-3 Tree) We will con-
struct a tree T embedded in the upper half-
plane with o at the origin. We’ll have |T,,| = 2",
but we’ll connect them in a funny way. List
T, in clockwise order as (x,...,xJ,). Let
x7 have one child if k < 2"~" and three chil-
dren otherwise; see Figure 1.2. Define a ray
in a tree to be an infinite path from the root
that doesn’t backtrack. If x is a vertex of T
that does not have the form x7,,, then there are
only finitely many rays that pass through x.
This means that water cannot flow to infinity

through such a vertex x when 4 > 1. That o
leaves only the possibility of water flowing Figure 1.2. A tree with branch-
along the single ray consisting of the vertices ing number 1 and growth rate 2.

X5, but that’s impossible too. Hence br 7" = 1,
yetgrT =2.
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Example 1.3. If 7() and 7@ are trees, form a

new tree T v T from disjoint copies of 7(!)

and T® by joining their roots to a new point
taken as the root of T() v T® (Figure 1.3). Lo 7@
Then

br(T<‘> v T<2>) =br 7 v br 7@

since water can flow in the join 7" v T iff

water can flow in one of the trees. Here, as o

usual in probability, we use a V b to mean Figure 1.3. Joining two trees.
max{a, b} when a and b are real numbers.

Although grT is easy to compute, br T may not be. Nevertheless, it is the branching
number that is much more important. Theorems to be described shortly will bear out this
assertion. We will develop tools to compute br 7" in many common situations.

1.3 Electric Current

We can ask another flow question on trees, this one concerning electrical current. All
electrical terms are given precise mathematical definitions in Chapter 2, but for now, we give
some bare definitions to sketch the arc of some of the fascinating and surprising connections
that we develop later. If positive numbers c(e) are assigned to the edges e of a tree, we
may call these numbers conductances, and in that case, the energy of a flow 6 is defined to
be Y, 6(e)’/c(e). We say that electrical current flows from the root to infinity if there is a
nonzero flow with finite energy.

Here’s our new flow question: if ™" is the conductance of edges at distance n from the
root of 7', will current flow?

Example 1.4. Consider the binary tree. The equally splitting flow has finite energy for every
A < 2, so in those cases, electrical current does flow. One can show that when A > 2, not
only does the equally splitting flow have infinite energy, but so does every nonzero flow
(Exercise 1.4). Thus, current flows in the infinite binary tree iff A < 2. Note the slight
difference to water flow: when A = 2, water can still flow on the binary tree.

In general, there will be a critical value of 1 below which current flows and above which it
does not. In the example of the binary tree that we just analyzed, this critical value was the
same as that for water flow. Is this equality special to nice trees, or does it hold for all trees?
We have seen an example of a strange tree (another is in Exercise 1.3), so we might doubt its
generality. However, it is indeed a general fact (Lyons, 1990):

Theorem 1.5% If A < brT, then electrical current flows, but if A > brT, then it does not.

* This will follow from Theorem 3.5 and the discussion in Section 2.2.
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1.4 Random Walks

There is a striking, but easily established, correspondence between electrical networks
and random walks on graphs (or on networks). Namely, given a finite connected graph G
with conductances (that is, positive numbers) assigned to the edges, we consider the random
walk that can go from a vertex only to an adjacent vertex and whose transition probabilities
from a vertex are proportional to the conductances along the edges to be taken. That is, if x
is a vertex with neighbors yy, ..., y4 and the conductance of the edge (x, y;) is ¢;, then the
transition probability from x to y; is p(x, y;) := ¢j/ Zil ¢;. Now consider two fixed vertices
ap and a; of G. A voltage function on the vertices is then a function v such that v(a;) = i for
i =0, 1 and for every other vertex x # ay, a1, the equation v(x) Zil ¢ = Zi] c;v(y;) holds,
where the neighbors of x are yi, ..., yq. In other words, v(x) is a weighted average of the
values at the neighbors of x. We will see in Section 2.1 that voltage functions exist and are
unique. The following proposition provides the basic connection between random walks and
electrical networks:

Proposition 1.6. (Voltage as Probability) For every vertex x, the voltage at x equals the
probability that when the corresponding random walk starts at x, it will visit a, before it
VISits ay.

The proof of this proposition will be simple: In outline, there is a discrete Laplacian (a
difference operator) that will define a notion of harmonic function. Both the voltage and the
probability mentioned are harmonic functions of x. The two functions clearly have the same
values at a; (the “boundary” points), and the uniqueness principle holds for this Laplacian,
whence the functions agree at all vertices x. This is developed in detail in Section 2.1.

ai

Figure 1.4. Identifying a level to a vertex, a;.

What does this say about our trees? Given N, identify all the vertices of level N, that is, Ty,
to one vertex, a; (see Figure 1.4). Use the root as ay. Then, according to Proposition 1.6, the
voltage at x is the probability that the random walk visits level N before it visits the root when
it starts from x. When N — oo, the limiting voltages are all 0 iff the limiting probabilities are
all 0, which is the same thing as saying that on the infinite tree, the probability of visiting the
root from any vertex is 1, in other words, the random walk is recurrent. Although we have
not yet defined “current,” we’ll see that no current flows across edges whose endpoints have
the same voltage. This will imply, then, that no electrical current flows iff the random walk is
recurrent. Contrapositively, electrical current flows iff the random walk is transient. In this
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way, electrical networks will be a powerful tool to help us decide whether a random walk is

recurrent or transient. These ideas are detailed in Section 2.2.
Earlier we considered conductances 4™ on

edges at distance n from the root. In this case,

the conductances decrease by a factor of A as the

distance increases by 1, so the relative weights 1 1

at a vertex other than the root are as shown in

Figure 1.5. That is, the edge leading back toward

the root is 4 times as likely to be taken as each

edge leading away from the root. Denoting the

dependence of the random walk on the parameter ~ Figure 1.5. The relative weights at a

4 by RW,, we may translate Theorem 1.5 intoa  vertex. The tree is growing upwards.

probabilistic form (Lyons, 1990):

Theorem 1.7* [f A < brT, then RW, is transient, whereas if A > br T, then RW, is recurrent.

Is this form intuitive? Consider a vertex other than the root with, say, d children. If we
consider only the distance from o, which increases or decreases at each step of the random
walk, a balance at this vertex between increasing and decreasing occurs when A = d. If d is
constant, then the distance from the root undergoes a random walk with a constant bias (for
a fixed 1), so it is easy to see that indeed d is the critical value separating transience from
recurrence. What Theorem 1.7 says is that this same heuristic can be used in the general case,
provided we substitute the “average” br T for d.

We will also see how to use electrical networks to prove Pélya’s wonderful, seminal
theorem that simple random walk on the hypercubic lattice Z¢ is recurrent for d < 2 and
transient for d > 3.

1.5 Percolation

Suppose that we remove edges at random from a tree, 7. To be specific, we keep each edge
with some fixed probability p and make these decisions independently for different edges.
This random process is called percolation. As we’ll see, by Kolmogorov’s zero-one law, the
probability that an infinite connected component remains in the tree is either O or 1. On the
other hand, we’ll see that this probability is monotonic in p, whence there is a critical value
pc(T) where it changes from O to 1. It is also intuitively clear that the “bigger” the tree, the
more likely it is that there will be an infinite component for a given p. That is, the “bigger”
the tree, the smaller is the critical value p.. Thus, p. is vaguely inversely related to a notion
of average size or maybe average branching number. Surprisingly, this vague heuristic is
precise and general (Lyons, 1990):

* This will be proved as Theorem 3.5.
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Theorem 1.8 For any tree, p.(T) = 1/brT.

What is this telling us? If a vertex x has d children, then the expected number of children
remaining after percolation is dp. If dp is “usually” less than 1, then one would not expect
that an infinite component would remain, whereas if dp is “usually” greater than 1, then
one might guess that an infinite component would be present somewhere. Theorem 1.8 says
that this intuition becomes correct when one replaces the “usual” d by br 7. Both Theorems
1.5 and 1.8 say that the branching number of a tree is a single number that captures enough
of the complexity of a general tree to give the critical value for a stochastic process on the
tree. There are other examples as well of this striking phenomenon. Altogether, they make a
convincing case that the branching number is indeed the most important single number to
attach to an infinite tree.

1.6 Branching Processes

In the preceding section, we looked at existence of infinite components after percolation
on a tree. Although this event has probability O or 1, if we restrict attention to the connected
component of the root, its probability of being infinite is between 0 and 1. These are
equivalent ways to approach the issue, since, as we’ll see, there is an infinite component
somewhere with probability 1 iff the component of the root is infinite with positive probability.
But looking at the component of the root also suggests a different stochastic process.

Percolation on a fixed tree produces random trees by random pruning, but there is a way
to grow trees randomly that was invented by Bienaymé in 1845. Given probabilities pi
addingto 1 (k =0,1,2,...), we begin with one individual, and let it reproduce according
to these probabilities, that is, it has k children with probability p;. Each of these children
(if there are any) then reproduce independently with the same law, and so on forever or
until some generation goes extinct. The family trees produced by such a process are called
(Bienaymé-)Galton-Watson trees. A fundamental theorem in the subject (Proposition 5.4)
is that extinction is a.s. iff m < 1 and p; < 1, where m := ), kpy is the mean number of
offspring per individual. This provides further justification for our intuitive understanding
of Theorem 1.8. It also raises a natural question: Given that a Galton-Watson family tree is
nonextinct (infinite), what is its branching number? All the intuition suggests that it is m
a.s., and indeed it is. This was first proved by Hawkes (1981). But here is the idea of a very
simple proof (Lyons, 1990).

According to Theorem 1.8, to determine br 7, we may determine p.(T"). Thus, let T’ grow
according to a Galton-Watson process, then perform percolation on 7, that is, keep edges
with probability p. Focus on the component of the root. Looked at as a random tree in
itself, this component appears simply as some other Galton-Watson tree; its mean is mp by
independence of the growing and the “pruning” (percolation). Hence, the component of
the root is infinite with positive probability iff mp > 1. This implies that p. = 1/m a.s. on
nonextinction, thus br 7 = m a.s. on nonextinction. We’ll flesh out the details when we prove
Proposition 5.9.

* This will be proved as Theorem 5.15.
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Now let’s consider another way to measure the size of Galton-Watson trees. Let Z, be the
size of the nth generation in a Galton-Watson process. How quickly does Z,, grow? It will be
easy to calculate that E[Z,,] = m". Moreover, a martingale argument will show that the limit
W = lim,_ Z,/m™ always exists (and is finite). When 1 < m < oo, do we have that W > 0
a.s. on the event of nonextinction? When W > 0, the growth rate of the tree is asymptotically
Wm™; this implies the cruder asymptotic gr7 = m. It turns out that indeed W > 0 a.s. on the
event of nonextinction, under a very mild hypothesis:

The Kesten-Stigum Theorem (1966). When 1 < m < oo, the following are equivalent:
(i) W > 0 a.s. on the event of nonextinction;
(i) D poq Prklogk < co.

This will be shown in Section 12.2. Although condition (ii) appears technical and suggests
some possibly unpleasant analysis, we will enjoy a conceptual proof of the theorem that uses
only extremely simple estimates.

1.7 Random Spanning Trees

The fertile and fascinating field
of random spanning trees is one of
the oldest areas to be studied in this
book but one of the newest to be ex-
plored in depth. A spanning tree of
a (connected) graph is a subgraph
that is connected, contains every ver-
tex of the whole graph, and contains
no cycle: see Figure 1.6 for an ex-

ample. These trees are usually not

rooted. The subject of random span- Figure 1.6. A spanning tree in a graph, where
the edges of the graph not in the tree are dashed.

ning trees of a graph goes back to
Kirchhoff (1847), who showed its

surprising relation to electrical networks. (Actually, Kirch- n
hoff did not think probabilistically; rather, he considered n—1
quotients of the number of spanning trees with a certain

property divided by the total number of spanning trees. n-2

See Kirchhoff’s effective resistance formula in Section 4.2
and Exercise 4.30.) One of Kirchhoff’s results expresses
the probability that a uniformly chosen spanning tree will

contain a given edge in terms of electrical current in the 3
graph.
To get our feet wet, let’s begin with a very simple finite 2

graph. Namely, consider the ladder graph of Figure 1.7.
Among all spanning trees of this graph, what proportion
contain the bottom rung (edge)? In other words, if we were

1
Figure 1.7. A ladder graph.
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to choose uniformly at random a spanning tree, what is the chance that it would contain the
bottom rung? We have illustrated in Figure 1.8 the entire probability spaces for the smallest
ladder graphs.

_— 1/1

3/4

‘ ‘ 11/15

Figure 1.8. The ladder graphs of heights 0, 1, and 2, together with their spanning trees.

As shown, the probabilities in these cases are 1/1, 3/4, and 11/15. The next one is 41/56.
Do you see any pattern? One thing that is fairly evident is that these numbers are decreasing
but hardly changing. Amusingly, these numbers are every other term of the continued fraction
expansion of V3 -1=0.73" and, in particular, converge to V3 = 1. In the limit, then, the
probability of using the bottom rung is V3 — 1, and even before taking the limit, this gives an
excellent approximation to the probability. How can we easily calculate such numbers? In
this case, there is a rather easy recursion to set up and solve, but we will use this example to
illustrate the more general theorem of Kirchhoff that we mentioned earlier. In fact, Kirchhoff’s
theorem will show us why these probabilities are decreasing even before we calculate them.

For the next two paragraphs, we will assume some
familiarity with electrical networks; those who do not
know these terms will find precise mathematical defini-
tions in Sections 2.1 and 2.2. Suppose that each edge of
our graph (any graph — say, the ladder graph) is an elec-
tric conductor of unit conductance. Hook up a battery
between the endpoints of any edge ¢ — say, the bottom
rung (Figure 1.9). Kirchhoff (1847) showed that the
proportion of current that flows directly along e is then
equal to the probability that e belongs to a randomly
chosen spanning tree! |

Now current flows in two ways: some flows directly ~ Figure 1.9. A battery is hooked
across e and some flows through the rest of the net-  up between the endpoints of e.
work. It is intuitively clear (and justified by Rayleigh’s
monotonicity principle in Section 2.4) that the higher the ladder, the greater the effective
conductance of the ladder minus the bottom rung, hence the less current proportionally will

e
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flow along e, whence by Kirchhoft’s theorem, the less the chance that a random spanning tree
contains the bottom rung. This confirms our observations.

It turns out that generating spanning trees at random according to the uniform measure is
of interest to computer scientists, who have developed various algorithms over the years for
random generation of spanning trees. In particular, this is closely connected to generating a
random state from any Markov chain. See Propp and Wilson (1998) for more on this issue.

Early algorithms for generating a random spanning tree used the matrix-tree theorem,
which counts the number of spanning trees in a graph via a determinant (Section 4.4). A
better algorithm than these early ones, especially for probabilists, was introduced by Aldous
(1990) and Broder (1989). It says that if you start a simple random walk at any vertex of a
finite (connected) graph G and draw every edge it traverses except when it would complete
a cycle (that is, except when it arrives at a previously visited vertex), then when no more
edges can be added without creating a cycle, what will be drawn — amazingly — is a uniformly
chosen spanning tree of G. (To be precise: if X,, (n > 0) is the path of the random walk, then
the associated spanning tree is the set of edges {[Xn, Xoi1ls X € {Xo, X1, .., X,,}}.)
This beautiful algorithm is quite efficient and useful for theoretical analysis, yet as a graduate
student, Wilson (1996) found an even better one that we’ll describe in Section 4.1.

Return for a moment to the ladder graphs. We saw that as the height of the ladder tends to
infinity, there is a limiting probability that the bottom rung of the ladder graph belongs to a
uniform spanning tree. What about uniform spanning trees in other sequences of growing
finite graphs? Suppose that G is an infinite graph. Let G, be finite (connected) subgraphs
with G; € G, € G3 C --- and | J G, = G. Take the uniform spanning tree probability
measure on each G,. This gives a sequence of probability measures on subsets of edges
of G. Does this sequence converge in a reasonable sense? Lyons conjectured that it does,
and Pemantle (1991) verified that the weak limit exists. (In other words, if u, denotes
the uniform spanning tree measure on G, and B, B’ are finite sets of edges in G, then
lim, u,[B c T,,, B' N T, = @] exists, where T,, denotes a random spanning tree in G,.)
This limit is now called the free uniform spanning forest* on G, denoted FUSF or just FSF.
Considerations of electrical networks play the dominant role in Pemantle’s proof. Pemantle
(1991) discovered the astounding fact that on Z¢, the uniform spanning forest is a single
tree a.s. if d < 4, but when d > 5, there are infinitely many trees a.s.! We’ll prove this as
Theorem 10.30.

* In graph theory, “spanning forest” usually means a maximal subgraph without cycles, that is, a spanning tree in
each connected component. We mean, instead, a subgraph without cycles that contains every vertex.
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1.8 Hausdorff Dimension

We’ve used water flow on trees to define the branching number, where the amount of water
that can flow through an edge at distance n from the root of a tree is constrained to be at most
A7". There is a useful way to reformulate this via what’s known as the max-flow min-cut
theorem, proved in Section 3.1. Namely, consider a set I of edges whose removal leaves the
root o in a finite component. We call such a set a cutset (separating o from infinity). If 6 is a
flow from o to infinity, then all the water must flow through I1, so one expects that an upper
bound on the total that can flow is .,y 471 where e(x) denotes the edge that joins x to
its parent, as before, and | x| denotes the distance of a vertex x to the root. This expectation
turns out to be correct, so that the most that can flow is

inf{ z AN s a cutset} . (1.2)

e(x)ell

Remarkably, this upper bound is always achievable, that is, there is a flow with this amount in
total flowing from the root to infinity; this is the content (in a special case) of the max-flow
min-cut theorem. We are going to use this now to understand Hausdorff dimension, but a
much more detailed and varied motivation of Hausdorff dimension is given in Chapter 15.

A vertex of degree 1 in a tree is called a leaf. By analogy with the leaves of a finite tree,
we call the set of rays of T' the boundary (at infinity) of T, denoted dT. (Recall that a ray is
an infinite simple path from the root, so T does not include any leaves of 7.) Now there is a
natural metric on 07T if £, € OT have exactly n edges in common, define their distance to
be d(&,n) := e™". Thus, if x € T has more than one child with infinitely many descendants,
then the set of rays going through x,

By :={& €0T; & = x}, (1.3)

has diameter diam B, = e~*|. We call a collection € of subsets of 9T a cover if

UB=aT.

Bew

> Exercise 1.1.
Let T be an infinite locally finite tree.
(a) (Konig’s Lemma) Show that 0T # @.
(b) Show that 9T is compact.

Note that
I1is a cutset (separating o from oo) iff { By ; e(x) € 11} is a cover. (1.4)

The Hausdorff dimension of 0T is defined to be

% a countable cover

dim oT := sup{a/; inf Z(diam B)* > O} .
Bee
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This number is just a disguised version of the branching number.* Indeed,
br7T = sup{/l; water can flow through pipe capacities /l"xl} .
Now use the condition (1.2) to write this as
- —|x]
Sup{/1 ‘1 alrglil:tset Z 4 > 0} )
e(x)ell
Replace 4 by e” to rewrite it as
S ~alx]
conmo 5 1)
e(x)ell

and then use the correspondence (1.4) between cutsets and covers to write this as

€ a cover

exp sup{a/; inf Z(diam B)* > O}.
Bev

Now we see the disguise revealed as
brT =expdimadT .

Soon we’ll see how this helps us to analyze Hausdorff dimension in Euclidean space.

1.9 Capacity
In Section 1.3, we made the definition

electrical current flows from the root of an infinite tree
<= (1.5)
there is a flow with finite energy.
A unit flow on a tree T from the root to infinity is a flow where a total of 1 unit flows from the

root. By identifying vertices x with edges e(x), we may identify a unit flow with a function
on the vertices of T that is 1 at the root and that has the property that for all vertices x,

0(x) = 0(n),

where y; are the children of x. The energy of a flow for the conductances that we’ve been
using as our basic example is then

> o)A,

xeT

* Historically, the branching number was defined by Lyons (1990) only after Furstenberg (1970) considered the
Hausdorff dimension of the boundaries of trees, which served as the former’s inspiration.



14 CHuaPr. 1: SoME HIGHLIGHTS

whence we may write Theorem 1.5 as

brT = sup{/l; there exists a unit flow 6 Z 0(x)2 A < oo} . (1.6)

xeT

We can also identify unit flows 6 on T with Borel probability measures y on 07T via

H(By) = 6(x)
(see Section 15.4). A bit of algebra (Proposition 16.1) will show that (1.6) is equivalent to
dp(&) dp(n) _ Oo}
d(&,m®

For @ > 0, define the a-capacity of 0T to be the reciprocal of the minimum energy of a
unit flow for 4 = e*. When we express this purely in terms of probability measures on the
boundary, this will turn out to be the same as the following definition:

du(¢)d,
cap, (0T)™" := inf { / / /;((i:) /;t(n) ; p a probability measure on 6T}
n a

Then statement (1.5) says that for @ > 0,

br T = exp sup {a ; d a probability measure g on T / /

random walk with parameter A = ¢“ is transient <= cap,(dT) > 0. (1.7)
It follows from Theorem 1.7 that
the critical value of « for positivity of cap,(dT) is dim 0T (1.8)

Theorem 1.8 told us that these same critical values for random walk, electrical networks,
Hausdorff dimension, or capacity are also critical for percolation. But it did not tell us what
happens at the critical value, unlike, say, (1.7) does for random walk. This is more subtle to
analyze for percolation but is also known (Lyons, 1992):

Theorem 1.9F (Tree Percolation and Capacity) For a > 0, percolation with parameter
p = e~ yields an infinite component a.s. iff cap,(0T) > 0. Moreover,

cap,(0T) < P[the component of the root is infinite] < 2 cap,(0T).

Although this appears rather abstract, it is very useful. First of all, when T is spherically
symmetric and p = ¢~%, we can calculate the capacities easily (Exercise 16.1):

-1
capa(ﬁT)—(1+(1—p)Z "|T|) .

Second, one can use this theorem in combination with (1.7); this allows us to translate
problems freely between the domains of random walks and percolation (Lyons, 1992). Third,
we describe how it can be used to analyze Brownian motion in the next section.

* This will be proved as Theorem 16.3. The case of the first part of this theorem where all the degrees are
uniformly bounded was shown earlier by Fan (1989, 1990).
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1.10 Embedding Trees into Euclidean Space

The results described previously, especially those concerning percolation, can be translated
to give interesting results on closed sets in Euclidean space. We describe only the simplest
such correspondence here.*

Let b > 2 be an integer. An interval of the form [k/b", (k + 1)/b"] for integers k and n is
called b-adic of order n. For a closed nonempty set £ C [0, 1], consider the system of b-adic
subintervals of [0, 1]. We’ll associate a tree to E as follows: Those intervals whose inter-
section with E is nonempty will form the vertices
of the tree. Two such intervals are connected by an 0 ‘ | | | ‘ ]
edge iff one contains the other and the ratio of their ‘ \ \ \ ‘
lengths is b. The root of this tree is [0, 1]. Denote
this tree by 7j)(E). An example is illustrated in
Figure 1.10 with b = 4. Were it not for the fact that
certain numbers have two representations in base
b, we could identify 07};,)(E) with E. Because of
this multiplicity of representation, there are other
trees whose boundary we could identify with E.

That is, given a tree T, suppose that we associate

to each x € T, a b-adic interval I, C [0, 1] of order

n in such a way that |I, N [,| < 1 for |x| = |y],

x # y, and that I, is contained in I, when z is the

parent of x. Then the tree T codes the closed set Figure 1.10. Coding by trees.

E = Np>0 Uxer, Ix. The difference between 0T

and 07j,|(E) is at most countable. As we will see, this implies, for example, that these two
boundaries have the same Hausdorff dimension.

Hausdorff dimension is defined for subsets of [0, 1] just as we defined it for T: A cover
of E is a collection ¥ of sets whose union contains E, and

. o . . . @
dimE := sup{af P C(1){/1efr i l;(dlam B)* > 0} ,
where diam B denotes the (Euclidean) diameter of E. When T codes E, covers of 9T by sets
of the form B, (as in (1.3)) correspond to covers of E by b-adic intervals, but of diameter
bW, rather than e~*!. One can show that restricting to covers of E by b-adic intervals does
not change the computation of Hausdorff dimension, whence we may conclude (compare the

calculation at the end of Section 1.8) that

B dim oT

dim E
m log b

=log, (brT). (1.9)

Example 1.10. Let E be the Cantor middle-thirds set. If b = 3, then the binary tree codes E
(when the obvious 3-adic intervals are associated to the binary tree), whence (1.9) tells us

* This correspondence was part of Furstenberg’s motivation in 1970 for looking at the dimension of the boundary
of a tree.
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that the Hausdorff dimension of E is log; 2 = log2/log 3. If we use a different base, b, to
code E by a tree T, we will have br T = b'°%:2,

Capacity in Euclidean space is also defined as we defined it on the boundary of a tree:

d d

(cap,E)™" := inf { / / 'L|l ) ;ll(y) (1 a probability measure on E} .
X —y|*

It was shown by Benjamini and Peres (1992) and Pemantle and Peres (1995b) (see Sec-

tion 16.3) that when T codes E,

EcapaE < #
This means that the percolation criterion Theorem 1.9 can be used in Euclidean space. This,
and similar extensions, will allow us in Section 16.4 to analyze Brownian motion in R? by
replacing the path of Brownian motion by an “intersection-equivalent” random fractal that
is much easier to analyze, being an embedding of a Galton-Watson tree. This will allow us
to determine whether Brownian motion has double points, triple points, etc., in a very easy
fashion.

Cap, 10p 0T < 3b cap,E . (1.10)

1.11 Notes
The product of two graphs, G and G,, with V := V; X V, and the choice

E:= {((X],)Cz), (yl’yZ)); (xl’yl) € E; and (xZ’ yZ) € EZ}

is called the tensor product, since its adjacency matrix is the tensor product of the adjacency matrices
corresponding to E; and E,. It is denoted G = G| X G,. The union of G| O G, and G| X G, is denoted
G| B G,. Terminology for graph products is not universal; other terms include “sum” for what we called
the Cartesian product and “product” for the tensor product.

Other recent books that cover material related to the topics of this book include Probability on Graphs
by Geoftrey Grimmett, Reversible Markov Chains and Random Walks on Graphs by David Aldous and
Jim Fill (preliminary version online), Coarse Geometry and Randomness by Itai Benjamini, Markov
Chains and Mixing Times by David A. Levin, Yuval Peres, and Elizabeth L. Wilmer, Probability: The
Classical Limit Theorems by Henry McKean, Random Trees: An Interplay between Combinatorics
and Probability by Michael Drmota, A Course on the Web Graph by Anthony Bonato, Random Graph
Dynamics by Rick Durrett, Complex Graphs and Networks by Fan Chung and Linyuan Lu, The Random-
Cluster Model by Geoffrey Grimmett, Superfractals by Michael Fielding Barnsley, Introduction to
Mathematical Methods in Bioinformatics by Alexander Isaev, Gaussian Markov Random Fields by
Hévard Rue and Leonhard Held, Conformally Invariant Processes in the Plane by Gregory F. Lawler,
Random Networks in Communication by Massimo Franceschetti and Ronald Meester, Percolation
by Béla Bollobds and Oliver Riordan, Probability and Real Trees by Steven Evans, Random Trees,
Lévy Processes and Spatial Branching Processes by Thomas Duquesne and Jean-Frangois Le Gall,
Combinatorial Stochastic Processes by Jim Pitman, Random Geometric Graphs by Mathew Penrose,
Random Graphs by Béla Bollobas, Random Graphs by Svante Janson, Tomasz Luczak, and Andrzej
Rucinski, Phylogenetics by Charles Semple and Mike Steel, Stochastic Networks and Queues by
Philippe Robert, Random Walks on Infinite Graphs and Groups by Wolfgang Woess, Random Walk: A
Modern Introduction by Gregory F. Lawler and Vlada Limic, Percolation by Geoftrey Grimmett, Noise
Sensitivity of Boolean Functions and Percolation by Christophe Garban and Jeftrey E. Steif, Stochastic
Interacting Systems: Contact, Voter and Exclusion Processes by Thomas M. Liggett, and Discrete
Groups, Expanding Graphs and Invariant Measures by Alexander Lubotzky.
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1.12 Collected In-Text Exercises

1.1. Let T be an infinite locally finite tree.
(a) (Kénig’s Lemma) Show that 9T # @.
(b) Show that 9T is compact.

1.13 Additional Exercises
1.2. Show that brT = grT when T is a spherically symmetric tree.

1.3. Here we’ll look more closely at the joining construction of Example 1.3. We will put together
two spherically symmetric trees 7" and 7® such that br(T") v T®) = 1, yet at the same time,
er(TV v T®) > 1. Let ny T co. Let TV (resp., T) be a tree such that x has one child (resp.,
two children) for ny, < |x| < noxy; and two (resp., one) otherwise; this is shown schematically in
Figure 1.11. If n;. increases sufficiently rapidly, then br 7" = br T® = 1, so br(T" v T®) = 1. Prove
that if (n; ) increases sufficiently rapidly, then gr(T™ v T®) = V2. Furthermore, show that the set of

possible values of gr(T" v T®) over all sequences (ny ) is [ V2,2].

2 1 2 1

Figure 1.11. A schematic of a tree with branching number 1 and growth rate V2.

1.4. Complete Example 1.4 by showing that when 47" is the conductance of edges at distance n
from the root of a binary tree 7', current does not flow for 4 > 2.
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Random Walks
and Electric Networks

The two topics of the title of this chapter do not sound related to each other, but in fact,
they are intimately connected in several extraordinarily useful ways. This is a discrete version
of profound and detailed connections between continuous potential theory and Brownian
motion, which we describe briefly in Section 2.9. The next chapter applies most of our work
here to particularly interesting classes of networks. For example, we’ll prove that the critical
parameter A separating transience from recurrence for the biased random walk RW, on a
general tree is equal to the branching number of the tree (as mentioned in Theorem 1.7).
Then Chapter 4 explains a marvelous link to a third topic, uniform spanning trees. Later,
in Chapter 9, we examine some of the subtleties inherent in infinite electrical networks.
Those ideas are then combined in Chapter 10 with the web of ideas in Chapter 4 to study the
analogues of uniform spanning trees in infinite networks.

Our principal interest in this chapter centers around transience and recurrence of irreducible
reversible Markov chains, otherwise known as network-based random walks. Although we
develop mathematically rigorous tools from electrical network theory for this purpose, these
tools will have the added benefit of allowing us to estimate hitting and cover times in finite
networks. They also give variances for a field of Gaussian random variables that is connected
to the network; this field is known variously as the canonical Gaussian field or the discrete
Gaussian free field. Techniques from the linear algebra of inner-product spaces give electrical
network theory a rich structure, which will be extended in Chapter 9. Many supplementary
results, often not requiring reversibility, are in the exercises at the end of the chapter.

2.1 Circuit Basics and Harmonic Functions

If a Markov chain starts at a state x, how can we determine whether it is bound to visit
another given state a, that is, whether the chance that it ever visits a is 1 or is less than 1?

Our theory will apply only to reversible Markov chains, where we call a Markov chain
reversible if there is a positive function x — 7(x) on the state space such that the transition
probabilities satisfy 7(x)p(x, y) = n(y)p(y, x) for all pairs of states x, y. (Such a function
7(+) will then provide a stationary measure: see Exercise 2.1 for this and for why we use the
name “reversible.” Note that nt(+) is not generally a probability measure.) In this case, make
a graph G (possibly with loops) by taking the states of the Markov chain for the vertices of G
and joining two vertices x, y by an edge when p(x, y) > 0. Assign weight

c(x,y) = m(x)p(x, y) 2.1
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to that edge; note that the condition of reversibility ensures that this weight is the same no
matter in what order we take the endpoints of the edge. With this network in hand, the Markov
chain may be described as a random walk on G: when the walk is at a vertex x, it chooses
randomly among the vertices adjacent to x with transition probabilities proportional to the
weights of the edges incident to x. Conversely, every connected graph with (positive) weights
on the edges such that the sum of the weights incident to every vertex is finite gives rise to a
random walk with transition probabilities proportional to the weights. Such a random walk
is an irreducible reversible Markov chain: define 7(x) to be the sum of the weights incident
to x.* Often, all the edge weights are equal; we call the random walk in this case simple
random walk. When a graph is given without weights, we take the weights to be identically
1 as a default.

The most well known example of a reversible Markov chain is gambler’s ruin. A gambler
needs $n but has only $& (1 < k < n— 1). He plays games that give him chance p of winning
$1 and chance g := 1 — p of losing $1 each time. When his fortune is either $n or 0, he
stops. What is his chance of ruin (that is, of reaching 0 before n)? We will answer this in
Example 2.4 by using the following weighted graph. The vertices are {0, 1,2,...,n}, the
edges are between consecutive integers, and the weights are c¢(i,i + 1) = c(i + 1,i) = (p/q)'.

Although we are interested ultimately in recurrence or transience of infinite networks, we
begin by studying random walks on finite networks. In fact, our first results will be about
finite Markov chains that need not be reversible. Suppose that A is a subset of states. Write 74
for the first time that the Markov chain visits (“hits”) some vertex in A; if the chain happens
to start in A, then 74 = 0. Occasionally, we will use 7, which is the first time after O that the
chain visits A; this is different from 74 only when the chain starts in A. Usually A will be a
singleton.

Consider the probability that the Markov chain visits A before it visits a disjoint subset Z
as a function of its starting point x:

F(x) :=P[ta < 17]. (2.2)

The key idea here is to let x vary, even if we are interested in a particular x. Recall that [
indicates the restriction of a function to a set. Clearly FJA=1, F[Z=0,andforx ¢ AU Z,

F(x) = ZPX [first step is to y] P [7a < 77 | first step is to y] = Zp(x, VF(y).
y X~y

In the reversible case, we can write further that

1
Fo =5 Z; c(x, Y)F(y),

* Suppose that we consider an edge e of G to have length c(e)~!. Run a Brownian motion on G and observe it
only when it reaches a vertex different from the previous one. Then we see the random walk on G just described (if
we ignore the fact that the times between observations vary). There are several equivalent ways to define rigorously
Brownian motion on G; one way is described in Section 2.9. See Georgakopoulos and Winkler (2014) for an
interesting analysis of Brownian motion on finite networks.
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where x ~ y indicates that x and y are adjacent in G. In the special case of simple random
walk, this equation becomes

1
F(x) = @;F()’),

where deg x is the degree of x, that is, the number of edges incident to x. In words, F(x)
is the average of the values of F at the neighbors of x. In general, this is still true, but the
average is taken with weights.

This averaging property is so important that it has a name: a function f is harmonic at x
when

&)= pean)fe).

X~y

If f is harmonic at each point of a set W, then we say that f is harmonic on W. Harmonic
functions satisfy a maximum principle. To state it, we use the following concept: the chain
absorbed off of W is the Markov chain whose transition probabilities are modified only so
that p(x,x) =1 for x ¢ W.

Maximum Principle. Let W be a set of states of a Markov chain on a finite or countable
state space V. If f:V — Ris a function that is harmonic on W and the supremum of f on V

is achieved at some element xo € W, then f is constant on all states accessible from x in the
chain absorbed off of W.

Proof. Let K := {y € V; f(y) =sup f}. Note thatif x € W N K and p(x,y) > 0, then
y € K because f is harmonic at x. Hence the conclusion follows. <

This leads to the

Uniqueness Principle. Let W be a finite proper subset of states of a Markov chain on a finite
or countable state space V. Suppose that V \ W is accessible from every state in W for the
chain absorbed off of W. If f, g:V — R are two functions that are both harmonic on W and
agree off W (that is, f(x) = g(x) forall x ¢ W), then f = g.

Proof. Let h := f — g. We claim that 4 < 0. This suffices to establish the corollary, since
then 2 > 0 by symmetry, whence /1 = 0.

Now h = 0 off W. Since W is finite, & achieves its overall supremum at some point xo € V.
If xo ¢ W, then & < 0, as desired. On the other hand, if x; € W, then by the maximum
principle, h(xg) < sup 2[(V \ W) = 0, which again shows that & < 0. <

Here are two consequences of the uniqueness principle: (1) The harmonicity of the function
x  Py[t4 < 7z] on a finite irreducible Markov chain (together with its values where it is
not harmonic) characterizes this function. (2) If f, f;, and f, are harmonic on some finite
proper subset W Cc V and a;,a; € Rwith f =a,f) +axf, onV\ W, then f = a; f| + ar />
everywhere. This is one form of the superposition principle.

Given a function defined on a subset of states, the Dirichlet problem asks whether the
given function can be extended to all states of the Markov chain so as to be harmonic wherever
it was not originally defined. The answer is often yes:
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Existence Principle. Let W be a proper subset of states of a Markov chain on a finite
or countable state space V. If fo:V\ W — R is bounded, then 3f:V — R such that
STV\W) = foand f is harmonic on W.

Proof. For any starting point x of the Markov chain, let X be the first vertex in V \ W visited
by the Markov chain if V \ W is indeed visited. Let Y := fo(X) when V \ W is visited and
Y := 0 otherwise. It is easily checked that f(x) := E,[Y] works by using first-step analysis,
that is, the same method as we used to see that the function F of (2.2) is harmonic. |

An example for simple random walk is shown in Figure 2.1, where the function was
specified to be 1 at two vertices, 0.5 at another, and O at a fourth; the function is harmonic
elsewhere.

Figure 2.1. A harmonic function on a 40 x 40 square
grid with four specified values where it is not harmonic.

The function F of (2.2) is the particular case of the existence principle where W = V\(AUZ),
JolA=1,and foIZ = 0.

For finite Markov chains, we could have immediately deduced the existence principle from
the uniqueness principle: The Dirichlet problem on a finite state space consists of a finite
number of linear equations, one for each state in W. Since the number of unknowns is equal
to the number of equations, the uniqueness principle implies the existence principle.

To make further progress toward our goal of determining whether certain states are bound
to be visited, we will need to assume reversibility, which we do from now on, unless stated
otherwise. The following exercise contains some background information and facts that
we will use about reversible Markov chains. Additional background on Markov chains, not
necessarily reversible, is in Exercises 2.42 and 2.43.
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> Exercise 2.1.
(Reversible Markov Chains)

(a) Let P be the transition probability matrix of a Markov chain. Show that if P is
n-reversible, that is, 7(x)p(x, y) = n(y)p(y, x) for all states x, y, then x is P-stationary, that
is, Y m(x)p(x, y) = n(y) for all states y.

(b) Let P be the transition probability matrix of a Markov chain and 7 be P-stationary.
Define the reversed Markov chain to have transition probabilities

p(x,y) := n(y)p(y, x)/m(x)

and write P for the associated transition matrix. Show that P is indeed a transition matrix
and that Vx{, x2, ..., X,,

n-1 n—1
m(xy) Hp(xi, Xis1) = m(xy) Hﬁ(xml—i, Xp-i) -

i=1 i=1

Of course, P is m-reversible iff P = P.
(¢) Show that if a Markov chain is reversible, then Vx1, x5, . . ., x,, wWith x| = x,,,

n-1 n-1

Hp(xi, Xiv1) = HP(Xnnfi,ani) :

i=1 i=1

the chance of traversing a cycle is the same in either direction. Show too that this equation
implies reversibility.

(d) Let (X,) be a random walk on a network G, and let x and y be two vertices in G.
Let  be a path from x to y and P’ be its reversal, a path from y to x. Show that

px[<Xn;ngry)=P|ry<T;{]=Py[<X”;ngrx)=P’|Tx<T;],

where 1, denotes the first time the random walk visits w, /> 7, denotes the first time after 0
that the random walk visits w, and P,, denotes the law of random walk started at u. In words,
paths between two states that don’t return to the starting point and stop at the first visit to the
endpoint have the same distribution in both directions of time.

(e) Consider a random walk on a network G that is either transient or is stopped on the
first visit to a set of vertices Z. Let ¢4(x, y) be the expected number of visits to y for a random
walk started at x; if the walk is stopped at Z, we count only those visits that occur strictly
before visiting Z. Show that for every pair of vertices x and y,

m(x)4(x,y) = 7(y)¥(y, x) .

(f) Show that random walk on a connected network G is positive recurrent (that is, has a
stationary probability distribution, which is therefore unique) iff Zx’y c(x,y) < oo, in which
case the stationary probability distribution is proportional to 7(+). Show that if the random
walk is not positive recurrent, then 7(+) is a stationary infinite measure.
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To study the solution to the Dirichlet problem, especially for a sequence of subgraphs of an
infinite graph, we will discover that electrical networks are wonderfully suited. Electrical
networks, of course, have a physical meaning whose intuition is useful to us, but also they
can be used as a rigorous mathematical tool. We now spend the rest of the chapter developing
and exploiting this tool.

Mathematically, an electrical network is just a weighted graph.* But now we call the
weights of the edges conductances; their reciprocals are called resistances. (Note that, later,
we will encounter effective conductances and resistances; these are not the same.) We denote
c(x,y)"! by r(x, y). The reason for this and more new terminology is that not only does it
match physics, but the physics can aid our intuition. We will carefully define everything in
pure mathematical terms but also give a little of the physical background. Whenever we
speak of physics, we will use the symbol # # in the margin to indicate that it is merely for
intuition and is not used in any proofs whatsoever. Given two subsets A and Z of vertices of a
network, a voltage function is a function on the vertices of the network that is harmonic at all
x ¢ AU Z. Usually, the voltage will be specified to be 1 on A and 0 on Z. For example, our
hitting probability function F, defined in (2.2), is such a voltage function. Given a voltage
function v, we define the associated current function i on the edges by

i(x, y) = c(x, y)[v(x) - v(y)].

Notice that i(x, y) = —i(y, x) and that current flows in the direction of decreasing voltage, by
which we mean that i(x, y) > 0 iff v(x) > v(y). Notice also that whenever v is harmonic at a
vertex x, we have

0=0(x) > e, 3) = D cle 1)ol) = D it y).
X~y X~y X~y

This property is sufficiently important that it gets a name in a broader context. Namely,
a function 6 on ordered pairs of neighboring vertices is called a flow between A and Z if
0(x,y) = —=0(y, x) for all neighbors x, y and Zy~x O(x,y)=0forallx ¢ AU Z.

This definition of current and this property of current are usually called “laws” as follows.

Ohm’s Law: If x ~ y, the current i(x, y) from x to y satisfies

v(x) = o(y) = i(x, y)r(x, y).

Kirchhoff’s Node Law: The current is a flow between A and Z.

Now if we sum the differences of a function, such as the voltage v, on the edges of a cycle,
we get 0. Thus, by Ohm’s law, we deduce

Kirchhoff’s Cycle Law: If x; ~ x5 ~--- ~ x,, ~ Xx,41 = X1 is a cycle, then

n

Z i(Xk, Xpa1) 7(Xk, Xpes1) = 0.

k=1

* We are ignoring capacitors and inductors, whose usefulness to probability theory is not clear.
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One can also deduce Ohm’s law from Kirchhoff’s two laws, in other words, a flow that
satisfies Kirchhoff’s cycle law is a current. A somewhat more general statement is in the
following exercise.

> Exercise 2.2.
Suppose that an antisymmetric function j (meaning that j(x, y) = —j(y, x)) on the edges of a
finite connected network satisfies Kirchhoff’s cycle law and satisfies Kirchhoff’s node law in
the form Zpy Jj(x,y) =0forall x € W. Show that j is the current corresponding to some
voltage function whose values are specified off W and that the voltage function is unique up
to an additive constant.

# ¥ The remainder of this section gives some physical background for this terminology. Edges
of the network are made of conducting wires. We hook up a battery or batteries between A
and Z so that the voltage at every vertex in A is 1 and in Z is 0 (or more generally, so that the
voltages on V \ W are given by some function f;). Sometimes, voltages are called potentials
or potential differences. Voltages v are then established at every vertex and current i runs
through the edges. These functions are observed in experiments to satisfy Ohm’s law and
Kirchhoff’s law. Physically, Ohm’s law, which is usually stated as v = ir in engineering, is an
empirical statement about linear response to voltage differences — certain components obey
this law over a wide range of voltage differences. Kirchhoff’s node law expresses the fact that
charge does not build up at a node (current being the passage rate of charge per unit time). If
we count the currents in the wires corresponding to the batteries, then the sum of the currents
at every vertex is 0, not merely at x ¢ AU Z.

2.2 More Probabilistic Interpretations

Suppose that A = {a} is a singleton. What is the chance that a random walk starting at a
will hit Z before it returns to a? Write this as

Pla — Z] =P, [tz < 7}].

Impose a voltage of v(a) at a and 0 on Z. Since v(+) is linear in v(a) by the superposition
principle, we have that P,[1, < 7z] = v(x)/v(a), whence

Pla — 7] = Y pla, (1 - B, < ) = 30 S [y 2]

— @) L (@

1 | .
" v(a)r(a) zx: c(a, x)[v(a) - v(x)] = @)@ zx:t(a,x).

In other words,

>y ila, x)

" Pl - 21

(2.3)
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Since ) i(a, x) is the total amount of current flowing into the circuit at a (by defini-
tion), we may regard the entire circuit between a and Z as a single conductor of effective
conductance

Ce :=n(a)Pla > Z] =1 6(a & Z), (2.4)

where the last notation indicates the dependence on a and Z. If we need to indicate the
dependence on G, we will write €(a < Z; G). (Recall that (- ) is not generally a probability
measure.) The similarity to (2.1) can provide a good mnemonic, but the analogy should not
be pushed too far. We define the effective resistance %(a < Z) to be the reciprocal of the
effective conductance; in case a € Z, then we also define Z(a < Z) := 0. One answer to our
earlier question is thus Pla — Z] = ¢(a & Z)/n(a). In Sections 2.3 and 2.4, we will see
some ways to compute effective conductances.

Now the number of visits to a before hitting Z is a geometric random variable with mean
Pla — Z]' = n(a)%(a < Z). According to (2.3), this can also be expressed as (a)v(a)
when there is unit current flowing from a to Z and the voltage is 0 on Z. This generalizes
as follows. Let ¢z (a, x) be the expected number of visits to x strictly before hitting Z by a
random walk started at a. Thus, ¥7(a, x) = 0 for x € Z and

Gs(a,a) =Pla — Z]™' = n(a)%(a & Z). (2.5)

The function ¥, (-, -) is the Green function for the random walk absorbed (or “killed”) on Z.
By definition of current, scaling the voltage by multiplying all values by a constant also scales
the current by the same factor. Whereas in the preceding section, it was useful to take the
voltage to have values 0 and 1 at special vertices, here it will be useful to scale so that the
total current flow is 1, in other words, the current is a unit flow.

Proposition 2.1. (Green Function as Voltage) Ler G be a finite connected network. When
a voltage is imposed on {a} U Z so that a unit current flows from a to Z and the voltage is 0
on Z, then the voltage function satisfies v(x) = 9z(a, x)/n(x) for all x.

Proof. We have just shown that this is true for x € {a} U Z, so it suffices to establish that
9z(a, x)/n(x) is harmonic elsewhere. But by Exercise 2.1, we have that 4,(a, x)/n(x) =
97(x,a)/n(a), and the harmonicity of ¥z(x, a) is established just as for the function of (2.2).

|

Given that we now have two probabilistic interpretations of voltage, we naturally wonder
whether current has a probabilistic interpretation. We might guess one by the following
unrealistic but simple model of electricity: positive particles enter the circuit at a, they do
Brownian motion on G (being less likely to pass through small conductors), and, when they
hit Z, they are removed. The net flow rate of particles across an edge would then be the
current on that edge. It turns out that in our mathematical model, this is basically correct:

Proposition 2.2. (Current as Edge Crossings) Let G be a finite connected network. Start
a random walk at a and absorb it when it first visits Z. For x ~ Yy, let Sy, be the number of
transitions from x to y. Then E[Sxy] = 9z(a, x)p(x,y) and E[Syy, — Sy] = i(x, y), where i is
the current in G when a potential is applied between a and Z in such an amount that unit
current flows in at a.

Note that we count a transition from y to x when y ¢ Z but x € Z, although we do not
count this as a visit to x in computing ¥z (a, x).
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Proof. We have

[Sxy] = E[Z l[xk=x,xk+1=y]} = Z P[Xy = x, X1 = Y]
k=0

o)

= 3PIX, = e = IS U ) = 0. 0pt.3),

k=0

Hence, by Proposition 2.1, we have

Vx,y E[Syy = Syx] = 9z(a, x)p(x,y) — 9z(a, y)p(y, x)
= v(xX)(x)p(x, y) — v(y)r(y)p(y, x)
= [v(x) = v()]e(x, y) = i(x,y). <

Effective conductance is a key quantity because of the following relationship to the question
of transience and recurrence when G is infinite. For an infinite network G, we assume that

Vx Z c(x,y) < oo, (2.6)

X~y

so that the associated random walk is well defined. (Of course, this is true when G is
locally finite, that is, the number of edges incident to every given vertex is finite.) It will be
convenient to allow more than one edge between a given pair of vertices: each such edge
has its own conductance. We’ll also allow loops (edges with only one endpoint), but these
may be ignored for our present purposes since they only delay the random walk. Strictly
speaking, then, G may be a multigraph, not a graph. When a random walk moves from x
to y in a multigraph that has several edges connecting x to y, then we think of the walk as
moving along one of those edges, chosen with probability proportional to its conductance.
Thus, the multigraph form of Proposition 2.2 is E[S. ]| = ¥z(a, ¢”)p(e) and E[S, — S_.] = i(e).
However, we will usually ignore the extra notational complications that arise for multigraphs.
In fact, we have not yet used anywhere that G has only finitely many edges:

> Exercise 2.3.
Verify that Propositions 2.1 and 2.2 are valid when the number of edges is infinite but the
number of vertices is finite.

The way we approach infinite networks in this chapter is by taking large finite subgraphs.
More precisely, for an infinite network G, let (G,,) be any sequence of finite subgraphs of G
that exhaust G, that is, G,, € G+ and G = | J G,,. Each edge in G, is an edge in G, so we
simply give it the same conductance it has in G. We also assume that G, is the graph induced
in G by V(G,,). Let Z, be the set of vertices in G \ G,,. Let GX" be the graph obtained from
G by identifying Z, to a single vertex, z,, and then removing loops (but keeping multiple
edges). This graph will have finitely many vertices but may have infinitely many edges even
when loops are deleted if some vertex of G,, has infinite degree. Given a network random
walk on G, if we stop it the first time it reaches Z,,, then we obtain a network random walk
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on G until it reaches z,,. Now for every a € G, the events [a — Z,] are decreasing in
n, so the limit lim, P[a — Z,] is the probability of never returning to a in G, which we
call the escape probability from a. This is positive iff the random walk on G is transient.
Hence, by (2.4), lim,, o, €(a & z,; GXV) > ( iff the random walk on G is transient. We call
lim,, e €(a < z,) the effective conductance from a to « in G and denote it by ¢ (a < o)
or, if a is understood, by Ceg. Its reciprocal, effective resistance, is denoted R.;. We have
shown:

Theorem 2.3. (Transience and Effective Conductance) Random walk on an infinite
connected network is transient iff the effective conductance from any of its vertices to infinity
is positive.

> Exercise 2.4.
For a fixed vertex a in G, show that lim,, ¥(a < Z,) is the same for every sequence (G, ) of
induced subgraphs that exhausts G.

> Exercise 2.5.
When G is finite but A is not a singleton, define (A < Z) to be ¢ (a < Z) if all the vertices
in A were to be identified to a single vertex, a. Show that if voltages are applied at the
vertices of A U Z so that v[ A and v[Z are constants, then v[A — v Z = Tpz%Z(A & Z),
where Tz := 3 4 >_, i(x, y) is the total amount of current flowing from A to Z.

2.3 Network Reduction

How do we calculate effective conductance of a network between, say, two vertices a and
z? Since we want to replace a network by an equivalent single conductor, it is natural to
attempt this by replacing more and more of G through simple transformations, leaving a and
z but possibly removing other vertices. There are, in fact, three such simple transformations:
series, parallel, and star-triangle. Remarkably, these three transformations suffice to reduce
all finite planar networks according to a theorem of Epifanov; see Truemper (1989).

I. Series Law. Two resistors* r; and r, in series are equivalent to a single resistor r| + r;.
In other words, if w € V(G) \ (AU Z) is a node of degree 2 with neighbors u, u, and we
replace the edges (;, w) by a single edge (u;, u,) having resistance r(u;, w) + r(w, uy), then
all potentials and currents in G \ {w} are unchanged and the current that flows from u; to u,
equals i(uy, w).

:ul w uzi

Proof. Tt suffices to check that Ohm’s and Kirchhoff’s laws are satisfied on the new network
for the voltages and currents given. This is easy. <

* A resistor r is an edge with resistance ». We have drawn such edges using the squiggly notation common to
physics, but this only indicates that they have weights.



28 CHAP. 2: RaANDOM WALKS AND ELECTRIC NETWORKS

> Exercise 2.6.
Give two harder but instructive proofs of the series equivalence as follows. Since voltages
determine currents, it suffices to check that the voltages are as claimed on the new network G'.
(1) Show that v [(V(G) \ {w}) is harmonic on V(G’) \ (A U Z). (2) Use the “craps principle”
(Pitman (1993), p. 210) to show that P, [74 < 7] is unchanged for x € V(G) \ {w}.

Example 2.4. Consider simple random walk on Z. Let 0 < k < n. What is P [y < 7,,]?
It is the voltage at kK when there is a unit voltage imposed at O and zero voltage at n. If
we replace the resistors in series from O to k by a single resistor with resistance k and the
resistors from & to n by a single resistor of resistance n — k, then the voltage at k does not
change. But now this voltage is simply the probability of taking a step to 0, which is thus
(n-k)/n.

For the more general gambler’s ruin, rather than simple random walk, we have the
conductances c(i,i + 1) = (p/q)’. The replacement of edges in series by single edges
now gives one edge from O to k of resistance Zf:ol(q /p)" and one edge from k to n of

resistance Y./ (¢/p)’. The probability of ruin is therefore S/ (q/p)'/ 20 (a/p) =
[(p/9)"™* = 11/1(p/q)" — 11.

II. Parallel Law. Two conductors* ¢ and c; in parallel are equivalent to one conductor
c1 + ¢3. In other words, if two edges e¢; and e; that both join vertices w;, w, € V(G) are
replaced by a single edge e joining w;, w, of conductance c(e) := c(e;) + c(ez), then all
voltages and currents in G \ {e1, 2} are unchanged and the current i(e) equals i(ey) + i(e2)
(if e, e; and e, have the same orientations, that is, same tail and head). This transformation is
valid even for an infinite number of edges in parallel.

€l
e
Proof. Check Ohm’s and Kirchhoft’s laws with i(e) := i(e1) + i(ey). <

> Exercise 2.7.
Give two more proofs of the parallel equivalence as in Exercise 2.6.

Before explaining the star-triangle transformation, we give two amusing examples of the
series and parallel transformations, as well as a useful general consequence.

Example 2.5. Suppose that each edge in the following network has equal conductance. What
is Pla — z]? We may assume that the edge conductances are all 1, since the probability is not
affected by a change in scale of the conductances. Following the transformations indicated in
the figure, we obtain €'(a < z) = 7/12, so that

Claeoz) T/12 7
@) 3 36

Pla - 7] =

* A conductor c is an edge with conductance c.
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Note that in any network G with voltage applied from a to z, if it happens that v(x) = v(y),
then we may identify x and y to a single vertex, obtaining a new network G/{x, y} in which
the voltages at all vertices are the same as in G.

Example 2.6. What is P[a — z] in the following network?

There are two ways to deal with the vertical edge:

(1) Remove it: by symmetry, the voltages at its endpoints are equal, whence no current
flows on it.

(2) Contract it, that is, remove it but combine its endpoints into one vertex (we could also
combine the other two unlabeled vertices with each other): the voltages are the same, so they
may be combined.

In either case, we get €(a < z) = 2/3, whence Pla — z] = 1/3.
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> Exercise 2.8.
Let (G, ¢) be a network. A network automorphism of (G, c¢) is amap ¢:G — G thatis a
bijection of the vertex set with itself and a bijection of the edge set with itself such that if
x and e are incident, then so are ¢(x) and ¢(e) and such that c(e) = ¢(¢(e)) for all edges e.
Suppose that (G, ¢) is spherically symmetric about o, meaning that if x and y are any two
vertices at the same distance from o, then there is an automorphism of (G, c) that leaves o
fixed and that takes x to y. Let C,, be the sum of c(e) over all edges e with d(e”,0) =n —1

and d(e*, 0) = n. Show that

%(OHOO)=ZCL’

nx1 "

whence the network random walk on G is transient iff
1
> .
n>1 "

III. Star-Triangle Law. The configurations in Figure 2.2 are equivalent when
Vi e {1,2,3} c(w,ui)e(i-1,uis1) =7,

where indices are taken mod 3 and

_ Hi c(w, u;) _ Zi r(ui-1, tis)
Zic(w”/‘i) Hﬂ’(“i—l,um).

We won’t use this equivalence, except in Example 2.7 and the exercises. This is also called
the “Y-A” or “Wye-Delta” transformation.

U

Ui Ui Uz

us
Figure 2.2. The star-triangle equivalence.

> Exercise 2.9.
Give at least one proof of the star-triangle equivalence.

Actually, there is a fourth trivial transformation: we may prune (or add) vertices of degree
1 (and attendant edges) as well as loops.

> Exercise 2.10.
Find a (finite) graph with two vertices a and z that can’t be reduced to a single edge between
a and z by the four transformations pruning, series, parallel, and star-triangle.
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Either of the transformations star-triangle or triangle-star can also be used to reduce the
network in Example 2.6.
Example 2.7. What is P,[7, < 7] in the following network? Following the transformations
indicated in the figure, we obtain
20/33 8
20/33+15/22  17°

Pr, <7]=

1/3

172
172

1/3 X

1/11

Vi RN 172
a 7 -~ a

1/3 X
20/33 15/22

2.4 Energy

We now come to another extremely useful concept, energy.* We will begin with some
convenient notation and some facts about this notation. Unfortunately, there is actually a
fair bit of notation. But once we have it all in place, we will be able to quickly reap some
valuable consequences. In particular, we will prove a powerful monotonicity principle due
to Rayleigh: a transient network whose edge conductances are increased remains transient.
This should be contrasted with the lack of monotonicity of return probabilities p,(a, a), for
example, whose summability determines transience.

We will often contract some vertices in a graph, which may produce a multigraph. When
we say that a graph is finite, we mean that V and E are finite. In this section, we consider
only finite networks. Define £2(V) to be the usual real Hilbert space of functions on V with
inner product

(f.8) =) f(x)g(x).

xeV

V4’4 * Although the term energy is used for mathematical reasons, the physical concept is actually power dissipation.
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Since we are interested in flows on E, it is natural to consider that what flows one way is the
negative of what flows the other. From now on, each edge occurs with both orientations.
Thus, define £2(E) to be the space of antisymmetric functions 6 on E (that is, 6(—e) = —6(e)
for each edge e) with the inner product

0,0 := % D 00 (e)= D 0(e)d(e),

e€E eEEl/g

where Ej/; C E is a set of edges containing exactly one of each pair e, —e. Since voltage
differences across edges lead to currents, define the coboundary operator d: t>(V) — ¢ (E)
by
(df)(e) := f(e7) = f(e").

(Note that this is the negative of the more natural definition; but since current flows from
greater to lesser voltage, it is the more useful definition for us.) This operator is clearly linear.
Conversely, given an antisymmetric function on the edges, we are interested in the net flow
out of a vertex, whence we define the boundary operator d*: {>(E) — {>(V) by

(d"0)(x) =) 0(e).

e =x

This operator is also clearly linear. We use the superscript * because these two operators are
adjoints of each other:

Viel?(V) VO e ’(E)  (0,df)=(d"0,f).

> Exercise 2.11.
Prove that d and d* are adjoints of each other.

One use of this notation is that the calculation left here for Exercise 2.11 need not be
repeated every time it arises — and it arises a lot. Another use is the following compact forms
of the network laws. Let i be a current.

Ohm’s Law: dv =ir, thatis, Ve € E duv(e) = i(e)r(e).
Kirchhoff’s Node Law: d"i(x)=0 ifx¢ AUZ.

It will be useful to study flows other than current to discover a special property of the
current flow. We can imagine water flowing through a network of pipes. Let 6 € ¢2(E) be a
function, which we think of as a flow. The amount of water flowing into the network at a
vertex a is d*0(a). Thus, we call 6 € £2(E) a flow between A to Z if d*6 is 0 off of A and Z;
if it is nonnegative on A and nonpositive on Z, then we say that 6 is a flow from A to Z. The
total amount flowing into the network is then >, _, d*6(a); not surprisingly, this is also the
total amount flowing out of the network, as the next lemma shows. We call

Strength(9) := Zd*e(a)

acA

the strength of the flow 6. A flow of strength 1 is called a unit flow.
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Lemma 2.8. (Flow Conservation) Let G be a finite graph and A and Z be two disjoint
subsets of its vertices. If 0 is a flow between A and Z, then

D d0(a)=-) d'0(z).

acA z€Z

Proof. We have

N d o)+ do(x)= > d'0(x)=(d"0.1)=(6.d1) = (6,0)=0

XEA xX€Z xX€eAUZ

since d*0(x)=0forx ¢ AU Z. <
The following consequence will be useful in a moment.
Lemma 2.9. Let G be a finite graph and A and Z be two disjoint subsets of its vertices. If 0
is a flow from Ato Z and f1 A, f|Z are constants a and {, respectively, then
(0, df) = Strength(6)(a = ¢).
Proof. Wehave (0,df) = (d*0, ) =, cad*0(@)a+ . ., d*0(z){. Now apply Lemma 2.8.
|

¥ ¥  When a current i flows through a resistor of resistance r and voltage difference v, energy is
dissipated at rate P = iv = i’r = i*/c = v*c = v*/r. We are interested in the total power (=
energy per unit time) dissipated.

Notation. Write
(f+8)n = (fh,g) =(f,gh)

1/ lln = N -

and

Definition. For an antisymmetric function 6, define its energy to be
) =017

where r is the collection of resistances.

Thus &(i) = (i,i), = (i, dv). If i is a unit current flow from A to Z with voltages v, and vz
that are constant on A and on Z, respectively, then by Lemma 2.9 and Exercise 2.5,

E(l)=va—vz=%(A & Z). (2.7

This will be an important tool to estimate effective resistances.
The inner product (-, ), is important not only for its squared norm &(-). For example,
we may express Kirchhoff’s laws as follows. Let x¢ := 1y} — 14_.) denote the unit flow
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along e represented as an antisymmetric function in £%(E). Note that for every antisymmetric
function 6 and every e, we have

(X<, 0), =6(e)r(e),
so that
(Z c(e)x®, 9) =d*0(x). (2.8)

Let i be any current.

Kirchhoff’s Node Law: For every vertex x ¢ AU Z, we have

(Z c(e)Xe,i) =0.

e~=x r

Kirchhoff’s Cycle Law: If e, e;, . . ., e, is an oriented cycle in G, then
(Z X, i) - 0.
k=1 r

Now for our last bit of notation before everything comes into focus, let > ,-_ c(e)x* be
the star at x, and let % denote the subspace in £2(E) spanned by all the stars. Let ¢ denote
the subspace spanned by the cycles ZZ=1 X, where ey, e, . . ., e, forms an oriented cycle.
We call these subspaces the star space and the cycle space of G. These subspaces are clearly
orthogonal to each other; here and subsequently, orthogonality refers to the inner product
(+,+),. To indicate that we use the inner product (-, -), on £2(E), we write the space as £2(E, r).
Moreover, the sum of % and < is all of £2 (E, r), which is the same as saying that only the zero
vector is orthogonal to both Y and <. To see that this is the case, suppose that 8 € £ (E, r)
is orthogonal to both % and $. Since @ is orthogonal to ¢, there is a function F such that
0 = c dF by Exercise 2.2 (use W := @ there). Since 6 is orthogonal to %, the function F
is harmonic. Since G is finite, the uniqueness principle implies that F' is constant on each
component of G, whence 6 = 0, as desired.

Thus, Kirchhoft’s cycle law says that i, being orthogonal to <, is in %. Furthermore, any
i € % is a current by Exercise 2.2 (let W := {x; (d*i)(x) = 0}). Now if 8 is any flow with
the same sources and sinks as i, more precisely, if 6 is any antisymmetric function such that
d*0 = d*i, then 6 — i is a sourceless flow; in other words, by (2.8), it is orthogonal to % and
thus is an element of &. Therefore, the expression

0=i+(0—i)

is the orthogonal decomposition of @ relative to ¢>(E,r) = % ©<. This hints that the
orthogonal projection Py : £>(E, r) — % plays a crucial role in network theory. In particular,

i=Pyb (2.9)

and
N1 = Nlill; + 116 — i} - (2.10)

This leads to the following all-important principle:
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Thomson’s Principle. Let G be a finite network and A and Z be two disjoint subsets of its
vertices. Let 6 be a flow from A to Z and i be the current flow from A to Z with d*i = d*6.
Then £(0) > &(i) unless 6 = i.

Proof. The result is an immediate consequence of (2.10). <

Note that given 6, the corresponding current i such that d*i = d*6 is unique (and given by
(2.9)).

Recall that E|/, C E is a set of edges containing exactly one of each pair e, —e. This gives a
convenient orthogonal basis {x*; e € E;;,} of £2(E, r); these vectors are not necessarily unit
vectors, as ||X¢||? = r(e). What is the matrix of Py in the orthogonal basis {x¢; e € E;3}?
We have

(PaX®, X)r = (i€, X)), = i%(e)r(e), (2.11)

where i€ is the unit current from e~ to e*. Therefore, the matrix coefficient at (e’, ) equals
(Pa XS X)) ] (XS, X)), = i€(e") =: Y(e,e’), the current that flows across ¢’ when a unit
current is imposed between the endpoints of e. This matrix is called the transfer current
matrix. This matrix will be extremely useful for our study of random spanning trees and
forests in Chapters 4 and 10. Since Py, being an orthogonal projection, is self-adjoint, we
have (PxX ¢, X*)r = (X°, PxX“),, whence

Y(e,e)r(e')=Y(e', e)r(e). (2.12)

This is called the reciprocity law.

Recall that the escape probabilities P[a — Z] were important to determining whether a
network was recurrent or transient. Let’s use our new concepts to analyze these probabilities.
For example, how do the escape probabilities change when an edge is removed from G?
When an edge is added? When the conductance of an edge is changed? These questions
are not easy to answer probabilistically but yield to the ideas we have developed. Since
Pla —» Z] =¢(a & Z)/n(a), if no edge incident to a is affected, then we need analyze only
the change in effective conductance.

> Exercise 2.12.
Show that P[a — Z] can increase in some situations and decrease in others when an edge
incident to a is removed.

The following powerful principle tells us how effective conductance changes. We use
subscripts to indicate the edge conductances used.

Rayleigh’s Monotonicity Principle. Let G be a connected graph with two assignments, ¢
and ¢’, of conductances on G with ¢ < ¢’ (everywhere).
(i) If G is finite and A and Z two disjoint subsets of its vertices, then €.(A & Z) <
G (Ao 2).
(ii) If G is infinite and a is one of its vertices, then €.(a < ) < €.(a & ). In
particular, if (G, ¢) is transient, then so is (G, ¢’).
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Proof. Part (ii) is immediate from part (i), so we concentrate on part (i). By (2.7), we have
¢ (A & Z)=1/&(i) for a unit current flow i from A to Z. Now

éoc(ic) 2 éac’(ic) 2 (goc'(ic’),

where the first inequality follows from the definition of energy and the second from Thomson’s
principle (after identifying Z to a singleton). Taking reciprocals gives the result. <

In particular, removing an edge decreases effective conductance, so if the edge is not
incident to a, then its removal decreases P[a — Z]. In addition, contracting an edge (called
“shorting” in electrical network theory), that is, identifying its two endpoints and removing
the resulting loop, increases the effective conductance between any sets of vertices. This is
intuitive from thinking of increasing to infinity the conductance on the edge to be contracted,
so we will still refer to it as part of Rayleigh’s monotonicity principle. To prove it rigorously,
let i be the unit current flow from A to Z. If the graph G with the edge e contracted is denoted
G /e, then the edge set of G/e may be identified with E(G) \ {e}. If ¢ does not connect A
to Z, then the restriction 6 of i to the edges of G/e is a unit flow from A to Z, whence the
effective resistance between A and Z in G/e is at most £(@), which is at most &(i), which
equals the effective resistance in G.

> Exercise 2.13.
Given disjoint vertex sets A, Z in a finite network, we may express the effective resistance
between A and Z by Thomson’s principle as

(A & Z) = min { Z r(e)0(e)*; @ is a unit flow from A to Z} .

ecE; )

Prove the following dual expression for the effective conductance, known as Dirichlet’s
principle:

(Ao Z)= min{ > cle)dF(e)*; FTA=1, F1Z= 0} .

ecEqp

2.5 Transience and Recurrence

We have seen that effective conductance from any vertex to oo is positive iff the random
walk is transient. Thus, a lower bound on the effective resistance between vertices in a network
can be useful to show recurrence. To use the energy formulation of effective resistance, (2.7),
we use the following notion. Let A and Z be two disjoint sets of vertices. A set IT of edges
separates A and Z if every path with one endpoint in A and the other endpoint in Z must
include an edge in II; we also call IT a cutset.
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The Nash-Williams Inequality. If a and z are distinct vertices in a finite network that are

separated by pairwise disjoint cutsets 11y, ...,1I1,, then
n -1
Raez)z) ( > c(e)) . (2.13)
k=1 eelly

Proof. By (2.7), it suffices to show that the unit current flow i from a to z has energy at
least the right-hand side. Now given a finite cutset II that separates a from z, let Z be the
set of endpoints of I1 that are separated by II from a. Let K denote the set of vertices that
are not separated from a by II. Let H := G[(K U Z) be the subnetwork of G induced by
K U Z. Then i induces a unit flow iy from a to Z, whence Lemma 2.8 applied to H gives
== czd%iu(x) ==,z .cpile). If both the head and tail of e happen to lie in Z,
then i(e) occurs together with i(—e) in that sum, so they cancel. Also, all edges in H with
only one endpoint in Z must lie in IT. Therefore, Y, li(e)| > 1, and so the Cauchy-Schwarz

inequality gives
2
D i) r(e) Y cle) 2 (Z Ii(e)l) > 1.
eell ecll eell
In other words,

-1
Z i(e)’r(e) > (Z c(e)) )

eell eell
Substitute I = II; and add fork =1,...,n. |

To apply this to infinite networks, say that a set II of edges separates a and  if every
infinite simple path from a must include an edge in I1; we also call II a cutset.

The Nash-Williams Criterion. If (I1,,) is a sequence of pairwise disjoint finite cutsets in a
locally finite network G, each of which separates a from oo, then

-1
Ha & 0) >y ( > c(e)) . (2.14)

n eell,

In particular, if the right-hand side is infinite, then G is recurrent.

Proof. For n > 1, choose a finite subnetwork G, that contains | J;_, II; and identify its
complementary set of vertices to a single vertex, z,, as usual, to form the finite network G)’lv.
Then Z(a < o) = lim,_, Z(a < z,), so (2.13) gives the conclusion. <

Remark 2.10. If the cutsets can be ordered so that II; separates a from I, and for n > 1,
I1,, separates I1,,_; from II,,,;, then the sum appearing in the statement of this criterion has a
natural interpretation: Short together (that is, join by edges of infinite conductance, or, in
other words, identify) all the vertices between II,, and I1,,,, into one vertex U,,. Short all the
vertices that I1; separates from oco into one vertex Uy. Then only parallel edges of 11, join

U,-1 to U,. Replace these edges by a single edge of resistance (Ze eI, c(e))_l. This new
network is a series network with effective resistance from Uy to co equal to the right-hand
side of (2.14). Thus, Rayleigh’s monotonicity principle shows that the effective resistance
from a to oo in G is at least the right-hand side of (2.14).

The Nash-Williams criterion allows us to prove the first part of Pélya’s (1921) famous and
beautiful theorem concerning random walk on the integer lattices.
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Pélya’s Theorem (first part). Simple random walk on the nearest-neighbor graph of Z¢ is
recurrent for d = 1,2.

Proof. For d = 1,2, we can use the Nash-Williams criterion with cutsets
I, := {e; d0,e’)=n-1, d0,e") = n} ,
where 0 is the origin and d(-, -) is the graph distance. <

To show that simple random walk on Z¢ is transient for d > 3, we need another technique.
It is more involved than the very simple technique we just used to prove recurrence, but it is
also very powerful. In fact, it involves a condition that is both necessary and sufficient for
transience.

If G = (V, E) is a denumerable network, let

V) 1= {f:V SRy Y fx) < oo}

xeV

with the inner product (f, g) := >, oy f(x)g(x). Define the Hilbert space

(E,r) = {0: E—>R; Ve 0(—e)=-0(e)and Z 0(e)’r(e) < oo}
ecE

with the inner product (0, 8), := ZEGE”Z 0(e)d’(e)r(e) and £(0) := (0, 0),. Define df (e) :=
fle7) — f(e*) as before. If ,__ |6(e)| < co, then we also define (d*0)(x) := > __, 6(e).

Suppose now that V is finite and ), |#(e)| < co. Then the calculation of Exercise 2.11
shows that we still have (0, df) = (d*0, f) for all f. (Here, we use (¢, ) to mean the sum
> o d(a) (@) for functions on any space where the sum converges absolutely.) Likewise,
under these hypotheses, we have Lemmas 2.8 and 2.9 still holding. The remainder of
Section 2.4 also then holds because of the following consequence of the Cauchy-Schwarz
inequality:

VieV > lae)l < [ ecle) > cle) < VEO)R(x). (2.15)

In particular, if £(8) < oo, then d*6 is defined.

> Exercise 2.14.
Let G = (V,E) be denumerable and 6, € ¢%(E,r) be such that £(6,) < M < oo and
0, — 0 edgewise, that is, 6,,(e) — 6(e) for each e € E. Show that 8 is antisymmetric,
&(0) < liminf, £(0,) < M,andVx € V d*0,(x) - d*0(x).

Call an antisymmetric function 6 on the edges E of a possibly infinite graph a flow if
VieV D |f(e)| < .
e =x

If, in addition, 6 satisfies (d*6)(x) = 1{4(x), then 6 is a unit flow from a € V to co.
Our main theorem is the following criterion for transience due to T. Lyons (1983). It is
adapted from a theorem of Royden (1952).
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Theorem 2.11. (Energy and Transience) Let G be a denumerable connected network.
Random walk on G is transient iff there is a unit flow on G of finite energy from some (every)
vertex to oo.

Proof. Let G, be finite induced subgraphs that exhaust G. Recall that G is the graph
obtained from G by identifying the vertices outside G, to a single vertex, z,, and then
removing loops (but keeping multiple edges). Fix any vertex a € G, which, without loss of
generality, belongs to each G,,. We have, by definition, Z(a < o) = limZ(a < z,). Let
in be the unit current flow in G\ from a to z, and v, be the corresponding voltage. Then
E(in) = Z(a < z,), 50 Z(a < ) < 00 < lim &(i,) < .

Note that each edge of GY¥ comes from an edge in G and may be identified with it, even
though one endpoint may be different.

If 6 is a unit flow on G from a to oo that has finite energy, then the restriction [ GY of 6
to G is a unit flow from a to z,, whence Thomson’s principle gives

E(in) < EOIGY) < E(B) < 0.

In particular, lim &£(i,) < oo, and so the random walk is transient.

Conversely, suppose that G is transient. Then there is some M < oo such that £(i,,) < M
for all n. Start a random walk at a. Let ¥,,(x) be the number of visits to x before hitting
G \ G, and Y (x) be the total number of visits to x. Then Y,,(x) increases to Y (x), whence the
monotone convergence theorem and Proposition 2.1 imply that E[Y (x)] = lim,,—c E[¥,,(x)] =
lim,, o 1(x)v,(x) =t (x)v(x). By transience, we know that E[Y(x)] < oo, whence v(x) < oo.
Hence i := ¢ - dv = lim, ¢ - dv,, = lim,—, i, exists and is a unit flow from a to infinity of
energy at most M by Exercise 2.14. <

This allows us to carry over the remainder of the electrical apparatus to infinite networks:

Proposition 2.12. Let G be a transient connected network and G,, be finite induced subnet-
works that contain a vertex a and that exhaust G. Identify the vertices outside G,, to z,,,
forming GY. Let i, be the unit current flow in G\ from a to z,. Then {i,) has a pointwise
limit i on G, which is the unique unit flow on G from a to oo of minimum energy. Let v, be
the voltages on G\ corresponding to i, and with v,(z,) := 0. Then v := limv,, exists on G
and has the following properties:

dv=ir,
v(a) =&() = Z(a & ),
Vx v(x)/v(a) = P 1, < o0].
Start a random walk at a. For all vertices x, the expected number of visits to x is
9 (a, x) = n(x)v(x). For all edges e, the expected signed number of crossings of e is i(e).

Proof. We saw in the proof of Theorem 2.11 that v and i exist, that dv = ir, and that
4(a, x) = m(x)v(x). The proof of Proposition 2.2 now applies as written for the last claim of
the proposition. Since the events [7, < 76\, ] are increasing in n with union [7, < o], we
have (with superscript indicating on which network the random walk takes place)

v(x)/v(a) =limv,(x)/v,(a) = limeGy[Ta <1, ] =1limPY[1, < 1616, ] = P[4 < o].
n n n X \ n X
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Now v(a) = limv,(a) = lim&(i,) = limZ(a & z,) = #Z(a < ). By Exercise 2.14,
&(i) < liminf &(iy,). Since &(i,) < £(i) as in the proof of Theorem 2.11, we have £(i) =
lim &(i,,) = v(a). Likewise, £(i,,) < &(0) for every unit flow from a to infinity, whence i has
minimum energy.

Finally, we establish uniqueness of a unit flow (from a to co) with minimum energy. Note
that v, 6

6(9)28(9’) =g(0;9’)+g(9—29’).

Therefore, if 6 and 6’ both have minimum energy, so does (8+6")/2, and hence 5((0—9’) / 2)
0, which gives 8 = 6’.

(2.16)

A

Thus, we may call i the unit current flow and v the voltage on G. We may think of G as
grounded (that is, has 0 voltage) at infinity.

By Theorem 2.11 and Rayleigh’s monotonicity principle, the fype of a random walk, that
is, transient or recurrent, does not change when the conductances are changed by bounded
factors. This fact is by no means clear probabilistically. An extensive generalization of this is
given in Theorem 2.17.

The question now arises: how do we determine whether there is a flow from a to oo of
finite energy? There is no recipe, but a very useful technique involves flows created from
random paths. Suppose that P is a probability measure on paths (e, ; n > 0) from a to z on a
finite graph or from a to co on an infinite graph. (An infinite path is said to go fo0 co when no
vertex is visited infinitely many times.) Define

0(e) = > (Ple, = e] — Ple, = —e]). (2.17)
n>0
provided
> (Plen =e] +Ple, = —¢]) < 0. (2.18)
n>0

For example, the summability condition (2.18) holds when the paths are edge-simple, since
the sum on the left in (2.18) equals the expected number of times that e is traversed in either
direction. Each path (e, ; n > 0) determines a unit flow  from a to z (or to co) by sending 1
along each edge in the path:

v X"

n>0

If (2.18) holds for all e, then 6 is defined everywhere. Now 6 is an expectation of a random
unit flow, so that 6 is a unit flow itself. We saw in Propositions 2.2 and 2.12 that this is
precisely how network random walks and unit electric current are related (where the walk
(X, ; n = 0) gives rise to the path (e, ; n > 0) with e, := (X,;, X;,+1)). However, there are
other useful pairs of random paths and their expected flows as well.

We now illustrate the preceding techniques. First, we complete Pdlya’s theorem by the
random path method. The resulting flow is essentially the same as the one used by T. Lyons
in his 1983 proof of Pélya’s theorem (which also occurs on p. 173 of Mori (1954)).
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Pélya’s Theorem (second part). Simple random walk on the nearest-neighbor graph of Z¢
is transient for all d > 3.

Proof. By Rayleigh’s monotonicity principle, it suffices to do d = 3. Let L be a random
uniformly distributed ray from the origin 0 of R? to oo (that is, a straight half-line with
uniform intersection on the unit sphere). Let (L) be a simple path in Z> from 0 to co that
stays within distance 4 of L; choose (L) measurably, such as the (almost surely unique)
closest path to L in the Hausdorff metric. Define the flow 6 from the law of P(L) via
(2.17). Then 6 is a unit flow from 0 to co; we claim it has finite energy. There is some
constant A such that if e is an edge whose midpoint is at Euclidean distance R from 0, then
Ple € P(L)] < A/R?. Since all edge centers are separated from each other by Euclidean
distance at least 1/ \/E there is also a constant B such that there are at most Bn? edge centers
whose distance from the origin is between n and n + 1. It follows that the energy of 6 is at
most >, A>’Bn’n~*, which is finite. Now transience follows from Theorem 2.11. <

Remark 2.13. The continuous case, that is, Brownian motion in R, is easier to handle
(after establishing a similar relationship to an electrical framework) because of its spherical
symmetry; see Section 2.9, the notes to this chapter. Here, we are approximating this
continuous case in our solution. One can in fact use the transience of the continuous case to
deduce that of the discrete case (or vice versa); see Theorem 2.26 in the notes.

The difference between two and three dimensions is illustrated in Figure 2.3. For informa-
tion on the asymptotic behavior of these figures in dimension 2, see Dembo, Peres, Rosen,
and Zeitouni (2001).

Since the harmonic series, which arises in the recurrence of Z?2, just barely diverges, it
seems that the change from recurrence to transience occurs “just after” dimension 2, rather
than somewhere else in [2, 3]. One way to explore this is to ask about the type of spaces
intermediate between Z? and Z>. For example, consider the wedge

Wy = {(x.y.2)5 2l < £(xD)}

where f:IN — N is an increasing function. The number of edges that leave the portion
Wr 0 {(x,y,2); |x| V|y| < n} is of the order n(f(n) + 1), so that according to the Nash-
Williams criterion,

1
- > 2.19
> ) @.19)

nx1

is sufficient for recurrence.

> Exercise 2.15.
Show that (2.19) is also necessary for recurrence if f(n+ 1) < f(n) + 1 for all n.

Since simple random walk on 7?2 is recurrent, the effective resistance from the origin to
distance n tends to infinity — but how quickly? Our techniques are good enough to answer
this within a constant factor.
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Figure 2.3. Random walk until it goes distance 200 from its starting point, colored
according to the number of visits at a vertex. The histogram shows the time spent at vertices
that were visited n times for each n > 1, with the same color coding. For three dimensions,
only the histogram is shown, which is approximately a geometric distribution.

Proposition 2.14. There are positive constants Cy, C, such that if one identifies to a single
vertex z,, all vertices of Z* that are at distance more than n from 0, then

Cilogn < 20 o z,) < Gy logn.

Proof. The lower bound is an immediate consequence of (2.13) applied to the cutsets I1j
used in our proof of Pélya’s theorem. The upper bound follows from the estimate of the
energy of the unit flow analogous to that used for the transience of Z>. That is, 8(e) is defined
via (2.17) from a uniform ray emanating from the origin. Then 6 defines a unit flow from 0
to z, and its energy is bounded by C; log n. <

We can extend Proposition 2.14 as follows.
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Proposition 2.15. For d > 2, there is a positive constant Cy4 such that if G,, is the subnetwork
of Z¢ induced on the vertices in a box of side length n, then for any pair of vertices x, y in
G,, at mutual distance k,

(C;'logk,Cylogk) ifd=2

%(xHy;Gn)e{(Cgl,Ci) & §d23_

Proof. The lower bounds follow from (2.13). For the upper bounds, we give the details
for d = 2 only. There is a straight-line segment L of length k inside the portion of R?
that corresponds to G,, such
that L meets the straight line
M joining x and y at the mid-
point of M in a right angle,
as in the figure. Let Q be
a random uniform point on
L. Write L(Q) for the union
of two straight-line segments,
one from x to Q and the other
from Q to y. Let P(Q) be a
path in G,, from x to y that
is closest to L(Q). Use the
law P of P(Q) to define the
unit flow 6 as in (2.17). Then
&(0) < Cylog k for some Cy,
as in the proof of Proposi-
tion 2.14. <

2.6 Rough Isometries and Hyperbolic Graphs

The most direct proof of Pélya’s theorem goes by calculation of the Green function and is
not hard; see Exercise 2.100. However, that calculation depends on the precise structure of the
graph. The proof in the preceding section begins to show that the type doesn’t change when
fairly drastic changes are made in the lattice graph. Suppose, for example, that diagonal edges
are added to the square lattice in the plane. Then clearly we can still use the Nash-Williams
criterion to show recurrence. Of course, a similar addition of edges in higher dimensions
preserves transience simply by Rayleigh’s monotonicity principle. But suppose that in Z>,
we remove each edge [(x,y, 2), (x,y, z + 1)] with x + y odd. Is the resulting graph H still
transient? If so, by how much has the effective resistance to infinity changed?

Notice that graph distances haven’t changed much after these edges are removed. In fact, if
we define the k-fuzz of a graph G by adjoining to the edges of G a new edge between every
pair of vertices whose distance in G lies between 2 and k, then the graph H above has a
3-fuzz that includes the original graph on Z>. Thus, we can solve problems like the preceding
by the following theorem:



44 CHAP. 2: RaANDOM WALKS AND ELECTRIC NETWORKS

Theorem 2.16. Let G be a connected graph of bounded degree and k a positive integer. Then
G and the k-fuzz of G have the same type, that is, both are transient or both are recurrent.

We will establish an even more powerful result. To motivate an extension of the preceding
from graphs to networks, think of the resistance r(e) as the length of the edge e.

Given two networks G and G’ with resistances r and r’, we say that a map ¢ from the
vertices of G to the vertices of G’ is a rough embedding if there are constants «, § < co and
a map ¢ defined on the edges of G such that

@) for every edge (x,y) € G, ®((x,y)) is a nonempty simple oriented path of edges in G’

from ¢(x) to ¢(y) with
Z r'(e’) < ar(x,y)
e’Eq)((x,y))

and ®((y, x)) is the reverse of ®({x, y));
(ii) for every edge e’ € G’, there are no more than 8 edges in G whose image under ®
contains e’.

If we need to refer to the constants, we call such a map («, 8)-rough. We call two networks
roughly equivalent if there are rough embeddings in both directions. For example, every two
Euclidean lattices of the same dimension are roughly equivalent. Also, for every graph G
of bounded degree and every k, the graph G and its k-fuzz are roughly equivalent. Kanai
(1986) showed that rough embeddings preserve transience:

Theorem 2.17. (Rough Embeddings and Transience) [f G and G’ are roughly equivalent
connected networks, then G is transient iff G’ is transient. In fact, if there is a rough
embedding from G to G’ and G is transient, then G’ is transient.

Proof. Suppose that G is transient and ¢ is an («, 8)-rough embedding from G to G’. Let 8
be a unit flow on G of finite energy from a to infinity. We will use ® to carry the flow 6 to a
unit flow 8’ on G’ that will have finite energy. Namely, define

()= 6e).

e’ ed(e)

(The sum goes over all edges, not merely those in E; ,.) It is easy to see that 6’ is antisym-
metric and d*6’'(x") = erqr'({x'}) d*0(x) for all x’ € G’. Thus, 8’ is a unit flow from ¢(a)
to infinity.
Now
ey <B Y 0
e’ ed(e)

by the Cauchy-Schwarz inequality and the condition (ii). Therefore,

DOEre)<BY. D e re)=BY > e ri(e)

e’ eE’ e’eE’ e’ ed(e) e€E ¢’ed(e)

< afﬁz Q(e)zr(e) <00, <

ecE
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> Exercise 2.16.
Show that if we remove each edge [(x, v,2),(x,y,2 + 1)] in Z* with x + y odd, then we
obtain a transient graph with effective resistance to infinity at most 6 times what it was before
removal.

A closely related notion is that of rough isometry, also called quasi-isometry. Given two
graphs G = (V,E) and G’ = (V’,E’), call a function ¢: V — V’ a rough isometry if there are
positive constants @ and £ such that for all x,y € V,

o~ dist(x, y) — B < dist'(¢(x), ¢(»)) < adist(x, y) + 8 (2.20)

and such that every vertex in G’ is within distance g of the image of V. Here, dist and dist’
denote the usual graph distances on G and G’. The function ¢ need not be a bijection. In fact,
the same definition applies to metric spaces, with “vertex” replaced by “point.” Thus, Z is
roughly isometric to RY.

> Exercise 2.17.
Show that being roughly isometric is an equivalence relation.

For example, if G and G’ are both the usual graph on Z and ¢(x) := 4x, then ¢ is a rough
isometry; similarly if ¢(x) := [ x/4]. Also, if G is any graph and H is any finite graph, then
G and G X H are roughly isometric for most reasonable notions of product graph.

> Exercise 2.18.
Show that Z and Z? are not roughly isometric graphs.

Proposition 2.18. (Rough Isometry and Rough Equivalence) Ler G and G’ be two infinite
roughly isometric graphs with conductances c and c’. If ¢, c’,c™', ¢’~! are all bounded and

the degrees in G and G’ are all bounded, then G is roughly equivalent to G’.

> Exercise 2.19.
Prove Proposition 2.18.

Not only can we also use rough isometries and Theorem 2.17 to understand lots of
perturbations of the regular graph Z¢, but we can also use them to give a very simple proof of
Pélya’s theorem itself. First, consider simple random walk in one dimension. The probability
of return to the origin after 2n steps is exactly (2:)2‘2". Stirling’s formula shows that this
is asymptotic to 1/+/mn. Since this series is not summable, the random walk is recurrent.
If we consider random walk in d dimensions where each coordinate is independent of the
other coordinates and does simple random walk in one dimension, then the return probability

d
after 2n steps is ((2:)2‘2") ~ (7n)~/2. This is summable precisely when d > 3. On the
other hand, this independent-coordinate walk is simple random walk on another graph whose
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Figure 2.4. A graph in the hyperbolic disc formed from congruent regular hyperbolic
pentagons of interior angle 27r/5. This was drawn by a program created by Don Hatch.

vertices are a subset of Z¢, and this other graph is clearly roughly isometric to the usual
graph on Z¢. Thus, we deduce Pélya’s theorem.

We now go beyond Euclidean space to examine another very nice family of graphs that
will serve as useful examples throughout the rest of the text. These graphs are roughly
isometric to hyperbolic spaces, whose geometry we explain briefly. Let H? denote the
standard hyperbolic space of dimension d > 2; it has scalar curvature —1 everywhere. See
Figure 2.4 for one graph roughly isometric to H?. This drawing uses the Poincaré disc model
of H?, in which the unit disc {z € C; |z| < 1} is given the arc-length metric 2 |dz|/(1 — |z|?).
The corresponding ball model of H¢ uses the unit ball {x € R?; |x| < 1} with the arc-length
metric 2 |dx|/(1 - |x|2). Here, we write |x| for the Euclidean norm usually written as ||x||.
The length of a smooth curve ¢ — x(¢) parametrized by ¢ € [0, 1] is

1
/ 2 |dx(t)/dt| dr
o 1-Ix@
The minimum of such lengths among curves joining x;, x, € H¢ is the hyperbolic distance

between x| and x,. A curve that achieves the minimum is called a geodesic. For example,
if x; is the origin and |x;| = R € (0, 1), then a geodesic between x; and x; is a Euclidean
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straight-line segment. To see this, note that |dx(¢)| > |dp(t)|, where p(t) := |x(¢)|, whence the
preceding integral is at least

1 R

2|d d 2d 1+R

/ |,0(f)/21| dtz/ S 1 +
o 1-p@) 0

1—s2 ®1-R
and this distance is achieved by the Euclidean line segment.

For each point a in the unit ball, there is a hyperbolic isometry that takes a to the origin,
namely,

a*? — .
-,
where a* := a/|a|?; see, for example, Matsuzaki and Taniguchi (1998) for the calculation.
Such a map preserves Euclidean angles and the class of Euclidean circular arcs, including
Euclidean straight lines as a special case. Therefore, infinite geodesics, which are curves
minimizing hyperbolic distance locally, are images of Euclidean diameters of the ball and
hence are Euclidean circular arcs perpendicular to the Euclidean unit sphere.

A key difference to Euclidean space is that for each point o € H¢, the sphere of hyperbolic
radius  about o has hyperbolic surface area asymptotic to ae” =1 for some positive constant
a depending on d. (Therefore, the hyperbolic volume of the ball of hyperbolic radius r is
asymptotic to (d — 1)"'ae”@=V.) Indeed, if |x| = R, then the hyperbolic distance between the
origin and x was seen earlier to be

x— a4+

) 1+R
r=log ——,
E1-R
so that

e -1

er+1°
The hyperbolic surface area of this sphere centered at the origin is therefore

/ 24-148
ei=r (1 = |x2)"

where dS is the element of Euclidean surface area in R. Integrating gives the value

R \d-1
for some constants C and «, as we claimed. Therefore there is a positive constant A such that
the following hold for any fixed point o € H¢:

(1) the hyperbolic volume of the shell of points whose distance from o is between r and
r + 1 is at most Ae"@-D;

(2) the solid angle subtended at o by a spherical cap of hyperbolic area ¢ on the sphere
centered at o of radius 7 is at most Age™" (4",

For more background on hyperbolic space, see, for example, Cannon, Floyd, Kenyon, and
Parry (1997), Ratcliffe (2006), or Benedetti and Petronio (1992). Graphs that are roughly
isometric to H often arise as Cayley graphs of groups (see Section 3.4) or, more generally,
as nets. Here, a graph G is called an e-net of a metric space M if the vertices of G form a
maximal e-separated subset of M and edges join distinct vertices iff their distance in M is at
most 3€. (A set is e-separated if all nonzero distances between points are at least €.)
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Theorem 2.19. (Transience of Hyperbolic Space) If G is roughly isometric to a hyperbolic
space H with d > 2, then simple random walk on G is transient.

Proof. By Theorem 2.17, given d > 2, it suffices to show transience for one such G. Our
proof is quite like our first proof of Pélya’s theorem. Let G be a 1-net of H?. We take the
edges of G to be geodesic segments. Let L be a random uniformly distributed geodesic ray
from some point 0 € G to co. (In the ball model of H, if o is at the origin, then a geodesic
ray is simply a Euclidean ray of Euclidean length 1 starting at the origin.) Let (L) be
a simple path in G from o to co whose vertices stay within distance 1 of L; choose P(L)
measurably. (By choice of G, for all p € L, there is a vertex x € G within distance 1 of p.)
Define the flow 6 from the law of $(L) via (2.17). Then 6 is a unit flow from o to co; we
claim it has finite energy. There is some constant C such that if e is an edge whose midpoint
is at hyperbolic distance r from o, then P[e € P(L)] < Ce™"@~D. Given an edge center s,
there is a bound on the number of edge centers whose hyperbolic distance from s is at most 1.
Therefore, there is also a constant D such that there are at most De”(@~! edge centers whose
hyperbolic distance from the origin is between n and n + 1. It follows that the energy of 6 is
at most Y, C2De 2Md=Den(d=1) ‘which is finite. Now transience follows from Theorem 2.11.

<

2.7 Hitting, Commute, and Cover Times

The remaining two (main) sections of the chapter concern topics other than recurrence
and transience, but they use some of the tools we have developed. How can we calculate the
expected time it takes for a random walk to hit some set of vertices? (This is also referred to
as the mean first passage time.) The following answer is due to Tetali (1991). Recall that
7(+) is not generally a probability measure.

Proposition 2.20. (Hitting-Time Identity) Given a finite network with a vertex a and a
disjoint subset of vertices Z, let v(+) be the voltage when a unit current flows from a to Z.
We have E,[17] = Y oy m(x)v(x).

Proof. By Proposition 2.1, we have E,[72] = > 9z(a, x) = >, n(x)v(x) . <

The expected time for a random walk started at a to visit z and then return to a, that
is, E,[7;] + E;[7,], is called the commute time between a and z. This turns out to have a
particularly pleasant expression, as shown by Chandra, Raghavan, Ruzzo, Smolensky, and
Tiwari (1996/1997):

Corollary 2.21. (Commute-Time Identity) Let G be a finite network and y := ), g c(e),
where in the sum, each edge with two endpoints occurs twice and each loop occurs once. Let
a and z be two vertices of G. The commute time between a and 7 is y Z(a < 7).

Proof. The time E,[1,] is expressed via Proposition 2.20 using voltages v(x). Now the
voltage at x for a unit-current flow from z to a is equal to v(a) — v(x). Thus, E.[7,] =
> ey m(x)[v(a) - v(x)]. Adding these two hitting times, we get that the commute time is

v(a) >, m(x) = yv(a). Finally, we use that v(a) = Z(a & 2). <
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Another interesting quantity is the cover time Cov of a finite-state Markov chain (X;; j >
0), which is the first (random) time the process visits all states V, that is,

Cov:=min{t; VxeV 3j<t X;=x}.

For the complete graph, the cover time is studied in the coupon-collector problem; in
particular, its expectation in the case of n vertices is exactly (n — 1) ZZ;II 1/k. (It takes no
time to visit the starting vertex, which is why n — 1 appears in place of the usual n.) What is
its expectation for general networks? It turns out that this is hard to calculate, but it can be
estimated by hitting times (even without reversibility), as shown with a beautiful argument by
Matthews (1988). Remarkably, his upper bound is sharp in view of the case of the complete
graph.

Theorem 2.22. (Cover-Time Upper Bound) Given an irreducible finite Markov chain
whose state space V has size n and starting state o, we have

E,[Cov] < (max Ea-rb)(l + l +t ! ) .
a,beV 2 n-—1
Proof. 1t takes no time to visit the starting state, so order all of V except for the starting
state according to a random permutation, {ji,. .., j,—1). Let; be the first time by which
all {ji,...,jx} were visited, and let Ly := X, be the state the chain is in at time #.
In other words, L; is the last state visited among the states {ji,...,jx}. In particular,
P,[Li = ji] = 1/k because of the random permutation. Considering the two cases Ly = ji
and Ly # ji, we can make the following somewhat unusual calculation:

Eoltx —tiot | Xopis X Jts - il = Er [m Lins s V=i -

Taking unconditional expectations, we conclude that
1
Eoltx — tx-1] < (max Ea-rb)— ,
a,beV k

and summing over k yields the result. <

The same technique leads to lower bounds as well. For A C {1, ..., n}, consider the cover
time of A, denoted by Cov,. Clearly E,[Cov] > E,[Cov,]. Let tém = ming pea,atb Eatp-
Then, similarly to the last proof, we have

1 1
EO[COVA] > tr?lin(l + E + -+ W——l) ,
which gives the following result of Matthews (1988). Again, the case of the complete graph
shows that this is sharp.

Theorem 2.23. (Cover-Time Lower Bound) For any irreducible finite Markov chain on a
state space V with starting state o,

1 1
E,[Cov] > max tﬁ‘ﬁn(1+§+---+ |A|—1)'

> Exercise 2.20.
Prove Theorem 2.23.
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2.8 The Canonical Gaussian Field

This section concerns a model that represents an electrical network via Gaussian random
variables. It is known variously as the canonical Gaussian field, the Gaussian network, the
discrete Gaussian free (or massless) field, random network potentials, or in some contexts,
the harmonic crystal.* More information on it is in the exercises at the end of this chapter and
in Exercises 4.17, 4.35, and 10.29-10.32. Some examples of its use are given in Section 2.9.

The canonical Gaussian field arose first in a statistics problem. We explain this origin to
motivate the model. Suppose we want to measure the altitudes at a finite set of locations
V on land. Assume we know the altitude at some location 0 € V. We find the other
altitudes by measuring the differences in altitudes between certain pairs E of them. However,
each measurement Y has an error that is normally distributed. To be precise, if Y(e)
is a measurement of the difference in the altitudes from x € V to y € V, then Y(e) ~
N(a(x) - a(y), 0'3), where a(x) is the true altitude at x and the variances o2 are assumed
known. The numbers a(x) are simply constants; the case where all a(x) = 0 is already
interesting. We assume all measurements are independent. Let G = (V, E) be the multigraph
associated to the measurements. (There are multiple edges between vertices when multiple
measurements are made of the same difference, but there are no loops.) Assume G is
connected. Make this into a network by assigning the resistances r(e) := o-2. The maximum
likelihood estimate of the altitudes given these measurements is the function @:V — R with
a(o) = a(o) that maximizes the likelihood

1 1 .
Mece, V2770 el 2 Y- .

which is what the joint density would be at the observed values Y if the true altitudes were
@. The random variables @ form the canonical Gaussian field; they are functions of the
random variables Y. Of course, maximizing the likelihood is the same as minimizing the
sum of squares in the exponent. Since Y(e) — (da)(e) = [Y(e) — da(e)| — (d@ - da)(e),
and « is a nonrandom field, Z := @ — @ minimizes ZEGEW [X(e) - (dZ)(e)]z/r(e), where
X(e) :=Y(e) — da(e). Therefore, we will henceforth work with X and Z in place of Y and @;
equivalently, we take @ = 0.

We restate the definition now of the canonical Gaussian field, shorn of the statistical
motivation: Given a network (G, c) and a fixed vertex o € V, let X(e) (e € Ej;) be
independent normal random variables with mean O and variance r(e). Define the random
variables Z(x) (x € V) by the condition that they minimize }°, ¢, , [X(e) - (dZ)(e)]z/r(e)
and that Z(0) = 0. The joint distribution of Z(x) (x € V) is the canonical Gaussian field.

We consider two simple examples where we can easily understand this field. For the first
example, suppose that G is the usual nearest-neighbor graph on the integers {0, 1,...,n} and
that all resistances are 1. Also, take o = 0. Then X(e) ~ N(0, 1) for all edges e and dZ = X,
whence Z is just n steps of random walk with each step a standard normal random variable.

* The term discrete Gaussian free field is the one most commonly used in mathematics. However, the variant
where there are masses (Exercise 2.138) is no longer free, and on infinite networks, it would be awkward to refer to
the wired and free versions (Exercise 10.29) if we adopted that terminology.
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More generally, for the second example, if G is a tree rooted at o, then Z is a random walk
indexed by the tree in the sense that when two paths starting at the root branch off from
each other, then the random walks along those paths, which were identical, have independent
(normal) increments thereafter.

One of the striking properties of the canonical Gaussian field is that

Var(Z(x) — Z(y)) = Z(x < y) (2.21)

for all x, y € V. Proving this will be relatively easy once we calculate the joint distribution of
dZ, which we proceed to do.
Given a network, define the gradient of a function f on V to be the antisymmetric function

(df)(e)

r(e)

(Vf)(e) = , thatis, Vf := cdf
on E. Thinking of resistance of an edge as its length makes this a natural name.

In this notation, Z is the function 8 with 8(0) = 0 that minimizes || X/r — VB]|.. Since
V1, is the star at x € V, it follows that the set of all functions of the form Vg for some
function B equals %, whence we are looking for the element of % closest to X/r. Such
a minimization is achieved through orthogonal projection, so that VZ = Py (X/r). Since
X/r= ZeeEl/z X¢X(e)/r(e), applying Py to both sides yields

VZ=) iX(e)/r(e). (2.22)

e‘EEl/z

In particular, the random variables VZ are linear combinations of independent normal random
variables, so themselves are jointly normal. This explains the name “Gaussian.” Since all
X(e) have mean 0, so do all VZ(e).

Another way to look at this orthogonal projection is as follows. An orthonormal basis
for the space ¢2(E, r) is (x*/Vr(e); e € Ey2). If (Q, P) is a probability space on which the
random variables X (e) are defined, then <X (e)/ Vr(e); e € E; /2> are orthonormal in L2(Q, P).
Thus, if 7 denotes the linear span of the random variables X (e), then ®: ¢ — X(e) is an
isometric isomorphism from £ (E, r) to .. From (2.22), we have

dZ(e)=r(e)VZ(e)= Y r(e)Y(e.e)X(e))/r(e)) = Y Y(e.e)X(e) (2.23)

e/EE]/z e’EEl/z

using the definition Y (e, ¢’) := i¢(e’) from Section 2.4 and then the reciprocity law (2.12). On
the other hand, we have trivially that

=) Y. (2.24)

e’ EE]/Z
Comparing (2.23) with (2.24) shows that & takes i to dZ(e). In particular,

Cov(dZ(e),dZ(e")) =E|dZ(e)dZ(e')] = i,i¢), = (i, x), =Y(e,e)r(e).
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This is the same as the voltage difference across ¢’ when unit current flows from e~ to e*.
(The matrix of such (e, ¢”) entries is called the transfer impedance matrix.) Since the means
and covariances determine the distribution uniquely for jointly normal random variables, we
could regard this as a definition of dZ; since dZ determines Z because Z(0) = 0, this could
also be used as a definition of Z. Other properties that could be used as definitions follow.

The isomorphism ¢ takes the subspace % to a subspace that we will denote % (.>#’). This
latter subspace is simply the linear span of ) | __ X(e)/r(e) over x € V. Furthermore, since
i¢ = PyX¢, it follows from the isomorphism that dZ(e) = Py (x)X(e). Since Z(o) = 0,
we may write Z(x) for x € V by summing —dZ along a path ¢ from o to x; this gives
Z(x) == pey dZ(e) = <I>(— Decu ie) = ®(iy,), where iy, is the unit current flow from x
to o. Therefore,

Z(x)= ) ivo(e)X(e). (2.25)
ecE; )

Proposition 2.24. Let Z be the preceding canonical Gaussian field.

(i) The random variables Z are jointly normal with

Z(x) = Z(y) ~ N(0, Z(x & y))

forx#yeV.

(ii) The covariance of Z(x) — Z(y) and Z(z) — Z(w) equals v(z) — v(w) when v is the
voltage associated to a unit current flow from x to y (with x # y).

(iii) We have Cov(Z(x), Z(z)) = 9,(x, 2)/n(z), where %,(x, z) is the expected number of
visits to z of the network random walk started at x, counting only visits that occur
before visiting o.

Proof. Part (iii) follows from (ii) by putting y := w := o and using Proposition 2.1. Part (ii)
extends (i), so we prove only (ii). Let v, be the voltage function corresponding to a unit
current flow from x to y. Let ¢ € ¢2(E, r) represent a path from w to z, that is, ¥ = >, X¢,
where the sum ranges over the edges in a path from w to z, oriented in the direction of this
path. Then as above, we have that Z(x) — Z(y) = ®(i,,), whence

Cov(Z(x) = Z(y), Z(z) = Z(w)) = (ix.y» iz.w)r = (Vox.y, =Pych),
= (va,ys _W)r = Ux,y(z) - Ux,y(w) s
as desired. |

Since the random vector X /r is a standard normal vector in €E(E, r), that is, in (any)
orthonormal coordinates, its components are independent standard normal random variables,
its image VZ under the orthogonal projection Py is a standard normal vector in Y. With the
change of notation |VZ||? = ||dZ||?, it follows that the joint density of the random variables

(Z(x); x # 0)is
1
Cexp{—§||d2||3} (2.26)

for some constant C. The constant C is evaluated in Exercise 4.17.

This result could also be used as the definition of the field Z. Finally, one can also define Z
by the requirement that dZ has the distribution of X conditioned to sum to zero along every
cycle; see Janson (1997), Section 9.4.
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2.9 Notes

A superb elementary introduction to the ideas of the first five sections of this chapter is given by
Doyle and Snell (1984). For detailed study of simple random walk in Z<, see Révész (2005) and
Dembo (2005).

One way to define Brownian motion on a graph is the following. If x is a vertex and the lengths of the
d edges incidentto x are {; < --- < {4 with €, = --- =¢{,, < {,,41 (or m = d), then define Brownian
motion starting at x as follows: Let B(¢) be standard Brownian motion on R for ¢ > 0 with B(0) = 0.
Let 7 := min{z; |B(¢)| = ¢,} and o := max{t < 7; B(r) = 0}. Consider the excursions up to time 7,
that is, the open intervals I C [0, 7) on which B(¢) # 0 for ¢ € I but for which B(¢) = 0 at the endpoints
of 1. Assign each excursion independently and uniformly to one of the d edges incident to x by letting
|B()| be the distance from x along that edge for # € 1. Also, assign the bridge {|B(1)|; o <t < 7}
independently and uniformly to one of the d edges in the same way. If it happens that the bridge is
assigned to one of the m shortest edges, then the motion is at the other endpoint of that edge at time 7.
Otherwise, it is in the middle of the ith edge for some i > m, and we continue Brownian motion on R
until the first time after 7 that B(¢) = 0 or |B(r)| = ¢;, at which time we are either back at x to start again
without having reached a new vertex, or we are at the other endpoint of the ith edge.

The continuous classical analogue of harmonic functions, the Dirichlet problem, and its solution via
Brownian motion are as follows. Let D be an open subset of R?. If f: D — R is Lebesgue integrable
on each ball contained in D and for all x in D, f(x) is equal to the average value of f on each ball
in D centered at x, then f is called harmonic in D. If f is locally bounded, then this is equivalent
to f(x) being equal to its average on each sphere in D centered at x. Harmonic functions are always
infinitely differentiable and satisfy A f = 0. Conversely, if f has two continuous partial deriviatives and
Af =0in D, then f is harmonic in D. If D is bounded and connected and f is harmonic on D and
continuous on its closure, D, then maxg f = maxgp f. The Dirichlet problem is the following. Given
a bounded connected open set D and a continuous function f on dD, is there a continuous extension
of f to D that is harmonic in D? The answer is yes when D satisfies certain regularity conditions.
In this case, the solution can be given via Brownian motion X, in D as f(x) := E.[f(X;)], where
7:=inf{r > 0; X, ¢ D}. See, for example, Bass (1995), pp. 83-90 for details or Doob (1984) for a
comprehensive treatment.

Brownian motion in R is analogous to simple random walk in Z¢. The electrical analogue to
a discrete graph is a uniformly conducting material. The analogue of a flow is a vector field whose
divergence is 0 off of some specified part, whereas the analogue of a current is such a vector field whose
curl is 0. There is a similar relationship to an electrical framework for reversible diffusions, even on
Riemannian manifolds: Let M be a complete Riemannian manifold. Given a function o-(x) which is
Borel-measurable, locally bounded, and locally bounded below, called the (scalar) conductivity, we
associate the diffusion whose generator is (ZU(x)\/@ )_l >~ 0;0(x)y/g(x)g" (x)d; in coordinates,
where the metric is g;; with inverse g/ and determinant g. In coordinate-free notation, this is
(1/2)A + (1/2)Vlog o. In other words, the diffusion is Brownian motion with drift equal to half the
gradient of the log of the conductivity. The main result of Ichihara (1978) [see also the exposition by
Durrett (1986), p. 75; Fukushima (1980), Theorem 1.5.1, and Fukushima (1985); or Grigor’yan (1985)]
gives the following test for transience, an analogue to Exercise 2.93.

Theorem 2.25. On a complete connected Riemannian manifold M, the diffusion corresponding to the
scalar conductivity o(x) is transient iff

inf {/ [Vu(x)|*o(x) dx; u € C(M), ul Bi(o) = l} >0,

where dx is the volume form and o € M is any fixed point.
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One can use networks to decide the recurrence or transience of a Riemannian manifold, and vice
versa. Recall that a graph G is called an e-net of M if the vertices of G form a maximal e-separated
subset of M and edges join distinct vertices iff their distance in M is at most 3e. When a conductivity
o is given on M, we assign conductances c to the edges of G by

c(u, w) := / o(x)dx + / o(x)dx .
Be(u) Be(w)

An evident modification of the proof of Theorem 2 of Kanai (1986) shows the following analogue to
Theorem 2.17. A manifold M is said to have bounded geometry if its Ricci curvature is bounded below
and the injectivity radius is positive. If the Ricci curvature is bounded below, then nets have bounded
degree (Kanai (1985), Lemma 2.3). We say that o is e-slowly varying if

sup{o(x)/o(y); dist(x,y) < €} < .

Theorem 2.26. Suppose that M is a complete connected Riemannian manifold of bounded geometry,
that € is at most half the injectivity radius of M, that o is an e-slowly varying Borel-measurable
conductivity on M, and that G is an €-net in M. Then the associated diffusion on M is transient iff the
associated random walk on G is transient.

The transformations of a network described in Section 2.3 can be used for several other purposes as
well. As we will see (Chapter 4), spanning trees are intimately connected to electrical networks, so
it will not be surprising that such network reductions can be used to count the number of spanning
trees of a graph. See Colbourn, Provan, and Vertigan (1995) for this, as well as for applications to the
Ising model and perfect matchings (also known as domino tilings). For a connection to knot theory, see
Goldman and Kauffman (1993).

The Nash-Williams criterion was proved by Nash-Williams (1959).

The precise asymptotics for the effective resistance in Proposition 2.14 are given in Exercise 2.99,
whereas similar asymptotics for Proposition 2.15 are given in Exercise 4.52.

In 1994, Aldous and Fill (Open Problem 6.35 in Section 6.8.3 of Aldous and Fill (2002)) asked for a
deterministic estimate of cover times E, [Cov], for reversible Markov chains, up to a constant factor that
can be computed in polynomial time. Let C, := max,.yv E,[Cov] denote the cover time, maximized
over the starting state. Kahn, Kim, Lovasz, and Vu (2000) focused on the problem of estimating C.,.
They noted that for a single edge, with n loops added to one endpoint, the lower bound in Theorem 2.23
is quite far from C,. Denote by M the larger of the right-hand side in Theorem 2.23 and the maximal
expected hitting time between two states in V. By Theorem 2.23, C, is at least M. Kahn, Kim, Lovasz,
and Vu (2000) showed that C, = O(M(loglog n)*) (in the reversible case).

The statistical model of Section 2.8 and its connection to random walks (which is equivalent to
electrical networks) is due to Borre and Meissl (1974); see Tjur (1991). The maximum likelihood
estimate is also the best linear unbiased estimate, a general fact about linear Gaussian models. See
Constantine (2003) for some additional information on unbiased estimates in this model. This model
is similar to Dynkin’s isomorphism, which is for continuous-time Markov processes; see Dynkin (1980).
A different connection of networks to Gaussian fields, obtained by using the network Laplacian (defined
in Exercise 2.62) as covariance matrix, is due to Diaconis and Evans (2002). A relationship of the
canonical Gaussian field to the expected cover time was shown by Ding, Lee, and Peres (2012), which
resolved several open questions on cover times. Scaling limits of canonical Gaussian fields and other
models sometimes give what’s known as the (continuum) Gaussian free field; for example, see Kenyon
(2001, 2008), Rider and Virag (2007), and Sheffield (2007). For one such example, consider a spanning
tree T in an n X n square grid. Associate to the path from the lower left corner to a vertex x its net number
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Figure 2.5. The net turns of the paths from a fixed vertex in a
uniform spanning tree in a 200 x 200 grid on the left, with a key on
the right showing the correspondence of visual colors to numbers.

h(x) of turns (also called its winding number), that is, the number of times it turns left minus the number
of times it turns right. Let 47 be the mean value of A(x) over all x € V(T). When T is chosen uniformly
at random (the topic of Chapter 4), the scaling limit of the distribution of x > (v/7/4)(h(x) — hr) is
the Gaussian free field, as shown by Kenyon (2001) (and conjectured in looser form by Itai Benjamini);
a picture for n = 200 appears in Figure 2.5, where in this sample, the mean winding number A7 is about
0.917. The canonical Gaussian field was also introduced in molecular biology by Bahar, Atilgan, and
Erman (1997), where it facilitates very useful computation. Here, the edges are regarded as springs.
Because the correlations are positive, the random variables Z(x) of Exercise 2.138 are positively
associated (see Section 5.8 for the definition) by the main result of Pitt (1982); see Joag-Dev, Perlman,
and Pitt (1983) for a simpler proof of this implication for normal random variables.

Problems about random walks that sound similar to those we have analyzed, yet to which the tools of
electrical network theory do not apply, can be very vexing and can often behave contrary to what our
intuition tells us. For example, Rayleigh’s monotonicity principle tells us that subgraphs of recurrent
graphs are themselves recurrent. This would suggest that if we do simple random walk in Z2, except
that at certain times determined in advance, we step either to the right or left only, with equal probability,
then the resulting (time-inhomogeneous) Markov chain would still be recurrent. However, this is false!

> Exercise 2.21.
Find a sequence of times § C N such that if (X,, ; n € N) is the Markov chain on Z? with increments
that are uniformly distributed on {(1, 0), (—1,0), (0, 1), (0, —1)} at times n ¢ S and uniformly distributed
on {(1,0), (~1,0)} at times n € S, then the chain is transient. Hint: Let S consist of very long intervals
separated by long intervals.
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The following variant is still open:

Question 2.27. Define the non-Markovian process (X,,) taking values in Z? in the following manner.
Put Xy := (0,0). Forn > 1, let X,,,; — X,, be either (1,0) or (—1,0) with equal probability if
X, ¢ {Xo,...,Xn_1}, whereas X,,,; — X,, is either (0, 1) or (0, —1) with equal probability if X,, €
{Xo,...,X,_1}. Does (X,,) visit any site infinitely often with positive probability? This question is

due to Benjamini, Kozma, and Schapira (2011), who analyze a version of this in four dimensions.

A notoriously difficult, though innocent-sounding, variation on random walk on graphs, due to
Coppersmith and Diaconis, is the following. Let G be a graph. To model the idea that a random walker
may prefer to traverse edges previously visited, we will allow the edge weights to change with time.
Thus, define a non-Markovian process (X,, ; n > 0) as follows. Start with a fixed vertex X, and some
constant a > 0. Let L,,(e) be the number of traversals of e by (X ; 0 < k < n). When choosing X,,,1,
use edge weights c,,(e) := a + L, (e). This is called edge-reinforced random walk. Tt is not hard to
show that if G = Z, then X,, /» c a.s.

More generally, when G is a tree, there is an alternative representation of edge-reinforced random
walk that allows it to be analyzed, as done first by Pemantle (1988). He proved that this model exhibits
a phase transition: when a is small, the random walk is recurrent (that is, it visits every vertex infinitely
often a.s.), whereas when a is large, it is transient. The precise critical value of a is known, even for
general trees: see Lyons and Pemantle (1992) (and Lyons and Pemantle (2003)). To see this alternative
representation, consider first a directed graph, G, and only increase the weights of directed edges
when traversed. Let C,,(x) be the vector of weights on the outgoing edges from x at the nth visit to
x. We could define this for all n regardless of how many times x is visited. In fact, these sequences
(Cp(x); n = 0) are independent for different x € V(G) and are the same as choosing from a Pélya
urn that starts with weight a on each outgoing edge from x. Since the draws from a Pélya urn are
exchangeable, they could equally well be represented as a mixture of i.i.d. choices by de Finetti’s
theorem; it turns out that the mixture is a Dirichlet distribution. Thus, one can alternatively describe the
directed edge-reinforced random walk as follows: First pick a random transition probability distribution
for each vertex in an i.i.d. way from a certain Dirichlet distribution. Then do a Markovian random walk
according to these transition probabilities. This is known as a random walk in a random environment
(RWRE). When G is a tree, we do not need to use directed edges for this representation, since each edge
is traversed twice when returning to a vertex before any other incident edge is traversed.

When G = Z4 for d > 2, reinforced random walk is harder to analyze and there was little progress
for many years. Merkl and Rolles (2009) showed recurrence for small a on graphs obtained by
subdividing the edges of Z2. Finally, Angel, Crawford, and Kozma (2014) and Sabot and Tarres (2015)
showed independently that on every graph G of bounded degree, if @ > 0 is sufficiently small, then
edge-reinforced random walk on G is recurrent. Conversely, Disertori, Sabot, and Tarres (2015) proved
that if 4 > 3 and a is sufficiently large, then the edge-reinforced random walk in Z is transient. The
behavior of the process in Z? when a is large remains open.

It turns out that a similar-sounding process, where one uses vertex weights instead of edge weights,
but again, the weight of a vertex is increased every time a vertex is visited, behaves quite differently
and is considerably easier to understand: see Volkov (2001). This process is called vertex-reinforced
random walk.

The topic of RWRE, with any i.i.d. transition probabilities, is quite natural and extensive but only
partially understood, except on trees.

> Exercise 2.22.
Let (Ay ; k € Z) be i.i.d. random variables with values in (0, 1). Let (X,,) be the RWRE on Z with
transition probability at k given by stepping to k + 1 with probability A; and to k — 1 with probability
1 — Ax. Show that this walk tends to oo a.s. when E[log Ay — log (1 — Aj)| > 0, tends to —co a.s. when
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E[log Ap —log (1 — AO)] < 0, and is a.s. recurrent when E[log Ap —log (1 — AO)] = 0 (when these
expectations are defined). Hint: Use a random electrical network.

To see how difficult the topic of RWRE in Z¢ is when d > 2, consider symmetric random
environments. Only in very special cases is it known whether the RWRE is recurrent or transient. Even
when the environment is not symmetric but has a nonzero average drift in some direction, transience is
not always established. See Zeitouni (2004) and Sznitman (2004) for surveys of RWRE.

2.10 Collected In-Text Exercises

2.1. (Reversible Markov Chains)
(a) Let P be the transition probability matrix of a Markov chain. Show that if P is w-reversible, that
is, m(x)p(x, y) = m(y)p(y, x) for all states x, y, then x is P-stationary, that is, Y w(x)p(x,y) = n(y)
for all states y.
(b) Let P be the transition probability matrix of a Markov chain and 7 be P-stationary. Define the
reversed Markov chain to have transition probabilities

p(x,y) = n(y)p(y, x)/7(x)

and write P for the associated transition matrix. Show that P is indeed a transition matrix and that

VX1, X2, Xn,
n-1 n-1

(e)) [ [ PG xin) = m(en) [ POtnari %na) -

i=1 i=1

Of course, P is m-reversible iff P = P.
(¢) Show that if a Markov chain is reversible, then Vx1, x», ..., x,, with x; = x,,,

n-1 n-1
[ PG xi) = [ [ pGeneroi xni) :
i=1 i=1

the chance of traversing a cycle is the same in either direction. Show too that this equation implies
reversibility.

(d) Let (X, ) be a random walk on a network G, and let x and y be two vertices in G. Let P be a
path from x to y and #’ be its reversal, a path from y to x. Show that

PlXp;n<t)=P |1t <ti|=P[(Xn; n <) =P | 7, <‘r;],

where 1, denotes the first time the random walk visits w, /> 7,,* denotes the first time after O that the
random walk visits w, and P,, denotes the law of random walk started at #. In words, paths between
two states that don’t return to the starting point and stop at the first visit to the endpoint have the same
distribution in both directions of time.

(e) Consider a random walk on a network G that is either transient or is stopped on the first visit to
a set of vertices Z. Let 4(x, y) be the expected number of visits to y for a random walk started at x; if
the walk is stopped at Z, we count only those visits that occur strictly before visiting Z. Show that for
every pair of vertices x and y,

m(x)4(x,y) = n(y)9(y, x) .

(f) Show that random walk on a connected network G is positive recurrent (that is, has a stationary
probability distribution, which is therefore unique) iff ) y ¢(x,y) < oo, in which case the stationary
probability distribution is proportional to 7r(+). Show that if the random walk is not positive recurrent,
then 7(+) is a stationary infinite measure.
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2.2. Suppose that an antisymmetric function j (meaning that j(x, y) = —j(y, x)) on the edges of a
finite connected network satisfies Kirchhoff’s cycle law and satisfies Kirchhoff’s node law in the form
Zx~y j(x,y) = 0for all x € W. Show that j is the current corresponding to some voltage function
whose values are specified off W and that the voltage function is unique up to an additive constant.

2.3. Verify that Propositions 2.1 and 2.2 are valid when the number of edges is infinite but the
number of vertices is finite.

2.4. For a fixed vertex a in G, show that lim,, ¢(a < Z,,) is the same for every sequence (G, ) of
induced subgraphs that exhausts G.

2.5. When G is finite but A is not a singleton, define 4 (A < Z) to be ¢(a < Z) if all the vertices
in A were to be identified to a single vertex, a. Show that if voltages are applied at the vertices of AU Z
sothat vl A and v | Z are constants, then v | A— v Z = Ty z%(A & Z),where Ipz =Y .4 Zy i(x,y)
is the total amount of current flowing from A to Z.

2.6. Give two harder but instructive proofs of the series equivalence as follows. Since voltages
determine currents, it suffices to check that the voltages are as claimed on the new network G’. (1) Show
that v 1(V(G) \ {w}) is harmonic on V(G’) \ (A U Z). (2) Use the “craps principle” (Pitman (1993),
p- 210) to show that P, [14 < 7z] is unchanged for x € V(G) \ {w}.

2.7. Give two more proofs of the parallel equivalence as in Exercise 2.6.

2.8. Let (G, ¢) be a network. A network automorphism of (G,c) is a map ¢: G — G that is a
bijection of the vertex set with itself and a bijection of the edge set with itself such that if x and e are
incident, then so are ¢(x) and ¢(e) and such that c(e) = c(p(e)) for all edges e. Suppose that (G, ¢) is
spherically symmetric about o, meaning that if x and y are any two vertices at the same distance from
o, then there is an automorphism of (G, ¢) that leaves o fixed and that takes x to y. Let C,, be the sum
of c(e) over all edges e with d(e”,0) = n — 1 and d(e*, 0) = n. Show that

%(OHW)=ZCL’

n>1

whence the network random walk on G is transient iff

Zcim.

nx1 "

2.9. Give at least one proof of the star-triangle equivalence.

2.10. Find a (finite) graph with two vertices a and z that can’t be reduced to a single edge between a
and z by the four transformations pruning, series, parallel, and star-triangle.

2.11. Prove that d and d* are adjoints of each other.

2.12. Show that P[a — Z] can increase in some situations and decrease in others when an edge
incident to a is removed.

2.13. Given disjoint vertex sets A, Z in a finite network, we may express the effective resistance
between A and Z by Thomson’s principle as

Z#(A & Z) =min { Z r(e)d(e)*; 6 is a unit flow from A to Z} .

e€Ey
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Prove the following dual expression for the effective conductance, known as Dirichlet’s principle:

C(A o Z)= min{ > cle)dF(ey’; F1A=1, F1Z = o} ,

e€E

2.14. Let G = (V, E) be denumerable and 6,, € £*(E, r) be such that £(6,) < M < coand 6,, — 6
edgewise, that is, 6,,(e) — 6(e) for each e € E. Show that 6 is antisymmetric, &£(0) < liminf,, £(6,,) <
M,andVx € V d*0,,(x) = d*0(x).

2.15. Show that (2.19) is also necessary for recurrence if f(n + 1) < f(n) + 1 for all n.

2.16. Show that if we remove each edge [(x, v,2), (x,y, 2+ 1)] in Z3 with x + y odd, then we obtain
a transient graph with effective resistance to infinity at most 6 times what it was before removal.

2.17. Show that being roughly isometric is an equivalence relation.
2.18. Show that Z and Z? are not roughly isometric graphs.

2.19. Prove Proposition 2.18.

2.20. Prove Theorem 2.23.

2.21. Find a sequence of times § C N such that if (X,, ; n € N) is the Markov chain on Z? with
increments that are uniformly distributed on {(1, 0),(-1,0),(0, 1), (0, —1)} attimes n ¢ S and uniformly
distributed on {(1,0), (-1,0)} at times n € S, then the chain is transient. Hint: Let S consist of very
long intervals separated by long intervals.

2.22. Let (A ; k € Z) be i.i.d. random variables with values in (0, 1). Let (X,,) be the RWRE on
Z. with transition probability at k given by stepping to k + 1 with probability A and to k — 1 with
probability 1 — Ax. Show that this walk tends to oo a.s. when E[log Ay — log (1 — Ap)| > 0, tends to —oco
a.s. when E[log Ay — log (1 — Ag)] < 0, and is a.s. recurrent when E[log Ay — log (1 — Ag)] = 0 (when
these expectations are defined). Hint: Use a random electrical network.

2.11 Additional Exercises

In all the exercises, assume the networks are connected. Recall that n(+) is not necessarily
a probability measure.

2.23. A function f on the states of a Markov chain is called subharmonic at x if

) < py)f()

and superharmonic if the opposite inequality holds. Show that the maximum principle extends
to subharmonic functions and that there is a corresponding minimum principle for superharmonic
functions.

2.24. Let A C V be a subset of states of a Markov chain such that P, [ty < o] =1 forall x € V.
Suppose that f:V — R is subharmonic at all x ¢ A (as defined in Exercise 2.23).
(a) Show that f(x) < sup,., f(y) forall x € Vorelse sup, 4, f(x) = co.
(b) Find an example where f [ A is bounded but f is not.
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2.25. Give another proof of the existence principle along the following lines. Given f; off W, let
f(x) := inf g(x) over all functions g that are superharmonic on W, that agree with f; off W, and such
that g > inf fy. (See Exercise 2.23 for the definition of “superharmonic.”) Then f is harmonic and
agrees with fj off W.

2.26. Let G be a transient network and x, y € V. Show that
71'()6) Px [Ty < 00]54()’» y) = 7T()’) Py [Tx < Oo]g(x: .X) .

2.27. Let G be a transient network and f:V — R satisfy Zy 4 (x, y)|f(y)|] < oo for every x. Define
“@f)(x) = Zy 4(x,y)f(y). Let I be the identity operator and P be the transition operator (that is,

(Pg)(x) :=>_ p(x,y)g(y)). Show that (I - P)(¥ f) = f.

2.28. Let G be transient and u be a nonnegative superharmonic function. Show that there exist
unique functions f and 4 such that f > 0, A is harmonic, and u = 4 f + h, where ¢4 f is defined in
Exercise 2.27. Show that also f = (I — P)u, h > 0, and h > g whenever g < u is harmonic, where /
and P are defined in Exercise 2.27. Hint: Define h := lim,, P"u and f := (I — P)u.

2.29. (Starr’s Maximal Inequality) Let G be a positive recurrent network with stationary proba-
bility distribution 7. Let P be the transition operator as in Exercise 2.27. Use the following steps to
prove that for every p € (1,00) and f € {P(V, n),

sup P f

n>0

< (555 st

|P

(This exercise assumes familiarity with martingale theory.) Let Xy ~ 7 and f > 0. Write R, :=
E[f(X2,) | Xn] and Ay := maxoc,<ny P f.

(a) Show that (P?" £)(X,) = E[R,, | Xo].

(b) Show that (X,, Xps1s - - » Xon) Z (Xs X1, - - ., Xo)-

(c) Show that R, = E[f(Xo) | Xn, X1, . . .|, whence (Rn, Rn-1, . . ., Ro) is a martingale.

(d) Show that [maxocnsn Rall, < 55 1f 1l

(e) Show that hn(Xo) < E[maxocn<n Ry | Xol-

(f) Show that hnll, < £l

(g) Take N — oo to deduce Starr’s inequality.

2.30. Suppose that (X,,) is a stationary sequence with values in some measurable space. Let the
distribution of X, be p. Fix a measurable set A of possible values and let 7 :=inf{n > 1; X,, € A}.
Write w4 for the distribution of X given that X, € A.

(a) Show that P[1} < oo | X, € A] = 1.
(b) Show that the conditional distribution of XTX given that Xy € Ais also ua.
(¢) (Kac Lemma) Assume that P[7}; < co] = 1. Show that E[7} | X, € A] = 1/u(A).

2.31. Given a finite graph G and two of its vertices a and z, let i.(+) be the unit current flow from a
to z when conductances c¢(+) are assigned to the edges. Show that i.. is a continuous function of ¢(+).

2.32. Let G be a network. If 4: V — [0, o) is harmonic at every vertex of W C V, while i(x) > 0
iff x € W, there is a Markov chain on W associated to & called Doob’s h-transform; its transition
probabilities are defined to be p”(x, y) := p(x, y)h(y)/h(x) for x,y € W. Check that these are indeed
transition probabilities for a reversible Markov chain. Find corresponding conductances.
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2.33. Let G be a finite network and W & V. At every visit to a vertex x € W, a random walker
collects a payment of g(x). When reaching a vertex y ¢ W, the walker receives a final retirement
package of i(y) and stops moving. Let f(x) denote the expected total payment the walker receives
starting from x.

(a) Show that f is finite.

(b) Write a set of linear equations that the values f(x) for x € W must satisfy (one equation for
each such vertex x).

(¢) Uniqueness: Show that these equations specify f.

(d) Existence: Without using the probabilistic interpretation, prove there is a solution to this set of
equations.

(e) Leti be the current associated to the voltage function f, that is, i(x, y) := c¢(x, y)[f(x) — fF()].
Show that the amount of current flowing into the network at x, that is, >~ i(x, y), equals 7(x)g(x) for
x € W. Thus, currents can be specified by giving voltages & on one set of vertices and giving flow
amounts 7(x)g(x) on the complementary set of vertices. (Recall that 7(+) is not generally a probability
measure.)

2.34. If voltages are given at vertices a and z of a finite network and thus are harmonic elsewhere,
must the voltages of the vertices be monotone along every shortest path between a and z?

2.35. Let x,y,z € V. Show that €(x & {y,z}) < €(x & y)+ € (x & 2).

2.36. Let A and Z be two sets of vertices in a finite network. Show that for any vertex x ¢ AU Z, we

have
C(x & A)

“(x o> AUZ) "
2.37. Show that on every finite network, [E[Syy ] — E[Sy«]| < 1 for all x, y, where S, is defined as
in Proposition 2.2.

PX[TA < Tz] <

2.38. When a voltage is imposed so that a unit current flows from a to Z in a finite network and
vl Z = 0, show that the expected total number of times an edge [x, y] is crossed by a random walk
starting at a and absorbed at Z equals c(x, y)[v(x) + v(y)].

2.39. Define S, as in Proposition 2.2. Show that E[S, ] is monotone increasing in c(x, y).
2.40. Show that every transient network contains a locally finite transient subnetwork.

2.41. Let G be a network such that y := ZeeE c(e) < oo (for example, G could be finite). Here, the
sum counts each edge with two endpoints twice and each loop once. For every vertex a € G, show that
the expected time for a random walk started at a to return to a is y/n(a).

2.42. Let (X,,) be arecurrent irreducible Markov chain, not necessarily reversible. Let 7 > 0 be a
stopping time such that P, [X, = a] = 1 for some state a. Let % (x, y) = Ex[> ., <; 1ix,=y]]- Assume
that 4, (a, a) < oo; for example, we could use 7 = 7.

(a) Show x — %.(a, x) is finite for each x and gives a stationary measure.

(b) Assume in addition that (X,,) is positive recurrent, that is, it has a stationary probability
measure 7(+), not necessarily reversible. Show that for all states x, we have E,[7] < oo and
n(x) = %/(a,x)/E,[7]. In particular, E,[7}] = 1/n(a). Give another proof of the formula of
Exercise 2.41 from this.

(¢) Show thatif E,[7}] < oo, then (X,,) is positive recurrent.

2.43. Let (X,,) be an irreducible Markov chain. Suppose that the Markov chain is recurrent.
(a) Show that there are no bounded harmonic functions other than the constants.
(b) Show that there are no nonnegative harmonic functions other than the constants.
(c) Existence of a stationary measure was shown in Exercise 2.42. Show that the stationary
measure is unique up to a multiplicative constant.
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2.44. Let (X,,) be an irreducible Markov chain. Show that the Markov chain is recurrent iff
every nonnegative superharmonic function is constant. (See Exercise 2.23 for the definition of
“superharmonic.”)

2.45. Let (X,,) be a positive recurrent irreducible aperiodic Markov chain with stationary probability
measure 7( + ), not necessarily reversible. Write P, for the law of the chain when the distribution of X,
is 7r. Show that for all states x, we have

7(¥) Exlte] = Y [pa(x, x) = 7(x)] .

n>0

The right-hand side can be thought of as the expected excess number of visits to x when starting at x
compared to starting according to .

2.46. Let G be a network such that Y .. c(e) = oo. For every vertex a € G, show that the expected
time for a random walk started at a to return to a is co.

2.47. Let G be a finite network and A and Z be two disjoint subsets of vertices in G. Show that

C(A e Z)= Zn(x)Px[‘rz <7i].
XxX€EA

(Recall that 7( +) is not generally a probability measure.)

2.48. Let (X,,) be a positive recurrent irreducible Markov chain with stationary probability measure
7(+), not necessarily reversible. Show that the expected hitting time of a random n-distributed target
does not depend on the starting state. That is, show that if

f(x) =) () B[],

y
then f(x) is the same for all x. In case the state space is finite, show that
fo =3 —
-
where the sum is over the eigenvalues A; of the transition matrix P (with multiplicity) other than 1.

2.49. Suppose that a tree T is transient for simple random walk (X,,). If we iteratively erase
backtracking from the path of the walk, then we obtain a.s. aray & € OT that intersects the path infinitely
often. We say that (X,,) converges to &£. Prove that if (X,,) and (X,) are independent simple random
walks on 7, then a.s. they converge to distinct rays.

2.50. Let (X,,) be a Markov chain and A be a set of states such that 74 < oo a.s. The distribution of
X, is called harmonic measure on A. In the case that (X,,) is a random walk on a network G = (V, E)
starting from a vertex z and A C V is finite, let u be harmonic measure and define

v(x) =P [1, <1;] forxe A

(a) Show that
w(x) =P [y < Ta\(x} | Ta <77] forall x € A.

(b) Show that
wx)=2%(A & )n(x)v(x) forall x € A.



§11. ApbitioNAL EXERCISES 63

(Recall that 7( +) is not generally a probability measure.)

(¢) Let G be a transient network and (G,,) be an exhaustion of G by finite induced subnetworks.
Let GY be the network obtained from G by identifying the vertices outside G,, to a single vertex, z,,,
and removing loops at z,,. Fix a finite set A € V. Let u,, be harmonic measure on A for the network
GY from z,,. Show that wired harmonic measure from infinity y := lim,, ., u,, exists and satisfies

1(x) = Z(A & co)n(x)Py[1; = 0] forall x € A.

2.51. Let G be a finite network with a fixed vertex, a. Fix s € (0, 1). Add a new vertex, A, which is
joined to each vertex x with an edge of conductance w(x) chosen so that at x, the probability of taking
astep to A is equal to 1 — 5. Call the new network G’. Prove that

Zpksk =n(a)%(a < A;G)/s,

k>0

where p;. is the probability that the network random walk on G (not on G’) starting from a is back at a
at time k. The preceding series is the generating function for the return probabilities and is sometimes
called the “Green function,” despite the other notion of Green function defined in this chapter.

2.52. Let G be a transient network with a fixed vertex, a. Fix s € (0, 1). Add a new vertex, A, which
is joined to each vertex x with an edge of conductance w(x) chosen so that at x, the probability of
taking a step to A is equal to 1 — s. Call the new network G’. Define the effective resistance between
a and {A, oo} to be the limit of the effective resistance between a and V(G’) \ V(G,,), where G,, is
an exhaustion of G (not of G’) by induced subnetworks. Prove that the limit defining the effective
resistance between a and {A, oo} exists and that

> _pist = a(@(a © A w0 G)s,
k>0

where p,. is the probability that the network random walk on G (not on G’) starting from a is back at a
at time k.

2.53. Give an example of two graphs G; = (V, E;) on the same vertex set (i = 1, 2) such that both
graphs are connected and recurrent, yet their union (V, E; U E,) is transient.

2.54. Consider nearest-neighbor random walk on IN that steps +1 with probability 3/4 and —1 with
probability 1/4 unless the walker is at a multiple of 3, in which case the transition probabilities are
1/10 and 9/10, respectively. (Of course, at 0, the walker always moves to 1.) Show that the walk is
recurrent. On the other hand, show that if before taking each step, a fair coin is tossed and one uses
the transition probabilities of this biased walk when the coin shows heads and moves right or left with
equal probability when the coin shows tails, then the walk is transient. In this latter case, show that the
walk tends to infinity at a positive linear rate.

2.55. In the following networks, each edge has unit conductance.

() (b) (©)
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(a) What are P,[1, < 7], P,[7x < 7], and P, [7, < 7,]?

(b) Whatis ¢(a < z)? (Or: show a sequence of transformations that could be used to calculate
%(a © z).)

(¢) What is ¥(a < z)? (Or: show a sequence of transformations that could be used to calculate
€(a & z2).)

2.56. Suppose that G is a finite network and voltages are given to be 1 at a vertex a and 0 at a vertex
z. Let x and y be two other vertices of G, and let G’ := G/{x, y} be the graph obtained by shorting
x and y, that is, identifying them. Show that the voltage at the shorted vertex in G’ lies between the
original voltages at x and y in G.

2.57. Let W be a set of vertices in a finite network G. Let j € £*(E) satisfy Somiler(e) =0
whenever (ej, e5,...,e,) is a cycle; and d*j[(V \ W) = 0. According to Exercise 2.2, the values of
d*jI'W determine j uniquely. Show that the map d*j[W  j is linear. This is another form of the
superposition principle.

2.58. Let (G, c) be a finite network, z € V(G), and A C V(G) \ {z}. Consider two voltage functions
v, v’ on G specified to be 0 at z and arbitrary on A, with the property that v(a) < v’(a) for each a € A.
Let i, be the corresponding currents. Show that d*i(z) > d*i’(z).

2.59. Let A and Z be subsets of vertices in a finite network. Show that

ﬁ Z %(aez)zﬁ Z‘@(‘“—’b)*'é Z%(ywz),

acA,zeZ a,beA y,2€Z
with equality iff A = Z.

2.60. Let G be a finite network and f:V — Rsatisfy > f(x) = 0. Pick z € V. Let %, (s,*)
be the Green function for the random walk on G absorbed at z. Consider the voltage function
v(x) = Zy 4.(x,y)f(y)/n(y). Show that the current i = ¢ - dv satisfies d*i = f and £(i) =
2ony G (e, ) f )/ (y).

2.61. A cut in a graph G is a set of edges of the form {(x,y); x € A, y ¢ A} for some proper
nonempty vertex set A of G. Show that for every finite network G, the linear span of

{ Z c(e)x¢; Ilisa cut of G}

ec€ll
equals the star space.

2.62. Let G be a finite connected network. The network Laplacian is the V X V matrix Ag whose
(x,y) entry is —c(x, y) if x # y and is w(x) if x = y. Thus, Ag is symmetric and all its row sums are
0. Write Ag[a] for the matrix obtained from Ag by deleting the row and column indexed by a. Let
vq(x,y) be the voltage at x when a unit current iy, , flows from y to a (so that the voltage at a is 0) if
y # a and be 0 otherwise. (By Proposition 2.1, v, (x, y) = 4,(x, y)/n(y) for the random walk killed at
a.) Prove the following statements:

(a) if x,y # a, then v, (x, y) is the (x, y)-entry of Ag[a]™!;

(b) valx,y) = va(y, x);

(©) valx, x) =vx(a, a);

(d) forall a,x,y € V, we have Z(x © y) = v,4(x,x) —20,4(x,y) + va(y,V);

(e) if x,y #a,thenv,(x,y) = (ix.a’iy.a)r;

(f) forall f € £2(V), we have (f, A f) = |ldf||*;

(g) forall x,y € V, we have Z(x & y) = (115} — 1y}, (Ag + J)'(1{x} — 14y)) for any nonzero
matrix J with all entries equal.
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2.63. Let G be a finite connected network. Show that <9?(x < ¥); x,y € V(G)> determines
(c(x,¥); x,y € V(G)), even if one does not know E(G).

2.64. Let G be a finite network. Show that if a voltage is 1 at g and O at z, then the corresponding
current flow from a to z is the projection of the star at a on the orthocomplement of the span of all the
other stars except that at z.

2.65. (Foster’s Theorem) Show that if G has n vertices, then »
denotes the unit current flow from e~ to e*.

se — _ ce
ekl | (e) = n—1, where i

2.66. Let G be a graph with unit conductances and e, ¢’ € E(G). Show that i¢(e) > i¢(¢’).

2.67. Show that in every finite network, for every three vertices u, x, and w, we have
Ao x)+RZ(x o w)>%ue w).

2.68. Show that in every finite network, for every three vertices a, x, and z, we have

Fla o x)— Fx o )+ Ra o 2)
2%(a © 7) '

Px[Tz < Ta] =

2.69. The star-triangle equivalence can be extended as follows. Suppose that (G, ¢) and (G’, ¢’) are
two finite networks with a common subset W of vertices that has the property that for all x,y € W,
the effective resistance between x and y is the same in each network. Then say that G and G’ are
W-equivalent.

(a) Let G and G’ be W-equivalent. Show that specifying voltages on W leads to the same current
flows out of W in each of the two networks. More precisely, let fo: W — R, and let f and f’ be the
extensions of f, to G and G’, respectively, that are harmonic off W. Show that d*cdf = d*c’df’ on W.

(b) Let G and G’ be W-equivalent. Suppose that H is another network with subset W of vertices,
but H is otherwise disjoint from G and G’. Form two new networks G U H and G’ U H by identifying
the copies of W. Show that if the same voltages are established at some vertices of H in each of these
two networks, then the same voltages and currents will be present in each of these two copies of H.

(¢) Given G and a vertex subset W with |W| = 3, show that there is a 4-vertex network G’ with
underlying graph a tree that is W-equivalent to G.

(d) For x,y € W, let pyw(x,y) be the probability that the network random walk on G starting
at x is at y when it first returns to W; possibly x = y. Define the network G’ := (W,¢’) with
c’(x,y) == n(x)pw(x, y) for all x # y € W. Show that ¢’(x,y) = ¢(y, x) for all x # y € W and that G
and G’ are W-equivalent. Hint: Consider adding loops to G’.

(e) (The Star-Clique Transformation) Let z € V(G) and N be the set of the neighbors of z.
Form the network G’ from G by deleting z and adding an edge between each pair of distinct vertices
x,y € N of conductance ¢(z, x)c(z, y)/n(z). Show that G and G’ are V(G’)-equivalent. Note that when
|N| = 1, this is the same as pruning vertices of degree 1; when |N| = 2, this is the same as the series
transformation; and when |N| = 3, this is the same as the star-triangle transformation.

2.70. Show the following quantitative forms of Rayleigh’s monotonicity principle in every finite
network:
(a) If r(e) denotes the resistance of the edge e and i is the unit current flow from a to z, then
0

&r—@%(a s Z) = i(€)2 .

(b) If c(e) denotes the conductance of the edge e and v is the unit voltage from a to z, then

0 2
m%(a ©7)= (dv(e)) .
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2.71. Let G be a recurrent network with an exhaustion by induced subnetworks (G,,). Suppose that
a,z € V(G,) for all n. Let v,, be the voltage function on G,, that arises from a unit voltage at a and 0
voltage at z. Let i,, be the unit current flow on G,, from a to z. Let %, (s, »; G,,) be the Green function
on G,, for random walk absorbed at z.

(a) Show that v := lim,, v,, exists pointwise and that v(x) = P[7, < 7] forall x € V.

(b) Show that i := lim,, i,, exists pointwise and that if @ is a finitely supported unit flow from a to
z, theni = P¢. 6. Here, < is the closure of the linear span of the cycles in G.

(c) Show that &£(i) dv = ir.

(d) Show that the effective resistance between a and z in G,, is monotone decreasing with limit
&(i). We define Z(a & z;G) = &().

(e) Show that ¥, (a, x;G,) — %.(a, x;G) = &@)rn(x)v(x) for all x € V.

(f) Show that i(e) is the expected number of signed crossings of e.

2.72. With all the notation of Exercise 2.71, also let GY be the graph obtained from G by identifying
the vertices outside G,, to a single vertex, z,. Let v and iV be the associated unit voltage and unit
current from a to z.

(a) Show that v¥ and i\ have the same limits v and i as v,, and i,,.
(b) Show that the effective resistance between a and z in G)Y is monotone increasing with limit
&(D).

2.73. Let G be a recurrent network. Define % to be the closure of the linear span of the stars and ¢
to be the closure of the linear span of the cycles. Show that £2(E,r) = % & <.

2.74. Show that R.q is a concave function of the collection of resistances (r(e)).
2.75. Show that Ceq is a concave function of the collection of conductances {c(e)).
2.76. Give another proof of Rayleigh’s monotonicity principle by using Exercise 2.13.

2.77. Show that if a unit voltage is imposed between two vertices of a finite network, then for each
fixed edge e, we have that |dv(e)| is a decreasing function of c(e).

2.78. (Extremal Length) Given disjoint vertex sets A, Z in a finite network, prove that

%(A & Z) =min { Z c(e)f(e)z} ,

ecE )

where ¢ is an assignment of nonnegative lengths so that the minimum distance from every point in A to
every point in Z is 1.

2.79. Extend Exercise 2.13 to the full form of Dirichlet’s principle in the finite setting: Let A C V
and let Fy: A — Rbe given. Let F: V — R be the extension of F that is harmonic at each vertex not in
A. Then F is the unique extension of F, that minimizes &(c dF).

2.80. Let G be a finite graph and W & V. Suppose that f: V — R satisfies df(e) # 0 for every e € E
and

Vx¢W Jy~x z~x f(y) < fx)< f(2). (2.27)

Let g: E — (0, o0) be symmetric.

(a) Show that there is an assignment of conductances c(«) to G such that if the voltages imposed
on W are f[W, then the energies are g with current flowing in the direction of df, that is, the voltages
satisfy c(e) dv(e)® = g(e) for all e € E and sgn dv = sgndf. Hint: Maximize EeeEm g(e)log|dh(e)|
over h:V — R with h|W = f|W and sgndh = sgndf. Call the maximizer v(+) and define c := g/dv>.
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(b) Show that the maximizer for the hint in part (a) is unique. Therefore, given f;: W — R, the
number of assignments of c¢(+) whose energies are a given g is the same for all g, namely, it is the
number of choices of E;,, such that for some extension f of f;,, we have df(e) > O forall e € E,;, and
(2.27) holds.

(¢) Show that there exists f:V — R such that df(e) # O for all e and (2.27) holds iff there is a
choice of E;,, that is, an orientation of E, such that the only sources and sinks are in W and there are
no (oriented) cycles. (An orientation has a source (resp., sink) if there is a vertex which is the tail (resp.,
head) of all its incident edges.)

2.81. Let H be a proper subnetwork of G. Let (X,,) be the network random walk on G. Show that if
H is recurrent, then P[Vn X,, € H] =0.

2.82. Prove that (2.14) holds even when the network is not locally finite and the cutsets I1,, may be
infinite.

2.83. Find a counterexample to the converse of the Nash-Williams criterion. More specifically, find a
tree of bounded degree on which simple random walk is recurrent, yet every sequence (II,,) of pairwise
disjoint cutsets separating the root and oo satisfies Y . |IL,|™" < C for some constant C < co.

2.84. Show that if (IT,,) is a sequence of pairwise disjoint cutsets separating the root and co of a tree
T without leaves, then >, [IL,|™ < >, |T,. ™.

2.85. Give a probabilistic proof as follows of the Nash-Williams criterion in case the cutsets are
nested as in Remark 2.10.
(a) Show that it suffices to prove the criterion for all networks but only for cutsets that consist of
all edges incident to some set of vertices.
(b) LetII,, be the set of edges incident to the set of vertices W,,. Let A,, be the event that a random
walk starting at a visits W,, exactly once before returning to a. Let u,, be the distribution of the first
vertex of W,, visited by a random walk started at a. Show that

P(A,) =C(a & W,) > x(x) " ua(x)

xeWy,
> ¢(a & Wn)( > n(x)) =%¢(a & W,,)( > c(e)) .
xeWy, ecll,

(¢) Conclude.

2.86. Show that if G is a graph such that for some o € V(G) and some constant C < oo, the ball of
radius n about o contains at most Cn? edges for infinitely many 7, then G is recurrent. More generally,
show that if (G, 0) is a random rooted graph such that for some constant C < oo, the ball of radius n
about o contains at most Cn? edges in expectation for infinitely many n, then G is a.s. recurrent.

2.87. Show thatif @ € €2(E,r), then > m(x)~'d*0(x)> < 2 £(6).

2.88. 1t follows from (2.16) that the function 6 - &(0) is convex. Show the stronger statement that
6 — &(F)'/? is a convex function. Why is this a stronger inequality?

2.89. Let i be the unit current flow from a to z on a finite network or from a to co on a transient
infinite network. Consider the random walk started at a and, if the network is finite, stopped at z. Let
S. be the number of times the edge e is traversed (in the same direction as e).

(a) Show thati(e) =E[S. — S_. | T} = c0].
(b) Show that if e~ = qa, then i(e) is the probability that e is traversed following the last visit to a.
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2.90. Show that the current i of Exercise 2.71 is the unique unit flow from a to z of minimum energy.

2.91. Let G be a transient network and (X,,) the corresponding random walk. Show that if v is the
unit voltage between a and co (with v(a) = 1), then v(X,,) — 0 a.s.

2.92. Let G be a transient network with sup, 7(x) < co. Show that P,[7, < o] — 0as d(a, x) — co.
(To avoid an incorrect solution, think about the case of IN attached to Z3.)

2.93. Show that if (G, ¢) is an infinite network and A is a finite subset of vertices, then

inf{ Z dF(e)*c(e); FIA =1 and F has finite support} =%(A & ).

ecEn

2.94. Let (G, ¢) be an infinite network and o € V(G). For f:V(G) — R, we say that lim,_,. f(x) =
oo if, for all s € R, there are only finitely many vertices x where f(x) < s. Show that (G, ¢) is recurrent
iff there is some f: V(G) — R with limy_e f(x) =0 and Y, df(e)*c(e) < oo.

2.95. Let (G, ¢) be an infinite network and o € V(G). Show that (G, ¢) is recurrent iff there is an
assignment £ of positive lengths to the edges so that the corresponding distance function d, satisfies
lim, —,« d¢(0, x) = oo (in the sense of Exercise 2.94) and > . c(e)l(e)? < 0.

2.96. Suppose that G is a graph with random resistances R(e) having finite means r(e) := E[R(e)].
Show that if (G, r) is transient, then (G, R) is a.s. transient.

2.97. Suppose that G is a graph with random conductances C(e) having finite means c(e) := E[C(e)].
Show that if (G, ¢) is recurrent, then (G, C) is a.s. recurrent.

2.98. Let (G, c) be a transient network and o € V(G). Consider the voltage function v when the
voltage is 1 at o and O at infinity. For ¢ € (0, 1), let A; := {x € V; v(x) > t}. Normally, A, is finite.
Show that even if A, is infinite, the subnetwork it induces is recurrent.

2.99. Sharpen Proposition 2.14 to show that if one identifies to a single vertex z,, all vertices of Z>
that are at distance more than n from 0, then as n — oo,

1
#0 & z,) ~ Elogn.

2.100. Consider random walk on Z<.

(a) Complete the following outline of a Fourier proof of Pdlya’s theorem. Define the function
w(@) = d' 3¢ cos2nay for @ = (ay,...,aq) € T? = (R/Z)?. For all n € N, we have
Pn(0,0) = [14 ¥(@)" da. Therefore >, pn(0,0) = [, 1/(1 - ¢(a))da < wiff d > 3.

(b) Show that p,,(0,0) < cyn~?/? for some constant c, by using the estimate cos 2nt < 1 — 4nt?
for |t] < 1/4 to get y(@) = O(e #1217 9) for @ € [~1/4,1/4]?. Similarly, show that p,,(0,0) > ¢/,n~¢/>
for some constant ¢/, by using reverse estimates.

(¢) Use a similar method for a random walk on Z¢ that has mean-0 nonconstant bounded jumps to
prove the same results as in (a) and (b).

2.101. Consider an urn with three balls of different colors. Pick a ball uniformly at random, and return
it to the urn together with another ball of the same color. Repeating this indefinitely yields a process
known as Polya’s urn.

(a) Model this process as a random path (S,, ; n > 0) in the lattice Z> starting from S := (1, 1, 1).
Show that S,, is uniformly distributed over {(x, V,2) €23, x+y+z=n+3,x,y,2> 0} for every
n>0.

(b) Deduce that 6(e) := P[(S,, S,.+1) = e] defines a unit flow of finite energy in Z>.

(¢) Use the same method to show that for every n > 1, the effective resistance from (0, 0) to (n, n)
in Z? is at most C log n for some universal constant C, as in Proposition 2.15.
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2.102. Give another proof of Theorem 2.17 by using Exercise 2.93.

2.103. Let (G,r) and (G’,r’) be two finite networks. Let ¢: (G,r) — (G’,r’) be an (a, 8)-rough
embedding. Show that for all vertices x, y € G, we have Z(¢(x) & ¢(y)) < aB Z(x & y).

2.104. Show that all regular trees of degree at least 3 are roughly isometric.

2.105. Let B, (G, o) denote the set of vertices within distance r of o in the graph G. Suppose that G
and G’ are roughly isometric infinite connected graphs of bounded degree.
(a) Show that G and G’ have the same polynomial growth rates, that is, if lim, _
a, then lim, _,, log |B,-(G’, 0')|/logr = a.
(b) Show that if G has exponential growth, then so does G, that is, if liminf,_,., 7! log | B,-(G, 0)| >
0, then liminf,_,., ' log|B,.(G’, 0)| > 0.

log|B,(G. 0)| _
logr

2.106. Let G be an infinite graph and x,y € V. Show that simple random walk on G satisfies
> o Pn(x,y)? < oo. In fact, show that an upper bound for this sum is ¢ - deg(y)? for some absolute
constant c.

2.107. Show that if G is a graph that is roughly isometric to hyperbolic space, then the number of
vertices within distance n of a fixed vertex of G grows exponentially fast in 7.

2.108. Show that in every finite network,

E,[7.]= % Zﬂ(x)[%’(a o)+ %(z o x)-%(x o a)l.

xeV
(Recall that 7( +) is not generally a probability measure.)
2.109. Consider a positive recurrent Markov chain, not necessarily reversible. Write H(x, y) := E[7]

for the matrix of hitting times. Let A be a subset of the state space, V. Write u%(x) := P, [XTX = x].
(a) Show that for every z € V and y € A, we have

H(z y) = {Ez [TAl+ 2 cea E0)H(x, y) ify #2
0 otherwise.
(b) Assume now that 2 < |A| < co. Show that the (A X A)-submatrix H, of H is invertible.
(c) Let K, 4 denote the row vector E_[7;] — E_[7] (y € A). Show that
ut =K, aH,'.

(d) Show that if there is a group acting transitively on the state space that preserves the transition
probabilities, then

1 . _
|_V| Z#z = CITHAI >
zeV

where ¢ is a constant so that the right-hand side adds to 1, in other words, ¢! = 17 H,'1.

2.110. Let G be a network. Suppose that x and y are two fixed vertices such that there is an
automorphism of G that takes x to y (though it might not take y to x). Show that for every k, we have
P.[1, = k] = Py[7, = k]. Hint: Show the equality with “< k” in place of “= k.”

2.111. Let G be a finite network whose automorphism group acts transitively. Let A € V. Write R
for the (A X A)-matrix whose (x, y)-entry is Z(x < y). Define u} as in Exercise 2.109. Show that

1 + T p-1
MZ/‘[Z=CI RA ’

zeV

where ¢ is a constant so that the right-hand side adds to 1.
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2.112. Let G be a network such that y := Ze e ¢(e) < oo (for example, G could be finite). Here, the
sum counts each edge with two endpoints twice and each loop once. Let x, y, z be three distinct vertices
in G. Write 7 . for the first time that the network random walk trajectory contains the vertices x, y, z
in that order. Show that

Px [Ty,z,x < T;] = Px [Tz,y,x < T;] (2~28)

and
Exlty.cn] = EulTey il = Z[#(x © )+ 20 2+ (2 © ). (2.29)

2.113. Let G be a finite network and x, y be two distinct vertices in G. Write 7, , for the first time
that the network random walk trajectory contains the vertices x, y in that order. Let & be the stationary
probability measure. Write P,(A) := > 7(x) P(A) for events A.

(a) Show that
Pﬂ[Tx,y = k] = Pn[Ty,x = k]

for all k.

(b) Define f(w, z) := Ey[7.] — E;[7.]. Show that f(w, z) = f(z, w) for all vertices w, z.

(¢) Define the binary relation w < z to mean E,,[7.] < E_[7,]. Show that this relation is a total
order.

(d) Suppose that independent random walks X and Y start from x and y, respectively. However,
you are allowed to decide which of the walks to move at each time step. At time n, you are allowed to
look at all the steps that have been made up to time n. Thus, if by time n, the walk X has made s,, steps
and Y has made ¢,, steps, where s,, +,, = n, then the choice whether s,,,; = s, + 1l or¢,,,; =¢, + 1 can
depend on (X ; k < s,)and (Y ; k <t,). Lett :=inf{n; X,, =Y, } be the first time the controlled
random walks collide. Define M,, := f(X,,,, Y., ) + n. Show that (M,,», ; n > 0) is a martingale.

(e) Show that E[7] < 2max,, . E,[7.].

2.114. Let G be a network and x, y, z be three distinct vertices in G. Write 7 ,, . for the first time that
the network random walk trajectory contains the vertices x, y, z in that order. Strengthen and generalize
the first equality of (2.29) by showing that

Px[Ty,z,x = k] =P, [Tz,y,x = k]

for all k.

2.115. Consider a Markov chain that is not necessarily reversible. Let a, x, and z be three of its states.

Show that
_ E [t.]+E,[r.] - E;[7]
P 1. <7,] = E.[r,]+E,[r] . (2.30)

Use this in combination with (2.29) and Corollary 2.21 to give another solution to Exercise 2.68. Hint:
Consider whether the chain visits z on the way to a.

2.116. Consider a Markov chain that is not necessarily reversible. Let a, x, and z be three of its states.
Show that
Ex [Ta] Ea [Tz] + Ex [Tz] Ez [Tu] B Ea [Tz] Ez [Ta]
E.[t.]+Ea[7] '

Ex[Ta A Tz] =

2.117. Let T be a tree and x and y be two of its vertices. For a vertex z on the path from x to y,
including x but not y, let A, (z) be the number of edges that are separated from y by z. Show that

E [1,]1=2%", Ay(2) +dist(x, y).
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2.118. Let G be a finite graph and x and y be two of its vertices such that there is a unique simple
path in G that joins these particular vertices; for example, G could be a tree (possibly with loops), and
then x and y could be any of its vertices. Show that E, [7,] € N. In the case that G is a tree possibly
with loops, show that E,[(7)] € N for all k € N.

2.119. Let G be a transient network and R,, := |{Xo, X1, ..., X,, }| be the number of vertices visited
by time n. Show that for all n and all o € V(G),

E,[R,] > inf €(x & o)

n+l ~ xevic)  w(x)

2.120. Consider a finite irreducible Markov chain that is not necessarily reversible. Let a and z be
two of its states. Let 7 be the stationary probability distribution. Show that 7(a) P,[7. < 7/] is the
reciprocal of the commute time between a and z. Deduce that 7(a) P, [7, < 7] = n(z) P.[7, < 7}].

2.121. Consider a positive recurrent irreducible Markov chain that is not necessarily reversible. Let
W be a subset of its states.
(a) Show that there is a Markov chain on W all whose commute times are the same as the
corresponding commute times of the original chain.
(b) Show that (a) fails if “commute” is replaced by “hitting.”

2.122. Consider a finite irreducible Markov chain that is not necessarily reversible. Let a and z be
two of its states. Let & be the stationary probability distribution. Using the reversed Markov chain P,
define the symmetrized Markov chain to have transition probabilities p(x, y) := [p(x, y) + p(x, y)]/2.

(a) Show that P is reversible with stationary measure 7.

(b) Write L :=1— P and L :=1 - P. Show that L is the adjoint of L with respect to the inner
product (s, ).

(c) Show that for all real-valued functions f on the state space, (Lf, ), > 0, with equality iff f
is constant.

(d) Write r(a, z) = (Eu [r.]1+E, [Ta])_l for the reciprocal of the commute time between a and z.
Write h(x) := P [7, < 7.] and h(x) := P;[1, < 7.]. Show that

(x)(Lh)(x) = (@, 2)(1{ay (x) = 11y (x)) = 7()LR) ().

(e) Show that for all real-valued f, we have (Lh, f), = (Lf, Z),, =r(a, 2)[f(a) — £(2)]-
(f) Show thatif f(a) = 1 and f(z) =0, then (Lh,2f — h), = r(a, 2).
(g) Put ho= (h+ Z)/Z. Suppose that f + g = 271, where f(a) = g(a) =1 and f(z) = g(z) = 0.
Show that (Lf, g). < r(a, z), with equality iff f = hand g = h.
(h) Show that
r(a,z) = min max (Lf,g)x,
¢ f+g=2¢

where ¢, f, g are real-valued functions that all take the value 1 at ¢ and O at z.
(i) Show that the commute time between a and z for the symmetrized chain is at least that for the
original chain, with equality iff & = h.

2.123. Show that if two finite irreducible (not necessarily reversible) Markov chains on the same state
space determine the same functions (a, z, x) — Py [1, < 7.] and each of the chains have only 0 on the
diagonal of their transition matrices, then the chains have the same transition probabilities.

2.124. Consider an irreducible Markov chain on a state space V of size n, not necessarily reversible.
Let x be the stationary probability distribution. Show that Zx’yev a(x)p(x,y)Ey[1y] =n—1. Give
another proof of Foster’s theorem (Exercise 2.65) from this.
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2.125. Consider a finite irreducible Markov chain that is not necessarily reversible. Let 7 be the
stationary probability distribution.

(a) Prove that > .\, m(x)p(x,y) Ex[ry] <n—1.
(b) Show that equality holds in (a) iff the Markov chain is reversible.

2.126. Let G be a finite network and let a and z be two vertices of G. Let x ~ y in G. Show that the
expected number of transitions from x to y for a random walk started at a and stopped at the first return
to a that occurs after visiting z is c(x, y)%(a < z). Give another proof of Corollary 2.21 by using this
formula.

2.127. Show that Corollary 2.21 and Exercises 2.126, 2.68, and 2.108 hold for all recurrent networks.

2.128. Let G be a network with n vertices and consider two of its vertices, a and z. Consider a random
walk (X ; 0 < k < 1) that starts at a, visits z, and is then stopped at its first return 7 to a after visiting

z. Show that E[ X720 Z(Xx © Xia1)] = 2(n — D%(a & 2).
2.129. Given two vertices a and z of a finite network (G, c), show that the commute time between a

and z is at least twice the square of the graph distance between a and z. Hint: Consider the cutsets
between a and z that are determined by spherical shells.

2.130. Show that the expected cover time of a graph G = (V, E) is at most 2|E| - |V].

2.131. A graph is called edge transitive if, for each pair e, ¢’ of (unoriented) edges, there is an
automorphism of the graph that takes e to ¢’. Show that the expected cover time of an edge-transitive
graph G = (V, E) is at most 2|V/>.

2.132. Let G be a connected simple graph on n vertices. Define
5(e) = %(e” & e")—(dege™ + 1) — (dege™ +1)7".

For a spanning tree 7, define R(T) := ), Z(e” < e*).
(a) Show that 5(e) > O forall e € E.
(b) Show that ZGGE]/Z 6(e) =Y y(degx+ 1) — 1.
(¢) Show that if G is d-regular, then

2(n—1)
d+1

3(n—-1)
d+1

<R(T) <

for all spanning trees T of G.

(d) Show that if G is regular, then the expected cover time of G is at most 3n?.

(e) Show that the commute time between any pair of vertices in G is less than the quantity
6EI> y(degx + 1)L

(f) Show that there exist €, — 0 such that for all connected simple graphs G on n vertices, the
commute time between any pair of vertices in G is less than (4/27 + €,,)n’.

2.133. The hypercube of dimension n is the subgraph induced on the set {0, 1}" in the usual
nearest-neighbor graph on Z".

(a) Find the first-order asymptotics of the effective resistance between the hypercube’s opposite
corners (0,0, ...,0)and (1, 1,..., 1) and the first-order asymptotics of the commute time between them.
(To find first-order asymptotics for some function f(n) means to find a simple expression g(n) such that
lim, o f(n)/g(n) = 1.)

(b) Find the first-order asymptotics of E,[7, ] for every x # y in the hypercube.

(c) Find the first-order asymptotics of the cover time of the hypercube.
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2.134. Let (G, c) be a finite network and 0 € V(G). Let X(e) be independent normal random variables
with variance r(e) for e € E,/»; put X(—e) := —X(e) for e ¢ E,/,. Given random walks starting at each
x € V(G) with each one stopped when it reaches o, define S(x) to be the sum of X(e) over the edges e
traversed by the random walk starting at x. Show that x — E[S(x) | X] has the law of the canonical
Gaussian field.

2.135. Let (G, ¢) be a finite network with o € V(G); let Z be the associated canonical Gaussian field.
Let W be a nonempty proper subset of vertices that includes 0. Show that the squared distance in L*(P)
from Z(x) to the linear span of Z(w) (w € W) equals Z(x & W).

2.136. Let (G, c¢) be a finite network with 0 € V(G); let Z be the associated canonical Gaussian field.
Show that if b, are constants such that Y _,, b, Z(x) is constant a.s., then b, = 0 for all x # o.

xeV

2.137. Let (G, c) be a finite network. Fix a nonempty proper subset W & V and a function u: W — R.
Let Z: V — R be the jointly normal random variables such that Z = u on W and the joint density of
ZI(V\W)is

1
Cexp{-3lazIE }

for some constant C. These random variables are called the canonical Gaussian field pinned on W .
Let v be the harmonic extension of u to V.

(a) Show that ||dZ|]> = ||d(Z - v)||> + ||dv||>. Deduce that the law of Z — v on G/W is that of the
usual canonical Gaussian field on G/W, where G/W is the network obtained from G by identifying W
to a single vertex, where the field is 0.

(b) Show that E[Z(x)] = v(x) for all x.

(¢) Show that

Z(x) = Z(y) ~ N(v(x) = v(y), Z(x & y;G/W))

for x # y € V, as long as x and y are not both in W.
(d) Show that the covariance of Z(x) — Z(y) and Z(z) — Z(w) equals v'(z) — v'(w) when v’ is the
voltage associated to a unit current flow from x to y in the network G/W (with x # y).

2.138. Let (G, c¢) be a finite network and m > 0. Fix a nonempty proper subset W & V and a function
u:W — R. Let Z: V — R be the jointly normal random variables such that Z = u on W and the joint

density is
1 2 2
Cexp{—E(HdZHC +m E Z(x) )}

xeV

for some constant C. These random variables are called the canonical Gaussian field pinned on W
with mass m. Calculate E[Z(x) — Z(y)] and Cov(Z(x) — Z(y), Z(z) - Z(w)) for x, y, z,w € V.

2.139. Use results on canonical Gaussian fields to solve Exercises 2.59, 2.62(b)—(e), and 2.67.
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Special
Networks

In this chapter, we use our tools from Chapter 2 to analyze transience and recurrence
of networks on trees and on Cayley graphs of groups. First, we study flows that are not
necessarily current flows. This involves some tools that are very general and useful. In
particular, the surprising max-flow min-cut theorem has a wealth of specializations and
applications, some of which are in the exercises to this chapter and some of which will be in
other chapters. After applying these to trees, we will define Cayley graphs and give several
examples. When we analyze the type of certain biased random walks on Cayley graphs, trees
will actually be a key tool to show that in a certain sense, Cayley graphs are like spherically
symmetric graphs, even though they are rarely truly spherically symmetric and can even be
quite far from spherically symmetric. Other special networks, planar and hyperbolic, are
studied in Section 9.4.

3.1 Flows, Cutsets, and Random Paths

Notice that if there is a flow from a to oo of finite energy on some network with con-
ductances c(+) and if i is the unit current flow with corresponding voltage function v, then
li(e)| = |c(e) - (dv)(e)| < v(a)c(e) = Z(a < oo)c(e) for all edges e. In particular, there is a
nonzero flow bounded on each edge by c(-) (namely, i/v(a)).* The existence of flows that
are bounded by some given numbers on the edges is an interesting and valuable property in
itself. We call such flows admissible. To determine whether there is a nonzero admissible
flow, we turn to the powerful max-flow min-cut theorem of Ford and Fulkerson (1962). For
finite networks, the theorem reads as follows. We call a set I1 of edges a cutset separating
A and Z if every path that starts in A and ends in Z must include an edge in II. We call
c(e) the capacity of e in this context. Think of water flowing through pipes. The vertices
in A are called sources, whereas those in Z are called sinks. A flow between A and Z is
an antisymmetric function 6 such that d*6 equals 0 off A U Z. Recall from Section 2.4 that
the strength of a flow between A and Z, that is, the total amount flowing into the network
at vertices in A (and out at Z) is Strength(6) := > __, d*6(a). Since all the water must flow
through every cutset I1, it is intuitively clear that the strength of every admissible flow is at
most infy; ),y c(e). Remarkably, this upper bound is always achieved. This is the content
of the max-flow min-cut theorem.

It will be useful for the proof of this theorem, as well as later, to establish a more general
statement about flows in directed networks. In a directed network, the capacity function ¢ on

* This also follows from the Nash-Williams criterion and the upcoming max-flow min-cut theorem.
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edges is not necessarily symmetric, even if both orientations of an edge occur. Define the
vertex-edge incidence function

¢(xa e) = l{e‘=x} - 1{e+=x} .

A nonnegative function 6 on the edges is now called a flow if, for all x other than the source
and sink vertices, > _, ¢(x, e)8(e) = 0. In particular, flows are not necessarily antisymmetric
(nor symmetric) functions. Now a flow 8 is called admissible if 6(e) < c(e) for every edge e.
The strength of a flow with source set A is

Strength(9) := Z Z o(x,e)d(e).

XEA e

Cutsets separating a source set A from a sink set Z are required to intersect every directed
path from A to Z. To reduce the study of undirected networks to that of directed ones,
we simply replace each undirected edge by a pair of parallel directed edges with opposite
orientations and the same capacity. A flow on the undirected network is replaced by a flow
on the directed network that is nonzero on only one edge of each new parallel pair, whereas a
flow on the resulting directed network yields a flow on the undirected network by subtracting
the values on each parallel oppositely oriented pair of edges.

The Max-Flow Min-Cut Theorem. Let A and Z be disjoint sets of vertices in a (directed
or undirected) finite network G. The maximum strength of an admissible flow between A and
Z equals the minimum cutset sum of the capacities. In other words, in the directed case,

max {Strength(ﬁ) ; 0 flows from A to Z satisfying Ve 0 < 0(e) < c(e)}
= min { Z c(e); Il separates A and Z} ,
e€ll

whereas in the undirected case,

max {Strength(@) ; 0 flows from A to Z satisfying Ve |6(e)| < c(e)}

= min { Z c(e); Il separates A and Z} .

eell

Proof. Tt suffices to establish the case of directed networks. Because the network is finite, the
set of flows from A to Z bounded by ¢ on each edge is a compact set in RE, whence there
is a flow of maximum strength. Let 6 be a flow of maximum strength. If I is any cutset
separating A from Z, let A’ denote the set of vertices that are not separated from A by II.
Since A C A’ and A’ N Z = @, we have

Strength(0) = Z Z o(x, e)f(e) = Z Z o(x,e)0(e)

X€A ecE xeA’ ecE (3'1)

= Z 6(e) Z d(x,e) < Z 0(e) < Z c(e),

ecE X€eA’ eell e€ell
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since > .4 ¢(x, e) is 0 when e joins two vertices in A, is 1 when e leads out of A’, and is
—1 when e leads into A’. This proves the intuitive half of the desired equality.

For the more surprising reverse inequality, given an admissible flow 6, call a sequence of
vertices xo, X1, . . . , X; an augmentable path if x, € A and foralli = 1,..., k, either there is
an edge e from x;_; to x; with 8(e) < c(e) or there is an edge e’ from x; to x;_; with 6(e’) > 0.
Let B denote the set of vertices x such that there exists an augmentable path (possibly just
one vertex) from a vertex of A to x. If there were an augmentable path xg, x1, . .., x; with
X, € Z, then we could obtain from 6 a stronger flow bounded by c as follows: For each
i=1,..., k where there is an edge e from x;_; to x;, let 8*(e) := 6(e) + €, whereas if there
is an edge e’ from x; to x;_1, let 8%(e’) := O(e’) — €. By taking € > O sufficiently small, we
would contradict maximality of 6. Therefore Z c B¢. Let II be the set of edges connecting
B to B°. Then Il is a cutset separating A from Z. For every edge e leading from B to B€,
necessarily 6(e) = c(e), whereas 8 must vanish on every edge from B¢ to B. Therefore a
calculation as in (3.1) shows that

Strength(6) = Y _0(e) > ¢(x.e)=> B(e) = c(e).

ecE xXeB eell eell

In conjunction with (3.1), this completes the proof. <

Suppose now that G = (V, E) is a countable directed or undirected network and a is one
of its vertices. As usual, we assume that Vx ) __ c(e) < co. We want to extend the
max-flow min-cut theorem to G for flows from a to co. Recall that a cutset II separates a
and oo if every infinite simple path from a must include an edge in I1. A flow of maximum
strength exists, since a maximizing sequence of flows has an edgewise limit point, which is a
maximizing flow bounded by c¢ in light of the dominated convergence theorem. We claim
that this maximum strength is equal to the infimum of the cutset sums:

Theorem 3.1. If a is a vertex in a countable directed network G, then
max {Strength(@) ; 0 flows from a to oo satisfying Ve 0 < 6(e) < c(e)}

= inf { z c(e); Il separates a and oo} .

eell

Proof. In the proof, “cutset” will always mean “cutset separating a and c0.” Let 6 be a flow
of maximum strength among flows from a to oo that are bounded by ¢(+). Given € > 0, let
D be a possibly empty set of edges such that ), c(e) < € and G’ := (V,E \ D) is locally
finite. Let & be the set of simple paths in G’ from a to co. Define the distance between two
elements (e,,), (e;,) of Z tobe inf{l/(n+1); ex = e, for 1 < k < n}. The important aspect
of this is that the set & is compact: Given paths P, = (ep.,,), We may choose a subsequence
(my) such that e,,, ; is the same for all k because G’ is locally finite. Then we may choose
a further subsequence where the second edge is constant. Continuing this way, a diagonal
argument provides a limit path of the original sequence of paths.

If we associate to an edge e the set of paths in & that pass through e, then a cutset becomes
associated to a cover of 2. Compactness of & therefore means that for any cutset I1 in G,
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there is a finite cutset I’ C ITin G’. Also, I1” separates only finitely many vertices A’ from
o in G’. Therefore,

Strength(0) = Z P(a, e)f(e) = Z Z ¢(x, e)b(e)
ecE xeA’ ecE
=3 Y sebE@+ YD d(xe)ble)
XEA’ ecE\D X€A eeD
=D 0D dlr.e)+ > > g(x.e)le)
ecE\D X€EA’ xeA’ eeD

[since the first sum is finite]

SZG(6)+ES Zc(e)+eSZc(e)+e.

ecll’ ecll’ eell
Since this holds for all € > 0, we obtain one inequality of the desired equality.

For the inequality in the other direction, let C(H) denote the infimum cutset sum in any
network H. Given € > 0, let D and G’ be as before. Then C(G) < C(G’) + €, since we may
adjoin D to any cutset of G’ to obtain a cutset of G. Let (G/,) be an exhaustion of G’ by
finite connected induced networks with a € G, for all n. Identify the vertices outside G;,
to a single vertex z, and remove loops at z,, to form the finite network G from G. Then
C(G’) = inf, C(GY), since every minimal cutset of G’ is finite (it separates only finitely
many vertices from oo), where minimal means with respect to inclusion. Let 6,, be a flow
on GV of maximum strength among flows from a to z,, that are bounded by ¢ G . Then
Strength(8,) = C(GY) > C(G’). Let 6 be a limit point of {(§,,). Then 6 is a flow on G’ with
Strength(0) > C(G’) > C(G) - e. <

In Section 2.5, we constructed a unit flow from a random path. The reverse is also useful;

we show how to do this now. We return to undirected graphs for this, so that a flow 6 satisfies
0(—e) = —0(e) for all edges e. Suppose that

on an infinite graph such that if e~ = a, then 6(e) > 0 and,
in the finite case, if e* = z, then 6(e) > 0.

0 is a unit flow from a to z on a finite graph or from a to co }
(3.2)

Use 6 to define a random path as the trajectory of a Markov chain (Y;,) as follows. The initial
state is ¥p := a and z is an absorbing state. For a vertex x # z, set

Oout(x) = Z 0(e),

0(e)>0
which is the amount flowing out of x. The transition probability from x to w is then
(0(x, w) V 0)/0u(x). This gives us our random path. Now go back and construct a unit flow
from this random path as on p. 40 in Section 2.5, that is, define

6'(e) =Y _{P[(Yu. Yur) = €] = P[(Yur. Vo) = ]}
n>0
How is ¢’ related to §? We call 6 acyclic if there is no cycle of oriented edges on each
of which 6 > 0. For example, current flows are acyclic because they minimize energy (or
because they equal ¢ dv).
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Proposition 3.2. Suppose that 6 is an acyclic unit flow satisfying the preceding conditions
(3.2). With the preceding notation, for every edge e with 6(e) > 0, we have

0<6'(e) <B(e) (3.3)

with equality on the right if G is finite or if 0 is the unit current flow from a to .

Proof. Since the Markov chain travels only in the direction of 6, it clear that 6’(¢) > 0 when
6(e) > 0.
For edges e with 6(e) > 0, set

pN(E) = P[Eln <N (Yns Yn+1> = 6] .

Because 6 is acyclic, py(e) — 8’(e). Thus, to show that 8’(e) < 6(e), it suffices to show
that py(e) < 6(e) for all N. We proceed by induction on N. This is clear for N = 0. For
vertices x, define py(x) := P[In < N Y, = x]. Suppose that py(e) < 0(e) for all edges e
with (e) > 0. Then also pn+1(xX) < D~ ooy gey=0 0(€) = Bour(x) for all vertices x # a. Hence
Pn+1(x) < Oou(x) for all vertices x. Therefore, for every edge e with 6(e) > 0, if we put
x = e, then we get pyy1(e) = py+1(x)8(e)/Oou(x) < O(e). This completes the induction
and proves (3.3).

If G is finite, then 6"’ := 6 — 6’ is a sourceless acyclic flow, since it is positive only where
0 is positive. If there were an edge e; where 6’/(e;) > 0, then there would exist an edge e,
whose head is the tail of e; where also 6"’(e;) > 0, and so on. Eventually, this would close a
cycle, which is impossible. Thus, 6" = 6.

If 6 is the unit current flow from a to oo, then 8 has minimum energy among all unit flows
from a to co. Thus, (3.3) implies that 8’ = 6. <

Remark. Of course, other random paths or other rules for transporting mass through the
network according to the flow 6 will lead to the same result.

> Exercise 3.1.
Show that if equality holds on the right-hand side of (3.3), then for all x, we have

Z Oe) < 1.

et=x,

6(e)>0

> Exercise 3.2.
Suppose that simple random walk is transient on G and a € V. Show that there is a random
edge-simple path from a to co such that the expected number of edges common to two such
independent paths is equal to Z(a <> oo) (for unit conductances on G).

Here is one use of these random paths:
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Corollary 3.3. (Monotone-Voltage Paths) Letr G be a transient connected network and v
be the voltage function from the unit current flow i from a vertex a to oo with v(co) = 0. For
every vertex x, there is a path of vertices from a to x along which v is monotone. If x is
incident to some edge e with i(e) > 0, then there is such a path along which v is strictly
monotone.

Proof. Let W be the set of vertices incident to some edge e with i(e) > 0. By Proposition 3.2,
if i(e) > 0, then a path (Y;,) chosen at random (as defined earlier) will cross e with positive
probability. Thus, each vertex in W has a positive chance of being visited by (¥,). Clearly v
is strictly monotone along every path (¥,). Thus, there is a path from a to any vertex in W
along which v is strictly monotone. Now any vertex x not in W can be connected to some
w € W by edges along which i = 0. Extending the path from a to w by such a path from w to
x gives the required path from a to x. <

Curiously, we do not know a deterministic construction of a path satisfying the conclusion
of Corollary 3.3.

3.2 Trees

Flows and electrical networks on trees can be analyzed with greater precision than on
general graphs. One easy reason for this is that we know which direction the flow goes, by
which we mean the following. Fix a root o in a tree T and denote by |e| the distance from an
edge e € T to o, that is, the number of edges on the smallest path that includes both o and
e. Choose a unique orientation for each edge, namely, the one leading away from o. Given
any network on 7', we claim that there is an admissible flow of maximal strength from the
root to infinity that does not have negative flow on any edge (with this orientation). Indeed,
it suffices to prove this for flows on finite trees from the root to the leaves (when the leaves
are identified to a single vertex), since a maximal flow to infinity is the edgewise limit of
maximal flows on finite trees (consider the minimal cuts). In the finite case, consider an
admissible flow of maximal strength that has the minimum number of edges with negative
flow. If there is an edge with negative flow, then by “following the flow,” we can find either a
path from the root to the leaves along which the flow is negative or a path from one leaf to
another along which the flow goes in the direction of the path. In the first case, we can easily
increase the strength of the flow, whereas in the second case, we can easily reduce the number
of edges with negative flow. Both cases therefore lead to a contradiction, which establishes
our claim. Likewise, if the tree network is transient, then the unit current flow does not have
negative flow on any edge. The proof is similar; in both cases of the preceding proof, we may
obtain a flow of strength at least 1 whose energy is reduced, leading to a contradiction. For
this reason, in our considerations, we may restrict to flows that are nonnegative.

> Exercise 3.3.
Let T be a locally finite tree and II be a minimal finite cutset separating o from oco. Let 6 be a
flow from o to co. Show that

Strength(0) = Z 0(e).

eell
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The Nash-Williams criterion gave a condition sufficient for recurrence, but it was not
necessary for recurrence. However, a useful partial converse to the Nash-Williams criterion
for trees can be stated as follows.

Proposition 3.4. Let ¢ be conductances on a locally finite infinite tree T and w,, be positive
numbers with ), ., w, < co. Every flow 6 on T satisfying 0 < 6(e) < wy.|c(e) for all edges
e has finite energy.

Proof. Apply Exercise 3.3 to the cutset formed by the edges at distance n from o to obtain

D 0e)’r(e)=)_ > oe)oe)r(e)] <Y wy Y 6(e) = w, Strength(6) < oo.

eeT n>1 |el=n nx1 le|=n n>1

(This special case of Exercise 3.3 was also shown by induction in Section 1.2.) <

Let’s consider some particular conductances. Since trees tend to grow exponentially, let
the conductance of an edge decrease exponentially with distance from o, say, c(e) := A7,
where 4 > 1. Let A, = A.(T) denote the critical A for nonzero admissible flow from o to
0o, in other words, “water” can flow for A < A. but not for A > A.. What is the critical
A for current flow? We saw at the start of Section 3.1 that if current flows for a certain
value of A (that is, the associated random walk is transient), then so does water, whence
A < A.. Conversely, for A < A, we claim that current flows: choose A’ € (4, A.) and set
w, = (A/A")". Of course, >, w, < oo; by definition of A, there is a nonzero flow
satisfying 0 < A(e) < (A)7l = w|e\/l‘|e|, whence Proposition 3.4 shows that this flow has
finite energy and so current indeed flows. Thus, the same 4. is the critical value for current
flow. Since 4. balances the growth of 7" while taking into account the structure of the tree,
we call it the branching number of T

brT :=sup {/1; J anonzero flow f on T withVe € T 0 < 0(e) < A"e‘} .

Of course, the max-flow min-cut theorem gives an equivalent formulation as

_ s el
brT sup{ﬂ, llrllei >0}, (3.4)

eell

where the inf is over cutsets II separating o from co. Denote by RW, the random walk
associated to the conductances e — A71¢l. We may summarize some of our work in the
following theorem of Lyons (1990).

Theorem 3.5. (Branching Number and Random Walk) If T is a locally finite infinite
tree, then A < brT => RW, is transient and A > br T => RW,, is recurrent.

In particular, we see that for simple random walk to be transient, it suffices that br 7" > 1.

> Exercise 3.4.
For simple random walk on T to be transient, is it necessary that br7 > 1?
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We might call RW, homesick random walk for A > 1 since the random walker has a
tendency to walk toward its starting place, the root.

> Exercise 3.5.
Find an example where RWy, 7 is transient and an example where it is recurrent.

> Exercise 3.6.
Show that br 7 is independent of which vertex in T is the root.

Let’s try to understand the significance of br 7', which will turn out to be a very important
number. If T is an n-ary tree (that is, every vertex has n children), then the distance of RW,
from o is simply a biased random walk on IN. It follows that br 7" = n.

> Exercise 3.7.
Show directly from the definition that br T = n for an n-ary tree 7. Show that if every vertex
of T has between n; and n, children, then br T is between n; and n,.

Since 4. balances the number of edges leading away from a vertex over all of T, it is
reasonable to think of br 7" as an average number of branches per vertex.

3.3 Growth of Trees

In this section, we again consider only locally finite infinite trees. To understand better
their branching number, we will look at the simpler notion of growth. For a vertex x € T, let
|x| denote its distance from o. Define the lower (exponential) growth rate of a tree T by

grT := liminf |T;,|'/",
- n—oo

where T,, := {x € T'; |x| = n} is level n of T. Similarly, the upper (exponential) growth
rate of T is grT := limsup |T,,|'/". If grT = grT, then the common value is called the
(exponential) growth rate of T and is denoted grT.

In most of the examples of trees so far, the branching number was equal to the lower growth
rate. In general, we have the inequality

brT < grT,

as we showed in Section 1.2. There are various ways to construct a tree whose branching
number is different from its growth: see Section 1.2 and Exercise 1.3.

> Exercise 3.8.
We have seen that if br7 > 1, then simple random walk on T is transient. Is gr7 > 1
sufficient for transience?
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We call T spherically symmetric if deg x depends only on |x|. Recall from Exercise 1.2
that br T = gr T when T is spherically symmetric.

Notation. Write x < y if x is on the shortest path from o to y; x < yif x < y and x # y;
x — yif x < yand |y| = |x| + 1 (that is, y is a child of x); and T* for the subtree of T
containing the vertices y > x.

There is an important class of trees whose structure is “periodic” in a certain sense. To
exhibit these trees, we review some elementary notions from combinatorial topology. Let G
be a finite connected graph and x( be any vertex in G. Define a tree T in the following way:
its vertices are the finite paths (xo, x1, x2, . . . , X, ) that never backtrack, that is, x; # x;, for
0 <i < n—2. Join two vertices in T by an edge when one path is an extension by one vertex
of the other. The tree T is called the universal cover (based at x() of G. See Figure 3.1 for
an example.

X0
Figure 3.1. A graph and part of its universal cover.

This idea can be extended. Suppose that G is a finite directed multigraph and x is any
vertex in G. That is, edges are not required to appear with both orientations, and two vertices
can have many edges joining them. Loops are also allowed. Define the directed cover (based
at xo) of G to be the tree T whose vertices are the finite paths of edges (e, e3,...,¢,)in G
that start at xo (we use paths of edges rather than of vertices in case there are multiple edges).
The root is the empty path. We join two vertices in T as we did before. See Figure 3.2 for an
example.

The periodic aspect of these trees can be formalized as follows.

Definition. Let N > 0. An infinite tree T is called N-periodic (resp., N-subperiodic)
if Vx € T there exists an adjacency-preserving bijection (resp., injection) f:T* — T/
with | f(x)] £ N. A tree is periodic (resp., subperiodic) if there is some N for which it is
N-periodic (resp., N-subperiodic).

All universal and directed covers are periodic. Conversely, every periodic tree is a
directed cover of a finite graph, G: If T is an N-periodic tree, take {x € T; |x| < N}
for the vertex set of G. For |x| < N, let f, be the identity map and for x € Tny, let fy
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e
Figure 3.2. A graph and part of its directed cover. This tree is also called the Fibonacci tree.

be a bijection as guaranteed by the definition. Let the edges of G be {(x, f,()); |x| <
N and y is a child of x}. Then T is the directed cover of G based at the root.

If two (sub)periodic trees are joined as in Example 1.3, then clearly the resulting tree is
also (sub)periodic. We now present some examples where subperiodic trees arise naturally.

Example 3.6. Consider the finite paths in the lattice Z? starting at the origin that go through
no vertex more than once. These paths are called self-avoiding and are of substantial interest
to mathematical physicists. Form a tree 7 whose vertices are the finite self-avoiding paths and
with two such vertices joined when one path is an extension by one step of the other. Then T
is O-subperiodic and has infinitely many leaves. Its growth rate has been estimated at about
2.64; see Madras and Slade (1993). For the hexagonal lattice in the plane, the growth rate is

exactly V2 + V2 =2 cos(/8). This was conjectured by Nienhuis (1982) based on ideas from
physics and proved by Duminil-Copin and Smirnov (2012), who were also inspired by ideas
from physics to find some subtle and beautiful symmetries in the problem.

Example 3.7. Suppose that E is a closed set in [0, 1] and Tj,)(E) is the associated tree that
represents E in base b, as in Section 1.10. Then Tj;1(E) is O-subperiodic iff E is invariant
under the map x — bx (mod 1), that is, iff the fractional part of bx lies in E for every x € E.

How can we calculate the growth rate of a periodic tree? If T is a periodic tree, let G be a
finite directed graph of which 7 is the directed cover based at xo. We may assume that G
contains only vertices that can be reached from x,, since the others do not contribute to 7'.
The key to analysis is the directed adjacency matrix A of G, that is, the square matrix indexed
by the vertices of G with the (x, y)-entry equal to the number of edges from x to y. Recall
that the norm of a square matrix M is ||M|| := sup{||Mo||; o] = 1}, where ||v|| = y/(v, v)
is the usual £2-norm of the vector v. Also, the spectral radius of M is the maximum of ||
over all complex eigenvalues A of M. Gelfand’s formula says that the spectral radius of M
equals lim, . || M"||'/"; see, for example, Corollary 5.6.14 of Horn and Johnson (2013). In
our case, all entries of A are nonnegative, so the Perron-Frobenius theorem (Minc (1988),
Theorem 4.2) says that the spectral radius of A is equal to its largest positive eigenvalue, 4.,
and that there is a A.-eigenvector v, all of whose entries are nonnegative. We call A, the
Perron eigenvalue of A and v, a Perron eigenvector of A. To see how these are useful, let 1
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denote a column vector all of whose entries are 1, 1, denote the column vector that is 1 at x
and 0 elsewhere, and 1/, denote its transpose. Then the number of paths in G with n edges,
which is T, is 17, A"L. Now 1, A"1 = (A"L,1,,) < [A"1]| - [ L[| < [IA"]] - 1] - 1L, ]l
whence Gelfand’s formula yields limsup,, ., |7,|'/" < A.. On the other hand, let x be any
vertex such that v,(x) > 0, let j be such that A’(xg, x) > 0, and let ¢ > 0 be such that 1 > cv,.
Then

[Tjn| = 1.A"1 > 1/ A", = cA 1,0, = cv(x)A] .

Therefore lim inf,_,« |T},|'/" > A.. We conclude that gr T = A,.

The “regularity” of periodic trees leads us to expect that their growth rate equals their
branching number. One very nice feature of subperiodic trees is that this equality also holds
for them! This fact, as well as its proof, is analogous to a classical fact about sequences of
reals, known as Fekete’s lemma (Exercise 3.9). A sequence {(a,) of real numbers is called
subadditive if

Vm,n > 1 pan < Ay + a, .

A simple example is a, := [Bn] for some real 8 > 0.
> Exercise 3.9.

(a) (Fekete’s Lemma) Show that for every subadditive sequence {a,), the sequence
{a,/n) converges to its infimum:

. ap . o Qn
lim — =inf —.
n—oo n n

(b) Show that Fekete’s lemma holds even if a finite number of the a,, are infinite.

(c) Show that for every 0-subperiodic tree 7', the limit lim,,_,, |T},|'/" exists.

The equality br T = gr T for subperiodic trees T is due to Furstenberg (1967). To prove it,
we use the following notation: given 4 > 0 and a cutset Il in a tree 7', denote

Il = Y a7,
e(x)ell

where e(x) is the edge from the parent of x to x. Note |e(x)| = |x|. Of course, the parent of a
vertex x # o is the neighbor of x that is closer to o.

Theorem 3.8. (Subperiodicity and Branching Number) For every subperiodic infinite
tree T, the growth rate of T exists and br T = grT. Moreover,

inf ||T1 :
in []jprr > 0

in particular,
inf |T,,|(brT)™ > 0.
n

Proof. First, suppose that T has no leaves and is O-subperiodic. We will show that if, for
some cutset IT and some A; > 0, we have

I, <1, (3.5)
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then
limsup |T,,|'/" < A; . (3.6)

n—oo

Since infy ||II||;, = O for all 4; > brT, this implies that

brT =grT and i%f”H”brT >1. (3.7

So suppose that (3.5) holds. We may assume that I1 is finite and minimal with respect to
inclusion by Exercise 3.23. To get strict inequality in (3.6), we’ll need a little wiggle room,
so choose 4 € (0, A1) such that

I < 1. (3.8)

Let d := maX,(x)ern |x| denote the maximal level of II. By O-subperiodicity, for each
e(x) in I, there is a cutset II(x) of T* such that >, cnin) ATl < |||, < 1 and
maXe(w)eri(x) [w — x| < d. Thus, [[TI(x)||, = Ee(w)EH(x) A1l < 37 (Note that |w) always
denotes the distance from w to the root of 7'.) This allows us to replace the cutset I1 by another
in several ways while preserving (3.5): for any given A C II, if we replace those edges e(x) in
A by the edges of the corresponding I1(x), then we obtain a cutset I1 := (I1\ A)U Uexyea I(x)
that satisfies _
= > AN+ D @l < i, < 1.

e(x)ell\A e(x)eA

Given n > d, we may iterate this process for all edges e(x) in the cutset with |x| < n
until we obtain a cutset IT* lying between levels n and n + d with ||II*||; < 1. Therefore
|T,,| A=+ < ||IIT*||, < 1, so that limsup |T,,|'/" < limsup A'*%/" = 4 < A,. This establishes
(3.6).

Now let T be N-subperiodic but still without leaves. Let T be the union of disjoint copies
of the descendant trees {T* ; |x| < N} with thelr roots identified (Wthh is not exactly the
same as Example 1.3). It is easy to check that T is 0- subperiodic and gr T> grT. Moreover,
for every cutset IT of 7 with min,(y)er |x| > N, there is a corresponding cutset I1” of T such

that
N

Vi>0 |y < )Tl A4,
k=0

whence br7 = br7. In conjunction with (3.7) for T, this completes the proof.
Finally, if T has leaves, consider the tree 7’ obtained from 7" by adding to each leaf of T an
infinite ray. Then 7 is subperiodic, so

limsup |T;,|"/" > brT = br T’ = limsup |T/|'/" > lim sup |T,,|'/" .

Also, except in the trivial case that br T = 1, every cutset I of 7' can be extended to a cutset
IT" of T" with ||IT’||y, 7 arbitrarily close to ||I1||p; - <

For another proof of Theorem 3.8, see Section 15.5.

Next, we consider a notion dual to subperiodicity. Although it sounds just as natural, it
actually does not arise very often. However, such trees behave similarly to subperiodic trees,
which will be easy to prove.
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Definition. Let N > 0. A tree T is called N-superperiodic if Vx € T there is an adjacency-
preserving injection f:T — T/ with f(0) € T* and |f(0)| — |x|] < N.

For example, every O-periodic tree is O-superperiodic, although 1-periodic trees are not
necessarily 1-superperiodic. For another example, consider the finite paths in the lattice Z*
starting at the origin that stay in the right half-plane. Form the tree T whose vertices are the
finite paths of this type and with two such vertices joined when one path is an extension by
one step of the other. Then T is O-superperiodic. For more examples, see Exercise 3.33.

Theorem 3.9. Let N > 0. Any N-superperiodic tree T with gt T < oo satisfiesbrT = grT
and |T,,| < (gr TY™V for all n.

Proof. Consider the case N = 0. In this case, |Ty4m| = |T,| - |T,n|. By Exercise 3.9, grT
exists and |T,,| < (gr7)" for all n. Fix any positive integer k. Let 6 be the unit flow from o
to Ty that is uniform on 7. By O-superperiodicity, we can extend 6 in a periodic fashion to
a flow from o to infinity that satisfies 6(e(x)) < |T3.|L¥I7k] for all vertices x. Consequently,
brT > |T;|'/*. Letting k — oo completes the proof for N = 0. <

> Exercise 3.10.
Prove the case N > 0 of Theorem 3.9.

3.4 Cayley Graphs

Suppose we investigate RW, on graphs other than trees. What does RW; mean in this
context? Fix a vertex o in a graph G. If e is an edge at distance n from o, let the conductance
of e be A™". Again, by Rayleigh’s monotonicity principle, there is a critical value of 4,
denoted A.(G), that separates the transient regime from the recurrent regime. To understand
what 1.(G) measures, consider the class of spherically symmetric graphs, where we call G
spherically symmetric about o if, for all pairs of vertices x and y at the same distance from o,
there is an automorphism of G fixing o that takes x to y. Let M,, be the number of edges that
lead from a vertex at distance n — 1 from o to a vertex at distance n. Then the critical value of
A is the growth rate of G:

4c(G) = lim inf M

In fact, we have the following more precise criterion for transience:

> Exercise 3.11. _
Show that if G is spherically symmetric about o, then RW, is transient iff )~ A"/M,, < co.

Next, consider the Cayley graphs of finitely generated groups: We say that a group I is
generated by a subset S of its elements if the smallest subgroup containing S is all of I'. In
other words, every element of I' can be written as a product of elements of the form s or
s~! with s € S. If T is generated by S, then we form the associated Cayley graph G with
vertices I' and (unoriented) edges {[x, xs]; x € G, s € S} ={(x,y) e [?; x" !y e SUS!}.
Because S generates I', the graph is connected. Cayley graphs are highly symmetric: they
look the same from every vertex, since left multiplication by yx~! is an automorphism of G
that carries x to y. These automorphisms, left multiplication by a group element, are called
translations of the Cayley graph.
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> Exercise 3.12.
Show that different Cayley graphs of the same finitely generated group are roughly isometric.

The Euclidean lattices are the most well known Cayley graphs. It is useful to keep in mind
other Cayley graphs as well, so we will look at some constructions of groups. First recall
the Cartesian or direct product of two groups I and ["’, where the multiplication on I' X I'” is
defined coordinatewise: (y1,y{)(y2,¥5) = (Y12, ¥{75)- A similar definition is made for the
direct product of any sequence of groups. It is convenient to rephrase this definition in terms
of presentations.

First, recall that the free group generated by a set S is the set of all finite words in s and
s~! for s € § with the empty word as the identity and concatenation as multiplication, with
the further stipulation that if a word contains either ss~Vors~ls, then the pair is eliminated
from the word. The group defined by the presentation (S | R) is the quotient of the free
group generated by the set S by the normal subgroup generated by the set R, where R
consists of finite words, called relators, in the elements of S. (We think of R as giving
a list of products that must equal the identity; other identities are consequences of these
ones and of the definition of a group.) For example, the free group on two letters IF, is
({a, b} | @), usually written {(a, b | ), whereas Z? is (isomorphic to) ({a, b} | {aba™'b7'}),
usually written (a, b | aba~'b~'), also known as the free abelian group on two letters (or
of rank 2). In this notation, if ' = (§ | R) and I" = (§' | R’) with SN S’ = @, then
I'xI"=(SUS"| RUR'U[S,S']), where [S,S] := {ss’s's""; s€S,s" € §’}. Onthe
other hand, the free product of ' and I’ isT « " := (S U S’ | RU R’). A similar definition is
made for the free product of any sequence of groups. Interesting free products to keep in mind
as we examine various phenomena are Z = Z. (the free group on two letters), Z, = Z, * 7,
Z. « 7, (whose Cayley graph is isomorphic to that of Z, = Z, % Z,, that is, a 3-regular tree,
when the usual generators are used), Z, * Z3, Z?* * Z., and Z* * Z,,. Write Ty, for the regular
tree of degree b + 1 (so it has branching number b). It is a Cayley graph of the free product
of b + 1 copies of Z,. Its Cartesian product with Z¢ is another interesting graph. Some
examples of Cayley graphs with respect to natural generating sets appear in Figure 3.3.

L e

<
kDo

e

Figure 3.3. The Cayley graphs of the free group on two letters; the free product of
7, with itself three times, Z, * Z, * Z,; and the free product Z, * Z3. These are
drawn, without vertices, in the hyperbolic disc by a program created by Don Hatch.
The infinite faces have infinite area, but there is a fundamental domain of finite
measure for the group of isometries acting on the hyperbolic disc. Consequently, it is
possible to consider an invariant random embedding of any of these Cayley graphs.
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A presentation is called finite when it uses only finite sets of generators and relators. For
example, Z, * Z3 has the presentation {(a, b | a®, b*). Another Cayley graph was shown in
Figure 2.4, which corresponds to the presentation (a, b, ¢, d, e | a, b, c?, d?, €*, abcde) (see
Chaboud and Kenyon (1996)).

Finitely presentable groups arise often “in practice”: for example, fundamental groups
of compact topological manifolds are finitely presentable, and each finitely presentable
group is the fundamental group of a compact 4-manifold (see, for example, Massey (1991),
pp- 114-115). The fundamental group of a compact manifold is roughly isometric to the
universal cover of the manifold.

The following infinitely presented group will serve as a useful example in several chapters.
This is the group Z°, also known as the lamplighter group over Z. 1t is defined as a
(restricted) wreath product, which is a special kind of semidirect product. First, the group
> ez Z», the direct sum of copies of Z, indexed by Z, is the group of maps y:Z — Z,
with ¢ ~1({1}) finite and with componentwise addition mod 2, which we denote &; that is,
W ey =y()+y'(j) (mod?2). LetS be the left shift, S(y)(j) := ¥(j + 1). Now
define Z° := (erz Zz) > 7, which is the set (erz Zz) x Z. with the following group
operation: for y,y’ € > ., Z, and m,m’ € Z, we multiply by the rule

W.my' m') = &S m+m').

We call an element ¢ € >, _, 7> a configuration and call y(k) the bit at k. We identify Z,
with {0, 1}. The second component of an element x = (¢, m) € Z° is called the position
of the marker in the state x. (Another notation for Z® is the restricted wreath product
Z, 1 Z.) One nice set of generators of Z° is {(0, 1),(0,-1), (1403, 0)}. The reason for the
name of this group is that we may think of a streetlamp at each integer with the configuration
Y representing which lights are on, namely, those where 4 = 1. We also may imagine a
lamplighter at the position of the marker. The first two generators of Z° correspond (for right
multiplication) to the lamplighter taking a step either to the right or to the left (leaving the
lights unchanged); the third generator corresponds to flipping the light at the position of the
lamplighter. See Figure 3.4.

00011010110110011101T10117100

.. ._10123. ..

Figure 3.4. A typical element of Z°.

The lamplighter group Z° has exponential growth: Consider the subset 7, of group
elements at distance n from the identity that can be arrived at from the identity by using
only the generators (0, 1) and (1¢py, 0), in other words, by never allowing the lamplighter
to move leftward. Since 7, is a disjoint union of (0, 1)7,,—; and (1¢p}, 0)(0, 1)7,,_», we have
|T| = |T-1| + |T—2|. Thus, {|T,,|; n > 0) is the sequence of Fibonacci numbers. Therefore
the exponential growth rate of |7},| equals the golden mean, (1 + V5 )/2. In fact, it is easy to
check that this is the growth rate of balls in Z°.
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Despite the beautiful symmetry of Cayley graphs, they are rarely spherically symmetric.
Still, if M,, denotes the number of vertices at distance n from the identity, then lim M,i/ "
exists since M., < M,, M,,; thus, we may apply Fekete’s lemma (Exercise 3.9) to (log M,,).
Note that this also implies that the exponential growth rate of the balls in G equals lim M,i/ "
we refer to this common number as the (exponential) growth rate of G. When the growth
rate is 1, we say that the Cayley graph has subexponential growth, and otherwise that it has
exponential growth. Our analysis of spherically symmetric graphs, though it does not apply
to Cayley graphs, may still suggest the question, Is A.(G) = lim M,i/ "9

First of all, if A > lim M,l/ ", then RW, is positive recurrent, since for such A,

z cle) < dZ}flxl = dZMn/I_” < 00,

eEE]/z xeG n>0

where d is the degree of G and |x| denotes the distance of x to the identity. (One could
also use the Nash-Williams criterion to get merely recurrence.) Second, to prove transience
for a given 4, it suffices, by Rayleigh’s monotonicity principle, to prove that a subgraph is
transient. The easiest subgraph to analyze would be a subtree of G, while to have the greatest
likelihood of being transient, it should be as big as possible, that is, a spanning tree (one
that includes every vertex). Here is one: Assume that the inverse of each generator is also

in the generating set. Order the generating set S = (s, 52, ...,84). For each x € G, there
is a unique word (s;,, ,, . . ., §;,) in the generators such that x = s;,s;, - - - s5;,, n = |x|, and
(Siy»--.,5;,) is lexicographically minimal with these properties, that is, if (Sii’ co,8) s

another word whose product is x and m is the first j such that i; # i;., then i,, < i,. Call
this lexicographically minimal word w,. Let T be the subgraph of G containing all vertices
and with y adjacent to x when either |y| + 1 = |x| and wy, is an initial segment of wy, or vice
versa.

> Exercise 3.13.
Show that T is a subperiodic tree when rooted at the identity.

Because T is spanning and distances to the identity in T are the same as in G, we have
grT = lim M'". Since T is subperiodic, we have br T = lim M,.’" by Theorem 3.8. Hence
RW,; is transient on 7 for 4 < lim M,i/ " by Theorem 3.5, whence on G as well. We have
proved the following theorem of Lyons (1995):

Theorem 3.10. (Group Growth and Random Walk) RW, on an infinite Cayley graph has
critical value A. equal to the exponential growth rate of the graph.

Of course, this theorem makes Cayley graphs look spherically symmetric from a proba-
bilistic point of view. Such a conclusion, however, should not be pushed too far, for there are
Cayley graphs with the following very surprising properties; the lamplighter group is one
such. Define the speed (or rate of escape) of RW, as the limit of the distance from the identity
at time n divided by n as n — oo, if the limit exists. The speed is monotonically decreasing
in 4 on spherically symmetric graphs and is positive for any positive 4 less than the growth
rate. However, there are Cayley graphs of exponential growth for which the speed of simple
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random walk is O (a topic studied further in Chapter 14). This already shows that such a
Cayley graph is far from spherically symmetric. Even more surprisingly, on the lamplighter
group, which has growth rate (1 + V5)/2, the speed is 0 at 4 = 1* yet is strictly positive when
1 < 2 < (1+v5)/2 (Lyons, Pemantle, and Peres, 1996b). Perhaps this surprising example is
actually part of a general phenomenon in one aspect:

Question 3.11. If G is a Cayley graph of growth rate » and 1 < A < b, must the speed of
RW, exist and be positive?

Another manifestation of the lack of spherical symmetry in the Cayley graph of Z° is the
presence of dead ends, that is, elements all of whose neighbors are closer to o. Indeed, the
element (1, ,, 0) is such a dead end.

Question 3.12. If T is a spanning tree of a graph G rooted at some vertex o, we call T a
geodesic subtree if dist(o, x) is the same in T as in G for all vertices x. If T is a geodesic
spanning tree of the Cayley graph of a finitely generated group G of growth rate b, isbr T = b?
We saw that this is the case for the lexicographically minimal spanning tree constructed
earlier.

Denote the growth rate of a group I' with respect to a finite generating set S by grg I
By Exercise 3.12, every pair of Cayley graphs of the same group are roughly isometric to
each other, whence if grg I' > 1 for some generating set, then grg I' > 1 for every generating
set. In this case, is infg gr¢ I' > 1?7 This question was posed by Gromov (1981b) (see also
Gromov (1999) for a revised version in English), and for a long time, it remained open. It
is known to hold for certain classes of groups, but finally a counterexample was found by
Wilson (2004b); see also Bartholdi (2003) and Wilson (2004c¢). In Theorem 10.13, we will
use random spanning forests to give examples of groups with uniform exponential growth.
See Mann (2012) for more on the growth of groups.

We have begun to see how the behavior of some probabilistic processes on Cayley graphs
is related to geometric properties of the underlying groups. This is a fascinating theme in
contemporary research. We will see some more examples in Chapters 6, 7, 8, 10, 11, and 14.
In particular, we will see in Theorem 6.40 that simple random walk is transient on Cayley
graphs whose volume growth is at least cubic.

3.5 Notes

A Cayley graph is spherically symmetric iff it is 2-point homogeneous, that is, given vertices
u, v, w, x such that d(u, v) = d(w, x), there is an automorphism taking u to w and v to x. These graphs
are characterized by Macpherson (1982).

The lamplighter group Z° was denoted G, by Kaimanovich and Vershik (1983).

* This part is easy to see: after n steps, the marker has visited only locations within distance roughly /7 from 0.
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3.6 Collected In-Text Exercises

3.1. Show that if equality holds on the right-hand side of (3.3), then for all x, we have

Z Oe) < 1.

et=x,
9(e)>0

3.2. Suppose that simple random walk is transient on G and a € V. Show that there is a random
edge-simple path from a to co such that the expected number of edges common to two such independent
paths is equal to Z(a < oo0) (for unit conductances on G).

3.3. Let T be a locally finite tree and II be a minimal finite cutset separating o from co. Let 8 be a
flow from o to co. Show that

Strength(9) = Z d(e).
eell
3.4. For simple random walk on T to be transient, is it necessary that br7 > 1?
3.5. Find an example where RW,, 7 is transient and an example where it is recurrent.
3.6. Show that br T is independent of which vertex in T is the root.

3.7. Show directly from the definition that br 7' = n for an n-ary tree 7. Show that if every vertex of
T has between n; and n, children, then br T is between n; and n,.

3.8. We have seen that if br 7 > 1, then simple random walk on T is transient. Is gr7 > 1 sufficient
for transience?

3.9. (a) (Fekete’s Lemma) Show that for every subadditive sequence {a,, ), the sequence {a,, /n)

converges to its infimum:
. a . . a
lim — = inf — .
n—o n n

(b) Show that Fekete’s lemma holds even if a finite number of the a,, are infinite.
(c) Show that for every O-subperiodic tree T, the limit lim,,_,, |T;,|'/" exists.

3.10. Prove the case N > 0 of Theorem 3.9.
3.11. Show that if G is spherically symmetric about o, then RW; is transient iff >, 4"/ M, < oo.
3.12. Show that different Cayley graphs of the same finitely generated group are roughly isometric.

3.13. Show that the lexicographically minimal spanning tree T of a Cayley graph is a subperiodic
tree when rooted at the identity.
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3.7 Additional Exercises

3.14. There are two other versions of the max-flow min-cut theorem that are useful. We state them
for directed finite networks using the notation of our proof of the max-flow min-cut theorem.

(a) Suppose that each verfex x is given a capacity c(x), meaning that an admissible flow 6 is
required to satisfy (i) 8(e) > O for all edges e and (ii) for all x other than the sources A and sinks Z,
> oce P(x,0)0(e) =0and Y .__ 0(e) < c(x), where ¢ is the vertex-edge incidence function defined in
Section 3.1. A cutset now consists of vertices that intersect every directed path from A to Z. Show
that the maximum strength of an admissible flow from A to Z equals the minimum cutset sum of the
capacities.

(b) Suppose that each edge and each vertex has a capacity, with the restrictions that each of these
imply. A cutset now may consist of both vertices and edges. Again, show that the maximum strength of
an admissible flow from A to Z equals the minimum cutset sum of the capacities.

3.15. Show that if all the edge capacities c(e) in a directed finite network are integers, then among the
admissible flows 6 of maximal strength, there is one such that all f(e) are also integers. Show the same
for networks with capacities assigned to the vertices or to both edges and vertices, as in Exercise 3.14.

3.16. (Menger’s Theorem)

(a) Let a and z be vertices in a graph that are not adjacent. Show that the maximum number of
paths from a to z that are pairwise disjoint (except at a and z) is equal to the minimum cardinality of
a set W of vertices such that W is disjoint from a and z, but such that every path from a to z passes
through W.

(b) Let a be a vertex in an infinite graph. Show that the maximum number of paths from a to co
that are pairwise disjoint (except at a) is equal to the minimum cardinality of a set W of vertices such
that W is disjoint from a, but such that every path from a to co passes through W.

3.17. A perfect matching of a graph G is a subset M of its edges such that each vertex of G belongs
to exactly one edge in M. Let G be a finite bipartite graph, that is, its vertex set can be partitioned into
two parts, A and Z, such that all edges of G have one endpoint in A and one in Z.

(a) (Kdénig’s Theorem) Show that if G is regular, then it has a perfect matching.
(b) (Hall’s Theorem) Show that if |A| = |Z| and for each K C A, the number of vertices adjacent
to some vertex of K is at least |K|, then G has a perfect matching.

3.18. Show that the maximum strength of an admissible flow from A to Z (in a finite undirected

network) also equals
min{ Z c(e){’(e)},

ecEy )

where ¢ is an assignment of nonnegative lengths to the edges so that the minimum distance from every
point in A to every point in Z is 1.

3.19. Suppose that 6 is a flow from A to Z in a finite undirected network. Show that if IT is a cutset
separating A from Z that is minimal with respect to inclusion, then Strength(6) = > _; 6(e).

3.20. Let G be a finite network and a and z be two of its vertices. Show that Z(a < z) is the

minimum of ZeeE”z r(e)Ple € P or —e € PJ? over all probability measures P on paths # from a to z.

3.21. Let G be an undirected graph and o € V. Recall that E consists of both orientations of each
edge. Suppose that ¢: E — [0, co) satisfies the following three conditions:
(i) For every vertex x # o, we have

Y qwx< > gxw);

{u; (u,x)eE} {w; (x,w)eE}
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(ii) Z q(u,0)=0 and Z q(o,w) > 0; and
{u; (u,0)eE} {w; (o, w)eE}
(iii) there exists K < oo such that for every directed path (ug, 1, . . .) in G starting at uy = o, we have

> gl uin) < K.

i=0

Show that simple random walk on (the undirected graph) G starting at o is transient.

3.22. Let G be a finite graph and a, z be two vertices of G. Let the edges be labeled by positive
resistances r( +). Two players, a passenger and a troll, simultaneously pick edge-simple paths from a to
z. The passenger then pays the troll the sum of +r(e) for all the edges e common to both paths; if e is
traversed in the same direction by the two paths, then the + sign is used, otherwise the — sign is used.
Show that the troll has a strategy of picking a random path in such a way that no matter what path is
picked by the passenger, the troll’s gain has expectation equal to the effective resistance between a to
z. Show further that the passenger has a similar strategy that has expected loss equal to Z(a < z) no
matter what the troll does.

3.23. Let T be a locally finite tree and I1 be a cutset separating o from co. Show that there is a finite
cutset I1" € I1 separating o from oo that does not properly contain any other cutset.

3.24. Show that a network (7, ¢) on a tree is transient iff there exists a function F on the vertices of
T such that F > 0, Ve dF(e) > 0, and infy;; >, dF(e)c(e) > 0. Here, edges are oriented away from
the root; the infimum is over cutsets separating the root from infinity.

3.25. Given a tree T and k > 1, form the tree 71! by taking the vertices x of T for which |x| is
a multiple of k and joining x and y by an edge in 7% when their distance is k in 7. Show that
br Tl = (br T)X.

3.26. Show that RW, is positive recurrent on a tree 7 if A > gr7 but notif A < gr7T.

3.27. Let U(T) be the set of unit flows on a tree T (from o to o). For 8 € U(T), define its Frostman
exponent to be
Frost(0) := l}n‘l inf 6(x)"/!

Show that
brT = sup Frost(6).
0cU(T)
3.28. Let k > 1. Show that if T is a O-periodic (resp., 0-subperiodic) tree, then for all vertices x with
|x| > k, there is an adjacency-preserving bijection (resp., injection) f:T* — T/ with | f(x)| = k.

3.29. Given a finite directed multigraph G, one can also define another covering tree by using as
vertices all directed paths of the form (x¢, x1,...,x,) or {(x_,, ..., xX_1, Xo), with the former a child of
(X0, X1, ..., Xn-1) and the latter a child of (x_¢,_1), ..., X_1, xo). Show that this tree is also periodic.

3.30. Given an integer k > 0, construct a periodic tree T with |T;,| approximately equal to n* for all
n.

3.31. Show that critical homesick random walk (that is, RWy, ) is recurrent on each periodic tree.

3.32. Construct a subperiodic tree for which critical homesick random walk (that is, RWy,7) is
transient.



94 CHAP. 3: SpeECIAL NETWORKS

3.33. Let N > 0and 0 < @ < 1. Identify the binary tree with the set of all finite sequences of Os and
Is. Let T be the subtree of the binary tree that contains the vertex corresponding to (xy, ..., x,) iff
Vk <n Zf:l x; < a(k + N). Show that T is N-superperiodic but not (N — 1)-superperiodic. Also,
determine br 7.

3.34. Roth’s theorem says that a subset of IN that contains no three-term arithmetic progression must
have density 0. Identify the binary tree with the set of all finite sequences of Os and 1s. Let T be the
subtree of the binary tree that contains the vertex corresponding to (xi,...,x,) iff x;x;.jXi0; =0
whenever 1 <i <i+2j <n. Show thatgrT = 1.

3.35. Let T(1) and T(2) be two trees rooted at 0, and o0,, respectively. Define their product tree
T(1) - T(2) to be the tree with vertex set {(x1,x2); x1 € T(1), x2 € T(2), |x1| = |x2|}, rooted at (01, 02),
and such that (x;, x) — (y1, y2) iff x; — y; and x, — y,. For example, if 7(i) is a b;-ary tree, then
their product tree is a b, b,-ary tree.

(a) Show that br7(1) - br7(2) < br(T(1) - T(2)).

(b) Show that if T'(7) are 0-subperiodic, then so is their product tree.

(c) Identify the binary tree with the set of all finite sequences of Os and 1s. For a subset S C N,
define the spherically symmetric tree 7(S) be the subtree of the binary tree that contains the vertex
corresponding to (x,...,x,) iff x;, < 1g(k) for all kK < n. That is, S is the set of heights where there
is branching. Show that if both S and IN \ S have lower density 0, then br 7(S) =brT(N \ S) = 1 and
br(7(S) - T(N\ §)) = 2.

3.36. Suppose that S generates the group I' and that I” is a subgroup of I'. The Schreier graph of the
coset space I"\I" with respect to S has as vertices the right cosets Iy for y € I" and as edges [I"y,I"ys]
for s € S. When I" is normal in I, this is a Cayley graph of the quotient group. Show that different
finite generating sets of I give roughly isometric Schreier graphs of the same coset space.

3.37. We have defined the right Cayley graph of a finitely generated group and noted that left
multiplication is a graph automorphism. The left Cayley graph is defined similarly. Show that the right
and left Cayley graphs are isomorphic.

3.38. Show that there are Cayley graphs G,, of Z such that for each r, the balls of radius r in G,, are
isomorphic to the ball of radius r in the usual Cayley graph of Z? for all large n. Similarly, show that
there are Cayley graphs of Z where the balls are eventually isomorphic to those in the usual Cayley
graph of Z>.

3.39. Extend Theorem 3.10 to all infinite (locally finite) transitive graphs.
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Uniform
Spanning Trees

One lesson of Chapter 2 is that in many ways, electrical networks and random walks are
two faces of the same underlying object. Here we discover an appealing third face, which
will appear at first to be completely unrelated.

Every connected graph has a spanning tree, that is, a subgraph that is a tree and that
includes every vertex. Special spanning trees of Cayley graphs were used in Section 3.4. Here,
we consider finite and, more generally, recurrent graphs and properties of their spanning
trees when such trees are chosen randomly. We will exhibit an amazing way to generate
spanning trees uniformly at random. In Chapter 10, we will look at how to extend these
notions to transient graphs, where the connections to random walks and geometric group
theory flourish. Other natural ways of choosing random spanning trees and forests will be
studied in Chapter 11, but those ways will be connected to percolation rather than to random
walks.

Notation. In an undirected graph, a spanning tree is also composed of undirected edges.
However, we will be using the ideas and notations of Chapter 2 concerning random walks
and electrical networks, so that we will be making use of directed edges as well. Sometimes,
e will even denote an undirected edge on one side of an equation and a directed edge on the
other side; see, for example, Kirchhoff’s effective resistance formula. This abuse of notation,
we hope, will be easier for the reader than would the use of different notations for directed
and undirected edges.

4.1 Generating Uniform Spanning Trees

A graph typically has an enormous number of spanning trees. Because of this, it is not
obvious how to choose one uniformly at random in a reasonable amount of time. We are
going to present an algorithm that works quickly by exploiting some hidden independence in
Markov chains. This algorithm is of enormous theoretical importance for us. Although we
are interested in spanning trees of undirected graphs, it turns out that for this algorithm, it is
just as easy, and somewhat more clear, to work with directed graphs coming from Markov
chains.

Let p(+,+) be the transition probability function of a finite-state irreducible Markov chain.
The directed graph associated to this chain has for vertices the states and for edges all {x, y)
for which p(x,y) > 0. Edges e are oriented from tail e~ to head ¢*. We call a connected
subgraph a spanning tree* if it includes every vertex, there is no cycle, and there is one

* For directed graphs, these are usually called spanning arborescences.



96 CHAP. 4. UNIFORM SPANNING TREES

vertex, the root, such that every vertex other than the root is the tail of exactly one edge in the
tree. Thus, the edges in a spanning tree point toward its root. For any vertex r, there is at
least one spanning tree rooted at r: Pick some vertex other than r, and draw a path from it to
r that does not contain any cycles. Such a path exists by irreducibility. This starts the tree.
Then continue with another vertex not on the part of the tree already drawn, draw a cycle-free
path from it to the partial tree, and so on. Remarkably, with a little care, this naive method of
drawing spanning trees leads to a very powerful algorithm.

We are going to choose spanning trees at random according not only to uniform measure
but, in general, proportional to their weights, where, for a spanning tree 7, we define its
weight to be

Y(T) := Hp(e).

ecT

In case the original Markov chain is reversible, let us see what the weights ¥(T') are. Given
conductances c(e) with w(x) = ) -_ c(e), the transition probabilities are p(e) := c(e)/n(e”),
so the weight of a spanning tree T is

W) =[] ple)=]] cle) / IT .

eeT ecT x€eG,
x#root(T)

Since the root is fixed, a tree T is picked with probability proportional to ¥(T')/x(root(T)),
which is proportional to

E(T) =[] ce).

ecT

Note that Z(T) is independent of the root of 7. This new expression, Z(T), has a nice
interpretation. If ¢ = 1, then all spanning trees are equally likely. If all the weights c(e) are
positive integers, then we could replace each edge e by c(e) parallel copies of e and interpret
the uniform spanning tree measure in the resulting multigraph as the probability measure
above with the probability of T proportional to Z(T). If all weights are divided by the same
constant, then the probability measure does not change, so the case of rational weights can
still be thought of as corresponding to a uniform spanning tree. Since the case of general
weights is a limit of rational weights, we use the term weighted uniform spanning tree for
such a probability measure. Similar comments apply to the nonreversible case.

Now suppose we have some method of choosing a rooted spanning tree at random
proportionally to the weights ¥(+) for a reversible Markov chain. Consider any vertex u on a
weighted undirected graph. If we choose a random spanning tree rooted at u proportionally
to the weights ¥(-) and forget about the orientation of its edges and also about the root,
then we obtain an unrooted spanning tree of the undirected graph, chosen proportionally to
the weights (). In particular, if the conductances are all equal, which corresponds to the
Markov chain being simple random walk, then we get a uniformly chosen spanning tree.

The method we now describe for generating random spanning trees is the fastest method
known. It is due to Wilson (1996) (see also Propp and Wilson (1998)).
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To describe Wilson’s method, we define the important idea of loop erasure* of a path, due
to Lawler (1980). If # is any finite path (xg, x1, ..., x;) in a directed or undirected graph G,
we define the loop erasure of P, denoted LE(P) = (uo, uy, . . ., U, ), by erasing cycles in P
in the order they appear. More precisely, set ug := xg. If x; = xo, we set m = 0 and terminate;
otherwise, let u; be the first vertex in P after the last visit to x, that is, u; := x;,1, where
i:=max{j; x; = xo}. If x; = uy, then we set m = 1 and terminate; otherwise, let u, be the
first vertex in P after the last visit to u;, and so on. For example, the loop erasure of the
planar path shown in Figure 2.3 appears in Figure 4.1. In the case of a multigraph, one cannot
notate a path merely by the vertices it visits. However, the notion of loop erasure should still
be clear.

Figure 4.1. A loop-erased simple random walk in Z>
until it reaches distance 200 from its starting point.

Now to generate a random spanning tree with a given root r with probability proportional
to the weights ¥(-) for a given Markov chain, create a growing sequence of trees 7'(i) (i > 0)
as follows. Choose any ordering of the vertices V \ {r}. Let T(0) := {r}. Suppose that 7'(i)
is known. If T'(i) spans G, we are done. Otherwise, pick the first vertex x in our ordering of
V that is not in 7'(i) and take an independent sample from the Markov chain beginning at x
until it hits 7(7). Now create T'(i + 1) by adding to 7'(i) the loop erasure of this path from x to
T(i). Marvellously, the final tree in this growing sequence has the desired distribution. We
call this Wilson’s method of generating random spanning trees.

Theorem 4.1. Given any finite-state irreducible Markov chain and any state r, Wilson’s
method yields a random spanning tree rooted at r with distribution proportional to V(+).

* This ought to be called “cycle erasure,” but we will keep to the name already given to this concept.
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Therefore, for any finite connected undirected graph, Wilson’s method yields a random
spanning tree that, when the orientation and root are forgotten, has distribution proportional
to Z(+).

In particular, this says that the distribution of the spanning tree resulting from Wilson’s
method does not depend on the choice made in ordering V. Actually, you need not order V
in advance; you can choose where to start the next loop-erased path depending on what you
have already constructed, but you still cannot change the distribution of the spanning tree! In
fact, we’ll see that in some sense, the tree itself cannot be changed.

To state this precisely, we construct the Markov chain in a special way. Every time we are
at a state x, the next state will have a given probability distribution; and the choices of which
states follow the visits to x are independent of each other. This, of course, is just part of the
definition of a Markov chain. Constructively, however, we implement this as follows. Let
(8F; xisastate and i > 1) be independent with each S being a state chosen according to
the transition probability distribution from x. When we make the ith visit to x (if ever), then
the Markov chain will move next to S7'.

The following image is useful. For each x, think of (S ; 7 > 1) as a stack lying under the
state x with Sf being on top, then S;‘, and so forth. To run the Markov chain starting from
state xg, we simply “pop off” (that is, remove) the top state of the stack lying under xy and
move there, then repeat the same procedure from the new state for as long as we want to run
the chain. In other words, from the current state at any time, the next state is the first state in
the stack under the current state. This state is then removed from that stack and we repeat
with the next state as the current state.

Now, our aim is not to generate the Markov chain but a random spanning tree rooted at
r. Thus, we make one small variation: give r an empty stack. We use the stacks as follows.
Observe that at any time, the top items of the stacks determine a directed graph, namely, the
directed graph whose vertices are the states and whose edges are the pairs (x, y) where y is
the top item of the stack under x. Call this the visible graph at that time. If it happens that
the visible graph contains no (directed) cycles, then it is a spanning tree rooted at r. In that
case, we do nothing more. Otherwise, we pop a cycle, meaning that we remove the top items
of the stacks under the vertices of a cycle. Then we pop a remaining cycle, if any, and so
on. We claim that this process will stop with probability 1 at a spanning tree and that this
spanning tree has the desired distribution. Note that we do not pop the top of a stack unless it
belongs to a cycle. We will also show that this way of generating a random spanning tree is
the same as Wilson’s method.

To prove these statements, we will keep track of the locations in the stacks of edges that
are popped, which we will call colors. That is, say that an edge (x, S%*) has color i. A colored
cycle is simply a cycle all of whose edges are colored like this (the colors of the edges in a
cycle do not have to be the same as each other). Thus, the initial visible graph has all edges
colored 1, whereas later visible graphs will not generally have all their edges the same color.
While a cycle of vertices might be popped many times, a colored cycle can be popped at most
once. See Figure 4.2.

We begin with a deterministic lemma, which is the heart of this algorithm.

Lemma 4.2. Given any stacks under the states, the order in which cycles are popped is
irrelevant in the sense that every order pops an infinite number of cycles or every order pops
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Figure 4.2. This Markov chain has six states, one called r, which is the root. The
first five elements of each stack are listed under the corresponding states. Colored
cycles are popped as shown clockwise, leaving the colored spanning tree shown.

the same (finite set of) colored cycles, thus leaving the same colored spanning tree on top in
the latter case.

Proof. We will show that if C is any colored cycle that can be popped, that is, there is
some sequence Cy, C, . .., C, = C that may be popped in that order, but some colored cycle
C’ # C| happens to be the first colored cycle popped, then (1) C = C’, or else (2) C can
still be popped from the stacks after C” is popped. Once we show this, we are done, since if
there are an infinite number of colored cycles that can be popped, the popping can never stop;
whereas in the alternative case, every colored cycle that can be popped will be popped.
Now if all the vertices of C’ are disjoint from those of Cy,C,, ..., C,, then of course
C can still be popped. Otherwise, let Cy be the first cycle that has a vertex in common
with C’. Now, all the edges of C” have color 1. Consider any vertex x in C’ N C,. Since
x ¢ CiUCU---UC( i1, the edge in C; leading out of x also has color 1, so it leads to the
same vertex as it does in C’. We can repeat the argument for this successor vertex of x, then
for its successor, and so on, until we arrive at the conclusion that C’ = Cy. Thus, C’ = C or
we can pop C in the order C’, Cy, Cs, ..., Cr_1, Crs1, - - ., Cp. |

Proof of Theorem 4.1. Wilson’s method (using loop-erased parts of a Markov chain) certainly
stops with probability 1 at a spanning tree. Using stacks to run the Markov chain and noting
that loop erasure in order of cycle creation is one way of popping cycles, we see that Wilson’s
method pops all the cycles lying over a spanning tree. Because of Lemma 4.2, popping cycles
in any other manner also stops with probability 1 and with the same distribution. Furthermore,
if we think of the stacks as given in advance, then we see that all our choices inherent in
Wilson’s method have no effect whatsoever on the resulting spanning tree.

Now to show that the distribution is the desired one, think of a given set of stacks as
defining a finite set O of colored cycles lying over a noncolored spanning tree 7. We don’t
need to keep track of the colors in the spanning tree, since they are easily recovered from
the colors in the cycles over it. Let X be the set of all pairs (O, T') that can arise from stacks
corresponding to our given Markov chain. If (O, T) € X, then also (0, T’) € X for any other
spanning tree 7”: indeed, anything at all can be in the stacks under any finite set O of colored
cycles. That is, X = X X X3, where X is a certain collection of sets of colored cycles and
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X, is the set of all noncolored spanning trees. Extend our definition of ¥(-) to colored cycles
C by ¥(C) := [[,cc p(e) and to sets O of colored cycles by ¥(0) := [[~., ¥(C). What is
the chance of seeing a given set O of colored cycles lying over a given spanning tree 77 It is
simply the probability of seeing all the arrows in | J O U T in their respective places, which is
simply the product of p(e) for all e € | JO U T, in other words, ¥(O)¥(T'). Letting P be the
law of (O, T), we get P= u; X up, where y; are probability measures proportional to ¥(-) on
X;. Therefore, the set of colored cycles seen is independent of the colored spanning tree and
the probability of seeing the tree 7' is proportional to W(7'). This shows that Wilson’s method
does what we claimed it does. <
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Figure 4.3. A colored uniform spanning tree in a 40 X 40 grid on the left, with a
key on the right showing the correspondence of visual colors to numbered colors.

An actual example of Wilson’s algorithm showing the colored uniform spanning tree on a
40 x 40 grid is shown in Figure 4.3. Since the colors are determined by the popped cycles,
which are independent of the spanning tree, it follows that if we attach the colors to the
vertices instead of to the edges, then the colors are independent of the spanning tree (the
colors are naturally attached to the vertices, since the stacks correspond to vertices). Just
the colors are shown for a uniform spanning tree on a 200 x 200 grid in Figure 4.4. There
appears to be an interesting fractal nature in the limit of decreasing mesh size, but no one has
yet explained this. In Figure 4.5, we show the distances in the tree to the lower left vertex,
together with the path from the upper right vertex. This seems to be the best way of viewing
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a large spanning tree. Although the distances do not determine the tree, all spanning trees
consistent with the given distances are, of course, equally likely. Furthermore, given the
distances, one can easily sample from the consistent spanning trees by working one’s way
out from the root: the vertices at distance 1 from the root must be attached to the root, while
the vertices at distance 2 can be attached uniformly at random to their neighbors at distance
1, and so on. The distance in the tree from the root to the opposite corner, say, grows like
n°* in an n x n square: This was first conjectured by Guttmann and Bursill (1990) from
numerical simulations, then calculated by Duplantier (1992) and Majumdar (1992) using
nonrigorous conformal field theory. Kenyon (2000a) proved a form of this using domino
tilings associated to spanning trees. It was extended to other planar lattices by Masson (2009)
and strengthened by Barlow and Masson (2010). An alternative view is given in Figure 4.6,
where the distances in the tree to the path between the corners is shown.
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Figure 4.4. The colors of a uniform spanning tree in a 200 x 200 grid on the left, with a
key on the right showing the correspondence of visual colors to numbered colors.

We will see here and in Chapter 10 some of the far-reaching consequences of Wilson’s
method. First, we record the following obvious consequence of Wilson’s algorithm:

Corollary 4.3. Given vertices x and y in a finite network, the distribution of the path in the
weighted uniform spanning tree from x to 'y equals the distribution of loop-erased random
walk from x to y. <«



102 CHAP. 4. UNIFORM SPANNING TREES

5 y.

l "“"""""“'"""‘"“ S
‘ 8 fui‘u 1[,;_%:‘ oy

200.

Figure 4.5. The distances to the root in a uniform spanning tree in a
200 x 200 grid, together with the path from the opposite corner.

This corollary was first proved by Pemantle (1991) using a different method that relies on
an algorithm of Aldous and Broder (see Corollary 4.9). By conditioning on the path in the
tree and then contracting it, one can immediately deduce Wilson’s algorithm for the whole
tree. This was observed by Wilson (1996) and Propp and Wilson (1998).

Of course, another immediate corollary is the invariance of loop-erased random walk under
time reversal, which was known already to Lawler (1983):

Corollary 4.4. Given vertices x and y in a finite network, the distribution of loop-erased
random walk from x to y equals the distribution of the reversal of loop-erased random walk
fromy to x. <

Next, we use Wilson’s algorithm to prove Cayley’s formula for the number of spanning
trees on a complete graph, that is, a graph in which every pair of distinct vertices is joined by
an edge. A number of proofs are known of this result; for a collection of them, see Moon
(1967). The following proof is inspired by the one of Aldous (1990), Proposition 19.

Corollary 4.5. (Cayley, 1889) The number of labeled unrooted trees with n vertices is n’*~>.

Here, a labeled tree is one whose vertices are labeled 1 through n.
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Figure 4.6. The distances in the tree to the path between
opposite corners in a uniform spanning tree in a 200 x 200 grid.

To prove this, we use the result of the following exercise.

> Exercise 4.1.

Suppose that Z is a set of states in a Markov chain and that x is a state not in Z. Assume that
when the Markov chain is started in xg, then it visits Z with probability 1. Define the random
path Yy, Y1, ... by ¥y := xo and then recursively by letting Y,,,; have the distribution of one
step of the Markov chain starting from Y;, given that the chain will visit Z before visiting any
of ¥o,Y1,...,Y, again. However, if ¥, € Z, then the path is stopped and Y;,,; is not defined.
Show that (Y, ) has the same distribution as loop-erasing a sample of the Markov chain started
from x( and stopped when it reaches Z. In the case of a random walk, the conditioned path
(Y,) is called the Laplacian random walk from x( to Z.

Proof of Corollary 4.5. We show that the uniform probability of a specific spanning tree of
the complete graph on {1,2,...,n} is 1/n""2. Take the tree to be the path (1,2,3,...,n).
We will calculate the probability of this tree by using Wilson’s algorithm started at 1 and
rooted at n. Since the root is n and the tree is a path from 1 to n, this tree probability is just
the chance that loop-erased random walk from 1 to # is this particular path. By Exercise 4.1,
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we must show that the Laplacian random walk (¥;,) from 1 to n is precisely this path with
probability 1/n"~2. Recall the following notation from Chapter 2: P; denotes simple random
walk started at state i; the first time > O that the walk visits state k is denoted 7y ; and the first
time > 1 that the walk visits state k is denoted 7;". Let (X,,) be the usual simple random walk.
Consider first the distribution of ¥;. The definition of ¥; gives that for all i € [2, n],

PX =it <7
PIY = il = PL[X, =i | 7, < ] = DAL =0 Tn <77

Pl[Tn <Ti‘—]
_P[X =Pz, <n] _ PRfn <7l 1)
Pi[7, < 1] (n-DP[r, <7] '
Now o
Rin, <m]= {1/ HI7" 42)
1 ifi = n.

Since the probabilities for ¥; add to 1, combining (4.1) and (4.2) yields that Py[7, < 7] =
n/[2(n—1)], whence by (4.1) again, P[Y; = i] = I/nfor 1 <i < n. Similarly, for j € [1,n—2]
andi € [j + 1, n], we have

PlY;=i|¥i=2.. % =/1=P[Xi =it < A A= ATy AT]]

EMFLm<nAqA~mq4A§]

Em<ﬁAQAHWQ4A¢]
l)j[X1=i] Pi[Tn<T1/\T2/\"'/\Tj_1/\Tj]
Pj[Tn<T1/\T2/\"'/\Tj_1/\T;]

Now the minimum of 7y, ..., 7;, 7, for simple random walk starting at i € (j, n) is equally
likely to be any one of these. Therefore,

Pi[Tn<T1/\Tz/\”'/\Tj_l/\Tj]z{}/(j-'-l) g{;;<”

Since Pj[X; =i] = 1/(n—1), we obtain Pj[7, < iy A2 A== ATjoy AT = nf[(j+ D(n = 1],
and thus

PlY;=j+1|¥i=2.. % =j]=1/n
forall j € [1,n —2]. Of course,

PlY, i =n|¥i=2. Y,=n-1]=1.

Multiplying together these conditional probabilities gives the result. <
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4.2 Electrical Interpretations

We return now to undirected graphs and networks, except for occasional parenthetical
remarks about more general Markov chains. We don’t have to restrict ourselves to finite
networks: Wilson’s method for generating spanning trees will also give a random spanning
tree (a.s.) on any recurrent network (or for any recurrent irreducible Markov chain), provided
we start the new loop-erased walks in such a way as to guarantee that every vertex belongs
to the final tree. Can we interpret it in terms of uniform spanning trees when the network
is infinite? Suppose that G’ is a finite connected subnetwork of G and consider T and
Ts', random spanning trees generated by Wilson’s method on G and G’, respectively. After
describing a connection to electrical networks, we will show that for any event % depending
on only finitely many edges, we can make |[P[Tg € %] — P[Tg € %] arbitrarily small by
choosing G’ sufficiently large.* Thus, the random spanning tree of G looks locally like a tree
chosen with probability proportional to Z(-). Also, these local probabilities determine the
distribution of 7 uniquely. In particular, when simple random walk is recurrent, such as
on Z2, we may regard T as a “uniform” random spanning tree of G. Moreover, this will
show that Wilson’s method on a recurrent network generates a random spanning tree whose
distribution again does not depend on the choice of root nor on the ordering of vertices.”

We will study uniform spanning trees on recurrent networks further and also “uniform”
spanning forests on transient networks in Chapter 10. For now, though, we will deduce some
important theoretical consequences of the connection between random walk and spanning
trees on finite and recurrent networks. For recurrent networks, the definitions and relations
among random walks and electrical networks appear in Exercises 2.71, 2.72, and 2.73; some
are also covered in Section 9.1 and Corollary 9.6, but we won’t need any material from
Chapter 9 here.

Kirchhofl’s Effective Resistance Formula. Let T be an unrooted weighted uniform spanning
tree of a recurrent network G and e be an edge of G. Then

Ple € T| = P.-[Ist hit ¢* via traveling along e] = i(e) = c(e)Z(e” < e¥),

where i is the unit current from e~ to e*.

Remark. That P[e € T] = i(e) in finite networks is due to Kirchhoff (1847); he didn’t say
anything about random walks.

Proof. The first equality follows by taking the vertex e* as the root of T and then starting the
construction of Wilson’s method at ¢~. The second equality then follows from the probabilistic
interpretation (Proposition 2.2 and its extension Exercise 2.71 to infinite recurrent networks)
of i as the expected number of crossings of e minus the expected number of crossings of the
reversed edge —e for a random walk started at ¢~ and stopped at e*: e is crossed once or
not at all and —e is never crossed. The third equality comes from the definition of effective
resistance. <

* This can also be proved by coupling the constructions using Wilson’s method.

T This can also be shown directly for any recurrent irreducible Markov chain.
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> Exercise 4.2.
Consider the ladder graph L, of height n shown in Figure 1.7. Choose a spanning tree
T(n) of L, uniformly. Use Kirchhoff’s effective resistance formula to determine the chance
P[rung 1 is in 7(n)] and its limiting behavior as n — co.

Kirchhoff’s fundamental result tells us the single-edge marginals of uniform spanning trees.
What about the marginals for several edges? Suppose e and f are two distinct edges of a
finite graph G. If T is a random spanning tree chosen uniformly from all spanning trees
of G, then we might expect that the events [e € T] and [f € T] are negatively correlated,
that is, the probability that both happen is at most the product of the probabilities that each
happens: Intuitively, the presence of f would make e less needed for connecting everything
and more likely to create a cycle. Furthermore, since the number of edges in a spanning
tree is constant, namely, one fewer than the number of vertices in the graph, the negative
correlation is certainly true “on average.” We will now prove this negative correlation by using
Kirchhoff’s effective resistance formula. Interestingly, no direct proof is known, although a
combinatorial version of the electrical proof was given by Feder and Mihail (1992).

In fact, we can use Kirchhoff’s effective resistance formula to compute the chance that
certain edges are in T and certain others are not. To see this, denote the dependence of T
on G by T. The contraction G/e of a graph G along an edge e is obtained by removing
the edge e and identifying its endpoints. Note that this may give a multigraph even if G is a
simple graph. Deleting e without identifying its endpoints gives the graph denoted G\e. In
both cases, we may identify the edges of G other than e with the edges of G/e and of G\e.
We think of a spanning tree primarily as a set of edges. Now the distribution of T /e (the
contraction of T along e) given that e € T is the same as that of 75/, and the distribution
of T given e ¢ T is the same as that of T\.. This gives a recursive method to compute
Pley,....ex € TG, €xs1, . . ., €1 € Tg]: for example, if e # f, then

P[e,f S T(;] = P[e € TG] P[f S TG | e c T(;] = P[e € TG] P[f € Tg/e]

and
Ple ¢ Tg.f € Tc] =Ple ¢ TG P[f € Tg\].

Thus, we may deduce that the events e € T and f € T are negatively correlated:

> Exercise 4.3.
By using Kirchhofl’s effective resistance formula, show that if e # f, then the events e € T
and f € T are negatively correlated.

We can now also establish our claim at the beginning of this section that on a recurrent
graph, the random spanning tree looks locally like that of large finite connected subnetworks.
For example, given an edge e and a subnetwork G’ of G, the current in G’ flowing along e
arising from a unit current between the endpoints of e will be very close to the corresponding
current along e in G, provided G’ is sufficiently large, by Exercise 2.71. That means that
Ple € T'] will be very close to P[e € T ].
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> Exercise 4.4.
Write out the rest of the proof that for any event % depending on only finitely many edges,
|P[TG' € B|-PlIg € ,%’]| is arbitrarily small for sufficiently large G’.

What does contraction of some edges do to a current in the setting of the inner-product
space £2(E,r)? Let i¢ denote the unit current from the tail of e to the head of e in a finite
network G. Contract the edges f € F to obtain the graph G/F, and let i be the unit current
flowing in G/F, where e ¢ F and, moreover, e does not form any undirected cycle with the
edges of F, so that e does not become a loop when the edges of F are contracted. Note that
the restriction of any 6 € £2(E, r) to E \ F yields an antisymmetric function on the edges of
the contracted graph G/F. Let Z be the linear span of {i’ ; f € F}. We claim that

i° = (P£i)NE\ F) (4.3)

and
(P;ie) 'F=0, 4.4)

where P denotes the orthogonal projection onto the orthocomplement of Z in 2(E,r).
These equations may look a little forbidding at first, but a second or third look ought to reveal
their inner simplicity. In fact, if instead of removing the edges in F when we contract them,
we leave them as loops, then these equations say that ¢ = Pic.

To prove these equations, note that, since Z C % and i¢ € %, also Pi¢ = i — Pzi° € %.
Recall from (2.9) or (2.11) that Py X/ = i’. Therefore, for f € F,

(Pzi XT), = (PxPzi® X7), = (P4, P X" ), = (P5i¢, /), = 0.

That is, there is no flow across any edge in F for P2i¢, which is (4.4). Since Pi¢ € %
satisfies the cycle law in G, it follows from this that (P2i€)[(E \ F) satisfies the cycle law in
G/F. To finish the proof, we verify Kirchhoff’s node law, that is, we show that the right-hand
side of (4.3) is orthogonal to all the stars in G/F except those at the endpoints of e, where the
inner products are +1. To see this, write

Pyi¢ =i = ayif
feF

for some constants ay. Note that the stars ¢ in G/F are sums ¢ of stars in G such that
0(f) = 0 for all f € F. Since i¢ is orthogonal to all the stars in G except those at the
endpoints of e, it follows that i¢ [ (E \ F) L ¢ if ¢ is a star in G/F other than at an endpoint
of e. Likewise, the restrictions to E \ F of i/ for all f € F are orthogonal to all the stars in
G/F: the only case where this is not obvious is where e and f share an endpoint. In that
case, let ¢ be the star in G/F that corresponds to the shared endpoint of e and f. Since f
is contracted, the inner product of i/ |(E \ F) with ¢ equals 1 — 1 = 0, both endpoints of f
contributing to the inner product. Therefore, i¢ — > feF ayi’ is orthogonal to all the stars in
G/F except those at the endpoints of e, where the inner products are +1. This proves (4.3).
Although we have indicated that successive contractions can be used for computing
Pley, ..., ex € T], this requires computations of effective resistance on k different graphs.
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The formula we just gave allows us to replace the different graphs with computations of
orthogonal projections for the original graph, but this is not necessarily pleasant, either.
However, it turns out that these computations can be organized in a marvellous way, as
shown by the following wonderful theorem of Burton and Pemantle (1993) and its extension,
Exercise 4.41:

The Transfer Current Theorem. For any distinct edges e, . . ., e, € G,

Pley,...,ex € T] =det[Y(es ¢))] 4.5)

1<i,j<k

Recall that Y(e, f) = i°(f). Note that, in particular, we get a quantitative version of the
negative correlation between {e € T} and {f € T}: for distinct edges e, f, we have

Ple, f €T -Ple e TIP[f € T] = ~Y(e, Y (f,e) = —c(e)r(f)Y (e, f)

by the reciprocity law (2.12).

Proof. It suffices to show the result for finite G, because taking limits of this result implies it
holds for infinite recurrent G by Exercise 2.71.

We first show that if some cycle can be formed from the edges ey, . .., e, then a linear
combination of the corresponding columns of [Y(ei, ej)] is zero: Suppose that such a cycle is
Zj ajX,where a; € {-1,0, 1}. Then, for I < m < k, we have

Z ajr(e;)Y(em, e;) = Z ajr(e;)i‘"(ej) =0

by the cycle law applied to the current i*». Therefore, both sides of (4.5) are 0. For the
remainder of the proof, then, we may assume that there are no such cycles.

We next proceed by induction. When k = 1, (4.5) is the same as Kirchhoff’s effective
resistance formula. For 1 < m < k, let

Ym = [Y(ei,ej)]lsi’jsm . (46)
To carry the induction from m = k — 1 to m = k, we must show that
detY, =Pler €T |ey,...,ex_1 € T]detY,_;. 4.7)

Now we know that
P[ek eT | €l,...,€k-1 € T] = iek(ek) (48)

for the current 7 in the graph G/{ey, ..., ex_1}. In addition,
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for some constants a,,, where Z is the linear span of {i¢, ..., i°'}. Subtracting these same
multiples of the first k — 1 rows from the last row of ¥} leads to a matrix ¥ whose (m, j)-entry
is that of ¥._; for m, j < k and whose (k, j)-entry is

e 0 if j <k
e ;€m = Ljcx i) =
i“(e;) — ;aml (e) = (Pzi™)(e) = {fek(ek) ifj=k

by (4.4) and (4.3). Therefore expansion of det Y along the kth row is very simple and gives
that L
detY, =detY =i%(e)detY; ;.

Combining this with (4.8), we obtain (4.7). (At bottom, we are using, or proving, the fact that
the determinant of a Gram matrix is the square of the volume of the parallelepiped determined
by the vectors whose inner products give the entries.) <

It turns out that there is a more general negative correlation than that between the presence
of two given edges. Regard a spanning tree as simply a set of edges. We may extend our
probability measure P on the set of spanning trees to the product o-field on 25(%) by defining
the probability to be 0 of the event that the set of edges do not form a spanning tree. This
may sound unhelpful, but surprisingly, it is useful. Call an event «# C 259 increasing (also
called upwardly closed) if the addition of any edge to any set in < results in another set in
o, thatis, AU {e} € o forall A € o and all e € E. For example, & could be the collection
of all subsets of E(G) that contain at least two of the edges {e, 2, e3}. We say that an event
o ignores an edge ¢ if AU {e} € o/ and A\ {e} € o for all A € . In the prior example,
e is ignored provided e ¢ {e1, e, e3}. We also say that </ depends (only) on a set F C E(G)
if, for every pair wy, w, € 2F that agree on F, we have either both wy, w, are in & or neither
are in «7.

> Exercise 4.5.
Suppose that .« is an increasing event on a graph G and e € E. Note that E(G/e) = E(G\e) =
E(G)\{e}. Define o7 /e := {F C E(G/e); FU{e} € o/}and o/\e := {F CE(G\e); F € o/}.
Show that these are increasing events on G/e and G\e, respectively.

Pemantle conjectured (personal communication, 1990) that </ and [e € T'] are negatively
correlated when & is an increasing event that ignores e. Though unaware that Pemantle had
conjectured this, Feder and Mihail (1992) proved it:

Theorem 4.6. Let G be a finite network. If o/ is an increasing event that ignores some edge
e, then Pl | e € T] < P[]

As we will see in Chapter 10, this result is quite useful.

Proof. We induct on the number of edges in G. The case of exactly one (undirected) edge is
trivial. Now assume that the number of (undirected) edges is m > 2 and that we know the
result for graphs with m — 1 edges. Let G have m edges. If P[f € T] = 1 for some f € E,
then we could contract f and reduce to the case of m — 1 edges by Exercise 4.5, so assume
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this is not the case. If |V| = 2 and G has parallel edges, then the result also follows without
using induction, so assume that |V| > 3. Fix an increasing event &/ and an edge e ignored by
/. We may assume that P[.«7 | ¢ € T] > 0 to prove our inequality. The graph G/e has only
m — 1 edges, and every spanning tree of G/e has |V| — 2 edges. This latter simple fact leads
to the key equation

> Pl feT|eeT|=(V|-2)Ple/|ecT|=Plo/ |ecT] > P[feT|ecT].
feE\{e} feE\{e}
Therefore there is some f € E\ {e} with P[f € T | e € T] > 0 such that

PloZ,feT|ecT]| 2Pl |ecT|P[feT|ecT],
which is the same as P[«7 | f,e € T] > P[«7 | e € T]. This also means that
Pl | f,eeT| 2Pl | f¢T,ecT]; 4.9)
in case this is not evident, one can deduce it from

Pl |ecT|=P[feT|ecT|Pl|f,ecT|+P|f¢T|ecT|Plz|f¢T,ecT].
(4.10)
Now we also have
P[feT|eeT]<P[feT]

by Exercise 4.3. Because of (4.9), it follows that
Pl |eeT)|<P[feT|PlZ| f,ecT]|+P[f¢T|Plz | f¢T,ecT]: (4.11)

we have replaced a convex combination in (4.10) by another in (4.11) that puts more weight
on the larger term. We also have

Plo/ | foe € T) <Pl | f €T] (4.12)

by the induction hypothesis applied to the event <7/ f on the network G/ f (see Exercise 4.5),
and
Pl | f¢T,ecT| <Pl | f¢T] (4.13)

by the induction hypothesis applied to the event <7\ f on the network G\ f. By (4.12) and
(4.13), we have that the right-hand side of (4.11) is

<PfeT|Plo | feT|+Pf ¢TIPl7 | f¢T|=Pl7]. <

> Exercise 4.6.

(Negative Association) Let G be a finite network. Extend Theorem 4.6 to show that if <
and % are both increasing events and they depend on disjoint sets of edges, then they are
negatively correlated. Still more generally, show the following. Say that a random variable
X:28©) — R depends on a set F C E(G) if X is measurable with respect to the o-field
consisting of events that depend on F. Say also that X is increasing if X(H) < X(H’)
whenever H C H’. If X and Y are increasing random variables that depend on disjoint sets
of edges, then E[XY] < E[X] E[Y]. This property of P is called negative association.
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4.3 The Square Lattice 7>

Uniform spanning trees on the nearest-neighbor graph on the square lattice Z? are particu-
larly appealing. A portion of one is shown in Figure 4.7. This can be thought of as an infinite
maze. In Section 10.6, we will show that there is exactly one way to get from any square to
any other square without backtracking and exactly one way to get from any square to infinity
without backtracking. Thus, if escaping the maze means finding a path to infinity from a
given starting square, then there is exactly one way to do it without backtracking, and it is
also possible to get lost anywhere else. For now, though, we will consider only the “walls” of
the maze, that is, the actual spanning tree.
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Figure 4.7. A portion of a uniformly chosen spanning tree on Z2, drawn by David Wilson.
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What is the distribution of the degree of a vertex with respect to a uniform spanning tree
in Z*? Tt turns out that although the distribution is not so easy to calculate, the expected
degree is easy to calculate and is part of a quite general result. This uses the amenability
of Z*. What’s that? If G is a graph and K C V, the edge boundary of K is the set 9K of
(unoriented) edges that connect K to its complement. We say that G is edge amenable if
there are finite V,, C V with



112 CHAP. 4. UNIFORM SPANNING TREES

> Exercise 4.7.
Let G be an edge-amenable infinite graph as witnessed by the sequence (V,,). Show that the
average degree of vertices in any spanning tree of G is 2. That is, if deg,(x) denotes the
degree of x in a spanning tree T of G, then

lim |V,,|™! Z degp(x)=2.

xeV,

Every infinite recurrent graph can be shown to be edge-amenable by various results from
Chapter 6 that we’ll look at later, such as Theorems 6.5, 6.7, or 6.42. Deduce that for the
uniform spanning tree measure on a recurrent graph,

Tim |V, [ ) Eldegr(x)] = 2.

xeV,

In particular, if G is also transitive, such as Z?, meaning that for every pair of vertices x and
v, there is a bijection of V with itself that preserves adjacency and takes x to y, then every
vertex has expected degree 2.

By symmetry, each edge of Z? has the same probability to be in a uniform spanning tree of
Z?. Since the expected degree of a vertex is 2 by Exercise 4.7, it follows that

PleeT]=1/2 (4.14)

for each e € Z2. By Kirchhoft’s effective resistance formula, this means that if unit current
flows from the tail to the head of e, then 1/2 of the current flows directly across e and that the
effective resistance between two adjacent vertices is 1/2. These electrical facts are classic
engineering puzzles.

To calculate the distribution of the degree, we will use the transfer current theorem. The
result is rather surprising, namely, the degree has the following distribution:

Degree Probability
1 8 (1 - z) =.294*
n? n
4 12
2 —(2—2+—2) = 447
a T n (4.15)
2 12
3 2(1——)(1—§+—2) =222
b4 T
4 2\?
4 (— - 1) (1 - —) =.036"
b4 Vg
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To find the transfer currents Y (e, e2), we will first find voltages, then use i = dv. (We
assume unit conductances on the edges.) When i is a unit flow from x to y, we have
d*i = 15y — 1¢. Hence the voltages satisfy Av := d*dv = 1,y — 14y; here, A is called the
graph Laplacian. We are interested in solving this equation when x := e[, y := e]; then we
compute v(e;) — v(e3). Our method is to use Fourier analysis. We begin with a formal (that
is, heuristic) derivation of the solution, then prove that the formula we get is correct.

Let T? := (R/Z)? be the two-dimensional torus. For (x1,x,) € Z? and (a1, a,) € T?,
write (x1,x2) - (@1, @) := x| + X2a2 € R/Z. For a function f on Z?, define the function
f onT? by

Flayi= Y feoeteine

xX€Z?

We are not worrying here about whether this converges in any sense, but certainly f{_):}(a) =
e~2mix@ Now a formal calculation shows that for a function f on Z?, we have

Af(e) = (@) f(a),
where

(@1, @) 1= 4 — (&7 4 720 4 2MI@ 4 p=2MIM) - 4 ) (cos 2ma) + cOS 27@)) .

Hence, to solve Af = g, we may try to solve E}‘ = g by using f := g/ and then finding f.
In fact, a formal calculation shows that we may recover f from f by the formula

7= [ Faervda,

where the integration is with respect to Lebesgue measure. This is the approach we will
follow. Note that we need to be careful about the nonuniqueness of solutions to Af = g, since
there are nonzero functions f with Af = 0.

> Exercise 4.§._\ -
Show that (13, — 14y})/¢ € L'(T?) for all x, y € Z°.

> Exercise 4.9.
Show that if F € L'(T?) and f(x) = [ F(a)e*™** da, then

(Bf)() = /T F@)™ “pla) dar

Proposition 4.7. (Voltage on Z?) The voltage at u when a unit current flows from x to y in
7?2 and when v(y) = 0 is

o) = v'(u) - v'(y),

—2mix-a —2niy-a
e —e .
v'(z) = e do |
T2

p(a)

where
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Proof. By Exercises 4.8 and 4.9, we have

AU/(Z) — / (e—Zﬂixu _ e—27‘riy‘(1) eZniz-w da — l{x}(Z) _ l{y}(Z),
T

that is, Av’ = 1) — 1y,,. Since v satisfies the same equation, we have A(v” —v) = 0. In other
words, v’ — v is harmonic at every point in Z?2. Furthermore, v’ is bounded in absolute value
by the L' norm of (1{y} — 1{y})/¢. Since v is also bounded (by v(x)), it follows that v’ — v
is bounded. Since the only bounded harmonic functions on Z? are the constants (by, say,
Exercise 2.43), this means that v’ — v is constant. Since v(y) = 0, we obtain v = v’ — v’(y), as
desired. <

We now need to find a good method to compute the integral v’. Set

1- €2mu~af

Note that the integrand is integrable by Exercise 4.8 applied to x := (0,0) and y := —u. The
integral H is useful because v’(u) = [H (u—y)—H(u- x)]/4. (The factor of 4 is introduced
in H only to conform to the usage of other authors.) Putting x := ¢~ and y := e*, we get

Y(er, e2) = v(ey) — v(e3)

= [HGe — e~ Hies — o) = e — e + Hies =] @17)

Thus, we concentrate on calculating H. Now H(0,0) = 0, and a direct calculation as in
Exercise 4.9 shows that AH = —4 - 1(,0);. Furthermore, the symmetries of ¢ show that H is
invariant under reflection in the axes and in the 45° line. Therefore, all the values of H can
be computed from those on the 45° line by computing values at gradually increasing distance
from the origin and from the 45° line. (For example, we first compute H(1,0) = 1 from the
equations H(0,0) = 0 and (AH)(0,0) =4H(0,0)— H(0,1)-H(1,0)— H(0,—1)- H(-1,0) =
—4, then H(2, 1) from the value of H(1, 1) and the equation (AH)(1,1) =4H(1,1)— H(1,0)—
H(,1)— H(1,2) - H(2,1) =0, then H(2,0) from (AH)(1,0) = 0, then H(3,2), and so on.)

The reflection symmetries we observed for H imply that H(u) = H(—u), whence H is real.
Thus, we can write the diagonal values as

Hnn) = 4/ 1 —cos2nmn(a; + as) Jo
T o(a)

=/1/1 1 —cos2nn(a; + a») da) da;
0 0

1 = cos (r(a; + az)) cos (r(a1 — a2))

for n > 1. This new integrand has various symmetries shown in Figure 4.8. These symmetries
imply that if we change variables to 6, := (@) + @) and 6, := (@ — a3), then

1- 2no
H(n,n) = — / / TS 4, de, . (4.18)
2 1= cos 6 cos 6,
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(0%) 91
II
I II
I
ai
II
0>

Figure 4.8. The integrals over the regions labeled I
are all equal, as are those labeled II.

Only a little bit of calculus remains before we have our answer. Now for 0 < a < 1, we have

/" o _ 2 Ni-dan@) =«
o l—acost 1_g2 l-a 0_\/1_a2'

Therefore integration on 6, in (4.18) gives

1 [™1-cos2nd
H(,,,n)=_/ 1-cos2n61 4o
T Jo sin 6

Note that (1 — cos2n6;)/sin6; = 2>} _, sin(2k — 1)6;, as can be seen by using complex
exponentials. Therefore

2 T n 4 n 1
H(n,n) = —/ D sink - 1) dfy == ———. (4.19)
TJo Yo e 2k -1
> Exercise 4.10.

Deduce the distribution of the degree of a vertex in the uniform spanning tree of Z?, that is,
the table (4.15).

We may also make use of the preceding work, without the actual values being needed,
to prove the following remarkable fact. Edges of the uniform spanning tree in Z> along
diagonals are like fair coin flips! We have seen in (4.14) that each edge has 50 percent chance
to be in the tree. The independence we are now asserting is the following theorem.
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Theorem 4.8. (Independence on Diagonals) Let e be any edge of Z>. Forn € Z, let X,,
be the indicator that e + (n,n) lies in the spanning tree. Then X,, are i.i.d. Likewise for
e+ (n,—n).

Proof. By symmetry, it suffices to prove the first part. We may also assume that e is the
edge from the origin to (1,0). By the transfer current theorem, it suffices to show that
Y(e, e+ (n,n)) =0 for all n # 0. The formula (4.17) shows that

4Y(e,e + (n,n)) = H(n+ 1,n) — H(n,n) — H(n,n) + H(n — 1,n).

Now the symmetries we have noted already of the function H(s,+) show that H(n,n + 1) =
H(n+1,n)and H(n,n—1) = H(n — 1, n). Since H(n, n) is the average of these four numbers
for n # 0, it follows that H(n + 1,n) — H(n,n) = H(n,n) — H(n — 1, n). This proves the result.

|

4.4 Notes
There is another important connection of spanning trees to Markov chains:

The Markov Chain Tree Theorem. The stationary distribution of a finite-state irreducible Markov
chain is proportional to the measure that assigns the state x the measure

> W),

root(T")=x

It is for this reason that generating spanning trees at random is very closely tied to generating a state
of a Markov chain at random according to its stationary distribution. This latter topic is especially
interesting in computer science. See Propp and Wilson (1998) for more details. Some of the history of
the Markov chain tree theorem can be found in Anantharam and Tsoucas (1989).

To prove the Markov chain tree theorem, we associate to the original Markov chain a new Markov
chain on spanning trees. Given a spanning tree 7 and an edge e with e~ = root(T), define two new
spanning trees:

Jorward procedure: This creates a new spanning tree denoted F(T, e). First, add e to T. This
creates a cycle. Delete the edge f € T out of e* that breaks the cycle. See Figure 4.9.

backward procedure: This creates a new spanning tree denoted B(T, ¢). Again, firstadd e to T'.
This creates a cycle. Break it by removing the appropriate edge g € T that leads into e. See
Figure 4.9.

Note that in both procedures, it is possible that f = —e or g = —e. Also, note that
B(F(T,e), f)=F(B(T,e),8) =T,

where f and g are as specified in the definitions of the forward and backward procedures.
Now define transition probabilities on the set of spanning trees by

p(T, F(T, e)) = p(e) = p(root(T), root(F(T, e))). (4.20)

Thus p(T,T) >0 <= e T =F(T,e) < 3g T = BT, g).
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root(T")

Figure 4.9. The Markov chain on spanning trees.

> Exercise 4.11.
Prove that the Markov chain on trees given by (4.20) is irreducible.

> Exercise 4.12.
(a) Show that the weight ¥(-) is a stationary measure for the Markov chain on trees given by
(4.20).
(b) Prove the Markov chain tree theorem.

Another way to express the relationship between the original Markov chain and this associated one
on trees is as follows. Recall that one can create a stationary Markov chain (X,,)*, indexed by Z with
the original transition probabilities p(-, +) by, say, Kolmogorov’s existence theorem. Set

L,(w):=max{m<n; X,, =w}.
This is well defined a.s. by recurrence. Let Y, be the tree formed by the edges

{(ws XL,I(w)+1>; w e V \ {Xn}} .

Then ¥, is rooted at X,, and (Y,,) is a stationary Markov chain with the transition probabilities (4.20).

A method due to Aldous (1990) and Broder (1989) of generating weighted uniform spanning trees
comes from reversing these Markov chains; related ideas were in the air at that time, and both these
authors thank Persi Diaconis for discussions. Let (X,,)*, be a stationary Markov chain on a finite state
space. Then so is the reversed process (X_,,): the definition of the Markov property via independence
of the past and the future given the present shows this immediately. We can also find the transition
probabilities p for the reversed chain: Let xr be the stationary probability 7(a) := P[X, = a]. Then
clearly r is also the stationary probability for the reversed chain. Comparing the chance of seeing state
a followed by state b for the forward chain with the equal probability of seeing state b followed by state
a for the reversed chain, we see that

n(a)p(a, b) = n(b)p(b, a),
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whence
_ n(a)
by = —73 5 b 5
p(b, a) e b)p(a )
just as in Exercise 2.1.

If we reverse these chains (X,,) and (Y;,), then we find that Y_,, can be expressed in terms of X_,, as
follows: Let

H,(w) :=min{m >n; X_,, = w}.

Then Y_,, has edges {(w, X_[(Hpw)»-11); WEV\ {X_n}}.

> Exercise 4.13.
Prove that the transition probabilities of Y_,, are

p(T.B(T,e)) = ple).

Since the stationary measure of (Y,,) is still proportional to ¥(+), we get the following algorithm
for generating a random spanning tree with distribution proportional to ¥(+): Find the stationary
probability 7 of the chain giving rise to the weights ¥(+), run the reversed chain starting at a state
chosen according to &, and construct the tree via Hy. That is, we draw an edge from u to w the first
time > 1 that the reversed chain hits #, where w is the state preceding the visit to u.

In case the chain is reversible, this construction simplifies. From the discussion in Section 4.1, we
have the following:

Corollary 4.9. (Aldous/Broder Algorithm) Let (X,,); be a random walk on a finite connected graph
G with X, arbitrary (not necessarily random). Let H(u) := min{m > 0; X,,, = u} and let T be the
unrooted tree with edges {(u, Xpu-1); Xo # u € G}. Then the distribution of T is proportional to
E(+). In particular, simple random walk on a finite connected graph gives a uniform unrooted random
spanning tree.

Proof. We have seen that if X has the stationary distribution, then as a rooted spanning tree with edges
oriented toward the root, 7 has probability proportional to ¥(7'). We also know that as an unoriented
unrooted tree, the conditional probability of T is proportional to Z(7T) given the root. Hence the same
holds when X is fixed, as desired. |

This method of generating uniform spanning trees can be and was used in place of Wilson’s method
for the purposes of this chapter. However, Wilson’s method is much better suited to the study of uniform
spanning forests, the topic of Chapter 10.

> Exercise 4.14.
Let G be a cycle and x € V. Start simple random walk at x and stop when all edges but one have been
traversed at least once. Show that the edge that has not been traversed is equally likely to be any edge.

> Exercise 4.15.
Suppose that the graph G has a Hamiltonian path, (x; ; 1 < k < n), that is, a path that is a spanning
tree. Let g be Py, [T;k > Ty,.,,....xn ] for simple random walk on G. Show that the number of spanning
trees of G equals [ ], _,, g degg x«.
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The first use of Wilson’s method for infinite recurrent networks was by Benjamini, Lyons, Peres, and
Schramm (2001), hereinafter referred to as BLPS (2001). The transfer current theorem was shown for
the case of two edges by Brooks, Smith, Stone, and Tutte (1940). The proof here is due to BLPS (2001).
The interest of Brooks, Smith, Stone, and Tutte (1940) was elicited by their discovery of the connection
of electrical networks to square tilings: see Section 9.6.

We are grateful to David Wilson for permission to include Figure 4.7. It was created using the linear
algebraic techniques of Wilson (1997) for generating domino tilings; the needed matrix inversion was
accomplished using the formulas of Kenyon (1997). The resulting tiling gives dual spanning trees by
the bijection of Temperley (see Kenyon, Propp, and Wilson (2000)). One of the trees is Figure 4.7.

The function H(u) from (4.16) is equal to the potential kernel of simple random walk on Z2, that is,
lim, o0 D rzo [Pr(0,0) — pi(0, u)]; see Exercise 4.49 or Section 12 of Spitzer (1976).

Theorem 4.8 is due to R. Lyons and is published here for the first time. Another way to state this
result is that if independent fair coin flips are used to decide which of the edges {e + (n,n); n € Z}
will be present, for some fixed edge e, then there exists a percolation on the remaining edges of Z that
will lead in the end to a percolation on all of Z? with the distribution of the uniform spanning tree. A
related surprising result of Lyons and Steif (2003) says that we can independently determine some of
the horizontal edges and then decide the remaining edges to get a uniform spanning tree. To be precise,
fix a horizontal edge, e. Suppose that (U(e + x); x € Z?) are i.i.d. uniform [0, 1] random variables.
Let Ko :={e+x; Ule+x) < e/} and K| :={e+x; Ule+x) > 1 —¢e/7} where

is Catalan’s constant. (We have that e=%/" = 0.3115%.) Then there exists a percolation w on Z? such

that (w U K;) \ Kj has the distribution of the uniform spanning tree.

Additional information on loop-erased random walk and another proof of Wilson’s algorithm can be
found in Marchal (2000).

Enumeration of spanning trees in graphs is an old topic. There are many proofs of Cayley’s formula,
Corollary 4.5. The shortest proof is due to Joyal (1981) and goes as follows. Denote [n] := {1,...,n}.
First note that because every permutation can be represented as a product of disjoint directed cycles, it
follows that for any finite set S, the number of sets of cycles of elements of S (each element appearing
exactly once in some cycle) is equal to the number of linear arrangements of the elements of S. The
number of functions from [n] to [n] is clearly n™. To each such function f, we may associate its
functional digraph, which has a directed edge from i to f(i) for each i in [n]. Every weakly connected
component of the functional digraph can be represented by a cycle of rooted trees. So n” is also the
number of linear arrangements of rooted trees on [n]. We claim now that n”* = n’t,,, where t,, is the
number of trees on [n].

It is clear that n’t,, is the number of triples (x, y, T), where x, y € [n] and T is a tree on [n]. Given
such a triple, we obtain a linear arrangement of rooted trees by removing all directed edges on the
unique path from x to y and taking the nodes on this path to be the roots of the trees that remain. This
correspondence is bijective, and thus ¢, = n"*~2. <

The matrix-tree theorem of graph theory gives a way to calculate the number of spanning trees on
any graph. Namely, it says that the number of spanning trees of a graph G equals det Ag[x] for each
x € V, where Ag is the graph Laplacian defined in Exercise 2.62 and [x] indicates striking the row and
column indexed by x. More generally, the sum Z(G) of the weights E(T) = [, c(e) over spanning
trees T in a network equals det Ag [x]. There is also a version for directed graphs. A proof that uses
techniques from this book is given in the following exercise.
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> Exercise 4.16.
Prove the matrix-tree theorem by using Kirchhoft’s effective resistance formula and Exercise 2.62. Hint:
Pick a spanning tree t and successively contract the edges to calculate Z(7)/Z(G).

> Exercise 4.17.
Show that the constant C in (2.26) equals VE(G)/(2m)VI-1.

Asymptotics of the number of spanning trees are connected to mathematical physics. For example,
if one combines the entropy result for domino tilings proved by Montroll (1964) with the Temperley
(1974) bijection, then one gets that

1
lim — log(number of spanning trees of [1, n]* in Z?)

n—eo N

1 gl
= / / log(4 —2cos2mx —2cos2ny) dx dy
o Jo

= 4G =1.166",
bis

where G is Catalan’s constant, as earlier (see Kasteleyn (1961) or Montroll (1964) for the evaluation of
the integral). This result first appeared explicitly in Burton and Pemantle (1993). Thus, e'!¢" = 3.21~
can be thought of as the average number of independent choices per vertex to make a spanning tree
of Z2. See, for example, Burton and Pemantle (1993) and Shrock and Wu (2000) and the references
therein for this and several other such examples. Very general methods of calculating and comparing
asymptotics were given by Lyons (2005, 2010), where a key tool is the rate of convergence of random
walks on finite graphs to their stationary distribution.

> Exercise 4.18.
Consider simple random walk on Z?. Let A := {(x,y) € Z*; y < 0or (y = 0 and x < 0)}. Show that
P(o,())[T(B 0> 74| = €*9/7 /4, where G is Catalan’s constant.

Let T be the uniform spanning tree in Z2. The expected number of the four Z>-neighbors of 0 that lie
on the ray in T that starts at 0 is 5/4, as shown by Poghosyan, Priezzhev, and Ruelle (2011) and Kenyon
and Wilson (2015).

One may consider the uniform spanning tree on Z? embedded in R2. In fact, consider it on €Z? in
R? and let € — 0. In appropriate senses, one can describe the limit and show that it has a conformal
invariance property. Partial results for this were first proved by Kenyon (2000b); for example, he
calculated the limiting distribution of the “meeting point” of the subtree determined by three vertices on
the boundary of a domain. The full result was proved by Lawler, Schramm, and Werner (2004a). The
stochastic Loewner evolution, SLE, introduced by Schramm (2000) initially for this very purpose, plays
the central role. For the uniform spanning tree, there are two ways SLE enters the analysis: One is the
scaling limit of loop-erased random walk, which is the path between two vertices and fundamental to
this chapter. The second is less obvious. If we draw a curve around the spanning tree in a bounded
region, as in Figure 4.10, we obtain a cycle in another graph. That cycle visits every vertex and is very
reminiscent of Peano’s space-filling curve. It is called the UST Peano curve, and it, too, has a scaling
limit described by SLE. Figure 4.11 shows the curve from a uniform spanning tree in a 99 x 99 square
grid, where the hue represents progress along the curve. SLE is also central to the study of scaling
limits of other planar processes, including percolation.

Lawler (1980) introduced loop-erased random walk originally as a model that was similar to
self-avoiding walk but easier to understand because of its Markov property. Many basic aspects
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Figure 4.10. A uniform spanning tree in a 9 X 9 grid on the left, with
its surrounding Peano-like curve in an 18 x 18 grid on the right.

Figure 4.11. The Peano-like curve surrounding a uniform spanning
tree on a 99 x 99 grid, with hue showing progress along the curve.
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of self-avoiding walk remain beyond proof, despite precise conjectures from physics. For example,
Nienhuis (1982) conjectured that for all two-dimensional lattices, the number of self-avoiding paths of
length n starting at the origin is asymptotic to A" n?~!, where y = 43/32, and that the average squared
distance between the origin and the other endpoint of such a path is asymptotic to Dn?’, where v = 3/4;
the other constants, A, , and D, depend on the lattice. If the scaling limit of self-avoiding walk in
the plane exists and is conformally invariant, as is believed to be the case, then Lawler, Schramm, and
Werner (2004b) proved that it must be SLEg,3. This would in turn likely imply the preceding values of
v and v. For lattices in dimensions 5 and higher, corresponding statements have been proved by Hara
and Slade (1990, 1992), with y = 1 and v = 1/2. See Slade (2011) for a survey of current knowledge of
self-avoiding walk.

It turns out that uniform spanning trees arise as a limiting case within a wide class of probability
measures on graphs. To say what this is, we first define Bernoulli percolation with parameter p € [0, 1]
as the product measure P, on subsets of edges where each edge is retained with probability p. A
more general two-parameter model of random subgraphs, known as the random cluster model, was
introduced by Fortuin and Kasteleyn (1972) and Fortuin (1972a, 1972b). The two parameters of
random cluster measures are p € [0,1] and ¢ > 0. Given a finite connected graph G and w € 2F,
write ||w|| for the number of components of w. The random cluster measure with parameters (p, q)
on G, denoted FRC(p, ) = FRCY(p, g), is the probability measure on E proportional to ¢!“I P, (w),
that is, the Bernoulli(p) percolation measure P, biased by q““’“ (and renormalized). Thus, when g = 1,
this is merely P,,. The limit FRC(p, 0) of FRC(p, ¢) as ¢ — 0 exists and is concentrated on connected
subgraphs of G. For example, FRC(1/2,0) is the uniform random connected subgraph. The limit
lim,, o FRC(p, 0) is the uniform spanning tree. The limit lim,,_,o FRC(p, p) is the uniform forest.

On infinite graphs G, there are several ways to define random cluster measures. We restrict ourselves
to ¢ > 1, since the measures with g < 1 behave rather differently and are poorly understood. Indeed, it
is a major open problem to understand the case ¢ < 1; for example, it is unknown whether they have
negative associations, as they do in the limiting case of uniform spanning trees. This is unknown even
for the special cases of the uniform random connected subgraph and the uniform forest. The advantage
of g > 1 is that then the measures have positive associations (defined in Section 5.8). Let (G,,) be an
exhaustion of an infinite connected graph G by connected finite subgraphs. Define FRC (p, ¢) to be
the weak* limit of FRC®" (p, q); this is called the free random cluster measure on G. Define the wired
random cluster measure WRCE (p, g) to be the weak* limit of FRCC# (p, ¢). These limits always exist
(see, for example, Aizenman, Chayes, Chayes, and Newman (1988)). Furthermore, they have positive
associations, and so the free random cluster measure is stochastically dominated by the wired random
cluster measure (Aizenman, Chayes, Chayes, and Newman, 1988). When ¢ is an integer, the random
cluster measure can be used to construct the Potts model; when g = 2, the Potts model is called the Ising
model. See Grimmett (2006) for more details on random cluster measures, especially on Z<. In the
plane, scaling limits of Ising measures are known to exist and to have conformal invariance properties:
see Smirnov (2010).

The transfer current theorem shows that weighted uniform spanning tree measures have their
marginals given by simple determinants. This property leads to what are called determinantal
probability measures; see Lyons (2003) for their properties. In particular, the negative association
property holds for all determinantal probability measures.

A property that is even stronger than negative association, and which again holds for all determinantal
probability measures, is called strongly Rayleigh. Namely, if P is a probability measure on subsets of
a finite set E, then define the multivariate complex polynomial f(z) := > . P(F)[].cf ze, where
Z:=(z.; e € E). Borcea, Briandén, and Liggett (2009) call P strongly Rayleigh if f(z) # 0 when all
Z. have strictly positive imaginary parts. Borcea, Brindén, and Liggett (2009) show that the strongly
Rayleigh property is preserved under symmetrization and under symmetric exclusion processes. The
strongly Rayleigh property is also preserved under conditioning on events such as |F N A| = k, where
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A C E and k are fixed, as long as we restrict attention to A: see Lemma 4.16 of Borcea, Brindén,
and Liggett (2009). Thus, if we consider the uniform spanning tree 7 on a graph G and condition on
|T N A| = k for some fixed A C E(G), then T N A has negative associations.

Another type of negative correlation is as follows. It was conjectured to hold by BLPS (2001) and is
still open. We say that <7, % C 2F occur disjointly for F C E if there are disjoint sets Fy, F» C E such
that F’ € o for every F’ with F’ N Fy, = F N Fy and F’ € & for every F’ with F' N F, = F N F,. For
example, & may be the event that x and y are joined by a path of length at most 5, while % may be the
event that z and w are joined by a path of length at most 6. If there are disjoint paths of lengths at most
5 and 6 joining the first and second pair of vertices, respectively, then < and 2 occur disjointly.

Conjecture 4.10. Let <7/, % C 2F be increasing. Then the probability that </ and B occur disjointly
for the weighted uniform spanning tree T is at most P[T € o/ |P|T € %].

The BK inequality of van den Berg and Kesten (1985) says that this inequality holds when T is a
random subset of E chosen according to any product measure on 25; it was extended by Reimer (2000) to
allow 7 and 4 to be any events, confirming a conjecture of van den Berg and Kesten (1985). However,
we cannot allow arbitrary events for uniform spanning trees: consider the case where 7 := {e¢ € T} and
B:={f¢T}, wheree# f.

There is a basic connection of uniform spanning trees to the sandpile model on finite graphs; see
Holroyd, Levine, Mészaros, Peres, Propp, and Wilson (2008) for a survey. See also Kassel and Wilson
(2016) for more, such as a calculation that the probability that (1, 0) lies on the path from (0, 0) to co
equals 5/16.

4.5 Collected In-Text Exercises

4.1. Suppose that Z is a set of states in a Markov chain and that x; is a state not in Z. Assume
that when the Markov chain is started in xo, then it visits Z with probability 1. Define the random
path Y, Y1, ... by ¥y := x¢ and then recursively by letting Y,,,; have the distribution of one step of the
Markov chain starting from ¥,, given that the chain will visit Z before visiting any of ¥, ¥;,..., Y,
again. However, if ¥,, € Z, then the path is stopped and ¥,,,; is not defined. Show that (¥,,) has the same
distribution as loop-erasing a sample of the Markov chain started from x, and stopped when it reaches
Z. In the case of a random walk, the conditioned path (Y,,) is called the Laplacian random walk from
Xo to Z.

4.2. Consider the ladder graph L,, of height n shown in Figure 1.7. Choose a spanning tree 7'(n) of
L,, uniformly. Use Kirchhoff’s effective resistance formula to determine the chance P[rung lisin T(n)]
and its limiting behavior as n — oo.

4.3. By using Kirchhoff’s effective resistance formula, show that if e # f, then the events e € T and
f €T are negatively correlated.

4.4. Write out the rest of the proof that for any event 4 depending on only finitely many edges,
[P[TG: € #] - P[T € #]| is arbitrarily small for sufficiently large G’

4.5. Suppose that 7 is an increasing event on a graph G and ¢ € E. Note that E(G/e) = E(G\e) =
E(G)\ {e}. Define /e := {F CE(G/e); FU{e} € Jz{} and &7 \e := {F CE(G\e); F ¢ ,Q%}. Show
that these are increasing events on G/e and G\e, respectively.

4.6. (Negative Association) Let G be a finite network. Extend Theorem 4.6 to show that if <
and & are both increasing events and they depend on disjoint sets of edges, then they are negatively
correlated. Still more generally, show the following. Say that a random variable X: 25©) — R depends
onaset F C E(G) if X is measurable with respect to the o-field consisting of events that depend on F.
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Say also that X is increasing if X(H) < X(H') whenever H C H’. If X and Y are increasing random
variables that depend on disjoint sets of edges, then E[XY] < E[X] E[Y]. This property of P is called
negative association.

4.7. Let G be an edge-amenable infinite graph as witnessed by the sequence (V,,). Show that the
average degree of vertices in any spanning tree of G is 2. That is, if deg;(x) denotes the degree of x in
a spanning tree T of G, then

lim |V,,|™! Z deg,(x) =2.

xeVy,

Every infinite recurrent graph can be shown to be edge-amenable by various results from Chapter 6
that we’ll look at later, such as Theorems 6.5, 6.7, or 6.42. Deduce that for the uniform spanning tree
measure on a recurrent graph,

lim IVal™ > E[degr(x)] =2.
xeVy

In particular, if G is also transitive, such as 72, meaning that for every pair of vertices x and y, there is
a bijection of V with itself that preserves adjacency and takes x to y, then every vertex has expected
degree 2.

4.8. Show that (1) — 1(y))/¢ € L'(T?) for all x, y € Z2.
4.9. Show that if F € L'(T?) and f(x) = [}, F(@)e*™™** da, then

@10 = [ F@)e™g(a)da.
T
4.10. Deduce the distribution of the degree of a vertex in the uniform spanning tree of Z2, that is,
the table (4.15).
4.11. Prove that the Markov chain on trees given by (4.20) is irreducible.

4.12. (a) Show that the weight ¥(+) is a stationary measure for the Markov chain on trees given by
(4.20).
(b) Prove the Markov chain tree theorem.

4.13. Let (Y,) be a stationary Markov chain with transition probabilities (4.20) and consider its
reversal. Prove that the transition probabilities of Y_,, are

P(T. B(T,e)) = p(e).

4.14. Let G be a cycle and x € V. Start simple random walk at x and stop when all edges but one
have been traversed at least once. Show that the edge that has not been traversed is equally likely to be
any edge.

4.15. Suppose that the graph G has a Hamiltonian path, (x; ; 1 < k < n), that is, a path that is a
spanning tree. Let g; be P, [T;k > Ty,.,,,....xn ] fOr simple random walk on G. Show that the number
of spanning trees of G equals [ ], _,, g« degg x«.

4.16. Prove the matrix-tree theorem by using Kirchhoff’s effective resistance formula and Exer-
cise 2.62. Hint: Pick a spanning tree ¢ and successively contract the edges to calculate Z(¢)/E(G).

4.17. Show that the constant C in (2.26) equals VE(G)/(2m)VI-!.

4.18. Consider simple random walk on Z*. Let A := {(x,y) € Z*; y < Oor(y = 0 and x < 0)}.
Show that P(O,o)[‘r(}') 0> 74| = €*6/7 /4, where G is Catalan’s constant.
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4.6 Additional Exercises

In all the exercises, assume the networks are connected.

4.19. Show that not every probability distribution on spanning trees of an undirected graph is
proportional to a weight distribution, where the weight of a tree equals the product of the weights of its
edges.

4.20. Given a probability measure P on spanning trees of a finite graph G, there is the vector of
marginal edge probabilities, u(e) := Ple € T] for e € E. The set of such vectors for all possible P
forms a polytope, called the spanning tree polytope. Show that this polytope consists precisely of those
vectors u that satisfy

(i) u(e) = 0forall e € E(G),
(ii) ZeEE(G) u(e) = |V(G)| - 1, and

(iil) > epcrx) H(e) < |K| = 1forall @ # K & V(G).

Show in addition that if G has no cut-vertices (vertices whose removal disconnects G), then the relative
interior of this polytope (that is, the interior as a subset of the affine span of the polytope) equals the set
of such u that satisfy strict inequality in every instance of (i) and (iii) with |K| > 1 in (iii).

4.21. Given a probability measure P on spanning trees of a finite graph G, there is the vector
of marginal edge probabilities, up(e) := Ple € T] for e € E. The entropy of P is defined to be
H(P) :=-3 ", P(T)log P(T), where 01log 0 := 0.

(a) Show that if P is a weighted uniform spanning tree measure and Q is any probability measure
on spanning trees with the same edge marginals up = up, then H(P) > H(Q) unless Q = P.

(b) Suppose that G has no cut-vertices. Show that if u lies in the relative interior of the spanning
tree polytope (see Exercise 4.20), then there is a unique weighted spanning tree measure whose edge
marginal equals p.

4.22. Let G be a finite or recurrent network and a # z be two of its vertices. Let i be the unit current
flow from a to z. Show that for every edge e, the probability that loop-erased random walk from a to z
crosses e minus the probability that it crosses —e equals i(e).

4.23. Let G be a finite or recurrent network and a # z be two of its vertices. Let i be the unit current
flow from a to z. Let T be the uniform spanning tree in G and ir be the associated unit current flow
from a to z. Show thati = E[ir].

4.24. Show that the following procedure also gives a.s. a random spanning tree rooted at r with
distribution proportional to ¥(+). Let G, := {r}. Given G;, if G; spans G, stop. Otherwise, choose
any vertex x # r that does not have an edge in G; that leads out of x and add a (directed) edge from x
picked according to the transition probability p(x, «) independently of the past. Add this edge to G; and
remove any cycle it creates to make G-

4.25. How efficient is Wilson’s method? What takes time is to generate a random successor state of
a given state. Call this a step of the algorithm. Show that the expected number of steps to generate a
random spanning tree rooted at r for a finite-state irreducible Markov chain is

> m()(Erlr ] +E [1]).

X a state

where 7 is the stationary probability distribution for the Markov chain. Show that another expression
for this expected time is the trace of (I — P,)~', where I is the identity matrix and P, is the transition
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matrix with the row and column corresponding to r deleted. In the case of a random walk on a network
(V, E), this is

Z cle)#(e o r)+ (et & 1)),

ecE
where edge e has conductance c(e) and endpoints e~ and e*, and % denotes effective resistance.

4.26. Let (X,,) be a transient Markov chain. Then its loop erasure (Y,,) is well defined a.s. Show that
PX()[YI = xl] = p(x()a X])le [Txo = OO]/PXU [T;O = OO]

4.27. Suppose that x and y are two vertices in the complete graph K,,. Show that the probability that
the distance between x and y is k in a uniform spanning tree of K, is

k-1

k+1 .

pre | |(n—l—l).
i=1

4.28. Prove Cayley’s formula another way as follows: Let 7,,_; be a spanning tree of the complete
graph on n vertices and t; C t, C -+ C t,- C t,_1 be subtrees such that #; has i edges. Then

n-2
P[T=t,.]=Plty T]-[[Pltsin ST |1, CT].

i=1
Show that P[t; € T] =2/n and

i+2

Plt;; CT |t; CT] = — .
[+1 | ] n(l+1)

4.29. (Foster’s Theorem) Exercise 2.65 showed (in slightly different notation) that if G has n

vertices, then ZeeE”z c(e)#(e” & €*) = n — 1. Give another proof using spanning trees.

4.30. Kirchhoft (1847) generalized his effective resistance formula in two ways. One of them is in
Exercise 4.23. To express the other, let G be a finite network and a # z € G be two of its vertices.
Denote the sum of Z(T’) over all spanning trees of G by E(G). Show that the effective conductance
between a and 7 is given by
_ =)

E(G/{a,2})’

where G/{a, z} indicates the network G with a and z identified.

C(a & 7) 4.21)

4.31. Let (G, ¢) be a finite network. Denote the sum of Z(T') over all spanning trees of G by Z(G).
Show that Ple € T| = dlog E(G)/dc(e).

4.32. Jacobi’s determinant identity says that for a square invertible matrix M with a block decompo-
sition

A B
M= [c D]
and corresponding block decomposition
X Y
-1 _
M= [Z W’
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where A and X are square and have the same size, we have

det A
detM -~

A Bl[1 Y] [A O
[C DHO W]_[C 1]‘
(a) Use this and the matrix-tree theorem to give another proof of Kirchhoff’s effective resistance
formula (other than the part about random walks).
(b) Let G be a finite network and H = G| K be a connected subnetwork induced by @ # K & V(G).
Let v, (x, y) be the voltage at x when a unit current flows from y to @ (so that the voltage at a is 0) if

y # a and be 0 otherwise. Fix o € K. Let T be a weighted uniform spanning tree of G and ¢ be a fixed
spanning tree of H. Use the matrix-tree theorem and Exercise 2.62 to show that

P[TTH = t] = E(r) det v, (x, y)]x’yeK\{v} .
(¢) Show that det [v,(x, )]

4.33. Suppose that G is a graph with two sets of positive conductances, ¢ and ¢’, and no cut-vertices.
Show that if, for every edge e, we have c(e)Z(e” < e*;¢c) = ¢'(e)#(e” < e*; '), then ¢/c’ is constant.

detW =

Proof: equate determinants in

ey takes the same value no matter which vertex o € K is chosen.
,yeK\{o}

4.34. Let (G, ¢) be a finite network. Recall from Exercise 2.67 that (x, y) — Z(x < y) is a metric
on V.
(a) Show that V with this effective-resistance metric can be embedded isometrically into some £
space.
(b) Show thatif f:V — Zsatisfies 3 ., f(x) =1, then > ., f(x)f(y)%(x & y) <0.

4.35. Let (G, c¢) be a finite network with 0 € V(G). Let Z be the canonical Gaussian field on G,
defined via independent normal random variables X (e) with variance r(e) for e € E;,. Let T be the
uniform spanning tree on G and Z be the associated canonical Gaussian field, where the conductances
¢ from G are used on T and the same X (e) are used for e € E(T). Show that Z = E[Z1 | X]. Since Z7
is easily constructed via summing X along the edges of T starting from o, this identity shows how to
construct Z in a probabilistic way.

4.36. Let G be a finite network. Let a, z € V(G) and e € E(G). Let T denote a uniform spanning
tree of G.
(a) Show that if a and z are in the same component of G\e, then

Z(a o 7;G)=Ple e Tg|%(a & z;Gle)+Ple ¢ Tg]| %#(a < z;G\e),
and otherwise
H(a o 7;G)=%(a o z;Gle) +r(e).
(b) Show that if ¢ and z are not the endpoints of e, then
€(a o 7;G)=Ple € Tg)a,.1]16(a & 7:Gle) +Ple ¢ TG (a,zy] €(a < z;G\e),
and otherwise
€la o 7;G)=%¢(a & z;G\e) + c(e).

4.37. Consider the doubly infinite ladder graph, the Cayley graph G of Z x Z, with respect to its
natural generators. Show that the uniform spanning tree 7 on G has the following description: The
“rungs” [(n,0), (n, 1)] in T form a stationary renewal process with inter-rung distance being k with
probability 2k(2 — V3)* (k > 1). Given two successive rungs in T, all the other edges between the
rungs of the form [(n,0), (n + 1,0)] and [(n, 1), (n + 1, 1)] lie in T, with one exception chosen uniformly
and independently for different pairs of successive rungs.
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4.38. Let G be a finite network. Let ¢ and f be two edges that are not parallel and such that G\ f
is still connected. Let i¢ be the unit current in G/ f between the endpoints of e and let i® be the unit
current in G\ f between the endpoints of e. Let

(o) LI°(0) ifg#f

i£(8) -—{0 ifgof.
and —

o). 1i€(8) ifg#f

i®) '"{0 ifg=f.

(a) From (4.3), we have i$ = Pljie. Show that

e o Y f).
l —lc+—Y(f’f)lf.

(b) Show that x¢ —i§ = P;f_l_f(,\/e — i) and that
o Y(e, f)

f_:f
—ri X T

=ig +
(¢) Show that
i€ =Y(f, P +[1=Y(f, Ni§ +Y(e, X

4.39. Let G be a finite network and i be a current on G. If the conductance on the edge f is changed
to ¢’(f), then let i’ be the current with the same sources and sinks as i, that is, so that d*i’ = d*i. Show

that _
l.=l',+ [c(f)—c(f)]l(f) (Xf—lf),
(A=Y, D]+ (HY (S, f)
where i/ is the unit current with the original conductances from f~ to f* as defined after (2.11), and
deduce that

i = f_f
T = P =in.

4.40. Let G be a finite transitive graph of degree 3 and n vertices such that the automorphism group
of G induces all six permutations on the three neighbors of any vertex. For example, G could be the
1-skeleton of the tetrahedron, the cube, or the dodecahedron. Show that the probability that the degree
of a vertex in the uniform spanning tree on G is 1, 2, or 3 is, respectively, (1 — 1/n)*/4, 1 — (1 - 1/n)3/2,
and (1 - 1/n)3/4.

4.41. Given any numbers x; (i = 1,...,k), let X be the diagonal matrix with entries x, ..., x..
Show that det(Yx + X) = E[[],(1(¢,er} + x;)], where ¥ is as in (4.6). Deduce that
Ple,....e,, T, epit,...,ex €T =detZ,,,

where
1-Y(e;,e;) ifj=i<m,

Zn(i,j) =14 —Y(e;,ej) ifj#iandi < m,
Y(ei,ej) if i > m.

4.42. Give another proof of Cayley’s formula (Corollary 4.5) by using the transfer current theorem.
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4.43. Consider the weighted uniform spanning tree measure on an infinite recurrent network G. Let
X and Y be increasing random variables with finite second moments that depend on disjoint sets of
edges. Show that E[XY] < E[X]E[Y].

4.44. Let (G, c) be a finite network. Let e a fixed edge in G and .« be an increasing event that ignores
e. Suppose that a new network is formed from (G, ¢) by increasing the conductance on e while leaving
unchanged all other conductances. Show that in the new network, the chance of < under the weighted
spanning tree measure is no larger than it was in the original network.

4.45. Let E be a finite set and k < |E|. Let P be a weighted uniform measure on subsets of E of
size k, that is, for some set of weights w, > 0 (e € E), we have P(B) = [[ ., w. for B C E of size k.
Show that if X and Y are increasing random variables that depend on disjoint subsets of E, as defined in
Exercise 4.6, then E[XY] < E[X]E[Y].

4.46. Given two probability measures u; and u, on R, we say that u; stochastically dominates (1,
if, for all r € R, we have u;(r, ©) > u,(r, o).
(a) Show that u; stochastic dominates u, iff there exist random variables X; ~ y; and X, ~ u, on
a common probability space such that X; > X; a.s.
(b) Let E be a finite set and k < |E|. Let X be a uniform random subset of E of size k. Show that
if &7 is an increasing event that depends only on F C E, then the conditional distribution of |X N F|
given </ stochastically dominates the unconditional distribution of |X N F|.

4.47. Let G be the hexagonal lattice. Show that the probability that the degree of a vertex in the
uniform spanning tree on G is 1, 2, or 3 is, respectively, 1/4, 1/2, and 1/4.

4.48. Let T be the uniform spanning tree in Z2. Let x and y be neighbors in Z?2, and let L be the
length of the path in T that joins x to y. Since L < oo a.s., we have lim,,_,., P[L > n] = 0. How quickly
do these probabilities decay? This is hard to answer; here we give a soft bound that holds for every
automorphism-invariant random spanning tree.

(a) Show that P[L > n] > 1/(8n).
(b) Show that if the law of T is only assumed to be invariant under translations of Z2, then
E[L] = oo.

4.49. Let H be as in (4.16) and u € Z>. Consider simple random walk on Z>. Show that
H(I/l) = limn%oo ZZ:() [Pk (07 0) — Pk (07 M)]

4.50. Find the effective resistance between the origin and the vertex (2, 1) in Z2.

4.51. Show that for n > 1, the probability that simple random walk on Z? starting at (0, 0) visits
(n, n) before returning to (0, 0) equals

4.52. Show that in Z2, we have that as x — oo,

1
20 © x) ~ —log|lx]-
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4.53. Let A C Z? be finite. Write u_(x) := PZ[XT W= x] for the harmonic measure on A with respect
to z, as in Exercise 2.50.

(a) Show that lim,_,., u. exists. We call the limit, y, harmonic measure from infinity. Hint: It
suffices to show that u, and y,, are close when z and w are on the boundary of a large square with
corners (£N, +N). Consider z = (—N, N) and w = (N, N). Couple the walks from z and w by having
them do the same vertical steps but opposite horizontal steps until they meet, and then keep them
together. With high probability, they meet before either one visits A.

(b) Write R, for the (A X A)-matrix whose (x, y)-entry is Z(x < y). Show that u = c1" R},
where c is a constant so that the right-hand side adds to 1.

(¢) Show thatif A = {(—1,-1),(0,0),(1, 1)}, then u = (3/8,1/4,3/8).

(d) Show thatif A = {(O, 1),(0,0),(1, O)}, then

B ( bd T—2 T )
F=\aG -0 21y 3z -1/
(e) Show that if A = {(~1,0),(0,0),(1,0)}, then u = (7/8,1 — n/4,n/8).
4.54. For a function f € L'(T?) and integers x, y, define

J?(x, y) = / f(a)e_zm(x“l*'yﬂz) da .
T2

Let Y be the transfer current matrix for the square lattice Z>. Let e'}c’ y = [(x,y), (x + 1,y)] and
e}y = [(x, )., (x,y +1)]. Show that Y(eg o eh )= f(x,y) and Y(ef o €X,,) = &(x, ), where

sin® ma,

fla, @) =

sin? ra; + sin? na,

and ) .
(1 _ e27rtcr| )(1 _ e—27rtn2)

4(sin? rary + sin? ra,)

glay, ay) =

4.55. Consider the ladder graph on Z X Z, that is the doubly infinite limit of the ladder graphs shown
in Figure 1.7. Calculate its transfer current matrix.
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Branching Processes,
Second Moments, and Percolation

Consider groundwater percolating down through soil and rock. How can we model the
effects of the irregularities of the medium through which the water percolates? One common
approach is to use a model in which the medium is random. More specifically, the pathways
by which the water can travel are randomly chosen out of some regular set of possible
pathways. For example, one may treat the ground as a half-space in which possible pathways
are the rectangular lattice lines. Thus, we consider the nearest-neighbor graph on the vertices
7. x Z.x 7., and each edge is independently chosen to be open (allowing water to flow) or
closed. Commonly, the marginal probability that an edge is open, p, is the same for all edges.
In this case, the only parameter in the model is p, and one studies how p affects large-scale
behavior of possible water flow.

In fact, this model of percolation is used in many other contexts to have a simple model that
nevertheless captures some important aspects of an irregular situation. In particular, it has an
interesting phase transition. Some information about percolation on Z¢ and other transitive
graphs is given in this chapter and in Section 6.9, but a thorough study of percolation on
transitive graphs, especially on nonamenable graphs, is deferred to Chapters 7 and 8.

In this chapter, we consider percolation mostly on trees rather than on lattices. This turns
out to be interesting and also useful for other seemingly unrelated probabilistic processes
and questions. For example, we’ll find another fundamental interpretation of the branching
number of a tree.

We begin by studying a beautiful way of growing trees at random known as Galton-Watson
branching processes. We then move to general trees and develop some basic analytic methods
of probability known as the first- and second-moment methods. These will fit remarkably
well with our study of random walks on the connected components of percolation in Z.
After that interlude on Z4, we return to Galton-Watson processes to understand better how
they behave and what flows are possible on random networks based on Galton-Watson trees.
Deeper results on Galton-Watson branching processes are proved in Chapter 12. The last
chapter of this book, Chapter 17, is devoted primarily to random walks on Galton-Watson
trees.
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5.1 Galton-Watson Branching Processes

Percolation on a tree breaks up the tree into random subtrees. Historically, the first random
trees to be considered were a model of genealogical (family) trees. Since such trees will be an
important source of examples and an important tool in later work, we too will consider their
basic theory before turning to percolation. They are also beautiful processes in themselves.

Galton-Watson branching processes are most often defined as Markov chains (Z, ; n > 0)
on the nonnegative integers, where Z, represents the size of the nth generation of a family,
but we will be interested as well in the underlying family trees. Given numbers py € [0, 1]
with Zkzo pr = 1, the process is defined as follows. We start with one particle, Zy = 1,
unless specified otherwise. It has k children with probability pi. Then each of these children
(should there be any) also has children with the same progeny (or “offspring”) distribution
{pr; k > 0), independently of the others and of its parent. This continues forever or until
there are no more children. To be formal, let L be a random variable with P[L = k] = py,
and let (LS") ; n, i > 1) be independent copies of L. The generation sizes of the branching
process are then defined inductively by

Zy
Zywr =) L. (5.1)
i=1

The probability generating function (p.g.f.) of L is very useful and is denoted

f(s):=E[s"1= D pes®.

k>0

This is defined for 0 < s < 1, and possibly for other s as well. Note that we interpret 0° = 1,
so that f(0) = P[L = 0] = pp. We call the event [3n Z, = 0] extinction; this, of course, is
the same as the event [Z,, — 0]. We will often omit the superscripts on L when not needed.
The family (or genealogical) tree associated to a branching process is obtained simply by
having one vertex for each particle ever produced and joining two by an edge if one is the
parent of the other. See Figure 5.1 for an example. We will give a formal definition later of
trees and the associated probability measures on them.

The first basic result on Galton-Watson processes is that on the event of nonextinction, the
population size explodes, except in the trivial case that p; = 1:

Proposition 5.1. On the event of nonextinction, Z,, — o a.s. provided p; # 1.

Proof. We want to see that 0 is the only nontransient state of the Markov chain (Z,,). If
po = 0, this is clear, whereas if py > 0, then from any state k > 1, eventually returning to k
requires not immediately becoming extinct, whence it has probability < 1 — plg < L. <

What is g := P[extinction]? To find out, we use the following very handy property of the
p-g.f.
Proposition 5.2. E[s%"] = fo---0 f(s) = f™(s)for0 < s < 1.
—————

n times
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Figure 5.1. Generations 0 to 9 of a typical Galton-Watson tree for f(s) = (s + 5%)/2.
Proof. We have

Zn-
E[H ski

E[s%] = E[E[s oL ‘ Z"'IH -E
i=1

Zn—1:|

Zn
- 5| [ vlst1| = [etst 1] <o)

where the random variables L; := LE") are independent of each other and of Z,,_; and have
the same distribution as L. Iterate this equation n times. <

Note that within this proof is the identity
E[s% | Zo, Zy, ..., Zn_1] = f(s)%n 1. (5.2)

Corollary 5.3. (Extinction Probability) The extinction probability is g = lim,, f™(0).

Proof. Since extinction is the increasing union of the events [Z, = 0], it follows that
g =lim, P[Z, = 0] = lim,, f"(0). <

Looking at a graph of the increasing convex function f (Figure 5.2), we discover the
most-used result in the field and value of g:

Proposition 5.4. (Extinction Criterion) Provided p; # 1, we have
M g=1s (1)<l
(ii) g is the smallest root of f(s) = s in [0, 1] — the only other possible root being 1. 4

When we differentiate f at 1, we mean the left-hand derivative. Note that

F()=E[Ll=m=> kp, (5.3)

the mean number of offspring. We call m simply the mean of the branching process.
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0 1 0 1
Figure 5.2. Typical graphs of f whenm > 1 and m < 1.

> Exercise 5.1.
Justify the differentiation in (5.3). Show too that limgq; f7(s) = m.

Because of Proposition 5.4, a branching process is called subcritical if m < 1, critical if
m = 1, and supercritical if m > 1.

How quickly does Z,, — oo on the event of nonextinction? The most naive guess would
be that it grows approximately like m". This is essentially correct. Our first result is that a
martingale appears when we divide Z,, by m":

Proposition 5.5. The sequence {Z,/m") is a martingale when 0 < m < oo.
In particular, E[Z,,] = m" since E[Zy] = E[1] = 1.
Proof. We have

1 Zy 1 Z, 1 Zn 7
n
Zn] =E[mn+1 > L ‘ Zn] = —5 D ElLi| Z)]=—= > m=—.
i=1 i=1 i=1

Actually, we have not verified that we are computing conditional expectations of integrable
random variables. One way to avoid calculating (in a similar manner) the unconditional
expectation first is to note that all random variables are nonnegative.* Another way is to use
the fact that Z, takes only countably many values, so that we may work with expectations
conditioned on events, rather than on a random variable. |

E[ Zn+1

mn+1

Since this martingale (Z,,/m™) is nonnegative, it has a finite limit a.s., denoted W. Thus,
when W > 0, the generation sizes Z, grow as expected, that is, like m" up to a random
factor. Otherwise, they grow more slowly. Our attention is thus focused on the following two
questions.

* See the end of Section 12.1 for a review of conditional expectation for nonnegative random variables that may
not be integrable.
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Question 1. Whenis W > 0?

Question 2. When W = 0 and the process does not become extinct, what is the rate at which
Z, — ?

To answer these questions, we first note a general zero-one property of Galton-Watson
branching processes. Call a property of trees inherited if every finite tree has this property
and if whenever a tree has this property, so do all the descendant trees of the children of the
root.

Proposition 5.6. Every inherited property has conditional probability either 0 or 1 given
nonextinction.

Proof. Let A be the set of trees possessing a given inherited property. For a tree T with k
children of the root, let TV, ..., T®) be the descendant trees of these children. Then

P(A)=E[P[T € A| ]| <E[P[TV € A,....T? € 4| Z,]]

by definition of inherited. Since TV, ..., T are i.i.d. given Z,, the last quantity in the
display is equal to E[P(A)Z'] = f(P(A)). Thus, P(A) < f(P(A)). On the other hand,
P(A) > ¢, since every finite tree is in A. It follows upon inspection of a graph of f that
P(A) € {q, 1}, from which the desired conclusion follows. <

Corollary 5.7. Suppose that 0 < m < co. Either W = 0 a.s. or W > 0 a.s. on nonextinction.
In other words, P[W =0] € {q, 1}.

Proof. The property that W = 0 is clearly inherited, whence this is an immediate consequence
of Proposition 5.6. <

In answer to the preceding two questions, we have the following two theorems.

The Kesten-Stigum Theorem (1966). The following are equivalent when 1 < m < oo:
(i) P[W=0]=g¢;
(i) E[W]=1;
(iii) E[Llog" L] < .

This will be shown in Section 12.2. The sufficiency of E[L?] < oo for (i) and (ii) is much
easier and follows from Exercise 5.27. Since (iii) requires barely more than the existence
of a mean, generation sizes “typically” do grow as expected. When (iii) fails, however, the
means m" overestimate the rate of growth. Yet there is still an essentially deterministic rate
of growth, as shown by Seneta (1968) and Heyde (1970), which is only slightly less than m":

The Seneta-Heyde Theorem. If 1 < m < oo, then there exist constants c,, such that
(i) lim Z,,/c, exists a.s. in [0, 00);
(i) PllimZ,/c, =0]=gq;
(iii) cpy1/Cn > m.

Proof. We will find another martingale to do our work. Choose s¢ € (g, 1) and set s,,4; :=
£ (s,) for n > 0. Then s, T 1. By (5.2), we have that (s>") is a martingale. Being positive
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and bounded, it converges a.s. and in L' to a limit Y € [0, 1] such that E[Y] = E[sg"] = 50.

Now we reformulate these exponentials. Set ¢, := —1/log s,,. Then sf" = e %n/n g0 that
lim Z,, /c, exists a.s. in [0, co]. By I’Hdpital’s rule and Exercise 5.1,

o mlog () | f(9)s
st —logs st f(s)

Considering this limit along the sequence (s,), we get (iii). It follows from (iii) that
the property that lim Z,,/c, = O is inherited, whence by Proposition 5.6 and the fact that
E[Y] = 50 < 1, we deduce (ii). Likewise, the property that lim Z,/c,, < co is inherited and
has probability 1 since E[Y] > ¢. This implies (i). <

The proof of the Seneta-Heyde theorem gives a prescription for calculating the constants
¢, but does not immediately provide estimates for them. Another approach gives a different
prescription that leads sometimes to an explicit estimate: see Asmussen and Hering (1983),
pp- 45-49.

We will often want to consider random trees produced by a Galton-Watson branching
process. Up to now, we have avoided that by giving theorems just about the random variables
Z, (except for Proposition 5.6, but that was used so far only for studying the limiting behavior
of Z,). One approach to formalize tree-valued random variables is as follows. A rooted
labeled tree T is a nonempty collection of finite sequences of positive integers such that if
<i1,i2, . ,in> e T, then

(i) for every k € [0, n], also the initial segment (i1, i3, .. .,ix) € T, where the case k =0
means the empty sequence, and
(ii) forevery j € [1,i,], also the sequence (i1, i2,...,in-1,j) €T.
The root of the tree is the empty sequence, @. Thus, (ij,...,i,) is the i,th child of the

in_1th child of ... of the i;th child of the root. If x = (i1,i,...,i,) € T, then we define
T* = {1, jas- s ji)s 1sizs - sins jisjos- -5 jk) € T} to be the descendant tree of the
vertex x in T. The height of a tree is the supremum of the lengths of the sequences
in the tree. If T is a tree and n € IN, write the fruncation of T to its first n levels as
Ttn = {(i1,ia,....ix) € T; k < n}. Thisis a tree of height at most n. A tree is called locally
finite if its truncation to every finite level is finite. Let .7 be the space of rooted labeled locally
finite trees. We define a metric on .7 by setting d(T,T”) := (1 + sup{n; Ttn=T" rn})_l.

> Exercise 5.2.
Verify that d is a metric and that (.7, d) is complete and separable.

> Exercise 5.3.
Define the measure GW formally on the space .7 of Exercise 5.2; your measure should be
the law of a random tree produced by a Galton-Watson process with arbitrary given offspring
distribution.

We can now use this formalism to give meaning to statements such as that in the following
exercise.
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> Exercise 5.4.
Show that for any Galton-Watson process with mean m > 1, the family tree 7' has growth rate
grT = m a.s. given nonextinction. (Don’t use the Kesten-Stigum theorem to show this, as we
have not yet proved that theorem.)

5.2 The First-Moment Method

Let G be a countable, possibly unconnected, graph. The most common percolation
on G is Bernoulli bond percolation with constant survival parameter p, or Bernoulli(p)
percolation for short; here, for fixed p € [0, 1], each edge is kept with probability p and
removed otherwise, independently of the other edges. Often, the edges kept are called open,
whereas the edges removed are called closed. Denote the random subgraph of G that remains
by w. The connected components of w are called clusters. Given a vertex x of G, we are
often interested in the cluster of x in w, written K(x), and we’d especially like to know
whether the diameter of K(x) is infinite with positive probability. The first-moment method
explained in this section gives a simple upper bound on this probability. In fact, this method is
so simple that it works in complete generality: Suppose that w is any random subgraph of G.
The only measurability needed is that for each vertex x and each edge e, the sets {w; x € w}
and {w ; e € w} are measurable. We will call such a random subgraph a general percolation
on G. We will say that a set II of edges of G separates x from infinity if the removal of
IT leaves x in a component of finite diameter. Denote by [x <> ¢] the event that e is in the
cluster of x and by [x < oo] the event that x is in a cluster of infinite diameter.

> Exercise 5.5.
Show that for a general percolation, the events [x < ¢] and [x < oo] are indeed measurable.

Proposition 5.8. Given a general percolation on G,

P[x & o] < inf { Z P[x & e]; Il separates x from inﬁnity} . (5.4)
ecll

Proof. For any 11 separating x from infinity, we have

[x o] c| Jlxoel

eell

by definition. Therefore P[x < oo] <>, P[x & e]. <

The method used in the proof of Proposition 5.8 is also called the “union bound.” The
reason for the name “first-moment method” is that another way to get the same bound is to
write

oo £ Y Afxoe

eell



138 CHAP. 5: BRANCHING PROCESSES, SECOND MOMENTS, AND PERCOLATION

and then
Plx & o] = E[lrow)| <D E[ljoq] =) Plx o e].
e€ell e€ll

That is, we are using the first moment of a random variable, namely, the sum of certain
indicator random variables. Of course, the first-moment method is extremely popular and
surprisingly powerful.

Returning to Bernoulli percolation with constant survival parameter p, denote the law of w
by P,. By Kolmogorov’s zero-one law,

P,[w has a cluster of infinite diameter] € {0, 1} .

It is intuitively clear that this probability is increasing in p. For a rigorous proof of this,
we couple all the percolation processes at once as follows. Let U(e) be i.i.d. uniform [0, 1]
random variables indexed by the edges of G. If w), is the graph containing all the vertices of
G and exactly those edges e with U(e) < p, then the law of w), is precisely P,. This coupling
is referred to as the standard coupling of Bernoulli percolation. But now when p < ¢, the
event that w), has a cluster of infinite diameter is contained in the event that w, has a cluster
of infinite diameter. Hence the probability of the first event is at most the probability of the
second. This leads us to define the critical probability

pe(G) = sup{p; P,[3 infinite-diameter cluster] = 0} .
If G is connected and x is any given vertex of G, then

pe(G) = sup{p; P,[x & o] = 0}. (5.5)

> Exercise 5.6.
Prove this.

Again, the standard coupling provides a rigorous proof that P,[x <> oo] is increasing in p.
Generally, p.(G) is extremely difficult to calculate. Clearly p.(Z) = 1. After long efforts, it
was shown that p.(Z?) = 1/2 (Kesten, 1980). There is not even a conjecture for the value
of p.(Z4) for any d > 3. Now Proposition 5.8 provides a lower bound for p. provided we
can estimate P[o < e]. If G is a tree T, such an estimate is easy to find, since we actually
know the exact value: P[o <> ¢] = pl¢*!. Hence, the definition of branching number gives
immediately that
pe(T) = 1/brT. (5.6)

In fact, we have equality here (Theorem 5.15), but this requires the second-moment method.
Nevertheless, there are some cases among nonlattice graphs where it is easy to determine p,
exactly, even without the first-moment method. One example is given in the next exercise:

> Exercise 5.7.
Show that for p > p.(G), we have p.(w) = p.(G)/p for P,-a.e. w. Physicists often refer to p
as the “density” of edges in w, and this helps the intuition.
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For another example, if T is an n-ary tree, then the cluster of the root under percolation is
a Galton-Watson tree with progeny distribution Bin(n, p). Thus, this cluster is infinite with
positive probability iff np > 1, whence p.(T) = 1/n. This reasoning may be extended to all
Galton-Watson trees (in which case, p.(T) is a random variable):

Proposition 5.9. (Lyons, 1990) Let T be the family tree of a Galton-Watson process with
mean m > 1. Then p.(T) = 1/m a.s. given nonextinction.

Proof. Let T be a given tree and write K for the cluster of the root of T after percolation on
T with survival parameter p. When T has the law of a Galton-Watson tree with mean m, we
claim that K has the law of another Galton-Watson tree having mean mp: if ¥; represent i.i.d.
Bin(1, p) random variables that are also independent of L, then

L L L L
E[ZY] =EE[ZYI-H =E[ZE[Y,~]] =E[ p] = pm.
i=1 i=1 i=1 i=1
Hence K is finite a.s. iff mp < 1. Since
E[P[|K| < oo | T]]| =P[|K]| < o], (5.7)

this means that for almost every Galton-Watson tree* T, the cluster of its root is finite a.s. if
p < 1/m. On the other hand, for fixed p, the property {T'; P,[|K| < oo| = 1} is inherited,
and so has probability g or 1. If it has probability 1, then (5.7) shows that mp < 1. That is, if
mp > 1, this property has probability g, so that the cluster of the root of T will be infinite
with positive probability a.s. on the event of nonextinction. Considering a sequence p,, | 1/m,
we see that this holds a.s. on the event of nonextinction for all p > 1/m at once, not just for a
fixed p. We conclude that p.(T") = 1/m a.s. on nonextinction. <

We may easily deduce the branching number of Galton-Watson trees, as shown by Lyons
(1990):

Corollary 5.10. (Branching Number of Galton-Watson Trees) If T is a Galton-Watson
tree with mean m > 1, then br T = m a.s. given nonextinction.

Proof. By Proposition 5.9 and (5.6), we have br T > m a.s. given nonextinction. On the other
hand, br7 < grT = m a.s. given nonextinction by Exercise 5.4. <

This corollary was shown in the language of Hausdorff dimension (which will be explained
in Chapter 15) by Hawkes (1981) under the assumption that E[L(log L)*] < oco.

* This typical abuse of language means “for almost every tree with respect to Galton-Watson measure.”
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5.3 The Weighted Second-Moment Method

We obtained a simple upper bound on P[o < oo] for a general percolation on a graph G by
the first-moment method. A lower bound can be obtained by the second-moment method,
which is a powerful method of wide applicability. Fix o € G and let II be a minimal set of
edges that separates o from co. The second-moment method consists in calculating the second
moment of the number of edges in I1 that are connected to o; this is then compared to the
first moment. However, we will see that it can be much better to use a weighted count, rather
than a pure count, of the number of connected edges. We will use u € P(II) to make such
weights, where P(II) is the set of probability measures on I1. We will assume for simplicity
that P[e € w] > 0 for each ¢ € E.

If, as before, we write K(o) for the cluster of o in the percolation graph w, and if we set

X(1) =Y p(e)jeexion/ Ple € K(0)]. (5.8)
eell

then
E[X(w)]=1.

Write o < II for the event that 0 < e for some e € I1. This event is implied by the event that
X(u) > 0. We are looking for a lower bound on the probability of 0 < oo. Since

Plo & ] = inf{P[o o I1]; 11 separates o from oo} , (5.9)

we seek a lower bound on P[X(y) > 0]. This will be a consequence of an upper bound on
the second moment of X (u) as follows. (A slightly more general inequality due to Paley and
Zygmund (1932) is given in Section 5.5.)

Proposition 5.11. Given a general percolation on G,
Plo o 11] > 1/ E[X(1]
Sor every u € P(1).
Proof. Given u € P(H) the Cauchy-Schwarz inequality yields

= E[X()]" = E[X(i)1ixgu0)]” < EIX (0 B[y, 0]
=ﬂﬂMﬂ[ﬂM>®sEMmﬂ Plo & 11,
because X(u) > 0 implies o © I1. Therefore, Plo & I1] > 1/ E[X()?]. <

Clearly we want to choose the weight function y € P(II) that optimizes this lower bound.
o Pler.> < Ko)]
E[X(n)?] = ep)u(e ere € 210 .
[X(w)’] ZH K (e g s € (o]
We denote this quantity by £(u) and call it the energy of u.
Why is this called an “energy”? In general, like the energy of a flow in Chapter 2, energy
is a quadratic form, usually positive definite. In electrostatics, if u is a charge distribution
confined to a conducting region € in space, then ¢ will minimize the energy

[

One could also write (5.10) as a double integral to put it in a form closer to this. We too are
interested in minimizing the energy. Thus, from Proposition 5.11, we obtain the following:

(5.10)
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Proposition 5.12. Given a general percolation on G,

1
Plo & ] > inf {— ; Il separates o from oo} .
inf,epan &(1)

Proof. We have shown that Plo & II| > 1/&(u) for every p € P(I1). Hence, the same holds
when we take the sup of the right-hand side over . Then the result follows from (5.9). <«

Of course, for Proposition 5.12 to be useful, one has to find a way to estimate such energies.
As for the first-moment method, the case of trees is most conducive to such analysis.

Consider first the case of independent percolation, that is, with [e € w] mutually indepen-
dent events for all edges e. If u € P(I1), write u(x) for u(e(x)). Then we have

_ Ploox0ooy] u(x)u(y)
Ew= > HOHO) BT, S 3Pl S 3] - > Pooxny O
e(x),e(y)ell e(x),e(y)ell

where x A y denotes the farthest vertex from o that is a common ancestor of both x and y (we
say that z is an ancestor of w if z lies on the shortest path between o and w, so that z = w
is not excluded). This looks suspiciously similar to the result of the following calculation:
Consider a network of conductances on a finite tree T and some flow 6 from o to the leaves,
which we’ll write as 9.7, of T. (We do not include o in 9. T, even if o happens to be a leaf.)
Write 0(x) for §(e(x)).

Lemma 5.13. Let 0 be a flow on a finite tree T from o to O.T. Then

@)= > 0x)0()%0 & xAY).

x,yeoT

Proof. We use the factthat } . 5 7. <) 0(x) = 6(e) for any edge e (see Exercise 3.3). Thus,
we have

> 0o Z0 o x Ay = Y 00 > rle)

x,yeoLT x,yeoLT e<xAy
=) rle) D 00y = r(e)de) =£(0). <
eeT x,yeoT eeT
x,yze

We now want to relate these two calculations and thereby show that percolation on trees is
related to electrical networks. Write IT := {x; e(x) € IT}. Let I be a minimal set of edges
that separates o from co. If we happen to have P[o «& x] = €(0 < x) and if 6 is the flow
induced by u from o to 11, that is,

0(e) = Z H(x),
e<xell

then we see from (5.11) and Lemma 5.13 that &(u) = &(6), and we can hope to profit from
our understanding of electrical networks and random walks. However, if x = o, then the
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desired equation cannot hold, since P[o & 0] =1 and ¥ (0 < 0) = co. But suppose we have,
instead, that
1/Plo & x]=1+2%(0 & x) (5.12)

for all vertices x. Then we find that
E(u)=1+8(0),

which is hardly worse. This suggests that given a percolation problem, we choose conduc-
tances so that (5.12) holds in order to use our knowledge of electrical networks. Let us say
that conductances are adapted to a percolation, and vice versa, if (5.12) holds.

Let the survival probability of e(x) be p,. To solve (5.12) explicitly for the conductances
in terms of the survival parameters, write x for the parent of x. Note that the right-hand side
of (5.12) is a resistance of a series, whence

r(e(x)) =[1+%(0 & x)| - [1 + %(0 & x)| = 1/P[o & x] - 1/P[o © X]
= (1= px)/Plo & x],

or, in other words,

c(e(x)) = P[f_jxx] - 1_1,,x I1 v (5.13)

o<u<x
In particular, for a given p € (0, 1), we have that p, = p iff c(e(x)) = (1 — p)~'pi!; these

conductances correspond to the random walk RW,,, defined in Section 3.2.

> Exercise 5.8.
Show that, conversely, the survival parameters adapted to given edge resistances are

1Y r(ew)
P TS, e r(e@)

For example, simple random walk (¢ = 1) is adapted to p, = |x|/(|x| + 1).

These notions lead us to the following conclusion:

Theorem 5.14. (Lyons, 1992) For an independent percolation and adapted conductances

on the same tree, we have
€ (0 & )

1+%(0 & )
Proof. We first estimate the infimum of energies in Proposition 5.12: Given a minimal set 11
of edges that separates o from oo, let u € P(I1) be the measure in P (I1) that has minimum
energy and let 6 be the flow induced by u. We have

< Plo & oo].

EW)=1+&0) =1+ %0 & II)
by Thomson’s principle. Therefore,
Plo & o] > iIrlIfl/[l + %0 & 1] = 1/[1 + Z(0 & «)],

as desired. |
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An immediate corollary of this combined with (5.6) and Theorems 2.3 and 3.5 is:

Theorem 5.15. (Lyons, 1990) For every locally finite infinite tree T,

1
Ty= —.
pe(T) 0T

This reinforces the idea of br T as an average number of branches per vertex.

Question 5.16. This result shows that the first-moment method correctly identifies the critical
value for Bernoulli percolation on trees. Does it in general? In other words, if the right-hand
side of (5.4) is strictly positive for Bernoulli(p) percolation on a connected graph G, then
must it be the case that p > p.(G)? This is known to hold on Z¢ and on “tree-like” graphs;
see Lyons (1989). However, Kahn (2003) gave a counterexample and suggested the following
modification of the question: Write A(x, e, IT) for the event that there is an open path from x
to e that is disjoint from IT \ {e}. If

inf { Z P,[A(x, e,IT)| ; II separates x from inﬁnity} >0,
ecll

then is p > p.(G)?

It turns out that the inequality in Theorem 5.14 can be reversed up to a factor of 2. We
show this by a stopping-time method in Section 5.6.

5.4 Quasi-independent Percolation

We have now achieved a fairly good understanding of independent percolation on trees. In
the next section, we apply the second-moment method to Bernoulli percolation in Z¢. Here,
however, we remain with trees, but we weaken the assumption of independence.

We begin with an interesting example that this will allow us to analyze. Suppose that we
label the edges e of a tree T by independent random variables Z(e) that take the values +1
with probability 1/2 each. Fix an integer N > 0. Define S(x) := >__,__Z(e). Consider the
percolation

e<x

wy :={e; S(e7) € [0,N], S(e*) € [0,N]}. (5.14)

Obviously the component of the root in w; is the same as the component of the root in
Bernoulli(1/2) percolation on T. In particular, the root belongs to an infinite cluster with
positive probability for br T > 2 but not for br 7 < 2. The next case, w,, is almost as simple:

1/2 if |x| is odd

Ple(x) € w | e(x) € ws] = { 1 if |x| is even

so by Exercise 3.25, the root belongs to an infinite cluster with positive probability for
brT > V2 but not for br T < V2. However, the succeeding cases wy for N > 3 are more
complicated, as there is dependency in the percolation that was not there before. Luckily, the
dependency is not very large; we will show that it is an example of the following kind of
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percolation, from which we will deduce that the critical branching number for infinite clusters
inwyis 1 / cos

T
N+2'
We call a percolation quasi-independent™* if AM < oo Vx,y with Plo < x A y] > 0,

Ploox,ooy|looxAy]<MPloox|oeoxAy|Ploeoy|loo xAy], (5.15)

or, what is the same, if P[o & x| P[o < y] > 0, then

Plo & x,0 & y] < M
Plo - x]Plo=y] =~ Ploe xAy]’

Example 5.17. Sometimes this condition holds for easy reasons: if

infPloo x|oeo x]>0
X#0

and
Poox,ooy|looxAy]l=Ploox|oex]PlooXx, 0o y|o0e xAY]
whenever x # x A y, then the percolation is quasi-independent.

> Exercise 5.9.
Verify the assertion of Example 5.17.

Example 5.18. Now we verify that the percolation wy of (5.14) is quasi-independent. Indeed,
fix N and write g (n) for the probability that simple random walk on Z stays in the interval
[0, N] for n steps when it starts at k. There is clearly a constant M such that for all n > 0 and
all k, k” € [0, N], we have gx(n) < Mgy (n). We claim that this M works in (5.15). To see
this, fix x and y and put  := |[x A y|, m := |x| — r, and n := |y| — r. Also, write p; for the
probability that simple random walk at time r is at location k given that it stays in [0, N] for
r steps when it starts at 0. We have

N N
Ploox, 00 ylooxayl=) amampe < Mmingu(n) -y _ qm)p
k=0 k=0
N N
<MD qmpe Y qmpe
k=0 k=0

=MPloox|ooxAy|Plooy|loo xAy].

This shows that our percolation is indeed quasi-independent.

The virtue of a quasi-independent percolation is that it obeys essentially the same lower
bound of Theorem 5.14 as Bernoulli percolation:

* This was called “quasi-Bernoulli” in Lyons (1989, 1992).
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Theorem 5.19. (Lyons, 1989) For a quasi-independent percolation with constant M and
adapted conductances, we have

1 %(0 & )
MT+¢0 o) ool

Proof. For pu € P(I1), write

Z () pu(y)

&) = Plo o xAy]’

e(x),e(y)ell

Then the definition of quasi-independent gives &(u) < M&”'(u), where &(u) is still defined
as in (5.10). Also, if 6 is the flow induced by y, then &’(u) = 1 + &(6). Hence

E[X(u)’] = £(p) < ME' () = M[1+£(6)],

and the rest of the proof of Theorem 5.14 can be followed to the desired conclusion. <

Example 5.20. Let’s apply this to Example 5.18. If we consider simple random walk on
[0, N] killed on exiting the interval, the corresponding substochastic transition matrix P is
symmetric and so real diagonalizable. Let 4; be its eigenvalues and v be the corresponding
eigenvectors with ||vg|| = 1. Thus,

PG, j) = dpor(@or()
k

By the Perron-Frobenius theorem, [4;| < p, where p is the largest positive eigenvalue and
the corresponding eigenvector has positive entries. Since this Markov chain has period 2,
it follows that P"(i, j) ~ 2u(i)vr(j)o" when n and i — j have the same parity; otherwise

P"(i, j) = 0. Now in our case, the top eigenvalue equals cos NZ > (for example, see Spitzer

T

N+2
for some constants a,, > 0, where a,, depends only on the parity of m. This means

that for the conductances c(e) adapted to this percolation, there are constants a; and a;

||
(1976), Chapter 21, Proposition 1), whence Plo < x] ~ ayy (cos ) as [x| » o

le] le]
’ us ’ T .
such that a] (cos T 2) < cle) < a (cos N3 2) . Thus, Theorem 5.19 yields that
P[o <& oo] > 0 if RW, is transient on T for A := 1 / cos NJ:_ 5> which holds, in particular, if
brT > 1/ cos N7-T+ 5 This result is due to Benjamini and Peres (1994b).

> Exercise 5.10.
Show that if br7 < 1 / cos ﬁ then the root belongs to an infinite cluster in wy with

probability zero.
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5.5 Transience of Percolation Clusters in Z¢

If T is a tree with p.(T) < 1, then for p.(T) < p < 1, consider Bernoulli(p) percolation
on T and its open subgraph w,,. By Exercise 5.7, we have p.(w,,) < 1 a.s., whence by (5.6),
some component of w, has branching number larger than 1. By Theorem 3.5 in turn, this
means that some component of w,, is transient for simple random walk (among other random
walks). In this section, we look at this same property (transience of percolation clusters for
simple random walk), but for percolation on graphs that are not trees, such as Z¢. Of course,
we can hope for transience of a percolation cluster in Z¢ only when d > 3 by Pélya’s theorem
and Rayleigh’s monotonicity principle. The technique we use is quite similar to the methods
of the previous sections on the second-moment method, and it also uses random paths and
their connection to flows, as discussed in Section 3.1. It will use a slight improvement of
Proposition 5.11, which was really the special case of the following where ¢ = 0:

The Paley-Zygmund Inequality (1932). If X is a random variable with mean 1 and t < 1,

then
(1—1)

E[X?] °
Proof. Let A be the event that X > ¢. The Cauchy-Schwarz inequality gives

P[X >1¢] >

E[X?]P(A) = E[X*|E[13] > E[X1,]* = (1 - E[X14])" > (1 — ). <

Whereas before we considered probability measures on cutsets, now we consider probability
measures on paths. These latter probability measures induce the former probability measures
by looking at the first intersection of a path with a cutset. But random paths also induce
flows, as we saw in Section 3.1, and in order to show transience, we want to find a flow on the
percolation cluster that has finite energy.

We'll start with finite paths, which we think of as sets of edges. Finite paths will arise from
infinite paths by considering the initial segments of the paths from a starting point to a given
finite distance. If u is a probability measure on paths ¢ from a to z and P is Bernoulli(p)
percolation on the graph, then we combine u and P as follows: if w is the set of open edges
for a percolation, then assign the positive measure ¥, (w) to the open paths from a to z by
letting the measure of ¢ be u(¢)/P[£ open] when & C w and O otherwise. The measure
Y, (w) induces a flow 6,(w) from a to z by letting the amount of flow along an edge e be
the measure that e € £ minus the measure that —e € ¢. Because Y, (w) is not necessarily a
probability measure, 6, (w) is not necessarily a unit flow. Instead, the strength of 6,,(w) is

Xu(w) = Zggu u(&)/P[€ open]. Thus, E[X,] =1 and

P[fU¢ open]

2 _ /7
E[X#] = Z H(E) (€ )P[f open] P[¢’ open]

£.¢

> w@uE)pEe. (5.16)
&8

This is pleasingly analogous to (5.10). On the other hand,

2
&) <Y (Z H(E g cw) [PI€ open]) :

e &de
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whence
P[£ U £ open]
E[£(6,)] < Zg: g;e HEUE T PIZ open] P[& open]
=) 1EN & |u@)uE)p e
&8
=> np - (uxpllEng | =n]. (5.17)
n>1

Here, the intersection & N £’ is counted without regard to orientation of edges. Thus, our
attention is focused particularly on the y-probability that two independent paths have n edges
in common.

We say that a probability measure u on infinite paths that start at o has exponential
intersection tails with parameter {, or EIT(() for short, if there is some constant C such that
for all n,

(ux pllENél=n]<CCm. (5.18)

This definition and the following application of it are due to Benjamini, Pemantle, and Peres
(1998).

Proposition 5.21. If there is a probability measure on infinite paths in a graph G that has
EIT(¢), then for { < p < 1, Bernoulli(p) percolation on G has a.s. a transient open cluster.

Proof. The existence of a transient open cluster does not depend on the status of any finite set
of edges, whence it is a tail event and has probability either O or 1 by Kolmogorov’s zero-one
law. Thus, it suffices to prove that this event has positive probability. Let y be a measure
on infinite paths starting at o that satisfies (5.18). If we identify the complement of the ball
about o of radius r to a vertex z,-, then u induces a probability measure y, on paths from o
to z,. Write 6, and X, for the random flows 6, and their strengths X,, that we associated
earlier to u,. By Thomson’s principle,

(0 © 230) < E(6,()/ X, ()’ .

We need to get an upper bound on the numerator and a lower bound on the denominator, with
probability bounded from below. By our assumption (5.16), we have

E[X7]1=> p(uxwllEné|=n] <Y CE/pY' =CL/p-0).

n>1 n>1

Since E[X,] = 1, we may deduce that

p—¢

P[X, > 1/2] > —= ICC =6>0 (5.19)

by the Paley-Zygmund inequality. Now our calculation (5.17) gives

E[£(6,)] <Y Cn(¢/p)" = Cpt/(p - 0P = M,

n>1
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whence
P[6(6,) > Bl < M/pB

for 8 > 0. Putting these bounds together, we find that

P[Z%(0 © z,;w) <4B] > P[X, > 1/2, £(6,) < B]
> P[X, > 1/2| - P[£(6,) > B]
>6-M/B=6/2

if we choose B := 2M /8. The events [Z(0 < z,;w) < 4] are decreasing in r, since the
effective resistance is increasing, whence their intersection [Z(0 <> o0; w) < 4] has positive
probability. But this means that the cluster of o is transient with positive probability. (In
particular, the cluster is infinite with positive probability, but this already follows from (5.19),
which arises from essentially the same calculations as in Section 5.3.) <

> Exercise 5.11.
Show that Proposition 5.21 is sharp on trees in the sense that when 7 is a tree, for all
¢ > po(T), there is a probability measure with EIT({). Of course, there is no p < p.(T') such
that Bernoulli(p) percolation on T has a.s. a transient open cluster.

To apply this criterion to Z<, we need random paths with exponential intersection tails in
Z¢. Such random paths were constructed first by Kesten for d > 4 (published by Cox and
Durrett (1983)):

Proposition 5.22. When d > 4, there is a probability measure on paths in Z¢ with EIT({)
for some { < 1.

Proof. Tt clearly suffices to prove this for d = 4. Consider the random walk starting at 0
that takes a step in a positive coordinate direction with probability 1/4 for each direction.
For two independent such random walks, & and &’, their difference (¢(n) — &'(n); n > 0) is

a reversible random walk on the subset V5 := {(x1, x2, X3, x4) ; Zil x; = 0}. In addition,
€N & < {n: &n) = & (n)}] since the random walks on Z* move only in the positive
directions. The associated network on Vj is clearly roughly isometric to the usual graph on
Z3, whence it is transient and returns of & — &’ to 0 have a geometric distribution. Thus,
(5.18) holds with C =1 and { = P[Eln >1 &n)—-¢'(n)= 0]. <

This result also holds in Z*, but obviously the same method does not work to prove it. The
reader may be interested in the challenge of finding such random paths in Z?; this was solved
by Benjamini, Pemantle, and Peres (1998).

Corollary 5.23. There is a constant py < 1 such that for d > 4 and p > po, Bernoulli(p)
percolation in Z¢ has a.s. a transient open cluster. <

To put this in another context, we state a few basic facts about percolation on Z¢, but they
will be proved only later. The case d = 1 is not of interest here, but for other d, we have that
0 < pe(Z4) < 1 (Proposition 7.12 and Theorem 7.16). Furthermore, when there is an infinite
cluster, it is a.s. unique (Theorem 7.6).



§6. REVERSING THE SECOND-MOMENT INEQUALITY 149

Grimmett, Kesten, and Zhang (1993) proved Corollary 5.23 for all p > p.(Z%) and all
d > 3. This was a difficult result, but a much simpler proof was found by Pete (2008), relying
on ideas that we discuss in Section 6.9, among others. In any case, the upshot is that in
Euclidean lattices, transience is preserved when the whole lattice is replaced by an infinite
percolation cluster. We return to this issue for other graphs in Section 6.9.

5.6 Reversing the Second-Moment Inequality

The first- and second-moment methods give inequalities in very general situations. These
two inequalities usually give fairly close estimates of a probability, but not so close as to agree
up to a constant factor. Thus, one must search for additional information if one wants finer
estimates. Usually, the estimate that the second-moment method gives is sharper than the one
provided by the first moment. A method for showing the sharpness of the estimate given by
the second-moment method is described here in the context of percolation; it depends on a
Markov-like structure (see also Exercise 16.10).

This method seems to be due to Hawkes (1970/71) and Shepp (1972). It was applied
to trees by Lyons (1992) and to Markov chains (with a slight improvement) by Benjamini,
Pemantle, and Peres (1995) (see Exercise 16.10). Consider independent percolation on a tree.
Embed the tree in the upper half-plane with its root at the origin. Given a minimal cutset 11
separating o from oo, order II clockwise. Call this linear ordering <. This has the property
that for each e € II, the events [0 <> ¢’] for ¢’ < e are conditionally independent of the events
[o < "] for e” > e given that 0 < e. On the event 0 < II, define e* to be the least edge in
I1 that is in the cluster of o; on o = I1, define e* to take some value not in I1. Note that ¢* is a
random variable. Let o be the (possibly defective) hitting measure

o(e) =Ple" =¢] (e ell),

so that
o(Il) = Plo & 1].

Provided P[o o H] > (0, we may define the probability measure
u:=0c/Plo o 1] € PAII).

For all e € I1, we have

Z o-(e’)P[OI;_[)Oe;Oe:]_) d = ZP[e* =e'|Ploee|o o €]

e'<e e'<e

= ZP[e* =e¢'|Plooe|e" =e'|=Plo o e].
e’ell

Thus

Plo & ¢']Plo & e] Plo o 11|

Sueflentond

e'<e
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By symmetry, it follows that

N Plooe,ooe] ple) 2
&) < 2;1;;#(6)#(6 )P[O o e'Ploee] 2; Plo 11| Ploo ]’

Therefore,
2 2

Plo & 11| < < - .
[ | E(p) ~ infyepar E(v)
To sum up, provided such orderings on cutsets I1 exist, we are able to reverse the inequality of
Proposition 5.12 up to a factor of 2 (Lyons, 1992). In particular, for independent percolation
on trees, we get the following inequalities:

Theorem 5.24. (Tree Percolation and Conductance) For an independent percolation P
on a tree with adapted conductances (that is, such that (5.12) holds), we have

€ (0 & o) €(0 & )
— 7 <P <2—= 2
T+ %0 o o) S Tlo ool <22 (520
which is the same as
Plo < oo] Plo & oo]

S%(OHOO)Sl

2 —Plo & ] —Plo & ]’

Consequently, we obtain a sharp refinement of Theorem 5.15:

Corollary 5.25. We have Plo < o] > 0 in percolation on T iff random walk on T is
transient for corresponding adapted conductances (satisfying (5.12)).

This shows that the connection between percolation and random walks hinted at by
Theorems 5.15 and 3.5 goes much deeper than just sharing critical parameters.

Sometimes it is useful to consider percolation on a finite portion of T (which is, in fact,
how our proofs have proceeded). Recall that 9 T denotes the set of leaves of T (other than
possibly its root). We have shown that for finite trees,

%(0 < o.T)

%(0<;6T)
<PO(961|<2—

— < 5.21
1+ CK(O Cd 6LT) ( )
which is the same as

Plo & 0.T]
2 —Plo & 0.T]

Plo & 0,.T]
<€ N< ———.
<Gl S TS T

Remark 5.26. These inequalities take a nicer form if we add a new vertex A to T by joining
it to o with an edge of conductance 1. Then doing random walk on this new tree T U {A}, we
have

€0 aT) ) .
m =P,[tor <Al =%(A & o.T),
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so (5.21) is equivalent to
CA o OT) =P, tor <tal SPlo o AT] <2P,[191 < 1Al =2¢(A & O.T).
Likewise, on an infinite tree, (5.20) is equivalent to
C(A & 0)=P,[1p =] <Plo o 0] <2P,[1A =] =2F(A & ). (5.22)
Note also that the condition of being adapted, (5.12), also becomes nicer:
Plo & x] =%(A o x). (5.23)

> Exercise 5.12.
Give a tree for which percolation does and a tree for which percolation does not occur at
criticality.

> Exercise 5.13.
Show that critical homesick random walk on supercritical Galton-Watson trees is a.s. recurrent
in two ways: (1) by using Corollary 5.25; (2) by using the Nash-Williams criterion.

As in Exercise 5.13, Theorem 5.24 can be used to solve problems about random walk on
deterministic or random trees. Indeed, sometimes percolation is crucial to such solutions
(see, for example, Lyons (1992)).

We saw in Proposition 5.1 that when a Galton-Watson process survives, the number of
survivors tends to infinity a.s. We can strengthen this by Proposition 5.9 to say that 7’
has generation sizes tending to infinity a.s. when the Galton-Watson tree 7 is infinite. In
other words, when 7 is infinite, it contains infinitely many rays a.s. Does the same hold for
Bernoulli(p) percolation on a general tree, 7?7 It turns out that it does. Moreover, we can
prove this by adapting the idea of the proof of Proposition 5.9, that is, by doing a further
percolation after the Bernoulli percolation. This technique uses the inequality (5.20) that
the percolation probability is captured up to a factor of 2 by effective conductance. In other
words, we will show how a uniform quantitative bound on percolation probability implies a
qualitative property of percolation.

To prove this, we will use the following exercise that gives an alternative expression for the
energy of a flow.

> Exercise 5.14.
Let (7, c) be a transient network on a tree. Suppose that each ray of T is recurrent. Let 6 be a
flow from the root to infinity of finite energy.
(a) Show that inf{%(0 & x); |x| =n} > o0 asn — oo.
(b) Show that 37, 6(e(x))* | O as n — co.

(¢) Show that £(6) = 3°, #(0 & x)[0(e(x)) = Y5 _, 0(e())’].
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Proposition 5.27. (Surviving Rays in Independent Percolation) For(0 < p < 1 and every
tree T, the number of surviving rays from the root under Bernoulli(p) percolation on T a.s.
either is O or has the cardinality of the continuum. More generally, the same holds for every
independent percolation on T such that each ray in T individually has probability 0 to survive.

Proof. Let R be the event that there is exactly one surviving ray. We begin our proof by
showing that the probability of R is 0, which we do for the more general hypothesis. For
n € N, let .%, denote the o-field generated by the events [0 < x] for x| = n. If P(R) > 0,
then by the Lévy zero-one law, P(R | .%,)) — 1y a.s. as n — oo. Thus, we may choose m and
an event B € ., of positive probability so that P(R | B) > 3/4. Moreover, we may choose B
so that the set of x with |x| = m and 0 < x is a constant on B. Denote those x by x, . .., xk.
Whether R occurs given B now depends only on the descendant trees 7% for 1 <i < k, so
we may consider the tree formed from 7% obtained by identifying all x; to one vertex, which
we take to be the root of a new tree, 7’. Let R’ be the event that the induced percolation on
T’ has exactly one surviving ray. Thus, P(R’) = P(R | B) > 3/4. If Ry denotes the event that
percolation on 7’ has no surviving rays, then it follows that P(Ry) < 1/4.

We are now going to define an additional percolation 7 on 7", independent of the given
percolation w, such that Plw N ¢ Ry] > 1/4and PlwNn € Ry | w € R’] = 1. The second
of these implies that Plw Ny € Ry] > PlwNn € Ry,w € R'] = Plw € R’] > 3/4, which
contradicts the first of these.

Consider the adapted edge conductances on 7’ given by (5.13). As in Remark 5.26, add a
new vertex A to 7’ by joining it to the root with an edge of conductance 1. Let i be the unit
current flow from A to oo, so that £(i) = Z(A < o) on T’. Now use Exercise 5.14 and (5.23)
to write

E@) =Y Plo oy x] 7 [itx? = > i()?], (5.24)

X y=x
where the subscript w denotes the percolation and we write i(x) := i(e(x)). This expression
allows us to define 7 to have the properties we wish. Namely, note first that all terms in (5.24)
are nonnegative since i(x) = Y ~__i(y). Since &£(i) < co, we may choose a sequence (ny)

y=x
increasing quickly enough that for each k > 1, we have
g , &(i)
Z Plo <, x] 1[z()c)2 - Zl(y)Z] < o (5.25)
x| =ng y=x

Define 7 to be the independent percolation where every edge is kept with probability 1 except
for those e(x) with |x| = n; for some k. In the latter case, we set the probability that e(x) € n
to be 1/2. Thus, we have that

Plo €y X1 =Plo oy 21 I -

ng <|x|

It follows from this, (5.24), and (5.25) that

XX:P[O Swny X7 i) =Y i) < 3‘”07(’) : (5.26)

y=x
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To see this, break the sum over x into blocks where |x| < n;, n; < |x| < n,, and so on. Then
apply (5.25) to the block where n; < |x| < ngy;. Therefore, the effective resistance for the
conductances adapted to the percolation w N 7 is less than 3£(i)/2, whence by (5.22), it
follows that ) | L3 1
P[wﬂl]¢R0]>%Z§P[w¢Ro]>§Z=Z
This establishes the first property we desired for . The second property is easy, since every
given ray of 7’ a.s. has an edge not in 77, and on the event R’, there is only one ray in w.
Thus, we have shown that P(R) = 0. By applying this result to every descendant tree 7%,
we may deduce that a.s. the set of surviving rays has no isolated point (as a subset of 97T).
Now note that the set of surviving rays forms a closed subset of 7. Since 9T is compact
by Exercise 1.1, it follows that the surviving rays a.s. form a perfect set, so that when it is
nonempty, it has the cardinality of the continuum. <

This proof can be modified to handle various other random processes, as in Exercise 16.8.
A different proof is given in Section 5.8, which allows other sorts of modifications, such as in
Exercise 5.68. Another useful variant is in the notes, Proposition 5.36, with an application in
Exercise 5.19.

5.7 Surviving Galton-Watson Trees

What does the cluster of a vertex look like in Bernoulli percolation given that the cluster
is infinite? This question is easy to answer on regular trees. In fact, the analogous question
for Galton-Watson trees is also easy to answer. We actually give two kinds of answers. The
first answer describes the Galton-Watson tree given survival in terms of other Galton-Watson
processes. The second answer tells us how large d is so that we can find d-ary subtrees of a
Galton-Watson tree. The first answer will suggest some similar properties for other types of
percolation on trees, which we discuss briefly.

We begin with a Galton-Watson process (Z,). Let Z: be the number of particles in
generation n that have an infinite line of descent. A little thought reveals that (Z) is a Galton-
Watson process where each individual has k > 1 children with probability sk Pj (i)(l -
q)*~'¢’~*. Now, a little thought also reveals that given extinction, (Z,) is a Galton-Watson
process. Finally, a little more thought reveals that given nonextinction, the family tree of (Z,,)
has the same law as a tree grown first by (Z; ), then adding “bushes” independently and in the
appropriate number to each node. We calculate the details and prove all this as follows.

Let T denote the genealogical tree of a Galton-Watson process with p.g.f. f and 7’ denote
the reduced subtree of particles with an infinite line of descent. (Thus, 7’ = @ iff T is finite.)
Let YL(;’) be the indicator that the jth child of the ith particle in generation n has an infinite
line of descent. Write

qg:=1-g¢q,
L{rz+l)

#(n+l) | _ (n)
e Y,
j=1
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>k(n+1)
n+1 " ZL

and Z; = lyonextinction- Note that all the random variables Y(J) fori < Z,and j < L("+1)
have the same distribution. In addition, for fixed n, they are independent. L1kew1se all
(LE"H), Lj("+1)) have the same distribution for i < Z,, and, for fixed n, are independent. Thus,

we will write (L, L*, 11, Y5, ...,Y) for random variables having the common distribution
(L("+1) L*("”) Y, (’1’), Y, (;’), .. Y(")(M)) Parts (iii) and (iv) of the following proposition are

due to Lyons (1992). Parts (i) and (ii) are illustrated in Figure 5.3.

Proposition 5.28. (Decomposition) Suppose that 0 < g < 1.
(i) The law of T’ given nonextinction is the same as that of a Galton-Watson process with
p-&/f.
i (s):=1flg+qs)—ql/q.

(ii) The law of T given extinction is the same as that of a Galton-Watson process with p.g.f.
f(s):= flgs)/q.
(iii) The joint p.g.f. of L — L* and L* is
E[s"" 1" ] = f(gs +q1).
More generally, the joint p.g.f. of Z, — Z,, and Z,, is
E[sZ %0 t%n] = f"(gs + 1) .

(iv) The law of T given nonextinction is the same as that of a tree T generated as follows:
Let T* be the tree of a Galton-Watson process with p.g.f. f* as in (i). To each vertex x
of T* having d children, attach Uy independent copies of a Galton-Watson tree with
p.g.f. f as in (ii), where Uy has the p.g.f.

v (D% P)(qs)
Bl =02 )

where d, derivatives of f are indicated; all U, and all trees added are mutually
independent given T*. The resultant tree is T.

Proof. We begin with (iii). We have
E[s" Ly E[E[SL L, |L] E[ [ Zf=1(1—1/j)t2f=1Yf

= E[E[s'™"" "] =E[(gs + g1)"| = f(gs + @)

L]]

The other part of (iii) follows by a precisely parallel calculation.
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1

f*

et

SN

0 q 1

Figure 5.3. The graph of f embeds scaled versions of the graphs of f and f*.

To show (i), we need to show that on the event L;.k(") # 0 given the o-field .%,, ; generated
by LZ(") (k # i) and Lz(m) (m < n, k > 1), the p.g.f. of L;‘(") is f*. Indeed, on the event
#(n)
L; # 0, we have

*(n) ) u(n _ . _
E[s"" | 7, =E[s"" | L;" # 0] = E[s" 11401/ = E[s" (1 - Li.0))]/q
= {EO" M- PIL = 01H/G = [f(q1 +35) = q1/G = f(5)
by (iii).
Similarly, (ii) comes from the fact that on the event of extinction,
E[s5" | 7] = Els™” | L™ = 0] = E[s" 11 /q
= E[s"'0"1/q = f(g5+30)/q = f(5),
since 0% = 1ypy(x).
Finally, (iv) follows once we show that the function claimed to be the p.g.f. of U, is the

same as the p.g.f. of L — L* given L* = d,. Once again, by (iii), we have that for some
constants ¢ and ¢’,

: 9\
Bls 4 1= d) = 5] stas ], =@ ias.

Substitution of s = 1 yields ¢’ = 1/(D? f)(q). <

Remark. Part (iii), which led to all the other parts of the proposition, is an instance of the
following general calculation. Suppose that we are given a nonnegative random number X
of particles with X having p.g.f. F. One interpretation of F is that if we color each particle
red independently with probability », then the probability that all particles are colored red is
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F(r). Now suppose that we first categorize each particle independently as small or big, with
the probability of a particle being categorized small being g. Then independently color each
small particle red with probability s and color each big particle red with probability ¢. Since
the chance that a given particle is colored red is then ¢gs + gt, we have (by our interpretation)
that the probability that all particles are colored red is F(gs + gt). On the other hand, if Y is
the number of big particles, then by conditioning on Y, we see that this is also equal to the
jointp.gf.of X —Y and Y.

Another interesting question concerning the surviving Galton-Watson trees is whether
binary subtrees can be found among the survivors. In fact, this issue first arose in various
applications: see, for example, the proof of Theorem 5.33, due to Chayes, Chayes, and Durrett
(1988), or Lemma 5 of Pemantle (1988). More generally, let 7(d) be the probability that a
Galton-Watson tree contains a d-ary subtree beginning at the initial individual. Thus, 7(1)
is the survival probability, 1 — g. Pakes and Dekking (1991) found a method to determine
7(d), after special cases were solved by Chayes, Chayes, and Durrett (1988) and Dekking and
Meester (1990):

Theorem 5.29. (d-ary Subtrees) Let f be the p.g.f. of a supercritical Galton-Watson
process. Set

d-1 e
Ga(s) =) (1- s)f% .
— !

Then 1 — 1(d) is the smallest fixed point of G4 in [0, 1].
Note that G| = f. Thus, this answer is a nice extension of Proposition 5.4.
Proof. We first reinterpret G,. Let g4(s) be the probability that the root has at most d — 1

marked children when each child is marked independently with probability 1 — s. This
function is clearly monotonic increasing in s. By considering how many children the root has

in total, we see that
) d-1
=3 (1) (1 - sys* (5.27)

j=0
After changing the order of summation in (5.27), we obtain
-1

gd<s)=Z s) S okt =1) - (k= j + 1)s

k>j

_S (1—s>f<fo><s>=Gd(s)

|
j=0 /

that is, g4 = G4.

Now we are ready to conclude in a similar fashion to the proof of Proposition 5.4. Let
gn be the chance that the Galton-Watson tree does not contain a d-ary subtree of height n
at the initial individual; notice that 1 — g,, | 7(d). By marking a child of the root when it
has a d-ary subtree of height n — 1, we see that g, = G4(g,-1). Since go = 0 and G is
nonnegative, increasing, and satisfies G,4(1) = 1, letting n — oo shows that lim,, ¢,, = 1 — 7(d)
is the smallest fixed point of G. <
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> Exercise 5.15.
Show that for a Galton-Watson tree with offspring distribution Bin(d + 1, p), we have that
7(d) > 0 for p sufficiently close to 1.

An interesting feature of the phase transitions from 7(d) = 0 to 7(d) > 0 as the parameter
is varied in, for example, binomial, geometric or Poisson offspring distributions is that unlike
the case of usual percolation d = 1, for d > 2 the probability of having the d-ary subtree is
positive at criticality. For integers n > 2 and 1 < d < n, define n(n, d) to be the infimum
of probabilities p such that 7(d) > 0 in a Galton-Watson tree with offspring distribution
Bin(n, p). Of course, such offspring distributions also describe the law of the clusters in
Bernoulli(p) percolation on an n-ary tree.

Proposition 5.30. (Nontrivial Phase Transition) Ler T be an n-ary tree and 2 < d < n.
Then n(n,d) € [1/n, 1). For Bernoulli(p) percolation on T, the probability that there is an
open d-ary subtree is 0 for p < n(n,d) and is 1 for p > n(n,d).

Proof. The fact that 7(n, d) < 1 follows from Exercise 5.15, and the fact that 7(n,d) > 1/n
follows from the fact that p.(T) = 1/n.

Let 6(p) denote the probability (called 7(d) earlier) that the root of 7' belongs to an open
d-ary subtree. Similarly, let 6x(p) denote the probability that the root of T belongs to an open

d-ary subtree of height at least k. Then 6;(p) | 6(p) as k — co. Choose a € (0, (Z)fl/(dfl));

thus, there exists ¢y < 1 such that for all & € [0, @y], we have (Z)ad < copa. We claim

that if p and ko are such that 6;,(p) € [0, o], then 8(p) = 0. To see this, note that since
Or+1(p) is the probability that there exist at least d open edges incident to the root that lead
to children who begin open d-ary subtrees of height at least k, it follows from a union
bound that 0,1 (p) < (;)6k(p)?, and this, in turn, is at most cof(p) if Ox(p) < . Thus,
Ok+1(p) < cobr(p) for all k > ko, and so, letting k — oo, we find that 6(p) = 0.

Now suppose that 8(r(n, d)) = 0. Then, for some k, we have 6i(n(n, d)) < @y, whence
also 6;(p) < aq for some p > n(n,d). But this implies by the above claim that 6(p) = 0,
contradicting the definition of n(n, d). <

For a binomial offspring distribution, the critical mean value is asymptotically d, as shown
by the following result. This was proved by Balogh, Peres, and Pete (2006), where it was
applied to bootstrap percolation, a model we discuss in Section 7.8.

We now show how to calculate 7(n, d) and that for large n and d, we have n(n,d) ~ d/n,
which is as small as it could be since Bin(n, d/n) has mean d.

Proposition 5.31. (Asymptotics of the Critical Probability) Consider Bernoulli offspring
distributions. The critical probability n(n, d) is the infimum of all p for which the equation

P[Bin(n,(1-s)p) <d - 1] =5 (5.28)

has a real root s € [0,1). For any constant y € [0, 1] and sequence of integers d,, with
lim,, o d,,/n =y, we have
lim n(n,d,) =vy. (5.29)
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Proof. In the proof of Theorem 5.29, we saw that G; = g4; in the present case, it is clear
that g4(s) = P[Bin(n, (1 — s)p) < d — 1] =t B, 4(s). If the probability of not having the
required subtree is denoted by y = y(p), then by Theorem 5.29, y is the smallest fixed point
of the function By, 4 ,,(s) in s € [0, 1]. One fixed point is s = 1, and 7(n, d) is the infimum of
the p values for which there is a fixed point s € [0, 1). It is easy to see that
0 .
%Bn,d,p(s) =npP[Bin(n—1,(1-s)p)=d - 1],
which is positive for s € [0, 1), with at most one extremal point (a maximum) in (0, 1). Thus
B, 4,p(s) is a monotone strictly increasing function, with B,, 4 ,(0) > 0 when p < 1, and with
at most one inflection point in (0, 1). When (n — 1)p < d — 1, there is no inflection point, and
By, 4,p(s) is concave in [0, 1].
If lim,,— d,/n = vy, then for any fixed p and s, by the weak law of large numbers,
Bin(n, (1 - s)p) L - 1] 5 {l if (1-s)p<vy
n

Bud, p(s) =P n 0 if(1—s)p>7y

as n — oo, Solving the equation (1 — s)p = y for s gives a critical value s. = 1 — y/p.
Thus for p < y we have lim,, ..o By, 4,,p(s) — 1 for all s € [0, 1]; since for large enough n,
By, 4, p(s) is concave in [0, 1], there is no positive root s < 1 of B, 4, ,(s) = s. On the other
hand, for p > y there must be a root s = s(n) for large enough n. These prove (5.29). <

Pakes and Dekking (1991) used Theorem 5.29 to show that the critical mean value for
a geometric offspring distribution to produce with positive probability a d-ary subtree in
the Galton-Watson tree is asymptotic to ed as d — oo (where e is the base of the natural
logarithm), and it is asymptotically d for a Poisson offspring distribution.

We now give an application of Proposition 5.30 to fractal percolation. Given an integer
b > 2 and p € [0, 1], consider the natural tiling of the unit square [0, 1]> by »* closed
squares of side 1/b. Let K} be a random subcollection of these squares, where each square
has probability p; of belonging to K, and these events are mutually independent. (Thus
the cardinality || of K is a binomial random variable.) In general, if %, is a collection
of squares of side b™", tile each square Q € K, by b? closed subsquares of side b~"!
(with disjoint interiors) and include each of these subsquares in %,.; with probability p
(independently). Finally, define

An = An,b(p’ (I(n—l) = U(](n and Qb(p) = ﬁ An .
n=1

In the construction of Q4(p), the cardinalities |K,,| of 4, form a Galton-Watson branching
process where the offspring distribution is Bin(b?, p). The process (A, ; n > 1) is called
Jractal percolation, whereas Q,(p) is the limit set.

We prove the following theorem of Chayes, Chayes, and Durrett (1988): if the probability
p is close enough to 1, then with positive probability, the limit set of the planar fractal
percolation Q»(p) contains a left-to-right crossing of the unit square, that is, a continuous
path (x(¢), y(t)): [0, 1] — [0, 1]* such that x(0) = 0, x(1) = 1.

We begin with a discrete analogue. A left-to-right crossing of squares at level n is a
sequence of distinct squares ay, . . ., a, contained in %, so that a, shares a side with the left
side of [0, 1]?, all pairs of successive squares a;, a;.| share a side, and a, shares a side with
the right side of [0, 1]%.
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Lemma 5.32. Consider fractal percolation with b > 3. If each square retained at level n
always contains at least b*> — 1 surviving subsquares at level n + 1, then there is a left-to-right
crossing of squares at all levels n.

Proof. Clearly there is a left-to-right crossing of squares at level 1. More generally, all the
squares in % can be connected via paths of squares in K with consecutive pairs sharing a
side; let us say that K is side connected for the purposes of this proof.

We proceed by induction. Suppose there is a left-to-right crossing of squares ay, .. ., a,
at level n. For notational convenience, let ap and a,.; both be the unit square. Let S; be
the common side of a; with a;,; for 0 < i < r. Since b > 3, for each i, there is a pair of
squares in K., each having a side on S;, call them ¢; C a; and d; C a;4, such that ¢; and d;
share a side (of length b1y see Figure 5.4. Since the subset of K,,; contained in a;,, is
side connected, each d; is connected to c;,; by squares in K, that are contained in a;,;. It
follows that there is a left-to-right crossing in K., from dy to ¢,. This proves the induction
step. <

Ci d;
a; ait+1

Citl

Lo

di—1

Figure 5.4. Notation for the proof of Lemma 5.32.

> Exercise 5.16.
Is Lemma 5.32 true for b = 2?

Define 6,(p) as the probability of a left-to-right crossing of squares at level n. The
sequence 6, is decreasing in n, hence its limit 6,(p), the chance of a left-to-right crossing in
0,(p), exists.

Theorem 5.29 and Lemma 5.32 can be combined to give an easy proof that there is a
nontrivial phase where there exist left-to-right crossings in the limit set.

Theorem 5.33. (Left-to-Right Crossing in Fractal Percolation) For p close enough to 1,
the left-to-right crossing probability 0. (p) is positive.

Proof. We do the case b > 3, leaving b = 2 for an exercise. By Lemma 5.32, it suffices
to show that with positive probability there exist K, C %K, with the properties that for all
n > 1, we have K, 2 UK, and each square of K,/ contains at least b* — 1 subsquares in
K. ,- This event occurs if and only if the tree associated with (/K,,) contains a (b* - 1)-ary
descendant subtree from the root. Exercise 5.15 shows that such subtrees exist with positive

probability provided p is large enough. <
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Exercise 5.67 shows that Theorem 5.33 holds for b = 2 as well.
More information on fractal percolation can be found in Exercises 5.70, 5.71, and 15.22 as
well as in Example 15.9.

5.8 Harris’s Inequality

A property that is valid for Bernoulli percolation on any graph is an inequality due to
Harris (1960), though it is nowadays usually called the FKG inequality due to an extension
by Fortuin, Kasteleyn, and Ginibre (1971). In fact, Harris’s inequality holds for independent
percolation more generally.

This inequality permits us to conclude such things as the positive correlation of the events
{x & y} and {u < v} for any vertices x, y, u, and v. The special property that these
two events have is that they are increasing, where an event A C 2F is called increasing if
whenever w € A and w C w’, then w’ € A. As a natural extension, we call a random variable
X on 2F increasing if X(w) < X(w’) whenever w C w’. Thus, 14 is increasing iff A is

increasing. Similar definitions apply for site processes, that is, random subsets of vertices.

Harris’s Inequality. Let P be an independent percolation on a graph.
(i) If A and B are both increasing events, then A and B are positively correlated:
P(AB) > P(A) P(B).
(ii) If X and Y are both increasing random variables with finite second moments, then
E[XY] > E[X]E[Y]. Equality holds iff X and Y are independent.

Property (i) of Harris’s inequality says, by definition, that the measure P has positive
associations (in contrast to the negative associations of the uniform spanning tree measure in
Section 4.2).

> Exercise 5.17.
Let P be an independent percolation. Suppose that X is an increasing random variable with
finite expectation, F' C E is finite, and .% is the (finite) o-field generated by the coordinate
functions w +— w(e) (w € 2F) for the edges e € F. Show that E[X | .#] is an increasing
random variable.

Harris’s inequality is essentially the following lemma, where the case d = 1 is due to
Chebyshev.

Lemma 5.34. Suppose that u,, . .., g are probability measures on R and p = py X+ -+ X ug.
Let f,g € L>(R?, u) be functions that are increasing in each coordinate separately. Then

/fgduz /fdu/gdu-

Proof. We proceed by induction on d. Suppose first that d = 1. Note that

[f(x) = fOD)][g(x) —g(»)] 2 0
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for all x, y € R. Therefore

0 [[ 10 - 70160 - e o) ) =2 [redu=2 [ [gan.

which gives the desired inequality.
Now suppose that the inequality holds for d = k, and let us prove the case d = k + 1. Define

fite) = [ Fas ) dis() - i ()

and similarly define g;. Clearly f; and g; are increasing functions, whence

/flgld,ul Z/fldﬂl/gldﬂ1=/fdu/gdu. (5.30)

On the other hand, the inductive hypothesis tells us that for each fixed x,

filx) gi(xy) < /k FOer, xo, o Xiar) 8(x 1, X2, o ooy Xier1) dtn(X2) -+ - dities1 (Xgea1)
RE

whence [ f1g1duy < [fgdu. In combination with (5.30), this proves the inequality for
d = k + 1 and completes the proof. <

Proof of Harris’s inequality. The proofs for bond and site processes are identical; our notation
will be for bond processes.

Since (i) derives from (ii) by using indicator random variables, it suffices to prove (ii).
If X and Y depend on only finitely many edges, then the inequality is a consequence of
Lemma 5.34, since w(e) are mutually independent random variables for all e. To prove it in
general, write E = {ey, e5,...}. Let X,, and ¥, be the expectations of X and Y conditioned on
w(ey), . ..,wl(ey,). According to Exercise 5.17, the random variables X,, and Y;, are increasing,
whence E[X,Y,] > E[X,]E[Y,]. Since X, — X and ¥, — Y in L? by the martingale
convergence theorem, which implies that X,,¥, — XY in L', we may deduce the desired
inequality for X and Y.

For the equality condition, decomposing X and Y into their positive and negative parts
reduces it to the case that X,Y > 0. Then write X = [;° Lixsgds and Y = [ Liys, dt.
Thus, E[XY] - E[X]E[Y] = [[(P[X > 5. ¥ > ] - P[X > s]P[Y > 1])dsdr > 0, with
equality iff for a.e. s and ¢, the events [X > s] and [Y > ¢] are independent. <

> Exercise 5.18.
Let P be an independent percolation. Show that if Ay, ..., A, are increasing events, then for

all p, P(N A;) 2 [TP(A;) and P(N AS) = ] P(AY).

We can use Harris’s inequality to give a short proof of Proposition 5.27:
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Proposition 5.27. (Surviving Rays in Independent Percolation) For0 < p < 1 and every
tree T, the number of surviving rays from the root under Bernoulli(p) percolation on T a.s.
either is 0 or has the cardinality of the continuum. More generally, the same holds for every
independent percolation on T such that each ray in T individually has probability O to survive.

Proof. Let Ry be the event that there are exactly k open rays. We must show that for every
finite k > 1, the probability of Ry is 0, which we do for the more general hypothesis. As in our
first proof of this proposition, it then follows that the number of open rays is a.s. either 0 or 280,
If P(Ry) > 0, then by the Lévy zero-one law, P(Ry | .#,) — 1g, a.s. Thus, we may choose m
so that P(R; | Z,,) = 8/9 on an event B € .%,, of positive probability. We may also choose
n > m so large that for all x € T,,, we have P[|Rays,| > 1 | B] < 1/3, as otherwise there
would be a fixed ray that is open with probability at least P(B)/3. Thus, we may partition
T, = A1 U A, in such a way that P(« | B) € (1/3,2/3), where & := [ZXEAI [Rays,| > k].
Define @4 = [erAz |Rays,| > 1]. Then P(4 | B) = 8/9 — P(«4 | B) and .« are positively

correlated given B by Harris’s inequality, whence P(«4 N <% | B) > 4/27 > 1/9. Since
occurrence of & N <% precludes occurrence of Ry, this contradicts the choice of B. |

5.9 Galton-Watson Networks

We have seen examples in Corollary 5.10 and Exercise 5.13 of the application of percolation
to questions that do not appear to involve percolation; other examples will appear in Exer-
cise 5.55 and Proposition 13.3. We will give yet another example in this section. Consider
the following Galton-Watson network generated by a random variable .# := (L, Ay, ..., AL),
where L € N, A; € (0,1]. First, use L as an offspring random variable to generate a
Galton-Watson tree. Let the number of children of particle x be L,. Complete these random
variables to i.i.d. random variables .Z. Thus, £ = (L, Ay,,..., Ay, ), where yi,...,yL,
are the children of x.* Use these random variables to assign edge capacities (or weights or

conductances)
c(e(x)) = H Ay .
wx
We will see the usefulness of such networks for the study of random fractals in Section 15.3.
When can water flow to oo in such a random network? Note that if A; = 1, then water can
flow to oo iff the tree is infinite. Let

y = E[z:: A,-] :

This is the expected value of the constraint on the total that can flow out of a vertex compared
to what can flow into that vertex. The following theorem of Falconer (1986) shows that
the condition for positive flow to infinity with positive probability on these Galton-Watson
networks is y > 1. Of course, when A; = 1, this reduces to the usual survival criterion for
Galton-Watson processes. In general, this theorem confirms the intuition that for flow to
infinity to be possible, more water must be able to flow from parent to children, on average,
than from grandparent to parent.

* A formal definition using the framework of Exercise 5.2 makes independent random variables . . for each
finite string x = (i1, i2, . - -, i) of positive integers.
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Theorem 5.35. (Flow in Galton-Watson Networks) Ify < 1, then a.s. no flow is possible
unless ZIL A; =1as. Ify > 1, then flow is possible a.s. on nonextinction.

Proof. As usual, let T} denote the set of individuals (or vertices) of the first generation. Let
F be the maximum strength of an admissible flow, that is, of a flow that satisfies the capacity
constraints on the edges.

For x € T, let F, be the maximum strength of an admissible flow from x to infinity
through the subtree 7" with renormalized capacities e — c(e)/Ax. Thus, Fy has the same
law as F has. It is easily seen that

F=> (A A(AF)) =D A(AF).

xeT xeT

Now suppose that y < 1. Taking expectations in the preceding equation yields

Rl

=E|> AE[IAF, |$0]] =E|) AE[1AF]

x €T x €T

E[F] = E[E[F | 2,]] = B[S EIA(I AR 2,

x€eT

=yE[l1AF]<E[lAF].

Therefore F' < 1 almost surely and P[F' > 0] > 0 only if v = 1. In addition, we have, by
independence,

||F||oo = ZAX ”F”oo .
x€eTy o
If || F||le > O, it follows that || Dok T, ||00 = 1. In combination with y = 1, this implies that

Y oxer; Ax = las.

For the second part, we introduce percolation as in the proof of Corollary 5.10 via
Proposition 5.9. Namely, augment the probability space so that for each vertex u # o, there
is a random variable X,, with the following properties. Denote by .# the o -field generated
by the random variables .#,,. Then given .%, all X,, are independent and each X,, takes the
value 1 with probability A, and O otherwise.* Consider the subtree of the Galton-Watson tree
consisting of the initial individual o together with those individuals « such that [ ], _,, X. = 1.
This subtree has, unconditionally, the law of a Galton-Watson branching process with progeny
distribution the unconditional law of Z

Xy .

uel

Let Q be the probability that this subtree is infinite conditional on .#. Now the unconditional
mean of the new process is
<]

o -rr{ox
uel uel

* A formal definition uses independent uniform [0, 1] random variables M,, and defines X,, to be the indicator
that M,, < A,,.

= E[Z Au] =7,

uel)




164 CHAP. 5: BRANCHING PROCESSES, SECOND MOMENTS, AND PERCOLATION

whence if v > 1, then this new Galton-Watson branching process survives with positive
probability, say, Q. Of course, Q = E[Q]. On the other hand, for any cutset IT of the original
Galton-Watson tree, Ze oI c(e) is the expected number, given .#, of edges in II that are also
in the subtree. This expectation is at least the probability that the number of such edges is at
least one, which, in turn, is at least Q:

F = i{lIch(e) > Q.

ecll

Hence F > 0 on the event Q > 0. The event Q > 0 has positive probability since Q > 0,
whence P[F > 0] > 0. Since the event that F = 0 is clearly inherited, it follows that
P[F =0]=g4. <

We will return to percolation on trees in Chapter 16.

5.10 Notes

Galton-Watson processes are sometimes called Bienaymé-Galton-Watson processes, since Bienaymé,
in 1845, was the first to give the fundamental theorem, Proposition 5.4. However, while he stated the
correct result, he gave barely a hint of his proof. See Heyde and Seneta (1977), pp. 116-120, and
Guttorp (1991), pp. 1-3, for some of the history. The first published proof of Bienaymé’s theorem
appears on pp. 83-86 of Cournot (1847), where the context is gambling: An urn contains tickets marked
with nonnegative integers, a proportion p;, of them being marked k. Pierre begins with 1 écu, which he
gives to Paul for the right of drawing a ticket from the urn. If the ticket is marked k, then Paul gives
Pierre k écus. The ticket is returned to the urn. This is the end of the first round. For the second and
succeeding rounds, if Pierre is not broke, then for each of the écus he has, he repeats the procedure of
the first round. The problem was to determine the probability, for each 7, that Pierre is broke at the end
of the nth round. If one keeps track of Pierre’s fortune at all times, not merely at the ends of rounds,
then one obtains a coding of the associated tree by a random walk as in Exercise 5.35.

For other codings of the trees as random walks, as well as various uses, see Geiger (1995), Pitman
(1998), Bennies and Kersting (2000), Dwass (1969), Harris (1952), Le Gall and Le Jan (1998),
Duquesne and Le Gall (2002), Marckert and Mokkadem (2003), Marckert (2008), Lamperti (1967),
and Kendall (1951).

For additional material on branching processes, see Chapter 12, the books by Athreya and Ney (1972)
and Asmussen and Hering (1983), and the review articles by Vatutin and Zubkov (1985, 1993).

The study of percolation was initiated by Broadbent and Hammersley (1957). Exact values of p.(G)
are rarely known. For some classes of Cayley graphs that are not too far from trees, exact values have
been calculated by Kozakova (2008) and Spakulové (2009).

Tree-indexed random walks are used in Section 5.4 to create examples of quasi-independent
percolation. They are studied further in Section 13.8.

A more subtle example of a quasi-independent percolation than the one of Example 5.18 is obtained
by replacing the requirement S(x) € [0, N] by S(x) > 0. That this is quasi-independent is proved by
Benjamini and Peres (1994b) in the course of proving their Theorem 1.1. For more on this particular
case, see Pemantle and Peres (1995a).

Proposition 5.27 is due to Pemantle and Peres (1996), Lemma 4.2(i). The following variant is new.
For x € V(T), let #* denote the o-field generated by the events [0 « y] for all y except y > x.
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Proposition 5.36. Let P be a general percolation on a general tree T with the following property: there
is some € > 0 such that for all x € V(T),

P[|Rays,| > 2 | %] > €ljpoy) - (5.31)

Then the number of open rays is a.s. 0 or 2™,

Proof. As in the second proof of Proposition 5.27 on p. 162, let R, be the event that there are exactly
k open rays. We must show that for every finite k > 1, the probability of Ry is 0. As in the proof
of Proposition 5.27, it then follows that the number of open rays is a.s. either 0 or 2%. Suppose
that P(R;) > 0 for some k € [1,0). For n € N, let .%, denote the o-field generated by the events
[o & x] for |x| = n. By the Lévy zero-one law, P(R; | #,) — 1g, a.s. Write V,, for the random set
{Ix|=n; x & o}. ThenP[|V,,| > k | R] = 1 as n — co. Thus, we may choose an integer n and an
event A € .%, of positive probability such that

P(Ri | A) > 1-¢€F (5.32)

and A C [|Vn| > k]. Let X4, ..., Xi be an .%,,-measurable choice of k distinct vertices in V,,, or X; := o
if |V,,| < k; for example, if we embed T in the upper half-plane with its root at the origin, we can
choose the k left-most vertices in V,,. Consider nonrandom distinct vertices xi, ..., xx € T, such that
P(C) > 0, where C is the event [X| = xy,..., Xx = xi]. Define B; to be the event that |Rays, | > 2.
Since A,C € %, € F*andsoB;N---NB;_1NANC € F¥ for 1 <i < k, we may apply (5.31) to
get

PB; |Bin---NB,_iNANC) > ¢,

whence
P(BiN---NB, | ANC) > €~.

Therefore, P[lRaysOI > 2k | AN C] > €. Since this holds for all choices of C, it follows that
P[|Rays,| > 2k | A] > €*. This contradicts (5.32), whence P(Ry) = 0, as desired. <

> Exercise 5.19.

Let T be a binary tree. Give random labels A(x) to its vertices as follows: Begin with A(0) := 0. The
other labels are defined recursively by dividing A(x) at random (as integers) between the children of
x and adding 1 to each child. That is, if the two children of x are x; and x,, then A(x;) is uniform
in {1,2,...,A(x) + 1} and A(x,) = A(x) + 2 — A(x;). Given A(x), all labels A(y) for y ¢ T~ are
conditionally independent of all A(z) for z > x.

(@) Let& =(&,; n > 0)bearay in 7T starting at some vertex & = x. Show that (2"(A(£,) —2)) is
a martingale.

(b) Show that for all n > 1, we have P[A(&;) > 4 for 1 < k < n | A(&)] < 27"(A(&) - 2)/2 on
the event [A(&)) > 4].

(c) Show that a.s. there is no infinite path in 7' all of whose labels are at least 4.

(d) If the labels are real numbers instead of integers with the sole change that A(x,) is uniform in
[1, A(x) + 1], then show that again a.s. there is no infinite path in T all of whose labels are at least 4.

The proof of Proposition 5.30 is based on a similar argument in Chayes, Chayes, and Durrett (1988).
The result itself was first given by Pakes and Dekking (1991).

Theorem 5.33 was suggested by Mandelbrot (1982), Chapter 23. One might wonder whether for
large p, there is also positive probability that a directed (horizontally monotonic) left-to-right crossing
exists. However, this is not so, as was proved by Chayes (1995b). An extension was given by Chayes,
Pemantle, and Peres (1997).
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The proof presented here of Theorem 5.35 is new. The proof of the first part of the theorem uses the
same idea as the proof of Lemma 4.4(b) of Falconer (1987). The result of Theorem 5.35 was extended
in a few ways to general fixed trees by Lyons and Pemantle (1992).

Recursions on trees are a very powerful and general tool. Exercise 5.60 gives some simple examples.
Additional ones along these lines for more general processes are analyzed by Pemantle and Peres (2010).

5.11 Collected In-Text Exercises
5.1. Justify the differentiation in (5.3). Show too that limsqyy f'(s) = m.

5.2. Let .7 be the space of rooted labeled locally finite trees. Verify that the function d(T,T") :=
(1+sup{n; Ttn=T" tn})~! is a metric on .7 and that (.7, d) is complete and separable.

5.3. Define the measure GW formally on the space .7 of Exercise 5.2; your measure should be the
law of a random tree produced by a Galton-Watson process with arbitrary given offspring distribution.

5.4. Show that for any Galton-Watson process with mean m > 1, the family tree T has growth rate
grT = m a.s. given nonextinction. (Don’t use the Kesten-Stigum theorem to show this, as we have not
yet proved that theorem.)

5.5. Show that for a general percolation, the events [x < e] and [x < oo] are indeed measurable.
5.6. Prove (5.5).

5.7. Show that for p > p.(G), we have p.(w) = p.(G)/p for P,-a.e. w. Physicists often refer to p as
the “density” of edges in w, and this helps the intuition.

5.8. Show that, conversely to (5.13), the survival parameters adapted to given edge resistances are

_ ] + Zo<u<x r(e(u))
Px=7T7 Do cuex Fle)

For example, simple random walk (¢ = 1) is adapted to py = |x|/(|x] + 1).

5.9. Verify the assertion of Example 5.17.

5.10. Show that if br 7' < 1/ cos
with probability zero.

T
N +2

, then the root belongs to an infinite cluster in wx of (5.14)

5.11. Show that Proposition 5.21 is sharp on trees in the sense that when T is a tree, for all { > p.(T),
there is a probability measure with EIT({). Of course, there is no p < p.(T) such that Bernoulli(p)
percolation on T has a.s. a transient open cluster.

5.12. Give a tree for which percolation does and a tree for which percolation does not occur at
criticality.

5.13. Show that critical homesick random walk on supercritical Galton-Watson trees is a.s. recurrent
in two ways: (1) by using Corollary 5.25; (2) by using the Nash-Williams criterion.

5.14. Let (T, ¢) be a transient network on a tree. Suppose that each ray of T is recurrent. Let 6 be a
flow from the root to infinity of finite energy.
(a) Show that inf{Z(0 © x); |x| =n} — coasn — co.
(b) Show that 37, 8(e(x))* L 0 as n — co.

(¢) Show that £(6) = 3" Z(0 © x)[6(e(x))” - PO 8(e(»))’]-
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5.15. Show that for a Galton-Watson tree with offspring distribution Bin(d + 1, p), we have that
7(d) > 0 for p sufficiently close to 1, where 7(d) is the probability that the tree contains a d-ary subtree
beginning at the initial individual.

5.16. Is Lemma 5.32 true for b = 2?

5.17. Let P be an independent percolation. Suppose that X is an increasing random variable with
finite expectation, F' C E is finite, and .# is the (finite) o-field generated by the coordinate functions
w > w(e) (w € 2F) for the edges e € F. Show that E[X | .#] is an increasing random variable.

5.18. Let P be an independent percolation. Show that if Ay, ..., A, are increasing events, then for
all p, P(N A;) > [TP(A;) and P(N AS) > [TP(AS).

5.19. Let T be a binary tree. Give random labels A(x) to its vertices as follows: Begin with A(0) := 0.
The other labels are defined recursively by dividing A(x) at random (as integers) between the children
of x and adding 1 to each child. That is, if the two children of x are x; and x,, then A(x;) is uniform
in {1,2,...,A(x) + 1} and A(x,) = A(x) + 2 — A(x;). Given A(x), all labels A(y) for y ¢ T~ are
conditionally independent of all A(z) for z > x.

(@) Let&=(&,; n > 0)bearayin T starting at some vertex & = x. Show that (2" (A(&,) - 2)) is
a martingale.

(b) Show that for all n > 1, we have P[A(&) > 4 for | < k < n| A(&)] < 27(A(&) —2)/2 on
the event [A(&)) > 4].

(c) Show that a.s. there is no infinite path in T all of whose labels are at least 4.

(d) If the labels are real numbers instead of integers with the sole change that A(x) is uniform in
[1, A(x) + 1], then show that again a.s. there is no infinite path in 7" all of whose labels are at least 4.

5.12 Additional Exercises

5.20. Consider a rooted Galton-Watson tree (7', 0) whose offspring distribution is Poisson(c) for
some ¢ > 0. This is sometimes called a Poisson-Galton-Watson(c) tree. If the total number of vertices
of T is k < oo, then label the vertices of T uniformly with the integers 1,..., k. (These labels are
different from the labels used in Section 5.1, where the purpose of the labels was merely to make a
formal definition.) Show that every rooted labeled tree on k vertices arises with probability e=*c*~!/k!.
Consequently, if we condition that |[V(T')| = k, then the rooted labeled tree is uniformly distributed
among all rooted labeled trees on k vertices, that is, it has the distribution of a uniformly rooted uniform
spanning tree on the complete graph on {1,2,...,k}.

5.21. Consider Bernoulli(c/n) percolation on the complete graph K,, with fixed ¢ > 0 and any n > c.
Fix a vertex o of K,,. Let C(0) be the cluster of o “rooted” at o.

(a) Show that as n — oo, the distribution of C(0) tends to that of a rooted Galton-Watson tree
(T, 0) whose offspring distribution is Poisson(c) in the sense that for every r, one can couple the ball of
radius r about o in C(0) with the ball of radius r about the root in a Galton-Watson tree in such a way
that they are equal with probability tending to 1 as n — oo.

(b) Let Cy, be the result of labeling the vertices of C(0) uniformly by the integers 1,...,|C(0)|.
Show that for k < oo, if we condition that |C(0)| = k, then the distribution of the labeled cluster Ci.
tends to that of a uniformly labeled Poisson-Galton-Watson(c) tree conditioned to have size k.

(¢) Show that for a rooted labeled tree T of size k < oo,

—-ck k-1
lim P[¢, =7] = &5

n—oo k!

This gives another solution to Exercise 5.20.
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5.22. Suppose that L,, are offspring random variables that converge in law to an offspring random
variable L with P[L = 1] < 1. Let the corresponding extinction probabilities be g,, and g. Show that
gn — qasn — oo,

5.23. Give another proof that m < 1 = a.s. extinction unless p; = 1 as follows. Let Z] be the number
of particles of the first generation with an infinite line of descent. Let Zfi)* be the number of children of
the ith particle of the first generation with an infinite line of descent. Show that Z] = Zi‘l 1A Zfi)*.
Take the L' and L* norms of this equation to get the desired conclusion.

5.24. Give another proof of Propositions 5.1 and 5.4(i) as follows. Write

Zn
Znn=Zn+ Yy (LMY -1).
i=1

This is a randomly sampled random walk, that is, a random subsequence of the locations of a random
walk on Z whose steps have the same distribution as L — 1. Apply the strong law of large numbers or
the Chung-Fuchs theorem (Durrett (2010), Theorem 4.2.7), as appropriate.

5.25. Let (X,,) be a Markov chain on N such that the law of X,,,; given X,, is Poisson with parameter
X,,. Show that a.s. for all large n, we have X,, = 0.

5.26. Show that (Z,,) is a nonnegative supermartingale when m < 1 to give another proof of a.s.
extinction when m < 1 and p; # 1.

5.27. Suppose that the offspring random variable L in a Galton-Watson process has first moment
m > 1 and a finite second moment. Show that the second moments of Z,,/m" are bounded. Deduce
that Z,,/m™ — W in L?.

5.28. Show directly that if 0 < r < 1 satisfies f(r) = r, then (r%") is a martingale. Use this to give
another proof of Proposition 5.1 and Proposition 5.4 in the case m > 1.

5.29. (Grey,1980) Let(Z,),(Z,) be independent Galton-Watson processes with identical offspring
distribution and arbitrary, possibly random, Zy, Zj with Zy + Zj > 1 a.s., and set

v o [ Zal(Za42,) i 2, 42,40
L A if Z,+2, =0.

(a) Fix n. Let A be the event
A= [Zyar +Z,, 0]

and .#, be the o-field generated by Zy, ..., Z,, Z}, ..., Z,. Use symmetry to show that
E[LV"Y [(Znir + Z,,,)) | Fn| = 1/(Z, + Z,)  as. on the event A.

(b) Show that (Y,,) is a martingale with a.s. limit Y.
() If 1 < m < oo, show that 0 < Y < 1 a.s. on the event Z,, /~ 0 and Z,, / 0. Hint: Let

Y® = 1lim, 0 Z, /(Zn + Z},,,). Then E[Y®) | Zy, Z;1 = Zy/(Zy + Z},) and P[Y = 1, Z,, 5 0, Z], />
0]=P[Y® =1, 7, /0, Z, /0] <E[Y®1 5 ] = 0as k — co.

5.30. In the notation of Exercise 5.29, show thatif Zy = Z) = 1 and 1 < m < oo, then
n+ n 2
P[Y € (0, )] =(1 =g’ +p;+ Y _[£"0) - £ ©O)] .
n>1

5.31. Deduce the Seneta-Heyde theorem from Grey’s theorem (Exercise 5.29).
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5.32. Show that for any Galton-Watson process with m < oo, we have Z,,,/Z, — m a.s. on

nonextinction.

5.33. Let f be the p.g.f. of a Galton-Watson process. Show that
E[sZm0 %] = g (s),
where go(s) 1= s and g,,+1(s) := s £(g,(s)) for n > 1. Define so := sup{t/f(t); t > 1} > 1. Show that
E[SZ”ZO “n] = goo(s),

where go(s) := limy e g (5) = 5 £(ge(s)) is finite for s < so. Show that if the process is subcritical
and f(s) < co for some s > 1, then 57 > 1.

5.34. Let 0 < p < 1 and consider a branching process such that each individual has two children
with probability p and O children otherwise. Show that the probability generating function for the total

number of individuals is
1 —+/1=4p(1 - p)s?

2ps

S =

5.35. Let L be the offspring random variable of a Galton-Watson process. There are various useful
ways to encode by a random walk the family tree when it is finite. We consider one such way here.
Suppose that the process starts with k individuals, that is, Zy = k. Let Zi,, ==, ., Z,, be the total size
of the process. Let §,, := Z?=1(L i — 1), where L; are independent copies of L.

(a) Show that P[Z =n] =P[S,, =—k, Vi<n S; > —k].

(b) (Otter-Dwass Formula) Show that P[Z, = n] = ﬁP[Sn = —k].

(c) Show that in the noncritical case, the expected number of visits to —k of the random walk
(Sn; n>0)is ¢*/(1 - f'(q)), where g is the extinction probability of the Galton-Watson process and
f is the probability generating function of L. Show that in the critical case, this expectation is infinite.

(d) Let 7, be the time of the nth visit to —k of the random walk (S,, ; n > 0), where 1,, := o if
fewer than n visits are made to —k. Show that P[1; < o] = ¢* and E[ >, 1/7.] = ¢"/k.

n>0

5.36. Consider a Galton-Watson process with offspring distribution equal to Poisson(1) and total
$iz€ Ziot 1= D150 Zn-
(a) Show that P[Z = n] = n" 'e™"/n!. Hint: Use the Otter-Dwass formula from Exercise 5.35(b).
(b) By comparing with Exercise 5.20, derive Cayley’s formula that the number of trees on n
vertices is n" 2.

5.37. Consider a Galton-Watson process with offspring distribution equal to Poisson(1). Let o be the
root and X be a random uniform vertex of the tree. Show that P[X = o] = 1/2.

5.38. Let T be a tree. Show that for p < 1/grT, the expected size of the cluster of a vertex is finite
for Bernoulli(p) percolation, whereas it is infinite for p > 1/grT.

5.39. Let T be an infinite locally finite tree. Define the random tree 7'(p) by contracting e(x) for
each x # o independently with probability p. Show that sup{p; T(p) is locally finite a.s.} = p.(T) and
calculate the distribution of br T'(p) for p < p.(T).

5.40. Deduce Corollary 5.10 from Hawkes’s earlier result (that is, from the special case where it is
assumed that E[L(log L)?] < o) by considering truncation of the progeny random variable, L.

5.41. Let 6,,(p) denote the probability that the root of an n-ary tree has an infinite cluster under
Bernoulli(p) percolation. Thus, 6,,(p) = 0 iff p < 1/n. Calculate and graph 6,(p) and 65(p). Show
that for all n > 2, the left-hand derivative of 6,, at 1 is 0 and the right-hand derivative of 6,, at 1/n is
2n%(n - 1).
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5.42. Let Il be a cutset in a locally finite graph on which is defined some percolation measure. Show
that for py, u, € PI1),

(/@(#1 +l~lz) +dﬂ1 - llz) _ ) +E(p)
2 2 2 ’
where &(+) is extended in the obvious way to nonprobability measures on IT from the definition (5.10).

5.43. Let II be a cutset in a locally finite graph on which is defined some percolation measure, P.
Show that if Ple;, e; € K(0)] # O for every pair e, e, € 11, then &(+) has a unique minimum on P(I1).

5.44. Let T be the family tree of a supercritical Galton-Watson process. Show that a.s. on the event
of nonextinction, simple random walk on 7 is transient.

5.45. Let T be the family tree of a supercritical Galton-Watson process without extinction and with
mean m. For 0 < 4 < m, consider RW, with the conductances c(e) = 27!
(a) Show that E[¢(0 & o0;T)] < m — 4 and E[Z(0 & 00;T)| > 1/(m — A).
(b) Show that E[P[r} = oo]] < 1 — A/m.

5.46. Given a quasi-independent percolation on a locally finite tree T with Plo < u | 0 < u] = p,
show that if p < (brT)~!, then P[0 < o] = 0 whereas if p > (br T)~!, then P[o < o] > 0.

5.47. Let T be any tree on which simple random walk is transient. Let U be a random variable
uniform on [0, 1]. Define a percolation on T by taking the subtree of all edges at distance at most 1/U.
Show that the inequality of Theorem 5.19 fails if conductances are adapted to this percolation.

5.48. Let T be any infinite tree. Let U(x) be i.i.d. random variables uniform on [0, 1] indexed by
the vertices of 7. Define a percolation on T by taking the subgraph spanned by all vertices x such that
U(x) < U(o). Show that the root belongs to an infinite cluster with positive probability iff br T > 1.
Show that this percolation is not quasi-independent.

5.49. Improve the Paley-Zygmund inequality to Cantelli’s inequality: if X is a random variable with

mean 1 and 7 < 1, then
PX>t]> ——7F——.
[ 1 (1 —1)? + Var(X)

5.50. Consider the usual graph on Z<¢ and orient each edge in its positive coordinate direction. For
Bernoulli percolation on Z4, the set of oriented open paths is called oriented percolation. The critical
value p.(d) for oriented percolation is the supremum of those p such that in Bernoulli(p) percolation,
there is no infinite oriented open path. Show that lim;_,., dp.(d) = 1.

5.51. Consider independent percolation on a tree 7 with the survival probability of each edge
bounded away from 1. Let m,, denote the expected number of vertices of T at level n that are connected
to the root, o.

(a) Show thatif >, m;,' = co, then P[o & o] = 0.

(b) Show that if T is spherically symmetric, then the converse of (a) holds.

(c) Give an example of a nonspherically symmetric T of bounded degree where the converse of
(a) fails.

5.52. Consider Bernoulli(1/2) percolation on a tree T. Let p,, := P 5[0 & T,,].
(a) Show that if there is a constant ¢ such that for every n we have |T,,| < ¢2", then p,, < 4c/(n+2c)
for all n.
(b) Show that if there are constants ¢; and ¢, such that for every n we have |T,,| > ¢,;2" and also
for every vertex x we have |T¥| < ¢,2", then p,, > ¢3/(n + ¢3) for all n, where ¢; = 2cf/c;.

5.53. Let T(n) be a binary tree of height n and consider Bernoulli(1/2) percolation. For large n,
which inequalities in (5.21) are closest to equalities?
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5.54. Let T be a binary tree and consider Bernoulli(p) percolation with p € (1/2,1). Which
inequalities in Theorem 5.24 have the ratios of the two sides closest to 1?

5.55. Randomly stretch a tree T by adding vertices to (‘“subdividing”) the edges to make the edge
e(x) a path of length L, (w) with L i.i.d. Call the resulting tree T(w). Calculate the distribution of
br T(w) in terms of br T and of the distribution of L. Show that if br 7 > 1, then br T(w) > 1 a.s.

5.56. Suppose that brT = gr7. Consider the stretched tree T(w) from Exercise 5.55. Show that
br7T(w) = grT(w) a.s.

5.57. Consider the stretched tree T(w) from Exercise 5.55. If we assume only that simple random
walk on T is transient, must simple random walk on 7'(w) be transient a.s.?

5.58. Consider a percolation on T for which there is some M’ > 0 such that, for all x,y € T and
A C T with the property that the removal of x A y would disconnect y from every vertex in A,

Plooyloox, 0=Al2MPloox|oe xAny].
Show that the adapted conductances satisfy

Ploo o] < 2 _Sl02©)
M’]+<€(0<—>oo)

5.59. Consider the percolation of Example 5.20. Sharpen Exercise 5.10 by showing that if the root
belongs to an infinite cluster with positive probability, then RW, is transient on 7 for 4 := 1 / cos Nn 5
+

5.60. The inequalities (5.21) can also be proved by entirely elementary means.
(a) Prove thatif 0 < x,, <1, then

Zl—xnsl—nxn and Zl—xnzl—nxn.
Xn Hxn 1+xn 1+Hxn

(b) Use induction to deduce (5.21) from the inequalities of part (a).
(¢) Prove thatfor C > 0and C/(1+C) <p <1,

i) <1_e‘2C
pl+C)-Cc/] ~ '

p(l —exp(

(d) Use induction to deduce from part (c) the following sharper form of the right-hand inequality
of (5.21):
Plo & 8.T] < 1 —exp(-2%(0 < O,.T)).

5.61. Show thatif f is the p.g.f. of a supercritical Galton-Watson process, then the p.g.f. of Z,, given
survival is

[F"(s) - f™(gs)]/q -

5.62. A multitype Galton-Watson branching process has J types of individuals, with an individual
of type i generating k; individuals of type j for j = 1,...,J with probability pf(i ), where k :=
(ki,...,kz). Asin the single-type case, all individuals generate their children independently of each
other. Show that a supercritical single-type Galton-Watson tree given survival has the following
alternative description as a two-type Galton-Watson tree. Let (p, ) be the offspring distribution and ¢
be the extinction probability. Let type 1 have offspring distribution obtained as follows: Begin with k
children with probability px(1 — g*)/(1 — g) for k > 1. Then make each child type 1 with probability
1 — g and type 2 with probability ¢, independently but conditional on having at least one type-1 child.
The type-2 offspring distribution is simpler: it has k children of type 2 (only) with probability p; g*~".
Let the root be type 1.
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5.63. Let 1 < b < d < n. Recall the critical probabilities 7(«,+) of Proposition 5.30. Show that
n(n,d)n(d, b) > n(n,b).

5.64. Let d > 2. Consider a Galton-Watson process with offspring distribution being geometric
with parameter p. Write 7, (d) for the probability that the Galton-Watson tree contains a d-ary subtree
beginning with the initial individual. Show that there exists p, € (0, 1) such that for p < po, we
have 7,,(d) = 0 and for p > 7,,(d), we have 7,(d) > 0. Prove a similar statement when the offspring
distribution is Poisson with parameter A.

5.65. Show that the extinction probability y(p) introduced in the proof of Proposition 5.31 satisfies
y(p)—>0asp— 1.

5.66. Show that
(I’l _ 1)2n—3

a(n,n—1)= —n"‘l(n — 2y

for the critical probability of Section 5.7. What is the probability of having an (n — 1)-ary subtree
exactly at this value of p?

5.67. This exercise uses the notion of stochastic domination, as explained in Exercise 4.46 for
real-valued random variables and in Sections 7.4 and 10.2 with respect to inclusion.

(a) Show that for p € (0, 1), there exists ¢ € (0, 1) such that the first stage A, ,2(p) of one
fractal percolation is stochastically dominated by the second stage A; ,(q) N Az, 5 (g) of another fractal
percolation. Hint: Let Bern(g) denote a Bernoulli random variable with parameter ¢, that is, a random
variable that takes the value 1 with probability g and 0 otherwise. Take ¢ so that Bern(q) dominates the
maximum of 5 independent copies of a Bern(+/p) random variable.

(b) Deduce that Theorem 5.33 holds for b = 2 as well.

5.68. Fix an infinite tree 7. Let ¢: V(T) — R be given, as well as real-valued independent random
variables A(x) for x € V(T). Define the associated T-indexed random walk S(x) := Zy < A(y). Let
& be the set of rays & € T such that S(x) > ¢(x) for all x € £. Suppose that for all & € JT, the
probability that ¢ € ® is 0. Show that a.s. |®| € {0,2%}. Hint: Modify the proof in Section 5.8 of
Proposition 5.27.

5.69. Let T be a tree such that sup,, |T,,|/vn < oo. Assign %1 labels to each vertex independently
with probability 1/2 each. Show that a.s. there is no ray along which the sum of the labels stays positive.

5.70. Consider fractal percolation in the rectangle [0, 1]x[0, 2] with parameters » and p. That is, take
a union of two independent copies of fractal percolation Q,,(p) in the unit square as in Theorem 5.33,
one translated vertically by 1. Let A (p) denote the probability of a left-to-right crossing with retained
squares of side length b= and write Ao (p) := limy Ax(p).

(a) Show that there exists pix, € [1/b%, 1) such that .(p) = 0 for p < pix; and A.(p) > O for
P > Pixe-

(b) Show that pyyx, > 1/b.

(¢) Prove that Ax.1(p) < ((4b— 3)/1k(p))2. Hint: Consider first the
case b = 2. Show that crossing [0, 1/2] x [0, 2] in level k + 1 requires
a horizontal crossing of at least one of three specific [0, 1/2] x [0, 2]
rectangles, or a vertical crossing of at least one of two specific squares
of side 1/2.

(d) Deduce that Ao (pix2) > O. L,

A Ra

5.71. Consider fractal percolation Qj(p) in the unit square [0, 1] x -
[0, 1] with parameters b and p. Recall that 6, (p) denotes the probability Flgurg 5.5. See
of a left-to-right crossing with retained squares of side length 5~* and Exercise 5.71.
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O(p) = limg O (p). Let pixi = inf{p € [0,1]; 6.(p) > 0}. Fora
level m square A on the bottom of the unit square, let L4 be the left side
of the unit square union the bottom side to the left of A, and define R
analogously (see Figure 5.5 on the preceding page). For k > m, write
0« (p, A) for the probability there exists a path of retained squares at level
k that connects L4 to R4 and that does not use A. We also adopt the
notation of Exercise 5.70. LA

(a) Show that A, (p) < 2p™ + 20, (p, A) for all m < k and every A. [A]
Hint: See Figure 5.6 at right. L A’ R

(b) Show that there exists A such that 6 (p, A)*™ < 6, (p). Hint: A A
Use Harris’s inequality.

(¢) Deduce that 6,(p) = 0 implies A.(p) = 0.

(d) Conclude that pix; = pix2 and that 6,,(pix1) > 0.

Ra

The remaining exercises use the following notions. Let X and
Y be real-valued random variables. Say that X is at least Y in the
increasing convex order if E[h(X)] > E[h(Y)] for all nonnegative FigureS5.6. See
increasing convex functions h: R — R. Exercise 5.71.

5.72. Let X and Y be real-valued random variables.
(a) Show that X is at least Y in the increasing convex order iff f:’ P[X >t]dt > | : PlY > t]dt
foralla € R.
(b) Suppose that X is at least Y in the increasing convex order. Show that E[h(X )] > E[h(Y )] for
every convex function #: R — R if and only if X and Y have the same mean. When the means of X and
Y are the same, one also says that X is stochastically more variable than Y.

5.73. Suppose that X; are nonnegative independent identically distributed random variables, that ¥;
are nonnegative independent identically distributed random variables, and that X; is stochastically more
variable than Y; for eachi > 1.

(a) Show that Z:Ll X; is at least Z:Ll Y; in the increasing convex order for each n > 1.

(b) Let M and N be nonnegative integer-valued random variables independent of all X; and ¥;.
Suppose that M is at least N in the increasing convex order. Show that Zf‘;’, X; is at least Zf\i, X; in
the increasing convex order, which, in turn, is at least Zf\il Y; in the increasing convex order.

5.74. Suppose that L is an offspring random variable that is at least L® in the increasing convex
order and that Z{ are the corresponding generation sizes of Galton-Watson processes beginning with
one individual each.

(a) Show that ZS ) is at least Zf) in the increasing convex order for each n.

(b) Show that P[ZY" = 0] > P[Z{? = 0] for each n if the means of L") and L® are the same.

(¢) Show that the conditional distribution of ZL') given Zfll ) > 0 is at least the conditional
distribution of Zif) given fo) > 0 in the increasing convex order for each n.

(d) Show that the following is an example where L(" is at least L® in the increasing convex order.
Write pg) for P[L"”) = k]. Suppose that p(()l) > 0, that a := min{k > 1; pil) > 0}, that pf) = 0 for

k > K, that pf) = pg) for a < k < K, and that E[L(V] = E[L®].



174

Isoperimetric
Inequalities

Just as the branching number of a tree is for most purposes more important than the growth
rate, there is a number for a general graph that is more important for many purposes than
its growth rate. In the present chapter, we consider this number, or, rather, several variants
of it, called isoperimetric or expansion constants. This is not an extension of the branching
number, however; for that, the reader can see Section 13.7.

Our main interest in expansion constants is to apply them to random walks and percolation
on infinite graphs. In particular, whether the expansion is zero or positive plays a crucial role
in determining qualitative behavior of these probabilistic processes. This will be seen here as
well as in the later Chapters 7, 8, 10, and 11. A similar role is played on finite graphs, but we
touch on finite graphs only briefly in Section 6.4.

The second half of this chapter concerns isoperimetric and expansion profiles, functions
that measure the size of the boundary of a set compared to the size of the set itself, when such
a ratio is not necessarily bounded away from 0. Again, we present applications to random
walks and to percolation.

6.1 Flows and Submodularity

A common illegal scheme for making money, known as a pyramid scheme or Ponzi scheme,
goes essentially as follows. You convince 10 people to send you $100 each and to ask 10
others in turn to send them $100. Everyone who manages to do this will profit $900 (and
you will profit $1000). Of course, some people will lose $100 in the end. But suppose that
we had an infinite number of people. Then no one need lose money and indeed everyone
can profit $900. But what if people can ask only people they know? Suppose that people
are at the vertices of the square lattice and know only their four nearest neighbors. Is it now
possible for everyone to profit $900? If the amount of money allowed to change hands (that
is, the amount crossing any edge) is unbounded, then certainly this is possible. But what if
the amount crossing any edge is bounded by, say, $1,000,000? The answer now is no. In fact,
although it is still possible for everyone to profit, the profit cannot be bounded away from O.

Why is this? Consider first the case that there are only a finite number of people. If we
simply add up the total net gains, we obtain 0, whence it is impossible for everyone to gain a
strictly positive amount. For the lattice case, consider all the people lying within distance n of
the origin. What is the average net gain of these people? The only reason this average might
not be 0 is that money can cross the boundary. However, because of our assumption that the
money crossing any edge is bounded, it follows that for the average net gain, this boundary
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crossing is negligible in the limit as n — co. Hence the average net gain of everyone is 0 and
it cannot be that everyone profits $900 (or even just one cent).

But what if the neighbor graph was that of the hyperbolic tessellation of Figure 2.4?
The figure suggests that the preceding argument, which depended on finding finite subsets
of vertices with relatively few edges leading out of them, will not work. Does that mean
everyone could profit $900? What is the maximum profit everyone could make? The picture
also suggests that the graph is somewhat like a tree, which suggests that si