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A love and respect of trees has been characteristic of mankind since the beginning
of human evolution. Instinctively, we understood the importance of trees to our
lives before we were able to ascribe reasons for our dependence on them.

– James and Louise Bush-Brown, America’s Garden Book



C A M B R I D G E S E R I E S I N S T A T I S T I C A L A N D
P R O B A B I L I S T I C M A T H E M A T I C S

Editorial Board
Z. Ghahramani (Department of Engineering, University of Cambridge)

R. Gill (Mathematical Institute, Leiden University)
F.P. Kelly (Department of Pure Mathematics and Mathematical Statistics,

University of Cambridge)
B.D. Ripley (Department of Statistics, University of Oxford)
S. Ross (Department of Industrial and Systems Engineering,

University of Southern California)
M. Stein (Department of Statistics, University of Chicago)

This series of high-quality upper-division textbooks and expository monographs covers all aspects of
stochastic applicable mathematics. The topics range from pure and applied statistics to probability
theory, operations research, optimization, and mathematical programming. The books contain clear
presentations of new developments in the field and also of the state of the art in classical methods.
While emphasizing rigorous treatment of theoretical methods, the books also contain applications and
discussions of new techniques made possible by advances in computational practice.

A complete list of books in the series can be found at www.cambridge.org/statistics.
Recent titles include the following:

16. Essentials of Statistical Inference, by G.A. Young and R.L. Smith
17. Elements of Distribution Theory, by Thomas A. Severini
18. Statistical Mechanics of Disordered Systems, by Anton Bovier
19. The Coordinate-Free Approach to Linear Models, by Michael J. Wichura
20. Random Graph Dynamics, by Rick Durrett
21. Networks, by Peter Whittle
22. Saddlepoint Approximations with Applications, by Ronald W. Butler
23. Applied Asymptotics, by A.R. Brazzale, A.C. Davison and N. Reid
24. Random Networks for Communication, by Massimo Franceschetti and Ronald Meester
25. Design of Comparative Experiments, by R.A. Bailey
26. Symmetry Studies, by Marlos A.G. Viana
27. Model Selection and Model Averaging, by Gerda Claeskens and Nils Lid Hjort
28. Bayesian Nonparametrics, edited by Nils Lid Hjort et al.
29. From Finite Sample to Asymptotic Methods in Statistics, by Pranab K. Sen, Julio M. Singer and

Antonio C. Pedrosa de Lima
30. Brownian Motion, by Peter Mörters and Yuval Peres
31. Probability (Fourth Edition), by Rick Durrett
33. Stochastic Processes, by Richard F. Bass
34. Regression for Categorical Data, by Gerhard Tutz
35. Exercises in Probability (Second Edition), by Loı̈c Chaumont and Marc Yor
36. Statistical Principles for the Design of Experiments, by R. Mead, S.G. Gilmour and A. Mead
37. Quantum Stochastics, by Mou-Hsiung Chang
38. Nonparametric Estimation under Shape Constraints, by Piet Groeneboom and Geurt Jongbloed
39. Large Sample Covariance Matrices and High-Dimensional Data Analysis, by Jianfeng Yao,

Shurong Zheng and Zhidong Bai
40. Mathematical Foundations of Infinite-Dimensional Statistical Models, by Evarist Giné and Richard
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6. The Hölder Exponent of Limit Uniform Measure 573
7. Dimension Drop for Other Flow Rules 576
8. Harmonic-Stationary Measure 577
9. Confinement of Simple Random Walk 580

10. Numerical Calculations 583
11. Notes 588
12. Collected In-Text Exercises 589



xii Contents

13. Additional Exercises 590

Comments on Exercises 594

Bibliography 648

Glossary of Notation 687

Index 690



xiii

Preface

This book is concerned with certain aspects of discrete probability on infinite graphs that
are currently in vigorous development. Of course, finite graphs are analyzed as well, but
usually with the aim of understanding infinite graphs and networks. These areas of discrete
probability are full of interesting, beautiful, and surprising results, many of which connect to
other areas of mathematics and theoretical computer science. Numerous fascinating questions
are still open.
Our major topics include random walks and their intimate connection to electrical networks;

uniform spanning trees, their limiting forests, and their marvelous relationships with random
walks and electrical networks; branching processes; percolation and the powerful, elegant
mass-transport technique; isoperimetric inequalities and how they relate to both random walks
and percolation; minimal spanning trees and forests and their connections to percolation;
Hausdorff dimension, capacity, and how to understand them via trees; and random walks
on Galton-Watson trees. Connections among our topics are pervasive and rich, making for
surprising and enjoyable proofs.
There are three main classes of graphs on which discrete probability is most interesting,

namely, trees, Cayley graphs of groups (or, more generally, transitive, or even quasi-transitive,
graphs), and planar graphs. More classical discrete probability has tended to focus on the
special and important case of the Euclidean lattices, �d , which are prototypical Cayley graphs.
This book develops the general theory of various probabilistic processes on graphs and then
specializes to the three broad classes listed, always seeing what we can say in the case of �d .
Besides their intrinsic interest, there are several reasons for a special study of trees. Since

in most cases, analysis is easier on trees, analysis can be carried further. Then one can
often either apply the results from trees to other situations or transfer to other situations the
techniques developed by working on trees. Trees also occur naturally in many situations,
either combinatorially or as descriptions of compact sets in Euclidean space, �d.
In choosing our topics, we have been swayed by those results we find most striking as well

as by those that do not require extensive background. Thus, the only prerequisite is basic
knowledge of Markov chains and conditional expectation with respect to a σ-algebra. For
Chapter 17, basic knowledge of ergodic theory is also required, though we review it there. Of
course, we are highly biased by our own research interests and knowledge. We include the
best proofs available of recent as well as classic results.
Most exercises that appear in the text, as opposed to those at the ends of the chapters, are

ones that will be particularly helpful to do when they are reached. They either facilitate one’s
understanding or will be used later in the text. These in-text exercises are also collected at the
end of each chapter for easy reference, just before additional exercises are presented. In each
chapter, the additional exercises appear in the order that the corresponding material appears



xiv Preface

in the text.
Some general notation we use is ⟨· · ·⟩ for a sequence (or, sometimes, more general function),
↾ for the restriction of a function or measure to a set, E[X ; A] for the expectation of X on
the event A, and | • | for the cardinality of a set. Also, “decreasing” will mean “nonincreasing”
unless we say “strictly decreasing,” and likewise “increasing” will mean “nondecreasing.”
Defined terms are in bold italics. Some definitions are repeated in different chapters to enable
more selective reading.
A question labeled as Question m.n is one to which the answer is unknown, where m and

n are numbers. Unattributed results are usually not due to us. Items such as theorems are
numbered in this book as C.n, where C is the chapter number and n is the item number in
that chapter.

Major chapter dependencies are indicated in the following:
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It is possible to choose only small parts of various chapters to make a coherent course on
specific subjects. For example, a judicious choice of material from the following sections can
be used for a one-semester course on relationships of probability to geometric group theory:
3.4, 7.1, 6.1–3, 6.6, 6.7, 13.1–2, 14.1–4, 5.1, 7.2–7, 8.1, 8.3, 8.4, 11.1–4, 11.6, 2.1–5, 6.9, 4.1,
4.2, 9.1, 9.3, 9.4, 10.1, 10.2, 10.9.
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In the electronic version of this book, most symbols that are used with a fixed meaning
are hyperlinked to their definitions, although the fact that such hyperlinks exist is not made
visible.

Many exercises at varying levels of difficulty are included, with many comments, hints, or
solutions in the back of the book.
This book began as lecture notes for an advanced graduate course called “Probability

on Trees” that Lyons gave in Spring 1993, but its emphasis has been transformed over the
intervening years. We are grateful to Rabi Bhattacharya for having suggested that he teach
such a course. We have attempted to preserve the informal flavor of lectures.
After Peres joined as a coauthor, writing and research became intertwined, and many delays

ensued. Over the course of many months together in Jerusalem, Berkeley, and Redmond, the
authors planned the content of most chapters, but the great majority of the actual writing was
done by Lyons. Exceptions include especially Chapters 13 and 14 as well as a few sections
of other chapters that were mostly written by Peres. Several chapters are based on joint
works with Itai Benjamini, Robin Pemantle, and Oded Schramm. A few of the authors’ new
results appear here for the first time; they are due to both authors in about equal measure.
Lyons was responsible for all other aspects of authorship of the book, such as drawing figures,
preparing the index, ensuring consistent notation, and typography; most remaining errors can
be attributed to him.
Lyons is grateful to the Institute for Advanced Studies and the Institute of Mathematics,

both at the Hebrew University of Jerusalem, and to Microsoft Research for support during
some of the writing. We are grateful to Brian Barker, Jochen Geiger, Janko Gravner, Yiping
(Kenneth) Hu, Svante Janson, Tri Minh Lai, Steve Morrow, Peter Mörters, Minwoo Park,
Perla Sousi, Jason Schweinsberg, Jeff Steif, Pengfei Tang, and Ádám Timár for noting several
corrections to the manuscript. Section 6.6 and much of Chapter 13 are based on lectures
that Peres gave in Berkeley, which were scribed by Asaf Nachmias. In addition, Gábor Pete
helped with editing a few sections and provided a careful reading and thoughtful comments
throughout. Special thanks are due to Jacob Magnusson for his very thorough and careful
reading, which uncovered many small mistakes and possible improvements.

Russell Lyons Yuval Peres
Indiana University Microsoft Corporation
rdlyons@indiana.edu peres@microsoft.com
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1

1 Some
Highlights

This chapter surveys a few of the highlights to be encountered in this book, mainly,
Chapters 2, 3, 4, 5, 15, and 16. Several of the topics in the book do not appear at all here
since they are not as suitable to a quick overview. Also, we concentrate in this overview on
trees, since it is easiest to use them to illustrate many of our themes.

1.1 Graph Terminology

For later reference, we introduce in this section the basic notation and terminology for
graphs. A graph is a pair G = (𝖵, 𝖤), where 𝖵 is a set of vertices and 𝖤 is a symmetric
irreflexive subset of 𝖵 × 𝖵, called the edge set. Irreflexive means that 𝖤 contains no element
of the form (x, x). The word symmetric means that (x, y) ∈ 𝖤 iff (y, x) ∈ 𝖤; here, x and y are
called the endpoints of (x, y). The symmetry assumption is usually phrased by saying that
the graph is undirected or that its edges are unoriented. Without this symmetry assumption,
the graph is called directed. If we need to distinguish the two, we write an unoriented edge
as [x, y], whereas an oriented edge is written as ⟨x, y⟩. An unoriented edge can be thought
of as the pair of oriented edges with the same endpoints. If (x, y) ∈ 𝖤, then we call x and
y adjacent or neighbors, and we write x ∼ y. The degree of a vertex is the number of its
neighbors. If this is finite for each vertex, we call the graph locally finite. If the degree of
every vertex is the same number d, then the graph is called regular or d-regular. If x is
an endpoint of an edge e, then we also say that x and e are incident, whereas if two edges
share an endpoint, then we call those edges adjacent. If we have more than one graph under
consideration, we distinguish the vertex and edge sets by writing 𝖵(G) and 𝖤(G). A subgraph
of a graph G is a graph whose vertex set is a subset of 𝖵(G) and whose edge set is a subset of
𝖤(G). One can define the product of two graphs Gi = (𝖵i, 𝖤i) (i = 1, 2) in various ways. The
one we use almost exclusively is the Cartesian product G = (𝖵, 𝖤) with 𝖵 := 𝖵1 × 𝖵2 and

𝖤 :=
{((x1, x2), (y1, y2)

)
;

(
x1 = y1, (x2, y2) ∈ 𝖤2

)
or

((x1, y1) ∈ 𝖤1, x2 = y2
)}

;

this product graph is denoted G = G1 □ G2.
A path* in a graph is a sequence of vertices where each successive pair of vertices is an

edge in the graph; it is said to join its first and last vertices. When a path does not pass

* In graph theory, a path is necessarily self-avoiding. What we call a path is called in graph theory a walk.
However, to avoid confusion with random walks, we do not adopt that terminology.
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through any vertex (resp., edge) more than once, we will call it vertex simple (resp., edge
simple). We’ll just say simple also to mean vertex simple, which implies edge simple. A
finite path with at least one edge and whose first and last vertices are the same is called a
cycle. A cycle is called simple if no pair of vertices are the same except for its first and last
ones. A graph is connected if, for each pair x ̸= y of its vertices, there is a path joining x to
y. The distance between x and y is the minimum number of edges among all paths joining
x and y, denoted either d(x, y) or dist(x, y). A graph with no cycles is called a forest; a
connected forest is a tree.
If there are numbers (weights) c(e) assigned to the edges e of a graph, the resulting object is

called a network. Given a network G = (𝖵, 𝖤) with weights c(•) and a subset K of its vertices,
the induced subnetwork G↾K is the subnetwork with vertex set K , edge set (K ×K)∩𝖤, and
weights c↾

�(K × K) ∩ 𝖤
�
.

Sometimes we work with objects more general than graphs, called multigraphs. A
multigraph is a pair of sets, 𝖵 and 𝖤, together with a pair of maps 𝖤→ 𝖵, denoted e 7→ e−

and e 7→ e+. The images of e are called the endpoints of e, the former being its tail and the
latter its head. If e− = e+ = x, then e is a loop at x. Edges with the same set of endpoints
are called parallel or multiple. If the multigraph is undirected, then for every edge e ∈ 𝖤,
there is an edge −e ∈ 𝖤 such that (−e)− = e+ and (−e)+ = e−. For a vertex x of an undirected
multigraph, its degree is |{e ; e− = x}|. Sometimes we use paths of edges rather than of
vertices; in this case, the head of each edge must equal the tail of the next edge. Given a
subset K ⊆ 𝖵, the multigraph G/K obtained by identifying K to a single vertex z /∈ 𝖵 is
the multigraph whose vertex set is (𝖵 \ K) ∪ {z} and whose edge set is obtained from 𝖤 by
replacing the tail and head maps so that every tail or head that took a value in K now takes the
value z. A similar operation is contraction of an edge e, which is the result of first deleting e
and then identifying e− and e+; we denote this graph by G/e. A multigraph that is a graph is
called a simple graph.
Let G1 = (𝖵1, 𝖤1) and G2 = (𝖵2, 𝖤2) be two (multi)graphs. A homomorphism of G1 to G2

is a map ϕ:G1 → G2 such that whenever x and e are incident in G1, then so are ϕ(x) and
ϕ(e) in G2. When the graph is directed, then ϕ must also preserve orientation of edges, that
is, if the head and tail of e are x and y, respectively, then the head and tail of ϕ(e) must be
ϕ(x) and ϕ(y), respectively. If in addition, these graphs come with weight functions c1 and
c2, so that they are networks, then a network homomorphism is a graph homomorphism ϕ

that satisfies c1(e) = c2(ϕ(e)) for all edges e ∈ 𝖤1. If ϕ induces bijections of 𝖵1 to 𝖵2 and
of 𝖤1 to 𝖤2, then ϕ is called an isomorphism. When G1 = G2, an isomorphism is called an
automorphism. A homomorphism ϕ:G1 → G2 extends to map each subset A of G1 to a
subset ϕ(A) of G2 by mapping all elements of A by ϕ. We also extend ϕ to collections A of
subsets of G1 by applying ϕ to all elements of A.

1.2 Branching Number
Our trees will usually be rooted, meaning that some vertex is designated as the root,

denoted o. We imagine the tree as growing (upward) away from its root. Each vertex then
has branches leading to its children, which are its neighbors that are farther from the root.
For the purposes of this chapter, we do not allow the possibility of leaves, that is, vertices
without children.
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How do we assign an average branch-

Figure 1.1. The binary tree.

ing number to an arbitrary infinite locally
finite tree? If the tree is a binary tree, as
in Figure 1.1, then clearly the answer will
be 2. But in the general case, since the
tree is infinite, no straight average is avail-
able. We must take some kind of limit or
use some other procedure, but we will be
amply rewarded for our efforts.
One simple idea is as follows. Let Tn be the set of vertices at distance n from the root, o,

called the nth level of T . Define the lower (exponential) growth rate of the tree to be

gr T := lim inf
n→∞

|Tn |1/n .

This certainly will give the number 2 to the binary tree. One can also define the upper
(exponential) growth rate

gr T := lim sup
n→∞

|Tn |1/n

and the (exponential) growth rate

gr T := lim
n→∞

|Tn |1/n

when the limit exists. However, notice that these notions of growth barely account for the
structure of the tree: only |Tn | matters, not how the vertices at different levels are connected to
each other. Of course, if T is spherically symmetric, meaning that for each n, every vertex at
distance n from the root has the same number of children (which may depend on n), then there
is really no more information in the tree than that contained in the sequence


|Tn | ; n ≥ 0
�
.

For more general trees, however, we will use a different approach.
Consider the tree as a network of pipes and imagine water entering the network at the root.

However much water enters a pipe leaves at the other end and splits up among the outgoing
pipes (edges). Formally, this means that we consider a nonnegative function θ on the edges of
T , called a flow, with the property that for every vertex x other than the root, if x has parent z
and children y1, . . . , yd, then θ((z, x)) = ∑d

i=1 θ((x, yi)). We say that θ(e) is the amount of
water flowing along e and that the total amount of water flowing from the root to infinity is∑k

j=1 θ((o, x j)), where the children of the root o are x1, . . . , xk .
Consider the following sort of restriction on a flow: given 𝜆 ≥ 1, suppose that the amount

of water that can flow through an edge at distance n from o is only 𝜆−n. In other words, if
x ∈ Tn has parent z, then the restriction is that θ((z, x)) ≤ 𝜆−n. If 𝜆 is too big, then perhaps
no positive amount of water can flow from the root to infinity. Indeed, consider the binary
tree. Then the equally splitting flow that sends an amount 2−n through each edge at distance
n from the root will satisfy the restriction imposed when 𝜆 ≤ 2 but not for any 𝜆 > 2. In fact,
it is intuitively clear that there is no way to get any water to flow when 𝜆 > 2. Obviously,
this critical value of 2 for 𝜆 is the same as the branching number of the binary tree – if the
tree were ternary, then the critical value would be 3. So let us make a general definition: the
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branching number of a tree T is the supremum of those 𝜆 that admit a positive total amount
of water to flow through T ; denote this critical value of 𝜆 by br T .
Let’s spend some time on this new concept. For a vertex x other than the root, let e(x)

denote the edge that joins x to its parent. The total amount of water flowing is, by definition,∑
x∈T1

θ(e(x)). If we apply the flow condition to each x in T1, then we see that this sum
also equals

∑
x∈T2

θ(e(x)). Induction shows, in fact, that it equals
∑

x∈Tn
θ(e(x)) for every

n ≥ 1. When the flow is constrained in the way we have specified, then this sum is at most∑
x∈Tn

𝜆−n = |Tn |𝜆−n. Now if we choose 𝜆 > gr T , then lim infn→∞ |Tn |𝜆−n = 0, whence for
such 𝜆, no water can flow. Conclusion:

br T ≤ gr T . (1.1)
Often, as in the case of the binary tree, equality holds here. However, there are many examples
of strict inequality.
Before we give an example of strict inequality, here is another example where equality

holds in (1.1).

Example 1.1. If T is a tree such that vertices at even distances from o have two children
whereas the rest have three children, then br T = gr T =

√
6. Why? It is easy to see that

gr T =
√

6, whence by (1.1), it remains to show that br T ≥
√

6. In other words, it remains to
show that, given 𝜆 <

√
6, a positive amount of water can flow to infinity under the constraints

described. Indeed, we can use the water flow with amount 6−n/2 flowing on those edges at
distance n from the root when n is even and with amount 6−(n−1)/2/3 flowing on those edges
at distance n from the root when n is odd.

More generally, one can show (Exercise 1.2) that equality holds in (1.1) whenever T is
spherically symmetric.

Now we give an example where strict inequality holds in (1.1).

Example 1.2. (The 1–3 Tree) We will con-
struct a tree T embedded in the upper half-
plane with o at the origin. We’ll have |Tn | = 2n,

o
Figure 1.2. A tree with branch-
ing number 1 and growth rate 2.

but we’ll connect them in a funny way. List
Tn in clockwise order as ⟨xn

1 , . . . , xn
2n ⟩. Let

xn
k
have one child if k ≤ 2n−1 and three chil-

dren otherwise; see Figure 1.2. Define a ray
in a tree to be an infinite path from the root
that doesn’t backtrack. If x is a vertex of T
that does not have the form xn

2n , then there are
only finitely many rays that pass through x.
This means that water cannot flow to infinity
through such a vertex x when 𝜆 > 1. That
leaves only the possibility of water flowing
along the single ray consisting of the vertices
xn

2n , but that’s impossible too. Hence br T = 1,
yet gr T = 2.
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Example 1.3. If T (1) and T (2) are trees, form a
new tree T (1) ∨T (2) from disjoint copies of T (1)
and T (2) by joining their roots to a new point
taken as the root of T (1) ∨ T (2) (Figure 1.3).
Then

br
(
T (1) ∨ T (2)) = br T (1) ∨ br T (2)

since water can flow in the join T (1) ∨ T (2) iff
water can flow in one of the trees. Here, as

T (1) T (2)

o

Figure 1.3. Joining two trees.usual in probability, we use a ∨ b to mean
max{a, b} when a and b are real numbers.

Although gr T is easy to compute, br T may not be. Nevertheless, it is the branching
number that is much more important. Theorems to be described shortly will bear out this
assertion. We will develop tools to compute br T in many common situations.

1.3 Electric Current

We can ask another flow question on trees, this one concerning electrical current. All
electrical terms are given precise mathematical definitions in Chapter 2, but for now, we give
some bare definitions to sketch the arc of some of the fascinating and surprising connections
that we develop later. If positive numbers c(e) are assigned to the edges e of a tree, we
may call these numbers conductances, and in that case, the energy of a flow θ is defined to
be

∑
e θ(e)2/c(e). We say that electrical current flows from the root to infinity if there is a

nonzero flow with finite energy.
Here’s our new flow question: if 𝜆−n is the conductance of edges at distance n from the

root of T , will current flow?

Example 1.4. Consider the binary tree. The equally splitting flow has finite energy for every
𝜆 < 2, so in those cases, electrical current does flow. One can show that when 𝜆 ≥ 2, not
only does the equally splitting flow have infinite energy, but so does every nonzero flow
(Exercise 1.4). Thus, current flows in the infinite binary tree iff 𝜆 < 2. Note the slight
difference to water flow: when 𝜆 = 2, water can still flow on the binary tree.

In general, there will be a critical value of 𝜆 below which current flows and above which it
does not. In the example of the binary tree that we just analyzed, this critical value was the
same as that for water flow. Is this equality special to nice trees, or does it hold for all trees?
We have seen an example of a strange tree (another is in Exercise 1.3), so we might doubt its
generality. However, it is indeed a general fact (Lyons, 1990):

Theorem 1.5.* If 𝜆 < br T , then electrical current flows, but if 𝜆 > br T , then it does not.

* This will follow from Theorem 3.5 and the discussion in Section 2.2.
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1.4 Random Walks

There is a striking, but easily established, correspondence between electrical networks
and random walks on graphs (or on networks). Namely, given a finite connected graph G
with conductances (that is, positive numbers) assigned to the edges, we consider the random
walk that can go from a vertex only to an adjacent vertex and whose transition probabilities
from a vertex are proportional to the conductances along the edges to be taken. That is, if x
is a vertex with neighbors y1, . . . , yd and the conductance of the edge (x, yi) is ci , then the
transition probability from x to yj is p(x, yj) := cj

/∑d
i=1 ci . Now consider two fixed vertices

a0 and a1 of G. A voltage function on the vertices is then a function v such that v(ai) = i for
i = 0, 1 and for every other vertex x ̸= a0, a1, the equation v(x)∑d

i=1 ci =
∑d

i=1 civ(yi) holds,
where the neighbors of x are y1, . . . , yd. In other words, v(x) is a weighted average of the
values at the neighbors of x. We will see in Section 2.1 that voltage functions exist and are
unique. The following proposition provides the basic connection between random walks and
electrical networks:

Proposition 1.6. (Voltage as Probability) For every vertex x, the voltage at x equals the
probability that when the corresponding random walk starts at x, it will visit a1 before it
visits a0.

The proof of this proposition will be simple: In outline, there is a discrete Laplacian (a
difference operator) that will define a notion of harmonic function. Both the voltage and the
probability mentioned are harmonic functions of x. The two functions clearly have the same
values at ai (the “boundary” points), and the uniqueness principle holds for this Laplacian,
whence the functions agree at all vertices x. This is developed in detail in Section 2.1.

a1

Figure 1.4. Identifying a level to a vertex, a1.

What does this say about our trees? Given N , identify all the vertices of level N , that is, TN ,
to one vertex, a1 (see Figure 1.4). Use the root as a0. Then, according to Proposition 1.6, the
voltage at x is the probability that the random walk visits level N before it visits the root when
it starts from x. When N → ∞, the limiting voltages are all 0 iff the limiting probabilities are
all 0, which is the same thing as saying that on the infinite tree, the probability of visiting the
root from any vertex is 1, in other words, the random walk is recurrent. Although we have
not yet defined “current,” we’ll see that no current flows across edges whose endpoints have
the same voltage. This will imply, then, that no electrical current flows iff the random walk is
recurrent. Contrapositively, electrical current flows iff the random walk is transient. In this
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way, electrical networks will be a powerful tool to help us decide whether a random walk is
recurrent or transient. These ideas are detailed in Section 2.2.
Earlier we considered conductances 𝜆−n on

edges at distance n from the root. In this case,

𝜆

1

1

1

Figure 1.5. The relative weights at a
vertex. The tree is growing upwards.

the conductances decrease by a factor of 𝜆 as the
distance increases by 1, so the relative weights
at a vertex other than the root are as shown in
Figure 1.5. That is, the edge leading back toward
the root is 𝜆 times as likely to be taken as each
edge leading away from the root. Denoting the
dependence of the random walk on the parameter
𝜆 by 𝖱𝖶𝜆, we may translate Theorem 1.5 into a
probabilistic form (Lyons, 1990):

Theorem 1.7.* If 𝜆 < br T , then 𝖱𝖶𝜆 is transient, whereas if 𝜆 > br T , then 𝖱𝖶𝜆 is recurrent.

Is this form intuitive? Consider a vertex other than the root with, say, d children. If we
consider only the distance from o, which increases or decreases at each step of the random
walk, a balance at this vertex between increasing and decreasing occurs when 𝜆 = d. If d is
constant, then the distance from the root undergoes a random walk with a constant bias (for
a fixed 𝜆), so it is easy to see that indeed d is the critical value separating transience from
recurrence. What Theorem 1.7 says is that this same heuristic can be used in the general case,
provided we substitute the “average” br T for d.
We will also see how to use electrical networks to prove Pólya’s wonderful, seminal

theorem that simple random walk on the hypercubic lattice �d is recurrent for d ≤ 2 and
transient for d ≥ 3.

1.5 Percolation

Suppose that we remove edges at random from a tree, T . To be specific, we keep each edge
with some fixed probability p and make these decisions independently for different edges.
This random process is called percolation. As we’ll see, by Kolmogorov’s zero-one law, the
probability that an infinite connected component remains in the tree is either 0 or 1. On the
other hand, we’ll see that this probability is monotonic in p, whence there is a critical value
pc(T) where it changes from 0 to 1. It is also intuitively clear that the “bigger” the tree, the
more likely it is that there will be an infinite component for a given p. That is, the “bigger”
the tree, the smaller is the critical value pc. Thus, pc is vaguely inversely related to a notion
of average size or maybe average branching number. Surprisingly, this vague heuristic is
precise and general (Lyons, 1990):

* This will be proved as Theorem 3.5.
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Theorem 1.8.* For any tree, pc(T) = 1/br T .

What is this telling us? If a vertex x has d children, then the expected number of children
remaining after percolation is dp. If dp is “usually” less than 1, then one would not expect
that an infinite component would remain, whereas if dp is “usually” greater than 1, then
one might guess that an infinite component would be present somewhere. Theorem 1.8 says
that this intuition becomes correct when one replaces the “usual” d by br T . Both Theorems
1.5 and 1.8 say that the branching number of a tree is a single number that captures enough
of the complexity of a general tree to give the critical value for a stochastic process on the
tree. There are other examples as well of this striking phenomenon. Altogether, they make a
convincing case that the branching number is indeed the most important single number to
attach to an infinite tree.

1.6 Branching Processes

In the preceding section, we looked at existence of infinite components after percolation
on a tree. Although this event has probability 0 or 1, if we restrict attention to the connected
component of the root, its probability of being infinite is between 0 and 1. These are
equivalent ways to approach the issue, since, as we’ll see, there is an infinite component
somewhere with probability 1 iff the component of the root is infinite with positive probability.
But looking at the component of the root also suggests a different stochastic process.
Percolation on a fixed tree produces random trees by random pruning, but there is a way

to grow trees randomly that was invented by Bienaymé in 1845. Given probabilities pk
adding to 1 (k = 0, 1, 2, . . .), we begin with one individual, and let it reproduce according
to these probabilities, that is, it has k children with probability pk . Each of these children
(if there are any) then reproduce independently with the same law, and so on forever or
until some generation goes extinct. The family trees produced by such a process are called
(Bienaymé-)Galton-Watson trees. A fundamental theorem in the subject (Proposition 5.4)
is that extinction is a.s. iff m ≤ 1 and p1 < 1, where m :=

∑
k kpk is the mean number of

offspring per individual. This provides further justification for our intuitive understanding
of Theorem 1.8. It also raises a natural question: Given that a Galton-Watson family tree is
nonextinct (infinite), what is its branching number? All the intuition suggests that it is m
a.s., and indeed it is. This was first proved by Hawkes (1981). But here is the idea of a very
simple proof (Lyons, 1990).
According to Theorem 1.8, to determine br T , we may determine pc(T). Thus, let T grow

according to a Galton-Watson process, then perform percolation on T , that is, keep edges
with probability p. Focus on the component of the root. Looked at as a random tree in
itself, this component appears simply as some other Galton-Watson tree; its mean is mp by
independence of the growing and the “pruning” (percolation). Hence, the component of
the root is infinite with positive probability iff mp > 1. This implies that pc = 1/m a.s. on
nonextinction, thus br T = m a.s. on nonextinction. We’ll flesh out the details when we prove
Proposition 5.9.

* This will be proved as Theorem 5.15.
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Now let’s consider another way to measure the size of Galton-Watson trees. Let Zn be the
size of the nth generation in a Galton-Watson process. How quickly does Zn grow? It will be
easy to calculate that E[Zn] = mn. Moreover, a martingale argument will show that the limit
W := limn→∞ Zn/mn always exists (and is finite). When 1 < m < ∞, do we have that W > 0
a.s. on the event of nonextinction? When W > 0, the growth rate of the tree is asymptotically
W mn; this implies the cruder asymptotic gr T = m. It turns out that indeed W > 0 a.s. on the
event of nonextinction, under a very mild hypothesis:

The Kesten-Stigum Theorem (1966). When 1 < m < ∞, the following are equivalent:
(i) W > 0 a.s. on the event of nonextinction;

(ii)
∑∞

k=1 pk k log k < ∞.

This will be shown in Section 12.2. Although condition (ii) appears technical and suggests
some possibly unpleasant analysis, we will enjoy a conceptual proof of the theorem that uses
only extremely simple estimates.

1.7 Random Spanning Trees

The fertile and fascinating field
of random spanning trees is one of

Figure 1.6. A spanning tree in a graph, where
the edges of the graph not in the tree are dashed.

the oldest areas to be studied in this
book but one of the newest to be ex-
plored in depth. A spanning tree of
a (connected) graph is a subgraph
that is connected, contains every ver-
tex of the whole graph, and contains
no cycle: see Figure 1.6 for an ex-
ample. These trees are usually not
rooted. The subject of random span-
ning trees of a graph goes back to
Kirchhoff (1847), who showed its
surprising relation to electrical networks. (Actually, Kirch-
hoff did not think probabilistically; rather, he considered
quotients of the number of spanning trees with a certain
property divided by the total number of spanning trees.
See Kirchhoff’s effective resistance formula in Section 4.2
and Exercise 4.30.) One of Kirchhoff’s results expresses
the probability that a uniformly chosen spanning tree will
contain a given edge in terms of electrical current in the
graph.

To get our feet wet, let’s begin with a very simple finite
graph. Namely, consider the ladder graph of Figure 1.7. 1

2

3

n − 2

n − 1

n

Figure 1.7. A ladder graph.
Among all spanning trees of this graph, what proportion
contain the bottom rung (edge)? In other words, if we were
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to choose uniformly at random a spanning tree, what is the chance that it would contain the
bottom rung? We have illustrated in Figure 1.8 the entire probability spaces for the smallest
ladder graphs.

1/1

3/4

11/15

Figure 1.8. The ladder graphs of heights 0, 1, and 2, together with their spanning trees.

As shown, the probabilities in these cases are 1/1, 3/4, and 11/15. The next one is 41/56.
Do you see any pattern? One thing that is fairly evident is that these numbers are decreasing
but hardly changing. Amusingly, these numbers are every other term of the continued fraction
expansion of

√
3 − 1 = 0.73+ and, in particular, converge to

√
3 − 1. In the limit, then, the

probability of using the bottom rung is
√

3 − 1, and even before taking the limit, this gives an
excellent approximation to the probability. How can we easily calculate such numbers? In
this case, there is a rather easy recursion to set up and solve, but we will use this example to
illustrate the more general theorem of Kirchhoff that we mentioned earlier. In fact, Kirchhoff’s
theorem will show us why these probabilities are decreasing even before we calculate them.
For the next two paragraphs, we will assume some

e

Figure 1.9. A battery is hooked
up between the endpoints of e.

familiarity with electrical networks; those who do not
know these terms will find precise mathematical defini-
tions in Sections 2.1 and 2.2. Suppose that each edge of
our graph (any graph – say, the ladder graph) is an elec-
tric conductor of unit conductance. Hook up a battery
between the endpoints of any edge e – say, the bottom
rung (Figure 1.9). Kirchhoff (1847) showed that the
proportion of current that flows directly along e is then
equal to the probability that e belongs to a randomly
chosen spanning tree!
Now current flows in two ways: some flows directly

across e and some flows through the rest of the net-
work. It is intuitively clear (and justified by Rayleigh’s
monotonicity principle in Section 2.4) that the higher the ladder, the greater the effective
conductance of the ladder minus the bottom rung, hence the less current proportionally will



§7. Random Spanning Trees 11

flow along e, whence by Kirchhoff’s theorem, the less the chance that a random spanning tree
contains the bottom rung. This confirms our observations.

It turns out that generating spanning trees at random according to the uniform measure is
of interest to computer scientists, who have developed various algorithms over the years for
random generation of spanning trees. In particular, this is closely connected to generating a
random state from any Markov chain. See Propp and Wilson (1998) for more on this issue.
Early algorithms for generating a random spanning tree used the matrix-tree theorem,

which counts the number of spanning trees in a graph via a determinant (Section 4.4). A
better algorithm than these early ones, especially for probabilists, was introduced by Aldous
(1990) and Broder (1989). It says that if you start a simple random walk at any vertex of a
finite (connected) graph G and draw every edge it traverses except when it would complete
a cycle (that is, except when it arrives at a previously visited vertex), then when no more
edges can be added without creating a cycle, what will be drawn – amazingly – is a uniformly
chosen spanning tree of G. (To be precise: if Xn (n ≥ 0) is the path of the random walk, then
the associated spanning tree is the set of edges

�[Xn, Xn+1] ; Xn+1 /∈ {X0, X1, . . . , Xn}	.)
This beautiful algorithm is quite efficient and useful for theoretical analysis, yet as a graduate
student, Wilson (1996) found an even better one that we’ll describe in Section 4.1.
Return for a moment to the ladder graphs. We saw that as the height of the ladder tends to

infinity, there is a limiting probability that the bottom rung of the ladder graph belongs to a
uniform spanning tree. What about uniform spanning trees in other sequences of growing
finite graphs? Suppose that G is an infinite graph. Let Gn be finite (connected) subgraphs
with G1 ⊂ G2 ⊂ G3 ⊂ · · · and

∪
Gn = G. Take the uniform spanning tree probability

measure on each Gn. This gives a sequence of probability measures on subsets of edges
of G. Does this sequence converge in a reasonable sense? Lyons conjectured that it does,
and Pemantle (1991) verified that the weak limit exists. (In other words, if µn denotes
the uniform spanning tree measure on Gn and B, B′ are finite sets of edges in G, then
limn µn[B ⊂ Tn, B′ ∩ Tn = ∅] exists, where Tn denotes a random spanning tree in Gn.)
This limit is now called the free uniform spanning forest* on G, denoted 𝖥𝖴𝖲𝖥 or just 𝖥𝖲𝖥.
Considerations of electrical networks play the dominant role in Pemantle’s proof. Pemantle
(1991) discovered the astounding fact that on �d, the uniform spanning forest is a single
tree a.s. if d ≤ 4, but when d ≥ 5, there are infinitely many trees a.s.! We’ll prove this as
Theorem 10.30.

* In graph theory, “spanning forest” usually means a maximal subgraph without cycles, that is, a spanning tree in
each connected component. We mean, instead, a subgraph without cycles that contains every vertex.
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1.8 Hausdorff Dimension

We’ve used water flow on trees to define the branching number, where the amount of water
that can flow through an edge at distance n from the root of a tree is constrained to be at most
𝜆−n. There is a useful way to reformulate this via what’s known as the max-flow min-cut
theorem, proved in Section 3.1. Namely, consider a set Π of edges whose removal leaves the
root o in a finite component. We call such a set a cutset (separating o from infinity). If θ is a
flow from o to infinity, then all the water must flow through Π, so one expects that an upper
bound on the total that can flow is

∑
e(x)∈Π 𝜆−|x |, where e(x) denotes the edge that joins x to

its parent, as before, and |x | denotes the distance of a vertex x to the root. This expectation
turns out to be correct, so that the most that can flow is

inf
{ ∑
e(x)∈Π

𝜆−|x | ; Π is a cutset
}
. (1.2)

Remarkably, this upper bound is always achievable, that is, there is a flow with this amount in
total flowing from the root to infinity; this is the content (in a special case) of the max-flow
min-cut theorem. We are going to use this now to understand Hausdorff dimension, but a
much more detailed and varied motivation of Hausdorff dimension is given in Chapter 15.
A vertex of degree 1 in a tree is called a leaf . By analogy with the leaves of a finite tree,

we call the set of rays of T the boundary (at infinity) of T , denoted ∂T . (Recall that a ray is
an infinite simple path from the root, so ∂T does not include any leaves of T .) Now there is a
natural metric on ∂T : if ξ, η ∈ ∂T have exactly n edges in common, define their distance to
be d(ξ, η) := e−n. Thus, if x ∈ T has more than one child with infinitely many descendants,
then the set of rays going through x,

Bx := {ξ ∈ ∂T ; ξ|x | = x} , (1.3)
has diameter diam Bx = e−|x |. We call a collection C of subsets of ∂T a cover if∪

B∈C
B = ∂T .

▷ Exercise 1.1.
Let T be an infinite locally finite tree.

(a) (Kőnig’s Lemma) Show that ∂T ̸= ∅.
(b) Show that ∂T is compact.

Note that

Π is a cutset (separating o from∞) iff {Bx ; e(x) ∈ Π} is a cover. (1.4)
The Hausdorff dimension of ∂T is defined to be

dim ∂T := sup
{
α ; inf

C a countable cover

∑
B∈C

(diam B)α > 0
}
.



§9. Capacity 13

This number is just a disguised version of the branching number.* Indeed,

br T = sup
{
𝜆 ; water can flow through pipe capacities 𝜆−|x |

}
.

Now use the condition (1.2) to write this as

sup
{
𝜆 ; inf

Π a cutset

∑
e(x)∈Π

𝜆−|x | > 0
}
.

Replace 𝜆 by eα to rewrite it as

exp sup
{
α ; inf

Π a cutset

∑
e(x)∈Π

e−α|x | > 0
}
,

and then use the correspondence (1.4) between cutsets and covers to write this as

exp sup
{
α ; inf

C a cover

∑
B∈C

(diam B)α > 0
}
.

Now we see the disguise revealed as

br T = exp dim ∂T .

Soon we’ll see how this helps us to analyze Hausdorff dimension in Euclidean space.

1.9 Capacity

In Section 1.3, we made the definition

electrical current flows from the root of an infinite tree
⇐⇒ (1.5)

there is a flow with finite energy.

A unit flow on a tree T from the root to infinity is a flow where a total of 1 unit flows from the
root. By identifying vertices x with edges e(x), we may identify a unit flow with a function θ
on the vertices of T that is 1 at the root and that has the property that for all vertices x,

θ(x) =
∑
i

θ(yi) ,

where yi are the children of x. The energy of a flow for the conductances that we’ve been
using as our basic example is then ∑

x∈T
θ(x)2𝜆|x | ,

* Historically, the branching number was defined by Lyons (1990) only after Furstenberg (1970) considered the
Hausdorff dimension of the boundaries of trees, which served as the former’s inspiration.
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whence we may write Theorem 1.5 as

br T = sup
{
𝜆 ; there exists a unit flow θ

∑
x∈T

θ(x)2𝜆|x | < ∞
}
. (1.6)

We can also identify unit flows θ on T with Borel probability measures µ on ∂T via

µ(Bx) = θ(x)
(see Section 15.4). A bit of algebra (Proposition 16.1) will show that (1.6) is equivalent to

br T = exp sup
{
α ; ∃ a probability measure µ on ∂T

∫∫
dµ(ξ) dµ(η)

d(ξ, η)α < ∞
}
.

For α > 0, define the α-capacity of ∂T to be the reciprocal of the minimum energy of a
unit flow for 𝜆 = eα. When we express this purely in terms of probability measures on the
boundary, this will turn out to be the same as the following definition:

capα(∂T)−1 := inf
{∫∫

dµ(ξ) dµ(η)
d(ξ, η)α ; µ a probability measure on ∂T

}
.

Then statement (1.5) says that for α > 0,

random walk with parameter 𝜆 = eα is transient ⇐⇒ capα(∂T) > 0 . (1.7)
It follows from Theorem 1.7 that

the critical value of α for positivity of capα(∂T) is dim ∂T . (1.8)
Theorem 1.8 told us that these same critical values for random walk, electrical networks,

Hausdorff dimension, or capacity are also critical for percolation. But it did not tell us what
happens at the critical value, unlike, say, (1.7) does for random walk. This is more subtle to
analyze for percolation but is also known (Lyons, 1992):

Theorem 1.9.* (Tree Percolation and Capacity) For α > 0, percolation with parameter
p = e−α yields an infinite component a.s. iff capα(∂T) > 0. Moreover,

capα(∂T) ≤ P[the component of the root is infinite] ≤ 2 capα(∂T) .
Although this appears rather abstract, it is very useful. First of all, when T is spherically

symmetric and p = e−α, we can calculate the capacities easily (Exercise 16.1):

capα(∂T) = *,1 + (1 − p)
∞∑
n=1

1
pn |Tn |

+-
−1

.

Second, one can use this theorem in combination with (1.7); this allows us to translate
problems freely between the domains of random walks and percolation (Lyons, 1992). Third,
we describe how it can be used to analyze Brownian motion in the next section.

* This will be proved as Theorem 16.3. The case of the first part of this theorem where all the degrees are
uniformly bounded was shown earlier by Fan (1989, 1990).
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1.10 Embedding Trees into Euclidean Space

The results described previously, especially those concerning percolation, can be translated
to give interesting results on closed sets in Euclidean space. We describe only the simplest
such correspondence here.*
Let b ≥ 2 be an integer. An interval of the form [k/bn, (k + 1)/bn] for integers k and n is

called b-adic of order n. For a closed nonempty set E ⊆ [0, 1], consider the system of b-adic
subintervals of [0, 1]. We’ll associate a tree to E as follows: Those intervals whose inter-
section with E is nonempty will form the vertices
of the tree. Two such intervals are connected by an
edge iff one contains the other and the ratio of their
lengths is b. The root of this tree is [0, 1]. Denote
this tree by T[b](E). An example is illustrated in
Figure 1.10 with b = 4. Were it not for the fact that
certain numbers have two representations in base
b, we could identify ∂T[b](E) with E. Because of
this multiplicity of representation, there are other
trees whose boundary we could identify with E.
That is, given a tree T , suppose that we associate
to each x ∈ Tn a b-adic interval Ix ⊆ [0, 1] of order
n in such a way that |Ix ∩ Iy | ≤ 1 for |x | = |y |,
x ̸= y, and that Ix is contained in Iz when z is the
parent of x. Then the tree T codes the closed set

0 1

Figure 1.10. Coding by trees.
E :=

∩
n≥0

∪
x∈Tn

Ix . The difference between ∂T
and ∂T[b](E) is at most countable. As we will see, this implies, for example, that these two
boundaries have the same Hausdorff dimension.
Hausdorff dimension is defined for subsets of [0, 1] just as we defined it for ∂T : A cover

of E is a collection C of sets whose union contains E, and

dim E := sup
{
α ; inf

C a cover of E

∑
B∈C

(diam B)α > 0
}
,

where diam B denotes the (Euclidean) diameter of E. When T codes E, covers of ∂T by sets
of the form Bx (as in (1.3)) correspond to covers of E by b-adic intervals, but of diameter
b−|x |, rather than e−|x |. One can show that restricting to covers of E by b-adic intervals does
not change the computation of Hausdorff dimension, whence we may conclude (compare the
calculation at the end of Section 1.8) that

dim E =
dim ∂T
log b

= logb(br T) . (1.9)

Example 1.10. Let E be the Cantor middle-thirds set. If b = 3, then the binary tree codes E
(when the obvious 3-adic intervals are associated to the binary tree), whence (1.9) tells us

* This correspondence was part of Furstenberg’s motivation in 1970 for looking at the dimension of the boundary
of a tree.



16 Chap. 1: Some Highlights

that the Hausdorff dimension of E is log3 2 = log 2/log 3. If we use a different base, b, to
code E by a tree T , we will have br T = blog3 2.

Capacity in Euclidean space is also defined as we defined it on the boundary of a tree:

(capαE)−1 := inf
{∫∫

dµ(x) dµ(y)
|x − y |α ; µ a probability measure on E

}
.

It was shown by Benjamini and Peres (1992) and Pemantle and Peres (1995b) (see Sec-
tion 16.3) that when T codes E,

1
2

capαE ≤ 1
1 − b−α

capα log b∂T ≤ 3b capαE . (1.10)
This means that the percolation criterion Theorem 1.9 can be used in Euclidean space. This,
and similar extensions, will allow us in Section 16.4 to analyze Brownian motion in �d by
replacing the path of Brownian motion by an “intersection-equivalent” random fractal that
is much easier to analyze, being an embedding of a Galton-Watson tree. This will allow us
to determine whether Brownian motion has double points, triple points, etc., in a very easy
fashion.

1.11 Notes
The product of two graphs, G1 and G2, with 𝖵 := 𝖵1 × 𝖵2 and the choice

𝖤 :=
��(x1, x2), (y1, y2)� ; (x1, y1) ∈ 𝖤1 and (x2, y2) ∈ 𝖤2

	
is called the tensor product, since its adjacency matrix is the tensor product of the adjacency matrices
corresponding to 𝖤1 and 𝖤2. It is denoted G = G1 × G2. The union of G1 □ G2 and G1 × G2 is denoted
G1 ⊠G2. Terminology for graph products is not universal; other terms include “sum” for what we called
the Cartesian product and “product” for the tensor product.

Other recent books that cover material related to the topics of this book include Probability on Graphs
by Geoffrey Grimmett, Reversible Markov Chains and Random Walks on Graphs by David Aldous and
Jim Fill (preliminary version online), Coarse Geometry and Randomness by Itai Benjamini,Markov
Chains and Mixing Times by David A. Levin, Yuval Peres, and Elizabeth L. Wilmer, Probability: The
Classical Limit Theorems by Henry McKean, Random Trees: An Interplay between Combinatorics
and Probability by Michael Drmota, A Course on the Web Graph by Anthony Bonato, Random Graph
Dynamics by Rick Durrett, Complex Graphs and Networks by Fan Chung and Linyuan Lu, The Random-
Cluster Model by Geoffrey Grimmett, Superfractals by Michael Fielding Barnsley, Introduction to
Mathematical Methods in Bioinformatics by Alexander Isaev, Gaussian Markov Random Fields by
Håvard Rue and Leonhard Held, Conformally Invariant Processes in the Plane by Gregory F. Lawler,
Random Networks in Communication by Massimo Franceschetti and Ronald Meester, Percolation
by Béla Bollobás and Oliver Riordan, Probability and Real Trees by Steven Evans, Random Trees,
Lévy Processes and Spatial Branching Processes by Thomas Duquesne and Jean-François Le Gall,
Combinatorial Stochastic Processes by Jim Pitman, Random Geometric Graphs by Mathew Penrose,
Random Graphs by Béla Bollobás, Random Graphs by Svante Janson, Tomasz Luczak, and Andrzej
Ruciński, Phylogenetics by Charles Semple and Mike Steel, Stochastic Networks and Queues by
Philippe Robert, Random Walks on Infinite Graphs and Groups by Wolfgang Woess, Random Walk: A
Modern Introduction by Gregory F. Lawler and Vlada Limic, Percolation by Geoffrey Grimmett, Noise
Sensitivity of Boolean Functions and Percolation by Christophe Garban and Jeffrey E. Steif, Stochastic
Interacting Systems: Contact, Voter and Exclusion Processes by Thomas M. Liggett, and Discrete
Groups, Expanding Graphs and Invariant Measures by Alexander Lubotzky.
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1.12 Collected In-Text Exercises

1.1. Let T be an infinite locally finite tree.
(a) (Kőnig’s Lemma) Show that ∂T ̸= ∅.
(b) Show that ∂T is compact.

1.13 Additional Exercises

1.2. Show that br T = gr T when T is a spherically symmetric tree.

1.3. Here we’ll look more closely at the joining construction of Example 1.3. We will put together
two spherically symmetric trees T (1) and T (2) such that br

�
T (1) ∨ T (2)� = 1, yet at the same time,

gr
�
T (1) ∨ T (2)� > 1. Let nk ↑ ∞. Let T (1) (resp., T (2)) be a tree such that x has one child (resp.,

two children) for n2k ≤ |x | ≤ n2k+1 and two (resp., one) otherwise; this is shown schematically in
Figure 1.11. If nk increases sufficiently rapidly, then br T (1) = br T (2) = 1, so br

�
T (1) ∨ T (2)� = 1. Prove

that if ⟨nk ⟩ increases sufficiently rapidly, then gr
�
T (1) ∨ T (2)� = √2. Furthermore, show that the set of

possible values of gr
�
T (1) ∨ T (2)� over all sequences ⟨nk ⟩ is

�√
2, 2

�
.

1 1

1 12 2

2 2

Figure 1.11. A schematic of a tree with branching number 1 and growth rate
√

2.

1.4. Complete Example 1.4 by showing that when 𝜆−n is the conductance of edges at distance n
from the root of a binary tree T , current does not flow for 𝜆 ≥ 2.
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2 Random Walks
and Electric Networks

The two topics of the title of this chapter do not sound related to each other, but in fact,
they are intimately connected in several extraordinarily useful ways. This is a discrete version
of profound and detailed connections between continuous potential theory and Brownian
motion, which we describe briefly in Section 2.9. The next chapter applies most of our work
here to particularly interesting classes of networks. For example, we’ll prove that the critical
parameter 𝜆 separating transience from recurrence for the biased random walk 𝖱𝖶𝜆 on a
general tree is equal to the branching number of the tree (as mentioned in Theorem 1.7).
Then Chapter 4 explains a marvelous link to a third topic, uniform spanning trees. Later,
in Chapter 9, we examine some of the subtleties inherent in infinite electrical networks.
Those ideas are then combined in Chapter 10 with the web of ideas in Chapter 4 to study the
analogues of uniform spanning trees in infinite networks.
Our principal interest in this chapter centers around transience and recurrence of irreducible

reversible Markov chains, otherwise known as network-based random walks. Although we
develop mathematically rigorous tools from electrical network theory for this purpose, these
tools will have the added benefit of allowing us to estimate hitting and cover times in finite
networks. They also give variances for a field of Gaussian random variables that is connected
to the network; this field is known variously as the canonical Gaussian field or the discrete
Gaussian free field. Techniques from the linear algebra of inner-product spaces give electrical
network theory a rich structure, which will be extended in Chapter 9. Many supplementary
results, often not requiring reversibility, are in the exercises at the end of the chapter.

2.1 Circuit Basics and Harmonic Functions

If a Markov chain starts at a state x, how can we determine whether it is bound to visit
another given state a, that is, whether the chance that it ever visits a is 1 or is less than 1?
Our theory will apply only to reversible Markov chains, where we call a Markov chain

reversible if there is a positive function x 7→ π(x) on the state space such that the transition
probabilities satisfy π(x)p(x, y) = π(y)p(y, x) for all pairs of states x, y. (Such a function
π( • ) will then provide a stationary measure: see Exercise 2.1 for this and for why we use the
name “reversible.” Note that π( • ) is not generally a probability measure.) In this case, make
a graph G (possibly with loops) by taking the states of the Markov chain for the vertices of G
and joining two vertices x, y by an edge when p(x, y) > 0. Assign weight

c(x, y) := π(x)p(x, y) (2.1)
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to that edge; note that the condition of reversibility ensures that this weight is the same no
matter in what order we take the endpoints of the edge. With this network in hand, the Markov
chain may be described as a random walk on G: when the walk is at a vertex x, it chooses
randomly among the vertices adjacent to x with transition probabilities proportional to the
weights of the edges incident to x. Conversely, every connected graph with (positive) weights
on the edges such that the sum of the weights incident to every vertex is finite gives rise to a
random walk with transition probabilities proportional to the weights. Such a random walk
is an irreducible reversible Markov chain: define π(x) to be the sum of the weights incident
to x.* Often, all the edge weights are equal; we call the random walk in this case simple
random walk. When a graph is given without weights, we take the weights to be identically
1 as a default.
The most well known example of a reversible Markov chain is gambler’s ruin. A gambler

needs $n but has only $k (1 ≤ k ≤ n − 1). He plays games that give him chance p of winning
$1 and chance q := 1 − p of losing $1 each time. When his fortune is either $n or 0, he
stops. What is his chance of ruin (that is, of reaching 0 before n)? We will answer this in
Example 2.4 by using the following weighted graph. The vertices are {0, 1, 2, . . . , n}, the
edges are between consecutive integers, and the weights are c(i, i + 1) = c(i + 1, i) = (p/q)i .

Although we are interested ultimately in recurrence or transience of infinite networks, we
begin by studying random walks on finite networks. In fact, our first results will be about
finite Markov chains that need not be reversible. Suppose that A is a subset of states. Write τA
for the first time that the Markov chain visits (“hits”) some vertex in A; if the chain happens
to start in A, then τA = 0. Occasionally, we will use τ+

A, which is the first time after 0 that the
chain visits A; this is different from τA only when the chain starts in A. Usually A will be a
singleton.

Consider the probability that the Markov chain visits A before it visits a disjoint subset Z
as a function of its starting point x:

F(x) := Px[τA < τZ ] . (2.2)

The key idea here is to let x vary, even if we are interested in a particular x. Recall that ↾
indicates the restriction of a function to a set. Clearly F↾A ≡ 1, F↾Z ≡ 0, and for x ̸∈ A∪ Z ,

F(x) =
∑
y

Px[first step is to y]Px[τA < τZ | first step is to y] =
∑
x∼y

p(x, y)F(y) .

In the reversible case, we can write further that

F(x) =
1

π(x)
∑
x∼y

c(x, y)F(y) ,

* Suppose that we consider an edge e of G to have length c(e)−1. Run a Brownian motion on G and observe it
only when it reaches a vertex different from the previous one. Then we see the random walk on G just described (if
we ignore the fact that the times between observations vary). There are several equivalent ways to define rigorously
Brownian motion on G; one way is described in Section 2.9. See Georgakopoulos and Winkler (2014) for an
interesting analysis of Brownian motion on finite networks.
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where x ∼ y indicates that x and y are adjacent in G. In the special case of simple random
walk, this equation becomes

F(x) =
1

deg x

∑
x∼y

F(y) ,

where deg x is the degree of x, that is, the number of edges incident to x. In words, F(x)
is the average of the values of F at the neighbors of x. In general, this is still true, but the
average is taken with weights.

This averaging property is so important that it has a name: a function f is harmonic at x
when

f (x) =
∑
x∼y

p(x, y) f (y) .

If f is harmonic at each point of a set W , then we say that f is harmonic on W . Harmonic
functions satisfy a maximum principle. To state it, we use the following concept: the chain
absorbed off of W is the Markov chain whose transition probabilities are modified only so
that p(x, x) = 1 for x /∈ W .

Maximum Principle. Let W be a set of states of a Markov chain on a finite or countable
state space 𝖵. If f :𝖵→ � is a function that is harmonic on W and the supremum of f on 𝖵
is achieved at some element x0 ∈ W , then f is constant on all states accessible from x0 in the
chain absorbed off of W .

Proof. Let K := {y ∈ 𝖵 ; f (y) = sup f }. Note that if x ∈ W ∩ K and p(x, y) > 0, then
y ∈ K because f is harmonic at x. Hence the conclusion follows. ◀

This leads to the

Uniqueness Principle. Let W be a finite proper subset of states of a Markov chain on a finite
or countable state space 𝖵. Suppose that 𝖵 \W is accessible from every state in W for the
chain absorbed off of W . If f , g:𝖵→ � are two functions that are both harmonic on W and
agree off W (that is, f (x) = g(x) for all x /∈ W ), then f = g.

Proof. Let h := f − g. We claim that h ≤ 0. This suffices to establish the corollary, since
then h ≥ 0 by symmetry, whence h ≡ 0.
Now h = 0 off W . Since W is finite, h achieves its overall supremum at some point x0 ∈ 𝖵.

If x0 /∈ W , then h ≤ 0, as desired. On the other hand, if x0 ∈ W , then by the maximum
principle, h(x0) ≤ sup h↾(𝖵 \W ) = 0, which again shows that h ≤ 0. ◀

Here are two consequences of the uniqueness principle: (1) The harmonicity of the function
x 7→ Px[τA < τZ ] on a finite irreducible Markov chain (together with its values where it is
not harmonic) characterizes this function. (2) If f , f1, and f2 are harmonic on some finite
proper subset W ⊂ 𝖵 and a1, a2 ∈ �with f = a1 f1 + a2 f2 on 𝖵 \W , then f = a1 f1 + a2 f2
everywhere. This is one form of the superposition principle.
Given a function defined on a subset of states, the Dirichlet problem asks whether the

given function can be extended to all states of the Markov chain so as to be harmonic wherever
it was not originally defined. The answer is often yes:
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Existence Principle. Let W be a proper subset of states of a Markov chain on a finite
or countable state space 𝖵. If f0:𝖵 \ W → � is bounded, then ∃ f :𝖵 → � such that
f ↾(𝖵 \W ) = f0 and f is harmonic on W .

Proof. For any starting point x of the Markov chain, let X be the first vertex in 𝖵 \W visited
by the Markov chain if 𝖵 \W is indeed visited. Let Y := f0(X) when 𝖵 \W is visited and
Y := 0 otherwise. It is easily checked that f (x) := Ex[Y ] works by using first-step analysis,
that is, the same method as we used to see that the function F of (2.2) is harmonic. ◀
An example for simple random walk is shown in Figure 2.1, where the function was

specified to be 1 at two vertices, 0.5 at another, and 0 at a fourth; the function is harmonic
elsewhere.

Figure 2.1. A harmonic function on a 40 × 40 square
grid with four specified values where it is not harmonic.

The function F of (2.2) is the particular case of the existence principle whereW = 𝖵\(A∪Z),
f0↾A ≡ 1, and f0↾Z ≡ 0.
For finite Markov chains, we could have immediately deduced the existence principle from

the uniqueness principle: The Dirichlet problem on a finite state space consists of a finite
number of linear equations, one for each state in W . Since the number of unknowns is equal
to the number of equations, the uniqueness principle implies the existence principle.
To make further progress toward our goal of determining whether certain states are bound

to be visited, we will need to assume reversibility, which we do from now on, unless stated
otherwise. The following exercise contains some background information and facts that
we will use about reversible Markov chains. Additional background on Markov chains, not
necessarily reversible, is in Exercises 2.42 and 2.43.
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▷ Exercise 2.1.
(Reversible Markov Chains)

(a) Let P be the transition probability matrix of a Markov chain. Show that if P is
π-reversible, that is, π(x)p(x, y) = π(y)p(y, x) for all states x, y, then π is P-stationary, that
is,

∑
x π(x)p(x, y) = π(y) for all states y.

(b) Let P be the transition probability matrix of a Markov chain and π be P-stationary.
Define the reversed Markov chain to have transition probabilities

p̂(x, y) := π(y)p(y, x)/π(x)

and write P̂ for the associated transition matrix. Show that P̂ is indeed a transition matrix
and that ∀x1, x2, . . . , xn,

π(x1)
n−1∏
i=1

p(xi, xi+1) = π(xn)
n−1∏
i=1

p̂(xn+1−i, xn−i) .

Of course, P is π-reversible iff P = P̂.
(c) Show that if a Markov chain is reversible, then ∀x1, x2, . . . , xn with x1 = xn,

n−1∏
i=1

p(xi, xi+1) =
n−1∏
i=1

p(xn+1−i, xn−i) :

the chance of traversing a cycle is the same in either direction. Show too that this equation
implies reversibility.

(d) Let ⟨Xn⟩ be a random walk on a network G, and let x and y be two vertices in G.
Let P be a path from x to y and P ′ be its reversal, a path from y to x. Show that

Px

�⟨Xn ; n ≤ τy⟩ = P
�
τy < τ+

x

�
= Py

�⟨Xn ; n ≤ τx⟩ = P ′
�
τx < τ+

y

�
,

where τw denotes the first time the random walk visits w, /> τw
+ denotes the first time after 0

that the random walk visits w, and Pu denotes the law of random walk started at u. In words,
paths between two states that don’t return to the starting point and stop at the first visit to the
endpoint have the same distribution in both directions of time.

(e) Consider a random walk on a network G that is either transient or is stopped on the
first visit to a set of vertices Z . Let G (x, y) be the expected number of visits to y for a random
walk started at x; if the walk is stopped at Z , we count only those visits that occur strictly
before visiting Z . Show that for every pair of vertices x and y,

π(x)G (x, y) = π(y)G (y, x) .

(f) Show that random walk on a connected network G is positive recurrent (that is, has a
stationary probability distribution, which is therefore unique) iff

∑
x,y c(x, y) < ∞, in which

case the stationary probability distribution is proportional to π( • ). Show that if the random
walk is not positive recurrent, then π( • ) is a stationary infinite measure.
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To study the solution to the Dirichlet problem, especially for a sequence of subgraphs of an
infinite graph, we will discover that electrical networks are wonderfully suited. Electrical
networks, of course, have a physical meaning whose intuition is useful to us, but also they
can be used as a rigorous mathematical tool. We now spend the rest of the chapter developing
and exploiting this tool.
Mathematically, an electrical network is just a weighted graph.* But now we call the

weights of the edges conductances; their reciprocals are called resistances. (Note that, later,
we will encounter effective conductances and resistances; these are not the same.) We denote
c(x, y)−1 by r(x, y). The reason for this and more new terminology is that not only does it
match physics, but the physics can aid our intuition. We will carefully define everything in
pure mathematical terms but also give a little of the physical background. Whenever we
speak of physics, we will use the symbol in the margin to indicate that it is merely for
intuition and is not used in any proofs whatsoever. Given two subsets A and Z of vertices of a
network, a voltage function is a function on the vertices of the network that is harmonic at all
x /∈ A∪ Z . Usually, the voltage will be specified to be 1 on A and 0 on Z . For example, our
hitting probability function F, defined in (2.2), is such a voltage function. Given a voltage
function v, we define the associated current function i on the edges by

i(x, y) := c(x, y)[v(x) − v(y)] .
Notice that i(x, y) = −i(y, x) and that current flows in the direction of decreasing voltage, by
which we mean that i(x, y) > 0 iff v(x) > v(y). Notice also that whenever v is harmonic at a
vertex x, we have

0 = v(x)
∑
x∼y

c(x, y) −
∑
x∼y

c(x, y)v(y) =
∑
x∼y

i(x, y) .

This property is sufficiently important that it gets a name in a broader context. Namely,
a function θ on ordered pairs of neighboring vertices is called a flow between A and Z if
θ(x, y) = −θ(y, x) for all neighbors x, y and

∑
y∼x θ(x, y) = 0 for all x /∈ A ∪ Z .

This definition of current and this property of current are usually called “laws” as follows.

Ohm’s Law: If x ∼ y, the current i(x, y) from x to y satisfies

v(x) − v(y) = i(x, y)r(x, y) .

Kirchhoff’s Node Law: The current is a flow between A and Z .

Now if we sum the differences of a function, such as the voltage v, on the edges of a cycle,
we get 0. Thus, by Ohm’s law, we deduce

Kirchhoff’s Cycle Law: If x1 ∼ x2 ∼ · · · ∼ xn ∼ xn+1 = x1 is a cycle, then
n∑

k=1

i(xk , xk+1) r(xk , xk+1) = 0 .

* We are ignoring capacitors and inductors, whose usefulness to probability theory is not clear.
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One can also deduce Ohm’s law from Kirchhoff’s two laws, in other words, a flow that
satisfies Kirchhoff’s cycle law is a current. A somewhat more general statement is in the
following exercise.

▷ Exercise 2.2.
Suppose that an antisymmetric function j (meaning that j(x, y) = − j(y, x)) on the edges of a
finite connected network satisfies Kirchhoff’s cycle law and satisfies Kirchhoff’s node law in
the form

∑
x∼y j(x, y) = 0 for all x ∈ W . Show that j is the current corresponding to some

voltage function whose values are specified off W and that the voltage function is unique up
to an additive constant.

The remainder of this section gives some physical background for this terminology. Edges
of the network are made of conducting wires. We hook up a battery or batteries between A
and Z so that the voltage at every vertex in A is 1 and in Z is 0 (or more generally, so that the
voltages on 𝖵 \W are given by some function f0). Sometimes, voltages are called potentials
or potential differences. Voltages v are then established at every vertex and current i runs
through the edges. These functions are observed in experiments to satisfy Ohm’s law and
Kirchhoff’s law. Physically, Ohm’s law, which is usually stated as v = ir in engineering, is an
empirical statement about linear response to voltage differences – certain components obey
this law over a wide range of voltage differences. Kirchhoff’s node law expresses the fact that
charge does not build up at a node (current being the passage rate of charge per unit time). If
we count the currents in the wires corresponding to the batteries, then the sum of the currents
at every vertex is 0, not merely at x /∈ A ∪ Z .

2.2 More Probabilistic Interpretations

Suppose that A = {a} is a singleton. What is the chance that a random walk starting at a
will hit Z before it returns to a? Write this as

P[a → Z] := Pa[τZ < τ+
a ] .

Impose a voltage of v(a) at a and 0 on Z . Since v( • ) is linear in v(a) by the superposition
principle, we have that Px[τa < τZ ] = v(x)/v(a), whence

P[a → Z] =
∑
x

p(a, x)
(
1 − Px[τa < τZ ]

)
=
∑
x

c(a, x)
π(a)

[
1 − v(x)

v(a)
]

=
1

v(a)π(a)
∑
x

c(a, x)[v(a) − v(x)] =
1

v(a)π(a)
∑
x

i(a, x) .

In other words,

v(a) =
∑

x i(a, x)
π(a)P[a → Z] . (2.3)
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Since
∑

x i(a, x) is the total amount of current flowing into the circuit at a (by defini-
tion), we may regard the entire circuit between a and Z as a single conductor of effective
conductance

Ceff := π(a)P[a → Z] =: C (a ↔ Z) , (2.4)
where the last notation indicates the dependence on a and Z . If we need to indicate the
dependence on G, we will write C (a ↔ Z ;G). (Recall that π( • ) is not generally a probability
measure.) The similarity to (2.1) can provide a good mnemonic, but the analogy should not
be pushed too far. We define the effective resistance R(a ↔ Z) to be the reciprocal of the
effective conductance; in case a ∈ Z , then we also define R(a ↔ Z) := 0. One answer to our
earlier question is thus P[a → Z] = C (a ↔ Z)/π(a). In Sections 2.3 and 2.4, we will see
some ways to compute effective conductances.

Now the number of visits to a before hitting Z is a geometric random variable with mean
P[a → Z]−1 = π(a)R(a ↔ Z). According to (2.3), this can also be expressed as π(a)v(a)
when there is unit current flowing from a to Z and the voltage is 0 on Z . This generalizes
as follows. Let GZ (a, x) be the expected number of visits to x strictly before hitting Z by a
random walk started at a. Thus, GZ (a, x) = 0 for x ∈ Z and

GZ (a, a) = P[a → Z]−1 = π(a)R(a ↔ Z) . (2.5)
The function GZ (•, •) is the Green function for the random walk absorbed (or “killed”) on Z .
By definition of current, scaling the voltage by multiplying all values by a constant also scales
the current by the same factor. Whereas in the preceding section, it was useful to take the
voltage to have values 0 and 1 at special vertices, here it will be useful to scale so that the
total current flow is 1, in other words, the current is a unit flow.
Proposition 2.1. (Green Function as Voltage) Let G be a finite connected network. When
a voltage is imposed on {a} ∪ Z so that a unit current flows from a to Z and the voltage is 0
on Z , then the voltage function satisfies v(x) = GZ (a, x)/π(x) for all x.

Proof. We have just shown that this is true for x ∈ {a} ∪ Z , so it suffices to establish that
GZ (a, x)/π(x) is harmonic elsewhere. But by Exercise 2.1, we have that GZ (a, x)/π(x) =
GZ (x, a)/π(a), and the harmonicity of GZ (x, a) is established just as for the function of (2.2).

◀
Given that we now have two probabilistic interpretations of voltage, we naturally wonder

whether current has a probabilistic interpretation. We might guess one by the following
unrealistic but simple model of electricity: positive particles enter the circuit at a, they do
Brownian motion on G (being less likely to pass through small conductors), and, when they
hit Z , they are removed. The net flow rate of particles across an edge would then be the
current on that edge. It turns out that in our mathematical model, this is basically correct:
Proposition 2.2. (Current as Edge Crossings) Let G be a finite connected network. Start
a random walk at a and absorb it when it first visits Z . For x ∼ y, let Sxy be the number of
transitions from x to y. Then E[Sxy] = GZ (a, x)p(x, y) and E[Sxy − Syx] = i(x, y), where i is
the current in G when a potential is applied between a and Z in such an amount that unit
current flows in at a.

Note that we count a transition from y to x when y ̸∈ Z but x ∈ Z , although we do not
count this as a visit to x in computing GZ (a, x).
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Proof. We have

E[Sxy] = E
[ ∞∑
k=0

1[Xk=x,Xk+1=y]
]

=
∞∑
k=0

P[Xk = x, Xk+1 = y]

=
∞∑
k=0

P[Xk = x] p(x, y) = E
[ ∞∑
k=0

1[Xk=x]
]
p(x, y) = GZ (a, x)p(x, y) .

Hence, by Proposition 2.1, we have

∀x, y E[Sxy − Syx] = GZ (a, x)p(x, y) − GZ (a, y)p(y, x)
= v(x)π(x)p(x, y) − v(y)π(y)p(y, x)
= [v(x) − v(y)]c(x, y) = i(x, y) . ◀

Effective conductance is a key quantity because of the following relationship to the question
of transience and recurrence when G is infinite. For an infinite network G, we assume that

∀x
∑
x∼y

c(x, y) < ∞ , (2.6)

so that the associated random walk is well defined. (Of course, this is true when G is
locally finite, that is, the number of edges incident to every given vertex is finite.) It will be
convenient to allow more than one edge between a given pair of vertices: each such edge
has its own conductance. We’ll also allow loops (edges with only one endpoint), but these
may be ignored for our present purposes since they only delay the random walk. Strictly
speaking, then, G may be a multigraph, not a graph. When a random walk moves from x
to y in a multigraph that has several edges connecting x to y, then we think of the walk as
moving along one of those edges, chosen with probability proportional to its conductance.
Thus, the multigraph form of Proposition 2.2 is E[Se] = GZ (a, e−)p(e) and E[Se − S−e] = i(e).
However, we will usually ignore the extra notational complications that arise for multigraphs.
In fact, we have not yet used anywhere that G has only finitely many edges:

▷ Exercise 2.3.
Verify that Propositions 2.1 and 2.2 are valid when the number of edges is infinite but the
number of vertices is finite.

The way we approach infinite networks in this chapter is by taking large finite subgraphs.
More precisely, for an infinite network G, let ⟨Gn⟩ be any sequence of finite subgraphs of G
that exhaust G, that is, Gn ⊆ Gn+1 and G =

∪
Gn. Each edge in Gn is an edge in G, so we

simply give it the same conductance it has in G. We also assume that Gn is the graph induced
in G by 𝖵(Gn). Let Zn be the set of vertices in G \Gn. Let GW

n be the graph obtained from
G by identifying Zn to a single vertex, zn, and then removing loops (but keeping multiple
edges). This graph will have finitely many vertices but may have infinitely many edges even
when loops are deleted if some vertex of Gn has infinite degree. Given a network random
walk on G, if we stop it the first time it reaches Zn, then we obtain a network random walk
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on GW
n until it reaches zn. Now for every a ∈ G, the events [a → Zn] are decreasing in

n, so the limit limn P[a → Zn] is the probability of never returning to a in G, which we
call the escape probability from a. This is positive iff the random walk on G is transient.
Hence, by (2.4), limn→∞ C (a ↔ zn; GW

n ) > 0 iff the random walk on G is transient. We call
limn→∞ C (a ↔ zn) the effective conductance from a to∞ in G and denote it by C (a ↔ ∞)
or, if a is understood, by Ceff . Its reciprocal, effective resistance, is denoted Reff . We have
shown:

Theorem 2.3. (Transience and Effective Conductance) Random walk on an infinite
connected network is transient iff the effective conductance from any of its vertices to infinity
is positive.

▷ Exercise 2.4.
For a fixed vertex a in G, show that limn C (a ↔ Zn) is the same for every sequence ⟨Gn⟩ of
induced subgraphs that exhausts G.

▷ Exercise 2.5.
When G is finite but A is not a singleton, define C (A↔ Z) to be C (a ↔ Z) if all the vertices
in A were to be identified to a single vertex, a. Show that if voltages are applied at the
vertices of A ∪ Z so that v↾A and v↾Z are constants, then v↾A − v↾Z = IAZR(A ↔ Z),
where IAZ :=

∑
x∈A

∑
y i(x, y) is the total amount of current flowing from A to Z .

2.3 Network Reduction

How do we calculate effective conductance of a network between, say, two vertices a and
z? Since we want to replace a network by an equivalent single conductor, it is natural to
attempt this by replacing more and more of G through simple transformations, leaving a and
z but possibly removing other vertices. There are, in fact, three such simple transformations:
series, parallel, and star-triangle. Remarkably, these three transformations suffice to reduce
all finite planar networks according to a theorem of Epifanov; see Truemper (1989).

I. Series Law. Two resistors* r1 and r2 in series are equivalent to a single resistor r1 + r2.
In other words, if w ∈ 𝖵(G) \ (A ∪ Z) is a node of degree 2 with neighbors u1, u2 and we
replace the edges (ui, w) by a single edge (u1, u2) having resistance r(u1, w) + r(w, u2), then
all potentials and currents in G \ {w} are unchanged and the current that flows from u1 to u2
equals i(u1, w).

     u1 w u2

Proof. It suffices to check that Ohm’s and Kirchhoff’s laws are satisfied on the new network
for the voltages and currents given. This is easy. ◀

* A resistor r is an edge with resistance r . We have drawn such edges using the squiggly notation common to
physics, but this only indicates that they have weights.
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▷ Exercise 2.6.
Give two harder but instructive proofs of the series equivalence as follows. Since voltages
determine currents, it suffices to check that the voltages are as claimed on the new network G′.
(1) Show that v↾

�
𝖵(G) \ {w}� is harmonic on 𝖵(G′) \ (A ∪ Z). (2) Use the “craps principle”

(Pitman (1993), p. 210) to show that Px[τA < τZ ] is unchanged for x ∈ 𝖵(G) \ {w}.

Example 2.4. Consider simple random walk on �. Let 0 ≤ k ≤ n. What is Pk[τ0 < τn]?
It is the voltage at k when there is a unit voltage imposed at 0 and zero voltage at n. If
we replace the resistors in series from 0 to k by a single resistor with resistance k and the
resistors from k to n by a single resistor of resistance n − k, then the voltage at k does not
change. But now this voltage is simply the probability of taking a step to 0, which is thus
(n − k)/n.
For the more general gambler’s ruin, rather than simple random walk, we have the

conductances c(i, i + 1) = (p/q)i . The replacement of edges in series by single edges
now gives one edge from 0 to k of resistance

∑k−1
i=0 (q/p)i and one edge from k to n of

resistance
∑n−1

i=k (q/p)i . The probability of ruin is therefore
∑n−1

i=k (q/p)i /∑n−1
i=0 (q/p)i =

[(p/q)n−k − 1]/[(p/q)n − 1].
II. Parallel Law. Two conductors* c1 and c2 in parallel are equivalent to one conductor
c1 + c2. In other words, if two edges e1 and e2 that both join vertices w1, w2 ∈ 𝖵(G) are
replaced by a single edge e joining w1, w2 of conductance c(e) := c(e1) + c(e2), then all
voltages and currents in G \ {e1, e2} are unchanged and the current i(e) equals i(e1) + i(e2)
(if e, e1 and e2 have the same orientations, that is, same tail and head). This transformation is
valid even for an infinite number of edges in parallel.

w1 w2

e1

e2

Proof. Check Ohm’s and Kirchhoff’s laws with i(e) := i(e1) + i(e2). ◀

▷ Exercise 2.7.
Give two more proofs of the parallel equivalence as in Exercise 2.6.

Before explaining the star-triangle transformation, we give two amusing examples of the
series and parallel transformations, as well as a useful general consequence.

Example 2.5. Suppose that each edge in the following network has equal conductance. What
is P[a → z]? We may assume that the edge conductances are all 1, since the probability is not
affected by a change in scale of the conductances. Following the transformations indicated in
the figure, we obtain C (a ↔ z) = 7/12, so that

P[a → z] =
C (a ↔ z)
π(a) =

7/12
3

=
7
36

.

* A conductor c is an edge with conductance c.
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1

1

1

1

1

1/2

1/4

1/3

a z a
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a za z

a z

1/2

1

1

1/2

1/2

1/2

1/2

1/21

1

1
1

1
1

11

1

7/12

1

1

1
1

1

1

1 1/2

Note that in any network G with voltage applied from a to z, if it happens that v(x) = v(y),
then we may identify x and y to a single vertex, obtaining a new network G/{x, y} in which
the voltages at all vertices are the same as in G.

Example 2.6. What is P[a → z] in the following network?

1

1

1

1

1

1

1

a z

There are two ways to deal with the vertical edge:
(1) Remove it: by symmetry, the voltages at its endpoints are equal, whence no current

flows on it.
(2) Contract it, that is, remove it but combine its endpoints into one vertex (we could also

combine the other two unlabeled vertices with each other): the voltages are the same, so they
may be combined.

In either case, we get C (a ↔ z) = 2/3, whence P[a → z] = 1/3.
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▷ Exercise 2.8.
Let (G, c) be a network. A network automorphism of (G, c) is a map ϕ:G → G that is a
bijection of the vertex set with itself and a bijection of the edge set with itself such that if
x and e are incident, then so are ϕ(x) and ϕ(e) and such that c(e) = c(ϕ(e)) for all edges e.
Suppose that (G, c) is spherically symmetric about o, meaning that if x and y are any two
vertices at the same distance from o, then there is an automorphism of (G, c) that leaves o
fixed and that takes x to y. Let Cn be the sum of c(e) over all edges e with d(e−, o) = n − 1
and d(e+, o) = n. Show that

R(o↔ ∞) =
∑
n≥1

1
Cn

,

whence the network random walk on G is transient iff∑
n≥1

1
Cn

< ∞ .

III. Star-Triangle Law. The configurations in Figure 2.2 are equivalent when

∀i ∈ {1, 2, 3} c(w, ui)c(ui−1, ui+1) = γ ,

where indices are taken mod 3 and

γ :=
∏

i c(w, ui)∑
i c(w, ui) =

∑
i r(ui−1, ui+1)∏
i r(ui−1, ui+1) .

We won’t use this equivalence, except in Example 2.7 and the exercises. This is also called
the “Y-∆” or “Wye-Delta” transformation.

w

u1 u2

u3

u1 u2

u3

Figure 2.2. The star-triangle equivalence.

▷ Exercise 2.9.
Give at least one proof of the star-triangle equivalence.

Actually, there is a fourth trivial transformation: we may prune (or add) vertices of degree
1 (and attendant edges) as well as loops.

▷ Exercise 2.10.
Find a (finite) graph with two vertices a and z that can’t be reduced to a single edge between
a and z by the four transformations pruning, series, parallel, and star-triangle.
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Either of the transformations star-triangle or triangle-star can also be used to reduce the
network in Example 2.6.

Example 2.7. What is Px[τa < τz] in the following network? Following the transformations
indicated in the figure, we obtain

Px[τa < τz] =
20/33

20/33 + 15/22
=

8
17

.

a

a

z

z

a

z

a

x

x

z

x

x

1/3

1/11

3/11

1/2

1/3

1

1/3

1/2

1

1/11

15/22

2/11

1/2

1

1

1

1

1

1

1

1

1

1

20/33

2.4 Energy

We now come to another extremely useful concept, energy.* We will begin with some
convenient notation and some facts about this notation. Unfortunately, there is actually a
fair bit of notation. But once we have it all in place, we will be able to quickly reap some
valuable consequences. In particular, we will prove a powerful monotonicity principle due
to Rayleigh: a transient network whose edge conductances are increased remains transient.
This should be contrasted with the lack of monotonicity of return probabilities pn(a, a), for
example, whose summability determines transience.

We will often contract some vertices in a graph, which may produce a multigraph. When
we say that a graph is finite, we mean that 𝖵 and 𝖤 are finite. In this section, we consider
only finite networks. Define ℓ2(𝖵) to be the usual real Hilbert space of functions on 𝖵 with
inner product

( f , g) :=
∑
x∈𝖵

f (x)g(x) .

* Although the term energy is used for mathematical reasons, the physical concept is actually power dissipation.
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Since we are interested in flows on 𝖤, it is natural to consider that what flows one way is the
negative of what flows the other. From now on, each edge occurs with both orientations.
Thus, define ℓ2

−(𝖤) to be the space of antisymmetric functions θ on 𝖤 (that is, θ(−e) = −θ(e)
for each edge e) with the inner product

(θ, θ ′) :=
1
2
∑
e∈𝖤

θ(e)θ ′(e) =
∑
e∈𝖤1/2

θ(e)θ ′(e) ,

where 𝖤1/2 ⊂ 𝖤 is a set of edges containing exactly one of each pair e,−e. Since voltage
differences across edges lead to currents, define the coboundary operator d: ℓ2(𝖵)→ ℓ2

−(𝖤)
by

(df )(e) := f (e−) − f (e+) .
(Note that this is the negative of the more natural definition; but since current flows from
greater to lesser voltage, it is the more useful definition for us.) This operator is clearly linear.
Conversely, given an antisymmetric function on the edges, we are interested in the net flow
out of a vertex, whence we define the boundary operator d∗: ℓ2

−(𝖤)→ ℓ2(𝖵) by

(d∗θ)(x) :=
∑
e−=x

θ(e) .

This operator is also clearly linear. We use the superscript ∗ because these two operators are
adjoints of each other:

∀ f ∈ ℓ2(𝖵) ∀θ ∈ ℓ2
−(𝖤) (θ, df ) = (d∗θ, f ) .

▷ Exercise 2.11.
Prove that d and d∗ are adjoints of each other.

One use of this notation is that the calculation left here for Exercise 2.11 need not be
repeated every time it arises – and it arises a lot. Another use is the following compact forms
of the network laws. Let i be a current.

Ohm’s Law: dv = ir, that is, ∀e ∈ 𝖤 dv(e) = i(e)r(e) .
Kirchhoff’s Node Law: d∗i(x) = 0 if x /∈ A ∪ Z .

It will be useful to study flows other than current to discover a special property of the
current flow. We can imagine water flowing through a network of pipes. Let θ ∈ ℓ2

−(𝖤) be a
function, which we think of as a flow. The amount of water flowing into the network at a
vertex a is d∗θ(a). Thus, we call θ ∈ ℓ2

−(𝖤) a flow between A to Z if d∗θ is 0 off of A and Z;
if it is nonnegative on A and nonpositive on Z , then we say that θ is a flow from A to Z . The
total amount flowing into the network is then

∑
a∈A d∗θ(a); not surprisingly, this is also the

total amount flowing out of the network, as the next lemma shows. We call

𝖲𝗍𝗋𝖾𝗇𝗀𝗍𝗁(θ) :=
∑
a∈A

d∗θ(a)

the strength of the flow θ. A flow of strength 1 is called a unit flow.
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Lemma 2.8. (Flow Conservation) Let G be a finite graph and A and Z be two disjoint
subsets of its vertices. If θ is a flow between A and Z , then∑

a∈A
d∗θ(a) = −

∑
z∈Z

d∗θ(z) .

Proof. We have∑
x∈A

d∗θ(x) +
∑
x∈Z

d∗θ(x) =
∑

x∈A∪Z
d∗θ(x) = (d∗θ, 1) = (θ, d1) = (θ, 0) = 0

since d∗θ(x) = 0 for x ̸∈ A ∪ Z . ◀

The following consequence will be useful in a moment.

Lemma 2.9. Let G be a finite graph and A and Z be two disjoint subsets of its vertices. If θ
is a flow from A to Z and f ↾A, f ↾Z are constants α and 𝜁 , respectively, then

(θ, df ) = 𝖲𝗍𝗋𝖾𝗇𝗀𝗍𝗁(θ)(α − 𝜁) .

Proof. We have (θ, df ) = (d∗θ, f ) = ∑
a∈A d∗θ(a)α+∑z∈Z d∗θ(z)𝜁 . Now apply Lemma 2.8.

◀

When a current i flows through a resistor of resistance r and voltage difference v, energy is
dissipated at rate P = iv = i2r = i2/c = v2c = v2/r. We are interested in the total power (=
energy per unit time) dissipated.

Notation. Write
( f , g)h := ( f h, g) = ( f , gh)

and
∥ f ∥h :=

√( f , f )h .

Definition. For an antisymmetric function θ, define its energy to be

E (θ) := ∥θ∥2
r ,

where r is the collection of resistances.

Thus E (i) = (i, i)r = (i, dv). If i is a unit current flow from A to Z with voltages vA and vZ
that are constant on A and on Z , respectively, then by Lemma 2.9 and Exercise 2.5,

E (i) = vA − vZ = R(A↔ Z) . (2.7)

This will be an important tool to estimate effective resistances.
The inner product (•, •)r is important not only for its squared norm E ( • ). For example,

we may express Kirchhoff’s laws as follows. Let χe := 1{e} − 1{−e} denote the unit flow
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along e represented as an antisymmetric function in ℓ2
−(𝖤). Note that for every antisymmetric

function θ and every e, we have

(χe, θ)r = θ(e)r(e) ,
so that (∑

e−=x

c(e)χe, θ

)
r

= d∗θ(x) . (2.8)

Let i be any current.

Kirchhoff’s Node Law: For every vertex x /∈ A ∪ Z , we have(∑
e−=x

c(e)χe, i
)
r

= 0 .

Kirchhoff’s Cycle Law: If e1, e2, . . . , en is an oriented cycle in G, then( n∑
k=1

χek , i
)
r

= 0 .

Now for our last bit of notation before everything comes into focus, let
∑

e−=x c(e)χe be
the star at x, and let⋆ denote the subspace in ℓ2

−(𝖤) spanned by all the stars. Let ♢ denote
the subspace spanned by the cycles

∑n
k=1 χ

ek , where e1, e2, . . . , en forms an oriented cycle.
We call these subspaces the star space and the cycle space of G. These subspaces are clearly
orthogonal to each other; here and subsequently, orthogonality refers to the inner product
(•, •)r . To indicate that we use the inner product (•, •)r on ℓ2

−(𝖤), we write the space as ℓ2
−(𝖤, r).

Moreover, the sum of⋆ and♢ is all of ℓ2
−(𝖤, r), which is the same as saying that only the zero

vector is orthogonal to both⋆ and ♢. To see that this is the case, suppose that θ ∈ ℓ2
−(𝖤, r)

is orthogonal to both⋆ and ♢. Since θ is orthogonal to ♢, there is a function F such that
θ = c dF by Exercise 2.2 (use W := ∅ there). Since θ is orthogonal to⋆, the function F
is harmonic. Since G is finite, the uniqueness principle implies that F is constant on each
component of G, whence θ = 0, as desired.

Thus, Kirchhoff’s cycle law says that i, being orthogonal to ♢, is in⋆. Furthermore, any
i ∈ ⋆ is a current by Exercise 2.2 (let W := {x ; (d∗i)(x) = 0}). Now if θ is any flow with
the same sources and sinks as i, more precisely, if θ is any antisymmetric function such that
d∗θ = d∗i, then θ − i is a sourceless flow; in other words, by (2.8), it is orthogonal to⋆ and
thus is an element of ♢. Therefore, the expression

θ = i + (θ − i)
is the orthogonal decomposition of θ relative to ℓ2

−(𝖤, r) = ⋆ ⊕♢. This hints that the
orthogonal projection P⋆: ℓ2

−(𝖤, r)→⋆ plays a crucial role in network theory. In particular,

i = P⋆θ (2.9)
and

∥θ∥2
r = ∥i∥2

r + ∥θ − i∥2
r . (2.10)

This leads to the following all-important principle:
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Thomson’s Principle. Let G be a finite network and A and Z be two disjoint subsets of its
vertices. Let θ be a flow from A to Z and i be the current flow from A to Z with d∗i = d∗θ.
Then E (θ) > E (i) unless θ = i.

Proof. The result is an immediate consequence of (2.10). ◀

Note that given θ, the corresponding current i such that d∗i = d∗θ is unique (and given by
(2.9)).

Recall that 𝖤1/2 ⊂ 𝖤 is a set of edges containing exactly one of each pair e,−e. This gives a
convenient orthogonal basis {χe ; e ∈ 𝖤1/2} of ℓ2

−(𝖤, r); these vectors are not necessarily unit
vectors, as ∥χe∥2

r = r(e). What is the matrix of P⋆ in the orthogonal basis {χe ; e ∈ 𝖤1/2}?
We have

(P⋆χe, χe′)r = (ie, χe′)r = ie(e′)r(e′) , (2.11)
where ie is the unit current from e− to e+. Therefore, the matrix coefficient at (e′, e) equals
(P⋆χe, χe′)r/(χe′ , χe′)r = ie(e′) =: Y (e, e′), the current that flows across e′ when a unit
current is imposed between the endpoints of e. This matrix is called the transfer current
matrix. This matrix will be extremely useful for our study of random spanning trees and
forests in Chapters 4 and 10. Since P⋆, being an orthogonal projection, is self-adjoint, we
have (P⋆χe, χe′)r = (χe, P⋆χe′)r , whence

Y (e, e′)r(e′) = Y (e′, e)r(e) . (2.12)

This is called the reciprocity law.
Recall that the escape probabilities P[a → Z] were important to determining whether a

network was recurrent or transient. Let’s use our new concepts to analyze these probabilities.
For example, how do the escape probabilities change when an edge is removed from G?
When an edge is added? When the conductance of an edge is changed? These questions
are not easy to answer probabilistically but yield to the ideas we have developed. Since
P[a → Z] = C (a ↔ Z)/π(a), if no edge incident to a is affected, then we need analyze only
the change in effective conductance.

▷ Exercise 2.12.
Show that P[a → Z] can increase in some situations and decrease in others when an edge
incident to a is removed.

The following powerful principle tells us how effective conductance changes. We use
subscripts to indicate the edge conductances used.

Rayleigh’s Monotonicity Principle. Let G be a connected graph with two assignments, c
and c′, of conductances on G with c ≤ c′ (everywhere).

(i) If G is finite and A and Z two disjoint subsets of its vertices, then Cc(A ↔ Z) ≤
Cc′(A↔ Z).

(ii) If G is infinite and a is one of its vertices, then Cc(a ↔ ∞) ≤ Cc′(a ↔ ∞). In
particular, if (G, c) is transient, then so is (G, c′).
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Proof. Part (ii) is immediate from part (i), so we concentrate on part (i). By (2.7), we have
C (A↔ Z) = 1/E (i) for a unit current flow i from A to Z . Now

E c(ic) ≥ E c′(ic) ≥ E c′(ic′) ,

where the first inequality follows from the definition of energy and the second from Thomson’s
principle (after identifying Z to a singleton). Taking reciprocals gives the result. ◀

In particular, removing an edge decreases effective conductance, so if the edge is not
incident to a, then its removal decreases P[a → Z]. In addition, contracting an edge (called
“shorting” in electrical network theory), that is, identifying its two endpoints and removing
the resulting loop, increases the effective conductance between any sets of vertices. This is
intuitive from thinking of increasing to infinity the conductance on the edge to be contracted,
so we will still refer to it as part of Rayleigh’s monotonicity principle. To prove it rigorously,
let i be the unit current flow from A to Z . If the graph G with the edge e contracted is denoted
G/e, then the edge set of G/e may be identified with 𝖤(G) \ {e}. If e does not connect A
to Z , then the restriction θ of i to the edges of G/e is a unit flow from A to Z , whence the
effective resistance between A and Z in G/e is at most E (θ), which is at most E (i), which
equals the effective resistance in G.

▷ Exercise 2.13.
Given disjoint vertex sets A, Z in a finite network, we may express the effective resistance
between A and Z by Thomson’s principle as

R(A↔ Z) = min
{ ∑

e∈𝖤1/2

r(e)θ(e)2 ; θ is a unit flow from A to Z
}
.

Prove the following dual expression for the effective conductance, known as Dirichlet’s
principle:

C (A↔ Z) = min
{ ∑

e∈𝖤1/2

c(e)dF(e)2 ; F↾A ≡ 1, F↾Z ≡ 0
}
.

2.5 Transience and Recurrence

We have seen that effective conductance from any vertex to∞ is positive iff the random
walk is transient. Thus, a lower bound on the effective resistance between vertices in a network
can be useful to show recurrence. To use the energy formulation of effective resistance, (2.7),
we use the following notion. Let A and Z be two disjoint sets of vertices. A set Π of edges
separates A and Z if every path with one endpoint in A and the other endpoint in Z must
include an edge in Π; we also call Π a cutset.
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The Nash-Williams Inequality. If a and z are distinct vertices in a finite network that are
separated by pairwise disjoint cutsets Π1, . . . ,Πn, then

R(a ↔ z) ≥
n∑

k=1

( ∑
e∈Πk

c(e)
)−1

. (2.13)

Proof. By (2.7), it suffices to show that the unit current flow i from a to z has energy at
least the right-hand side. Now given a finite cutset Π that separates a from z, let Z be the
set of endpoints of Π that are separated by Π from a. Let K denote the set of vertices that
are not separated from a by Π. Let H := G↾(K ∪ Z) be the subnetwork of G induced by
K ∪ Z . Then i induces a unit flow iH from a to Z , whence Lemma 2.8 applied to H gives
1 = −

∑
x∈Z d∗iH (x) = −∑e−∈Z,e∈H i(e). If both the head and tail of e happen to lie in Z ,

then i(e) occurs together with i(−e) in that sum, so they cancel. Also, all edges in H with
only one endpoint in Z must lie in Π. Therefore,

∑
e∈Π |i(e)| ≥ 1, and so the Cauchy-Schwarz

inequality gives ∑
e∈Π

i(e)2r(e)
∑
e∈Π

c(e) ≥
(∑
e∈Π

|i(e)|
)2

≥ 1 .

In other words, ∑
e∈Π

i(e)2r(e) ≥
(∑
e∈Π

c(e)
)−1

.

Substitute Π = Πk and add for k = 1, . . . , n. ◀
To apply this to infinite networks, say that a set Π of edges separates a and ∞ if every

infinite simple path from a must include an edge in Π; we also call Π a cutset.
The Nash-Williams Criterion. If ⟨Πn⟩ is a sequence of pairwise disjoint finite cutsets in a
locally finite network G, each of which separates a from∞, then

R(a ↔ ∞) ≥
∑
n

( ∑
e∈Πn

c(e)
)−1

. (2.14)

In particular, if the right-hand side is infinite, then G is recurrent.
Proof. For n ≥ 1, choose a finite subnetwork Gn that contains

∪n
k=1 Πk and identify its

complementary set of vertices to a single vertex, zn, as usual, to form the finite network GW
n .

Then R(a ↔ ∞) = limn→∞R(a ↔ zn), so (2.13) gives the conclusion. ◀
Remark 2.10. If the cutsets can be ordered so that Π1 separates a from Π2 and for n > 1,
Πn separates Πn−1 from Πn+1, then the sum appearing in the statement of this criterion has a
natural interpretation: Short together (that is, join by edges of infinite conductance, or, in
other words, identify) all the vertices between Πn and Πn+1 into one vertex Un. Short all the
vertices that Π1 separates from ∞ into one vertex U0. Then only parallel edges of Πn join
Un−1 to Un. Replace these edges by a single edge of resistance

(∑
e∈Πn

c(e))−1
. This new

network is a series network with effective resistance from U0 to ∞ equal to the right-hand
side of (2.14). Thus, Rayleigh’s monotonicity principle shows that the effective resistance
from a to∞ in G is at least the right-hand side of (2.14).
The Nash-Williams criterion allows us to prove the first part of Pólya’s (1921) famous and

beautiful theorem concerning random walk on the integer lattices.
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Pólya’s Theorem (first part). Simple random walk on the nearest-neighbor graph of �d is
recurrent for d = 1, 2.

Proof. For d = 1, 2, we can use the Nash-Williams criterion with cutsets

Πn :=
{
e ; d(0, e−) = n − 1, d(0, e+) = n

}
,

where 0 is the origin and d(•, •) is the graph distance. ◀
To show that simple random walk on �d is transient for d ≥ 3, we need another technique.

It is more involved than the very simple technique we just used to prove recurrence, but it is
also very powerful. In fact, it involves a condition that is both necessary and sufficient for
transience.

If G = (𝖵, 𝖤) is a denumerable network, let

ℓ2(𝖵) :=
{

f :𝖵→ � ;
∑
x∈𝖵

f (x)2 < ∞
}

with the inner product ( f , g) :=
∑

x∈𝖵 f (x)g(x). Define the Hilbert space

ℓ2
−(𝖤, r) :=

{
θ:𝖤→ � ; ∀e θ(−e) = −θ(e) and

∑
e∈𝖤

θ(e)2r(e) < ∞
}

with the inner product (θ, θ ′)r :=
∑

e∈𝖤1/2
θ(e)θ ′(e)r(e) and E (θ) := (θ, θ)r . Define df (e) :=

f (e−) − f (e+) as before. If
∑

e−=x |θ(e)| < ∞, then we also define (d∗θ)(x) :=
∑

e−=x θ(e).
Suppose now that 𝖵 is finite and

∑
e |θ(e)| < ∞. Then the calculation of Exercise 2.11

shows that we still have (θ, df ) = (d∗θ, f ) for all f . (Here, we use (ϕ, ψ) to mean the sum∑
α ϕ(α)ψ(α) for functions on any space where the sum converges absolutely.) Likewise,

under these hypotheses, we have Lemmas 2.8 and 2.9 still holding. The remainder of
Section 2.4 also then holds because of the following consequence of the Cauchy-Schwarz
inequality:

∀x ∈ 𝖵
∑
e−=x

|θ(e)| ≤
√∑

e−=x

θ(e)2/c(e) ·
∑
e−=x

c(e) ≤ √
E (θ)π(x) . (2.15)

In particular, if E (θ) < ∞, then d∗θ is defined.

▷ Exercise 2.14.
Let G = (𝖵, 𝖤) be denumerable and θn ∈ ℓ2

−(𝖤, r) be such that E (θn) ≤ M < ∞ and
θn → θ edgewise, that is, θn(e) → θ(e) for each e ∈ 𝖤. Show that θ is antisymmetric,
E (θ) ≤ lim infn E (θn) ≤ M , and ∀x ∈ 𝖵 d∗θn(x)→ d∗θ(x).

Call an antisymmetric function θ on the edges 𝖤 of a possibly infinite graph a flow if

∀x ∈ 𝖵
∑
e−=x

|θ(e)| < ∞ .

If, in addition, θ satisfies (d∗θ)(x) = 1{a}(x), then θ is a unit flow from a ∈ 𝖵 to∞.
Our main theorem is the following criterion for transience due to T. Lyons (1983). It is

adapted from a theorem of Royden (1952).
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Theorem 2.11. (Energy and Transience) Let G be a denumerable connected network.
Random walk on G is transient iff there is a unit flow on G of finite energy from some (every)
vertex to∞.

Proof. Let Gn be finite induced subgraphs that exhaust G. Recall that GW
n is the graph

obtained from G by identifying the vertices outside Gn to a single vertex, zn, and then
removing loops (but keeping multiple edges). Fix any vertex a ∈ G, which, without loss of
generality, belongs to each Gn. We have, by definition, R(a ↔ ∞) = lim R(a ↔ zn). Let
in be the unit current flow in GW

n from a to zn and vn be the corresponding voltage. Then
E (in) = R(a ↔ zn), so R(a ↔ ∞) < ∞⇔ lim E (in) < ∞.
Note that each edge of GW

n comes from an edge in G and may be identified with it, even
though one endpoint may be different.
If θ is a unit flow on G from a to∞ that has finite energy, then the restriction θ↾GW

n of θ
to GW

n is a unit flow from a to zn, whence Thomson’s principle gives

E (in) ≤ E
�
θ↾GW

n

�
≤ E (θ) < ∞ .

In particular, lim E (in) < ∞, and so the random walk is transient.
Conversely, suppose that G is transient. Then there is some M < ∞ such that E (in) ≤ M

for all n. Start a random walk at a. Let Yn(x) be the number of visits to x before hitting
G \Gn and Y (x) be the total number of visits to x. Then Yn(x) increases to Y (x), whence the
monotone convergence theorem and Proposition 2.1 imply that E

�
Y (x)� = limn→∞ E

�
Yn(x)� =

limn→∞ π(x)vn(x) =: π(x)v(x). By transience, we know that E
�
Y (x)� < ∞, whence v(x) < ∞.

Hence i := c · dv = limn→∞ c · dvn = limn→∞ in exists and is a unit flow from a to infinity of
energy at most M by Exercise 2.14. ◀

This allows us to carry over the remainder of the electrical apparatus to infinite networks:

Proposition 2.12. Let G be a transient connected network and Gn be finite induced subnet-
works that contain a vertex a and that exhaust G. Identify the vertices outside Gn to zn,
forming GW

n . Let in be the unit current flow in GW
n from a to zn. Then ⟨in⟩ has a pointwise

limit i on G, which is the unique unit flow on G from a to∞ of minimum energy. Let vn be
the voltages on GW

n corresponding to in and with vn(zn) := 0. Then v := lim vn exists on G
and has the following properties:

dv = ir ,

v(a) = E (i) = R(a ↔ ∞) ,
∀x v(x)/v(a) = Px[τa < ∞] .

Start a random walk at a. For all vertices x, the expected number of visits to x is
G (a, x) = π(x)v(x). For all edges e, the expected signed number of crossings of e is i(e).
Proof. We saw in the proof of Theorem 2.11 that v and i exist, that dv = ir , and that
G (a, x) = π(x)v(x). The proof of Proposition 2.2 now applies as written for the last claim of
the proposition. Since the events [τa < τG\Gn

] are increasing in n with union [τa < ∞], we
have (with superscript indicating on which network the random walk takes place)

v(x)/v(a) = lim vn(x)/vn(a) = lim
n

PGW
n

x [τa < τzn ] = lim
n

PG
x [τa < τG\Gn

] = PG
x [τa < ∞] .
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Now v(a) = lim vn(a) = lim E (in) = lim R(a ↔ zn) = R(a ↔ ∞). By Exercise 2.14,
E (i) ≤ lim inf E (in). Since E (in) ≤ E (i) as in the proof of Theorem 2.11, we have E (i) =
lim E (in) = v(a). Likewise, E (in) ≤ E (θ) for every unit flow from a to infinity, whence i has
minimum energy.
Finally, we establish uniqueness of a unit flow (from a to∞) with minimum energy. Note

that ∀θ, θ ′
E (θ) + E (θ ′)

2
= E

(
θ + θ ′

2

)
+ E

(
θ − θ ′

2

)
. (2.16)

Therefore, if θ and θ ′ both have minimum energy, so does (θ+θ ′)/2, and hence E
�(θ−θ ′)/2� =

0, which gives θ = θ ′. ◀

Thus, we may call i the unit current flow and v the voltage on G. We may think of G as
grounded (that is, has 0 voltage) at infinity.
By Theorem 2.11 and Rayleigh’s monotonicity principle, the type of a random walk, that

is, transient or recurrent, does not change when the conductances are changed by bounded
factors. This fact is by no means clear probabilistically. An extensive generalization of this is
given in Theorem 2.17.
The question now arises: how do we determine whether there is a flow from a to ∞ of

finite energy? There is no recipe, but a very useful technique involves flows created from
random paths. Suppose that P is a probability measure on paths ⟨en ; n ≥ 0⟩ from a to z on a
finite graph or from a to∞ on an infinite graph. (An infinite path is said to go to∞ when no
vertex is visited infinitely many times.) Define

θ(e) :=
∑
n≥0

�
P[en = e] − P[en = −e]� , (2.17)

provided ∑
n≥0

�
P[en = e] + P[en = −e]� < ∞ . (2.18)

For example, the summability condition (2.18) holds when the paths are edge-simple, since
the sum on the left in (2.18) equals the expected number of times that e is traversed in either
direction. Each path ⟨en ; n ≥ 0⟩ determines a unit flow ψ from a to z (or to∞) by sending 1
along each edge in the path:

ψ :=
∑
n≥0

χen .

If (2.18) holds for all e, then θ is defined everywhere. Now θ is an expectation of a random
unit flow, so that θ is a unit flow itself. We saw in Propositions 2.2 and 2.12 that this is
precisely how network random walks and unit electric current are related (where the walk
⟨Xn ; n ≥ 0⟩ gives rise to the path ⟨en ; n ≥ 0⟩ with en := ⟨Xn, Xn+1⟩). However, there are
other useful pairs of random paths and their expected flows as well.
We now illustrate the preceding techniques. First, we complete Pólya’s theorem by the

random path method. The resulting flow is essentially the same as the one used by T. Lyons
in his 1983 proof of Pólya’s theorem (which also occurs on p. 173 of Mori (1954)).
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Pólya’s Theorem (second part). Simple random walk on the nearest-neighbor graph of �d

is transient for all d ≥ 3.

Proof. By Rayleigh’s monotonicity principle, it suffices to do d = 3. Let L be a random
uniformly distributed ray from the origin 0 of �3 to ∞ (that is, a straight half-line with
uniform intersection on the unit sphere). Let P(L) be a simple path in �3 from 0 to∞ that
stays within distance 4 of L; choose P(L) measurably, such as the (almost surely unique)
closest path to L in the Hausdorff metric. Define the flow θ from the law of P(L) via
(2.17). Then θ is a unit flow from 0 to ∞; we claim it has finite energy. There is some
constant A such that if e is an edge whose midpoint is at Euclidean distance R from 0, then
P[e ∈ P(L)] ≤ A/R2. Since all edge centers are separated from each other by Euclidean
distance at least 1/

√
2, there is also a constant B such that there are at most Bn2 edge centers

whose distance from the origin is between n and n + 1. It follows that the energy of θ is at
most

∑
n A2Bn2n−4, which is finite. Now transience follows from Theorem 2.11. ◀

Remark 2.13. The continuous case, that is, Brownian motion in �3, is easier to handle
(after establishing a similar relationship to an electrical framework) because of its spherical
symmetry; see Section 2.9, the notes to this chapter. Here, we are approximating this
continuous case in our solution. One can in fact use the transience of the continuous case to
deduce that of the discrete case (or vice versa); see Theorem 2.26 in the notes.

The difference between two and three dimensions is illustrated in Figure 2.3. For informa-
tion on the asymptotic behavior of these figures in dimension 2, see Dembo, Peres, Rosen,
and Zeitouni (2001).
Since the harmonic series, which arises in the recurrence of �2, just barely diverges, it

seems that the change from recurrence to transience occurs “just after” dimension 2, rather
than somewhere else in [2, 3]. One way to explore this is to ask about the type of spaces
intermediate between �2 and �3. For example, consider the wedge

W f :=
{(x, y, z) ; |z | ≤ f (|x |)} ,

where f :� → � is an increasing function. The number of edges that leave the portion
W f ∩

�(x, y, z) ; |x | ∨ |y | ≤ n
	
is of the order n

�
f (n) + 1

�
, so that according to the Nash-

Williams criterion, ∑
n≥1

1
n
�

f (n) + 1
� = ∞ (2.19)

is sufficient for recurrence.

▷ Exercise 2.15.
Show that (2.19) is also necessary for recurrence if f (n + 1) ≤ f (n) + 1 for all n.

Since simple random walk on �2 is recurrent, the effective resistance from the origin to
distance n tends to infinity – but how quickly? Our techniques are good enough to answer
this within a constant factor.
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Figure 2.3. Random walk until it goes distance 200 from its starting point, colored
according to the number of visits at a vertex. The histogram shows the time spent at vertices
that were visited n times for each n ≥ 1, with the same color coding. For three dimensions,
only the histogram is shown, which is approximately a geometric distribution.

Proposition 2.14. There are positive constants C1,C2 such that if one identifies to a single
vertex zn all vertices of �2 that are at distance more than n from 0, then

C1 log n ≤ R(0↔ zn) ≤ C2 log n .

Proof. The lower bound is an immediate consequence of (2.13) applied to the cutsets Πk

used in our proof of Pólya’s theorem. The upper bound follows from the estimate of the
energy of the unit flow analogous to that used for the transience of �3. That is, θ(e) is defined
via (2.17) from a uniform ray emanating from the origin. Then θ defines a unit flow from 0
to zn and its energy is bounded by C2 log n. ◀

We can extend Proposition 2.14 as follows.
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Proposition 2.15. For d ≥ 2, there is a positive constant Cd such that if Gn is the subnetwork
of �d induced on the vertices in a box of side length n, then for any pair of vertices x, y in
Gn at mutual distance k,

R(x ↔ y; Gn) ∈
{ (C−1

d
log k,Cd log k) if d = 2

(C−1
d
,Cd) if d ≥ 3.

Proof. The lower bounds follow from (2.13). For the upper bounds, we give the details
for d = 2 only. There is a straight-line segment L of length k inside the portion of �2

that corresponds to Gn such
that L meets the straight line
M joining x and y at the mid-
point of M in a right angle,
as in the figure. Let Q be
a random uniform point on
L. Write L(Q) for the union
of two straight-line segments,
one from x toQ and the other
from Q to y. Let P(Q) be a
path in Gn from x to y that
is closest to L(Q). Use the
law P of P(Q) to define the
unit flow θ as in (2.17). Then
E (θ) ≤ C2 log k for some C2,
as in the proof of Proposi-
tion 2.14. ◀

x

y

M

L

Q

L(Q)P(Q)

2.6 Rough Isometries and Hyperbolic Graphs

The most direct proof of Pólya’s theorem goes by calculation of the Green function and is
not hard; see Exercise 2.100. However, that calculation depends on the precise structure of the
graph. The proof in the preceding section begins to show that the type doesn’t change when
fairly drastic changes are made in the lattice graph. Suppose, for example, that diagonal edges
are added to the square lattice in the plane. Then clearly we can still use the Nash-Williams
criterion to show recurrence. Of course, a similar addition of edges in higher dimensions
preserves transience simply by Rayleigh’s monotonicity principle. But suppose that in �3,
we remove each edge

�(x, y, z), (x, y, z + 1)� with x + y odd. Is the resulting graph H still
transient? If so, by how much has the effective resistance to infinity changed?
Notice that graph distances haven’t changed much after these edges are removed. In fact, if

we define the k-fuzz of a graph G by adjoining to the edges of G a new edge between every
pair of vertices whose distance in G lies between 2 and k, then the graph H above has a
3-fuzz that includes the original graph on �3. Thus, we can solve problems like the preceding
by the following theorem:
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Theorem 2.16. Let G be a connected graph of bounded degree and k a positive integer. Then
G and the k-fuzz of G have the same type, that is, both are transient or both are recurrent.

We will establish an even more powerful result. To motivate an extension of the preceding
from graphs to networks, think of the resistance r(e) as the length of the edge e.
Given two networks G and G′ with resistances r and r ′, we say that a map ϕ from the

vertices of G to the vertices of G′ is a rough embedding if there are constants α, β < ∞ and
a map Φ defined on the edges of G such that

(i) for every edge ⟨x, y⟩ ∈ G, Φ
�⟨x, y⟩� is a nonempty simple oriented path of edges in G′

from ϕ(x) to ϕ(y) with ∑
e′∈Φ(⟨x,y⟩)

r ′(e′) ≤ αr(x, y)

and Φ
�⟨y, x⟩� is the reverse of Φ

�⟨x, y⟩�;
(ii) for every edge e′ ∈ G′, there are no more than β edges in G whose image under Φ

contains e′.
If we need to refer to the constants, we call such a map (α, β)-rough. We call two networks
roughly equivalent if there are rough embeddings in both directions. For example, every two
Euclidean lattices of the same dimension are roughly equivalent. Also, for every graph G
of bounded degree and every k, the graph G and its k-fuzz are roughly equivalent. Kanai
(1986) showed that rough embeddings preserve transience:

Theorem 2.17. (Rough Embeddings and Transience) If G and G′ are roughly equivalent
connected networks, then G is transient iff G′ is transient. In fact, if there is a rough
embedding from G to G′ and G is transient, then G′ is transient.

Proof. Suppose that G is transient and ϕ is an (α, β)-rough embedding from G to G′. Let θ
be a unit flow on G of finite energy from a to infinity. We will use Φ to carry the flow θ to a
unit flow θ ′ on G′ that will have finite energy. Namely, define

θ ′(e′) :=
∑

e′∈Φ(e)
θ(e) .

(The sum goes over all edges, not merely those in 𝖤1/2.) It is easy to see that θ ′ is antisym-
metric and d∗θ ′(x ′) = ∑

x∈ϕ−1({x′}) d∗θ(x) for all x ′ ∈ G′. Thus, θ ′ is a unit flow from ϕ(a)
to infinity.

Now
θ ′(e′)2 ≤ β

∑
e′∈Φ(e)

θ(e)2

by the Cauchy-Schwarz inequality and the condition (ii). Therefore,∑
e′∈𝖤′

θ ′(e′)2r ′(e′) ≤ β
∑
e′∈𝖤′

∑
e′∈Φ(e)

θ(e)2r ′(e′) = β
∑
e∈𝖤

∑
e′∈Φ(e)

θ(e)2r ′(e′)

≤ αβ
∑
e∈𝖤

θ(e)2r(e) < ∞ . ◀
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▷ Exercise 2.16.
Show that if we remove each edge

�(x, y, z), (x, y, z + 1)� in �3 with x + y odd, then we
obtain a transient graph with effective resistance to infinity at most 6 times what it was before
removal.

A closely related notion is that of rough isometry, also called quasi-isometry. Given two
graphs G = (𝖵, 𝖤) and G′ = (𝖵′, 𝖤′), call a function ϕ:𝖵→ 𝖵′ a rough isometry if there are
positive constants α and β such that for all x, y ∈ 𝖵,

α−1 dist(x, y) − β ≤ dist′
�
ϕ(x), ϕ(y)� ≤ α dist(x, y) + β (2.20)

and such that every vertex in G′ is within distance β of the image of 𝖵. Here, dist and dist′
denote the usual graph distances on G and G′. The function ϕ need not be a bijection. In fact,
the same definition applies to metric spaces, with “vertex” replaced by “point.” Thus, �d is
roughly isometric to �d.

▷ Exercise 2.17.
Show that being roughly isometric is an equivalence relation.

For example, if G and G′ are both the usual graph on � and ϕ(x) := 4x, then ϕ is a rough
isometry; similarly if ϕ(x) := ⌊x/4⌋. Also, if G is any graph and H is any finite graph, then
G and G × H are roughly isometric for most reasonable notions of product graph.

▷ Exercise 2.18.
Show that � and �2 are not roughly isometric graphs.

Proposition 2.18. (Rough Isometry and Rough Equivalence) Let G and G′ be two infinite
roughly isometric graphs with conductances c and c′. If c, c′, c−1, c′−1 are all bounded and
the degrees in G and G′ are all bounded, then G is roughly equivalent to G′.

▷ Exercise 2.19.
Prove Proposition 2.18.

Not only can we also use rough isometries and Theorem 2.17 to understand lots of
perturbations of the regular graph �d , but we can also use them to give a very simple proof of
Pólya’s theorem itself. First, consider simple random walk in one dimension. The probability
of return to the origin after 2n steps is exactly

�2n
n

�
2−2n. Stirling’s formula shows that this

is asymptotic to 1/
√
πn. Since this series is not summable, the random walk is recurrent.

If we consider random walk in d dimensions where each coordinate is independent of the
other coordinates and does simple random walk in one dimension, then the return probability
after 2n steps is

(�2n
n

�
2−2n

)d ∼ (πn)−d/2. This is summable precisely when d ≥ 3. On the
other hand, this independent-coordinate walk is simple random walk on another graph whose
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Figure 2.4. A graph in the hyperbolic disc formed from congruent regular hyperbolic
pentagons of interior angle 2π/5. This was drawn by a program created by Don Hatch.

vertices are a subset of �d, and this other graph is clearly roughly isometric to the usual
graph on �d. Thus, we deduce Pólya’s theorem.
We now go beyond Euclidean space to examine another very nice family of graphs that

will serve as useful examples throughout the rest of the text. These graphs are roughly
isometric to hyperbolic spaces, whose geometry we explain briefly. Let �d denote the
standard hyperbolic space of dimension d ≥ 2; it has scalar curvature −1 everywhere. See
Figure 2.4 for one graph roughly isometric to �2. This drawing uses the Poincaré disc model
of�2, in which the unit disc {z ∈ � ; |z | < 1} is given the arc-length metric 2 |dz |/�1 − |z |2�.
The corresponding ball model of�d uses the unit ball {x ∈ �d ; |x | < 1} with the arc-length
metric 2 |dx |/�1 − |x |2�. Here, we write |x | for the Euclidean norm usually written as ∥x∥.
The length of a smooth curve t 7→ x(t) parametrized by t ∈ [0, 1] is∫ 1

0

2 |dx(t)/dt |
1 − |x(t)|2 dt .

The minimum of such lengths among curves joining x1, x2 ∈ �d is the hyperbolic distance
between x1 and x2. A curve that achieves the minimum is called a geodesic. For example,
if x1 is the origin and |x2 | = R ∈ (0, 1), then a geodesic between x1 and x2 is a Euclidean
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straight-line segment. To see this, note that |dx(t)| ≥ |dρ(t)|, where ρ(t) := |x(t)|, whence the
preceding integral is at least∫ 1

0

2 |dρ(t)/dt |
1 − ρ(t)2 dt ≥

∫ R

0

2 ds
1 − s2 = log

1 + R
1 − R

,

and this distance is achieved by the Euclidean line segment.
For each point a in the unit ball, there is a hyperbolic isometry that takes a to the origin,

namely,

x 7→ a∗ +
|a∗ |2 − 1
|x − a∗ |2 (x − a∗) ,

where a∗ := a/|a|2; see, for example, Matsuzaki and Taniguchi (1998) for the calculation.
Such a map preserves Euclidean angles and the class of Euclidean circular arcs, including
Euclidean straight lines as a special case. Therefore, infinite geodesics, which are curves
minimizing hyperbolic distance locally, are images of Euclidean diameters of the ball and
hence are Euclidean circular arcs perpendicular to the Euclidean unit sphere.
A key difference to Euclidean space is that for each point o ∈ �d , the sphere of hyperbolic

radius r about o has hyperbolic surface area asymptotic to αer(d−1) for some positive constant
α depending on d. (Therefore, the hyperbolic volume of the ball of hyperbolic radius r is
asymptotic to (d − 1)−1αer(d−1).) Indeed, if |x | = R, then the hyperbolic distance between the
origin and x was seen earlier to be

r = log
1 + R
1 − R

,

so that
R =

er − 1
er + 1

.

The hyperbolic surface area of this sphere centered at the origin is therefore∫
|x |=R

2d−1dS�
1 − |x |2�d−1 ,

where dS is the element of Euclidean surface area in �d. Integrating gives the value

C
( R

1 − R2

)d−1
= α(er − e−r )d−1

for some constants C and α, as we claimed. Therefore there is a positive constant A such that
the following hold for any fixed point o ∈ �d:

(1) the hyperbolic volume of the shell of points whose distance from o is between r and
r + 1 is at most Aer(d−1);

(2) the solid angle subtended at o by a spherical cap of hyperbolic area δ on the sphere
centered at o of radius r is at most Aδe−r(d−1).

For more background on hyperbolic space, see, for example, Cannon, Floyd, Kenyon, and
Parry (1997), Ratcliffe (2006), or Benedetti and Petronio (1992). Graphs that are roughly
isometric to �d often arise as Cayley graphs of groups (see Section 3.4) or, more generally,
as nets. Here, a graph G is called an ϵ-net of a metric space M if the vertices of G form a
maximal ϵ-separated subset of M and edges join distinct vertices iff their distance in M is at
most 3ϵ . (A set is ϵ-separated if all nonzero distances between points are at least ϵ .)
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Theorem 2.19. (Transience of Hyperbolic Space) If G is roughly isometric to a hyperbolic
space �d with d ≥ 2, then simple random walk on G is transient.

Proof. By Theorem 2.17, given d ≥ 2, it suffices to show transience for one such G. Our
proof is quite like our first proof of Pólya’s theorem. Let G be a 1-net of �d. We take the
edges of G to be geodesic segments. Let L be a random uniformly distributed geodesic ray
from some point o ∈ G to∞. (In the ball model of �d, if o is at the origin, then a geodesic
ray is simply a Euclidean ray of Euclidean length 1 starting at the origin.) Let P(L) be
a simple path in G from o to ∞ whose vertices stay within distance 1 of L; choose P(L)
measurably. (By choice of G, for all p ∈ L, there is a vertex x ∈ G within distance 1 of p.)
Define the flow θ from the law of P(L) via (2.17). Then θ is a unit flow from o to ∞; we
claim it has finite energy. There is some constant C such that if e is an edge whose midpoint
is at hyperbolic distance r from o, then P[e ∈ P(L)] ≤ Ce−r(d−1). Given an edge center s,
there is a bound on the number of edge centers whose hyperbolic distance from s is at most 1.
Therefore, there is also a constant D such that there are at most Den(d−1) edge centers whose
hyperbolic distance from the origin is between n and n + 1. It follows that the energy of θ is
at most

∑
n C2De−2n(d−1)en(d−1), which is finite. Now transience follows from Theorem 2.11.

◀

2.7 Hitting, Commute, and Cover Times

The remaining two (main) sections of the chapter concern topics other than recurrence
and transience, but they use some of the tools we have developed. How can we calculate the
expected time it takes for a random walk to hit some set of vertices? (This is also referred to
as the mean first passage time.) The following answer is due to Tetali (1991). Recall that
π( • ) is not generally a probability measure.

Proposition 2.20. (Hitting-Time Identity) Given a finite network with a vertex a and a
disjoint subset of vertices Z , let v( • ) be the voltage when a unit current flows from a to Z .
We have Ea[τZ ] =

∑
x∈𝖵 π(x)v(x).

Proof. By Proposition 2.1, we have Ea[τZ ] =
∑

x GZ (a, x) =
∑

x π(x)v(x) . ◀

The expected time for a random walk started at a to visit z and then return to a, that
is, Ea[τz] + Ez[τa], is called the commute time between a and z. This turns out to have a
particularly pleasant expression, as shown by Chandra, Raghavan, Ruzzo, Smolensky, and
Tiwari (1996/1997):

Corollary 2.21. (Commute-Time Identity) Let G be a finite network and γ :=
∑

e∈𝖤 c(e),
where in the sum, each edge with two endpoints occurs twice and each loop occurs once. Let
a and z be two vertices of G. The commute time between a and z is γR(a ↔ z).
Proof. The time Ea[τz] is expressed via Proposition 2.20 using voltages v(x). Now the
voltage at x for a unit-current flow from z to a is equal to v(a) − v(x). Thus, Ez[τa] =∑

x∈𝖵 π(x)
�
v(a) − v(x)�. Adding these two hitting times, we get that the commute time is

v(a)∑x π(x) = γv(a). Finally, we use that v(a) = R(a ↔ z). ◀
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Another interesting quantity is the cover time 𝖢𝗈𝗏 of a finite-state Markov chain ⟨X j ; j ≥
0⟩, which is the first (random) time the process visits all states 𝖵, that is,

𝖢𝗈𝗏 := min{t ; ∀x ∈ 𝖵 ∃ j ≤ t X j = x} .
For the complete graph, the cover time is studied in the coupon-collector problem; in
particular, its expectation in the case of n vertices is exactly (n − 1)∑n−1

k=1 1/k. (It takes no
time to visit the starting vertex, which is why n − 1 appears in place of the usual n.) What is
its expectation for general networks? It turns out that this is hard to calculate, but it can be
estimated by hitting times (even without reversibility), as shown with a beautiful argument by
Matthews (1988). Remarkably, his upper bound is sharp in view of the case of the complete
graph.

Theorem 2.22. (Cover-Time Upper Bound) Given an irreducible finite Markov chain
whose state space 𝖵 has size n and starting state o, we have

Eo[𝖢𝗈𝗏] ≤
(

max
a,b∈𝖵

Eaτb

) (
1 +

1
2

+ · · · + 1
n − 1

)
.

Proof. It takes no time to visit the starting state, so order all of 𝖵 except for the starting
state according to a random permutation, ⟨ j1, . . . , jn−1⟩. Let tk be the first time by which
all { j1, . . . , jk} were visited, and let Lk := Xtk be the state the chain is in at time tk .
In other words, Lk is the last state visited among the states { j1, . . . , jk}. In particular,
Po[Lk = jk] = 1/k because of the random permutation. Considering the two cases Lk = jk
and Lk ̸= jk , we can make the following somewhat unusual calculation:

Eo[tk − tk−1 | Xtk−1 , Xtk , j1, . . . , jk] = ELk−1 [τjk | j1, . . . , jk]1{Lk=jk } .

Taking unconditional expectations, we conclude that

Eo[tk − tk−1] ≤
(

max
a,b∈𝖵

Eaτb

) 1
k
,

and summing over k yields the result. ◀
The same technique leads to lower bounds as well. For A ⊆ {1, . . . , n}, consider the cover

time of A, denoted by 𝖢𝗈𝗏A. Clearly Eo[𝖢𝗈𝗏] ≥ Eo[𝖢𝗈𝗏A]. Let tAmin := mina,b∈A,a ̸=b Eaτb.
Then, similarly to the last proof, we have

Eo[𝖢𝗈𝗏A] ≥ tAmin

(
1 +

1
2

+ · · · + 1
|A| − 1

)
,

which gives the following result of Matthews (1988). Again, the case of the complete graph
shows that this is sharp.

Theorem 2.23. (Cover-Time Lower Bound) For any irreducible finite Markov chain on a
state space 𝖵 with starting state o,

Eo[𝖢𝗈𝗏] ≥ max
A⊆𝖵

tAmin

(
1 +

1
2

+ · · · + 1
|A| − 1

)
.

▷ Exercise 2.20.
Prove Theorem 2.23.
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2.8 The Canonical Gaussian Field

This section concerns a model that represents an electrical network via Gaussian random
variables. It is known variously as the canonical Gaussian field, the Gaussian network, the
discrete Gaussian free (or massless) field, random network potentials, or in some contexts,
the harmonic crystal.* More information on it is in the exercises at the end of this chapter and
in Exercises 4.17, 4.35, and 10.29–10.32. Some examples of its use are given in Section 2.9.
The canonical Gaussian field arose first in a statistics problem. We explain this origin to

motivate the model. Suppose we want to measure the altitudes at a finite set of locations
𝖵 on land. Assume we know the altitude at some location o ∈ 𝖵. We find the other
altitudes by measuring the differences in altitudes between certain pairs 𝖤 of them. However,
each measurement Y has an error that is normally distributed. To be precise, if Y (e)
is a measurement of the difference in the altitudes from x ∈ 𝖵 to y ∈ 𝖵, then Y (e) ∼
N
�
α(x) − α(y), σ2

e

�
, where α(x) is the true altitude at x and the variances σ2

e are assumed
known. The numbers α(x) are simply constants; the case where all α(x) = 0 is already
interesting. We assume all measurements are independent. Let G = (𝖵, 𝖤) be the multigraph
associated to the measurements. (There are multiple edges between vertices when multiple
measurements are made of the same difference, but there are no loops.) Assume G is
connected. Make this into a network by assigning the resistances r(e) := σ2

e. The maximum
likelihood estimate of the altitudes given these measurements is the function α̂:𝖵→ �with
α̂(o) = α(o) that maximizes the likelihood

1∏
e∈𝖤1/2

√
2πr(e) exp

{
−1

2
∑
e∈𝖤1/2

�
Y (e) − (dα̂)(e)�2/r(e)} ,

which is what the joint density would be at the observed values Y if the true altitudes were
α̂. The random variables α̂ form the canonical Gaussian field; they are functions of the
random variables Y . Of course, maximizing the likelihood is the same as minimizing the
sum of squares in the exponent. Since Y (e) − (dα̂)(e) =

�
Y (e) − dα(e)� − (dα̂ − dα)(e),

and α is a nonrandom field, Z := α̂ − α minimizes
∑

e∈𝖤1/2

�
X(e) − (dZ)(e)�2/r(e), where

X(e) := Y (e) − dα(e). Therefore, we will henceforth work with X and Z in place of Y and α̂;
equivalently, we take α ≡ 0.

We restate the definition now of the canonical Gaussian field, shorn of the statistical
motivation: Given a network (G, c) and a fixed vertex o ∈ 𝖵, let X(e) (e ∈ 𝖤1/2) be
independent normal random variables with mean 0 and variance r(e). Define the random
variables Z(x) (x ∈ 𝖵) by the condition that they minimize

∑
e∈𝖤1/2

�
X(e) − (dZ)(e)�2/r(e)

and that Z(o) = 0. The joint distribution of Z(x) (x ∈ 𝖵) is the canonical Gaussian field.
We consider two simple examples where we can easily understand this field. For the first

example, suppose that G is the usual nearest-neighbor graph on the integers {0, 1, . . . , n} and
that all resistances are 1. Also, take o = 0. Then X(e) ∼ N(0, 1) for all edges e and dZ = X ,
whence Z is just n steps of random walk with each step a standard normal random variable.

* The term discrete Gaussian free field is the one most commonly used in mathematics. However, the variant
where there are masses (Exercise 2.138) is no longer free, and on infinite networks, it would be awkward to refer to
the wired and free versions (Exercise 10.29) if we adopted that terminology.
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More generally, for the second example, if G is a tree rooted at o, then Z is a random walk
indexed by the tree in the sense that when two paths starting at the root branch off from
each other, then the random walks along those paths, which were identical, have independent
(normal) increments thereafter.

One of the striking properties of the canonical Gaussian field is that

Var
�
Z(x) − Z(y)� = R(x ↔ y) (2.21)

for all x, y ∈ 𝖵. Proving this will be relatively easy once we calculate the joint distribution of
dZ , which we proceed to do.
Given a network, define the gradient of a function f on 𝖵 to be the antisymmetric function

(∇ f )(e) :=
(df )(e)

r(e) , that is, ∇ f := c d f

on 𝖤. Thinking of resistance of an edge as its length makes this a natural name.
In this notation, Z is the function β with β(o) = 0 that minimizes ∥X/r − ∇β∥r . Since

∇1{x} is the star at x ∈ 𝖵, it follows that the set of all functions of the form ∇β for some
function β equals ⋆, whence we are looking for the element of ⋆ closest to X/r. Such
a minimization is achieved through orthogonal projection, so that ∇Z = P⋆(X/r). Since
X/r =

∑
e∈𝖤1/2

χeX(e)/r(e), applying P⋆ to both sides yields

∇Z =
∑
e∈𝖤1/2

ieX(e)/r(e) . (2.22)

In particular, the random variables ∇Z are linear combinations of independent normal random
variables, so themselves are jointly normal. This explains the name “Gaussian.” Since all
X(e) have mean 0, so do all ∇Z(e).
Another way to look at this orthogonal projection is as follows. An orthonormal basis

for the space ℓ2
−(𝖤, r) is



χe/
√

r(e) ; e ∈ 𝖤1/2
�
. If (Ω,P) is a probability space on which the

random variables X(e) are defined, then 
X(e)/√r(e) ; e ∈ 𝖤1/2
�
are orthonormal in L2(Ω,P).

Thus, if H denotes the linear span of the random variables X(e), then Φ: χe 7→ X(e) is an
isometric isomorphism from ℓ2

−(𝖤, r) to H . From (2.22), we have

dZ(e) = r(e)∇Z(e) =
∑

e′∈𝖤1/2

r(e)Y (e′, e)X(e′)/r(e′) =
∑

e′∈𝖤1/2

Y (e, e′)X(e′) (2.23)

using the definition Y (e, e′) := ie(e′) from Section 2.4 and then the reciprocity law (2.12). On
the other hand, we have trivially that

ie =
∑

e′∈𝖤1/2

Y (e, e′)χe′ . (2.24)

Comparing (2.23) with (2.24) shows that Φ takes ie to dZ(e). In particular,

Cov
�
dZ(e), dZ(e′)� = E

�
dZ(e) dZ(e′)� = (ie, ie′)r = (ie, χe′)r = Y (e, e′)r(e′) .
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This is the same as the voltage difference across e′ when unit current flows from e− to e+.
(The matrix of such (e, e′) entries is called the transfer impedance matrix.) Since the means
and covariances determine the distribution uniquely for jointly normal random variables, we
could regard this as a definition of dZ; since dZ determines Z because Z(o) = 0, this could
also be used as a definition of Z . Other properties that could be used as definitions follow.
The isomorphism Φ takes the subspace⋆ to a subspace that we will denote⋆(H ). This

latter subspace is simply the linear span of
∑

e−=x X(e)/r(e) over x ∈ 𝖵. Furthermore, since
ie = P⋆χe, it follows from the isomorphism that dZ(e) = P⋆(H )X(e). Since Z(o) = 0,
we may write Z(x) for x ∈ 𝖵 by summing −dZ along a path ψ from o to x; this gives
Z(x) = −∑e∈ψ dZ(e) = Φ

(
−
∑

e∈ψ ie
)
= Φ(ix,o), where ix,o is the unit current flow from x

to o. Therefore,
Z(x) =

∑
e∈𝖤1/2

ix,o(e)X(e) . (2.25)

Proposition 2.24. Let Z be the preceding canonical Gaussian field.
(i) The random variables Z are jointly normal with

Z(x) − Z(y) ∼ N
�
0,R(x ↔ y)�

for x ̸= y ∈ 𝖵.
(ii) The covariance of Z(x) − Z(y) and Z(z) − Z(w) equals v(z) − v(w) when v is the

voltage associated to a unit current flow from x to y (with x ̸= y).
(iii) We have Cov

�
Z(x), Z(z)� = Go(x, z)/π(z), where Go(x, z) is the expected number of

visits to z of the network random walk started at x, counting only visits that occur
before visiting o.

Proof. Part (iii) follows from (ii) by putting y := w := o and using Proposition 2.1. Part (ii)
extends (i), so we prove only (ii). Let vx,y be the voltage function corresponding to a unit
current flow from x to y. Let ψ ∈ ℓ2

−(𝖤, r) represent a path from w to z, that is, ψ =
∑

e
χe,

where the sum ranges over the edges in a path from w to z, oriented in the direction of this
path. Then as above, we have that Z(x) − Z(y) = Φ(ix,y), whence

Cov
(
Z(x) − Z(y), Z(z) − Z(w)) = (ix,y , iz,w)r = (∇vx,y ,−P⋆ψ)r

= (∇vx,y ,−ψ)r = vx,y(z) − vx,y(w) ,
as desired. ◀
Since the random vector X/r is a standard normal vector in ℓ2

−(𝖤, r), that is, in (any)
orthonormal coordinates, its components are independent standard normal random variables,
its image ∇Z under the orthogonal projection P⋆ is a standard normal vector in⋆. With the
change of notation ∥∇Z∥2

r = ∥dZ∥2
c , it follows that the joint density of the random variables

⟨Z(x) ; x ̸= o⟩ is

C exp
{
−1

2
∥dZ∥2

c

}
(2.26)

for some constant C. The constant C is evaluated in Exercise 4.17.
This result could also be used as the definition of the field Z . Finally, one can also define Z

by the requirement that dZ has the distribution of X conditioned to sum to zero along every
cycle; see Janson (1997), Section 9.4.
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2.9 Notes

A superb elementary introduction to the ideas of the first five sections of this chapter is given by
Doyle and Snell (1984). For detailed study of simple random walk in �d , see Révész (2005) and
Dembo (2005).

One way to define Brownian motion on a graph is the following. If x is a vertex and the lengths of the
d edges incident to x are ℓ1 ≤ · · · ≤ ℓd with ℓ1 = · · · = ℓm < ℓm+1 (or m = d), then define Brownian
motion starting at x as follows: Let B(t) be standard Brownian motion on � for t ≥ 0 with B(0) = 0.
Let τ := min{t ; |B(t)| = ℓ1} and σ := max{t < τ ; B(t) = 0}. Consider the excursions up to time τ,
that is, the open intervals I ⊂ [0, τ) on which B(t) ̸= 0 for t ∈ I but for which B(t) = 0 at the endpoints
of I. Assign each excursion independently and uniformly to one of the d edges incident to x by letting
|B(t)| be the distance from x along that edge for t ∈ I. Also, assign the bridge

�|B(t)| ; σ ≤ t ≤ τ
	

independently and uniformly to one of the d edges in the same way. If it happens that the bridge is
assigned to one of the m shortest edges, then the motion is at the other endpoint of that edge at time τ.
Otherwise, it is in the middle of the ith edge for some i > m, and we continue Brownian motion on �
until the first time after τ that B(t) = 0 or |B(t)| = ℓi , at which time we are either back at x to start again
without having reached a new vertex, or we are at the other endpoint of the ith edge.

The continuous classical analogue of harmonic functions, the Dirichlet problem, and its solution via
Brownian motion are as follows. Let D be an open subset of �d . If f : D → � is Lebesgue integrable
on each ball contained in D and for all x in D, f (x) is equal to the average value of f on each ball
in D centered at x, then f is called harmonic in D. If f is locally bounded, then this is equivalent
to f (x) being equal to its average on each sphere in D centered at x. Harmonic functions are always
infinitely differentiable and satisfy ∆ f = 0. Conversely, if f has two continuous partial deriviatives and
∆ f = 0 in D, then f is harmonic in D. If D is bounded and connected and f is harmonic on D and
continuous on its closure, D, then maxD f = max∂D f . The Dirichlet problem is the following. Given
a bounded connected open set D and a continuous function f on ∂D, is there a continuous extension
of f to D that is harmonic in D? The answer is yes when D satisfies certain regularity conditions.
In this case, the solution can be given via Brownian motion Xt in D as f (x) := Ex

�
f (Xτ )�, where

τ := inf{t ≥ 0 ; Xt /∈ D}. See, for example, Bass (1995), pp. 83–90 for details or Doob (1984) for a
comprehensive treatment.

Brownian motion in �d is analogous to simple random walk in �d . The electrical analogue to
a discrete graph is a uniformly conducting material. The analogue of a flow is a vector field whose
divergence is 0 off of some specified part, whereas the analogue of a current is such a vector field whose
curl is 0. There is a similar relationship to an electrical framework for reversible diffusions, even on
Riemannian manifolds: Let M be a complete Riemannian manifold. Given a function σ(x) which is
Borel-measurable, locally bounded, and locally bounded below, called the (scalar) conductivity, we
associate the diffusion whose generator is

(
2σ(x)√g(x) )−1 ∑

∂iσ(x)
√
g(x)gi j (x)∂j in coordinates,

where the metric is gi j with inverse gi j and determinant g. In coordinate-free notation, this is
(1/2)∆ + (1/2)∇ logσ. In other words, the diffusion is Brownian motion with drift equal to half the
gradient of the log of the conductivity. The main result of Ichihara (1978) [see also the exposition by
Durrett (1986), p. 75; Fukushima (1980), Theorem 1.5.1, and Fukushima (1985); or Grigor’yan (1985)]
gives the following test for transience, an analogue to Exercise 2.93.

Theorem 2.25. On a complete connected Riemannian manifold M , the diffusion corresponding to the
scalar conductivity σ(x) is transient iff

inf
{∫

M

|∇u(x)|2σ(x) dx ; u ∈ C∞0 (M), u↾B1(o) ≡ 1
}
> 0 ,

where dx is the volume form and o ∈ M is any fixed point.
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One can use networks to decide the recurrence or transience of a Riemannian manifold, and vice
versa. Recall that a graph G is called an ϵ-net of M if the vertices of G form a maximal ϵ-separated
subset of M and edges join distinct vertices iff their distance in M is at most 3ϵ . When a conductivity
σ is given on M , we assign conductances c to the edges of G by

c(u, w) :=
∫
Bϵ (u)

σ(x) dx +
∫
Bϵ (w)

σ(x) dx .

An evident modification of the proof of Theorem 2 of Kanai (1986) shows the following analogue to
Theorem 2.17. A manifold M is said to have bounded geometry if its Ricci curvature is bounded below
and the injectivity radius is positive. If the Ricci curvature is bounded below, then nets have bounded
degree (Kanai (1985), Lemma 2.3). We say that σ is ϵ-slowly varying if

sup
�
σ(x)/σ(y) ; dist(x, y) ≤ ϵ	 < ∞ .

Theorem 2.26. Suppose that M is a complete connected Riemannian manifold of bounded geometry,
that ϵ is at most half the injectivity radius of M, that σ is an ϵ-slowly varying Borel-measurable
conductivity on M , and that G is an ϵ-net in M . Then the associated diffusion on M is transient iff the
associated random walk on G is transient.

The transformations of a network described in Section 2.3 can be used for several other purposes as
well. As we will see (Chapter 4), spanning trees are intimately connected to electrical networks, so
it will not be surprising that such network reductions can be used to count the number of spanning
trees of a graph. See Colbourn, Provan, and Vertigan (1995) for this, as well as for applications to the
Ising model and perfect matchings (also known as domino tilings). For a connection to knot theory, see
Goldman and Kauffman (1993).

The Nash-Williams criterion was proved by Nash-Williams (1959).
The precise asymptotics for the effective resistance in Proposition 2.14 are given in Exercise 2.99,

whereas similar asymptotics for Proposition 2.15 are given in Exercise 4.52.
In 1994, Aldous and Fill (Open Problem 6.35 in Section 6.8.3 of Aldous and Fill (2002)) asked for a

deterministic estimate of cover times Ex [Cov], for reversible Markov chains, up to a constant factor that
can be computed in polynomial time. Let C∗ := maxx∈𝖵 Ex [Cov] denote the cover time, maximized
over the starting state. Kahn, Kim, Lovász, and Vu (2000) focused on the problem of estimating C∗.
They noted that for a single edge, with n loops added to one endpoint, the lower bound in Theorem 2.23
is quite far from C∗. Denote by M the larger of the right-hand side in Theorem 2.23 and the maximal
expected hitting time between two states in 𝖵. By Theorem 2.23, C∗ is at least M . Kahn, Kim, Lovász,
and Vu (2000) showed that C∗ = O

�
M(log log n)2� (in the reversible case).

The statistical model of Section 2.8 and its connection to random walks (which is equivalent to
electrical networks) is due to Borre and Meissl (1974); see Tjur (1991). The maximum likelihood
estimate is also the best linear unbiased estimate, a general fact about linear Gaussian models. See
Constantine (2003) for some additional information on unbiased estimates in this model. This model
is similar to Dynkin’s isomorphism, which is for continuous-time Markov processes; see Dynkin (1980).
A different connection of networks to Gaussian fields, obtained by using the network Laplacian (defined
in Exercise 2.62) as covariance matrix, is due to Diaconis and Evans (2002). A relationship of the
canonical Gaussian field to the expected cover time was shown by Ding, Lee, and Peres (2012), which
resolved several open questions on cover times. Scaling limits of canonical Gaussian fields and other
models sometimes give what’s known as the (continuum) Gaussian free field; for example, see Kenyon
(2001, 2008), Rider and Virág (2007), and Sheffield (2007). For one such example, consider a spanning
tree T in an n×n square grid. Associate to the path from the lower left corner to a vertex x its net number
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Figure 2.5. The net turns of the paths from a fixed vertex in a
uniform spanning tree in a 200 × 200 grid on the left, with a key on
the right showing the correspondence of visual colors to numbers.

h(x) of turns (also called its winding number), that is, the number of times it turns left minus the number
of times it turns right. Let hT be the mean value of h(x) over all x ∈ 𝖵(T). When T is chosen uniformly
at random (the topic of Chapter 4), the scaling limit of the distribution of x 7→ (√π/4)�h(x) − hT

�
is

the Gaussian free field, as shown by Kenyon (2001) (and conjectured in looser form by Itai Benjamini);
a picture for n = 200 appears in Figure 2.5, where in this sample, the mean winding number hT is about
0.917. The canonical Gaussian field was also introduced in molecular biology by Bahar, Atilgan, and
Erman (1997), where it facilitates very useful computation. Here, the edges are regarded as springs.
Because the correlations are positive, the random variables Z(x) of Exercise 2.138 are positively
associated (see Section 5.8 for the definition) by the main result of Pitt (1982); see Joag-Dev, Perlman,
and Pitt (1983) for a simpler proof of this implication for normal random variables.

Problems about random walks that sound similar to those we have analyzed, yet to which the tools of
electrical network theory do not apply, can be very vexing and can often behave contrary to what our
intuition tells us. For example, Rayleigh’s monotonicity principle tells us that subgraphs of recurrent
graphs are themselves recurrent. This would suggest that if we do simple random walk in �2, except
that at certain times determined in advance, we step either to the right or left only, with equal probability,
then the resulting (time-inhomogeneous) Markov chain would still be recurrent. However, this is false!

▷ Exercise 2.21.
Find a sequence of times S ⊂ � such that if ⟨Xn ; n ∈ �⟩ is the Markov chain on �2 with increments
that are uniformly distributed on

�(1, 0), (−1, 0), (0, 1), (0,−1)	 at times n /∈ S and uniformly distributed
on

�(1, 0), (−1, 0)	 at times n ∈ S, then the chain is transient. Hint: Let S consist of very long intervals
separated by long intervals.
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The following variant is still open:

Question 2.27. Define the non-Markovian process ⟨Xn⟩ taking values in �2 in the following manner.
Put X0 := (0, 0). For n ≥ 1, let Xn+1 − Xn be either (1, 0) or (−1, 0) with equal probability if
Xn /∈ {X0, . . . , Xn−1}, whereas Xn+1 − Xn is either (0, 1) or (0,−1) with equal probability if Xn ∈
{X0, . . . , Xn−1}. Does ⟨Xn⟩ visit any site infinitely often with positive probability? This question is
due to Benjamini, Kozma, and Schapira (2011), who analyze a version of this in four dimensions.

A notoriously difficult, though innocent-sounding, variation on random walk on graphs, due to
Coppersmith and Diaconis, is the following. Let G be a graph. To model the idea that a random walker
may prefer to traverse edges previously visited, we will allow the edge weights to change with time.
Thus, define a non-Markovian process ⟨Xn ; n ≥ 0⟩ as follows. Start with a fixed vertex X0 and some
constant a > 0. Let Ln(e) be the number of traversals of e by ⟨Xk ; 0 ≤ k ≤ n⟩. When choosing Xn+1,
use edge weights cn(e) := a + Ln(e). This is called edge-reinforced random walk. It is not hard to
show that if G = �, then Xn ̸→ ∞ a.s.

More generally, when G is a tree, there is an alternative representation of edge-reinforced random
walk that allows it to be analyzed, as done first by Pemantle (1988). He proved that this model exhibits
a phase transition: when a is small, the random walk is recurrent (that is, it visits every vertex infinitely
often a.s.), whereas when a is large, it is transient. The precise critical value of a is known, even for
general trees: see Lyons and Pemantle (1992) (and Lyons and Pemantle (2003)). To see this alternative
representation, consider first a directed graph, G, and only increase the weights of directed edges
when traversed. Let Cn(x) be the vector of weights on the outgoing edges from x at the nth visit to
x. We could define this for all n regardless of how many times x is visited. In fact, these sequences
⟨Cn(x) ; n ≥ 0⟩ are independent for different x ∈ 𝖵(G) and are the same as choosing from a Pólya
urn that starts with weight a on each outgoing edge from x. Since the draws from a Pólya urn are
exchangeable, they could equally well be represented as a mixture of i.i.d. choices by de Finetti’s
theorem; it turns out that the mixture is a Dirichlet distribution. Thus, one can alternatively describe the
directed edge-reinforced random walk as follows: First pick a random transition probability distribution
for each vertex in an i.i.d. way from a certain Dirichlet distribution. Then do a Markovian random walk
according to these transition probabilities. This is known as a random walk in a random environment
(RWRE). When G is a tree, we do not need to use directed edges for this representation, since each edge
is traversed twice when returning to a vertex before any other incident edge is traversed.

When G = �d for d ≥ 2, reinforced random walk is harder to analyze and there was little progress
for many years. Merkl and Rolles (2009) showed recurrence for small a on graphs obtained by
subdividing the edges of �2. Finally, Angel, Crawford, and Kozma (2014) and Sabot and Tarrès (2015)
showed independently that on every graph G of bounded degree, if a > 0 is sufficiently small, then
edge-reinforced random walk on G is recurrent. Conversely, Disertori, Sabot, and Tarrès (2015) proved
that if d ≥ 3 and a is sufficiently large, then the edge-reinforced random walk in �d is transient. The
behavior of the process in �2 when a is large remains open.

It turns out that a similar-sounding process, where one uses vertex weights instead of edge weights,
but again, the weight of a vertex is increased every time a vertex is visited, behaves quite differently
and is considerably easier to understand: see Volkov (2001). This process is called vertex-reinforced
random walk.

The topic of RWRE, with any i.i.d. transition probabilities, is quite natural and extensive but only
partially understood, except on trees.

▷ Exercise 2.22.
Let ⟨Ak ; k ∈ �⟩ be i.i.d. random variables with values in (0, 1). Let ⟨Xn⟩ be the RWRE on � with
transition probability at k given by stepping to k + 1 with probability Ak and to k − 1 with probability
1 − Ak . Show that this walk tends to∞ a.s. when E

�
log A0 − log (1 − A0)� > 0, tends to −∞ a.s. when
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E
�
log A0 − log (1 − A0)� < 0, and is a.s. recurrent when E

�
log A0 − log (1 − A0)� = 0 (when these

expectations are defined). Hint: Use a random electrical network.

To see how difficult the topic of RWRE in �d is when d ≥ 2, consider symmetric random
environments. Only in very special cases is it known whether the RWRE is recurrent or transient. Even
when the environment is not symmetric but has a nonzero average drift in some direction, transience is
not always established. See Zeitouni (2004) and Sznitman (2004) for surveys of RWRE.

2.10 Collected In-Text Exercises
2.1. (Reversible Markov Chains)
(a) Let P be the transition probability matrix of a Markov chain. Show that if P is π-reversible, that

is, π(x)p(x, y) = π(y)p(y, x) for all states x, y, then π is P-stationary, that is,
∑

x π(x)p(x, y) = π(y)
for all states y.

(b) Let P be the transition probability matrix of a Markov chain and π be P-stationary. Define the
reversed Markov chain to have transition probabilities

p̂(x, y) := π(y)p(y, x)/π(x)
and write P̂ for the associated transition matrix. Show that P̂ is indeed a transition matrix and that
∀x1, x2, . . . , xn ,

π(x1)
n−1∏
i=1

p(xi , xi+1) = π(xn)
n−1∏
i=1

p̂(xn+1−i , xn−i ) .

Of course, P is π-reversible iff P = P̂.
(c) Show that if a Markov chain is reversible, then ∀x1, x2, . . . , xn with x1 = xn ,

n−1∏
i=1

p(xi , xi+1) =
n−1∏
i=1

p(xn+1−i , xn−i ) :

the chance of traversing a cycle is the same in either direction. Show too that this equation implies
reversibility.

(d) Let ⟨Xn⟩ be a random walk on a network G, and let x and y be two vertices in G. Let P be a
path from x to y and P′ be its reversal, a path from y to x. Show that

Px

�⟨Xn ; n ≤ τy⟩ = P
�
τy < τ+

x

�
= Py

�⟨Xn ; n ≤ τx⟩ = P′
�
τx < τ+

y

�
,

where τw denotes the first time the random walk visits w, /> τw
+ denotes the first time after 0 that the

random walk visits w, and Pu denotes the law of random walk started at u. In words, paths between
two states that don’t return to the starting point and stop at the first visit to the endpoint have the same
distribution in both directions of time.

(e) Consider a random walk on a network G that is either transient or is stopped on the first visit to
a set of vertices Z . Let G (x, y) be the expected number of visits to y for a random walk started at x; if
the walk is stopped at Z , we count only those visits that occur strictly before visiting Z . Show that for
every pair of vertices x and y,

π(x)G (x, y) = π(y)G (y, x) .
(f) Show that random walk on a connected network G is positive recurrent (that is, has a stationary

probability distribution, which is therefore unique) iff
∑

x ,y c(x, y) < ∞, in which case the stationary
probability distribution is proportional to π( • ). Show that if the random walk is not positive recurrent,
then π( • ) is a stationary infinite measure.
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2.2. Suppose that an antisymmetric function j (meaning that j(x, y) = − j(y, x)) on the edges of a
finite connected network satisfies Kirchhoff’s cycle law and satisfies Kirchhoff’s node law in the form∑

x∼y j(x, y) = 0 for all x ∈ W . Show that j is the current corresponding to some voltage function
whose values are specified off W and that the voltage function is unique up to an additive constant.

2.3. Verify that Propositions 2.1 and 2.2 are valid when the number of edges is infinite but the
number of vertices is finite.

2.4. For a fixed vertex a in G, show that limn C (a ↔ Zn) is the same for every sequence ⟨Gn⟩ of
induced subgraphs that exhausts G.

2.5. When G is finite but A is not a singleton, define C (A↔ Z) to be C (a ↔ Z) if all the vertices
in A were to be identified to a single vertex, a. Show that if voltages are applied at the vertices of A∪ Z
so that v↾A and v↾Z are constants, then v↾A− v↾Z = IAZR(A↔ Z), where IAZ :=

∑
x∈A

∑
y i(x, y)

is the total amount of current flowing from A to Z .

2.6. Give two harder but instructive proofs of the series equivalence as follows. Since voltages
determine currents, it suffices to check that the voltages are as claimed on the new network G′. (1) Show
that v↾

�
𝖵(G) \ {w}� is harmonic on 𝖵(G′) \ (A ∪ Z). (2) Use the “craps principle” (Pitman (1993),

p. 210) to show that Px [τA < τZ ] is unchanged for x ∈ 𝖵(G) \ {w}.

2.7. Give two more proofs of the parallel equivalence as in Exercise 2.6.

2.8. Let (G, c) be a network. A network automorphism of (G, c) is a map ϕ:G → G that is a
bijection of the vertex set with itself and a bijection of the edge set with itself such that if x and e are
incident, then so are ϕ(x) and ϕ(e) and such that c(e) = c(ϕ(e)) for all edges e. Suppose that (G, c) is
spherically symmetric about o, meaning that if x and y are any two vertices at the same distance from
o, then there is an automorphism of (G, c) that leaves o fixed and that takes x to y. Let Cn be the sum
of c(e) over all edges e with d(e−, o) = n − 1 and d(e+, o) = n. Show that

R(o↔ ∞) =
∑
n≥1

1
Cn

,

whence the network random walk on G is transient iff

∑
n≥1

1
Cn

< ∞ .

2.9. Give at least one proof of the star-triangle equivalence.

2.10. Find a (finite) graph with two vertices a and z that can’t be reduced to a single edge between a
and z by the four transformations pruning, series, parallel, and star-triangle.

2.11. Prove that d and d∗ are adjoints of each other.

2.12. Show that P[a → Z] can increase in some situations and decrease in others when an edge
incident to a is removed.

2.13. Given disjoint vertex sets A, Z in a finite network, we may express the effective resistance
between A and Z by Thomson’s principle as

R(A↔ Z) = min
{ ∑

e∈𝖤1/2

r(e)θ(e)2 ; θ is a unit flow from A to Z
}
.
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Prove the following dual expression for the effective conductance, known as Dirichlet’s principle:

C (A↔ Z) = min
{ ∑

e∈𝖤1/2

c(e)dF(e)2 ; F↾A ≡ 1, F↾Z ≡ 0
}
.

2.14. Let G = (𝖵, 𝖤) be denumerable and θn ∈ ℓ2
−(𝖤, r) be such that E (θn) ≤ M < ∞ and θn → θ

edgewise, that is, θn(e)→ θ(e) for each e ∈ 𝖤. Show that θ is antisymmetric, E (θ) ≤ lim infn E (θn) ≤
M , and ∀x ∈ 𝖵 d∗θn(x)→ d∗θ(x).

2.15. Show that (2.19) is also necessary for recurrence if f (n + 1) ≤ f (n) + 1 for all n.

2.16. Show that if we remove each edge
�(x, y, z), (x, y, z + 1)� in �3 with x + y odd, then we obtain

a transient graph with effective resistance to infinity at most 6 times what it was before removal.

2.17. Show that being roughly isometric is an equivalence relation.

2.18. Show that � and �2 are not roughly isometric graphs.

2.19. Prove Proposition 2.18.

2.20. Prove Theorem 2.23.

2.21. Find a sequence of times S ⊂ � such that if ⟨Xn ; n ∈ �⟩ is the Markov chain on �2 with
increments that are uniformly distributed on

�(1, 0), (−1, 0), (0, 1), (0,−1)	 at times n /∈ S and uniformly
distributed on

�(1, 0), (−1, 0)	 at times n ∈ S, then the chain is transient. Hint: Let S consist of very
long intervals separated by long intervals.

2.22. Let ⟨Ak ; k ∈ �⟩ be i.i.d. random variables with values in (0, 1). Let ⟨Xn⟩ be the RWRE on
� with transition probability at k given by stepping to k + 1 with probability Ak and to k − 1 with
probability 1− Ak . Show that this walk tends to∞ a.s. when E

�
log A0 − log (1− A0)� > 0, tends to −∞

a.s. when E
�
log A0 − log (1 − A0)� < 0, and is a.s. recurrent when E

�
log A0 − log (1 − A0)� = 0 (when

these expectations are defined). Hint: Use a random electrical network.

2.11 Additional Exercises

In all the exercises, assume the networks are connected. Recall that π( • ) is not necessarily
a probability measure.

2.23. A function f on the states of a Markov chain is called subharmonic at x if

f (x) ≤
∑

p(x, y) f (y)

and superharmonic if the opposite inequality holds. Show that the maximum principle extends
to subharmonic functions and that there is a corresponding minimum principle for superharmonic
functions.

2.24. Let A ⊂ 𝖵 be a subset of states of a Markov chain such that Px [τA < ∞] = 1 for all x ∈ 𝖵.
Suppose that f :𝖵→ � is subharmonic at all x /∈ A (as defined in Exercise 2.23).

(a) Show that f (x) ≤ supy∈A f (y) for all x ∈ 𝖵 or else supx /∈A f (x) = ∞.
(b) Find an example where f ↾A is bounded but f is not.
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2.25. Give another proof of the existence principle along the following lines. Given f0 off W , let
f (x) := inf g(x) over all functions g that are superharmonic on W , that agree with f0 off W , and such
that g ≥ inf f0. (See Exercise 2.23 for the definition of “superharmonic.”) Then f is harmonic and
agrees with f0 off W .

2.26. Let G be a transient network and x, y ∈ 𝖵. Show that

π(x)Px [τy < ∞]G (y, y) = π(y)Py [τx < ∞]G (x, x) .

2.27. Let G be a transient network and f :𝖵→ � satisfy
∑

y G (x, y)| f (y)| < ∞ for every x. Define
(G f )(x) :=

∑
y G (x, y) f (y). Let I be the identity operator and P be the transition operator (that is,

(Pg)(x) :=
∑

y p(x, y)g(y)). Show that (I − P)(G f ) = f .

2.28. Let G be transient and u be a nonnegative superharmonic function. Show that there exist
unique functions f and h such that f ≥ 0, h is harmonic, and u = G f + h, where G f is defined in
Exercise 2.27. Show that also f = (I − P)u, h ≥ 0, and h ≥ g whenever g ≤ u is harmonic, where I
and P are defined in Exercise 2.27. Hint: Define h := limn Pnu and f := (I − P)u.

2.29. (Starr’s Maximal Inequality) Let G be a positive recurrent network with stationary proba-
bility distribution π. Let P be the transition operator as in Exercise 2.27. Use the following steps to
prove that for every p ∈ (1,∞) and f ∈ ℓp(𝖵, π),





sup
n≥0

P2n f




p ≤

( p
p − 1

)
∥ f ∥p .

(This exercise assumes familiarity with martingale theory.) Let X0 ∼ π and f ≥ 0. Write Rn :=
E
�

f (X2n) � Xn

�
and hN := max0≤n≤N P2n f .

(a) Show that (P2n f )(X0) = E[Rn | X0].
(b) Show that (Xn , Xn+1, . . . , X2n) D= (Xn , Xn−1, . . . , X0).
(c) Show that Rn = E

�
f (X0) � Xn , Xn+1, . . .

�
, whence ⟨RN , RN−1, . . . , R0⟩ is a martingale.

(d) Show that
�
max0≤n≤N Rn

�
p
≤ p

p−1 ∥ f ∥p .
(e) Show that hN (X0) ≤ E

�
max0≤n≤N Rn

�
X0

�
.

(f) Show that ∥hN ∥p ≤ p

p−1 ∥ f ∥p .
(g) Take N → ∞ to deduce Starr’s inequality.

2.30. Suppose that ⟨Xn⟩ is a stationary sequence with values in some measurable space. Let the
distribution of X0 be µ. Fix a measurable set A of possible values and let τ+

A
:= inf{n ≥ 1 ; Xn ∈ A}.

Write µA for the distribution of X0 given that X0 ∈ A.
(a) Show that P[τ+

A < ∞ | X0 ∈ A] = 1.
(b) Show that the conditional distribution of Xτ+

A
given that X0 ∈ A is also µA.

(c) (Kac Lemma) Assume that P[τ+
A < ∞] = 1. Show that E[τ+

A | X0 ∈ A] = 1/µ(A).
2.31. Given a finite graph G and two of its vertices a and z, let ic ( • ) be the unit current flow from a

to z when conductances c( • ) are assigned to the edges. Show that ic is a continuous function of c( • ).
2.32. Let G be a network. If h:𝖵→ [0,∞) is harmonic at every vertex of W ⊆ 𝖵, while h(x) > 0

iff x ∈ W , there is a Markov chain on W associated to h called Doob’s h-transform; its transition
probabilities are defined to be ph(x, y) := p(x, y)h(y)/h(x) for x, y ∈ W . Check that these are indeed
transition probabilities for a reversible Markov chain. Find corresponding conductances.
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2.33. Let G be a finite network and W ⫋ 𝖵. At every visit to a vertex x ∈ W , a random walker
collects a payment of g(x). When reaching a vertex y /∈ W , the walker receives a final retirement
package of h(y) and stops moving. Let f (x) denote the expected total payment the walker receives
starting from x.

(a) Show that f is finite.
(b) Write a set of linear equations that the values f (x) for x ∈ W must satisfy (one equation for

each such vertex x).
(c) Uniqueness: Show that these equations specify f .
(d) Existence: Without using the probabilistic interpretation, prove there is a solution to this set of

equations.
(e) Let i be the current associated to the voltage function f , that is, i(x, y) := c(x, y)[ f (x) − f (y)].

Show that the amount of current flowing into the network at x, that is,
∑

y i(x, y), equals π(x)g(x) for
x ∈ W . Thus, currents can be specified by giving voltages h on one set of vertices and giving flow
amounts π(x)g(x) on the complementary set of vertices. (Recall that π( • ) is not generally a probability
measure.)

2.34. If voltages are given at vertices a and z of a finite network and thus are harmonic elsewhere,
must the voltages of the vertices be monotone along every shortest path between a and z?

2.35. Let x, y, z ∈ 𝖵. Show that C (x ↔ {y, z}) ≤ C (x ↔ y) + C (x ↔ z).
2.36. Let A and Z be two sets of vertices in a finite network. Show that for any vertex x /∈ A∪ Z , we

have
Px [τA < τZ ] ≤ C (x ↔ A)

C (x ↔ A ∪ Z) .
2.37. Show that on every finite network, |E[Sxy ] − E[Syx ]| ≤ 1 for all x, y, where Sxy is defined as

in Proposition 2.2.

2.38. When a voltage is imposed so that a unit current flows from a to Z in a finite network and
v↾Z ≡ 0, show that the expected total number of times an edge [x, y] is crossed by a random walk
starting at a and absorbed at Z equals c(x, y)[v(x) + v(y)].

2.39. Define Sxy as in Proposition 2.2. Show that E[Sxy ] is monotone increasing in c(x, y).
2.40. Show that every transient network contains a locally finite transient subnetwork.

2.41. Let G be a network such that γ :=
∑

e∈𝖤 c(e) < ∞ (for example, G could be finite). Here, the
sum counts each edge with two endpoints twice and each loop once. For every vertex a ∈ G, show that
the expected time for a random walk started at a to return to a is γ/π(a).

2.42. Let ⟨Xn⟩ be a recurrent irreducible Markov chain, not necessarily reversible. Let τ > 0 be a
stopping time such that Pa[Xτ = a] = 1 for some state a. Let Gτ (x, y) := Ex

�∑
0≤n<τ 1[Xn=y]

�
. Assume

that Gτ (a, a) < ∞; for example, we could use τ = τ+
a .

(a) Show x 7→ Gτ (a, x) is finite for each x and gives a stationary measure.
(b) Assume in addition that ⟨Xn⟩ is positive recurrent, that is, it has a stationary probability

measure π( • ), not necessarily reversible. Show that for all states x, we have Ea[τ] < ∞ and
π(x) = Gτ (a, x)/Ea[τ]. In particular, Ea[τ+

a] = 1/π(a). Give another proof of the formula of
Exercise 2.41 from this.

(c) Show that if Ea[τ+
a] < ∞, then ⟨Xn⟩ is positive recurrent.

2.43. Let ⟨Xn⟩ be an irreducible Markov chain. Suppose that the Markov chain is recurrent.
(a) Show that there are no bounded harmonic functions other than the constants.
(b) Show that there are no nonnegative harmonic functions other than the constants.
(c) Existence of a stationary measure was shown in Exercise 2.42. Show that the stationary

measure is unique up to a multiplicative constant.
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2.44. Let ⟨Xn⟩ be an irreducible Markov chain. Show that the Markov chain is recurrent iff
every nonnegative superharmonic function is constant. (See Exercise 2.23 for the definition of
“superharmonic.”)

2.45. Let ⟨Xn⟩ be a positive recurrent irreducible aperiodic Markov chain with stationary probability
measure π( • ), not necessarily reversible. Write Pπ for the law of the chain when the distribution of X0
is π. Show that for all states x, we have

π(x)Eπ [τx ] =
∑
n≥0

[pn(x, x) − π(x)] .

The right-hand side can be thought of as the expected excess number of visits to x when starting at x
compared to starting according to π.

2.46. Let G be a network such that
∑

e∈𝖤 c(e) = ∞. For every vertex a ∈ G, show that the expected
time for a random walk started at a to return to a is∞.

2.47. Let G be a finite network and A and Z be two disjoint subsets of vertices in G. Show that

C (A↔ Z) =
∑
x∈A

π(x)Px [τZ < τ+
A] .

(Recall that π( • ) is not generally a probability measure.)

2.48. Let ⟨Xn⟩ be a positive recurrent irreducible Markov chain with stationary probability measure
π( • ), not necessarily reversible. Show that the expected hitting time of a random π-distributed target
does not depend on the starting state. That is, show that if

f (x) :=
∑
y

π(y)Ex [τy ] ,

then f (x) is the same for all x. In case the state space is finite, show that

f (x) =
∑
i

1
1 − 𝜆i

,

where the sum is over the eigenvalues 𝜆i of the transition matrix P (with multiplicity) other than 1.

2.49. Suppose that a tree T is transient for simple random walk ⟨Xn⟩. If we iteratively erase
backtracking from the path of the walk, then we obtain a.s. a ray ξ ∈ ∂T that intersects the path infinitely
often. We say that ⟨Xn⟩ converges to ξ. Prove that if ⟨Xn⟩ and ⟨X ′n⟩ are independent simple random
walks on T , then a.s. they converge to distinct rays.

2.50. Let ⟨Xn⟩ be a Markov chain and A be a set of states such that τA < ∞ a.s. The distribution of
XτA is called harmonic measure on A. In the case that ⟨Xn⟩ is a random walk on a network G = (𝖵, 𝖤)
starting from a vertex z and A ⊆ 𝖵 is finite, let µ be harmonic measure and define

𝜈(x) := Px [τz < τ+
A] for x ∈ A.

(a) Show that
µ(x) = Pz [τx < τA\{x} | τA < τ+

z ] for all x ∈ A.

(b) Show that
µ(x) = R(A↔ z)π(x)𝜈(x) for all x ∈ A.
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(Recall that π( • ) is not generally a probability measure.)
(c) Let G be a transient network and ⟨Gn⟩ be an exhaustion of G by finite induced subnetworks.

Let GW
n be the network obtained from G by identifying the vertices outside Gn to a single vertex, zn ,

and removing loops at zn . Fix a finite set A ⊂ 𝖵. Let µn be harmonic measure on A for the network
GW

n from zn . Show that wired harmonic measure from infinity µ := limn→∞ µn exists and satisfies

µ(x) = R(A↔ ∞)π(x)Px [τ+
A = ∞] for all x ∈ A.

2.51. Let G be a finite network with a fixed vertex, a. Fix s ∈ (0, 1). Add a new vertex, ∆, which is
joined to each vertex x with an edge of conductance w(x) chosen so that at x, the probability of taking
a step to ∆ is equal to 1 − s. Call the new network G′. Prove that∑

k≥0

pk sk = π(a)R(a ↔ ∆; G′)/s ,

where pk is the probability that the network random walk on G (not on G′) starting from a is back at a
at time k. The preceding series is the generating function for the return probabilities and is sometimes
called the “Green function,” despite the other notion of Green function defined in this chapter.

2.52. Let G be a transient network with a fixed vertex, a. Fix s ∈ (0, 1). Add a new vertex, ∆, which
is joined to each vertex x with an edge of conductance w(x) chosen so that at x, the probability of
taking a step to ∆ is equal to 1 − s. Call the new network G′. Define the effective resistance between
a and {∆,∞} to be the limit of the effective resistance between a and 𝖵(G′) \ 𝖵(Gn), where Gn is
an exhaustion of G (not of G′) by induced subnetworks. Prove that the limit defining the effective
resistance between a and {∆,∞} exists and that∑

k≥0

pk sk = π(a)R(a ↔ ∆,∞; G′)/s ,

where pk is the probability that the network random walk on G (not on G′) starting from a is back at a
at time k.

2.53. Give an example of two graphs Gi = (𝖵, 𝖤i ) on the same vertex set (i = 1, 2) such that both
graphs are connected and recurrent, yet their union (𝖵, 𝖤1 ∪ 𝖤2) is transient.

2.54. Consider nearest-neighbor random walk on � that steps +1 with probability 3/4 and −1 with
probability 1/4 unless the walker is at a multiple of 3, in which case the transition probabilities are
1/10 and 9/10, respectively. (Of course, at 0, the walker always moves to 1.) Show that the walk is
recurrent. On the other hand, show that if before taking each step, a fair coin is tossed and one uses
the transition probabilities of this biased walk when the coin shows heads and moves right or left with
equal probability when the coin shows tails, then the walk is transient. In this latter case, show that the
walk tends to infinity at a positive linear rate.

2.55. In the following networks, each edge has unit conductance.

a x

z

a z

a z

(a) (b) (c)
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(a) What are Px [τa < τz ], Pa[τx < τz ], and Pz [τx < τa]?
(b) What is C (a ↔ z)? (Or: show a sequence of transformations that could be used to calculate

C (a ↔ z).)
(c) What is C (a ↔ z)? (Or: show a sequence of transformations that could be used to calculate

C (a ↔ z).)
2.56. Suppose that G is a finite network and voltages are given to be 1 at a vertex a and 0 at a vertex

z. Let x and y be two other vertices of G, and let G′ := G/{x, y} be the graph obtained by shorting
x and y, that is, identifying them. Show that the voltage at the shorted vertex in G′ lies between the
original voltages at x and y in G.

2.57. Let W be a set of vertices in a finite network G. Let j ∈ ℓ2
−(𝖤) satisfy

∑n
i=1 j(ei )r(ei ) = 0

whenever ⟨e1, e2, . . . , en⟩ is a cycle; and d∗ j↾(𝖵 \W ) = 0. According to Exercise 2.2, the values of
d∗ j↾W determine j uniquely. Show that the map d∗ j↾W 7→ j is linear. This is another form of the
superposition principle.

2.58. Let (G, c) be a finite network, z ∈ 𝖵(G), and A ⊆ 𝖵(G) \ {z}. Consider two voltage functions
v, v′ on G specified to be 0 at z and arbitrary on A, with the property that v(a) ≤ v′(a) for each a ∈ A.
Let i, i′ be the corresponding currents. Show that d∗i(z) ≥ d∗i′(z).

2.59. Let A and Z be subsets of vertices in a finite network. Show that

2
|A| |Z |

∑
a∈A,z∈Z

R(a ↔ z) ≥ 1
|A|2

∑
a,b∈A

R(a ↔ b) +
1

|Z |2
∑
y ,z∈Z

R(y ↔ z) ,

with equality iff A = Z .

2.60. Let G be a finite network and f :𝖵 → � satisfy
∑

x f (x) = 0. Pick z ∈ 𝖵. Let Gz (•, •)
be the Green function for the random walk on G absorbed at z. Consider the voltage function
v(x) :=

∑
y Gz (x, y) f (y)/π(y). Show that the current i = c · dv satisfies d∗i = f and E (i) =∑

x ,y Gz (x, y) f (x) f (y)/π(y).
2.61. A cut in a graph G is a set of edges of the form {(x, y) ; x ∈ A, y /∈ A} for some proper

nonempty vertex set A of G. Show that for every finite network G, the linear span of{∑
e∈Π

c(e)χe ; Π is a cut of G
}

equals the star space.

2.62. Let G be a finite connected network. The network Laplacian is the 𝖵 × 𝖵 matrix ∆G whose
(x, y) entry is −c(x, y) if x ̸= y and is π(x) if x = y. Thus, ∆G is symmetric and all its row sums are
0. Write ∆G [a] for the matrix obtained from ∆G by deleting the row and column indexed by a. Let
va(x, y) be the voltage at x when a unit current iy ,a flows from y to a (so that the voltage at a is 0) if
y ̸= a and be 0 otherwise. (By Proposition 2.1, va(x, y) = Ga(x, y)/π(y) for the random walk killed at
a.) Prove the following statements:

(a) if x, y ̸= a, then va(x, y) is the (x, y)-entry of ∆G [a]−1;
(b) va(x, y) = va(y, x);
(c) va(x, x) = vx (a, a);
(d) for all a, x, y ∈ 𝖵, we have R(x ↔ y) = va(x, x) − 2va(x, y) + va(y, y);
(e) if x, y ̸= a, then va(x, y) = (ix ,a , iy ,a)r ;
(f) for all f ∈ ℓ2(𝖵), we have ( f ,∆G f ) = ∥df ∥2

c ;
(g) for all x, y ∈ 𝖵, we have R(x ↔ y) = �

1{x} − 1{y}, (∆G + J)−1(1{x} − 1{y})� for any nonzero
matrix J with all entries equal.
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2.63. Let G be a finite connected network. Show that


R(x ↔ y) ; x, y ∈ 𝖵(G)� determines


c(x, y) ; x, y ∈ 𝖵(G)�, even if one does not know 𝖤(G).
2.64. Let G be a finite network. Show that if a voltage is 1 at a and 0 at z, then the corresponding

current flow from a to z is the projection of the star at a on the orthocomplement of the span of all the
other stars except that at z.

2.65. (Foster’s Theorem) Show that if G has n vertices, then
∑

e∈𝖤1/2
ie(e) = n − 1, where ie

denotes the unit current flow from e− to e+.

2.66. Let G be a graph with unit conductances and e, e′ ∈ 𝖤(G). Show that ie(e) ≥ ie(e′).
2.67. Show that in every finite network, for every three vertices u, x, and w, we have

R(u ↔ x) + R(x ↔ w) ≥ R(u ↔ w) .
2.68. Show that in every finite network, for every three vertices a, x, and z, we have

Px [τz < τa] =
R(a ↔ x) −R(x ↔ z) + R(a ↔ z)

2R(a ↔ z) .

2.69. The star-triangle equivalence can be extended as follows. Suppose that (G, c) and (G′, c′) are
two finite networks with a common subset W of vertices that has the property that for all x, y ∈ W ,
the effective resistance between x and y is the same in each network. Then say that G and G′ are
W -equivalent.

(a) Let G and G′ be W -equivalent. Show that specifying voltages on W leads to the same current
flows out of W in each of the two networks. More precisely, let f0:W → �, and let f and f ′ be the
extensions of f0 to G and G′, respectively, that are harmonic off W . Show that d∗cd f = d∗c′df ′ on W .

(b) Let G and G′ be W -equivalent. Suppose that H is another network with subset W of vertices,
but H is otherwise disjoint from G and G′. Form two new networks G ∪ H and G′ ∪ H by identifying
the copies of W . Show that if the same voltages are established at some vertices of H in each of these
two networks, then the same voltages and currents will be present in each of these two copies of H .

(c) Given G and a vertex subset W with |W | = 3, show that there is a 4-vertex network G′ with
underlying graph a tree that is W -equivalent to G.

(d) For x, y ∈ W , let pW (x, y) be the probability that the network random walk on G starting
at x is at y when it first returns to W ; possibly x = y. Define the network G′ := (W , c′) with
c′(x, y) := π(x)pW (x, y) for all x ̸= y ∈ W . Show that c′(x, y) = c′(y, x) for all x ̸= y ∈ W and that G
and G′ are W -equivalent. Hint: Consider adding loops to G′.

(e) (The Star-Clique Transformation) Let z ∈ 𝖵(G) and N be the set of the neighbors of z.
Form the network G′ from G by deleting z and adding an edge between each pair of distinct vertices
x, y ∈ N of conductance c(z, x)c(z, y)/π(z). Show that G and G′ are 𝖵(G′)-equivalent. Note that when
|N | = 1, this is the same as pruning vertices of degree 1; when |N | = 2, this is the same as the series
transformation; and when |N | = 3, this is the same as the star-triangle transformation.

2.70. Show the following quantitative forms of Rayleigh’s monotonicity principle in every finite
network:

(a) If r(e) denotes the resistance of the edge e and i is the unit current flow from a to z, then

∂

∂r(e)R(a ↔ z) = i(e)2 .

(b) If c(e) denotes the conductance of the edge e and v is the unit voltage from a to z, then

∂

∂c(e)C (a ↔ z) =
�
dv(e)�2

.
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2.71. Let G be a recurrent network with an exhaustion by induced subnetworks ⟨Gn⟩. Suppose that
a, z ∈ 𝖵(Gn) for all n. Let vn be the voltage function on Gn that arises from a unit voltage at a and 0
voltage at z. Let in be the unit current flow on Gn from a to z. Let Gz (•, •;Gn) be the Green function
on Gn for random walk absorbed at z.

(a) Show that v := limn vn exists pointwise and that v(x) = Px [τa < τz ] for all x ∈ 𝖵.
(b) Show that i := limn in exists pointwise and that if θ is a finitely supported unit flow from a to

z, then i = P♢⊥θ. Here, ♢ is the closure of the linear span of the cycles in G.
(c) Show that E (i) dv = ir .
(d) Show that the effective resistance between a and z in Gn is monotone decreasing with limit

E (i). We define R(a ↔ z; G) := E (i).
(e) Show that Gz (a, x; Gn)→ Gz (a, x; G) = E (i)π(x)v(x) for all x ∈ 𝖵.
(f) Show that i(e) is the expected number of signed crossings of e.

2.72. With all the notation of Exercise 2.71, also let GW
n be the graph obtained from G by identifying

the vertices outside Gn to a single vertex, zn . Let vW
n and iW

n be the associated unit voltage and unit
current from a to z.

(a) Show that vW
n and iW

n have the same limits v and i as vn and in .
(b) Show that the effective resistance between a and z in GW

n is monotone increasing with limit
E (i).

2.73. Let G be a recurrent network. Define⋆ to be the closure of the linear span of the stars and ♢
to be the closure of the linear span of the cycles. Show that ℓ2

−(𝖤, r) =⋆ ⊕ ♢.

2.74. Show that Reff is a concave function of the collection of resistances


r(e)�.

2.75. Show that Ceff is a concave function of the collection of conductances


c(e)�.

2.76. Give another proof of Rayleigh’s monotonicity principle by using Exercise 2.13.

2.77. Show that if a unit voltage is imposed between two vertices of a finite network, then for each
fixed edge e, we have that |dv(e)| is a decreasing function of c(e).

2.78. (Extremal Length) Given disjoint vertex sets A, Z in a finite network, prove that

C (A↔ Z) = min
{ ∑

e∈𝖤1/2

c(e)ℓ(e)2
}
,

where ℓ is an assignment of nonnegative lengths so that the minimum distance from every point in A to
every point in Z is 1.

2.79. Extend Exercise 2.13 to the full form of Dirichlet’s principle in the finite setting: Let A ⊂ 𝖵
and let F0: A→ � be given. Let F:𝖵→ � be the extension of F0 that is harmonic at each vertex not in
A. Then F is the unique extension of F0 that minimizes E (c dF).

2.80. Let G be a finite graph and W ⫋ 𝖵. Suppose that f :𝖵→ � satisfies df (e) ̸= 0 for every e ∈ 𝖤
and

∀x /∈ W ∃y ∼ x ∃z ∼ x f (y) < f (x) < f (z) . (2.27)
Let g:𝖤→ (0,∞) be symmetric.

(a) Show that there is an assignment of conductances c( • ) to G such that if the voltages imposed
on W are f ↾W , then the energies are g with current flowing in the direction of df , that is, the voltages
satisfy c(e) dv(e)2 = g(e) for all e ∈ 𝖤 and sgn dv = sgn df . Hint: Maximize

∑
e∈𝖤1/2

g(e) log |dh(e)|
over h:𝖵→ �with h↾W = f ↾W and sgn dh = sgn df . Call the maximizer v( • ) and define c := g/dv2.
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(b) Show that the maximizer for the hint in part (a) is unique. Therefore, given f0:W → �, the
number of assignments of c( • ) whose energies are a given g is the same for all g, namely, it is the
number of choices of 𝖤1/2 such that for some extension f of f0, we have df (e) > 0 for all e ∈ 𝖤1/2 and
(2.27) holds.

(c) Show that there exists f :𝖵 → � such that df (e) ̸= 0 for all e and (2.27) holds iff there is a
choice of 𝖤1/2, that is, an orientation of 𝖤, such that the only sources and sinks are in W and there are
no (oriented) cycles. (An orientation has a source (resp., sink) if there is a vertex which is the tail (resp.,
head) of all its incident edges.)

2.81. Let H be a proper subnetwork of G. Let ⟨Xn⟩ be the network random walk on G. Show that if
H is recurrent, then P[∀n Xn ∈ H] = 0.

2.82. Prove that (2.14) holds even when the network is not locally finite and the cutsets Πn may be
infinite.

2.83. Find a counterexample to the converse of the Nash-Williams criterion. More specifically, find a
tree of bounded degree on which simple random walk is recurrent, yet every sequence ⟨Πn⟩ of pairwise
disjoint cutsets separating the root and∞ satisfies

∑
n |Πn |−1 ≤ C for some constant C < ∞.

2.84. Show that if ⟨Πn⟩ is a sequence of pairwise disjoint cutsets separating the root and∞ of a tree
T without leaves, then

∑
n |Πn |−1 ≤

∑
n |Tn |−1.

2.85. Give a probabilistic proof as follows of the Nash-Williams criterion in case the cutsets are
nested as in Remark 2.10.

(a) Show that it suffices to prove the criterion for all networks but only for cutsets that consist of
all edges incident to some set of vertices.

(b) Let Πn be the set of edges incident to the set of vertices Wn . Let An be the event that a random
walk starting at a visits Wn exactly once before returning to a. Let µn be the distribution of the first
vertex of Wn visited by a random walk started at a. Show that

P(An) = C (a ↔ Wn)
∑
x∈Wn

π(x)−1µn(x)2

≥ C (a ↔ Wn)
( ∑
x∈Wn

π(x)
)−1

= C (a ↔ Wn)
( ∑
e∈Πn

c(e)
)−1

.

(c) Conclude.

2.86. Show that if G is a graph such that for some o ∈ 𝖵(G) and some constant C < ∞, the ball of
radius n about o contains at most Cn2 edges for infinitely many n, then G is recurrent. More generally,
show that if (G, o) is a random rooted graph such that for some constant C < ∞, the ball of radius n
about o contains at most Cn2 edges in expectation for infinitely many n, then G is a.s. recurrent.

2.87. Show that if θ ∈ ℓ2
−(𝖤, r), then

∑
x π(x)−1d∗θ(x)2 ≤ 2 E (θ).

2.88. It follows from (2.16) that the function θ 7→ E (θ) is convex. Show the stronger statement that
θ 7→ E (θ)1/2 is a convex function. Why is this a stronger inequality?

2.89. Let i be the unit current flow from a to z on a finite network or from a to ∞ on a transient
infinite network. Consider the random walk started at a and, if the network is finite, stopped at z. Let
Se be the number of times the edge e is traversed (in the same direction as e).

(a) Show that i(e) = E[Se − S−e | τ+
a = ∞].

(b) Show that if e− = a, then i(e) is the probability that e is traversed following the last visit to a.
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2.90. Show that the current i of Exercise 2.71 is the unique unit flow from a to z of minimum energy.

2.91. Let G be a transient network and ⟨Xn⟩ the corresponding random walk. Show that if v is the
unit voltage between a and∞ (with v(a) = 1), then v(Xn)→ 0 a.s.

2.92. Let G be a transient network with supx π(x) < ∞. Show that Pa[τx < ∞]→ 0 as d(a, x)→ ∞.
(To avoid an incorrect solution, think about the case of � attached to �3.)

2.93. Show that if (G, c) is an infinite network and A is a finite subset of vertices, then

inf
{ ∑

e∈𝖤1/2

dF(e)2c(e) ; F↾A ≡ 1 and F has finite support
}

= C (A↔ ∞) .

2.94. Let (G, c) be an infinite network and o ∈ 𝖵(G). For f :𝖵(G)→ �, we say that limx→∞ f (x) =
∞ if, for all s ∈ �, there are only finitely many vertices x where f (x) < s. Show that (G, c) is recurrent
iff there is some f :𝖵(G)→ �with limx→∞ f (x) = ∞ and

∑
e∈𝖤 df (e)2c(e) < ∞.

2.95. Let (G, c) be an infinite network and o ∈ 𝖵(G). Show that (G, c) is recurrent iff there is an
assignment ℓ of positive lengths to the edges so that the corresponding distance function dℓ satisfies
limx→∞ dℓ (o, x) = ∞ (in the sense of Exercise 2.94) and

∑
e∈𝖤 c(e)ℓ(e)2 < ∞.

2.96. Suppose that G is a graph with random resistances R(e) having finite means r(e) := E
�
R(e)�.

Show that if (G, r) is transient, then (G, R) is a.s. transient.

2.97. Suppose that G is a graph with random conductances C(e) having finite means c(e) := E
�
C(e)�.

Show that if (G, c) is recurrent, then (G,C) is a.s. recurrent.

2.98. Let (G, c) be a transient network and o ∈ 𝖵(G). Consider the voltage function v when the
voltage is 1 at o and 0 at infinity. For t ∈ (0, 1), let At := {x ∈ 𝖵 ; v(x) > t}. Normally, At is finite.
Show that even if At is infinite, the subnetwork it induces is recurrent.

2.99. Sharpen Proposition 2.14 to show that if one identifies to a single vertex zn all vertices of �2

that are at distance more than n from 0, then as n → ∞,

R(0↔ zn) ∼ 1
2π

log n .

2.100. Consider random walk on �d .
(a) Complete the following outline of a Fourier proof of Pólya’s theorem. Define the function

ψ(α) := d−1 ∑d
k=1 cos 2παk for α = (α1, . . . , αd) ∈ �d := (�/�)d . For all n ∈ �, we have

pn(0, 0) =
∫
�d
ψ(α)n dα. Therefore

∑
n pn(0, 0) =

∫
�d

1
/�

1 − ψ(α)� dα < ∞ iff d ≥ 3.
(b) Show that pn(0, 0) ≤ cdn−d/2 for some constant cd by using the estimate cos 2πt ≤ 1 − 4πt2

for |t | ≤ 1/4 to get ψ(α) = O
�
e−4π |α |2/d� for α ∈ [−1/4, 1/4]d . Similarly, show that pn(0, 0) ≥ c′dn−d/2

for some constant c′d by using reverse estimates.
(c) Use a similar method for a random walk on �d that has mean-0 nonconstant bounded jumps to

prove the same results as in (a) and (b).

2.101. Consider an urn with three balls of different colors. Pick a ball uniformly at random, and return
it to the urn together with another ball of the same color. Repeating this indefinitely yields a process
known as Pólya’s urn.

(a) Model this process as a random path ⟨Sn ; n ≥ 0⟩ in the lattice �3 starting from S0 := (1, 1, 1).
Show that Sn is uniformly distributed over

�(x, y, z) ∈ �3 ; x + y + z = n + 3, x, y, z > 0
	
for every

n ≥ 0.
(b) Deduce that θ(e) := P

�⟨Sn , Sn+1⟩ = e
�

defines a unit flow of finite energy in �3.
(c) Use the same method to show that for every n ≥ 1, the effective resistance from (0, 0) to (n, n)

in �2 is at most C log n for some universal constant C, as in Proposition 2.15.
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2.102. Give another proof of Theorem 2.17 by using Exercise 2.93.

2.103. Let (G, r) and (G′, r′) be two finite networks. Let ϕ: (G, r) → (G′, r′) be an (α, β)-rough
embedding. Show that for all vertices x, y ∈ G, we have R

�
ϕ(x)↔ ϕ(y)� ≤ αβR(x ↔ y).

2.104. Show that all regular trees of degree at least 3 are roughly isometric.

2.105. Let Br (G, o) denote the set of vertices within distance r of o in the graph G. Suppose that G
and G′ are roughly isometric infinite connected graphs of bounded degree.

(a) Show that G and G′ have the same polynomial growth rates, that is, if limr→∞
log |Br (G, o)|

log r
=

α, then limr→∞ log |Br (G′, o′)|/log r = α.
(b) Show that ifG has exponential growth, then so doesG′, that is, if lim infr→∞ r−1 log |Br (G, o)| >

0, then lim infr→∞ r−1 log |Br (G′, o′)| > 0.

2.106. Let G be an infinite graph and x, y ∈ 𝖵. Show that simple random walk on G satisfies∑∞
n=0 pn(x, y)3 < ∞. In fact, show that an upper bound for this sum is c · degG (y)3 for some absolute

constant c.

2.107. Show that if G is a graph that is roughly isometric to hyperbolic space, then the number of
vertices within distance n of a fixed vertex of G grows exponentially fast in n.

2.108. Show that in every finite network,

Ea[τz ] =
1
2
∑
x∈𝖵

π(x)�R(a ↔ z) + R(z ↔ x) −R(x ↔ a)� .
(Recall that π( • ) is not generally a probability measure.)

2.109. Consider a positive recurrent Markov chain, not necessarily reversible. Write H(x, y) := Ex [τy ]
for the matrix of hitting times. Let A be a subset of the state space, 𝖵. Write µ+

z (x) := Pz

�
Xτ+

A
= x

�
.

(a) Show that for every z ∈ 𝖵 and y ∈ A, we have

H(z, y) =
{ Ez [τ+

A] +
∑

x∈A µ
+
z (x)H(x, y) if y ̸= z

0 otherwise.
(b) Assume now that 2 ≤ |A| < ∞. Show that the (A × A)-submatrix HA of H is invertible.
(c) Let Kz ,A denote the row vector Ez [τ+

y ] − Ez [τ+
A] (y ∈ A). Show that

µ+
z = Kz ,AH−1

A .

(d) Show that if there is a group acting transitively on the state space that preserves the transition
probabilities, then

1
|𝖵|

∑
z∈𝖵

µ+
z = c1T H−1

A ,

where c is a constant so that the right-hand side adds to 1, in other words, c−1 = 1T H−1
A 1.

2.110. Let G be a network. Suppose that x and y are two fixed vertices such that there is an
automorphism of G that takes x to y (though it might not take y to x). Show that for every k, we have
Px [τy = k] = Py [τx = k]. Hint: Show the equality with “≤ k” in place of “= k.”

2.111. Let G be a finite network whose automorphism group acts transitively. Let A ⊆ 𝖵. Write RA

for the (A × A)-matrix whose (x, y)-entry is R(x ↔ y). Define µ+
z as in Exercise 2.109. Show that

1
|𝖵|

∑
z∈𝖵

µ+
z = c1T R−1

A ,

where c is a constant so that the right-hand side adds to 1.
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2.112. Let G be a network such that γ :=
∑

e∈𝖤 c(e) < ∞ (for example, G could be finite). Here, the
sum counts each edge with two endpoints twice and each loop once. Let x, y, z be three distinct vertices
in G. Write τx ,y ,z for the first time that the network random walk trajectory contains the vertices x, y, z
in that order. Show that

Px [τy ,z ,x ≤ τ+
x ] = Px [τz ,y ,x ≤ τ+

x ] (2.28)
and

Ex [τy ,z ,x ] = Ex [τz ,y ,x ] =
γ

2
�
R(x ↔ y) + R(y ↔ z) + R(z ↔ x)� . (2.29)

2.113. Let G be a finite network and x, y be two distinct vertices in G. Write τx ,y for the first time
that the network random walk trajectory contains the vertices x, y in that order. Let π be the stationary
probability measure. Write Pπ (A) :=

∑
x π(x)P(A) for events A.

(a) Show that
Pπ [τx ,y = k] = Pπ [τy ,x = k]

for all k.
(b) Define f (w, z) := Ew[τz ] − Eπ [τz ]. Show that f (w, z) = f (z, w) for all vertices w, z.
(c) Define the binary relation w ≼ z to mean Ew[τz ] ≤ Ez [τw]. Show that this relation is a total

order.
(d) Suppose that independent random walks X and Y start from x and y, respectively. However,

you are allowed to decide which of the walks to move at each time step. At time n, you are allowed to
look at all the steps that have been made up to time n. Thus, if by time n, the walk X has made sn steps
and Y has made tn steps, where sn + tn = n, then the choice whether sn+1 = sn + 1 or tn+1 = tn + 1 can
depend on ⟨Xk ; k ≤ sn⟩ and ⟨Yk ; k ≤ tn⟩. Let τ := inf{n ; Xsn = Ytn } be the first time the controlled
random walks collide. Define Mn := f

�
Xsn ,Ytn

�
+ n. Show that ⟨Mn∧τ ; n ≥ 0⟩ is a martingale.

(e) Show that E[τ] ≤ 2 maxw,z Ew[τz ].
2.114. Let G be a network and x, y, z be three distinct vertices in G. Write τx ,y ,z for the first time that
the network random walk trajectory contains the vertices x, y, z in that order. Strengthen and generalize
the first equality of (2.29) by showing that

Px [τy ,z ,x = k] = Px [τz ,y ,x = k]

for all k.

2.115. Consider a Markov chain that is not necessarily reversible. Let a, x, and z be three of its states.
Show that

Px [τz < τa] =
Ex [τa] + Ea[τz ] − Ex [τz ]

Ez [τa] + Ea[τz ] . (2.30)

Use this in combination with (2.29) and Corollary 2.21 to give another solution to Exercise 2.68. Hint:
Consider whether the chain visits z on the way to a.

2.116. Consider a Markov chain that is not necessarily reversible. Let a, x, and z be three of its states.
Show that

Ex [τa ∧ τz ] =
Ex [τa]Ea[τz ] + Ex [τz ]Ez [τa] − Ea[τz ]Ez [τa]

Ez [τa] + Ea[τz ] .

2.117. Let T be a tree and x and y be two of its vertices. For a vertex z on the path from x to y,
including x but not y, let Ay (z) be the number of edges that are separated from y by z. Show that
Ex [τy ] = 2

∑
z Ay (z) + dist(x, y).
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2.118. Let G be a finite graph and x and y be two of its vertices such that there is a unique simple
path in G that joins these particular vertices; for example, G could be a tree (possibly with loops), and
then x and y could be any of its vertices. Show that Ex [τy ] ∈ �. In the case that G is a tree possibly
with loops, show that Ex

��τy
k

��
∈ � for all k ∈ �.

2.119. Let G be a transient network and Rn := |{X0, X1, . . . , Xn}| be the number of vertices visited
by time n. Show that for all n and all o ∈ 𝖵(G),

Eo[Rn]
n + 1

≥ inf
x∈𝖵(G)

C (x ↔ ∞)
π(x) .

2.120. Consider a finite irreducible Markov chain that is not necessarily reversible. Let a and z be
two of its states. Let π be the stationary probability distribution. Show that π(a)Pa[τz < τ+

a] is the
reciprocal of the commute time between a and z. Deduce that π(a)Pa[τz < τ+

a] = π(z)Pz [τa < τ+
z ].

2.121. Consider a positive recurrent irreducible Markov chain that is not necessarily reversible. Let
W be a subset of its states.

(a) Show that there is a Markov chain on W all whose commute times are the same as the
corresponding commute times of the original chain.

(b) Show that (a) fails if “commute” is replaced by “hitting.”

2.122. Consider a finite irreducible Markov chain that is not necessarily reversible. Let a and z be
two of its states. Let π be the stationary probability distribution. Using the reversed Markov chain P̂,
define the symmetrized Markov chain to have transition probabilities p(x, y) :=

�
p(x, y) + p̂(x, y)�/2.

(a) Show that P is reversible with stationary measure π.
(b) Write L := I − P and L̂ := I − P̂. Show that L̂ is the adjoint of L with respect to the inner

product (•, •)π .
(c) Show that for all real-valued functions f on the state space, (L f , f )π ≥ 0, with equality iff f

is constant.
(d) Write r(a, z) :=

�
Ea[τz ] + Ez [τa]�−1 for the reciprocal of the commute time between a and z.

Write h(x) := Px [τa < τz ] and ĥ(x) := P̂x [τa < τz ]. Show that

π(x)(Lh)(x) = r(a, z)�1{a}(x) − 1{z}(x)� = π(x)(L̂ĥ)(x) .

(e) Show that for all real-valued f , we have (Lh, f )π = (L f , ĥ)π = r(a, z)� f (a) − f (z)�.
(f) Show that if f (a) = 1 and f (z) = 0, then (Lh, 2 f − h)π = r(a, z).
(g) Put h := (h + ĥ)/2. Suppose that f + g = 2h, where f (a) = g(a) = 1 and f (z) = g(z) = 0.

Show that (L f , g)π ≤ r(a, z), with equality iff f = h and g = ĥ.
(h) Show that

r(a, z) = min
φ

max
f +g=2φ

(L f , g)π ,

where φ, f , g are real-valued functions that all take the value 1 at a and 0 at z.
(i) Show that the commute time between a and z for the symmetrized chain is at least that for the

original chain, with equality iff h = ĥ.

2.123. Show that if two finite irreducible (not necessarily reversible) Markov chains on the same state
space determine the same functions (a, z, x) 7→ Px [τa < τz ] and each of the chains have only 0 on the
diagonal of their transition matrices, then the chains have the same transition probabilities.

2.124. Consider an irreducible Markov chain on a state space 𝖵 of size n, not necessarily reversible.
Let π be the stationary probability distribution. Show that

∑
x ,y∈𝖵 π(x)p(x, y)Ey [τx ] = n − 1. Give

another proof of Foster’s theorem (Exercise 2.65) from this.
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2.125. Consider a finite irreducible Markov chain that is not necessarily reversible. Let π be the
stationary probability distribution.

(a) Prove that
∑

x ,y∈𝖵 π(x)p(x, y)Ex [τy ] ≤ n − 1.
(b) Show that equality holds in (a) iff the Markov chain is reversible.

2.126. Let G be a finite network and let a and z be two vertices of G. Let x ∼ y in G. Show that the
expected number of transitions from x to y for a random walk started at a and stopped at the first return
to a that occurs after visiting z is c(x, y)R(a ↔ z). Give another proof of Corollary 2.21 by using this
formula.

2.127. Show that Corollary 2.21 and Exercises 2.126, 2.68, and 2.108 hold for all recurrent networks.

2.128. Let G be a network with n vertices and consider two of its vertices, a and z. Consider a random
walk ⟨Xk ; 0 ≤ k ≤ τ⟩ that starts at a, visits z, and is then stopped at its first return τ to a after visiting
z. Show that E

�∑τ−1
k=0 R(Xk ↔ Xk+1)� = 2(n − 1)R(a ↔ z).

2.129. Given two vertices a and z of a finite network (G, c), show that the commute time between a
and z is at least twice the square of the graph distance between a and z. Hint: Consider the cutsets
between a and z that are determined by spherical shells.

2.130. Show that the expected cover time of a graph G = (𝖵, 𝖤) is at most 2|𝖤| · |𝖵|.
2.131. A graph is called edge transitive if, for each pair e, e′ of (unoriented) edges, there is an
automorphism of the graph that takes e to e′. Show that the expected cover time of an edge-transitive
graph G = (𝖵, 𝖤) is at most 2|𝖵|2.

2.132. Let G be a connected simple graph on n vertices. Define

δ(e) := R(e− ↔ e+) − (deg e− + 1)−1 − (deg e+ + 1)−1 .

For a spanning tree T , define R(T) :=
∑

e∈T R(e− ↔ e+).
(a) Show that δ(e) ≥ 0 for all e ∈ 𝖤.
(b) Show that

∑
e∈𝖤1/2

δ(e) =
∑

x∈𝖵(deg x + 1)−1 − 1.
(c) Show that if G is d-regular, then

2(n − 1)
d + 1

≤ R(T) ≤ 3(n − 1)
d + 1

for all spanning trees T of G.
(d) Show that if G is regular, then the expected cover time of G is at most 3n2.
(e) Show that the commute time between any pair of vertices in G is less than the quantity

6|𝖤|∑x∈𝖵(deg x + 1)−1.
(f) Show that there exist ϵn → 0 such that for all connected simple graphs G on n vertices, the

commute time between any pair of vertices in G is less than (4/27 + ϵn)n3.

2.133. The hypercube of dimension n is the subgraph induced on the set {0, 1}n in the usual
nearest-neighbor graph on �n .

(a) Find the first-order asymptotics of the effective resistance between the hypercube’s opposite
corners (0, 0, . . . , 0) and (1, 1, . . . , 1) and the first-order asymptotics of the commute time between them.
(To find first-order asymptotics for some function f (n) means to find a simple expression g(n) such that
limn→∞ f (n)/g(n) = 1.)

(b) Find the first-order asymptotics of Ex [τy ] for every x ̸= y in the hypercube.
(c) Find the first-order asymptotics of the cover time of the hypercube.
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2.134. Let (G, c) be a finite network and o ∈ 𝖵(G). Let X(e) be independent normal random variables
with variance r(e) for e ∈ 𝖤1/2; put X(−e) := −X(e) for e /∈ 𝖤1/2. Given random walks starting at each
x ∈ 𝖵(G) with each one stopped when it reaches o, define S(x) to be the sum of X(e) over the edges e
traversed by the random walk starting at x. Show that x 7→ E[S(x) | X] has the law of the canonical
Gaussian field.

2.135. Let (G, c) be a finite network with o ∈ 𝖵(G); let Z be the associated canonical Gaussian field.
Let W be a nonempty proper subset of vertices that includes o. Show that the squared distance in L2(P)
from Z(x) to the linear span of Z(w) (w ∈ W ) equals R(x ↔ W ).
2.136. Let (G, c) be a finite network with o ∈ 𝖵(G); let Z be the associated canonical Gaussian field.

Show that if bx are constants such that
∑

x∈𝖵 bx Z(x) is constant a.s., then bx = 0 for all x ̸= o.

2.137. Let (G, c) be a finite network. Fix a nonempty proper subset W ⫋ 𝖵 and a function u:W → �.
Let Z:𝖵 → � be the jointly normal random variables such that Z = u on W and the joint density of
Z↾(𝖵 \W ) is

C exp
{
−1

2
∥dZ∥2

c

}
for some constant C. These random variables are called the canonical Gaussian field pinned on W .
Let v be the harmonic extension of u to 𝖵.

(a) Show that ∥dZ∥2
c = ∥d(Z − v)∥2

c + ∥dv∥2
c . Deduce that the law of Z − v on G/W is that of the

usual canonical Gaussian field on G/W , where G/W is the network obtained from G by identifying W
to a single vertex, where the field is 0.

(b) Show that E
�
Z(x)� = v(x) for all x.

(c) Show that
Z(x) − Z(y) ∼ N

�
v(x) − v(y),R(x ↔ y; G/W )�

for x ̸= y ∈ 𝖵, as long as x and y are not both in W .
(d) Show that the covariance of Z(x) − Z(y) and Z(z) − Z(w) equals v′(z) − v′(w) when v′ is the

voltage associated to a unit current flow from x to y in the network G/W (with x ̸= y).

2.138. Let (G, c) be a finite network and m > 0. Fix a nonempty proper subset W ⫋ 𝖵 and a function
u:W → �. Let Z:𝖵→ � be the jointly normal random variables such that Z = u on W and the joint
density is

C exp
{
−1

2

(
∥dZ∥2

c + m
∑
x∈𝖵

Z(x)2
)}

for some constant C. These random variables are called the canonical Gaussian field pinned on W
with mass m. Calculate E

�
Z(x) − Z(y)� and Cov

�
Z(x) − Z(y), Z(z) − Z(w)� for x, y, z, w ∈ 𝖵.

2.139. Use results on canonical Gaussian fields to solve Exercises 2.59, 2.62(b)–(e), and 2.67.
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3 Special
Networks

In this chapter, we use our tools from Chapter 2 to analyze transience and recurrence
of networks on trees and on Cayley graphs of groups. First, we study flows that are not
necessarily current flows. This involves some tools that are very general and useful. In
particular, the surprising max-flow min-cut theorem has a wealth of specializations and
applications, some of which are in the exercises to this chapter and some of which will be in
other chapters. After applying these to trees, we will define Cayley graphs and give several
examples. When we analyze the type of certain biased random walks on Cayley graphs, trees
will actually be a key tool to show that in a certain sense, Cayley graphs are like spherically
symmetric graphs, even though they are rarely truly spherically symmetric and can even be
quite far from spherically symmetric. Other special networks, planar and hyperbolic, are
studied in Section 9.4.

3.1 Flows, Cutsets, and Random Paths

Notice that if there is a flow from a to ∞ of finite energy on some network with con-
ductances c( • ) and if i is the unit current flow with corresponding voltage function v, then
|i(e)| = |c(e) · (dv)(e)| ≤ v(a)c(e) = R(a ↔ ∞)c(e) for all edges e. In particular, there is a
nonzero flow bounded on each edge by c( • ) (namely, i/v(a)).* The existence of flows that
are bounded by some given numbers on the edges is an interesting and valuable property in
itself. We call such flows admissible. To determine whether there is a nonzero admissible
flow, we turn to the powerful max-flow min-cut theorem of Ford and Fulkerson (1962). For
finite networks, the theorem reads as follows. We call a set Π of edges a cutset separating
A and Z if every path that starts in A and ends in Z must include an edge in Π. We call
c(e) the capacity of e in this context. Think of water flowing through pipes. The vertices
in A are called sources, whereas those in Z are called sinks. A flow between A and Z is
an antisymmetric function θ such that d∗θ equals 0 off A ∪ Z . Recall from Section 2.4 that
the strength of a flow between A and Z , that is, the total amount flowing into the network
at vertices in A (and out at Z) is 𝖲𝗍𝗋𝖾𝗇𝗀𝗍𝗁(θ) :=

∑
a∈A d∗θ(a). Since all the water must flow

through every cutset Π, it is intuitively clear that the strength of every admissible flow is at
most infΠ

∑
e∈Π c(e). Remarkably, this upper bound is always achieved. This is the content

of the max-flow min-cut theorem.
It will be useful for the proof of this theorem, as well as later, to establish a more general

statement about flows in directed networks. In a directed network, the capacity function c on

* This also follows from the Nash-Williams criterion and the upcoming max-flow min-cut theorem.
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edges is not necessarily symmetric, even if both orientations of an edge occur. Define the
vertex-edge incidence function

ϕ(x, e) := 1{e−=x} − 1{e+=x} .

A nonnegative function θ on the edges is now called a flow if, for all x other than the source
and sink vertices,

∑
e ϕ(x, e)θ(e) = 0. In particular, flows are not necessarily antisymmetric

(nor symmetric) functions. Now a flow θ is called admissible if θ(e) ≤ c(e) for every edge e.
The strength of a flow with source set A is

𝖲𝗍𝗋𝖾𝗇𝗀𝗍𝗁(θ) :=
∑
x∈A

∑
e

ϕ(x, e)θ(e) .

Cutsets separating a source set A from a sink set Z are required to intersect every directed
path from A to Z . To reduce the study of undirected networks to that of directed ones,
we simply replace each undirected edge by a pair of parallel directed edges with opposite
orientations and the same capacity. A flow on the undirected network is replaced by a flow
on the directed network that is nonzero on only one edge of each new parallel pair, whereas a
flow on the resulting directed network yields a flow on the undirected network by subtracting
the values on each parallel oppositely oriented pair of edges.

The Max-Flow Min-Cut Theorem. Let A and Z be disjoint sets of vertices in a (directed
or undirected) finite network G. The maximum strength of an admissible flow between A and
Z equals the minimum cutset sum of the capacities. In other words, in the directed case,

max
{
𝖲𝗍𝗋𝖾𝗇𝗀𝗍𝗁(θ) ; θ flows from A to Z satisfying ∀e 0 ≤ θ(e) ≤ c(e)

}
= min

{∑
e∈Π

c(e) ; Π separates A and Z
}
,

whereas in the undirected case,

max
{
𝖲𝗍𝗋𝖾𝗇𝗀𝗍𝗁(θ) ; θ flows from A to Z satisfying ∀e |θ(e)| ≤ c(e)

}
= min

{∑
e∈Π

c(e) ; Π separates A and Z
}
.

Proof. It suffices to establish the case of directed networks. Because the network is finite, the
set of flows from A to Z bounded by c on each edge is a compact set in �𝖤, whence there
is a flow of maximum strength. Let θ be a flow of maximum strength. If Π is any cutset
separating A from Z , let A′ denote the set of vertices that are not separated from A by Π.
Since A ⊆ A′ and A′ ∩ Z = ∅, we have

𝖲𝗍𝗋𝖾𝗇𝗀𝗍𝗁(θ) =
∑
x∈A

∑
e∈𝖤

ϕ(x, e)θ(e) =
∑
x∈A′

∑
e∈𝖤

ϕ(x, e)θ(e)

=
∑
e∈𝖤

θ(e)
∑
x∈A′

ϕ(x, e) ≤
∑
e∈Π

θ(e) ≤
∑
e∈Π

c(e) ,
(3.1)
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since
∑

x∈A′ ϕ(x, e) is 0 when e joins two vertices in A′, is 1 when e leads out of A′, and is
−1 when e leads into A′. This proves the intuitive half of the desired equality.
For the more surprising reverse inequality, given an admissible flow θ, call a sequence of

vertices x0, x1, . . . , xk an augmentable path if x0 ∈ A and for all i = 1, . . . , k, either there is
an edge e from xi−1 to xi with θ(e) < c(e) or there is an edge e′ from xi to xi−1 with θ(e′) > 0.
Let B denote the set of vertices x such that there exists an augmentable path (possibly just
one vertex) from a vertex of A to x. If there were an augmentable path x0, x1, . . . , xk with
xk ∈ Z , then we could obtain from θ a stronger flow bounded by c as follows: For each
i = 1, . . . , k where there is an edge e from xi−1 to xi , let θ∗(e) := θ(e) + ϵ , whereas if there
is an edge e′ from xi to xi−1, let θ∗(e′) := θ(e′) − ϵ . By taking ϵ > 0 sufficiently small, we
would contradict maximality of θ. Therefore Z ⊂ Bc. Let Π be the set of edges connecting
B to Bc. Then Π is a cutset separating A from Z . For every edge e leading from B to Bc,
necessarily θ(e) = c(e), whereas θ must vanish on every edge from Bc to B. Therefore a
calculation as in (3.1) shows that

𝖲𝗍𝗋𝖾𝗇𝗀𝗍𝗁(θ) =
∑
e∈𝖤

θ(e)
∑
x∈B

ϕ(x, e) =
∑
e∈Π

θ(e) =
∑
e∈Π

c(e) .

In conjunction with (3.1), this completes the proof. ◀
Suppose now that G = (𝖵, 𝖤) is a countable directed or undirected network and a is one

of its vertices. As usual, we assume that ∀x
∑

e−=x c(e) < ∞. We want to extend the
max-flow min-cut theorem to G for flows from a to ∞. Recall that a cutset Π separates a
and∞ if every infinite simple path from a must include an edge in Π. A flow of maximum
strength exists, since a maximizing sequence of flows has an edgewise limit point, which is a
maximizing flow bounded by c in light of the dominated convergence theorem. We claim
that this maximum strength is equal to the infimum of the cutset sums:

Theorem 3.1. If a is a vertex in a countable directed network G, then

max
{
𝖲𝗍𝗋𝖾𝗇𝗀𝗍𝗁(θ) ; θ flows from a to∞ satisfying ∀e 0 ≤ θ(e) ≤ c(e)

}
= inf

{∑
e∈Π

c(e) ; Π separates a and∞
}
.

Proof. In the proof, “cutset” will always mean “cutset separating a and∞.” Let θ be a flow
of maximum strength among flows from a to∞ that are bounded by c( • ). Given ϵ > 0, let
D be a possibly empty set of edges such that

∑
e∈D c(e) < ϵ and G′ := (𝖵, 𝖤 \ D) is locally

finite. Let P be the set of simple paths in G′ from a to∞. Define the distance between two
elements ⟨en⟩, ⟨e′n⟩ of P to be inf{1/(n + 1) ; ek = e′

k
for 1 ≤ k ≤ n}. The important aspect

of this is that the set P is compact: Given paths Pm = ⟨em,n⟩, we may choose a subsequence
⟨mk⟩ such that emk ,1 is the same for all k because G′ is locally finite. Then we may choose
a further subsequence where the second edge is constant. Continuing this way, a diagonal
argument provides a limit path of the original sequence of paths.
If we associate to an edge e the set of paths in P that pass through e, then a cutset becomes

associated to a cover of P. Compactness of P therefore means that for any cutset Π in G,
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there is a finite cutset Π′ ⊆ Π in G′. Also, Π′ separates only finitely many vertices A′ from
∞ in G′. Therefore,

𝖲𝗍𝗋𝖾𝗇𝗀𝗍𝗁(θ) =
∑
e∈𝖤

ϕ(a, e)θ(e) =
∑
x∈A′

∑
e∈𝖤

ϕ(x, e)θ(e)

=
∑
x∈A′

∑
e∈𝖤\D

ϕ(x, e)θ(e) +
∑
x∈A′

∑
e∈D

ϕ(x, e)θ(e)

=
∑

e∈𝖤\D
θ(e)

∑
x∈A′

ϕ(x, e) +
∑
x∈A′

∑
e∈D

ϕ(x, e)θ(e)

[since the first sum is finite]

≤
∑
e∈Π′

θ(e) + ϵ ≤
∑
e∈Π′

c(e) + ϵ ≤
∑
e∈Π

c(e) + ϵ .

Since this holds for all ϵ > 0, we obtain one inequality of the desired equality.
For the inequality in the other direction, let C(H) denote the infimum cutset sum in any

network H . Given ϵ > 0, let D and G′ be as before. Then C(G) ≤ C(G′) + ϵ , since we may
adjoin D to any cutset of G′ to obtain a cutset of G. Let ⟨G′n⟩ be an exhaustion of G′ by
finite connected induced networks with a ∈ G′n for all n. Identify the vertices outside G′n
to a single vertex zn and remove loops at zn to form the finite network GW

n from G. Then
C(G′) = infn C(GW

n ), since every minimal cutset of G′ is finite (it separates only finitely
many vertices from ∞), where minimal means with respect to inclusion. Let θn be a flow
on GW

n of maximum strength among flows from a to zn that are bounded by c↾GW
n . Then

𝖲𝗍𝗋𝖾𝗇𝗀𝗍𝗁(θn) = C(GW
n ) ≥ C(G′). Let θ be a limit point of ⟨θn⟩. Then θ is a flow on G′ with

𝖲𝗍𝗋𝖾𝗇𝗀𝗍𝗁(θ) ≥ C(G′) ≥ C(G) − ϵ . ◀
In Section 2.5, we constructed a unit flow from a random path. The reverse is also useful;

we show how to do this now. We return to undirected graphs for this, so that a flow θ satisfies
θ(−e) = −θ(e) for all edges e. Suppose that

θ is a unit flow from a to z on a finite graph or from a to∞
on an infinite graph such that if e− = a, then θ(e) ≥ 0 and,
in the finite case, if e+ = z, then θ(e) ≥ 0.

 (3.2)

Use θ to define a random path as the trajectory of a Markov chain ⟨Yn⟩ as follows. The initial
state is Y0 := a and z is an absorbing state. For a vertex x ̸= z, set

θout(x) :=
∑
e−=x,
θ(e)>0

θ(e) ,

which is the amount flowing out of x. The transition probability from x to w is then
(θ(x, w) ∨ 0)/θout(x). This gives us our random path. Now go back and construct a unit flow
from this random path as on p. 40 in Section 2.5, that is, define

θ ′(e) :=
∑
n≥0

�
P[⟨Yn,Yn+1⟩ = e] − P[⟨Yn+1,Yn⟩ = e]	 .

How is θ ′ related to θ? We call θ acyclic if there is no cycle of oriented edges on each
of which θ > 0. For example, current flows are acyclic because they minimize energy (or
because they equal c dv).



78 Chap. 3: Special Networks

Proposition 3.2. Suppose that θ is an acyclic unit flow satisfying the preceding conditions
(3.2). With the preceding notation, for every edge e with θ(e) > 0, we have

0 ≤ θ ′(e) ≤ θ(e) (3.3)

with equality on the right if G is finite or if θ is the unit current flow from a to∞.

Proof. Since the Markov chain travels only in the direction of θ, it clear that θ ′(e) ≥ 0 when
θ(e) > 0.

For edges e with θ(e) > 0, set

pN (e) := P[∃n ≤ N ⟨Yn,Yn+1⟩ = e] .

Because θ is acyclic, pN (e) → θ ′(e). Thus, to show that θ ′(e) ≤ θ(e), it suffices to show
that pN (e) ≤ θ(e) for all N . We proceed by induction on N . This is clear for N = 0. For
vertices x, define pN (x) := P[∃n ≤ N Yn = x]. Suppose that pN (e) ≤ θ(e) for all edges e
with θ(e) > 0. Then also pN+1(x) ≤∑

e+=x,θ(e)>0 θ(e) = θout(x) for all vertices x ̸= a. Hence
pN+1(x) ≤ θout(x) for all vertices x. Therefore, for every edge e with θ(e) > 0, if we put
x := e−, then we get pN+1(e) = pN+1(x)θ(e)/θout(x) ≤ θ(e). This completes the induction
and proves (3.3).

If G is finite, then θ ′′ := θ − θ ′ is a sourceless acyclic flow, since it is positive only where
θ is positive. If there were an edge e1 where θ ′′(e1) > 0, then there would exist an edge e2
whose head is the tail of e1 where also θ ′′(e2) > 0, and so on. Eventually, this would close a
cycle, which is impossible. Thus, θ ′ = θ.
If θ is the unit current flow from a to∞, then θ has minimum energy among all unit flows

from a to∞. Thus, (3.3) implies that θ ′ = θ. ◀

Remark. Of course, other random paths or other rules for transporting mass through the
network according to the flow θ will lead to the same result.

▷ Exercise 3.1.
Show that if equality holds on the right-hand side of (3.3), then for all x, we have∑

e+=x,
θ(e)>0

θ(e) ≤ 1 .

▷ Exercise 3.2.
Suppose that simple random walk is transient on G and a ∈ 𝖵. Show that there is a random
edge-simple path from a to∞ such that the expected number of edges common to two such
independent paths is equal to R(a ↔ ∞) (for unit conductances on G).

Here is one use of these random paths:
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Corollary 3.3. (Monotone-Voltage Paths) Let G be a transient connected network and v
be the voltage function from the unit current flow i from a vertex a to∞ with v(∞) = 0. For
every vertex x, there is a path of vertices from a to x along which v is monotone. If x is
incident to some edge e with i(e) > 0, then there is such a path along which v is strictly
monotone.

Proof. Let W be the set of vertices incident to some edge e with i(e) > 0. By Proposition 3.2,
if i(e) > 0, then a path ⟨Yn⟩ chosen at random (as defined earlier) will cross e with positive
probability. Thus, each vertex in W has a positive chance of being visited by ⟨Yn⟩. Clearly v
is strictly monotone along every path ⟨Yn⟩. Thus, there is a path from a to any vertex in W
along which v is strictly monotone. Now any vertex x not in W can be connected to some
w ∈ W by edges along which i = 0. Extending the path from a to w by such a path from w to
x gives the required path from a to x. ◀
Curiously, we do not know a deterministic construction of a path satisfying the conclusion

of Corollary 3.3.

3.2 Trees

Flows and electrical networks on trees can be analyzed with greater precision than on
general graphs. One easy reason for this is that we know which direction the flow goes, by
which we mean the following. Fix a root o in a tree T and denote by |e| the distance from an
edge e ∈ T to o, that is, the number of edges on the smallest path that includes both o and
e. Choose a unique orientation for each edge, namely, the one leading away from o. Given
any network on T , we claim that there is an admissible flow of maximal strength from the
root to infinity that does not have negative flow on any edge (with this orientation). Indeed,
it suffices to prove this for flows on finite trees from the root to the leaves (when the leaves
are identified to a single vertex), since a maximal flow to infinity is the edgewise limit of
maximal flows on finite trees (consider the minimal cuts). In the finite case, consider an
admissible flow of maximal strength that has the minimum number of edges with negative
flow. If there is an edge with negative flow, then by “following the flow,” we can find either a
path from the root to the leaves along which the flow is negative or a path from one leaf to
another along which the flow goes in the direction of the path. In the first case, we can easily
increase the strength of the flow, whereas in the second case, we can easily reduce the number
of edges with negative flow. Both cases therefore lead to a contradiction, which establishes
our claim. Likewise, if the tree network is transient, then the unit current flow does not have
negative flow on any edge. The proof is similar; in both cases of the preceding proof, we may
obtain a flow of strength at least 1 whose energy is reduced, leading to a contradiction. For
this reason, in our considerations, we may restrict to flows that are nonnegative.

▷ Exercise 3.3.
Let T be a locally finite tree and Π be a minimal finite cutset separating o from∞. Let θ be a
flow from o to∞. Show that

𝖲𝗍𝗋𝖾𝗇𝗀𝗍𝗁(θ) =
∑
e∈Π

θ(e) .
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The Nash-Williams criterion gave a condition sufficient for recurrence, but it was not
necessary for recurrence. However, a useful partial converse to the Nash-Williams criterion
for trees can be stated as follows.

Proposition 3.4. Let c be conductances on a locally finite infinite tree T and wn be positive
numbers with

∑
n≥1 wn < ∞. Every flow θ on T satisfying 0 ≤ θ(e) ≤ w|e|c(e) for all edges

e has finite energy.

Proof. Apply Exercise 3.3 to the cutset formed by the edges at distance n from o to obtain∑
e∈T

θ(e)2r(e) =
∑
n≥1

∑
|e|=n

θ(e)�θ(e)r(e)� ≤∑
n≥1

wn

∑
|e|=n

θ(e) =
∑
n≥1

wn 𝖲𝗍𝗋𝖾𝗇𝗀𝗍𝗁(θ) < ∞ .

(This special case of Exercise 3.3 was also shown by induction in Section 1.2.) ◀

Let’s consider some particular conductances. Since trees tend to grow exponentially, let
the conductance of an edge decrease exponentially with distance from o, say, c(e) := 𝜆−|e|,
where 𝜆 > 1. Let 𝜆c = 𝜆c(T) denote the critical 𝜆 for nonzero admissible flow from o to
∞, in other words, “water” can flow for 𝜆 < 𝜆c but not for 𝜆 > 𝜆c . What is the critical
𝜆 for current flow? We saw at the start of Section 3.1 that if current flows for a certain
value of 𝜆 (that is, the associated random walk is transient), then so does water, whence
𝜆 ≤ 𝜆c . Conversely, for 𝜆 < 𝜆c , we claim that current flows: choose 𝜆′ ∈ (𝜆, 𝜆c) and set
wn := (𝜆/𝜆′)n. Of course,

∑
n wn < ∞; by definition of 𝜆c , there is a nonzero flow θ

satisfying 0 ≤ θ(e) ≤ (𝜆′)−|e| = w|e|𝜆−|e|, whence Proposition 3.4 shows that this flow has
finite energy and so current indeed flows. Thus, the same 𝜆c is the critical value for current
flow. Since 𝜆c balances the growth of T while taking into account the structure of the tree,
we call it the branching number of T :

br T := sup
{
𝜆 ; ∃ a nonzero flow θ on T with ∀e ∈ T 0 ≤ θ(e) ≤ 𝜆−|e|

}
.

Of course, the max-flow min-cut theorem gives an equivalent formulation as

br T = sup
{
𝜆 ; inf

Π

∑
e∈Π

𝜆−|e| > 0
}
, (3.4)

where the inf is over cutsets Π separating o from ∞. Denote by 𝖱𝖶𝜆 the random walk
associated to the conductances e 7→ 𝜆−|e|. We may summarize some of our work in the
following theorem of Lyons (1990).

Theorem 3.5. (Branching Number and Random Walk) If T is a locally finite infinite
tree, then 𝜆 < br T ⇒ 𝖱𝖶𝜆 is transient and 𝜆 > br T ⇒ 𝖱𝖶𝜆 is recurrent.

In particular, we see that for simple random walk to be transient, it suffices that br T > 1.

▷ Exercise 3.4.
For simple random walk on T to be transient, is it necessary that br T > 1?
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We might call 𝖱𝖶𝜆 homesick random walk for 𝜆 > 1 since the random walker has a
tendency to walk toward its starting place, the root.

▷ Exercise 3.5.
Find an example where 𝖱𝖶brT is transient and an example where it is recurrent.

▷ Exercise 3.6.
Show that br T is independent of which vertex in T is the root.

Let’s try to understand the significance of br T , which will turn out to be a very important
number. If T is an n-ary tree (that is, every vertex has n children), then the distance of 𝖱𝖶𝜆
from o is simply a biased random walk on �. It follows that br T = n.

▷ Exercise 3.7.
Show directly from the definition that br T = n for an n-ary tree T . Show that if every vertex
of T has between n1 and n2 children, then br T is between n1 and n2.

Since 𝜆c balances the number of edges leading away from a vertex over all of T , it is
reasonable to think of br T as an average number of branches per vertex.

3.3 Growth of Trees

In this section, we again consider only locally finite infinite trees. To understand better
their branching number, we will look at the simpler notion of growth. For a vertex x ∈ T , let
|x | denote its distance from o. Define the lower (exponential) growth rate of a tree T by

gr T := lim inf
n→∞

|Tn |1/n,

where Tn := {x ∈ T ; |x | = n} is level n of T . Similarly, the upper (exponential) growth
rate of T is gr T := lim sup |Tn |1/n. If gr T = gr T , then the common value is called the
(exponential) growth rate of T and is denoted gr T .
In most of the examples of trees so far, the branching number was equal to the lower growth

rate. In general, we have the inequality

br T ≤ gr T ,

as we showed in Section 1.2. There are various ways to construct a tree whose branching
number is different from its growth: see Section 1.2 and Exercise 1.3.

▷ Exercise 3.8.
We have seen that if br T > 1, then simple random walk on T is transient. Is gr T > 1
sufficient for transience?
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We call T spherically symmetric if deg x depends only on |x |. Recall from Exercise 1.2
that br T = gr T when T is spherically symmetric.

Notation. Write x ≤ y if x is on the shortest path from o to y; x < y if x ≤ y and x ̸= y;
x → y if x ≤ y and |y | = |x | + 1 (that is, y is a child of x); and T x for the subtree of T
containing the vertices y ≥ x.

There is an important class of trees whose structure is “periodic” in a certain sense. To
exhibit these trees, we review some elementary notions from combinatorial topology. Let G
be a finite connected graph and x0 be any vertex in G. Define a tree T in the following way:
its vertices are the finite paths ⟨x0, x1, x2, . . . , xn⟩ that never backtrack, that is, xi ̸= xi+2 for
0 ≤ i ≤ n − 2. Join two vertices in T by an edge when one path is an extension by one vertex
of the other. The tree T is called the universal cover (based at x0) of G. See Figure 3.1 for
an example.

x0
Figure 3.1. A graph and part of its universal cover.

This idea can be extended. Suppose that G is a finite directed multigraph and x0 is any
vertex in G. That is, edges are not required to appear with both orientations, and two vertices
can have many edges joining them. Loops are also allowed. Define the directed cover (based
at x0) of G to be the tree T whose vertices are the finite paths of edges ⟨e1, e2, . . . , en⟩ in G
that start at x0 (we use paths of edges rather than of vertices in case there are multiple edges).
The root is the empty path. We join two vertices in T as we did before. See Figure 3.2 for an
example.

The periodic aspect of these trees can be formalized as follows.

Definition. Let N ≥ 0. An infinite tree T is called N-periodic (resp., N-subperiodic)
if ∀x ∈ T there exists an adjacency-preserving bijection (resp., injection) f :T x → T f (x)
with | f (x)| ≤ N . A tree is periodic (resp., subperiodic) if there is some N for which it is
N-periodic (resp., N-subperiodic).

All universal and directed covers are periodic. Conversely, every periodic tree is a
directed cover of a finite graph, G: If T is an N-periodic tree, take {x ∈ T ; |x | ≤ N}
for the vertex set of G. For |x | ≤ N , let fx be the identity map and for x ∈ TN+1, let fx
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x0

Figure 3.2. A graph and part of its directed cover. This tree is also called the Fibonacci tree.

be a bijection as guaranteed by the definition. Let the edges of G be
�⟨x, fy(y)⟩ ; |x | ≤

N and y is a child of x
	
. Then T is the directed cover of G based at the root.

If two (sub)periodic trees are joined as in Example 1.3, then clearly the resulting tree is
also (sub)periodic. We now present some examples where subperiodic trees arise naturally.

Example 3.6. Consider the finite paths in the lattice �2 starting at the origin that go through
no vertex more than once. These paths are called self-avoiding and are of substantial interest
to mathematical physicists. Form a tree T whose vertices are the finite self-avoiding paths and
with two such vertices joined when one path is an extension by one step of the other. Then T
is 0-subperiodic and has infinitely many leaves. Its growth rate has been estimated at about
2.64; see Madras and Slade (1993). For the hexagonal lattice in the plane, the growth rate is
exactly

√
2 +
√

2 = 2 cos(π/8). This was conjectured by Nienhuis (1982) based on ideas from
physics and proved by Duminil-Copin and Smirnov (2012), who were also inspired by ideas
from physics to find some subtle and beautiful symmetries in the problem.

Example 3.7. Suppose that E is a closed set in [0, 1] and T[b](E) is the associated tree that
represents E in base b, as in Section 1.10. Then T[b](E) is 0-subperiodic iff E is invariant
under the map x 7→ bx (mod 1), that is, iff the fractional part of bx lies in E for every x ∈ E.

How can we calculate the growth rate of a periodic tree? If T is a periodic tree, let G be a
finite directed graph of which T is the directed cover based at x0. We may assume that G
contains only vertices that can be reached from x0, since the others do not contribute to T .
The key to analysis is the directed adjacency matrix A of G, that is, the square matrix indexed
by the vertices of G with the (x, y)-entry equal to the number of edges from x to y. Recall
that the norm of a square matrix M is ∥M∥ := sup

�∥Mv∥ ; ∥v∥ = 1
	
, where ∥v∥ = √(v, v)

is the usual ℓ2-norm of the vector v. Also, the spectral radius of M is the maximum of |𝜆|
over all complex eigenvalues 𝜆 of M. Gelfand’s formula says that the spectral radius of M
equals limn→∞ ∥Mn∥1/n; see, for example, Corollary 5.6.14 of Horn and Johnson (2013). In
our case, all entries of A are nonnegative, so the Perron-Frobenius theorem (Minc (1988),
Theorem 4.2) says that the spectral radius of A is equal to its largest positive eigenvalue, 𝜆∗,
and that there is a 𝜆∗-eigenvector v∗ all of whose entries are nonnegative. We call 𝜆∗ the
Perron eigenvalue of A and v∗ a Perron eigenvector of A. To see how these are useful, let 1
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denote a column vector all of whose entries are 1, 1x denote the column vector that is 1 at x
and 0 elsewhere, and 1′x denote its transpose. Then the number of paths in G with n edges,
which is |Tn |, is 1′x0

An1. Now 1′x0
An1 = (An1, 1x0 ) ≤ ∥An1∥ · ∥1x0 ∥ ≤ ∥An∥ · ∥1∥ · ∥1x0 ∥,

whence Gelfand’s formula yields lim supn→∞ |Tn |1/n ≤ 𝜆∗. On the other hand, let x be any
vertex such that v∗(x) > 0, let j be such that Aj(x0, x) > 0, and let c > 0 be such that 1 ≥ cv∗.
Then

|Tj+n | ≥ 1′x An1 ≥ c1′x Anv∗ = c𝜆n∗1′xv∗ = cv∗(x)𝜆n∗ .
Therefore lim infn→∞ |Tn |1/n ≥ 𝜆∗. We conclude that gr T = 𝜆∗.

The “regularity” of periodic trees leads us to expect that their growth rate equals their
branching number. One very nice feature of subperiodic trees is that this equality also holds
for them! This fact, as well as its proof, is analogous to a classical fact about sequences of
reals, known as Fekete’s lemma (Exercise 3.9). A sequence ⟨an⟩ of real numbers is called
subadditive if

∀m, n ≥ 1 am+n ≤ am + an .

A simple example is an := ⌈βn⌉ for some real β > 0.

▷ Exercise 3.9.
(a) (Fekete’s Lemma) Show that for every subadditive sequence ⟨an⟩, the sequence

⟨an/n⟩ converges to its infimum:

lim
n→∞

an

n
= inf

an

n
.

(b) Show that Fekete’s lemma holds even if a finite number of the an are infinite.
(c) Show that for every 0-subperiodic tree T , the limit limn→∞ |Tn |1/n exists.

The equality br T = gr T for subperiodic trees T is due to Furstenberg (1967). To prove it,
we use the following notation: given 𝜆 > 0 and a cutset Π in a tree T , denote

∥Π∥𝜆 :=
∑

e(x)∈Π

𝜆−|x | ,

where e(x) is the edge from the parent of x to x. Note |e(x)| = |x |. Of course, the parent of a
vertex x ̸= o is the neighbor of x that is closer to o.

Theorem 3.8. (Subperiodicity and Branching Number) For every subperiodic infinite
tree T , the growth rate of T exists and br T = gr T . Moreover,

inf
Π

∥Π∥brT > 0 ;

in particular,
inf
n
|Tn |(br T)−n > 0 .

Proof. First, suppose that T has no leaves and is 0-subperiodic. We will show that if, for
some cutset Π and some 𝜆1 > 0, we have

∥Π∥𝜆1 < 1 , (3.5)
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then
lim sup
n→∞

|Tn |1/n < 𝜆1 . (3.6)
Since infΠ ∥Π∥𝜆1 = 0 for all 𝜆1 > br T , this implies that

br T = gr T and inf
Π

∥Π∥brT ≥ 1 . (3.7)

So suppose that (3.5) holds. We may assume that Π is finite and minimal with respect to
inclusion by Exercise 3.23. To get strict inequality in (3.6), we’ll need a little wiggle room,
so choose 𝜆 ∈ (0, 𝜆1) such that

∥Π∥𝜆 < 1 . (3.8)
Let d := maxe(x)∈Π |x | denote the maximal level of Π. By 0-subperiodicity, for each
e(x) in Π, there is a cutset Π(x) of T x such that

∑
e(w)∈Π(x) 𝜆

−|w−x | ≤ ∥Π∥𝜆 < 1 and
maxe(w)∈Π(x) |w − x | ≤ d. Thus, ∥Π(x)∥𝜆 =

∑
e(w)∈Π(x) 𝜆

−|w| < 𝜆−|x |. (Note that |w| always
denotes the distance from w to the root of T .) This allows us to replace the cutset Π by another
in several ways while preserving (3.5): for any given A ⊆ Π, if we replace those edges e(x) in
A by the edges of the corresponding Π(x), then we obtain a cutset Π̃ := (Π\ A)∪∪

e(x)∈AΠ(x)
that satisfies

∥Π̃∥𝜆 =
∑

e(x)∈Π\A
𝜆−|x | +

∑
e(x)∈A

∥Π(x)∥𝜆 ≤ ∥Π∥𝜆 < 1 .

Given n > d, we may iterate this process for all edges e(x) in the cutset with |x | < n
until we obtain a cutset Π∗ lying between levels n and n + d with ∥Π∗∥𝜆 < 1. Therefore
|Tn |𝜆−(n+d) ≤ ∥Π∗∥𝜆 < 1, so that lim sup |Tn |1/n ≤ lim sup 𝜆1+d/n = 𝜆 < 𝜆1. This establishes
(3.6).

Now let T be N-subperiodic but still without leaves. Let T̂ be the union of disjoint copies
of the descendant trees {T x ; |x | ≤ N} with their roots identified (which is not exactly the
same as Example 1.3). It is easy to check that T̂ is 0-subperiodic and gr T̂ ≥ gr T . Moreover,
for every cutset Π of T with mine(x)∈Π |x | ≥ N , there is a corresponding cutset Π′ of T̂ such
that

∀𝜆 > 0 ∥Π′∥𝜆 ≤
N∑
k=0

|Tk |𝜆k ∥Π∥𝜆 ,

whence br T̂ = br T . In conjunction with (3.7) for T̂ , this completes the proof.
Finally, if T has leaves, consider the tree T ′ obtained from T by adding to each leaf of T an

infinite ray. Then T ′ is subperiodic, so

lim sup |Tn |1/n ≥ br T = br T ′ = lim sup |T ′n |1/n ≥ lim sup |Tn |1/n .
Also, except in the trivial case that br T = 1, every cutset Π of T can be extended to a cutset
Π′ of T ′ with ∥Π′∥brT arbitrarily close to ∥Π∥brT . ◀

For another proof of Theorem 3.8, see Section 15.5.
Next, we consider a notion dual to subperiodicity. Although it sounds just as natural, it

actually does not arise very often. However, such trees behave similarly to subperiodic trees,
which will be easy to prove.
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Definition. Let N ≥ 0. A tree T is called N-superperiodic if ∀x ∈ T there is an adjacency-
preserving injection f : T → T f (o) with f (o) ∈ T x and | f (o)| − |x | ≤ N .
For example, every 0-periodic tree is 0-superperiodic, although 1-periodic trees are not

necessarily 1-superperiodic. For another example, consider the finite paths in the lattice �2

starting at the origin that stay in the right half-plane. Form the tree T whose vertices are the
finite paths of this type and with two such vertices joined when one path is an extension by
one step of the other. Then T is 0-superperiodic. For more examples, see Exercise 3.33.
Theorem 3.9. Let N ≥ 0. Any N-superperiodic tree T with gr T < ∞ satisfies br T = gr T
and |Tn | ≤ (gr T)n+N for all n.
Proof. Consider the case N = 0. In this case, |Tn+m | ≥ |Tn | · |Tm |. By Exercise 3.9, gr T
exists and |Tn | ≤ (gr T)n for all n. Fix any positive integer k. Let θ be the unit flow from o
to Tk that is uniform on Tk . By 0-superperiodicity, we can extend θ in a periodic fashion to
a flow from o to infinity that satisfies θ

�
e(x)� ≤ |Tk |−⌊ |x |/k⌋ for all vertices x. Consequently,

br T ≥ |Tk |1/k . Letting k → ∞ completes the proof for N = 0. ◀

▷ Exercise 3.10.
Prove the case N > 0 of Theorem 3.9.

3.4 Cayley Graphs
Suppose we investigate 𝖱𝖶𝜆 on graphs other than trees. What does 𝖱𝖶𝜆 mean in this

context? Fix a vertex o in a graph G. If e is an edge at distance n from o, let the conductance
of e be 𝜆−n. Again, by Rayleigh’s monotonicity principle, there is a critical value of 𝜆,
denoted 𝜆c(G), that separates the transient regime from the recurrent regime. To understand
what 𝜆c(G) measures, consider the class of spherically symmetric graphs, where we call G
spherically symmetric about o if, for all pairs of vertices x and y at the same distance from o,
there is an automorphism of G fixing o that takes x to y. Let M̃n be the number of edges that
lead from a vertex at distance n − 1 from o to a vertex at distance n. Then the critical value of
𝜆 is the growth rate of G:

𝜆c(G) = lim inf
n→∞

M̃1/n
n .

In fact, we have the following more precise criterion for transience:

▷ Exercise 3.11.
Show that if G is spherically symmetric about o, then 𝖱𝖶𝜆 is transient iff

∑
n 𝜆

n/M̃n < ∞.

Next, consider the Cayley graphs of finitely generated groups: We say that a group Γ is
generated by a subset S of its elements if the smallest subgroup containing S is all of Γ. In
other words, every element of Γ can be written as a product of elements of the form s or
s−1 with s ∈ S. If Γ is generated by S, then we form the associated Cayley graph G with
vertices Γ and (unoriented) edges

�[x, xs] ; x ∈ G, s ∈ S
	

=
�(x, y) ∈ Γ2 ; x−1y ∈ S ∪ S−1	.

Because S generates Γ, the graph is connected. Cayley graphs are highly symmetric: they
look the same from every vertex, since left multiplication by yx−1 is an automorphism of G
that carries x to y. These automorphisms, left multiplication by a group element, are called
translations of the Cayley graph.
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▷ Exercise 3.12.
Show that different Cayley graphs of the same finitely generated group are roughly isometric.

The Euclidean lattices are the most well known Cayley graphs. It is useful to keep in mind
other Cayley graphs as well, so we will look at some constructions of groups. First recall
the Cartesian or direct product of two groups Γ and Γ′, where the multiplication on Γ × Γ′ is
defined coordinatewise: (γ1, γ

′
1)(γ2, γ

′
2) := (γ1γ2, γ

′
1γ
′
2). A similar definition is made for the

direct product of any sequence of groups. It is convenient to rephrase this definition in terms
of presentations.
First, recall that the free group generated by a set S is the set of all finite words in s and

s−1 for s ∈ S with the empty word as the identity and concatenation as multiplication, with
the further stipulation that if a word contains either ss−1 or s−1s, then the pair is eliminated
from the word. The group defined by the presentation ⟨S | R⟩ is the quotient of the free
group generated by the set S by the normal subgroup generated by the set R, where R
consists of finite words, called relators, in the elements of S. (We think of R as giving
a list of products that must equal the identity; other identities are consequences of these
ones and of the definition of a group.) For example, the free group on two letters �2 is
⟨{a, b} | ∅⟩, usually written ⟨a, b | ⟩, whereas �2 is (isomorphic to) ⟨{a, b} | {aba−1b−1}⟩,
usually written ⟨a, b | aba−1b−1⟩, also known as the free abelian group on two letters (or
of rank 2). In this notation, if Γ = ⟨S | R⟩ and Γ′ = ⟨S′ | R′⟩ with S ∩ S′ = ∅, then
Γ × Γ′ = ⟨S ∪ S′ | R ∪ R′ ∪ [S, S′]⟩, where [S, S′] := {ss′s−1s′−1 ; s ∈ S, s′ ∈ S′}. On the
other hand, the free product of Γ and Γ′ is Γ ∗ Γ′ := ⟨S ∪ S′ | R ∪ R′⟩. A similar definition is
made for the free product of any sequence of groups. Interesting free products to keep in mind
as we examine various phenomena are � ∗ � (the free group on two letters), �2 ∗ �2 ∗ �2,
� ∗ �2 (whose Cayley graph is isomorphic to that of �2 ∗ �2 ∗ �2, that is, a 3-regular tree,
when the usual generators are used), �2 ∗�3, �2 ∗�, and �2 ∗�2. Write �b+1 for the regular
tree of degree b + 1 (so it has branching number b). It is a Cayley graph of the free product
of b + 1 copies of �2. Its Cartesian product with �d is another interesting graph. Some
examples of Cayley graphs with respect to natural generating sets appear in Figure 3.3.

Figure 3.3. The Cayley graphs of the free group on two letters; the free product of
�2 with itself three times, �2 ∗ �2 ∗ �2; and the free product �2 ∗ �3. These are
drawn, without vertices, in the hyperbolic disc by a program created by Don Hatch.
The infinite faces have infinite area, but there is a fundamental domain of finite
measure for the group of isometries acting on the hyperbolic disc. Consequently, it is
possible to consider an invariant random embedding of any of these Cayley graphs.
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A presentation is called finite when it uses only finite sets of generators and relators. For
example, �2 ∗ �3 has the presentation ⟨a, b | a2, b3⟩. Another Cayley graph was shown in
Figure 2.4, which corresponds to the presentation ⟨a, b, c, d, e | a2, b2, c2, d2, e2, abcde⟩ (see
Chaboud and Kenyon (1996)).
Finitely presentable groups arise often “in practice”: for example, fundamental groups

of compact topological manifolds are finitely presentable, and each finitely presentable
group is the fundamental group of a compact 4-manifold (see, for example, Massey (1991),
pp. 114–115). The fundamental group of a compact manifold is roughly isometric to the
universal cover of the manifold.
The following infinitely presented group will serve as a useful example in several chapters.

This is the group �⊙, also known as the lamplighter group over �. It is defined as a
(restricted) wreath product, which is a special kind of semidirect product. First, the group∑

x∈��2, the direct sum of copies of �2 indexed by �, is the group of maps ψ:� → �2
with ψ−1({1}) finite and with componentwise addition mod 2, which we denote ⊕; that is,
(ψ ⊕ ψ ′)( j) := ψ( j) + ψ ′( j) (mod 2). Let S be the left shift, S(ψ)( j) := ψ( j + 1). Now
define �⊙ :=

(∑
x∈��2

)
Y �, which is the set

(∑
x∈��2

)
× � with the following group

operation: for ψ, ψ ′ ∈
∑

x∈��2 and m,m′ ∈ �, we multiply by the rule

(ψ,m)(ψ ′,m′) := (ψ ⊕ S−mψ ′,m + m′) .
We call an element ψ ∈

∑
m∈��2 a configuration and call ψ(k) the bit at k. We identify �2

with {0, 1}. The second component of an element x = (ψ,m) ∈ �⊙ is called the position
of the marker in the state x. (Another notation for �⊙ is the restricted wreath product
�2 ≀ �.) One nice set of generators of �⊙ is

�(0, 1), (0,−1), (1{0}, 0)	. The reason for the
name of this group is that we may think of a streetlamp at each integer with the configuration
ψ representing which lights are on, namely, those where ψ = 1. We also may imagine a
lamplighter at the position of the marker. The first two generators of �⊙ correspond (for right
multiplication) to the lamplighter taking a step either to the right or to the left (leaving the
lights unchanged); the third generator corresponds to flipping the light at the position of the
lamplighter. See Figure 3.4.

0123

1 1 1 1 1 1 1 1 1 1 1 111 1000 0 0000000 0

−1

Figure 3.4. A typical element of �⊙ .

The lamplighter group �⊙ has exponential growth: Consider the subset Tn of group
elements at distance n from the identity that can be arrived at from the identity by using
only the generators (0, 1) and (1{0}, 0), in other words, by never allowing the lamplighter
to move leftward. Since Tn is a disjoint union of (0, 1)Tn−1 and (1{0}, 0)(0, 1)Tn−2, we have
|Tn | = |Tn−1 | + |Tn−2 |. Thus, 
|Tn | ; n ≥ 0

�
is the sequence of Fibonacci numbers. Therefore

the exponential growth rate of |Tn | equals the golden mean, (1 +
√

5 )/2. In fact, it is easy to
check that this is the growth rate of balls in �⊙.
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Despite the beautiful symmetry of Cayley graphs, they are rarely spherically symmetric.
Still, if Mn denotes the number of vertices at distance n from the identity, then lim M1/n

n

exists since Mm+n ≤ MmMn; thus, we may apply Fekete’s lemma (Exercise 3.9) to ⟨log Mn⟩.
Note that this also implies that the exponential growth rate of the balls in G equals lim M1/n

n ;
we refer to this common number as the (exponential) growth rate of G. When the growth
rate is 1, we say that the Cayley graph has subexponential growth, and otherwise that it has
exponential growth. Our analysis of spherically symmetric graphs, though it does not apply
to Cayley graphs, may still suggest the question, Is 𝜆c(G) = lim M1/n

n ?
First of all, if 𝜆 > lim M1/n

n , then 𝖱𝖶𝜆 is positive recurrent, since for such 𝜆,∑
e∈𝖤1/2

c(e) < d
∑
x∈G

𝜆−|x | = d
∑
n≥0

Mn𝜆−n < ∞ ,

where d is the degree of G and |x | denotes the distance of x to the identity. (One could
also use the Nash-Williams criterion to get merely recurrence.) Second, to prove transience
for a given 𝜆, it suffices, by Rayleigh’s monotonicity principle, to prove that a subgraph is
transient. The easiest subgraph to analyze would be a subtree of G, while to have the greatest
likelihood of being transient, it should be as big as possible, that is, a spanning tree (one
that includes every vertex). Here is one: Assume that the inverse of each generator is also
in the generating set. Order the generating set S = ⟨s1, s2, . . . , sd⟩. For each x ∈ G, there
is a unique word (si1 , si2 , . . . , sin ) in the generators such that x = si1 si2 · · · sin , n = |x |, and
(si1 , . . . , sin ) is lexicographically minimal with these properties, that is, if (si′1 , . . . , si′n ) is
another word whose product is x and m is the first j such that i j ̸= i′j , then im < i′m. Call
this lexicographically minimal word wx . Let T be the subgraph of G containing all vertices
and with y adjacent to x when either |y | + 1 = |x | and wy is an initial segment of wx , or vice
versa.

▷ Exercise 3.13.
Show that T is a subperiodic tree when rooted at the identity.

Because T is spanning and distances to the identity in T are the same as in G, we have
gr T = lim M1/n

n . Since T is subperiodic, we have br T = lim M1/n
n by Theorem 3.8. Hence

𝖱𝖶𝜆 is transient on T for 𝜆 < lim M1/n
n by Theorem 3.5, whence on G as well. We have

proved the following theorem of Lyons (1995):

Theorem 3.10. (Group Growth and Random Walk) 𝖱𝖶𝜆 on an infinite Cayley graph has
critical value 𝜆c equal to the exponential growth rate of the graph.

Of course, this theorem makes Cayley graphs look spherically symmetric from a proba-
bilistic point of view. Such a conclusion, however, should not be pushed too far, for there are
Cayley graphs with the following very surprising properties; the lamplighter group is one
such. Define the speed (or rate of escape) of 𝖱𝖶𝜆 as the limit of the distance from the identity
at time n divided by n as n → ∞, if the limit exists. The speed is monotonically decreasing
in 𝜆 on spherically symmetric graphs and is positive for any positive 𝜆 less than the growth
rate. However, there are Cayley graphs of exponential growth for which the speed of simple
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random walk is 0 (a topic studied further in Chapter 14). This already shows that such a
Cayley graph is far from spherically symmetric. Even more surprisingly, on the lamplighter
group, which has growth rate (1 +√5 )/2, the speed is 0 at 𝜆 = 1* yet is strictly positive when
1 < 𝜆 < (1 + √5 )/2 (Lyons, Pemantle, and Peres, 1996b). Perhaps this surprising example is
actually part of a general phenomenon in one aspect:

Question 3.11. If G is a Cayley graph of growth rate b and 1 < 𝜆 < b, must the speed of
𝖱𝖶𝜆 exist and be positive?

Another manifestation of the lack of spherical symmetry in the Cayley graph of �⊙ is the
presence of dead ends, that is, elements all of whose neighbors are closer to o. Indeed, the
element

�
1[−n,n], 0

�
is such a dead end.

Question 3.12. If T is a spanning tree of a graph G rooted at some vertex o, we call T a
geodesic subtree if dist(o, x) is the same in T as in G for all vertices x. If T is a geodesic
spanning tree of the Cayley graph of a finitely generated group G of growth rate b, is br T = b?
We saw that this is the case for the lexicographically minimal spanning tree constructed
earlier.

Denote the growth rate of a group Γ with respect to a finite generating set S by grS Γ.
By Exercise 3.12, every pair of Cayley graphs of the same group are roughly isometric to
each other, whence if grS Γ > 1 for some generating set, then grS Γ > 1 for every generating
set. In this case, is infS grS Γ > 1? This question was posed by Gromov (1981b) (see also
Gromov (1999) for a revised version in English), and for a long time, it remained open. It
is known to hold for certain classes of groups, but finally a counterexample was found by
Wilson (2004b); see also Bartholdi (2003) and Wilson (2004c). In Theorem 10.13, we will
use random spanning forests to give examples of groups with uniform exponential growth.
See Mann (2012) for more on the growth of groups.
We have begun to see how the behavior of some probabilistic processes on Cayley graphs

is related to geometric properties of the underlying groups. This is a fascinating theme in
contemporary research. We will see some more examples in Chapters 6, 7, 8, 10, 11, and 14.
In particular, we will see in Theorem 6.40 that simple random walk is transient on Cayley
graphs whose volume growth is at least cubic.

3.5 Notes

A Cayley graph is spherically symmetric iff it is 2-point homogeneous, that is, given vertices
u, v, w, x such that d(u, v) = d(w, x), there is an automorphism taking u to w and v to x. These graphs
are characterized by Macpherson (1982).

The lamplighter group �⊙ was denoted G1 by Kaimanovich and Vershik (1983).

* This part is easy to see: after n steps, the marker has visited only locations within distance roughly
√
n from 0.
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3.6 Collected In-Text Exercises

3.1. Show that if equality holds on the right-hand side of (3.3), then for all x, we have

∑
e+=x ,
θ (e)>0

θ(e) ≤ 1 .

3.2. Suppose that simple random walk is transient on G and a ∈ 𝖵. Show that there is a random
edge-simple path from a to∞ such that the expected number of edges common to two such independent
paths is equal to R(a ↔ ∞) (for unit conductances on G).

3.3. Let T be a locally finite tree and Π be a minimal finite cutset separating o from∞. Let θ be a
flow from o to∞. Show that

𝖲𝗍𝗋𝖾𝗇𝗀𝗍𝗁(θ) =
∑
e∈Π

θ(e) .

3.4. For simple random walk on T to be transient, is it necessary that br T > 1?

3.5. Find an example where 𝖱𝖶brT is transient and an example where it is recurrent.

3.6. Show that br T is independent of which vertex in T is the root.

3.7. Show directly from the definition that br T = n for an n-ary tree T . Show that if every vertex of
T has between n1 and n2 children, then br T is between n1 and n2.

3.8. We have seen that if br T > 1, then simple random walk on T is transient. Is gr T > 1 sufficient
for transience?

3.9. (a) (Fekete’s Lemma) Show that for every subadditive sequence ⟨an⟩, the sequence ⟨an/n⟩
converges to its infimum:

lim
n→∞

an

n
= inf

an

n
.

(b) Show that Fekete’s lemma holds even if a finite number of the an are infinite.
(c) Show that for every 0-subperiodic tree T , the limit limn→∞ |Tn |1/n exists.

3.10. Prove the case N > 0 of Theorem 3.9.

3.11. Show that if G is spherically symmetric about o, then 𝖱𝖶𝜆 is transient iff
∑

n 𝜆n/M̃n < ∞.

3.12. Show that different Cayley graphs of the same finitely generated group are roughly isometric.

3.13. Show that the lexicographically minimal spanning tree T of a Cayley graph is a subperiodic
tree when rooted at the identity.
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3.7 Additional Exercises
3.14. There are two other versions of the max-flow min-cut theorem that are useful. We state them

for directed finite networks using the notation of our proof of the max-flow min-cut theorem.
(a) Suppose that each vertex x is given a capacity c(x), meaning that an admissible flow θ is

required to satisfy (i) θ(e) ≥ 0 for all edges e and (ii) for all x other than the sources A and sinks Z ,∑
e∈𝖤 ϕ(x, e)θ(e) = 0 and

∑
e+=x θ(e) ≤ c(x), where ϕ is the vertex-edge incidence function defined in

Section 3.1. A cutset now consists of vertices that intersect every directed path from A to Z . Show
that the maximum strength of an admissible flow from A to Z equals the minimum cutset sum of the
capacities.

(b) Suppose that each edge and each vertex has a capacity, with the restrictions that each of these
imply. A cutset now may consist of both vertices and edges. Again, show that the maximum strength of
an admissible flow from A to Z equals the minimum cutset sum of the capacities.

3.15. Show that if all the edge capacities c(e) in a directed finite network are integers, then among the
admissible flows θ of maximal strength, there is one such that all θ(e) are also integers. Show the same
for networks with capacities assigned to the vertices or to both edges and vertices, as in Exercise 3.14.

3.16. (Menger’s Theorem)
(a) Let a and z be vertices in a graph that are not adjacent. Show that the maximum number of

paths from a to z that are pairwise disjoint (except at a and z) is equal to the minimum cardinality of
a set W of vertices such that W is disjoint from a and z, but such that every path from a to z passes
through W .

(b) Let a be a vertex in an infinite graph. Show that the maximum number of paths from a to∞
that are pairwise disjoint (except at a) is equal to the minimum cardinality of a set W of vertices such
that W is disjoint from a, but such that every path from a to∞ passes through W .

3.17. A perfect matching of a graph G is a subset M of its edges such that each vertex of G belongs
to exactly one edge in M . Let G be a finite bipartite graph, that is, its vertex set can be partitioned into
two parts, A and Z , such that all edges of G have one endpoint in A and one in Z .

(a) (Kőnig’s Theorem) Show that if G is regular, then it has a perfect matching.
(b) (Hall’s Theorem) Show that if |A| = |Z | and for each K ⊆ A, the number of vertices adjacent

to some vertex of K is at least |K |, then G has a perfect matching.

3.18. Show that the maximum strength of an admissible flow from A to Z (in a finite undirected
network) also equals

min
{ ∑

e∈𝖤1/2

c(e)ℓ(e)
}
,

where ℓ is an assignment of nonnegative lengths to the edges so that the minimum distance from every
point in A to every point in Z is 1.

3.19. Suppose that θ is a flow from A to Z in a finite undirected network. Show that if Π is a cutset
separating A from Z that is minimal with respect to inclusion, then 𝖲𝗍𝗋𝖾𝗇𝗀𝗍𝗁(θ) =

∑
e∈Π θ(e).

3.20. Let G be a finite network and a and z be two of its vertices. Show that R(a ↔ z) is the
minimum of

∑
e∈𝖤1/2

r(e)P[e ∈ P or − e ∈ P]2 over all probability measures P on paths P from a to z.

3.21. Let G be an undirected graph and o ∈ 𝖵. Recall that 𝖤 consists of both orientations of each
edge. Suppose that q:𝖤→ [0,∞) satisfies the following three conditions:

(i) For every vertex x ̸= o, we have∑
{u ; (u,x)∈𝖤}

q(u, x) ≤
∑

{w ; (x ,w)∈𝖤}
q(x, w) ;
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(ii)
∑

{u ; (u,o)∈𝖤}
q(u, o) = 0 and

∑
{w ; (o,w)∈𝖤}

q(o, w) > 0 ; and

(iii) there exists K < ∞ such that for every directed path (u0, u1, . . .) in G starting at u0 = o, we have

∞∑
i=0

q(ui , ui+1) ≤ K .

Show that simple random walk on (the undirected graph) G starting at o is transient.

3.22. Let G be a finite graph and a, z be two vertices of G. Let the edges be labeled by positive
resistances r( • ). Two players, a passenger and a troll, simultaneously pick edge-simple paths from a to
z. The passenger then pays the troll the sum of ±r(e) for all the edges e common to both paths; if e is
traversed in the same direction by the two paths, then the + sign is used, otherwise the − sign is used.
Show that the troll has a strategy of picking a random path in such a way that no matter what path is
picked by the passenger, the troll’s gain has expectation equal to the effective resistance between a to
z. Show further that the passenger has a similar strategy that has expected loss equal to R(a ↔ z) no
matter what the troll does.

3.23. Let T be a locally finite tree and Π be a cutset separating o from∞. Show that there is a finite
cutset Π′ ⊆ Π separating o from∞ that does not properly contain any other cutset.

3.24. Show that a network (T , c) on a tree is transient iff there exists a function F on the vertices of
T such that F ≥ 0, ∀e dF(e) ≥ 0, and infΠ

∑
e∈Π dF(e)c(e) > 0. Here, edges are oriented away from

the root; the infimum is over cutsets separating the root from infinity.

3.25. Given a tree T and k ≥ 1, form the tree T [k] by taking the vertices x of T for which |x | is
a multiple of k and joining x and y by an edge in T [k] when their distance is k in T . Show that
br T [k] = (br T)k .

3.26. Show that 𝖱𝖶𝜆 is positive recurrent on a tree T if 𝜆 > gr T but not if 𝜆 < gr T .

3.27. Let U(T) be the set of unit flows on a tree T (from o to∞). For θ ∈ U(T), define its Frostman
exponent to be

Frost(θ) := lim inf
|x |→∞

θ(x)−1/|x | .

Show that
br T = sup

θ∈U (T )
Frost(θ) .

3.28. Let k ≥ 1. Show that if T is a 0-periodic (resp., 0-subperiodic) tree, then for all vertices x with
|x | ≥ k, there is an adjacency-preserving bijection (resp., injection) f : T x → T f (x) with | f (x)| = k.

3.29. Given a finite directed multigraph G, one can also define another covering tree by using as
vertices all directed paths of the form ⟨x0, x1, . . . , xn⟩ or ⟨x−n , . . . , x−1, x0⟩, with the former a child of
⟨x0, x1, . . . , xn−1⟩ and the latter a child of ⟨x−(n−1), . . . , x−1, x0⟩. Show that this tree is also periodic.

3.30. Given an integer k ≥ 0, construct a periodic tree T with |Tn | approximately equal to nk for all
n.

3.31. Show that critical homesick random walk (that is, 𝖱𝖶brT ) is recurrent on each periodic tree.

3.32. Construct a subperiodic tree for which critical homesick random walk (that is, 𝖱𝖶brT ) is
transient.
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3.33. Let N ≥ 0 and 0 < α < 1. Identify the binary tree with the set of all finite sequences of 0s and
1s. Let T be the subtree of the binary tree that contains the vertex corresponding to (x1, . . . , xn) iff
∀k ≤ n

∑k
i=1 xi ≤ α(k + N). Show that T is N-superperiodic but not (N − 1)-superperiodic. Also,

determine br T .

3.34. Roth’s theorem says that a subset of � that contains no three-term arithmetic progression must
have density 0. Identify the binary tree with the set of all finite sequences of 0s and 1s. Let T be the
subtree of the binary tree that contains the vertex corresponding to (x1, . . . , xn) iff xi xi+ j xi+2 j = 0
whenever 1 ≤ i < i + 2 j ≤ n. Show that gr T = 1.

3.35. Let T(1) and T(2) be two trees rooted at o1 and o2, respectively. Define their product tree
T(1) · T(2) to be the tree with vertex set �(x1, x2) ; x1 ∈ T(1), x2 ∈ T(2), |x1 | = |x2 |	, rooted at (o1, o2),
and such that (x1, x2) → (y1, y2) iff x1 → y1 and x2 → y2. For example, if T(i) is a bi -ary tree, then
their product tree is a b1b2-ary tree.

(a) Show that br T(1) · br T(2) ≤ br
�
T(1) · T(2)�.

(b) Show that if T(i) are 0-subperiodic, then so is their product tree.
(c) Identify the binary tree with the set of all finite sequences of 0s and 1s. For a subset S ⊆ �,

define the spherically symmetric tree T(S) be the subtree of the binary tree that contains the vertex
corresponding to (x1, . . . , xn) iff xk ≤ 1S (k) for all k ≤ n. That is, S is the set of heights where there
is branching. Show that if both S and � \ S have lower density 0, then br T(S) = br T(� \ S) = 1 and
br
�
T(S) · T(� \ S)� = 2.

3.36. Suppose that S generates the group Γ and that Γ′ is a subgroup of Γ. The Schreier graph of the
coset space Γ′\Γ with respect to S has as vertices the right cosets Γ′γ for γ ∈ Γ and as edges [Γ′γ, Γ′γs]
for s ∈ S. When Γ′ is normal in Γ, this is a Cayley graph of the quotient group. Show that different
finite generating sets of Γ give roughly isometric Schreier graphs of the same coset space.

3.37. We have defined the right Cayley graph of a finitely generated group and noted that left
multiplication is a graph automorphism. The left Cayley graph is defined similarly. Show that the right
and left Cayley graphs are isomorphic.

3.38. Show that there are Cayley graphs Gn of � such that for each r , the balls of radius r in Gn are
isomorphic to the ball of radius r in the usual Cayley graph of �2 for all large n. Similarly, show that
there are Cayley graphs of � where the balls are eventually isomorphic to those in the usual Cayley
graph of �3.

3.39. Extend Theorem 3.10 to all infinite (locally finite) transitive graphs.
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4 Uniform
Spanning Trees

One lesson of Chapter 2 is that in many ways, electrical networks and random walks are
two faces of the same underlying object. Here we discover an appealing third face, which
will appear at first to be completely unrelated.

Every connected graph has a spanning tree, that is, a subgraph that is a tree and that
includes every vertex. Special spanning trees of Cayley graphs were used in Section 3.4. Here,
we consider finite and, more generally, recurrent graphs and properties of their spanning
trees when such trees are chosen randomly. We will exhibit an amazing way to generate
spanning trees uniformly at random. In Chapter 10, we will look at how to extend these
notions to transient graphs, where the connections to random walks and geometric group
theory flourish. Other natural ways of choosing random spanning trees and forests will be
studied in Chapter 11, but those ways will be connected to percolation rather than to random
walks.

Notation. In an undirected graph, a spanning tree is also composed of undirected edges.
However, we will be using the ideas and notations of Chapter 2 concerning random walks
and electrical networks, so that we will be making use of directed edges as well. Sometimes,
e will even denote an undirected edge on one side of an equation and a directed edge on the
other side; see, for example, Kirchhoff’s effective resistance formula. This abuse of notation,
we hope, will be easier for the reader than would the use of different notations for directed
and undirected edges.

4.1 Generating Uniform Spanning Trees
A graph typically has an enormous number of spanning trees. Because of this, it is not

obvious how to choose one uniformly at random in a reasonable amount of time. We are
going to present an algorithm that works quickly by exploiting some hidden independence in
Markov chains. This algorithm is of enormous theoretical importance for us. Although we
are interested in spanning trees of undirected graphs, it turns out that for this algorithm, it is
just as easy, and somewhat more clear, to work with directed graphs coming from Markov
chains.
Let p(•, •) be the transition probability function of a finite-state irreducible Markov chain.

The directed graph associated to this chain has for vertices the states and for edges all ⟨x, y⟩
for which p(x, y) > 0. Edges e are oriented from tail e− to head e+. We call a connected
subgraph a spanning tree* if it includes every vertex, there is no cycle, and there is one

* For directed graphs, these are usually called spanning arborescences.
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vertex, the root, such that every vertex other than the root is the tail of exactly one edge in the
tree. Thus, the edges in a spanning tree point toward its root. For any vertex r, there is at
least one spanning tree rooted at r: Pick some vertex other than r , and draw a path from it to
r that does not contain any cycles. Such a path exists by irreducibility. This starts the tree.
Then continue with another vertex not on the part of the tree already drawn, draw a cycle-free
path from it to the partial tree, and so on. Remarkably, with a little care, this naive method of
drawing spanning trees leads to a very powerful algorithm.
We are going to choose spanning trees at random according not only to uniform measure

but, in general, proportional to their weights, where, for a spanning tree T , we define its
weight to be

Ψ(T) :=
∏
e∈T

p(e) .

In case the original Markov chain is reversible, let us see what the weights Ψ(T) are. Given
conductances c(e) with π(x) = ∑

e−=x c(e), the transition probabilities are p(e) := c(e)/π(e−),
so the weight of a spanning tree T is

Ψ(T) =
∏
e∈T

p(e) =
∏
e∈T

c(e)
/ ∏
x∈G,

x ̸=root(T )

π(x) .

Since the root is fixed, a tree T is picked with probability proportional to Ψ(T)/π(root(T)),
which is proportional to

Ξ(T) :=
∏
e∈T

c(e) .

Note that Ξ(T) is independent of the root of T . This new expression, Ξ(T), has a nice
interpretation. If c = 1, then all spanning trees are equally likely. If all the weights c(e) are
positive integers, then we could replace each edge e by c(e) parallel copies of e and interpret
the uniform spanning tree measure in the resulting multigraph as the probability measure
above with the probability of T proportional to Ξ(T). If all weights are divided by the same
constant, then the probability measure does not change, so the case of rational weights can
still be thought of as corresponding to a uniform spanning tree. Since the case of general
weights is a limit of rational weights, we use the term weighted uniform spanning tree for
such a probability measure. Similar comments apply to the nonreversible case.
Now suppose we have some method of choosing a rooted spanning tree at random

proportionally to the weights Ψ( • ) for a reversible Markov chain. Consider any vertex u on a
weighted undirected graph. If we choose a random spanning tree rooted at u proportionally
to the weights Ψ( • ) and forget about the orientation of its edges and also about the root,
then we obtain an unrooted spanning tree of the undirected graph, chosen proportionally to
the weights Ξ( • ). In particular, if the conductances are all equal, which corresponds to the
Markov chain being simple random walk, then we get a uniformly chosen spanning tree.
The method we now describe for generating random spanning trees is the fastest method

known. It is due to Wilson (1996) (see also Propp and Wilson (1998)).
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To describe Wilson’s method, we define the important idea of loop erasure* of a path, due
to Lawler (1980). If P is any finite path ⟨x0, x1, . . . , xl⟩ in a directed or undirected graph G,
we define the loop erasure of P, denoted 𝖫𝖤(P) = ⟨u0, u1, . . . , um⟩, by erasing cycles in P
in the order they appear. More precisely, set u0 := x0. If xl = x0, we set m = 0 and terminate;
otherwise, let u1 be the first vertex in P after the last visit to x0, that is, u1 := xi+1, where
i := max{ j ; x j = x0}. If xl = u1, then we set m = 1 and terminate; otherwise, let u2 be the
first vertex in P after the last visit to u1, and so on. For example, the loop erasure of the
planar path shown in Figure 2.3 appears in Figure 4.1. In the case of a multigraph, one cannot
notate a path merely by the vertices it visits. However, the notion of loop erasure should still
be clear.

Figure 4.1. A loop-erased simple random walk in �2

until it reaches distance 200 from its starting point.

Now to generate a random spanning tree with a given root r with probability proportional
to the weights Ψ( • ) for a given Markov chain, create a growing sequence of trees T(i) (i ≥ 0)
as follows. Choose any ordering of the vertices 𝖵 \ {r}. Let T(0) := {r}. Suppose that T(i)
is known. If T(i) spans G, we are done. Otherwise, pick the first vertex x in our ordering of
𝖵 that is not in T(i) and take an independent sample from the Markov chain beginning at x
until it hits T(i). Now create T(i + 1) by adding to T(i) the loop erasure of this path from x to
T(i). Marvellously, the final tree in this growing sequence has the desired distribution. We
call this Wilson’s method of generating random spanning trees.

Theorem 4.1. Given any finite-state irreducible Markov chain and any state r, Wilson’s
method yields a random spanning tree rooted at r with distribution proportional to Ψ( • ).

* This ought to be called “cycle erasure,” but we will keep to the name already given to this concept.
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Therefore, for any finite connected undirected graph, Wilson’s method yields a random
spanning tree that, when the orientation and root are forgotten, has distribution proportional
to Ξ( • ).
In particular, this says that the distribution of the spanning tree resulting from Wilson’s

method does not depend on the choice made in ordering 𝖵. Actually, you need not order 𝖵
in advance; you can choose where to start the next loop-erased path depending on what you
have already constructed, but you still cannot change the distribution of the spanning tree! In
fact, we’ll see that in some sense, the tree itself cannot be changed.
To state this precisely, we construct the Markov chain in a special way. Every time we are

at a state x, the next state will have a given probability distribution; and the choices of which
states follow the visits to x are independent of each other. This, of course, is just part of the
definition of a Markov chain. Constructively, however, we implement this as follows. Let
⟨Sx

i ; x is a state and i ≥ 1⟩ be independent with each Sx
i being a state chosen according to

the transition probability distribution from x. When we make the ith visit to x (if ever), then
the Markov chain will move next to Sx

i .
The following image is useful. For each x, think of ⟨Sx

i ; i ≥ 1⟩ as a stack lying under the
state x with Sx

1 being on top, then Sx
2 , and so forth. To run the Markov chain starting from

state x0, we simply “pop off” (that is, remove) the top state of the stack lying under x0 and
move there, then repeat the same procedure from the new state for as long as we want to run
the chain. In other words, from the current state at any time, the next state is the first state in
the stack under the current state. This state is then removed from that stack and we repeat
with the next state as the current state.

Now, our aim is not to generate the Markov chain but a random spanning tree rooted at
r. Thus, we make one small variation: give r an empty stack. We use the stacks as follows.
Observe that at any time, the top items of the stacks determine a directed graph, namely, the
directed graph whose vertices are the states and whose edges are the pairs (x, y) where y is
the top item of the stack under x. Call this the visible graph at that time. If it happens that
the visible graph contains no (directed) cycles, then it is a spanning tree rooted at r . In that
case, we do nothing more. Otherwise, we pop a cycle, meaning that we remove the top items
of the stacks under the vertices of a cycle. Then we pop a remaining cycle, if any, and so
on. We claim that this process will stop with probability 1 at a spanning tree and that this
spanning tree has the desired distribution. Note that we do not pop the top of a stack unless it
belongs to a cycle. We will also show that this way of generating a random spanning tree is
the same as Wilson’s method.
To prove these statements, we will keep track of the locations in the stacks of edges that

are popped, which we will call colors. That is, say that an edge (x, Sx
i ) has color i. A colored

cycle is simply a cycle all of whose edges are colored like this (the colors of the edges in a
cycle do not have to be the same as each other). Thus, the initial visible graph has all edges
colored 1, whereas later visible graphs will not generally have all their edges the same color.
While a cycle of vertices might be popped many times, a colored cycle can be popped at most
once. See Figure 4.2.

We begin with a deterministic lemma, which is the heart of this algorithm.

Lemma 4.2. Given any stacks under the states, the order in which cycles are popped is
irrelevant in the sense that every order pops an infinite number of cycles or every order pops
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Figure 4.2. This Markov chain has six states, one called r , which is the root. The
first five elements of each stack are listed under the corresponding states. Colored
cycles are popped as shown clockwise, leaving the colored spanning tree shown.

the same (finite set of) colored cycles, thus leaving the same colored spanning tree on top in
the latter case.

Proof. We will show that if C is any colored cycle that can be popped, that is, there is
some sequence C1,C2, . . . ,Cn = C that may be popped in that order, but some colored cycle
C ′ ̸= C1 happens to be the first colored cycle popped, then (1) C = C ′, or else (2) C can
still be popped from the stacks after C ′ is popped. Once we show this, we are done, since if
there are an infinite number of colored cycles that can be popped, the popping can never stop;
whereas in the alternative case, every colored cycle that can be popped will be popped.

Now if all the vertices of C ′ are disjoint from those of C1,C2, . . . ,Cn, then of course
C can still be popped. Otherwise, let Ck be the first cycle that has a vertex in common
with C ′. Now, all the edges of C ′ have color 1. Consider any vertex x in C ′ ∩ Ck . Since
x ̸∈ C1 ∪ C2 ∪ · · · ∪ Ck−1, the edge in Ck leading out of x also has color 1, so it leads to the
same vertex as it does in C ′. We can repeat the argument for this successor vertex of x, then
for its successor, and so on, until we arrive at the conclusion that C ′ = Ck . Thus, C ′ = C or
we can pop C in the order C ′,C1,C2, . . . ,Ck−1,Ck+1, . . . ,Cn. ◀
Proof of Theorem 4.1. Wilson’s method (using loop-erased parts of a Markov chain) certainly
stops with probability 1 at a spanning tree. Using stacks to run the Markov chain and noting
that loop erasure in order of cycle creation is one way of popping cycles, we see that Wilson’s
method pops all the cycles lying over a spanning tree. Because of Lemma 4.2, popping cycles
in any other manner also stops with probability 1 and with the same distribution. Furthermore,
if we think of the stacks as given in advance, then we see that all our choices inherent in
Wilson’s method have no effect whatsoever on the resulting spanning tree.

Now to show that the distribution is the desired one, think of a given set of stacks as
defining a finite set O of colored cycles lying over a noncolored spanning tree T . We don’t
need to keep track of the colors in the spanning tree, since they are easily recovered from
the colors in the cycles over it. Let X be the set of all pairs (O,T) that can arise from stacks
corresponding to our given Markov chain. If (O,T) ∈ X , then also (O,T ′) ∈ X for any other
spanning tree T ′: indeed, anything at all can be in the stacks under any finite set O of colored
cycles. That is, X = X1 × X2, where X1 is a certain collection of sets of colored cycles and
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X2 is the set of all noncolored spanning trees. Extend our definition of Ψ( • ) to colored cycles
C by Ψ(C) :=

∏
e∈C p(e) and to sets O of colored cycles by Ψ(O) :=

∏
C∈O Ψ(C). What is

the chance of seeing a given set O of colored cycles lying over a given spanning tree T? It is
simply the probability of seeing all the arrows in

∪
O ∪ T in their respective places, which is

simply the product of p(e) for all e ∈ ∪
O ∪ T , in other words, Ψ(O)Ψ(T). Letting P be the

law of (O,T), we get P= µ1 × µ2, where µi are probability measures proportional to Ψ( • ) on
Xi . Therefore, the set of colored cycles seen is independent of the colored spanning tree and
the probability of seeing the tree T is proportional to Ψ(T). This shows that Wilson’s method
does what we claimed it does. ◀

Figure 4.3. A colored uniform spanning tree in a 40 × 40 grid on the left, with a
key on the right showing the correspondence of visual colors to numbered colors.

An actual example of Wilson’s algorithm showing the colored uniform spanning tree on a
40 × 40 grid is shown in Figure 4.3. Since the colors are determined by the popped cycles,
which are independent of the spanning tree, it follows that if we attach the colors to the
vertices instead of to the edges, then the colors are independent of the spanning tree (the
colors are naturally attached to the vertices, since the stacks correspond to vertices). Just
the colors are shown for a uniform spanning tree on a 200 × 200 grid in Figure 4.4. There
appears to be an interesting fractal nature in the limit of decreasing mesh size, but no one has
yet explained this. In Figure 4.5, we show the distances in the tree to the lower left vertex,
together with the path from the upper right vertex. This seems to be the best way of viewing
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a large spanning tree. Although the distances do not determine the tree, all spanning trees
consistent with the given distances are, of course, equally likely. Furthermore, given the
distances, one can easily sample from the consistent spanning trees by working one’s way
out from the root: the vertices at distance 1 from the root must be attached to the root, while
the vertices at distance 2 can be attached uniformly at random to their neighbors at distance
1, and so on. The distance in the tree from the root to the opposite corner, say, grows like
n5/4 in an n × n square: This was first conjectured by Guttmann and Bursill (1990) from
numerical simulations, then calculated by Duplantier (1992) and Majumdar (1992) using
nonrigorous conformal field theory. Kenyon (2000a) proved a form of this using domino
tilings associated to spanning trees. It was extended to other planar lattices by Masson (2009)
and strengthened by Barlow and Masson (2010). An alternative view is given in Figure 4.6,
where the distances in the tree to the path between the corners is shown.

Figure 4.4. The colors of a uniform spanning tree in a 200 × 200 grid on the left, with a
key on the right showing the correspondence of visual colors to numbered colors.

We will see here and in Chapter 10 some of the far-reaching consequences of Wilson’s
method. First, we record the following obvious consequence of Wilson’s algorithm:

Corollary 4.3. Given vertices x and y in a finite network, the distribution of the path in the
weighted uniform spanning tree from x to y equals the distribution of loop-erased random
walk from x to y. ◀
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Figure 4.5. The distances to the root in a uniform spanning tree in a
200 × 200 grid, together with the path from the opposite corner.

This corollary was first proved by Pemantle (1991) using a different method that relies on
an algorithm of Aldous and Broder (see Corollary 4.9). By conditioning on the path in the
tree and then contracting it, one can immediately deduce Wilson’s algorithm for the whole
tree. This was observed by Wilson (1996) and Propp and Wilson (1998).
Of course, another immediate corollary is the invariance of loop-erased random walk under

time reversal, which was known already to Lawler (1983):

Corollary 4.4. Given vertices x and y in a finite network, the distribution of loop-erased
random walk from x to y equals the distribution of the reversal of loop-erased random walk
from y to x. ◀

Next, we use Wilson’s algorithm to prove Cayley’s formula for the number of spanning
trees on a complete graph, that is, a graph in which every pair of distinct vertices is joined by
an edge. A number of proofs are known of this result; for a collection of them, see Moon
(1967). The following proof is inspired by the one of Aldous (1990), Proposition 19.

Corollary 4.5. (Cayley, 1889) The number of labeled unrooted trees with n vertices is nn−2.
Here, a labeled tree is one whose vertices are labeled 1 through n.



§1. Generating Uniform Spanning Trees 103

Figure 4.6. The distances in the tree to the path between
opposite corners in a uniform spanning tree in a 200 × 200 grid.

To prove this, we use the result of the following exercise.

▷ Exercise 4.1.
Suppose that Z is a set of states in a Markov chain and that x0 is a state not in Z . Assume that
when the Markov chain is started in x0, then it visits Z with probability 1. Define the random
path Y0,Y1, . . . by Y0 := x0 and then recursively by letting Yn+1 have the distribution of one
step of the Markov chain starting from Yn given that the chain will visit Z before visiting any
of Y0,Y1, . . . ,Yn again. However, if Yn ∈ Z , then the path is stopped and Yn+1 is not defined.
Show that ⟨Yn⟩ has the same distribution as loop-erasing a sample of the Markov chain started
from x0 and stopped when it reaches Z . In the case of a random walk, the conditioned path
⟨Yn⟩ is called the Laplacian random walk from x0 to Z .

Proof of Corollary 4.5. We show that the uniform probability of a specific spanning tree of
the complete graph on {1, 2, . . . , n} is 1/nn−2. Take the tree to be the path ⟨1, 2, 3, . . . , n⟩.
We will calculate the probability of this tree by using Wilson’s algorithm started at 1 and
rooted at n. Since the root is n and the tree is a path from 1 to n, this tree probability is just
the chance that loop-erased random walk from 1 to n is this particular path. By Exercise 4.1,
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we must show that the Laplacian random walk ⟨Yn⟩ from 1 to n is precisely this path with
probability 1/nn−2. Recall the following notation from Chapter 2: Pi denotes simple random
walk started at state i; the first time ≥ 0 that the walk visits state k is denoted τk ; and the first
time ≥ 1 that the walk visits state k is denoted τ+

k
. Let ⟨Xn⟩ be the usual simple random walk.

Consider first the distribution of Y1. The definition of Y1 gives that for all i ∈ [2, n],

P[Y1 = i] = P1[X1 = i | τn < τ+
1 ] =

P1[X1 = i, τn < τ+
1 ]

P1[τn < τ+
1 ]

=
P1[X1 = i]Pi[τn < τ1]

P1[τn < τ+
1 ]

=
Pi[τn < τ1]

(n − 1)P1[τn < τ+
1 ]
. (4.1)

Now
Pi[τn < τ1] =

{ 1/2 if i ̸= n
1 if i = n.

(4.2)

Since the probabilities for Y1 add to 1, combining (4.1) and (4.2) yields that P1[τn < τ+
1 ] =

n
/�
2(n−1)�, whence by (4.1) again, P[Y1 = i] = 1/n for 1 < i < n. Similarly, for j ∈ [1, n−2]

and i ∈ [ j + 1, n], we have

P[Yj = i ��� Y1 = 2, . . . ,Yj−1 = j] = Pj[X1 = i | τn < τ1 ∧ τ2 ∧ · · · ∧ τj−1 ∧ τ+
j ]

=
Pj[X1 = i, τn < τ1 ∧ τ2 ∧ · · · ∧ τj−1 ∧ τ+

j ]
Pj[τn < τ1 ∧ τ2 ∧ · · · ∧ τj−1 ∧ τ+

j ]
=

Pj[X1 = i] Pi[τn < τ1 ∧ τ2 ∧ · · · ∧ τj−1 ∧ τj]
Pj[τn < τ1 ∧ τ2 ∧ · · · ∧ τj−1 ∧ τ+

j ]
.

Now the minimum of τ1, . . . , τj , τn for simple random walk starting at i ∈ ( j, n) is equally
likely to be any one of these. Therefore,

Pi[τn < τ1 ∧ τ2 ∧ · · · ∧ τj−1 ∧ τj] =
{

1/( j + 1) if j < i < n
1 if i = n.

Since Pj[X1 = i] = 1/(n− 1), we obtain Pj[τn < τ1 ∧ τ2 ∧ · · · ∧ τj−1 ∧ τ+
j ] = n

/�( j + 1)(n− 1)�,
and thus

P[Yj = j + 1 ��� Y1 = 2, . . . ,Yj−1 = j] = 1/n

for all j ∈ [1, n − 2]. Of course,

P[Yn−1 = n ��� Y1 = 2, . . . ,Yn−2 = n − 1] = 1 .

Multiplying together these conditional probabilities gives the result. ◀
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4.2 Electrical Interpretations

We return now to undirected graphs and networks, except for occasional parenthetical
remarks about more general Markov chains. We don’t have to restrict ourselves to finite
networks: Wilson’s method for generating spanning trees will also give a random spanning
tree (a.s.) on any recurrent network (or for any recurrent irreducible Markov chain), provided
we start the new loop-erased walks in such a way as to guarantee that every vertex belongs
to the final tree. Can we interpret it in terms of uniform spanning trees when the network
is infinite? Suppose that G′ is a finite connected subnetwork of G and consider TG and
TG′ , random spanning trees generated by Wilson’s method on G and G′, respectively. After
describing a connection to electrical networks, we will show that for any event B depending
on only finitely many edges, we can make

�
P[TG ∈ B] − P[TG′ ∈ B]� arbitrarily small by

choosing G′ sufficiently large.* Thus, the random spanning tree of G looks locally like a tree
chosen with probability proportional to Ξ( • ). Also, these local probabilities determine the
distribution of TG uniquely. In particular, when simple random walk is recurrent, such as
on �2, we may regard TG as a “uniform” random spanning tree of G. Moreover, this will
show that Wilson’s method on a recurrent network generates a random spanning tree whose
distribution again does not depend on the choice of root nor on the ordering of vertices.†
We will study uniform spanning trees on recurrent networks further and also “uniform”

spanning forests on transient networks in Chapter 10. For now, though, we will deduce some
important theoretical consequences of the connection between random walk and spanning
trees on finite and recurrent networks. For recurrent networks, the definitions and relations
among random walks and electrical networks appear in Exercises 2.71, 2.72, and 2.73; some
are also covered in Section 9.1 and Corollary 9.6, but we won’t need any material from
Chapter 9 here.

Kirchhoff’s Effective Resistance Formula. LetT be an unrooted weighted uniform spanning
tree of a recurrent network G and e be an edge of G. Then

P[e ∈ T] = Pe−[1st hit e+ via traveling along e] = i(e) = c(e)R(e− ↔ e+) ,

where i is the unit current from e− to e+.

Remark. That P[e ∈ T] = i(e) in finite networks is due to Kirchhoff (1847); he didn’t say
anything about random walks.

Proof. The first equality follows by taking the vertex e+ as the root of T and then starting the
construction ofWilson’s method at e−. The second equality then follows from the probabilistic
interpretation (Proposition 2.2 and its extension Exercise 2.71 to infinite recurrent networks)
of i as the expected number of crossings of e minus the expected number of crossings of the
reversed edge −e for a random walk started at e− and stopped at e+: e is crossed once or
not at all and −e is never crossed. The third equality comes from the definition of effective
resistance. ◀

* This can also be proved by coupling the constructions using Wilson’s method.
† This can also be shown directly for any recurrent irreducible Markov chain.
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▷ Exercise 4.2.
Consider the ladder graph Ln of height n shown in Figure 1.7. Choose a spanning tree
T(n) of Ln uniformly. Use Kirchhoff’s effective resistance formula to determine the chance
P
�
rung 1 is in T(n)� and its limiting behavior as n → ∞.

Kirchhoff’s fundamental result tells us the single-edge marginals of uniform spanning trees.
What about the marginals for several edges? Suppose e and f are two distinct edges of a
finite graph G. If T is a random spanning tree chosen uniformly from all spanning trees
of G, then we might expect that the events [e ∈ T] and [ f ∈ T] are negatively correlated,
that is, the probability that both happen is at most the product of the probabilities that each
happens: Intuitively, the presence of f would make e less needed for connecting everything
and more likely to create a cycle. Furthermore, since the number of edges in a spanning
tree is constant, namely, one fewer than the number of vertices in the graph, the negative
correlation is certainly true “on average.” We will now prove this negative correlation by using
Kirchhoff’s effective resistance formula. Interestingly, no direct proof is known, although a
combinatorial version of the electrical proof was given by Feder and Mihail (1992).
In fact, we can use Kirchhoff’s effective resistance formula to compute the chance that

certain edges are in T and certain others are not. To see this, denote the dependence of T
on G by TG . The contraction G/e of a graph G along an edge e is obtained by removing
the edge e and identifying its endpoints. Note that this may give a multigraph even if G is a
simple graph. Deleting e without identifying its endpoints gives the graph denoted G\e. In
both cases, we may identify the edges of G other than e with the edges of G/e and of G\e.
We think of a spanning tree primarily as a set of edges. Now the distribution of TG/e (the
contraction of TG along e) given that e ∈ TG is the same as that of TG/e, and the distribution
of TG given e ̸∈ TG is the same as that of TG\e. This gives a recursive method to compute
P[e1, . . . , ek ∈ TG , ek+1, . . . , el ̸∈ TG]: for example, if e ̸= f , then

P[e, f ∈ TG] = P[e ∈ TG]P[ f ∈ TG | e ∈ TG] = P[e ∈ TG]P[ f ∈ TG/e]

and
P[e /∈ TG, f ∈ TG] = P[e /∈ TG]P[ f ∈ TG\e] .

Thus, we may deduce that the events e ∈ T and f ∈ T are negatively correlated:

▷ Exercise 4.3.
By using Kirchhoff’s effective resistance formula, show that if e ̸= f , then the events e ∈ T
and f ∈ T are negatively correlated.

We can now also establish our claim at the beginning of this section that on a recurrent
graph, the random spanning tree looks locally like that of large finite connected subnetworks.
For example, given an edge e and a subnetwork G′ of G, the current in G′ flowing along e
arising from a unit current between the endpoints of e will be very close to the corresponding
current along e in G, provided G′ is sufficiently large, by Exercise 2.71. That means that
P[e ∈ TG′] will be very close to P[e ∈ TG].
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▷ Exercise 4.4.
Write out the rest of the proof that for any event B depending on only finitely many edges,�
P[TG′ ∈ B] − P[TG ∈ B]� is arbitrarily small for sufficiently large G′.

What does contraction of some edges do to a current in the setting of the inner-product
space ℓ2

−(𝖤, r)? Let ie denote the unit current from the tail of e to the head of e in a finite
network G. Contract the edges f ∈ F to obtain the graph G/F, and let îe be the unit current
flowing in G/F, where e /∈ F and, moreover, e does not form any undirected cycle with the
edges of F, so that e does not become a loop when the edges of F are contracted. Note that
the restriction of any θ ∈ ℓ2

−(𝖤, r) to 𝖤 \ F yields an antisymmetric function on the edges of
the contracted graph G/F. Let Z be the linear span of {i f ; f ∈ F}. We claim that

îe = (P⊥Z ie)↾(𝖤 \ F) (4.3)
and

(P⊥Z ie)↾F = 0 , (4.4)
where P⊥Z denotes the orthogonal projection onto the orthocomplement of Z in ℓ2

−(𝖤, r).
These equations may look a little forbidding at first, but a second or third look ought to reveal
their inner simplicity. In fact, if instead of removing the edges in F when we contract them,
we leave them as loops, then these equations say that îe = P⊥Z ie.

To prove these equations, note that, since Z ⊆ ⋆ and ie ∈ ⋆, also P⊥Z ie = ie − PZie ∈ ⋆.
Recall from (2.9) or (2.11) that P⋆χ f = i f . Therefore, for f ∈ F,

(P⊥Z ie, χ f )r = (P⋆P⊥Z ie, χ f )r = (P⊥Z ie, P⋆χ f )r = (P⊥Z ie, i f )r = 0 .

That is, there is no flow across any edge in F for P⊥Z ie, which is (4.4). Since P⊥Z ie ∈ ⋆
satisfies the cycle law in G, it follows from this that (P⊥Z ie)↾(𝖤 \ F) satisfies the cycle law in
G/F. To finish the proof, we verify Kirchhoff’s node law, that is, we show that the right-hand
side of (4.3) is orthogonal to all the stars in G/F except those at the endpoints of e, where the
inner products are ±1. To see this, write

P⊥Z ie = ie −
∑
f ∈F

α f i f

for some constants α f . Note that the stars ψ in G/F are sums θ of stars in G such that
θ( f ) = 0 for all f ∈ F. Since ie is orthogonal to all the stars in G except those at the
endpoints of e, it follows that ie↾(𝖤 \ F) ⊥ ψ if ψ is a star in G/F other than at an endpoint
of e. Likewise, the restrictions to 𝖤 \ F of i f for all f ∈ F are orthogonal to all the stars in
G/F: the only case where this is not obvious is where e and f share an endpoint. In that
case, let ψ be the star in G/F that corresponds to the shared endpoint of e and f . Since f
is contracted, the inner product of i f ↾(𝖤 \ F) with ψ equals 1 − 1 = 0, both endpoints of f
contributing to the inner product. Therefore, ie −

∑
f ∈F α f i f is orthogonal to all the stars in

G/F except those at the endpoints of e, where the inner products are ±1. This proves (4.3).
Although we have indicated that successive contractions can be used for computing

P[e1, . . . , ek ∈ T], this requires computations of effective resistance on k different graphs.
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The formula we just gave allows us to replace the different graphs with computations of
orthogonal projections for the original graph, but this is not necessarily pleasant, either.
However, it turns out that these computations can be organized in a marvellous way, as
shown by the following wonderful theorem of Burton and Pemantle (1993) and its extension,
Exercise 4.41:

The Transfer Current Theorem. For any distinct edges e1, . . . , ek ∈ G,

P[e1, . . . , ek ∈ T] = det
�
Y (ei, e j)�1≤i, j≤k . (4.5)

Recall that Y (e, f ) = ie( f ). Note that, in particular, we get a quantitative version of the
negative correlation between {e ∈ T} and { f ∈ T}: for distinct edges e, f , we have

P[e, f ∈ T] − P[e ∈ T]P[ f ∈ T] = −Y (e, f )Y ( f , e) = −c(e)r( f )Y (e, f )2

by the reciprocity law (2.12).

Proof. It suffices to show the result for finite G, because taking limits of this result implies it
holds for infinite recurrent G by Exercise 2.71.
We first show that if some cycle can be formed from the edges e1, . . . , ek , then a linear

combination of the corresponding columns of
�
Y (ei, e j)� is zero: Suppose that such a cycle is∑

j a jχ
e j , where a j ∈ {−1, 0, 1}. Then, for 1 ≤ m ≤ k, we have

∑
j

a jr(e j)Y (em, e j) =
∑
j

a jr(e j)iem (e j) = 0

by the cycle law applied to the current iem . Therefore, both sides of (4.5) are 0. For the
remainder of the proof, then, we may assume that there are no such cycles.
We next proceed by induction. When k = 1, (4.5) is the same as Kirchhoff’s effective

resistance formula. For 1 ≤ m ≤ k, let

Ym :=
�
Y (ei, e j)�1≤i, j≤m . (4.6)

To carry the induction from m = k − 1 to m = k, we must show that

detYk = P[ek ∈ T | e1, . . . , ek−1 ∈ T] detYk−1 . (4.7)

Now we know that
P[ek ∈ T | e1, . . . , ek−1 ∈ T] = îek (ek) (4.8)

for the current îek in the graph G/{e1, . . . , ek−1}. In addition,

P⊥Z iek = iek −
k−1∑
m=1

amiem
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for some constants am, where Z is the linear span of {ie1 , . . . , iek−1}. Subtracting these same
multiples of the first k − 1 rows from the last row of Yk leads to a matrix Ŷ whose (m, j)-entry
is that of Yk−1 for m, j < k and whose (k, j)-entry is

iek (e j) −
k−1∑
m=1

amiem (e j) =
�
P⊥Z iek

�(e j) =
{

0 if j < k
îek (ek) if j = k

by (4.4) and (4.3). Therefore expansion of det Ŷ along the kth row is very simple and gives
that

detYk = det Ŷ = îek (ek) detYk−1 .

Combining this with (4.8), we obtain (4.7). (At bottom, we are using, or proving, the fact that
the determinant of a Gram matrix is the square of the volume of the parallelepiped determined
by the vectors whose inner products give the entries.) ◀

It turns out that there is a more general negative correlation than that between the presence
of two given edges. Regard a spanning tree as simply a set of edges. We may extend our
probability measure P on the set of spanning trees to the product σ-field on 2𝖤(G) by defining
the probability to be 0 of the event that the set of edges do not form a spanning tree. This
may sound unhelpful, but surprisingly, it is useful. Call an event A ⊆ 2𝖤(G) increasing (also
called upwardly closed) if the addition of any edge to any set in A results in another set in
A , that is, A ∪ {e} ∈ A for all A ∈ A and all e ∈ 𝖤. For example, A could be the collection
of all subsets of 𝖤(G) that contain at least two of the edges {e1, e2, e3}. We say that an event
A ignores an edge e if A ∪ {e} ∈ A and A \ {e} ∈ A for all A ∈ A . In the prior example,
e is ignored provided e ̸∈ {e1, e2, e3}. We also say that A depends (only) on a set F ⊆ 𝖤(G)
if, for every pair ω1, ω2 ∈ 2𝖤 that agree on F, we have either both ω1, ω2 are in A or neither
are in A .

▷ Exercise 4.5.
Suppose that A is an increasing event on a graph G and e ∈ 𝖤. Note that 𝖤(G/e) = 𝖤(G\e) =
𝖤(G)\{e}. DefineA /e :=

�
F ⊆ 𝖤(G/e) ; F∪{e} ∈ A

	
andA \e :=

�
F ⊆ 𝖤(G\e) ; F ∈ A

	
.

Show that these are increasing events on G/e and G\e, respectively.

Pemantle conjectured (personal communication, 1990) that A and [e ∈ T] are negatively
correlated when A is an increasing event that ignores e. Though unaware that Pemantle had
conjectured this, Feder and Mihail (1992) proved it:

Theorem 4.6. Let G be a finite network. If A is an increasing event that ignores some edge
e, then P[A | e ∈ T] ≤ P[A ].

As we will see in Chapter 10, this result is quite useful.

Proof. We induct on the number of edges in G. The case of exactly one (undirected) edge is
trivial. Now assume that the number of (undirected) edges is m ≥ 2 and that we know the
result for graphs with m − 1 edges. Let G have m edges. If P[ f ∈ T] = 1 for some f ∈ 𝖤,
then we could contract f and reduce to the case of m − 1 edges by Exercise 4.5, so assume
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this is not the case. If |𝖵| = 2 and G has parallel edges, then the result also follows without
using induction, so assume that |𝖵| ≥ 3. Fix an increasing event A and an edge e ignored by
A . We may assume that P[A | e ∈ T] > 0 to prove our inequality. The graph G/e has only
m − 1 edges, and every spanning tree of G/e has |𝖵| − 2 edges. This latter simple fact leads
to the key equation∑
f ∈𝖤\{e}

P[A , f ∈ T | e ∈ T] =
�|𝖵| − 2

�
P[A | e ∈ T] = P[A | e ∈ T]

∑
f ∈𝖤\{e}

P[ f ∈ T | e ∈ T] .

Therefore there is some f ∈ 𝖤 \ {e} with P[ f ∈ T | e ∈ T] > 0 such that

P[A , f ∈ T | e ∈ T] ≥ P[A | e ∈ T]P[ f ∈ T | e ∈ T] ,
which is the same as P[A | f , e ∈ T] ≥ P[A | e ∈ T]. This also means that

P[A | f , e ∈ T] ≥ P[A | f /∈ T , e ∈ T] ; (4.9)
in case this is not evident, one can deduce it from

P[A | e ∈ T] = P[ f ∈ T | e ∈ T]P[A | f , e ∈ T] + P[ f /∈ T | e ∈ T]P[A | f /∈ T , e ∈ T] .
(4.10)

Now we also have
P[ f ∈ T | e ∈ T] ≤ P[ f ∈ T]

by Exercise 4.3. Because of (4.9), it follows that

P[A | e ∈ T] ≤ P[ f ∈ T]P[A | f , e ∈ T] + P[ f /∈ T]P[A | f /∈ T , e ∈ T] : (4.11)
we have replaced a convex combination in (4.10) by another in (4.11) that puts more weight
on the larger term. We also have

P[A | f , e ∈ T] ≤ P[A | f ∈ T] (4.12)
by the induction hypothesis applied to the event A / f on the network G/ f (see Exercise 4.5),
and

P[A | f /∈ T , e ∈ T] ≤ P[A | f /∈ T] (4.13)
by the induction hypothesis applied to the event A \ f on the network G\ f . By (4.12) and
(4.13), we have that the right-hand side of (4.11) is

≤ P[ f ∈ T]P[A | f ∈ T] + P[ f /∈ T]P[A | f /∈ T] = P[A ] . ◀

▷ Exercise 4.6.
(Negative Association) Let G be a finite network. Extend Theorem 4.6 to show that if A

and B are both increasing events and they depend on disjoint sets of edges, then they are
negatively correlated. Still more generally, show the following. Say that a random variable
X : 2𝖤(G) → � depends on a set F ⊆ 𝖤(G) if X is measurable with respect to the σ-field
consisting of events that depend on F. Say also that X is increasing if X(H) ≤ X(H ′)
whenever H ⊂ H ′. If X and Y are increasing random variables that depend on disjoint sets
of edges, then E[XY ] ≤ E[X]E[Y ]. This property of P is called negative association.
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4.3 The Square Lattice �2

Uniform spanning trees on the nearest-neighbor graph on the square lattice �2 are particu-
larly appealing. A portion of one is shown in Figure 4.7. This can be thought of as an infinite
maze. In Section 10.6, we will show that there is exactly one way to get from any square to
any other square without backtracking and exactly one way to get from any square to infinity
without backtracking. Thus, if escaping the maze means finding a path to infinity from a
given starting square, then there is exactly one way to do it without backtracking, and it is
also possible to get lost anywhere else. For now, though, we will consider only the “walls” of
the maze, that is, the actual spanning tree.

Figure 4.7. A portion of a uniformly chosen spanning tree on �2, drawn by David Wilson.

What is the distribution of the degree of a vertex with respect to a uniform spanning tree
in �2? It turns out that although the distribution is not so easy to calculate, the expected
degree is easy to calculate and is part of a quite general result. This uses the amenability
of �2. What’s that? If G is a graph and K ⊂ 𝖵, the edge boundary of K is the set ∂𝖤K of
(unoriented) edges that connect K to its complement. We say that G is edge amenable if
there are finite 𝖵n ⊂ 𝖵 with

lim
n→∞

|∂𝖤𝖵n |/|𝖵n | = 0 .
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▷ Exercise 4.7.
Let G be an edge-amenable infinite graph as witnessed by the sequence ⟨𝖵n⟩. Show that the
average degree of vertices in any spanning tree of G is 2. That is, if degT (x) denotes the
degree of x in a spanning tree T of G, then

lim
n→∞

|𝖵n |−1
∑
x∈𝖵n

degT (x) = 2 .

Every infinite recurrent graph can be shown to be edge-amenable by various results from
Chapter 6 that we’ll look at later, such as Theorems 6.5, 6.7, or 6.42. Deduce that for the
uniform spanning tree measure on a recurrent graph,

lim
n→∞

|𝖵n |−1
∑
x∈𝖵n

E
�
degT (x)

�
= 2 .

In particular, if G is also transitive, such as �2, meaning that for every pair of vertices x and
y, there is a bijection of 𝖵 with itself that preserves adjacency and takes x to y, then every
vertex has expected degree 2.

By symmetry, each edge of �2 has the same probability to be in a uniform spanning tree of
�2. Since the expected degree of a vertex is 2 by Exercise 4.7, it follows that

P[e ∈ T] = 1/2 (4.14)

for each e ∈ �2. By Kirchhoff’s effective resistance formula, this means that if unit current
flows from the tail to the head of e, then 1/2 of the current flows directly across e and that the
effective resistance between two adjacent vertices is 1/2. These electrical facts are classic
engineering puzzles.
To calculate the distribution of the degree, we will use the transfer current theorem. The

result is rather surprising, namely, the degree has the following distribution:

Degree Probability

1
8
π2

(
1 − 2

π

)
= .294+

2
4
π

(
2 − 9

π
+

12
π2

)
= .447−

3 2
(
1 − 2

π

) (
1 − 6

π
+

12
π2

)
= .222+

4
(

4
π
− 1

) (
1 − 2

π

)2

= .036+

(4.15)
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To find the transfer currents Y (e1, e2), we will first find voltages, then use i = dv. (We
assume unit conductances on the edges.) When i is a unit flow from x to y, we have
d∗i = 1{x} − 1{y}. Hence the voltages satisfy ∆v := d∗dv = 1{x} − 1{y}; here, ∆ is called the
graph Laplacian. We are interested in solving this equation when x := e−1 , y := e+

1 ; then we
compute v(e−2 ) − v(e+

2 ). Our method is to use Fourier analysis. We begin with a formal (that
is, heuristic) derivation of the solution, then prove that the formula we get is correct.
Let �2 := (�/�)2 be the two-dimensional torus. For (x1, x2) ∈ �2 and (α1, α2) ∈ �2,

write (x1, x2) · (α1, α2) := x1α1 + x2α2 ∈ �/�. For a function f on �2, define the function
f̂ on �2 by

f̂ (α) :=
∑
x∈�2

f (x)e−2πix ·α .

We are not worrying here about whether this converges in any sense, but certainly 1̂{x}(α) =
e−2πix ·α. Now a formal calculation shows that for a function f on �2, we have

∆̂ f (α) = φ(α) f̂ (α) ,
where

φ
�(α1, α2)� := 4 −

�
e2πiα1 + e−2πiα1 + e2πiα2 + e−2πiα2

�
= 4 − 2 (cos 2πα1 + cos 2πα2) .

Hence, to solve ∆ f = g, we may try to solve ∆̂ f = ĝ by using f̂ := ĝ/φ and then finding f .
In fact, a formal calculation shows that we may recover f from f̂ by the formula

f (x) =
∫
�2

f̂ (α)e2πix ·α dα ,

where the integration is with respect to Lebesgue measure. This is the approach we will
follow. Note that we need to be careful about the nonuniqueness of solutions to ∆ f = g, since
there are nonzero functions f with ∆ f = 0.

▷ Exercise 4.8.
Show that (1̂{x} − 1̂{y})/φ ∈ L1(�2) for all x, y ∈ �2.

▷ Exercise 4.9.
Show that if F ∈ L1(�2) and f (x) =

∫
�2 F(α)e2πix ·α dα, then

(∆ f )(x) =
∫
�2

F(α)e2πix ·αφ(α) dα .

Proposition 4.7. (Voltage on �2) The voltage at u when a unit current flows from x to y in
�2 and when v(y) = 0 is

v(u) = v′(u) − v′(y) ,
where

v′(z) :=
∫
�2

e−2πix ·α − e−2πiy ·α

φ(α) e2πiz ·α dα .
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Proof. By Exercises 4.8 and 4.9, we have

∆v′(z) =
∫
�2

�
e−2πix ·α − e−2πiy ·α� e2πiz ·α dα = 1{x}(z) − 1{y}(z) ;

that is, ∆v′ = 1{x} − 1{y}. Since v satisfies the same equation, we have ∆(v′ − v) = 0. In other
words, v′ − v is harmonic at every point in �2. Furthermore, v′ is bounded in absolute value
by the L1 norm of (1̂{x} − 1̂{y})/φ. Since v is also bounded (by v(x)), it follows that v′ − v
is bounded. Since the only bounded harmonic functions on �2 are the constants (by, say,
Exercise 2.43), this means that v′ − v is constant. Since v(y) = 0, we obtain v = v′ − v′(y), as
desired. ◀

We now need to find a good method to compute the integral v′. Set

H(u) := 4
∫
�2

1 − e2πiu ·α

φ(α) dα . (4.16)

Note that the integrand is integrable by Exercise 4.8 applied to x := (0, 0) and y := −u. The
integral H is useful because v′(u) = �

H(u − y) − H(u − x)�/4. (The factor of 4 is introduced
in H only to conform to the usage of other authors.) Putting x := e− and y := e+, we get

Y (e1, e2) = v(e−2 ) − v(e+
2 )

=
1
4
�
H(e−2 − e+

1 ) − H(e−2 − e−1 ) − H(e+
2 − e+

1 ) + H(e+
2 − e−1 )

�
. (4.17)

Thus, we concentrate on calculating H. Now H(0, 0) = 0, and a direct calculation as in
Exercise 4.9 shows that ∆H = −4 · 1{(0,0)}. Furthermore, the symmetries of φ show that H is
invariant under reflection in the axes and in the 45◦ line. Therefore, all the values of H can
be computed from those on the 45◦ line by computing values at gradually increasing distance
from the origin and from the 45◦ line. (For example, we first compute H(1, 0) = 1 from the
equations H(0, 0) = 0 and (∆H)(0, 0) = 4H(0, 0)−H(0, 1)−H(1, 0)−H(0,−1)−H(−1, 0) =
−4, then H(2, 1) from the value of H(1, 1) and the equation (∆H)(1, 1) = 4H(1, 1)−H(1, 0)−
H(0, 1) − H(1, 2) − H(2, 1) = 0, then H(2, 0) from (∆H)(1, 0) = 0, then H(3, 2), and so on.)
The reflection symmetries we observed for H imply that H(u) = H(−u), whence H is real.

Thus, we can write the diagonal values as

H(n, n) = 4
∫
�2

1 − cos 2πn(α1 + α2)
φ(α) dα

=
∫ 1

0

∫ 1

0

1 − cos 2πn(α1 + α2)
1 − cos (π(α1 + α2)) cos (π(α1 − α2)) dα1 dα2

for n ≥ 1. This new integrand has various symmetries shown in Figure 4.8. These symmetries
imply that if we change variables to θ1 := π(α1 + α2) and θ2 := π(α1 − α2), then

H(n, n) =
1
π2

∫ π

0

∫ π

0

1 − cos 2nθ1

1 − cos θ1 cos θ2
dθ1 dθ2 . (4.18)
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θ1
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Figure 4.8. The integrals over the regions labeled I
are all equal, as are those labeled II.

Only a little bit of calculus remains before we have our answer. Now for 0 < a < 1, we have∫ π

0

dθ
1 − a cos θ

=
2

√
1 − a2

tan−1
√

1 − a2 tan(θ/2)
1 − a

������
π

0

=
π

√
1 − a2

.

Therefore integration on θ2 in (4.18) gives

H(n, n) =
1
π

∫ π

0

1 − cos 2nθ1

sin θ1
dθ1 .

Note that (1 − cos 2nθ1)/sin θ1 = 2
∑n

k=1 sin(2k − 1)θ1, as can be seen by using complex
exponentials. Therefore

H(n, n) =
2
π

∫ π

0

n∑
k=1

sin(2k − 1)θ1 dθ1 =
4
π

n∑
k=1

1
2k − 1

. (4.19)

▷ Exercise 4.10.
Deduce the distribution of the degree of a vertex in the uniform spanning tree of �2, that is,
the table (4.15).

We may also make use of the preceding work, without the actual values being needed,
to prove the following remarkable fact. Edges of the uniform spanning tree in �2 along
diagonals are like fair coin flips! We have seen in (4.14) that each edge has 50 percent chance
to be in the tree. The independence we are now asserting is the following theorem.
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Theorem 4.8. (Independence on Diagonals) Let e be any edge of �2. For n ∈ �, let Xn

be the indicator that e + (n, n) lies in the spanning tree. Then Xn are i.i.d. Likewise for
e + (n,−n).
Proof. By symmetry, it suffices to prove the first part. We may also assume that e is the
edge from the origin to (1, 0). By the transfer current theorem, it suffices to show that
Y
�
e, e + (n, n)� = 0 for all n ̸= 0. The formula (4.17) shows that

4Y
�
e, e + (n, n)� = H(n + 1, n) − H(n, n) − H(n, n) + H(n − 1, n) .

Now the symmetries we have noted already of the function H(•, •) show that H(n, n + 1) =
H(n + 1, n) and H(n, n− 1) = H(n− 1, n). Since H(n, n) is the average of these four numbers
for n ̸= 0, it follows that H(n + 1, n)− H(n, n) = H(n, n)− H(n − 1, n). This proves the result.

◀

4.4 Notes
There is another important connection of spanning trees to Markov chains:

The Markov Chain Tree Theorem. The stationary distribution of a finite-state irreducible Markov
chain is proportional to the measure that assigns the state x the measure∑

root(T )=x
Ψ(T) .

It is for this reason that generating spanning trees at random is very closely tied to generating a state
of a Markov chain at random according to its stationary distribution. This latter topic is especially
interesting in computer science. See Propp and Wilson (1998) for more details. Some of the history of
the Markov chain tree theorem can be found in Anantharam and Tsoucas (1989).

To prove the Markov chain tree theorem, we associate to the original Markov chain a new Markov
chain on spanning trees. Given a spanning tree T and an edge e with e− = root(T), define two new
spanning trees:

forward procedure: This creates a new spanning tree denoted F(T , e). First, add e to T . This
creates a cycle. Delete the edge f ∈ T out of e+ that breaks the cycle. See Figure 4.9.

backward procedure: This creates a new spanning tree denoted B(T , e). Again, first add e to T .
This creates a cycle. Break it by removing the appropriate edge g ∈ T that leads into e−. See
Figure 4.9.

Note that in both procedures, it is possible that f = −e or g = −e. Also, note that

B
�
F(T , e), f

�
= F

�
B(T , e), g� = T ,

where f and g are as specified in the definitions of the forward and backward procedures.
Now define transition probabilities on the set of spanning trees by

p(T , F(T , e)) := p(e) = p
�
root(T), root(F(T , e))�. (4.20)

Thus p(T , T̃) > 0 ⇐⇒ ∃e T̃ = F(T , e) ⇐⇒ ∃g T = B(T̃ , g).
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Figure 4.9. The Markov chain on spanning trees.

▷ Exercise 4.11.
Prove that the Markov chain on trees given by (4.20) is irreducible.

▷ Exercise 4.12.
(a) Show that the weight Ψ( • ) is a stationary measure for the Markov chain on trees given by

(4.20).
(b) Prove the Markov chain tree theorem.

Another way to express the relationship between the original Markov chain and this associated one
on trees is as follows. Recall that one can create a stationary Markov chain ⟨Xn⟩∞−∞ indexed by � with
the original transition probabilities p(•, •) by, say, Kolmogorov’s existence theorem. Set

Ln(w) := max{m < n ; Xm = w} .

This is well defined a.s. by recurrence. Let Yn be the tree formed by the edges

�⟨w, XLn (w)+1⟩ ; w ∈ 𝖵 \ {Xn}	 .
Then Yn is rooted at Xn and ⟨Yn⟩ is a stationary Markov chain with the transition probabilities (4.20).

A method due to Aldous (1990) and Broder (1989) of generating weighted uniform spanning trees
comes from reversing these Markov chains; related ideas were in the air at that time, and both these
authors thank Persi Diaconis for discussions. Let ⟨Xn⟩∞−∞ be a stationary Markov chain on a finite state
space. Then so is the reversed process ⟨X−n⟩: the definition of the Markov property via independence
of the past and the future given the present shows this immediately. We can also find the transition
probabilities p̂ for the reversed chain: Let π be the stationary probability π(a) := P[X0 = a]. Then
clearly π is also the stationary probability for the reversed chain. Comparing the chance of seeing state
a followed by state b for the forward chain with the equal probability of seeing state b followed by state
a for the reversed chain, we see that

π(a)p(a, b) = π(b)p̂(b, a) ,
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whence

p̂(b, a) =
π(a)
π(b) p(a, b) ,

just as in Exercise 2.1.
If we reverse these chains ⟨Xn⟩ and ⟨Yn⟩, then we find that Y−n can be expressed in terms of X−n as

follows: Let
Hn(w) := min{m > n ; X−m = w}.

Then Y−n has edges
�⟨w, X−[Hn (w)−1]⟩ ; w ∈ 𝖵 \ {X−n}	.

▷ Exercise 4.13.
Prove that the transition probabilities of Y−n are

p̂
�
T , B(T , e)� = p(e) .

Since the stationary measure of ⟨Yn⟩ is still proportional to Ψ( • ), we get the following algorithm
for generating a random spanning tree with distribution proportional to Ψ( • ): Find the stationary
probability π of the chain giving rise to the weights Ψ( • ), run the reversed chain starting at a state
chosen according to π, and construct the tree via H0. That is, we draw an edge from u to w the first
time ≥ 1 that the reversed chain hits u, where w is the state preceding the visit to u.

In case the chain is reversible, this construction simplifies. From the discussion in Section 4.1, we
have the following:

Corollary 4.9. (Aldous/Broder Algorithm) Let ⟨Xn⟩∞0 be a random walk on a finite connected graph
G with X0 arbitrary (not necessarily random). Let H(u) := min{m > 0 ; Xm = u} and let T be the
unrooted tree with edges {(u, XH (u)−1) ; X0 ̸= u ∈ G}. Then the distribution of T is proportional to
Ξ( • ). In particular, simple random walk on a finite connected graph gives a uniform unrooted random
spanning tree.

Proof. We have seen that if X0 has the stationary distribution, then as a rooted spanning tree with edges
oriented toward the root, T has probability proportional to Ψ(T). We also know that as an unoriented
unrooted tree, the conditional probability of T is proportional to Ξ(T) given the root. Hence the same
holds when X0 is fixed, as desired. ◀

This method of generating uniform spanning trees can be and was used in place of Wilson’s method
for the purposes of this chapter. However, Wilson’s method is much better suited to the study of uniform
spanning forests, the topic of Chapter 10.

▷ Exercise 4.14.
Let G be a cycle and x ∈ 𝖵. Start simple random walk at x and stop when all edges but one have been
traversed at least once. Show that the edge that has not been traversed is equally likely to be any edge.

▷ Exercise 4.15.
Suppose that the graph G has a Hamiltonian path, ⟨xk ; 1 ≤ k ≤ n⟩, that is, a path that is a spanning
tree. Let qk be Pxk [τ+

xk
> τxk+1 , . . .,xn ] for simple random walk on G. Show that the number of spanning

trees of G equals
∏

k<n qk degG xk .
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The first use of Wilson’s method for infinite recurrent networks was by Benjamini, Lyons, Peres, and
Schramm (2001), hereinafter referred to as BLPS (2001). The transfer current theorem was shown for
the case of two edges by Brooks, Smith, Stone, and Tutte (1940). The proof here is due to BLPS (2001).
The interest of Brooks, Smith, Stone, and Tutte (1940) was elicited by their discovery of the connection
of electrical networks to square tilings: see Section 9.6.

We are grateful to David Wilson for permission to include Figure 4.7. It was created using the linear
algebraic techniques of Wilson (1997) for generating domino tilings; the needed matrix inversion was
accomplished using the formulas of Kenyon (1997). The resulting tiling gives dual spanning trees by
the bijection of Temperley (see Kenyon, Propp, and Wilson (2000)). One of the trees is Figure 4.7.

The function H(u) from (4.16) is equal to the potential kernel of simple random walk on �2, that is,
limn→∞

∑n
k=0

�
pk (0, 0) − pk (0, u)�; see Exercise 4.49 or Section 12 of Spitzer (1976).

Theorem 4.8 is due to R. Lyons and is published here for the first time. Another way to state this
result is that if independent fair coin flips are used to decide which of the edges {e + (n, n) ; n ∈ �}
will be present, for some fixed edge e, then there exists a percolation on the remaining edges of �2 that
will lead in the end to a percolation on all of �2 with the distribution of the uniform spanning tree. A
related surprising result of Lyons and Steif (2003) says that we can independently determine some of
the horizontal edges and then decide the remaining edges to get a uniform spanning tree. To be precise,
fix a horizontal edge, e. Suppose that ⟨U(e + x) ; x ∈ �2⟩ are i.i.d. uniform [0, 1] random variables.
Let K0 := {e + x ; U(e + x) ≤ e−4G/π } and K1 := {e + x ; U(e + x) ≥ 1 − e−4G/π }, where

G :=
∞∑
k=0

(−1)k
(2k + 1)2

is Catalan’s constant. (We have that e−4G/π = 0.3115+.) Then there exists a percolation ω on �2 such
that (ω ∪ K1) \ K0 has the distribution of the uniform spanning tree.

Additional information on loop-erased random walk and another proof of Wilson’s algorithm can be
found in Marchal (2000).

Enumeration of spanning trees in graphs is an old topic. There are many proofs of Cayley’s formula,
Corollary 4.5. The shortest proof is due to Joyal (1981) and goes as follows. Denote [n] := {1, . . . , n}.
First note that because every permutation can be represented as a product of disjoint directed cycles, it
follows that for any finite set S, the number of sets of cycles of elements of S (each element appearing
exactly once in some cycle) is equal to the number of linear arrangements of the elements of S. The
number of functions from [n] to [n] is clearly nn . To each such function f , we may associate its
functional digraph, which has a directed edge from i to f (i) for each i in [n]. Every weakly connected
component of the functional digraph can be represented by a cycle of rooted trees. So nn is also the
number of linear arrangements of rooted trees on [n]. We claim now that nn = n2tn , where tn is the
number of trees on [n].

It is clear that n2tn is the number of triples (x, y,T), where x, y ∈ [n] and T is a tree on [n]. Given
such a triple, we obtain a linear arrangement of rooted trees by removing all directed edges on the
unique path from x to y and taking the nodes on this path to be the roots of the trees that remain. This
correspondence is bijective, and thus tn = nn−2. ◀

The matrix-tree theorem of graph theory gives a way to calculate the number of spanning trees on
any graph. Namely, it says that the number of spanning trees of a graph G equals det∆G [x] for each
x ∈ 𝖵, where ∆G is the graph Laplacian defined in Exercise 2.62 and [x] indicates striking the row and
column indexed by x. More generally, the sum Ξ(G) of the weights Ξ(T) = ∏

e∈T c(e) over spanning
trees T in a network equals det∆G [x]. There is also a version for directed graphs. A proof that uses
techniques from this book is given in the following exercise.
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▷ Exercise 4.16.
Prove the matrix-tree theorem by using Kirchhoff’s effective resistance formula and Exercise 2.62. Hint:
Pick a spanning tree t and successively contract the edges to calculate Ξ(t)/Ξ(G).

▷ Exercise 4.17.
Show that the constant C in (2.26) equals

√
Ξ(G)/(2π)|𝖵|−1.

Asymptotics of the number of spanning trees are connected to mathematical physics. For example,
if one combines the entropy result for domino tilings proved by Montroll (1964) with the Temperley
(1974) bijection, then one gets that

lim
n→∞

1
n2 log

�
number of spanning trees of [1, n]2 in �2�

=
∫ 1

0

∫ 1

0
log(4 − 2 cos 2πx − 2 cos 2πy) dx dy

=
4G
π

= 1.166+ ,

where G is Catalan’s constant, as earlier (see Kasteleyn (1961) or Montroll (1964) for the evaluation of
the integral). This result first appeared explicitly in Burton and Pemantle (1993). Thus, e1.166+ = 3.21−
can be thought of as the average number of independent choices per vertex to make a spanning tree
of �2. See, for example, Burton and Pemantle (1993) and Shrock and Wu (2000) and the references
therein for this and several other such examples. Very general methods of calculating and comparing
asymptotics were given by Lyons (2005, 2010), where a key tool is the rate of convergence of random
walks on finite graphs to their stationary distribution.

▷ Exercise 4.18.
Consider simple random walk on �2. Let A :=

�(x, y) ∈ �2 ; y < 0 or (y = 0 and x < 0)	. Show that
P(0,0)

�
τ+
(0,0) > τA

�
= e4G/π/4, where G is Catalan’s constant.

Let T be the uniform spanning tree in �2. The expected number of the four �2-neighbors of 0 that lie
on the ray in T that starts at 0 is 5/4, as shown by Poghosyan, Priezzhev, and Ruelle (2011) and Kenyon
and Wilson (2015).

One may consider the uniform spanning tree on �2 embedded in �2. In fact, consider it on ϵ�2 in
�2 and let ϵ → 0. In appropriate senses, one can describe the limit and show that it has a conformal
invariance property. Partial results for this were first proved by Kenyon (2000b); for example, he
calculated the limiting distribution of the “meeting point” of the subtree determined by three vertices on
the boundary of a domain. The full result was proved by Lawler, Schramm, and Werner (2004a). The
stochastic Loewner evolution, SLE, introduced by Schramm (2000) initially for this very purpose, plays
the central role. For the uniform spanning tree, there are two ways SLE enters the analysis: One is the
scaling limit of loop-erased random walk, which is the path between two vertices and fundamental to
this chapter. The second is less obvious. If we draw a curve around the spanning tree in a bounded
region, as in Figure 4.10, we obtain a cycle in another graph. That cycle visits every vertex and is very
reminiscent of Peano’s space-filling curve. It is called the UST Peano curve, and it, too, has a scaling
limit described by SLE. Figure 4.11 shows the curve from a uniform spanning tree in a 99 × 99 square
grid, where the hue represents progress along the curve. SLE is also central to the study of scaling
limits of other planar processes, including percolation.

Lawler (1980) introduced loop-erased random walk originally as a model that was similar to
self-avoiding walk but easier to understand because of its Markov property. Many basic aspects
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Figure 4.10. A uniform spanning tree in a 9 × 9 grid on the left, with
its surrounding Peano-like curve in an 18 × 18 grid on the right.

Figure 4.11. The Peano-like curve surrounding a uniform spanning
tree on a 99 × 99 grid, with hue showing progress along the curve.
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of self-avoiding walk remain beyond proof, despite precise conjectures from physics. For example,
Nienhuis (1982) conjectured that for all two-dimensional lattices, the number of self-avoiding paths of
length n starting at the origin is asymptotic to Aµnnγ−1, where γ = 43/32, and that the average squared
distance between the origin and the other endpoint of such a path is asymptotic to Dn2𝜈 , where 𝜈 = 3/4;
the other constants, A, µ, and D, depend on the lattice. If the scaling limit of self-avoiding walk in
the plane exists and is conformally invariant, as is believed to be the case, then Lawler, Schramm, and
Werner (2004b) proved that it must be SLE8/3. This would in turn likely imply the preceding values of
γ and 𝜈. For lattices in dimensions 5 and higher, corresponding statements have been proved by Hara
and Slade (1990, 1992), with γ = 1 and 𝜈 = 1/2. See Slade (2011) for a survey of current knowledge of
self-avoiding walk.

It turns out that uniform spanning trees arise as a limiting case within a wide class of probability
measures on graphs. To say what this is, we first define Bernoulli percolation with parameter p ∈ [0, 1]
as the product measure Pp on subsets of edges where each edge is retained with probability p. A
more general two-parameter model of random subgraphs, known as the random cluster model, was
introduced by Fortuin and Kasteleyn (1972) and Fortuin (1972a, 1972b). The two parameters of
random cluster measures are p ∈ [0, 1] and q > 0. Given a finite connected graph G and ω ∈ 2𝖤,
write ∥ω∥ for the number of components of ω. The random cluster measure with parameters (p, q)
on G, denoted 𝖥𝖱𝖢(p, q) = 𝖥𝖱𝖢G (p, q), is the probability measure on 𝖤 proportional to q∥ω∥ Pp(ω),
that is, the Bernoulli(p) percolation measure Pp biased by q∥ω∥ (and renormalized). Thus, when q = 1,
this is merely Pp . The limit 𝖥𝖱𝖢(p, 0) of 𝖥𝖱𝖢(p, q) as q → 0 exists and is concentrated on connected
subgraphs of G. For example, 𝖥𝖱𝖢(1/2, 0) is the uniform random connected subgraph. The limit
limp→0 𝖥𝖱𝖢(p, 0) is the uniform spanning tree. The limit limp→0 𝖥𝖱𝖢(p, p) is the uniform forest.

On infinite graphs G, there are several ways to define random cluster measures. We restrict ourselves
to q ≥ 1, since the measures with q < 1 behave rather differently and are poorly understood. Indeed, it
is a major open problem to understand the case q < 1; for example, it is unknown whether they have
negative associations, as they do in the limiting case of uniform spanning trees. This is unknown even
for the special cases of the uniform random connected subgraph and the uniform forest. The advantage
of q ≥ 1 is that then the measures have positive associations (defined in Section 5.8). Let ⟨Gn⟩ be an
exhaustion of an infinite connected graph G by connected finite subgraphs. Define 𝖥𝖱𝖢G (p, q) to be
the weak∗ limit of 𝖥𝖱𝖢Gn (p, q); this is called the free random cluster measure on G. Define the wired
random cluster measure 𝖶𝖱𝖢G (p, q) to be the weak∗ limit of 𝖥𝖱𝖢G∗n (p, q). These limits always exist
(see, for example, Aizenman, Chayes, Chayes, and Newman (1988)). Furthermore, they have positive
associations, and so the free random cluster measure is stochastically dominated by the wired random
cluster measure (Aizenman, Chayes, Chayes, and Newman, 1988). When q is an integer, the random
cluster measure can be used to construct the Potts model; when q = 2, the Potts model is called the Ising
model. See Grimmett (2006) for more details on random cluster measures, especially on �d . In the
plane, scaling limits of Ising measures are known to exist and to have conformal invariance properties:
see Smirnov (2010).

The transfer current theorem shows that weighted uniform spanning tree measures have their
marginals given by simple determinants. This property leads to what are called determinantal
probability measures; see Lyons (2003) for their properties. In particular, the negative association
property holds for all determinantal probability measures.

A property that is even stronger than negative association, and which again holds for all determinantal
probability measures, is called strongly Rayleigh. Namely, if P is a probability measure on subsets of
a finite set E, then define the multivariate complex polynomial f (z) :=

∑
F⊆E P(F)∏e∈F ze , where

z := ⟨ze ; e ∈ E⟩. Borcea, Brändén, and Liggett (2009) call P strongly Rayleigh if f (z) ̸= 0 when all
ze have strictly positive imaginary parts. Borcea, Brändén, and Liggett (2009) show that the strongly
Rayleigh property is preserved under symmetrization and under symmetric exclusion processes. The
strongly Rayleigh property is also preserved under conditioning on events such as |F ∩ A| = k, where
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A ⊆ E and k are fixed, as long as we restrict attention to A: see Lemma 4.16 of Borcea, Brändén,
and Liggett (2009). Thus, if we consider the uniform spanning tree T on a graph G and condition on
|T ∩ A| = k for some fixed A ⊂ 𝖤(G), then T ∩ A has negative associations.

Another type of negative correlation is as follows. It was conjectured to hold by BLPS (2001) and is
still open. We say that A ,B ⊂ 2𝖤 occur disjointly for F ⊂ 𝖤 if there are disjoint sets F1, F2 ⊂ 𝖤 such
that F′ ∈ A for every F′ with F′ ∩ F1 = F ∩ F1 and F′ ∈ B for every F′ with F′ ∩ F2 = F ∩ F2. For
example, A may be the event that x and y are joined by a path of length at most 5, while B may be the
event that z and w are joined by a path of length at most 6. If there are disjoint paths of lengths at most
5 and 6 joining the first and second pair of vertices, respectively, then A and B occur disjointly.

Conjecture 4.10. Let A ,B ⊂ 2𝖤 be increasing. Then the probability that A and B occur disjointly
for the weighted uniform spanning tree T is at most P[T ∈ A ]P[T ∈ B].

The BK inequality of van den Berg and Kesten (1985) says that this inequality holds when T is a
random subset of 𝖤 chosen according to any product measure on 2𝖤; it was extended by Reimer (2000) to
allow A and B to be any events, confirming a conjecture of van den Berg and Kesten (1985). However,
we cannot allow arbitrary events for uniform spanning trees: consider the case where A := {e ∈ T} and
B := { f /∈ T}, where e ̸= f .

There is a basic connection of uniform spanning trees to the sandpile model on finite graphs; see
Holroyd, Levine, Mészáros, Peres, Propp, and Wilson (2008) for a survey. See also Kassel and Wilson
(2016) for more, such as a calculation that the probability that (1, 0) lies on the path from (0, 0) to∞
equals 5/16.

4.5 Collected In-Text Exercises

4.1. Suppose that Z is a set of states in a Markov chain and that x0 is a state not in Z . Assume
that when the Markov chain is started in x0, then it visits Z with probability 1. Define the random
path Y0,Y1, . . . by Y0 := x0 and then recursively by letting Yn+1 have the distribution of one step of the
Markov chain starting from Yn given that the chain will visit Z before visiting any of Y0,Y1, . . . ,Yn

again. However, if Yn ∈ Z , then the path is stopped and Yn+1 is not defined. Show that ⟨Yn⟩ has the same
distribution as loop-erasing a sample of the Markov chain started from x0 and stopped when it reaches
Z . In the case of a random walk, the conditioned path ⟨Yn⟩ is called the Laplacian random walk from
x0 to Z .

4.2. Consider the ladder graph Ln of height n shown in Figure 1.7. Choose a spanning tree T(n) of
Ln uniformly. Use Kirchhoff’s effective resistance formula to determine the chance P

�
rung 1 is in T(n)�

and its limiting behavior as n → ∞.

4.3. By using Kirchhoff’s effective resistance formula, show that if e ̸= f , then the events e ∈ T and
f ∈ T are negatively correlated.

4.4. Write out the rest of the proof that for any event B depending on only finitely many edges,�
P[TG′ ∈ B] − P[TG ∈ B]� is arbitrarily small for sufficiently large G′.

4.5. Suppose that A is an increasing event on a graph G and e ∈ 𝖤. Note that 𝖤(G/e) = 𝖤(G\e) =
𝖤(G) \ {e}. Define A /e :=

�
F ⊆ 𝖤(G/e) ; F ∪ {e} ∈ A

	
and A \e :=

�
F ⊆ 𝖤(G\e) ; F ∈ A

	
. Show

that these are increasing events on G/e and G\e, respectively.

4.6. (Negative Association) Let G be a finite network. Extend Theorem 4.6 to show that if A

and B are both increasing events and they depend on disjoint sets of edges, then they are negatively
correlated. Still more generally, show the following. Say that a random variable X : 2𝖤(G) → � depends
on a set F ⊆ 𝖤(G) if X is measurable with respect to the σ-field consisting of events that depend on F.
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Say also that X is increasing if X(H) ≤ X(H′) whenever H ⊂ H′. If X and Y are increasing random
variables that depend on disjoint sets of edges, then E[XY ] ≤ E[X]E[Y ]. This property of P is called
negative association.

4.7. Let G be an edge-amenable infinite graph as witnessed by the sequence ⟨𝖵n⟩. Show that the
average degree of vertices in any spanning tree of G is 2. That is, if degT (x) denotes the degree of x in
a spanning tree T of G, then

lim
n→∞

|𝖵n |−1
∑
x∈𝖵n

degT (x) = 2 .

Every infinite recurrent graph can be shown to be edge-amenable by various results from Chapter 6
that we’ll look at later, such as Theorems 6.5, 6.7, or 6.42. Deduce that for the uniform spanning tree
measure on a recurrent graph,

lim
n→∞

|𝖵n |−1
∑
x∈𝖵n

E
�
degT (x)

�
= 2 .

In particular, if G is also transitive, such as �2, meaning that for every pair of vertices x and y, there is
a bijection of 𝖵 with itself that preserves adjacency and takes x to y, then every vertex has expected
degree 2.

4.8. Show that (1̂{x} − 1̂{y})/φ ∈ L1(�2) for all x, y ∈ �2.

4.9. Show that if F ∈ L1(�2) and f (x) =
∫
�2 F(α)e2π ix ·α dα, then

(∆ f )(x) =
∫
�2

F(α)e2π ix ·αφ(α) dα .

4.10. Deduce the distribution of the degree of a vertex in the uniform spanning tree of �2, that is,
the table (4.15).

4.11. Prove that the Markov chain on trees given by (4.20) is irreducible.

4.12. (a) Show that the weight Ψ( • ) is a stationary measure for the Markov chain on trees given by
(4.20).

(b) Prove the Markov chain tree theorem.

4.13. Let ⟨Yn⟩ be a stationary Markov chain with transition probabilities (4.20) and consider its
reversal. Prove that the transition probabilities of Y−n are

p̂
�
T , B(T , e)� = p(e) .

4.14. Let G be a cycle and x ∈ 𝖵. Start simple random walk at x and stop when all edges but one
have been traversed at least once. Show that the edge that has not been traversed is equally likely to be
any edge.

4.15. Suppose that the graph G has a Hamiltonian path, ⟨xk ; 1 ≤ k ≤ n⟩, that is, a path that is a
spanning tree. Let qk be Pxk [τ+

xk
> τxk+1 , . . .,xn ] for simple random walk on G. Show that the number

of spanning trees of G equals
∏

k<n qk degG xk .

4.16. Prove the matrix-tree theorem by using Kirchhoff’s effective resistance formula and Exer-
cise 2.62. Hint: Pick a spanning tree t and successively contract the edges to calculate Ξ(t)/Ξ(G).

4.17. Show that the constant C in (2.26) equals
√

Ξ(G)/(2π)|𝖵|−1.

4.18. Consider simple random walk on �2. Let A :=
�(x, y) ∈ �2 ; y < 0 or (y = 0 and x < 0)	.

Show that P(0,0)
�
τ+
(0,0) > τA

�
= e4G/π/4, where G is Catalan’s constant.
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4.6 Additional Exercises

In all the exercises, assume the networks are connected.

4.19. Show that not every probability distribution on spanning trees of an undirected graph is
proportional to a weight distribution, where the weight of a tree equals the product of the weights of its
edges.

4.20. Given a probability measure P on spanning trees of a finite graph G, there is the vector of
marginal edge probabilities, µ(e) := P[e ∈ T] for e ∈ 𝖤. The set of such vectors for all possible P
forms a polytope, called the spanning tree polytope. Show that this polytope consists precisely of those
vectors µ that satisfy

(i) µ(e) ≥ 0 for all e ∈ 𝖤(G),
(ii)

∑
e∈𝖤(G) µ(e) = |𝖵(G)| − 1, and

(iii)
∑

e∈𝖤(G↾K ) µ(e) ≤ |K | − 1 for all ∅ ̸= K ⫋ 𝖵(G).
Show in addition that if G has no cut-vertices (vertices whose removal disconnects G), then the relative
interior of this polytope (that is, the interior as a subset of the affine span of the polytope) equals the set
of such µ that satisfy strict inequality in every instance of (i) and (iii) with |K | > 1 in (iii).

4.21. Given a probability measure P on spanning trees of a finite graph G, there is the vector
of marginal edge probabilities, µP(e) := P[e ∈ T] for e ∈ 𝖤. The entropy of P is defined to be
H(P) := −

∑
T P(T) log P(T), where 0 log 0 := 0.

(a) Show that if P is a weighted uniform spanning tree measure and Q is any probability measure
on spanning trees with the same edge marginals µP = µQ , then H(P) > H(Q) unless Q = P.

(b) Suppose that G has no cut-vertices. Show that if µ lies in the relative interior of the spanning
tree polytope (see Exercise 4.20), then there is a unique weighted spanning tree measure whose edge
marginal equals µ.

4.22. Let G be a finite or recurrent network and a ̸= z be two of its vertices. Let i be the unit current
flow from a to z. Show that for every edge e, the probability that loop-erased random walk from a to z
crosses e minus the probability that it crosses −e equals i(e).

4.23. Let G be a finite or recurrent network and a ̸= z be two of its vertices. Let i be the unit current
flow from a to z. Let T be the uniform spanning tree in G and iT be the associated unit current flow
from a to z. Show that i = E[iT ].

4.24. Show that the following procedure also gives a.s. a random spanning tree rooted at r with
distribution proportional to Ψ( • ). Let G0 := {r}. Given Gi , if Gi spans G, stop. Otherwise, choose
any vertex x ̸= r that does not have an edge in Gi that leads out of x and add a (directed) edge from x
picked according to the transition probability p(x, •) independently of the past. Add this edge to Gi and
remove any cycle it creates to make Gi+1.

4.25. How efficient is Wilson’s method? What takes time is to generate a random successor state of
a given state. Call this a step of the algorithm. Show that the expected number of steps to generate a
random spanning tree rooted at r for a finite-state irreducible Markov chain is

∑
x a state

π(x)�Ex [τr ] + Er [τx ]� ,
where π is the stationary probability distribution for the Markov chain. Show that another expression
for this expected time is the trace of (I − Pr )−1, where I is the identity matrix and Pr is the transition
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matrix with the row and column corresponding to r deleted. In the case of a random walk on a network
(𝖵, 𝖤), this is ∑

e∈𝖤1/2

c(e)�R(e− ↔ r) + R(e+ ↔ r)� ,
where edge e has conductance c(e) and endpoints e− and e+, and R denotes effective resistance.

4.26. Let ⟨Xn⟩ be a transient Markov chain. Then its loop erasure ⟨Yn⟩ is well defined a.s. Show that
Px0 [Y1 = x1] = p(x0, x1)Px1 [τx0 = ∞]/Px0 [τ+

x0
= ∞].

4.27. Suppose that x and y are two vertices in the complete graph Kn . Show that the probability that
the distance between x and y is k in a uniform spanning tree of Kn is

k + 1
nk

k−1∏
i=1

(n − i − 1) .

4.28. Prove Cayley’s formula another way as follows: Let tn−1 be a spanning tree of the complete
graph on n vertices and t1 ⊂ t2 ⊂ · · · ⊂ tn−2 ⊂ tn−1 be subtrees such that ti has i edges. Then

P[T = tn−1] = P[t1 ⊆ T] ·
n−2∏
i=1

P[ti+1 ⊆ T | ti ⊆ T] .

Show that P[t1 ⊆ T] = 2/n and

P[ti+1 ⊆ T | ti ⊆ T] =
i + 2

n(i + 1) .

4.29. (Foster’s Theorem) Exercise 2.65 showed (in slightly different notation) that if G has n
vertices, then

∑
e∈𝖤1/2

c(e)R(e− ↔ e+) = n − 1. Give another proof using spanning trees.

4.30. Kirchhoff (1847) generalized his effective resistance formula in two ways. One of them is in
Exercise 4.23. To express the other, let G be a finite network and a ̸= z ∈ G be two of its vertices.
Denote the sum of Ξ(T) over all spanning trees of G by Ξ(G). Show that the effective conductance
between a and z is given by

C (a ↔ z) =
Ξ(G)

Ξ(G/{a, z}) , (4.21)

where G/{a, z} indicates the network G with a and z identified.

4.31. Let (G, c) be a finite network. Denote the sum of Ξ(T) over all spanning trees of G by Ξ(G).
Show that P[e ∈ T] = d log Ξ(G)/dc(e).

4.32. Jacobi’s determinant identity says that for a square invertible matrix M with a block decompo-
sition

M =
[ A B

C D

]
and corresponding block decomposition

M−1 =
[ X Y

Z W

]
,
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where A and X are square and have the same size, we have

det W =
det A
det M

.

Proof: equate determinants in [ A B
C D

] [ I Y
0 W

]
=
[ A 0

C I

]
.

(a) Use this and the matrix-tree theorem to give another proof of Kirchhoff’s effective resistance
formula (other than the part about random walks).

(b) Let G be a finite network and H = G↾K be a connected subnetwork induced by ∅ ̸= K ⫋ 𝖵(G).
Let va(x, y) be the voltage at x when a unit current flows from y to a (so that the voltage at a is 0) if
y ̸= a and be 0 otherwise. Fix o ∈ K . Let T be a weighted uniform spanning tree of G and t be a fixed
spanning tree of H . Use the matrix-tree theorem and Exercise 2.62 to show that

P
�
T↾H = t

�
= Ξ(t) det

�
vo(x, y)�x ,y∈K\{o} .

(c) Show that det
�
vo(x, y)�x ,y∈K\{o} takes the same value no matter which vertex o ∈ K is chosen.

4.33. Suppose that G is a graph with two sets of positive conductances, c and c′, and no cut-vertices.
Show that if, for every edge e, we have c(e)R(e− ↔ e+; c) = c′(e)R(e− ↔ e+; c′), then c/c′ is constant.

4.34. Let (G, c) be a finite network. Recall from Exercise 2.67 that (x, y) 7→ R(x ↔ y) is a metric
on 𝖵.

(a) Show that 𝖵 with this effective-resistance metric can be embedded isometrically into some ℓ1

space.
(b) Show that if f :𝖵→ � satisfies

∑
x∈𝖵 f (x) = 1, then

∑
x ,y∈𝖵 f (x) f (y)R(x ↔ y) ≤ 0.

4.35. Let (G, c) be a finite network with o ∈ 𝖵(G). Let Z be the canonical Gaussian field on G,
defined via independent normal random variables X(e) with variance r(e) for e ∈ 𝖤1/2. Let T be the
uniform spanning tree on G and ZT be the associated canonical Gaussian field, where the conductances
c from G are used on T and the same X(e) are used for e ∈ 𝖤(T). Show that Z = E[ZT | X]. Since ZT

is easily constructed via summing X along the edges of T starting from o, this identity shows how to
construct Z in a probabilistic way.

4.36. Let G be a finite network. Let a, z ∈ 𝖵(G) and e ∈ 𝖤(G). Let TG denote a uniform spanning
tree of G.

(a) Show that if a and z are in the same component of G\e, then

R(a ↔ z; G) = P[e ∈ TG ]R(a ↔ z; G/e) + P[e /∈ TG ]R(a ↔ z; G\e) ,
and otherwise

R(a ↔ z; G) = R(a ↔ z; G/e) + r(e) .
(b) Show that if a and z are not the endpoints of e, then

C (a ↔ z; G) = P[e ∈ TG/{a,z}]C (a ↔ z; G/e) + P[e /∈ TG/{a,z}]C (a ↔ z; G\e) ,
and otherwise

C (a ↔ z; G) = C (a ↔ z; G\e) + c(e) .
4.37. Consider the doubly infinite ladder graph, the Cayley graph G of � × �2 with respect to its

natural generators. Show that the uniform spanning tree T on G has the following description: The
“rungs”

�(n, 0), (n, 1)� in T form a stationary renewal process with inter-rung distance being k with
probability 2k(2 − √3)k (k ≥ 1). Given two successive rungs in T , all the other edges between the
rungs of the form

�(n, 0), (n + 1, 0)� and �(n, 1), (n + 1, 1)� lie in T , with one exception chosen uniformly
and independently for different pairs of successive rungs.
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4.38. Let G be a finite network. Let e and f be two edges that are not parallel and such that G\ f
is still connected. Let îe be the unit current in G/ f between the endpoints of e and let ĩe be the unit
current in G\ f between the endpoints of e. Let

iec (g) :=
{

îe(g) if g ̸= f
0 if g = f ,

and
ied (g) :=

{
ĩe(g) if g ̸= f
0 if g = f .

(a) From (4.3), we have iec = P⊥
i f

ie . Show that

ie = iec +
Y (e, f )
Y ( f , f ) i f .

(b) Show that χe − ied = P⊥χ f −i f (χe − ie) and that

ie = ied +
Y (e, f )

1 − Y ( f , f ) (χ
f − i f ) .

(c) Show that
ie = Y ( f , f )iec +

�
1 − Y ( f , f )�ied + Y (e, f )χ f .

4.39. Let G be a finite network and i be a current on G. If the conductance on the edge f is changed
to c′( f ), then let i′ be the current with the same sources and sinks as i, that is, so that d∗i′ = d∗i. Show
that

i = i′ +
�
c( f ) − c′( f )�i( f )

c( f )�1 − Y ( f , f )� + c′( f )Y ( f , f ) (χ
f − i f ) ,

where i f is the unit current with the original conductances from f − to f + as defined after (2.11), and
deduce that

di
dc( f ) = i( f )r( f )(χ f − i f ) .

4.40. Let G be a finite transitive graph of degree 3 and n vertices such that the automorphism group
of G induces all six permutations on the three neighbors of any vertex. For example, G could be the
1-skeleton of the tetrahedron, the cube, or the dodecahedron. Show that the probability that the degree
of a vertex in the uniform spanning tree on G is 1, 2, or 3 is, respectively, (1− 1/n)3/4, 1− (1− 1/n)3/2,
and (1 − 1/n)3/4.

4.41. Given any numbers xi (i = 1, . . . , k), let X be the diagonal matrix with entries x1, . . . , xk .
Show that det(Yk + X) = E

�∏
i (1{ei ∈T } + xi )�, where Yk is as in (4.6). Deduce that

P[e1, . . . , em /∈ T , em+1, . . . , ek ∈ T] = det Zm ,

where

Zm(i, j) :=


1 − Y (ei , e j ) if j = i ≤ m,
−Y (ei , e j ) if j ̸= i and i ≤ m,
Y (ei , e j ) if i > m.

4.42. Give another proof of Cayley’s formula (Corollary 4.5) by using the transfer current theorem.
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4.43. Consider the weighted uniform spanning tree measure on an infinite recurrent network G. Let
X and Y be increasing random variables with finite second moments that depend on disjoint sets of
edges. Show that E[XY ] ≤ E[X]E[Y ].

4.44. Let (G, c) be a finite network. Let e a fixed edge in G and A be an increasing event that ignores
e. Suppose that a new network is formed from (G, c) by increasing the conductance on e while leaving
unchanged all other conductances. Show that in the new network, the chance of A under the weighted
spanning tree measure is no larger than it was in the original network.

4.45. Let E be a finite set and k < |E |. Let P be a weighted uniform measure on subsets of E of
size k, that is, for some set of weights we > 0 (e ∈ E), we have P(B) = ∏

e∈B we for B ⊆ E of size k.
Show that if X and Y are increasing random variables that depend on disjoint subsets of E, as defined in
Exercise 4.6, then E[XY ] ≤ E[X]E[Y ].

4.46. Given two probability measures µ1 and µ2 on �, we say that µ1 stochastically dominates µ2
if, for all r ∈ �, we have µ1(r,∞) ≥ µ2(r,∞).

(a) Show that µ1 stochastic dominates µ2 iff there exist random variables X1 ∼ µ1 and X2 ∼ µ2 on
a common probability space such that X1 ≥ X2 a.s.

(b) Let E be a finite set and k < |E |. Let X be a uniform random subset of E of size k. Show that
if A is an increasing event that depends only on F ⊂ E, then the conditional distribution of |X ∩ F |
given A stochastically dominates the unconditional distribution of |X ∩ F |.

4.47. Let G be the hexagonal lattice. Show that the probability that the degree of a vertex in the
uniform spanning tree on G is 1, 2, or 3 is, respectively, 1/4, 1/2, and 1/4.

4.48. Let T be the uniform spanning tree in �2. Let x and y be neighbors in �2, and let L be the
length of the path in T that joins x to y. Since L < ∞ a.s., we have limn→∞ P[L ≥ n] = 0. How quickly
do these probabilities decay? This is hard to answer; here we give a soft bound that holds for every
automorphism-invariant random spanning tree.

(a) Show that P[L ≥ n] ≥ 1/(8n).
(b) Show that if the law of T is only assumed to be invariant under translations of �2, then

E[L] = ∞.

4.49. Let H be as in (4.16) and u ∈ �2. Consider simple random walk on �2. Show that
H(u) = limn→∞

∑n
k=0

�
pk (0, 0) − pk (0, u)�.

4.50. Find the effective resistance between the origin and the vertex (2, 1) in �2.

4.51. Show that for n ≥ 1, the probability that simple random walk on �2 starting at (0, 0) visits
(n, n) before returning to (0, 0) equals

π

8
*,

n∑
k=1

1
2k − 1

+-
−1

.

4.52. Show that in �2, we have that as x → ∞,

R(0↔ x) ∼ 1
π

log ∥x∥ .
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4.53. Let A ⊂ �2 be finite. Write µz (x) := Pz

�
XτA = x

�
for the harmonic measure on A with respect

to z, as in Exercise 2.50.
(a) Show that limz→∞ µz exists. We call the limit, µ, harmonic measure from infinity. Hint: It

suffices to show that µz and µw are close when z and w are on the boundary of a large square with
corners (±N ,±N). Consider z = (−N , N) and w = (N , N). Couple the walks from z and w by having
them do the same vertical steps but opposite horizontal steps until they meet, and then keep them
together. With high probability, they meet before either one visits A.

(b) Write RA for the (A × A)-matrix whose (x, y)-entry is R(x ↔ y). Show that µ = c1T R−1
A ,

where c is a constant so that the right-hand side adds to 1.
(c) Show that if A =

�(−1,−1), (0, 0), (1, 1)	, then µ = (3/8, 1/4, 3/8).
(d) Show that if A =

�(0, 1), (0, 0), (1, 0)	, then

µ =
(

π

4(π − 1) ,
π − 2

2(π − 1) ,
π

4(π − 1)
)
.

(e) Show that if A =
�(−1, 0), (0, 0), (1, 0)	, then µ = (π/8, 1 − π/4, π/8).

4.54. For a function f ∈ L1(�2) and integers x, y, define

f̂ (x, y) :=
∫
�2

f (α)e−2π i(xα1+yα2) dα .

Let Y be the transfer current matrix for the square lattice �2. Let eh
x ,y :=

�(x, y), (x + 1, y)� and
ev
x ,y :=

�(x, y), (x, y + 1)�. Show that Y (eh
0,0, e

h
x ,y ) = f̂ (x, y) and Y (eh

0,0, e
v
x ,y ) = ĝ(x, y), where

f (α1, α2) :=
sin2 πα1

sin2 πα1 + sin2 πα2

and
g(α1, α2) :=

(1 − e2π iα1 )(1 − e−2π iα2 )
4(sin2 πα1 + sin2 πα2) .

4.55. Consider the ladder graph on �×�2 that is the doubly infinite limit of the ladder graphs shown
in Figure 1.7. Calculate its transfer current matrix.
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5 Branching Processes,
Second Moments, and Percolation

Consider groundwater percolating down through soil and rock. How can we model the
effects of the irregularities of the medium through which the water percolates? One common
approach is to use a model in which the medium is random. More specifically, the pathways
by which the water can travel are randomly chosen out of some regular set of possible
pathways. For example, one may treat the ground as a half-space in which possible pathways
are the rectangular lattice lines. Thus, we consider the nearest-neighbor graph on the vertices
� × � × �−, and each edge is independently chosen to be open (allowing water to flow) or
closed. Commonly, the marginal probability that an edge is open, p, is the same for all edges.
In this case, the only parameter in the model is p, and one studies how p affects large-scale
behavior of possible water flow.
In fact, this model of percolation is used in many other contexts to have a simple model that

nevertheless captures some important aspects of an irregular situation. In particular, it has an
interesting phase transition. Some information about percolation on �d and other transitive
graphs is given in this chapter and in Section 6.9, but a thorough study of percolation on
transitive graphs, especially on nonamenable graphs, is deferred to Chapters 7 and 8.

In this chapter, we consider percolation mostly on trees rather than on lattices. This turns
out to be interesting and also useful for other seemingly unrelated probabilistic processes
and questions. For example, we’ll find another fundamental interpretation of the branching
number of a tree.
We begin by studying a beautiful way of growing trees at random known as Galton-Watson

branching processes. We then move to general trees and develop some basic analytic methods
of probability known as the first- and second-moment methods. These will fit remarkably
well with our study of random walks on the connected components of percolation in �d.
After that interlude on �d, we return to Galton-Watson processes to understand better how
they behave and what flows are possible on random networks based on Galton-Watson trees.
Deeper results on Galton-Watson branching processes are proved in Chapter 12. The last
chapter of this book, Chapter 17, is devoted primarily to random walks on Galton-Watson
trees.
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5.1 Galton-Watson Branching Processes

Percolation on a tree breaks up the tree into random subtrees. Historically, the first random
trees to be considered were a model of genealogical (family) trees. Since such trees will be an
important source of examples and an important tool in later work, we too will consider their
basic theory before turning to percolation. They are also beautiful processes in themselves.

Galton-Watson branching processes are most often defined as Markov chains ⟨Zn ; n ≥ 0⟩
on the nonnegative integers, where Zn represents the size of the nth generation of a family,
but we will be interested as well in the underlying family trees. Given numbers pk ∈ [0, 1]
with

∑
k≥0 pk = 1, the process is defined as follows. We start with one particle, Z0 ≡ 1,

unless specified otherwise. It has k children with probability pk . Then each of these children
(should there be any) also has children with the same progeny (or “offspring”) distribution
⟨pk ; k ≥ 0⟩, independently of the others and of its parent. This continues forever or until
there are no more children. To be formal, let L be a random variable with P[L = k] = pk ,
and let ⟨L(n)

i ; n, i ≥ 1⟩ be independent copies of L. The generation sizes of the branching
process are then defined inductively by

Zn+1 :=
Zn∑
i=1

L(n+1)
i . (5.1)

The probability generating function (p.g.f.) of L is very useful and is denoted

f (s) := E[sL] =
∑
k≥0

pk sk .

This is defined for 0 ≤ s ≤ 1, and possibly for other s as well. Note that we interpret 00 = 1,
so that f (0) = P[L = 0] = p0. We call the event [∃n Zn = 0] extinction; this, of course, is
the same as the event [Zn → 0]. We will often omit the superscripts on L when not needed.
The family (or genealogical) tree associated to a branching process is obtained simply by
having one vertex for each particle ever produced and joining two by an edge if one is the
parent of the other. See Figure 5.1 for an example. We will give a formal definition later of
trees and the associated probability measures on them.
The first basic result on Galton-Watson processes is that on the event of nonextinction, the

population size explodes, except in the trivial case that p1 = 1:

Proposition 5.1. On the event of nonextinction, Zn → ∞ a.s. provided p1 ̸= 1.

Proof. We want to see that 0 is the only nontransient state of the Markov chain ⟨Zn⟩. If
p0 = 0, this is clear, whereas if p0 > 0, then from any state k ≥ 1, eventually returning to k
requires not immediately becoming extinct, whence it has probability ≤ 1 − pk

0 < 1. ◀

What is q := P[extinction]? To find out, we use the following very handy property of the
p.g.f.:

Proposition 5.2. E[sZn ] = f ◦ · · · ◦ f︸ ︷︷ ︸
n times

(s) =: f (n)(s) for 0 ≤ s ≤ 1.
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Figure 5.1. Generations 0 to 9 of a typical Galton-Watson tree for f (s) = (s + s2)/2.

Proof. We have

E[sZn ] = E
[
E
[
s
∑Zn−1

i=1 Li
���� Zn−1

] ]
= E

E
[Zn−1∏
i=1

sLi

����� Zn−1

]
= E

[Zn−1∏
i=1

E
�
sLi

�]
= E

[
E[sL]Zn−1

]
= E

[
f (s)Zn−1

]
,

where the random variables Li := L(n)
i are independent of each other and of Zn−1 and have

the same distribution as L. Iterate this equation n times. ◀
Note that within this proof is the identity

E[sZn | Z0, Z1, . . . , Zn−1] = f (s)Zn−1 . (5.2)
Corollary 5.3. (Extinction Probability) The extinction probability is q = limn f (n)(0).
Proof. Since extinction is the increasing union of the events [Zn = 0], it follows that
q = limn P[Zn = 0] = limn f (n)(0). ◀
Looking at a graph of the increasing convex function f (Figure 5.2), we discover the

most-used result in the field and value of q:

Proposition 5.4. (Extinction Criterion) Provided p1 ̸= 1, we have
(i) q = 1 ⇔ f ′(1) ≤ 1;

(ii) q is the smallest root of f (s) = s in [0, 1] – the only other possible root being 1. ◀

When we differentiate f at 1, we mean the left-hand derivative. Note that

f ′(1) = E[L] =: m =
∑

kpk , (5.3)
the mean number of offspring. We call m simply the mean of the branching process.
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0

1

1 0

1

1
Figure 5.2. Typical graphs of f when m > 1 and m ≤ 1.

▷ Exercise 5.1.
Justify the differentiation in (5.3). Show too that lims↑1 f ′(s) = m.

Because of Proposition 5.4, a branching process is called subcritical if m < 1, critical if
m = 1, and supercritical if m > 1.
How quickly does Zn → ∞ on the event of nonextinction? The most naive guess would

be that it grows approximately like mn. This is essentially correct. Our first result is that a
martingale appears when we divide Zn by mn:

Proposition 5.5. The sequence ⟨Zn/mn⟩ is a martingale when 0 < m < ∞.

In particular, E[Zn] = mn since E[Z0] = E[1] = 1.

Proof. We have

E
[ Zn+1

mn+1
���� Zn

]
= E

[
1

mn+1

Zn∑
i=1

Li

����� Zn

]
=

1
mn+1

Zn∑
i=1

E[Li | Zn] =
1

mn+1

Zn∑
i=1

m =
Zn

mn
.

Actually, we have not verified that we are computing conditional expectations of integrable
random variables. One way to avoid calculating (in a similar manner) the unconditional
expectation first is to note that all random variables are nonnegative.* Another way is to use
the fact that Zn takes only countably many values, so that we may work with expectations
conditioned on events, rather than on a random variable. ◀
Since this martingale ⟨Zn/mn⟩ is nonnegative, it has a finite limit a.s., denoted W . Thus,

when W > 0, the generation sizes Zn grow as expected, that is, like mn up to a random
factor. Otherwise, they grow more slowly. Our attention is thus focused on the following two
questions.

* See the end of Section 12.1 for a review of conditional expectation for nonnegative random variables that may
not be integrable.
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Question 1. When is W > 0?

Question 2. When W = 0 and the process does not become extinct, what is the rate at which
Zn → ∞?

To answer these questions, we first note a general zero-one property of Galton-Watson
branching processes. Call a property of trees inherited if every finite tree has this property
and if whenever a tree has this property, so do all the descendant trees of the children of the
root.

Proposition 5.6. Every inherited property has conditional probability either 0 or 1 given
nonextinction.

Proof. Let A be the set of trees possessing a given inherited property. For a tree T with k
children of the root, let T (1), . . . ,T (k) be the descendant trees of these children. Then

P(A) = E
[
P[T ∈ A | Z1]

]
≤ E

[
P[T (1) ∈ A, . . . ,T (Z1) ∈ A | Z1]

]
by definition of inherited. Since T (1), . . . ,T (Z1) are i.i.d. given Z1, the last quantity in the
display is equal to E

[
P(A)Z1

]
= f

�
P(A)�. Thus, P(A) ≤ f

�
P(A)�. On the other hand,

P(A) ≥ q, since every finite tree is in A. It follows upon inspection of a graph of f that
P(A) ∈ {q, 1}, from which the desired conclusion follows. ◀

Corollary 5.7. Suppose that 0 < m < ∞. Either W = 0 a.s. or W > 0 a.s. on nonextinction.
In other words, P[W = 0] ∈ {q, 1}.

Proof. The property that W = 0 is clearly inherited, whence this is an immediate consequence
of Proposition 5.6. ◀

In answer to the preceding two questions, we have the following two theorems.

The Kesten-Stigum Theorem (1966). The following are equivalent when 1 < m < ∞:
(i) P[W = 0] = q ;

(ii) E[W ] = 1 ;
(iii) E[L log+ L] < ∞ .

This will be shown in Section 12.2. The sufficiency of E[L2] < ∞ for (i) and (ii) is much
easier and follows from Exercise 5.27. Since (iii) requires barely more than the existence
of a mean, generation sizes “typically” do grow as expected. When (iii) fails, however, the
means mn overestimate the rate of growth. Yet there is still an essentially deterministic rate
of growth, as shown by Seneta (1968) and Heyde (1970), which is only slightly less than mn:

The Seneta-Heyde Theorem. If 1 < m < ∞, then there exist constants cn such that
(i) lim Zn/cn exists a.s. in [0,∞) ;

(ii) P[lim Zn/cn = 0] = q ;
(iii) cn+1/cn → m .

Proof. We will find another martingale to do our work. Choose s0 ∈ (q, 1) and set sn+1 :=
f −1(sn) for n ≥ 0. Then sn ↑ 1. By (5.2), we have that ⟨sZn

n ⟩ is a martingale. Being positive
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and bounded, it converges a.s. and in L1 to a limit Y ∈ [0, 1] such that E[Y ] = E[sZ0
0 ] = s0.

Now we reformulate these exponentials. Set cn := −1/log sn. Then sZn
n = e−Zn/cn , so that

lim Zn/cn exists a.s. in [0,∞]. By l’Hôpital’s rule and Exercise 5.1,

lim
s↑1

− log f (s)
− log s

= lim
s↑1

f ′(s)s
f (s) = m .

Considering this limit along the sequence ⟨sn⟩, we get (iii). It follows from (iii) that
the property that lim Zn/cn = 0 is inherited, whence by Proposition 5.6 and the fact that
E[Y ] = s0 < 1, we deduce (ii). Likewise, the property that lim Zn/cn < ∞ is inherited and
has probability 1 since E[Y ] > q. This implies (i). ◀

The proof of the Seneta-Heyde theorem gives a prescription for calculating the constants
cn but does not immediately provide estimates for them. Another approach gives a different
prescription that leads sometimes to an explicit estimate: see Asmussen and Hering (1983),
pp. 45–49.
We will often want to consider random trees produced by a Galton-Watson branching

process. Up to now, we have avoided that by giving theorems just about the random variables
Zn (except for Proposition 5.6, but that was used so far only for studying the limiting behavior
of Zn). One approach to formalize tree-valued random variables is as follows. A rooted
labeled tree T is a nonempty collection of finite sequences of positive integers such that if
⟨i1, i2, . . . , in⟩ ∈ T , then

(i) for every k ∈ [0, n], also the initial segment ⟨i1, i2, . . . , ik⟩ ∈ T , where the case k = 0
means the empty sequence, and

(ii) for every j ∈ [1, in], also the sequence ⟨i1, i2, . . . , in−1, j⟩ ∈ T .
The root of the tree is the empty sequence, ∅. Thus, ⟨i1, . . . , in⟩ is the inth child of the
in−1th child of . . . of the i1th child of the root. If x = ⟨i1, i2, . . . , in⟩ ∈ T , then we define
T x :=

�⟨ j1, j2, . . . , jk⟩ ; ⟨i1, i2, . . . , in, j1, j2, . . . , jk⟩ ∈ T
	
to be the descendant tree of the

vertex x in T . The height of a tree is the supremum of the lengths of the sequences
in the tree. If T is a tree and n ∈ �, write the truncation of T to its first n levels as
T↾n :=

�⟨i1, i2, . . . , ik⟩ ∈ T ; k ≤ n
	
. This is a tree of height at most n. A tree is called locally

finite if its truncation to every finite level is finite. Let T be the space of rooted labeled locally
finite trees. We define a metric on T by setting d(T ,T ′) :=

�
1 + sup{n ; T↾n = T ′↾n}�−1.

▷ Exercise 5.2.
Verify that d is a metric and that (T , d) is complete and separable.

▷ Exercise 5.3.
Define the measure GW formally on the space T of Exercise 5.2; your measure should be
the law of a random tree produced by a Galton-Watson process with arbitrary given offspring
distribution.

We can now use this formalism to give meaning to statements such as that in the following
exercise.
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▷ Exercise 5.4.
Show that for any Galton-Watson process with mean m > 1, the family tree T has growth rate
gr T = m a.s. given nonextinction. (Don’t use the Kesten-Stigum theorem to show this, as we
have not yet proved that theorem.)

5.2 The First-Moment Method

Let G be a countable, possibly unconnected, graph. The most common percolation
on G is Bernoulli bond percolation with constant survival parameter p, or Bernoulli(p)
percolation for short; here, for fixed p ∈ [0, 1], each edge is kept with probability p and
removed otherwise, independently of the other edges. Often, the edges kept are called open,
whereas the edges removed are called closed. Denote the random subgraph of G that remains
by ω. The connected components of ω are called clusters. Given a vertex x of G, we are
often interested in the cluster of x in ω, written K(x), and we’d especially like to know
whether the diameter of K(x) is infinite with positive probability. The first-moment method
explained in this section gives a simple upper bound on this probability. In fact, this method is
so simple that it works in complete generality: Suppose that ω is any random subgraph of G.
The only measurability needed is that for each vertex x and each edge e, the sets {ω ; x ∈ ω}
and {ω ; e ∈ ω} are measurable. We will call such a random subgraph a general percolation
on G. We will say that a set Π of edges of G separates x from infinity if the removal of
Π leaves x in a component of finite diameter. Denote by [x ↔ e] the event that e is in the
cluster of x and by [x ↔ ∞] the event that x is in a cluster of infinite diameter.

▷ Exercise 5.5.
Show that for a general percolation, the events [x ↔ e] and [x ↔ ∞] are indeed measurable.

Proposition 5.8. Given a general percolation on G,

P[x ↔ ∞] ≤ inf
{∑

e∈Π

P[x ↔ e] ; Π separates x from infinity
}
. (5.4)

Proof. For any Π separating x from infinity, we have

[x ↔ ∞] ⊆
∪
e∈Π

[x ↔ e]

by definition. Therefore P[x ↔ ∞] ≤∑
e∈Π P[x ↔ e]. ◀

The method used in the proof of Proposition 5.8 is also called the “union bound.” The
reason for the name “first-moment method” is that another way to get the same bound is to
write

1[x↔∞] ≤
∑
e∈Π

1[x↔e]
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and then
P[x ↔ ∞] = E

[
1[x↔∞]

]
≤
∑
e∈Π

E
[
1[x↔e]

]
=
∑
e∈Π

P[x ↔ e] .

That is, we are using the first moment of a random variable, namely, the sum of certain
indicator random variables. Of course, the first-moment method is extremely popular and
surprisingly powerful.
Returning to Bernoulli percolation with constant survival parameter p, denote the law of ω

by Pp . By Kolmogorov’s zero-one law,

Pp[ω has a cluster of infinite diameter] ∈ {0, 1} .

It is intuitively clear that this probability is increasing in p. For a rigorous proof of this,
we couple all the percolation processes at once as follows. Let U(e) be i.i.d. uniform [0, 1]
random variables indexed by the edges of G. If ωp is the graph containing all the vertices of
G and exactly those edges e with U(e) < p, then the law of ωp is precisely Pp . This coupling
is referred to as the standard coupling of Bernoulli percolation. But now when p ≤ q, the
event that ωp has a cluster of infinite diameter is contained in the event that ωq has a cluster
of infinite diameter. Hence the probability of the first event is at most the probability of the
second. This leads us to define the critical probability

pc(G) := sup
�
p ; Pp[∃ infinite-diameter cluster] = 0

	
.

If G is connected and x is any given vertex of G, then

pc(G) = sup
�
p ; Pp[x ↔ ∞] = 0

	
. (5.5)

▷ Exercise 5.6.
Prove this.

Again, the standard coupling provides a rigorous proof that Pp[x ↔ ∞] is increasing in p.
Generally, pc(G) is extremely difficult to calculate. Clearly pc(�) = 1. After long efforts, it

was shown that pc(�2) = 1/2 (Kesten, 1980). There is not even a conjecture for the value
of pc(�d) for any d ≥ 3. Now Proposition 5.8 provides a lower bound for pc provided we
can estimate P[o ↔ e]. If G is a tree T , such an estimate is easy to find, since we actually
know the exact value: P[o ↔ e] = p|e|+1. Hence, the definition of branching number gives
immediately that

pc(T) ≥ 1/br T . (5.6)
In fact, we have equality here (Theorem 5.15), but this requires the second-moment method.
Nevertheless, there are some cases among nonlattice graphs where it is easy to determine pc
exactly, even without the first-moment method. One example is given in the next exercise:

▷ Exercise 5.7.
Show that for p ≥ pc(G), we have pc(ω) = pc(G)/p for Pp-a.e. ω. Physicists often refer to p
as the “density” of edges in ω, and this helps the intuition.
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For another example, if T is an n-ary tree, then the cluster of the root under percolation is
a Galton-Watson tree with progeny distribution Bin(n, p). Thus, this cluster is infinite with
positive probability iff np > 1, whence pc(T) = 1/n. This reasoning may be extended to all
Galton-Watson trees (in which case, pc(T) is a random variable):

Proposition 5.9. (Lyons, 1990) Let T be the family tree of a Galton-Watson process with
mean m > 1. Then pc(T) = 1/m a.s. given nonextinction.

Proof. Let T be a given tree and write K for the cluster of the root of T after percolation on
T with survival parameter p. When T has the law of a Galton-Watson tree with mean m, we
claim that K has the law of another Galton-Watson tree having mean mp: if Yi represent i.i.d.
Bin(1, p) random variables that are also independent of L, then

E
[ L∑
i=1

Yi

]
= E

E
[ L∑
i=1

Yi
����� L

] = E
[ L∑
i=1

E[Yi]
]

= E
[ L∑
i=1

p
]

= pm .

Hence K is finite a.s. iff mp ≤ 1. Since

E
[
P
� |K | < ∞ | T

�]
= P

� |K | < ∞� , (5.7)

this means that for almost every Galton-Watson tree* T , the cluster of its root is finite a.s. if
p ≤ 1/m. On the other hand, for fixed p, the property

�
T ; Pp

� |K | < ∞� = 1
	
is inherited,

and so has probability q or 1. If it has probability 1, then (5.7) shows that mp ≤ 1. That is, if
mp > 1, this property has probability q, so that the cluster of the root of T will be infinite
with positive probability a.s. on the event of nonextinction. Considering a sequence pn ↓ 1/m,
we see that this holds a.s. on the event of nonextinction for all p > 1/m at once, not just for a
fixed p. We conclude that pc(T) = 1/m a.s. on nonextinction. ◀

We may easily deduce the branching number of Galton-Watson trees, as shown by Lyons
(1990):

Corollary 5.10. (Branching Number of Galton-Watson Trees) If T is a Galton-Watson
tree with mean m > 1, then br T = m a.s. given nonextinction.

Proof. By Proposition 5.9 and (5.6), we have br T ≥ m a.s. given nonextinction. On the other
hand, br T ≤ gr T = m a.s. given nonextinction by Exercise 5.4. ◀

This corollary was shown in the language of Hausdorff dimension (which will be explained
in Chapter 15) by Hawkes (1981) under the assumption that E[L(log L)2] < ∞.

* This typical abuse of language means “for almost every tree with respect to Galton-Watson measure.”
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5.3 The Weighted Second-Moment Method
We obtained a simple upper bound on P[o↔ ∞] for a general percolation on a graph G by

the first-moment method. A lower bound can be obtained by the second-moment method,
which is a powerful method of wide applicability. Fix o ∈ G and let Π be a minimal set of
edges that separates o from∞. The second-moment method consists in calculating the second
moment of the number of edges in Π that are connected to o; this is then compared to the
first moment. However, we will see that it can be much better to use a weighted count, rather
than a pure count, of the number of connected edges. We will use µ ∈ P(Π) to make such
weights, where P(Π) is the set of probability measures on Π. We will assume for simplicity
that P[e ∈ ω] > 0 for each e ∈ 𝖤.

If, as before, we write K(o) for the cluster of o in the percolation graph ω, and if we set

X(µ) :=
∑
e∈Π

µ(e)1[e∈K(o)]
/

P
�
e ∈ K(o)� , (5.8)

then
E
�
X(µ)� = 1 .

Write o↔ Π for the event that o↔ e for some e ∈ Π. This event is implied by the event that
X(µ) > 0. We are looking for a lower bound on the probability of o↔ ∞. Since

P[o↔ ∞] = inf
{
P
�
o↔ Π

�
; Π separates o from∞

}
, (5.9)

we seek a lower bound on P[X(µ) > 0]. This will be a consequence of an upper bound on
the second moment of X(µ) as follows. (A slightly more general inequality due to Paley and
Zygmund (1932) is given in Section 5.5.)
Proposition 5.11. Given a general percolation on G,

P
�
o↔ Π

�
≥ 1

/
E
�
X(µ)2�

for every µ ∈ P(Π).
Proof. Given µ ∈ P(Π), the Cauchy-Schwarz inequality yields

1 = E
�
X(µ)�2 = E

�
X(µ)1[X(µ)>0]

�2 ≤ E[X(µ)2]E
�
12
[X(µ)>0]

�
= E

�
X(µ)2�P

�
X(µ) > 0

�
≤ E

�
X(µ)2�P

�
o↔ Π

�
,

because X(µ) > 0 implies o↔ Π. Therefore, P
�
o↔ Π

�
≥ 1

/
E
�
X(µ)2�. ◀

Clearly we want to choose the weight function µ ∈ P(Π) that optimizes this lower bound.
Now

E
�
X(µ)2� =

∑
e1,e2∈Π

µ(e1)µ(e2) P
�
e1, e2 ∈ K(o)�

P
�
e1 ∈ K(o)�P

�
e2 ∈ K(o)� . (5.10)

We denote this quantity by E (µ) and call it the energy of µ.
Why is this called an “energy”? In general, like the energy of a flow in Chapter 2, energy

is a quadratic form, usually positive definite. In electrostatics, if µ is a charge distribution
confined to a conducting region Ω in space, then µ will minimize the energy∫

Ω

∫
Ω

dµ(x) dµ(y)
|x − y |2 .

One could also write (5.10) as a double integral to put it in a form closer to this. We too are
interested in minimizing the energy. Thus, from Proposition 5.11, we obtain the following:
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Proposition 5.12. Given a general percolation on G,

P[o↔ ∞] ≥ inf
{

1
infµ∈P(Π) E (µ) ; Π separates o from∞

}
.

Proof. We have shown that P
�
o↔ Π

�
≥ 1/E (µ) for every µ ∈ P(Π). Hence, the same holds

when we take the sup of the right-hand side over µ. Then the result follows from (5.9). ◀
Of course, for Proposition 5.12 to be useful, one has to find a way to estimate such energies.

As for the first-moment method, the case of trees is most conducive to such analysis.
Consider first the case of independent percolation, that is, with [e ∈ ω] mutually indepen-

dent events for all edges e. If µ ∈ P(Π), write µ(x) for µ(e(x)). Then we have

E (µ) =
∑

e(x),e(y)∈Π

µ(x)µ(y) P[o↔ x, o↔ y]
P[o↔ x]P[o↔ y] =

∑
e(x),e(y)∈Π

µ(x)µ(y)
P[o↔ x ∧ y] , (5.11)

where x ∧ y denotes the farthest vertex from o that is a common ancestor of both x and y (we
say that z is an ancestor of w if z lies on the shortest path between o and w, so that z = w
is not excluded). This looks suspiciously similar to the result of the following calculation:
Consider a network of conductances on a finite tree T and some flow θ from o to the leaves,
which we’ll write as ∂LT , of T . (We do not include o in ∂LT , even if o happens to be a leaf.)
Write θ(x) for θ(e(x)).
Lemma 5.13. Let θ be a flow on a finite tree T from o to ∂LT . Then

E (θ) =
∑

x,y∈∂LT

θ(x)θ(y)R(o↔ x ∧ y) .

Proof. We use the fact that
∑

{x∈∂LT ; e≤x} θ(x) = θ(e) for any edge e (see Exercise 3.3). Thus,
we have∑

x,y∈∂LT

θ(x)θ(y)R(o↔ x ∧ y) =
∑

x,y∈∂LT

θ(x)θ(y)
∑

e≤x∧y
r(e)

=
∑
e∈T

r(e)
∑

x,y∈∂LT
x,y≥e

θ(x)θ(y) =
∑
e∈T

r(e)θ(e)2 = E (θ) . ◀

We now want to relate these two calculations and thereby show that percolation on trees is
related to electrical networks. Write Π := {x ; e(x) ∈ Π}. Let Π be a minimal set of edges
that separates o from ∞. If we happen to have P[o ↔ x] = C (o ↔ x) and if θ is the flow
induced by µ from o to Π, that is,

θ(e) :=
∑

e≤x∈Π

µ(x) ,

then we see from (5.11) and Lemma 5.13 that E (µ) = E (θ), and we can hope to profit from
our understanding of electrical networks and random walks. However, if x = o, then the
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desired equation cannot hold, since P[o↔ o] = 1 and C (o↔ o) = ∞. But suppose we have,
instead, that

1/P[o↔ x] = 1 + R(o↔ x) (5.12)
for all vertices x. Then we find that

E (µ) = 1 + E (θ) ,
which is hardly worse. This suggests that given a percolation problem, we choose conduc-
tances so that (5.12) holds in order to use our knowledge of electrical networks. Let us say
that conductances are adapted to a percolation, and vice versa, if (5.12) holds.
Let the survival probability of e(x) be px . To solve (5.12) explicitly for the conductances

in terms of the survival parameters, write ↼x for the parent of x. Note that the right-hand side
of (5.12) is a resistance of a series, whence

r(e(x)) =
�
1 + R(o↔ x)� − �1 + R(o↔ ↼x)� = 1/P[o↔ x] − 1/P[o↔ ↼x]

= (1 − px)/P[o↔ x] ,
or, in other words,

c(e(x)) =
P[o↔ x]

1 − px
=

1
1 − px

∏
o<u≤x

pu . (5.13)

In particular, for a given p ∈ (0, 1), we have that px ≡ p iff c(e(x)) = (1 − p)−1p|x |; these
conductances correspond to the random walk 𝖱𝖶1/p defined in Section 3.2.

▷ Exercise 5.8.
Show that, conversely, the survival parameters adapted to given edge resistances are

px =
1 +

∑
o<u<x r(e(u))

1 +
∑

o<u≤x r(e(u)) .

For example, simple random walk (c ≡ 1) is adapted to px = |x |/�|x | + 1
�
.

These notions lead us to the following conclusion:

Theorem 5.14. (Lyons, 1992) For an independent percolation and adapted conductances
on the same tree, we have

C (o↔ ∞)
1 + C (o↔ ∞) ≤ P[o↔ ∞] .

Proof. We first estimate the infimum of energies in Proposition 5.12: Given a minimal set Π
of edges that separates o from∞, let µ ∈ P(Π) be the measure in P(Π) that has minimum
energy and let θ be the flow induced by µ. We have

E (µ) = 1 + E (θ) = 1 + R(o↔ Π)
by Thomson’s principle. Therefore,

P[o↔ ∞] ≥ inf
Π

1
/�

1 + R(o↔ Π)� = 1
/�

1 + R(o↔ ∞)� ,
as desired. ◀
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An immediate corollary of this combined with (5.6) and Theorems 2.3 and 3.5 is:

Theorem 5.15. (Lyons, 1990) For every locally finite infinite tree T ,

pc(T) =
1

br T
.

This reinforces the idea of br T as an average number of branches per vertex.

Question 5.16. This result shows that the first-moment method correctly identifies the critical
value for Bernoulli percolation on trees. Does it in general? In other words, if the right-hand
side of (5.4) is strictly positive for Bernoulli(p) percolation on a connected graph G, then
must it be the case that p ≥ pc(G)? This is known to hold on �d and on “tree-like” graphs;
see Lyons (1989). However, Kahn (2003) gave a counterexample and suggested the following
modification of the question: Write A(x, e,Π) for the event that there is an open path from x
to e that is disjoint from Π \ {e}. If

inf
{∑

e∈Π

Pp

�
A(x, e,Π)� ; Π separates x from infinity

}
> 0 ,

then is p ≥ pc(G)?
It turns out that the inequality in Theorem 5.14 can be reversed up to a factor of 2. We

show this by a stopping-time method in Section 5.6.

5.4 Quasi-independent Percolation

We have now achieved a fairly good understanding of independent percolation on trees. In
the next section, we apply the second-moment method to Bernoulli percolation in �d. Here,
however, we remain with trees, but we weaken the assumption of independence.
We begin with an interesting example that this will allow us to analyze. Suppose that we

label the edges e of a tree T by independent random variables Z(e) that take the values ±1
with probability 1/2 each. Fix an integer N > 0. Define S(x) :=

∑
e≤x Z(e). Consider the

percolation
ωN :=

�
e ; S(e−) ∈ [0, N], S(e+) ∈ [0, N]	 . (5.14)

Obviously the component of the root in ω1 is the same as the component of the root in
Bernoulli(1/2) percolation on T . In particular, the root belongs to an infinite cluster with
positive probability for br T > 2 but not for br T < 2. The next case, ω2, is almost as simple:

P
�
e(x) ∈ ω2

�
e(↼x) ∈ ω2

�
=

{ 1/2 if |x | is odd
1 if |x | is even,

so by Exercise 3.25, the root belongs to an infinite cluster with positive probability for
br T >

√
2 but not for br T <

√
2. However, the succeeding cases ωN for N ≥ 3 are more

complicated, as there is dependency in the percolation that was not there before. Luckily, the
dependency is not very large; we will show that it is an example of the following kind of
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percolation, from which we will deduce that the critical branching number for infinite clusters
in ωN is 1

/
cos π

N + 2 .
We call a percolation quasi-independent* if ∃M < ∞ ∀x, y with P[o↔ x ∧ y] > 0,

P[o↔ x, o↔ y | o↔ x ∧ y] ≤ M P[o↔ x | o↔ x ∧ y]P[o↔ y | o↔ x ∧ y] , (5.15)

or, what is the same, if P[o↔ x]P[o↔ y] > 0, then

P[o↔ x, o↔ y]
P[o↔ x]P[o↔ y] ≤

M
P[o↔ x ∧ y] .

Example 5.17. Sometimes this condition holds for easy reasons: if

inf
x ̸=o

P[o↔ x | o↔ ↼x] > 0

and

P[o↔ x, o↔ y | o↔ x ∧ y] = P[o↔ x | o↔ ↼x]P[o↔ ↼x, o↔ y | o↔ ↼x ∧ y]

whenever ↼x ̸= x ∧ y, then the percolation is quasi-independent.

▷ Exercise 5.9.
Verify the assertion of Example 5.17.

Example 5.18. Nowwe verify that the percolationωN of (5.14) is quasi-independent. Indeed,
fix N and write qk(n) for the probability that simple random walk on � stays in the interval
[0, N] for n steps when it starts at k. There is clearly a constant M such that for all n ≥ 0 and
all k, k ′ ∈ [0, N], we have qk(n) ≤ Mqk′(n). We claim that this M works in (5.15). To see
this, fix x and y and put r := |x ∧ y |, m := |x | − r, and n := |y | − r. Also, write pk for the
probability that simple random walk at time r is at location k given that it stays in [0, N] for
r steps when it starts at 0. We have

P[o↔ x, o↔ y | o↔ x ∧ y] =
N∑
k=0

qk(m)qk(n)pk ≤ M min
k

qk(n) ·
N∑
k=0

qk(m)pk

≤ M
N∑
k=0

qk(n)pk
N∑
k=0

qk(m)pk
= M P[o↔ x | o↔ x ∧ y]P[o↔ y | o↔ x ∧ y] .

This shows that our percolation is indeed quasi-independent.

The virtue of a quasi-independent percolation is that it obeys essentially the same lower
bound of Theorem 5.14 as Bernoulli percolation:

* This was called “quasi-Bernoulli” in Lyons (1989, 1992).
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Theorem 5.19. (Lyons, 1989) For a quasi-independent percolation with constant M and
adapted conductances, we have

1
M

C (o↔ ∞)
1 + C (o↔ ∞) ≤ P[o↔ ∞] .

Proof. For µ ∈ P(Π), write

E ′(µ) :=
∑

e(x),e(y)∈Π

µ(x)µ(y)
P[o↔ x ∧ y] .

Then the definition of quasi-independent gives E (µ) ≤ ME ′(µ), where E (µ) is still defined
as in (5.10). Also, if θ is the flow induced by µ, then E ′(µ) = 1 + E (θ). Hence

E
�
X(µ)2� = E (µ) ≤ ME ′(µ) = M

�
1 + E (θ)� ,

and the rest of the proof of Theorem 5.14 can be followed to the desired conclusion. ◀

Example 5.20. Let’s apply this to Example 5.18. If we consider simple random walk on
[0, N] killed on exiting the interval, the corresponding substochastic transition matrix P is
symmetric and so real diagonalizable. Let 𝜆k be its eigenvalues and vk be the corresponding
eigenvectors with ∥vk ∥ = 1. Thus,

Pn(i, j) =
∑
k

𝜆nkvk(i)vk( j) .

By the Perron-Frobenius theorem, |𝜆k | ≤ ρ, where ρ is the largest positive eigenvalue and
the corresponding eigenvector has positive entries. Since this Markov chain has period 2,
it follows that Pn(i, j) ∼ 2vk(i)vk( j)ρn when n and i − j have the same parity; otherwise
Pn(i, j) = 0. Now in our case, the top eigenvalue equals cos π

N + 2 (for example, see Spitzer

(1976), Chapter 21, Proposition 1), whence P[o ↔ x] ∼ a|x |
(
cos π

N + 2

) |x |
as |x | → ∞

for some constants am > 0, where am depends only on the parity of m. This means
that for the conductances c(e) adapted to this percolation, there are constants a′1 and a′2

such that a′1

(
cos π

N + 2

) |e|
≤ c(e) ≤ a′2

(
cos π

N + 2

) |e|
. Thus, Theorem 5.19 yields that

P[o ↔ ∞] > 0 if 𝖱𝖶𝜆 is transient on T for 𝜆 := 1
/

cos π

N + 2 , which holds, in particular, if

br T > 1
/

cos π

N + 2 . This result is due to Benjamini and Peres (1994b).

▷ Exercise 5.10.
Show that if br T < 1

/
cos π

N + 2 , then the root belongs to an infinite cluster in ωN with
probability zero.



146 Chap. 5: Branching Processes, Second Moments, and Percolation

5.5 Transience of Percolation Clusters in �d

If T is a tree with pc(T) < 1, then for pc(T) < p ≤ 1, consider Bernoulli(p) percolation
on T and its open subgraph ωp. By Exercise 5.7, we have pc(ωp) < 1 a.s., whence by (5.6),
some component of ωp has branching number larger than 1. By Theorem 3.5 in turn, this
means that some component of ωp is transient for simple random walk (among other random
walks). In this section, we look at this same property (transience of percolation clusters for
simple random walk), but for percolation on graphs that are not trees, such as �d . Of course,
we can hope for transience of a percolation cluster in �d only when d ≥ 3 by Pólya’s theorem
and Rayleigh’s monotonicity principle. The technique we use is quite similar to the methods
of the previous sections on the second-moment method, and it also uses random paths and
their connection to flows, as discussed in Section 3.1. It will use a slight improvement of
Proposition 5.11, which was really the special case of the following where t = 0:

The Paley-Zygmund Inequality (1932). If X is a random variable with mean 1 and t < 1,
then

P[X > t] ≥ (1 − t)2
E[X2] .

Proof. Let A be the event that X > t. The Cauchy-Schwarz inequality gives

E[X2]P(A) = E[X2]E[12
A] ≥ E[X1A]2 =

�
1 − E[X1Ac]�2 ≥ (1 − t)2 . ◀

Whereas before we considered probability measures on cutsets, nowwe consider probability
measures on paths. These latter probability measures induce the former probability measures
by looking at the first intersection of a path with a cutset. But random paths also induce
flows, as we saw in Section 3.1, and in order to show transience, we want to find a flow on the
percolation cluster that has finite energy.
We’ll start with finite paths, which we think of as sets of edges. Finite paths will arise from

infinite paths by considering the initial segments of the paths from a starting point to a given
finite distance. If µ is a probability measure on paths ξ from a to z and P is Bernoulli(p)
percolation on the graph, then we combine µ and P as follows: if ω is the set of open edges
for a percolation, then assign the positive measure Yµ(ω) to the open paths from a to z by
letting the measure of ξ be µ(ξ)/P[ξ open] when ξ ⊆ ω and 0 otherwise. The measure
Yµ(ω) induces a flow θµ(ω) from a to z by letting the amount of flow along an edge e be
the measure that e ∈ ξ minus the measure that −e ∈ ξ. Because Yµ(ω) is not necessarily a
probability measure, θµ(ω) is not necessarily a unit flow. Instead, the strength of θµ(ω) is
Xµ(ω) :=

∑
ξ⊆ω µ(ξ)/P[ξ open]. Thus, E[Xµ] = 1 and

E[X2
µ] =

∑
ξ,ξ ′

µ(ξ)µ(ξ ′) P[ξ ∪ ξ ′ open]
P[ξ open]P[ξ ′ open] =

∑
ξ,ξ ′

µ(ξ)µ(ξ ′)p−|ξ∩ξ ′ | . (5.16)

This is pleasingly analogous to (5.10). On the other hand,

E
�
θµ(ω)� ≤∑

e

(∑
ξ ∋e

µ(ξ)1[ξ⊆ω]/P[ξ open]
)2

,
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whence

E
�
E (θµ)� ≤∑

e

∑
ξ,ξ ′∋e

µ(ξ)µ(ξ ′) P[ξ ∪ ξ ′ open]
P[ξ open]P[ξ ′ open]

=
∑
ξ,ξ ′

|ξ ∩ ξ ′|µ(ξ)µ(ξ ′)p−|ξ∩ξ ′ |

=
∑
n≥1

np−n · (µ × µ)� |ξ ∩ ξ ′| = n
�
. (5.17)

Here, the intersection ξ ∩ ξ ′ is counted without regard to orientation of edges. Thus, our
attention is focused particularly on the µ-probability that two independent paths have n edges
in common.
We say that a probability measure µ on infinite paths that start at o has exponential

intersection tails with parameter 𝜁 , or EIT(𝜁) for short, if there is some constant C such that
for all n,

(µ × µ)� |ξ ∩ ξ ′| = n
�
≤ C𝜁n . (5.18)

This definition and the following application of it are due to Benjamini, Pemantle, and Peres
(1998).

Proposition 5.21. If there is a probability measure on infinite paths in a graph G that has
EIT(𝜁), then for 𝜁 < p < 1, Bernoulli(p) percolation on G has a.s. a transient open cluster.

Proof. The existence of a transient open cluster does not depend on the status of any finite set
of edges, whence it is a tail event and has probability either 0 or 1 by Kolmogorov’s zero-one
law. Thus, it suffices to prove that this event has positive probability. Let µ be a measure
on infinite paths starting at o that satisfies (5.18). If we identify the complement of the ball
about o of radius r to a vertex zr , then µ induces a probability measure µr on paths from o
to zr . Write θr and Xr for the random flows θµr and their strengths Xµr that we associated
earlier to µr . By Thomson’s principle,

R(o↔ zr ;ω) ≤ E (θr (ω))/Xr (ω)2 .
We need to get an upper bound on the numerator and a lower bound on the denominator, with
probability bounded from below. By our assumption (5.16), we have

E[X2
r ] =

∑
n≥1

p−n(µ × µ)� |ξ ∩ ξ ′| = n
�
≤
∑
n≥1

C(𝜁/p)n = C𝜁/(p − 𝜁) .

Since E[Xr ] = 1, we may deduce that

P[Xr > 1/2] ≥ p − 𝜁
4C𝜁

=: δ > 0 (5.19)

by the Paley-Zygmund inequality. Now our calculation (5.17) gives

E
�
E (θr )� ≤∑

n≥1

Cn(𝜁/p)n = Cp𝜁/(p − 𝜁)2 =: M ,
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whence
P
�
E (θr ) > β

�
< M/β

for β > 0. Putting these bounds together, we find that

P
�
R(o↔ zr ;ω) < 4β

�
≥ P

�
Xr > 1/2, E (θr ) ≤ β

�
≥ P

�
Xr > 1/2

�
− P

�
E (θr ) > β

�
> δ − M/β = δ/2

if we choose β := 2M/δ. The events [R(o ↔ zr ;ω) < 4β] are decreasing in r, since the
effective resistance is increasing, whence their intersection [R(o↔ ∞;ω) ≤ 4β] has positive
probability. But this means that the cluster of o is transient with positive probability. (In
particular, the cluster is infinite with positive probability, but this already follows from (5.19),
which arises from essentially the same calculations as in Section 5.3.) ◀

▷ Exercise 5.11.
Show that Proposition 5.21 is sharp on trees in the sense that when T is a tree, for all
𝜁 > pc(T), there is a probability measure with EIT(𝜁). Of course, there is no p < pc(T) such
that Bernoulli(p) percolation on T has a.s. a transient open cluster.

To apply this criterion to �d, we need random paths with exponential intersection tails in
�d. Such random paths were constructed first by Kesten for d ≥ 4 (published by Cox and
Durrett (1983)):
Proposition 5.22. When d ≥ 4, there is a probability measure on paths in �d with EIT(𝜁)
for some 𝜁 < 1.

Proof. It clearly suffices to prove this for d = 4. Consider the random walk starting at 0
that takes a step in a positive coordinate direction with probability 1/4 for each direction.
For two independent such random walks, ξ and ξ ′, their difference ⟨ξ(n) − ξ ′(n) ; n ≥ 0⟩ is
a reversible random walk on the subset V3 :=

�(x1, x2, x3, x4) ; ∑4
i=1 xi = 0

	
. In addition,

|ξ ∩ ξ ′| ≤ ��
n ; ξ(n) = ξ ′(n)	� since the random walks on �4 move only in the positive

directions. The associated network on V3 is clearly roughly isometric to the usual graph on
�3, whence it is transient and returns of ξ − ξ ′ to 0 have a geometric distribution. Thus,
(5.18) holds with C = 1 and 𝜁 = P

�
∃n ≥ 1 ξ(n) − ξ ′(n) = 0

�
. ◀

This result also holds in �3, but obviously the same method does not work to prove it. The
reader may be interested in the challenge of finding such random paths in �3; this was solved
by Benjamini, Pemantle, and Peres (1998).

Corollary 5.23. There is a constant p0 < 1 such that for d ≥ 4 and p > p0, Bernoulli(p)
percolation in �d has a.s. a transient open cluster. ◀
To put this in another context, we state a few basic facts about percolation on �d , but they

will be proved only later. The case d = 1 is not of interest here, but for other d, we have that
0 < pc(�d) < 1 (Proposition 7.12 and Theorem 7.16). Furthermore, when there is an infinite
cluster, it is a.s. unique (Theorem 7.6).
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Grimmett, Kesten, and Zhang (1993) proved Corollary 5.23 for all p > pc(�d) and all
d ≥ 3. This was a difficult result, but a much simpler proof was found by Pete (2008), relying
on ideas that we discuss in Section 6.9, among others. In any case, the upshot is that in
Euclidean lattices, transience is preserved when the whole lattice is replaced by an infinite
percolation cluster. We return to this issue for other graphs in Section 6.9.

5.6 Reversing the Second-Moment Inequality

The first- and second-moment methods give inequalities in very general situations. These
two inequalities usually give fairly close estimates of a probability, but not so close as to agree
up to a constant factor. Thus, one must search for additional information if one wants finer
estimates. Usually, the estimate that the second-moment method gives is sharper than the one
provided by the first moment. A method for showing the sharpness of the estimate given by
the second-moment method is described here in the context of percolation; it depends on a
Markov-like structure (see also Exercise 16.10).
This method seems to be due to Hawkes (1970/71) and Shepp (1972). It was applied

to trees by Lyons (1992) and to Markov chains (with a slight improvement) by Benjamini,
Pemantle, and Peres (1995) (see Exercise 16.10). Consider independent percolation on a tree.
Embed the tree in the upper half-plane with its root at the origin. Given a minimal cutset Π
separating o from∞, order Π clockwise. Call this linear ordering ≼. This has the property
that for each e ∈ Π, the events [o↔ e′] for e′ ≼ e are conditionally independent of the events
[o↔ e′′] for e′′ ≽ e given that o↔ e. On the event o↔ Π, define e∗ to be the least edge in
Π that is in the cluster of o; on o = Π, define e∗ to take some value not in Π. Note that e∗ is a
random variable. Let σ be the (possibly defective) hitting measure

σ(e) := P[e∗ = e] (e ∈ Π) ,
so that

σ(Π) = P
�
o↔ Π

�
.

Provided P
�
o↔ Π

�
> 0, we may define the probability measure

µ := σ
/

P
�
o↔ Π

�
∈ P(Π) .

For all e ∈ Π, we have∑
e′≼e

σ(e′)P[o↔ e′, o↔ e]
P[o↔ e′] =

∑
e′≼e

P[e∗ = e′]P[o↔ e | o↔ e′]

=
∑
e′≼e

P[e∗ = e′]P[o↔ e | e∗ = e′]

=
∑
e′∈Π

P[e∗ = e′]P[o↔ e | e∗ = e′] = P[o↔ e] .

Thus ∑
e′≼e

µ(e′) P[o↔ e′, o↔ e]
P[o↔ e′]P[o↔ e] =

1
P
�
o↔ Π

� .
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By symmetry, it follows that

E (µ) ≤ 2
∑
e∈Π

∑
e′≼e

µ(e)µ(e′) P[o↔ e′, o↔ e]
P[o↔ e′]P[o↔ e] = 2

∑
e∈Π

µ(e)
P
�
o↔ Π

� =
2

P
�
o↔ Π

� .
Therefore,

P
�
o↔ Π

�
≤ 2

E (µ) ≤
2

inf𝜈∈P(Π) E (𝜈) .

To sum up, provided such orderings on cutsets Π exist, we are able to reverse the inequality of
Proposition 5.12 up to a factor of 2 (Lyons, 1992). In particular, for independent percolation
on trees, we get the following inequalities:

Theorem 5.24. (Tree Percolation and Conductance) For an independent percolation P
on a tree with adapted conductances (that is, such that (5.12) holds), we have

C (o↔ ∞)
1 + C (o↔ ∞) ≤ P[o↔ ∞] ≤ 2

C (o↔ ∞)
1 + C (o↔ ∞) , (5.20)

which is the same as

P[o↔ ∞]
2 − P[o↔ ∞] ≤ C (o↔ ∞) ≤ P[o↔ ∞]

1 − P[o↔ ∞] .

Consequently, we obtain a sharp refinement of Theorem 5.15:

Corollary 5.25. We have P[o ↔ ∞] > 0 in percolation on T iff random walk on T is
transient for corresponding adapted conductances (satisfying (5.12)).

This shows that the connection between percolation and random walks hinted at by
Theorems 5.15 and 3.5 goes much deeper than just sharing critical parameters.

Sometimes it is useful to consider percolation on a finite portion of T (which is, in fact,
how our proofs have proceeded). Recall that ∂LT denotes the set of leaves of T (other than
possibly its root). We have shown that for finite trees,

C (o↔ ∂LT)
1 + C (o↔ ∂LT) ≤ P[o↔ ∂LT] ≤ 2

C (o↔ ∂LT)
1 + C (o↔ ∂LT) , (5.21)

which is the same as

P[o↔ ∂LT]
2 − P[o↔ ∂LT] ≤ C (o↔ ∂LT) ≤ P[o↔ ∂LT]

1 − P[o↔ ∂LT] .

Remark 5.26. These inequalities take a nicer form if we add a new vertex ∆ to T by joining
it to o with an edge of conductance 1. Then doing random walk on this new tree T ∪ {∆}, we
have

C (o↔ ∂LT)
1 + C (o↔ ∂LT) = Po[τ∂LT ≤ τ∆] = C (∆↔ ∂LT) ,
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so (5.21) is equivalent to

C (∆↔ ∂LT) = Po[τ∂LT ≤ τ∆] ≤ P[o↔ ∂LT] ≤ 2 Po[τ∂LT ≤ τ∆] = 2 C (∆↔ ∂LT) .

Likewise, on an infinite tree, (5.20) is equivalent to

C (∆↔ ∞) = Po[τ∆ = ∞] ≤ P[o↔ ∞] ≤ 2 Po[τ∆ = ∞] = 2 C (∆↔ ∞) . (5.22)

Note also that the condition of being adapted, (5.12), also becomes nicer:

P[o↔ x] = C (∆↔ x) . (5.23)

▷ Exercise 5.12.
Give a tree for which percolation does and a tree for which percolation does not occur at
criticality.

▷ Exercise 5.13.
Show that critical homesick random walk on supercritical Galton-Watson trees is a.s. recurrent
in two ways: (1) by using Corollary 5.25; (2) by using the Nash-Williams criterion.

As in Exercise 5.13, Theorem 5.24 can be used to solve problems about random walk on
deterministic or random trees. Indeed, sometimes percolation is crucial to such solutions
(see, for example, Lyons (1992)).

We saw in Proposition 5.1 that when a Galton-Watson process survives, the number of
survivors tends to infinity a.s. We can strengthen this by Proposition 5.9 to say that T ′

has generation sizes tending to infinity a.s. when the Galton-Watson tree T is infinite. In
other words, when T is infinite, it contains infinitely many rays a.s. Does the same hold for
Bernoulli(p) percolation on a general tree, T? It turns out that it does. Moreover, we can
prove this by adapting the idea of the proof of Proposition 5.9, that is, by doing a further
percolation after the Bernoulli percolation. This technique uses the inequality (5.20) that
the percolation probability is captured up to a factor of 2 by effective conductance. In other
words, we will show how a uniform quantitative bound on percolation probability implies a
qualitative property of percolation.
To prove this, we will use the following exercise that gives an alternative expression for the

energy of a flow.

▷ Exercise 5.14.
Let (T , c) be a transient network on a tree. Suppose that each ray of T is recurrent. Let θ be a
flow from the root to infinity of finite energy.

(a) Show that inf
�
R(o↔ x) ; |x | = n

	
→ ∞ as n → ∞.

(b) Show that
∑

|x |=n θ(e(x))2 ↓ 0 as n → ∞.
(c) Show that E (θ) =

∑
x R(o↔ x)[θ(e(x))2 −

∑
↼
y =x θ(e(y))2] .
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Proposition 5.27. (Surviving Rays in Independent Percolation) For 0 < p < 1 and every
tree T , the number of surviving rays from the root under Bernoulli(p) percolation on T a.s.
either is 0 or has the cardinality of the continuum. More generally, the same holds for every
independent percolation on T such that each ray in T individually has probability 0 to survive.

Proof. Let R be the event that there is exactly one surviving ray. We begin our proof by
showing that the probability of R is 0, which we do for the more general hypothesis. For
n ∈ �, let Fn denote the σ-field generated by the events [o ↔ x] for |x | = n. If P(R) > 0,
then by the Lévy zero-one law, P(R | Fn)→ 1R a.s. as n → ∞. Thus, we may choose m and
an event B ∈ Fm of positive probability so that P(R | B) > 3/4. Moreover, we may choose B
so that the set of x with |x | = m and o↔ x is a constant on B. Denote those x by x1, . . . , xk .
Whether R occurs given B now depends only on the descendant trees T xi for 1 ≤ i ≤ k, so
we may consider the tree formed from T xi obtained by identifying all xi to one vertex, which
we take to be the root of a new tree, T ′. Let R′ be the event that the induced percolation on
T ′ has exactly one surviving ray. Thus, P(R′) = P(R | B) > 3/4. If R0 denotes the event that
percolation on T ′ has no surviving rays, then it follows that P(R0) < 1/4.
We are now going to define an additional percolation η on T ′, independent of the given

percolation ω, such that P[ω ∩ η /∈ R0] > 1/4 and P[ω ∩ η ∈ R0 | ω ∈ R′] = 1. The second
of these implies that P[ω ∩ η ∈ R0] ≥ P[ω ∩ η ∈ R0, ω ∈ R′] = P[ω ∈ R′] > 3/4, which
contradicts the first of these.
Consider the adapted edge conductances on T ′ given by (5.13). As in Remark 5.26, add a

new vertex ∆ to T ′ by joining it to the root with an edge of conductance 1. Let i be the unit
current flow from ∆ to∞, so that E (i) = R(∆↔ ∞) on T ′. Now use Exercise 5.14 and (5.23)
to write

E (i) =
∑
x

P[o↔ω x]−1
[
i(x)2 −

∑
↼
y =x

i(y)2] , (5.24)

where the subscript ω denotes the percolation and we write i(x) := i(e(x)). This expression
allows us to define η to have the properties we wish. Namely, note first that all terms in (5.24)
are nonnegative since i(x) = ∑

↼
y =x i(y). Since E (i) < ∞, we may choose a sequence ⟨nk⟩

increasing quickly enough that for each k ≥ 1, we have∑
|x |≥nk

P[o↔ω x]−1
[
i(x)2 −

∑
↼
y =x

i(y)2] < E (i)
6k

. (5.25)

Define η to be the independent percolation where every edge is kept with probability 1 except
for those e(x) with |x | = nk for some k. In the latter case, we set the probability that e(x) ∈ η
to be 1/2. Thus, we have that

P[o↔ω∩η x] = P[o↔ω x]
∏

nk ≤|x |

1
2 .

It follows from this, (5.24), and (5.25) that∑
x

P[o↔ω∩η x]−1
[
i(x)2 −

∑
↼
y =x

i(y)2] < 3E (i)
2

. (5.26)
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To see this, break the sum over x into blocks where |x | < n1, n1 ≤ |x | < n2, and so on. Then
apply (5.25) to the block where nk ≤ |x | < nk+1. Therefore, the effective resistance for the
conductances adapted to the percolation ω ∩ η is less than 3E (i)/2, whence by (5.22), it
follows that

P[ω ∩ η /∈ R0] > 2
3E (i) ≥

1
3

P[ω /∈ R0] > 1
3
· 3

4
=

1
4
.

This establishes the first property we desired for η. The second property is easy, since every
given ray of T ′ a.s. has an edge not in η, and on the event R′, there is only one ray in ω.
Thus, we have shown that P(R) = 0. By applying this result to every descendant tree T x ,

we may deduce that a.s. the set of surviving rays has no isolated point (as a subset of ∂T).
Now note that the set of surviving rays forms a closed subset of ∂T . Since ∂T is compact

by Exercise 1.1, it follows that the surviving rays a.s. form a perfect set, so that when it is
nonempty, it has the cardinality of the continuum. ◀
This proof can be modified to handle various other random processes, as in Exercise 16.8.

A different proof is given in Section 5.8, which allows other sorts of modifications, such as in
Exercise 5.68. Another useful variant is in the notes, Proposition 5.36, with an application in
Exercise 5.19.

5.7 Surviving Galton-Watson Trees

What does the cluster of a vertex look like in Bernoulli percolation given that the cluster
is infinite? This question is easy to answer on regular trees. In fact, the analogous question
for Galton-Watson trees is also easy to answer. We actually give two kinds of answers. The
first answer describes the Galton-Watson tree given survival in terms of other Galton-Watson
processes. The second answer tells us how large d is so that we can find d-ary subtrees of a
Galton-Watson tree. The first answer will suggest some similar properties for other types of
percolation on trees, which we discuss briefly.
We begin with a Galton-Watson process ⟨Zn⟩. Let Z∗n be the number of particles in

generation n that have an infinite line of descent. A little thought reveals that ⟨Z∗n⟩ is a Galton-
Watson process where each individual has k ≥ 1 children with probability

∑
j≥k pj

� j
k

�(1 −
q)k−1q j−k . Now, a little thought also reveals that given extinction, ⟨Zn⟩ is a Galton-Watson
process. Finally, a little more thought reveals that given nonextinction, the family tree of ⟨Zn⟩
has the same law as a tree grown first by ⟨Z∗n⟩, then adding “bushes” independently and in the
appropriate number to each node. We calculate the details and prove all this as follows.
Let T denote the genealogical tree of a Galton-Watson process with p.g.f. f and T ′ denote

the reduced subtree of particles with an infinite line of descent. (Thus, T ′ = ∅ iff T is finite.)
Let Y (n)

i, j be the indicator that the jth child of the ith particle in generation n has an infinite
line of descent. Write

q := 1 − q ,

L∗(n+1)
i

:=
L
(n+1)
i∑
j=1

Y (n)
i, j ,
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Z∗n+1 :=
Zn∑
i=1

L∗(n+1)
i ,

and Z∗0 = 1nonextinction. Note that all the random variables Y (n)
i, j for i ≤ Zn and j ≤ L(n+1)

i

have the same distribution. In addition, for fixed n, they are independent. Likewise, all�
L(n+1)
i , L∗(n+1)

i

�
have the same distribution for i ≤ Zn and, for fixed n, are independent. Thus,

we will write (L, L∗,Y1,Y2, . . . ,YL) for random variables having the common distribution�
L(n+1)
i , L∗(n+1)

i ,Y (n)
i,1 ,Y

(n)
i,2 , . . . ,Y

(n)
i,L

(n+1)
i

�
. Parts (iii) and (iv) of the following proposition are

due to Lyons (1992). Parts (i) and (ii) are illustrated in Figure 5.3.

Proposition 5.28. (Decomposition) Suppose that 0 < q < 1.
(i) The law of T ′ given nonextinction is the same as that of a Galton-Watson process with

p.g.f.
f ∗(s) := [ f (q + qs) − q]/q .

(ii) The law of T given extinction is the same as that of a Galton-Watson process with p.g.f.

f̃ (s) := f (qs)/q .

(iii) The joint p.g.f. of L − L∗ and L∗ is

E[sL−L∗ tL∗] = f (qs + qt) .

More generally, the joint p.g.f. of Zn − Z∗n and Z∗n is

E[sZn−Z∗n tZ
∗
n ] = f (n)(qs + qt) .

(iv) The law of T given nonextinction is the same as that of a tree T generated as follows:
Let T∗ be the tree of a Galton-Watson process with p.g.f. f ∗ as in (i). To each vertex x
of T∗ having dx children, attach Ux independent copies of a Galton-Watson tree with
p.g.f. f̃ as in (ii), where Ux has the p.g.f.

E[sUx ] =
(Ddx f )(qs)
(Ddx f )(q) ,

where dx derivatives of f are indicated; all Ux and all trees added are mutually
independent given T∗. The resultant tree is T .

Proof. We begin with (iii). We have

E[sL−L∗ tL∗] = E
[
E[sL−L∗ tL∗ | L]] = E

[
E
[
s
∑L

j=1(1−Yj )t
∑L

j=1 Yj ��� L
] ]

= E
[
E[s1−Y1 tY1 ]L] = E

[(qs + qt)L] = f (qs + qt) .

The other part of (iii) follows by a precisely parallel calculation.
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0 q 1

1

f̃

f ∗

Figure 5.3. The graph of f embeds scaled versions of the graphs of f̃ and f ∗.

To show (i), we need to show that on the event L∗(n)i ̸= 0 given the σ-field Fn,i generated
by L∗(n)

k
(k ̸= i) and L∗(m)

k
(m < n, k ≥ 1), the p.g.f. of L∗(n)i is f ∗. Indeed, on the event

L∗(n)i ̸= 0, we have

E[sL∗(n)i | Fn,i] = E[sL∗(n)i | L∗(n)i ̸= 0] = E[sL∗1[L∗ ̸=0]]/q = E
�
sL
∗ (1 − 1[L∗=0])�/q

=
�
E[1L−L∗ sL

∗] − P[L∗ = 0]	/q = [ f (q1 + qs) − q]/q = f ∗(s)
by (iii).

Similarly, (ii) comes from the fact that on the event of extinction,

E[sL(n)
i | Fn,i] = E[sL(n)

i | L∗(n)i = 0] = E[sL1[L∗=0]]/q
= E[sL−L∗0L∗ ]/q = f (qs + q0)/q = f̃ (s) ,

since 0x = 1{0}(x).
Finally, (iv) follows once we show that the function claimed to be the p.g.f. of Ux is the

same as the p.g.f. of L − L∗ given L∗ = dx . Once again, by (iii), we have that for some
constants c and c′,

E
�
sL−L

∗ �
L∗ = d

�
= c

(
∂

∂t

)d
f (qs + qt)����t=0

= c′(Dd f )(qs) .

Substitution of s = 1 yields c′ = 1/(Dd f )(q). ◀
Remark. Part (iii), which led to all the other parts of the proposition, is an instance of the
following general calculation. Suppose that we are given a nonnegative random number X
of particles with X having p.g.f. F. One interpretation of F is that if we color each particle
red independently with probability r , then the probability that all particles are colored red is
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F(r). Now suppose that we first categorize each particle independently as small or big, with
the probability of a particle being categorized small being q. Then independently color each
small particle red with probability s and color each big particle red with probability t. Since
the chance that a given particle is colored red is then qs + qt, we have (by our interpretation)
that the probability that all particles are colored red is F(qs + qt). On the other hand, if Y is
the number of big particles, then by conditioning on Y , we see that this is also equal to the
joint p.g.f. of X − Y and Y .

Another interesting question concerning the surviving Galton-Watson trees is whether
binary subtrees can be found among the survivors. In fact, this issue first arose in various
applications: see, for example, the proof of Theorem 5.33, due to Chayes, Chayes, and Durrett
(1988), or Lemma 5 of Pemantle (1988). More generally, let τ(d) be the probability that a
Galton-Watson tree contains a d-ary subtree beginning at the initial individual. Thus, τ(1)
is the survival probability, 1 − q. Pakes and Dekking (1991) found a method to determine
τ(d), after special cases were solved by Chayes, Chayes, and Durrett (1988) and Dekking and
Meester (1990):

Theorem 5.29. (d-ary Subtrees) Let f be the p.g.f. of a supercritical Galton-Watson
process. Set

Gd(s) :=
d−1∑
j=0

(1 − s)j (D
j f )(s)
j!

.

Then 1 − τ(d) is the smallest fixed point of Gd in [0, 1].
Note that G1 = f . Thus, this answer is a nice extension of Proposition 5.4.

Proof. We first reinterpret Gd. Let gd(s) be the probability that the root has at most d − 1
marked children when each child is marked independently with probability 1 − s. This
function is clearly monotonic increasing in s. By considering how many children the root has
in total, we see that

gd(s) =
∞∑
k=0

pk
d−1∑
j=0

(
k
j

)
(1 − s)j sk−j . (5.27)

After changing the order of summation in (5.27), we obtain

gd(s) =
d−1∑
j=0

(1 − s)j
j!

∑
k≥ j

pk k(k − 1) · · · (k − j + 1)sk−j

=
d−1∑
j=0

(1 − s)j(D j f )(s)
j!

= Gd(s) ,

that is, gd = Gd.
Now we are ready to conclude in a similar fashion to the proof of Proposition 5.4. Let

qn be the chance that the Galton-Watson tree does not contain a d-ary subtree of height n
at the initial individual; notice that 1 − qn ↓ τ(d). By marking a child of the root when it
has a d-ary subtree of height n − 1, we see that qn = Gd(qn−1). Since q0 = 0 and Gd is
nonnegative, increasing, and satisfies Gd(1) = 1, letting n → ∞ shows that limn qn = 1− τ(d)
is the smallest fixed point of Gd. ◀
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▷ Exercise 5.15.
Show that for a Galton-Watson tree with offspring distribution Bin(d + 1, p), we have that
τ(d) > 0 for p sufficiently close to 1.

An interesting feature of the phase transitions from τ(d) = 0 to τ(d) > 0 as the parameter
is varied in, for example, binomial, geometric or Poisson offspring distributions is that unlike
the case of usual percolation d = 1, for d ≥ 2 the probability of having the d-ary subtree is
positive at criticality. For integers n ≥ 2 and 1 ≤ d ≤ n, define π(n, d) to be the infimum
of probabilities p such that τ(d) > 0 in a Galton-Watson tree with offspring distribution
Bin(n, p). Of course, such offspring distributions also describe the law of the clusters in
Bernoulli(p) percolation on an n-ary tree.

Proposition 5.30. (Nontrivial Phase Transition) Let T be an n-ary tree and 2 ≤ d < n.
Then π(n, d) ∈ [1/n, 1). For Bernoulli(p) percolation on T , the probability that there is an
open d-ary subtree is 0 for p < π(n, d) and is 1 for p ≥ π(n, d).
Proof. The fact that π(n, d) < 1 follows from Exercise 5.15, and the fact that π(n, d) ≥ 1/n
follows from the fact that pc(T) = 1/n.
Let θ(p) denote the probability (called τ(d) earlier) that the root of T belongs to an open

d-ary subtree. Similarly, let θk(p) denote the probability that the root of T belongs to an open
d-ary subtree of height at least k. Then θk(p) ↓ θ(p) as k → ∞. Choose α0 ∈

(
0,
�n
d

�−1/(d−1));
thus, there exists c0 < 1 such that for all α ∈ [0, α0], we have

�n
d

�
αd ≤ c0α. We claim

that if p and k0 are such that θk0(p) ∈ [0, α0], then θ(p) = 0. To see this, note that since
θk+1(p) is the probability that there exist at least d open edges incident to the root that lead
to children who begin open d-ary subtrees of height at least k, it follows from a union
bound that θk+1(p) ≤ �n

d

�
θk(p)d, and this, in turn, is at most c0θk(p) if θk(p) ≤ α0. Thus,

θk+1(p) ≤ c0θk(p) for all k ≥ k0, and so, letting k → ∞, we find that θ(p) = 0.
Now suppose that θ

�
π(n, d)� = 0. Then, for some k, we have θk

�
π(n, d)� < α0, whence

also θk(p) < α0 for some p > π(n, d). But this implies by the above claim that θ(p) = 0,
contradicting the definition of π(n, d). ◀

For a binomial offspring distribution, the critical mean value is asymptotically d, as shown
by the following result. This was proved by Balogh, Peres, and Pete (2006), where it was
applied to bootstrap percolation, a model we discuss in Section 7.8.
We now show how to calculate π(n, d) and that for large n and d, we have π(n, d) ∼ d/n,

which is as small as it could be since Bin(n, d/n) has mean d.

Proposition 5.31. (Asymptotics of the Critical Probability) Consider Bernoulli offspring
distributions. The critical probability π(n, d) is the infimum of all p for which the equation

P
�
Bin(n, (1 − s)p) ≤ d − 1

�
= s (5.28)

has a real root s ∈ [0, 1). For any constant γ ∈ [0, 1] and sequence of integers dn with
limn→∞ dn/n = γ, we have

lim
n→∞

π(n, dn) = γ. (5.29)
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Proof. In the proof of Theorem 5.29, we saw that Gd = gd; in the present case, it is clear
that gd(s) = P

�
Bin(n, (1 − s)p) ≤ d − 1

�
=: Bn,d,p(s). If the probability of not having the

required subtree is denoted by y = y(p), then by Theorem 5.29, y is the smallest fixed point
of the function Bn,d,p(s) in s ∈ [0, 1]. One fixed point is s = 1, and π(n, d) is the infimum of
the p values for which there is a fixed point s ∈ [0, 1). It is easy to see that

∂

∂s
Bn,d,p(s) = np P

�
Bin(n − 1, (1 − s)p) = d − 1

�
,

which is positive for s ∈ [0, 1), with at most one extremal point (a maximum) in (0, 1). Thus
Bn,d,p(s) is a monotone strictly increasing function, with Bn,d,p(0) > 0 when p < 1, and with
at most one inflection point in (0, 1). When (n − 1)p < d − 1, there is no inflection point, and
Bn,d,p(s) is concave in [0, 1].

If limn→∞ dn/n = γ, then for any fixed p and s, by the weak law of large numbers,

Bn,dn ,p(s) = P
[

Bin(n, (1 − s)p)
n

≤ dn − 1
n

]
→

{ 1 if (1 − s)p < γ
0 if (1 − s)p > γ

as n → ∞. Solving the equation (1 − s)p = γ for s gives a critical value sc = 1 − γ/p.
Thus for p < γ we have limn→∞ Bn,dn ,p(s) → 1 for all s ∈ [0, 1]; since for large enough n,
Bn,dn ,p(s) is concave in [0, 1], there is no positive root s < 1 of Bn,dn ,p(s) = s. On the other
hand, for p > γ there must be a root s = s(n) for large enough n. These prove (5.29). ◀
Pakes and Dekking (1991) used Theorem 5.29 to show that the critical mean value for

a geometric offspring distribution to produce with positive probability a d-ary subtree in
the Galton-Watson tree is asymptotic to ed as d → ∞ (where e is the base of the natural
logarithm), and it is asymptotically d for a Poisson offspring distribution.
We now give an application of Proposition 5.30 to fractal percolation. Given an integer

b ≥ 2 and p ∈ [0, 1], consider the natural tiling of the unit square [0, 1]2 by b2 closed
squares of side 1/b. Let K1 be a random subcollection of these squares, where each square
has probability p1 of belonging to K1, and these events are mutually independent. (Thus
the cardinality |K1 | of K1 is a binomial random variable.) In general, if Kn is a collection
of squares of side b−n, tile each square Q ∈ Kn by b2 closed subsquares of side b−n−1

(with disjoint interiors) and include each of these subsquares in Kn+1 with probability p
(independently). Finally, define

An := An,b(p,Kn−1) :=
∪
Kn and Qb(p) :=

∞∩
n=1

An .

In the construction of Qd(p), the cardinalities |Kn | of Kn form a Galton-Watson branching
process where the offspring distribution is Bin(b2, p). The process ⟨An ; n ≥ 1⟩ is called
fractal percolation, whereas Qd(p) is the limit set.
We prove the following theorem of Chayes, Chayes, and Durrett (1988): if the probability

p is close enough to 1, then with positive probability, the limit set of the planar fractal
percolation Q2(p) contains a left-to-right crossing of the unit square, that is, a continuous
path

�
x(t), y(t)�: [0, 1]→ [0, 1]2 such that x(0) = 0, x(1) = 1.

We begin with a discrete analogue. A left-to-right crossing of squares at level n is a
sequence of distinct squares a1, . . . , ar contained in Kn so that a1 shares a side with the left
side of [0, 1]2, all pairs of successive squares a j , a j+1 share a side, and ar shares a side with
the right side of [0, 1]2.
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Lemma 5.32. Consider fractal percolation with b ≥ 3. If each square retained at level n
always contains at least b2 − 1 surviving subsquares at level n + 1, then there is a left-to-right
crossing of squares at all levels n.

Proof. Clearly there is a left-to-right crossing of squares at level 1. More generally, all the
squares in K1 can be connected via paths of squares in K1 with consecutive pairs sharing a
side; let us say that K1 is side connected for the purposes of this proof.
We proceed by induction. Suppose there is a left-to-right crossing of squares a1, . . . , ar

at level n. For notational convenience, let a0 and ar+1 both be the unit square. Let Si be
the common side of ai with ai+1 for 0 ≤ i ≤ r. Since b ≥ 3, for each i, there is a pair of
squares in Kn+1, each having a side on Si , call them ci ⊂ ai and di ⊂ ai+1, such that ci and di

share a side (of length b−n−1); see Figure 5.4. Since the subset of Kn+1 contained in ai+1 is
side connected, each di is connected to ci+1 by squares in Kn+1 that are contained in ai+1. It
follows that there is a left-to-right crossing in Kn+1 from d0 to cr . This proves the induction
step. ◀

ai ai+1

ci di

di−1

ci+1Si

Figure 5.4. Notation for the proof of Lemma 5.32.

▷ Exercise 5.16.
Is Lemma 5.32 true for b = 2?

Define θn(p) as the probability of a left-to-right crossing of squares at level n. The
sequence θn is decreasing in n, hence its limit θ∞(p), the chance of a left-to-right crossing in
Q2(p), exists.

Theorem 5.29 and Lemma 5.32 can be combined to give an easy proof that there is a
nontrivial phase where there exist left-to-right crossings in the limit set.

Theorem 5.33. (Left-to-Right Crossing in Fractal Percolation) For p close enough to 1,
the left-to-right crossing probability θ∞(p) is positive.

Proof. We do the case b ≥ 3, leaving b = 2 for an exercise. By Lemma 5.32, it suffices
to show that with positive probability there exist K ′n ⊆ Kn with the properties that for all
n ≥ 1, we have

∪K ′n ⊇ ∪K ′n+1 and each square of K ′n contains at least b2 − 1 subsquares in
K ′n+1. This event occurs if and only if the tree associated with ⟨Kn⟩ contains a (b2 − 1)-ary
descendant subtree from the root. Exercise 5.15 shows that such subtrees exist with positive
probability provided p is large enough. ◀
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Exercise 5.67 shows that Theorem 5.33 holds for b = 2 as well.
More information on fractal percolation can be found in Exercises 5.70, 5.71, and 15.22 as

well as in Example 15.9.

5.8 Harris’s Inequality

A property that is valid for Bernoulli percolation on any graph is an inequality due to
Harris (1960), though it is nowadays usually called the FKG inequality due to an extension
by Fortuin, Kasteleyn, and Ginibre (1971). In fact, Harris’s inequality holds for independent
percolation more generally.
This inequality permits us to conclude such things as the positive correlation of the events

{x ↔ y} and {u ↔ v} for any vertices x, y, u, and v. The special property that these
two events have is that they are increasing, where an event A ⊆ 2𝖤 is called increasing if
whenever ω ∈ A and ω ⊆ ω′, then ω′ ∈ A. As a natural extension, we call a random variable
X on 2𝖤 increasing if X(ω) ≤ X(ω′) whenever ω ⊆ ω′. Thus, 1A is increasing iff A is
increasing. Similar definitions apply for site processes, that is, random subsets of vertices.

Harris’s Inequality. Let P be an independent percolation on a graph.
(i) If A and B are both increasing events, then A and B are positively correlated:

P(AB) ≥ P(A)P(B).
(ii) If X and Y are both increasing random variables with finite second moments, then

E[XY ] ≥ E[X]E[Y ]. Equality holds iff X and Y are independent.

Property (i) of Harris’s inequality says, by definition, that the measure P has positive
associations (in contrast to the negative associations of the uniform spanning tree measure in
Section 4.2).

▷ Exercise 5.17.
Let P be an independent percolation. Suppose that X is an increasing random variable with
finite expectation, F ⊂ 𝖤 is finite, and F is the (finite) σ-field generated by the coordinate
functions ω 7→ ω(e) (ω ∈ 2𝖤) for the edges e ∈ F. Show that E[X | F ] is an increasing
random variable.

Harris’s inequality is essentially the following lemma, where the case d = 1 is due to
Chebyshev.

Lemma 5.34. Suppose that µ1, . . . , µd are probability measures on� and µ := µ1×· · ·× µd .
Let f , g ∈ L2(�d, µ) be functions that are increasing in each coordinate separately. Then∫

f g dµ ≥
∫

f dµ
∫

g dµ .

Proof. We proceed by induction on d. Suppose first that d = 1. Note that�
f (x) − f (y)� �g(x) − g(y)� ≥ 0
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for all x, y ∈ �. Therefore

0 ≤
∫∫ �

f (x) − f (y)� �g(x) − g(y)� dµ(x) dµ(y) = 2
∫

f g dµ − 2
∫

f dµ
∫

g dµ ,

which gives the desired inequality.
Now suppose that the inequality holds for d = k, and let us prove the case d = k +1. Define

f1(x1) :=
∫
�k

f (x1, x2, . . . , xk+1) dµ2(x2) · · · dµk+1(xk+1)

and similarly define g1. Clearly f1 and g1 are increasing functions, whence∫
f1g1 dµ1 ≥

∫
f1 dµ1

∫
g1 dµ1 =

∫
f dµ

∫
g dµ . (5.30)

On the other hand, the inductive hypothesis tells us that for each fixed x1,

f1(x1) g1(x1) ≤
∫
�k

f (x1, x2, . . . , xk+1) g(x1, x2, . . . , xk+1) dµ2(x2) · · · dµk+1(xk+1) ,

whence
∫

f1g1 dµ1 ≤
∫

f g dµ. In combination with (5.30), this proves the inequality for
d = k + 1 and completes the proof. ◀

Proof of Harris’s inequality. The proofs for bond and site processes are identical; our notation
will be for bond processes.

Since (i) derives from (ii) by using indicator random variables, it suffices to prove (ii).
If X and Y depend on only finitely many edges, then the inequality is a consequence of
Lemma 5.34, since ω(e) are mutually independent random variables for all e. To prove it in
general, write 𝖤 = {e1, e2, . . .}. Let Xn and Yn be the expectations of X and Y conditioned on
ω(e1), . . . , ω(en). According to Exercise 5.17, the random variables Xn and Yn are increasing,
whence E[XnYn] ≥ E[Xn]E[Yn]. Since Xn → X and Yn → Y in L2 by the martingale
convergence theorem, which implies that XnYn → XY in L1, we may deduce the desired
inequality for X and Y .
For the equality condition, decomposing X and Y into their positive and negative parts

reduces it to the case that X ,Y ≥ 0. Then write X =
∫ ∞

0 1[X≥s] ds and Y =
∫ ∞

0 1[Y≥t] dt.
Thus, E[XY ] − E[X]E[Y ] = ∫∫ (

P[X ≥ s, Y ≥ t] − P[X ≥ s]P[Y ≥ t]) ds dt ≥ 0, with
equality iff for a.e. s and t, the events [X ≥ s] and [Y ≥ t] are independent. ◀

▷ Exercise 5.18.
Let P be an independent percolation. Show that if A1, . . . , An are increasing events, then for
all p, P

(∩
Ai

)
≥
∏

P(Ai) and P
(∩

Ac
i

)
≥
∏

P(Ac
i ).

We can use Harris’s inequality to give a short proof of Proposition 5.27:
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Proposition 5.27. (Surviving Rays in Independent Percolation) For 0 < p < 1 and every
tree T , the number of surviving rays from the root under Bernoulli(p) percolation on T a.s.
either is 0 or has the cardinality of the continuum. More generally, the same holds for every
independent percolation on T such that each ray in T individually has probability 0 to survive.
Proof. Let Rk be the event that there are exactly k open rays. We must show that for every
finite k ≥ 1, the probability of Rk is 0, which we do for the more general hypothesis. As in our
first proof of this proposition, it then follows that the number of open rays is a.s. either 0 or 2ℵ0 .
If P(Rk) > 0, then by the Lévy zero-one law, P(Rk | Fn)→ 1Rk

a.s. Thus, we may choose m
so that P(Rk | Fm) ≥ 8/9 on an event B ∈ Fm of positive probability. We may also choose
n ≥ m so large that for all x ∈ Tn, we have P

� |𝖱𝖺𝗒𝗌x | ≥ 1
�

B
�
< 1/3, as otherwise there

would be a fixed ray that is open with probability at least P(B)/3. Thus, we may partition
Tn = A1 ∪ A2 in such a way that P(A1 | B) ∈ (1/3, 2/3), where A1 :=

[∑
x∈A1

|𝖱𝖺𝗒𝗌x | ≥ k
]
.

Define A2 :=
[∑

x∈A2
|𝖱𝖺𝗒𝗌x | ≥ 1

]
. Then P(A2 | B) ≥ 8/9 − P(A1 | B) and Ai are positively

correlated given B by Harris’s inequality, whence P(A1 ∩ A2 | B) > 4/27 > 1/9. Since
occurrence of A1 ∩ A2 precludes occurrence of Rk , this contradicts the choice of B. ◀

5.9 Galton-Watson Networks
We have seen examples in Corollary 5.10 and Exercise 5.13 of the application of percolation

to questions that do not appear to involve percolation; other examples will appear in Exer-
cise 5.55 and Proposition 13.3. We will give yet another example in this section. Consider
the following Galton-Watson network generated by a random variable L := (L, A1, . . . , AL),
where L ∈ �, Ai ∈ (0, 1]. First, use L as an offspring random variable to generate a
Galton-Watson tree. Let the number of children of particle x be Lx . Complete these random
variables to i.i.d. random variables L x . Thus, L x = (Lx , Ay1 , . . . , AyLx

), where y1, . . . , yLx

are the children of x.* Use these random variables to assign edge capacities (or weights or
conductances)

c(e(x)) :=
∏
w≤x

Aw .

We will see the usefulness of such networks for the study of random fractals in Section 15.3.
When can water flow to ∞ in such a random network? Note that if Ai ≡ 1, then water can
flow to∞ iff the tree is infinite. Let

γ := E
[ L∑
i=1

Ai

]
.

This is the expected value of the constraint on the total that can flow out of a vertex compared
to what can flow into that vertex. The following theorem of Falconer (1986) shows that
the condition for positive flow to infinity with positive probability on these Galton-Watson
networks is γ > 1. Of course, when Ai ≡ 1, this reduces to the usual survival criterion for
Galton-Watson processes. In general, this theorem confirms the intuition that for flow to
infinity to be possible, more water must be able to flow from parent to children, on average,
than from grandparent to parent.

* A formal definition using the framework of Exercise 5.2 makes independent random variables L x for each
finite string x = ⟨i1, i2, . . . , in⟩ of positive integers.
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Theorem 5.35. (Flow in Galton-Watson Networks) If γ ≤ 1, then a.s. no flow is possible
unless

∑L
1 Ai = 1 a.s. If γ > 1, then flow is possible a.s. on nonextinction.

Proof. As usual, let T1 denote the set of individuals (or vertices) of the first generation. Let
F be the maximum strength of an admissible flow, that is, of a flow that satisfies the capacity
constraints on the edges.
For x ∈ T1, let Fx be the maximum strength of an admissible flow from x to infinity

through the subtree T x with renormalized capacities e 7→ c(e)/Ax . Thus, Fx has the same
law as F has. It is easily seen that

F =
∑
x∈T1

�
Ax ∧ (AxFx)� =

∑
x∈T1

Ax(1 ∧ Fx) .

Now suppose that γ ≤ 1. Taking expectations in the preceding equation yields

E[F] = E
�
E[F | L o]� = E

E
[∑
x∈T1

Ax(1 ∧ Fx)
����� L o

] = E
[∑
x∈T1

E[Ax(1 ∧ Fx) | L o]
]

= E
[∑
x∈T1

Ax E[1 ∧ Fx | L o]
]

= E
[∑
x∈T1

Ax E[1 ∧ F]
]

= γ E[1 ∧ F] ≤ E[1 ∧ F] .

Therefore F ≤ 1 almost surely and P[F > 0] > 0 only if γ = 1. In addition, we have, by
independence,

∥F∥∞ =






∑
x∈T1

Ax






∞∥F∥∞ .

If ∥F∥∞ > 0, it follows that 


∑x∈T1
Ax




∞ = 1. In combination with γ = 1, this implies that∑
x∈T1

Ax = 1 a.s.
For the second part, we introduce percolation as in the proof of Corollary 5.10 via

Proposition 5.9. Namely, augment the probability space so that for each vertex u ̸= o, there
is a random variable Xu with the following properties. Denote by F the σ-field generated
by the random variables L u . Then given F , all Xu are independent and each Xu takes the
value 1 with probability Au and 0 otherwise.* Consider the subtree of the Galton-Watson tree
consisting of the initial individual o together with those individuals u such that

∏
w≤u Xw = 1.

This subtree has, unconditionally, the law of a Galton-Watson branching process with progeny
distribution the unconditional law of ∑

u∈T1

Xu .

Let Q be the probability that this subtree is infinite conditional on F . Now the unconditional
mean of the new process is

E
[∑
u∈T1

Xu

]
= E

E
[∑
u∈T1

Xu

����� L o

] = E
[∑
u∈T1

Au

]
= γ,

* A formal definition uses independent uniform [0, 1] random variables Mu and defines Xu to be the indicator
that Mu ≤ Au .
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whence if γ > 1, then this new Galton-Watson branching process survives with positive
probability, say, Q. Of course, Q = E[Q]. On the other hand, for any cutset Π of the original
Galton-Watson tree,

∑
e∈Π c(e) is the expected number, given F , of edges in Π that are also

in the subtree. This expectation is at least the probability that the number of such edges is at
least one, which, in turn, is at least Q:

F = inf
Π

∑
e∈Π

c(e) ≥ Q.

Hence F > 0 on the event Q > 0. The event Q > 0 has positive probability since Q > 0,
whence P[F > 0] > 0. Since the event that F = 0 is clearly inherited, it follows that
P[F = 0] = q. ◀

We will return to percolation on trees in Chapter 16.

5.10 Notes

Galton-Watson processes are sometimes called Bienaymé-Galton-Watson processes, since Bienaymé,
in 1845, was the first to give the fundamental theorem, Proposition 5.4. However, while he stated the
correct result, he gave barely a hint of his proof. See Heyde and Seneta (1977), pp. 116–120, and
Guttorp (1991), pp. 1–3, for some of the history. The first published proof of Bienaymé’s theorem
appears on pp. 83–86 of Cournot (1847), where the context is gambling: An urn contains tickets marked
with nonnegative integers, a proportion pk of them being marked k. Pierre begins with 1 écu, which he
gives to Paul for the right of drawing a ticket from the urn. If the ticket is marked k, then Paul gives
Pierre k écus. The ticket is returned to the urn. This is the end of the first round. For the second and
succeeding rounds, if Pierre is not broke, then for each of the écus he has, he repeats the procedure of
the first round. The problem was to determine the probability, for each n, that Pierre is broke at the end
of the nth round. If one keeps track of Pierre’s fortune at all times, not merely at the ends of rounds,
then one obtains a coding of the associated tree by a random walk as in Exercise 5.35.

For other codings of the trees as random walks, as well as various uses, see Geiger (1995), Pitman
(1998), Bennies and Kersting (2000), Dwass (1969), Harris (1952), Le Gall and Le Jan (1998),
Duquesne and Le Gall (2002), Marckert and Mokkadem (2003), Marckert (2008), Lamperti (1967),
and Kendall (1951).

For additional material on branching processes, see Chapter 12, the books by Athreya and Ney (1972)
and Asmussen and Hering (1983), and the review articles by Vatutin and Zubkov (1985, 1993).

The study of percolation was initiated by Broadbent and Hammersley (1957). Exact values of pc(G)
are rarely known. For some classes of Cayley graphs that are not too far from trees, exact values have
been calculated by Kozáková (2008) and Špakulová (2009).

Tree-indexed random walks are used in Section 5.4 to create examples of quasi-independent
percolation. They are studied further in Section 13.8.

A more subtle example of a quasi-independent percolation than the one of Example 5.18 is obtained
by replacing the requirement S(x) ∈ [0, N] by S(x) ≥ 0. That this is quasi-independent is proved by
Benjamini and Peres (1994b) in the course of proving their Theorem 1.1. For more on this particular
case, see Pemantle and Peres (1995a).

Proposition 5.27 is due to Pemantle and Peres (1996), Lemma 4.2(i). The following variant is new.
For x ∈ 𝖵(T), let F x denote the σ-field generated by the events [o↔ y] for all y except y > x.
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Proposition 5.36. Let P be a general percolation on a general tree T with the following property: there
is some ϵ > 0 such that for all x ∈ 𝖵(T),

P
� |𝖱𝖺𝗒𝗌x | ≥ 2

�
F x

�
≥ ϵ1[o↔x] . (5.31)

Then the number of open rays is a.s. 0 or 2ℵ0 .

Proof. As in the second proof of Proposition 5.27 on p. 162, let Rk be the event that there are exactly
k open rays. We must show that for every finite k ≥ 1, the probability of Rk is 0. As in the proof
of Proposition 5.27, it then follows that the number of open rays is a.s. either 0 or 2ℵ0 . Suppose
that P(Rk ) > 0 for some k ∈ [1,∞). For n ∈ �, let Fn denote the σ-field generated by the events
[o ↔ x] for |x | = n. By the Lévy zero-one law, P(Rk | Fn) → 1Rk

a.s. Write Vn for the random set� |x | = n ; x ↔ o
	
. Then P

� |Vn | ≥ k
�

Rk

�
→ 1 as n → ∞. Thus, we may choose an integer n and an

event A ∈ Fn of positive probability such that

P(Rk | A) > 1 − ϵ k (5.32)

and A ⊆
� |Vn | ≥ k

�
. Let X1, . . . , Xk be an Fn-measurable choice of k distinct vertices in Vn , or Xi := o

if |Vn | < k; for example, if we embed T in the upper half-plane with its root at the origin, we can
choose the k left-most vertices in Vn . Consider nonrandom distinct vertices x1, . . . , xk ∈ Tn such that
P(C) > 0, where C is the event [X1 = x1, . . . , Xk = xk ]. Define Bi to be the event that |𝖱𝖺𝗒𝗌xi | ≥ 2.
Since A,C ∈ Fn ⊆ F xi and so B1 ∩ · · · ∩ Bi−1 ∩ A ∩ C ∈ F xi for 1 ≤ i ≤ k, we may apply (5.31) to
get

P(Bi | B1 ∩ · · · ∩ Bi−1 ∩ A ∩ C) ≥ ϵ ,
whence

P(B1 ∩ · · · ∩ Bk | A ∩ C) ≥ ϵ k .
Therefore, P

� |𝖱𝖺𝗒𝗌o | ≥ 2k
�

A ∩ C
�
≥ ϵ k . Since this holds for all choices of C, it follows that

P
� |𝖱𝖺𝗒𝗌o | ≥ 2k

�
A
�
≥ ϵ k . This contradicts (5.32), whence P(Rk ) = 0, as desired. ◀

▷ Exercise 5.19.
Let T be a binary tree. Give random labels A(x) to its vertices as follows: Begin with A(o) := 0. The
other labels are defined recursively by dividing A(x) at random (as integers) between the children of
x and adding 1 to each child. That is, if the two children of x are x1 and x2, then A(x1) is uniform
in {1, 2, . . . , A(x) + 1} and A(x2) = A(x) + 2 − A(x1). Given A(x), all labels A(y) for y /∈ T x are
conditionally independent of all A(z) for z > x.

(a) Let ξ = ⟨ξn ; n ≥ 0⟩ be a ray in T starting at some vertex ξ0 = x. Show that


2n(A(ξn)− 2)� is

a martingale.
(b) Show that for all n ≥ 1, we have P

�
A(ξk ) ≥ 4 for 1 ≤ k ≤ n

�
A(ξ0)� ≤ 2−n

�
A(ξ0) − 2�/2 on

the event
�
A(ξ0) ≥ 4

�
.

(c) Show that a.s. there is no infinite path in T all of whose labels are at least 4.
(d) If the labels are real numbers instead of integers with the sole change that A(x1) is uniform in

[1, A(x) + 1], then show that again a.s. there is no infinite path in T all of whose labels are at least 4.

The proof of Proposition 5.30 is based on a similar argument in Chayes, Chayes, and Durrett (1988).
The result itself was first given by Pakes and Dekking (1991).

Theorem 5.33 was suggested by Mandelbrot (1982), Chapter 23. One might wonder whether for
large p, there is also positive probability that a directed (horizontally monotonic) left-to-right crossing
exists. However, this is not so, as was proved by Chayes (1995b). An extension was given by Chayes,
Pemantle, and Peres (1997).
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The proof presented here of Theorem 5.35 is new. The proof of the first part of the theorem uses the
same idea as the proof of Lemma 4.4(b) of Falconer (1987). The result of Theorem 5.35 was extended
in a few ways to general fixed trees by Lyons and Pemantle (1992).

Recursions on trees are a very powerful and general tool. Exercise 5.60 gives some simple examples.
Additional ones along these lines for more general processes are analyzed by Pemantle and Peres (2010).

5.11 Collected In-Text Exercises
5.1. Justify the differentiation in (5.3). Show too that lims↑1 f ′(s) = m.

5.2. Let T be the space of rooted labeled locally finite trees. Verify that the function d(T ,T ′) :=
(1 + sup{n ; T↾n = T ′↾n})−1 is a metric on T and that (T , d) is complete and separable.

5.3. Define the measure GW formally on the space T of Exercise 5.2; your measure should be the
law of a random tree produced by a Galton-Watson process with arbitrary given offspring distribution.

5.4. Show that for any Galton-Watson process with mean m > 1, the family tree T has growth rate
gr T = m a.s. given nonextinction. (Don’t use the Kesten-Stigum theorem to show this, as we have not
yet proved that theorem.)

5.5. Show that for a general percolation, the events [x ↔ e] and [x ↔ ∞] are indeed measurable.

5.6. Prove (5.5).

5.7. Show that for p ≥ pc(G), we have pc(ω) = pc(G)/p for Pp -a.e. ω. Physicists often refer to p as
the “density” of edges in ω, and this helps the intuition.

5.8. Show that, conversely to (5.13), the survival parameters adapted to given edge resistances are

px =
1 +

∑
o<u<x r(e(u))

1 +
∑

o<u≤x r(e(u)) .

For example, simple random walk (c ≡ 1) is adapted to px = |x |/�|x | + 1
�
.

5.9. Verify the assertion of Example 5.17.

5.10. Show that if br T < 1
/

cos π

N + 2
, then the root belongs to an infinite cluster in ωN of (5.14)

with probability zero.

5.11. Show that Proposition 5.21 is sharp on trees in the sense that when T is a tree, for all 𝜁 > pc(T),
there is a probability measure with EIT(𝜁). Of course, there is no p < pc(T) such that Bernoulli(p)
percolation on T has a.s. a transient open cluster.

5.12. Give a tree for which percolation does and a tree for which percolation does not occur at
criticality.

5.13. Show that critical homesick random walk on supercritical Galton-Watson trees is a.s. recurrent
in two ways: (1) by using Corollary 5.25; (2) by using the Nash-Williams criterion.

5.14. Let (T , c) be a transient network on a tree. Suppose that each ray of T is recurrent. Let θ be a
flow from the root to infinity of finite energy.

(a) Show that inf
�
R(o↔ x) ; |x | = n

	
→ ∞ as n → ∞.

(b) Show that
∑

|x |=n θ(e(x))2 ↓ 0 as n → ∞.
(c) Show that E (θ) =

∑
x R(o↔ x)�θ(e(x))2 −

∑
↼
y =x θ(e(y))2�.
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5.15. Show that for a Galton-Watson tree with offspring distribution Bin(d + 1, p), we have that
τ(d) > 0 for p sufficiently close to 1, where τ(d) is the probability that the tree contains a d-ary subtree
beginning at the initial individual.

5.16. Is Lemma 5.32 true for b = 2?

5.17. Let P be an independent percolation. Suppose that X is an increasing random variable with
finite expectation, F ⊂ 𝖤 is finite, and F is the (finite) σ-field generated by the coordinate functions
ω 7→ ω(e) (ω ∈ 2𝖤) for the edges e ∈ F. Show that E[X | F ] is an increasing random variable.

5.18. Let P be an independent percolation. Show that if A1, . . . , An are increasing events, then for
all p, P

�∩
Ai

�
≥
∏

P(Ai ) and P
�∩

Ac
i

�
≥
∏

P(Ac
i ).

5.19. Let T be a binary tree. Give random labels A(x) to its vertices as follows: Begin with A(o) := 0.
The other labels are defined recursively by dividing A(x) at random (as integers) between the children
of x and adding 1 to each child. That is, if the two children of x are x1 and x2, then A(x1) is uniform
in {1, 2, . . . , A(x) + 1} and A(x2) = A(x) + 2 − A(x1). Given A(x), all labels A(y) for y /∈ T x are
conditionally independent of all A(z) for z > x.

(a) Let ξ = ⟨ξn ; n ≥ 0⟩ be a ray in T starting at some vertex ξ0 = x. Show that


2n(A(ξn)− 2)� is

a martingale.
(b) Show that for all n ≥ 1, we have P

�
A(ξk ) ≥ 4 for 1 ≤ k ≤ n

�
A(ξ0)� ≤ 2−n

�
A(ξ0) − 2�/2 on

the event
�
A(ξ0) ≥ 4

�
.

(c) Show that a.s. there is no infinite path in T all of whose labels are at least 4.
(d) If the labels are real numbers instead of integers with the sole change that A(x1) is uniform in

[1, A(x) + 1], then show that again a.s. there is no infinite path in T all of whose labels are at least 4.

5.12 Additional Exercises
5.20. Consider a rooted Galton-Watson tree (T , o) whose offspring distribution is Poisson(c) for

some c > 0. This is sometimes called a Poisson-Galton-Watson(c) tree. If the total number of vertices
of T is k < ∞, then label the vertices of T uniformly with the integers 1, . . . , k. (These labels are
different from the labels used in Section 5.1, where the purpose of the labels was merely to make a
formal definition.) Show that every rooted labeled tree on k vertices arises with probability e−ckck−1/k!.
Consequently, if we condition that |𝖵(T)| = k, then the rooted labeled tree is uniformly distributed
among all rooted labeled trees on k vertices, that is, it has the distribution of a uniformly rooted uniform
spanning tree on the complete graph on {1, 2, . . . , k}.

5.21. Consider Bernoulli(c/n) percolation on the complete graph Kn with fixed c > 0 and any n ≥ c.
Fix a vertex o of Kn . Let C(o) be the cluster of o “rooted” at o.

(a) Show that as n → ∞, the distribution of C(o) tends to that of a rooted Galton-Watson tree
(T , o) whose offspring distribution is Poisson(c) in the sense that for every r , one can couple the ball of
radius r about o in C(o) with the ball of radius r about the root in a Galton-Watson tree in such a way
that they are equal with probability tending to 1 as n → ∞.

(b) Let CL be the result of labeling the vertices of C(o) uniformly by the integers 1, . . . , |C(o)|.
Show that for k < ∞, if we condition that |C(o)| = k, then the distribution of the labeled cluster CL
tends to that of a uniformly labeled Poisson-Galton-Watson(c) tree conditioned to have size k.

(c) Show that for a rooted labeled tree T of size k < ∞,

lim
n→∞

P
�
CL = T

�
=

e−ckck−1

k!
.

This gives another solution to Exercise 5.20.
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5.22. Suppose that Ln are offspring random variables that converge in law to an offspring random
variable L with P[L = 1] < 1. Let the corresponding extinction probabilities be qn and q. Show that
qn → q as n → ∞.

5.23. Give another proof that m ≤ 1 ⇒ a.s. extinction unless p1 = 1 as follows. Let Z∗1 be the number
of particles of the first generation with an infinite line of descent. Let Z (i)∗

1 be the number of children of
the ith particle of the first generation with an infinite line of descent. Show that Z∗1 =

∑Z1
i=1 1 ∧ Z (i)∗

1 .
Take the L1 and L∞ norms of this equation to get the desired conclusion.

5.24. Give another proof of Propositions 5.1 and 5.4(i) as follows. Write

Zn+1 = Zn +
Zn∑
i=1

(
L(n+1)
i − 1

)
.

This is a randomly sampled random walk, that is, a random subsequence of the locations of a random
walk on � whose steps have the same distribution as L − 1. Apply the strong law of large numbers or
the Chung-Fuchs theorem (Durrett (2010), Theorem 4.2.7), as appropriate.

5.25. Let ⟨Xn⟩ be a Markov chain on� such that the law of Xn+1 given Xn is Poisson with parameter
Xn . Show that a.s. for all large n, we have Xn = 0.

5.26. Show that ⟨Zn⟩ is a nonnegative supermartingale when m ≤ 1 to give another proof of a.s.
extinction when m ≤ 1 and p1 ̸= 1.

5.27. Suppose that the offspring random variable L in a Galton-Watson process has first moment
m > 1 and a finite second moment. Show that the second moments of Zn/mn are bounded. Deduce
that Zn/mn → W in L2.

5.28. Show directly that if 0 < r < 1 satisfies f (r) = r , then ⟨rZn ⟩ is a martingale. Use this to give
another proof of Proposition 5.1 and Proposition 5.4 in the case m > 1.

5.29. (Grey, 1980) Let ⟨Zn⟩, ⟨Z′n⟩ be independent Galton-Watson processes with identical offspring
distribution and arbitrary, possibly random, Z0, Z′0 with Z0 + Z′0 ≥ 1 a.s., and set

Yn :=
{

Zn/(Zn + Z ′n) if Zn + Z′n ̸= 0
Yn−1 if Zn + Z′n = 0.

(a) Fix n. Let A be the event
A :=

�
Zn+1 + Z′n+1 ̸= 0

�
and Fn be the σ-field generated by Z0, . . . , Zn , Z′0, . . . , Z′n . Use symmetry to show that

E
�
L(n+1)
i /(Zn+1 + Z′n+1)

�
Fn

�
= 1/(Zn + Z′n) a.s. on the event A.

(b) Show that ⟨Yn⟩ is a martingale with a.s. limit Y .
(c) If 1 < m < ∞, show that 0 < Y < 1 a.s. on the event Zn ̸→ 0 and Z′n ̸→ 0. Hint: Let

Y (k) := limn→∞ Zn/(Zn + Z′k+n). Then E[Y (k) | Z0, Z′k ] = Z0/(Z0 + Z′k ) and P[Y = 1, Zn ̸→ 0, Z′n ̸→
0] = P[Y (k) = 1, Zn ̸→ 0, Z′n ̸→ 0] ≤ E

�
Y (k)1[Z′

k
>0]

�
→ 0 as k → ∞.

5.30. In the notation of Exercise 5.29, show that if Z0 ≡ Z′0 ≡ 1 and 1 < m < ∞, then

P
�
Y ∈ (0, 1)� = (1 − q)2 + p2

0 +
∑
n≥1

�
f (n+1)(0) − f (n)(0)�2 .

5.31. Deduce the Seneta-Heyde theorem from Grey’s theorem (Exercise 5.29).
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5.32. Show that for any Galton-Watson process with m < ∞, we have Zn+1/Zn → m a.s. on
nonextinction.

5.33. Let f be the p.g.f. of a Galton-Watson process. Show that

E
�
s
∑N

n=0 Zn
�

= gN (s) ,
where g0(s) := s and gn+1(s) := s f

�
gn(s)� for n ≥ 1. Define s0 := sup

�
t/ f (t) ; t ≥ 1

	
≥ 1. Show that

E
�
s
∑

n≥0 Zn
�

= g∞(s) ,
where g∞(s) := limN→∞ gN (s) = s f

�
g∞(s)� is finite for s < s0. Show that if the process is subcritical

and f (s) < ∞ for some s > 1, then s0 > 1.

5.34. Let 0 < p < 1 and consider a branching process such that each individual has two children
with probability p and 0 children otherwise. Show that the probability generating function for the total
number of individuals is

s 7→ 1 −
√

1 − 4p(1 − p)s2

2ps
.

5.35. Let L be the offspring random variable of a Galton-Watson process. There are various useful
ways to encode by a random walk the family tree when it is finite. We consider one such way here.
Suppose that the process starts with k individuals, that is, Z0 = k. Let Ztot :=

∑
n≥0 Zn be the total size

of the process. Let Sn :=
∑n

j=1(L j − 1), where L j are independent copies of L.
(a) Show that P[Ztot = n] = P[Sn = −k, ∀i < n Si > −k].
(b) (Otter-Dwass Formula) Show that P[Ztot = n] = k

n
P[Sn = −k].

(c) Show that in the noncritical case, the expected number of visits to −k of the random walk
⟨Sn ; n ≥ 0⟩ is qk

/�
1 − f ′(q)�, where q is the extinction probability of the Galton-Watson process and

f is the probability generating function of L. Show that in the critical case, this expectation is infinite.
(d) Let τn be the time of the nth visit to −k of the random walk ⟨Sn ; n ≥ 0⟩, where τn := ∞ if

fewer than n visits are made to −k. Show that P[τ1 < ∞] = qk and E
�∑

n 1/τn
�

= qk/k.

5.36. Consider a Galton-Watson process with offspring distribution equal to Poisson(1) and total
size Ztot :=

∑
n≥0 Zn .

(a) Show that P[Ztot = n] = nn−1e−n/n!. Hint: Use the Otter-Dwass formula from Exercise 5.35(b).
(b) By comparing with Exercise 5.20, derive Cayley’s formula that the number of trees on n

vertices is nn−2.

5.37. Consider a Galton-Watson process with offspring distribution equal to Poisson(1). Let o be the
root and X be a random uniform vertex of the tree. Show that P[X = o] = 1/2.

5.38. Let T be a tree. Show that for p < 1/ gr T , the expected size of the cluster of a vertex is finite
for Bernoulli(p) percolation, whereas it is infinite for p > 1/ gr T .

5.39. Let T be an infinite locally finite tree. Define the random tree T(p) by contracting e(x) for
each x ̸= o independently with probability p. Show that sup

�
p ; T(p) is locally finite a.s.

	
= pc(T) and

calculate the distribution of br T(p) for p < pc(T).
5.40. Deduce Corollary 5.10 from Hawkes’s earlier result (that is, from the special case where it is

assumed that E[L(log L)2] < ∞) by considering truncation of the progeny random variable, L.

5.41. Let θn(p) denote the probability that the root of an n-ary tree has an infinite cluster under
Bernoulli(p) percolation. Thus, θn(p) = 0 iff p ≤ 1/n. Calculate and graph θ2(p) and θ3(p). Show
that for all n ≥ 2, the left-hand derivative of θn at 1 is 0 and the right-hand derivative of θn at 1/n is
2n2/(n − 1).
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5.42. Let Π be a cutset in a locally finite graph on which is defined some percolation measure. Show
that for µ1, µ2 ∈ P(Π),

E

(
µ1 + µ2

2

)
+ E

(
µ1 − µ2

2

)
=

E (µ1) + E (µ2)
2

,

where E ( • ) is extended in the obvious way to nonprobability measures on Π from the definition (5.10).

5.43. Let Π be a cutset in a locally finite graph on which is defined some percolation measure, P.
Show that if P

�
e1, e2 ⊆ K(o)� ̸= 0 for every pair e1, e2 ∈ Π, then E ( • ) has a unique minimum on P(Π).

5.44. Let T be the family tree of a supercritical Galton-Watson process. Show that a.s. on the event
of nonextinction, simple random walk on T is transient.

5.45. Let T be the family tree of a supercritical Galton-Watson process without extinction and with
mean m. For 0 < 𝜆 < m, consider 𝖱𝖶𝜆 with the conductances c(e) = 𝜆−|e |.

(a) Show that E
�
C (o↔ ∞; T)� ≤ m − 𝜆 and E

�
R(o↔ ∞; T)� ≥ 1/(m − 𝜆).

(b) Show that E
�
P[τ+

o = ∞]� ≤ 1 − 𝜆/m.

5.46. Given a quasi-independent percolation on a locally finite tree T with P[o↔ u | o↔ ↼u] ≡ p,
show that if p < (br T)−1, then P[o↔ ∞] = 0 whereas if p > (br T)−1, then P[o↔ ∞] > 0.

5.47. Let T be any tree on which simple random walk is transient. Let U be a random variable
uniform on [0, 1]. Define a percolation on T by taking the subtree of all edges at distance at most 1/U .
Show that the inequality of Theorem 5.19 fails if conductances are adapted to this percolation.

5.48. Let T be any infinite tree. Let U(x) be i.i.d. random variables uniform on [0, 1] indexed by
the vertices of T . Define a percolation on T by taking the subgraph spanned by all vertices x such that
U(x) ≤ U(o). Show that the root belongs to an infinite cluster with positive probability iff br T > 1.
Show that this percolation is not quasi-independent.

5.49. Improve the Paley-Zygmund inequality to Cantelli’s inequality: if X is a random variable with
mean 1 and t < 1, then

P[X > t] ≥ (1 − t)2

(1 − t)2 + Var(X) .

5.50. Consider the usual graph on �d and orient each edge in its positive coordinate direction. For
Bernoulli percolation on �d , the set of oriented open paths is called oriented percolation. The critical
value pc(d) for oriented percolation is the supremum of those p such that in Bernoulli(p) percolation,
there is no infinite oriented open path. Show that limd→∞ dpc(d) = 1.

5.51. Consider independent percolation on a tree T with the survival probability of each edge
bounded away from 1. Let mn denote the expected number of vertices of T at level n that are connected
to the root, o.

(a) Show that if
∑

n m−1
n = ∞, then P[o↔ ∞] = 0.

(b) Show that if T is spherically symmetric, then the converse of (a) holds.
(c) Give an example of a nonspherically symmetric T of bounded degree where the converse of

(a) fails.

5.52. Consider Bernoulli(1/2) percolation on a tree T . Let pn := P1/2[o↔ Tn].
(a) Show that if there is a constant c such that for every n we have |Tn | ≤ c2n , then pn ≤ 4c/(n+2c)

for all n.
(b) Show that if there are constants c1 and c2 such that for every n we have |Tn | ≥ c12n and also

for every vertex x we have |T x
n | ≤ c22n , then pn ≥ c3/(n + c3) for all n, where c3 := 2c2

1/c
3
2 .

5.53. Let T(n) be a binary tree of height n and consider Bernoulli(1/2) percolation. For large n,
which inequalities in (5.21) are closest to equalities?
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5.54. Let T be a binary tree and consider Bernoulli(p) percolation with p ∈ (1/2, 1). Which
inequalities in Theorem 5.24 have the ratios of the two sides closest to 1?

5.55. Randomly stretch a tree T by adding vertices to (“subdividing”) the edges to make the edge
e(x) a path of length Lx (ω) with Lx i.i.d. Call the resulting tree T(ω). Calculate the distribution of
br T(ω) in terms of br T and of the distribution of Lx . Show that if br T > 1, then br T(ω) > 1 a.s.

5.56. Suppose that br T = gr T . Consider the stretched tree T(ω) from Exercise 5.55. Show that
br T(ω) = gr T(ω) a.s.

5.57. Consider the stretched tree T(ω) from Exercise 5.55. If we assume only that simple random
walk on T is transient, must simple random walk on T(ω) be transient a.s.?

5.58. Consider a percolation on T for which there is some M′ > 0 such that, for all x, y ∈ T and
A ⊆ T with the property that the removal of x ∧ y would disconnect y from every vertex in A,

P[o↔ y | o↔ x, o = A] ≥ M′ P[o↔ x | o↔ x ∧ y] .
Show that the adapted conductances satisfy

P[o↔ ∞] ≤ 2
M′

C (o↔ ∞)
1 + C (o↔ ∞) .

5.59. Consider the percolation of Example 5.20. Sharpen Exercise 5.10 by showing that if the root
belongs to an infinite cluster with positive probability, then 𝖱𝖶𝜆 is transient on T for 𝜆 := 1

/
cos π

N + 2
.

5.60. The inequalities (5.21) can also be proved by entirely elementary means.
(a) Prove that if 0 < xn ≤ 1, then∑ 1 − xn

xn

≤ 1 −
∏

xn∏
xn

and
∑ 1 − xn

1 + xn

≥ 1 −
∏

xn

1 +
∏

xn

.

(b) Use induction to deduce (5.21) from the inequalities of part (a).
(c) Prove that for C ≥ 0 and C/(1 + C) < p ≤ 1,

p
(
1 − exp

( −2C
p(1 + C) − C

))
≤ 1 − e−2C .

(d) Use induction to deduce from part (c) the following sharper form of the right-hand inequality
of (5.21):

P[o↔ ∂LT] ≤ 1 − exp
�
−2C (o↔ ∂LT)� .

5.61. Show that if f is the p.g.f. of a supercritical Galton-Watson process, then the p.g.f. of Zn given
survival is �

f (n)(s) − f (n)(qs)�/q .

5.62. A multitype Galton-Watson branching process has J types of individuals, with an individual
of type i generating k j individuals of type j for j = 1, . . . , J with probability p(i)

k , where k :=
(k1, . . . , kJ ). As in the single-type case, all individuals generate their children independently of each
other. Show that a supercritical single-type Galton-Watson tree given survival has the following
alternative description as a two-type Galton-Watson tree. Let ⟨pk ⟩ be the offspring distribution and q
be the extinction probability. Let type 1 have offspring distribution obtained as follows: Begin with k
children with probability pk (1 − qk )/(1 − q) for k ≥ 1. Then make each child type 1 with probability
1 − q and type 2 with probability q, independently but conditional on having at least one type-1 child.
The type-2 offspring distribution is simpler: it has k children of type 2 (only) with probability pkqk−1.
Let the root be type 1.
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5.63. Let 1 ≤ b < d < n. Recall the critical probabilities π(•, •) of Proposition 5.30. Show that
π(n, d)π(d, b) ≥ π(n, b).

5.64. Let d ≥ 2. Consider a Galton-Watson process with offspring distribution being geometric
with parameter p. Write τp(d) for the probability that the Galton-Watson tree contains a d-ary subtree
beginning with the initial individual. Show that there exists p0 ∈ (0, 1) such that for p < p0, we
have τp(d) = 0 and for p ≥ τp(d), we have τp(d) > 0. Prove a similar statement when the offspring
distribution is Poisson with parameter 𝜆.

5.65. Show that the extinction probability y(p) introduced in the proof of Proposition 5.31 satisfies
y(p)→ 0 as p→ 1.

5.66. Show that
π(n, n − 1) =

(n − 1)2n−3

nn−1(n − 2)n−2

for the critical probability of Section 5.7. What is the probability of having an (n − 1)-ary subtree
exactly at this value of p?

5.67. This exercise uses the notion of stochastic domination, as explained in Exercise 4.46 for
real-valued random variables and in Sections 7.4 and 10.2 with respect to inclusion.

(a) Show that for p ∈ (0, 1), there exists q ∈ (0, 1) such that the first stage A1,b2 (p) of one
fractal percolation is stochastically dominated by the second stage A1,b(q) ∩ A2,b(q) of another fractal
percolation. Hint: Let Bern(q) denote a Bernoulli random variable with parameter q, that is, a random
variable that takes the value 1 with probability q and 0 otherwise. Take q so that Bern(q) dominates the
maximum of b2 independent copies of a Bern

�√
p
�

random variable.
(b) Deduce that Theorem 5.33 holds for b = 2 as well.

5.68. Fix an infinite tree T . Let φ:𝖵(T)→ � be given, as well as real-valued independent random
variables A(x) for x ∈ 𝖵(T). Define the associated T-indexed random walk S(x) :=

∑
y≤x A(y). Let

Φ be the set of rays ξ ∈ ∂T such that S(x) > φ(x) for all x ∈ ξ. Suppose that for all ξ ∈ ∂T , the
probability that ξ ∈ Φ is 0. Show that a.s. |Φ| ∈ {0, 2ℵ0 }. Hint: Modify the proof in Section 5.8 of
Proposition 5.27.

5.69. Let T be a tree such that supn |Tn |/√n < ∞. Assign ±1 labels to each vertex independently
with probability 1/2 each. Show that a.s. there is no ray along which the sum of the labels stays positive.

5.70. Consider fractal percolation in the rectangle [0, 1]×[0, 2]with parameters b and p. That is, take
a union of two independent copies of fractal percolation Qb(p) in the unit square as in Theorem 5.33,
one translated vertically by 1. Let 𝜆k (p) denote the probability of a left-to-right crossing with retained
squares of side length b−k and write 𝜆∞(p) := limk 𝜆k (p).

(a) Show that there exists p1×2 ∈ [1/b2, 1) such that 𝜆∞(p) = 0 for p < p1×2 and 𝜆∞(p) > 0 for
p > p1×2.

(b) Show that p1×2 ≥ 1/b.

ALA RA

Figure 5.5. See
Exercise 5.71.

(c) Prove that 𝜆k+1(p) ≤ �(4b − 3)𝜆k (p)�2. Hint: Consider first the
case b = 2. Show that crossing [0, 1/2] × [0, 2] in level k + 1 requires
a horizontal crossing of at least one of three specific [0, 1/2] × [0, 2]
rectangles, or a vertical crossing of at least one of two specific squares
of side 1/2.

(d) Deduce that 𝜆∞(p1×2) > 0.

5.71. Consider fractal percolation Qb(p) in the unit square [0, 1] ×
[0, 1] with parameters b and p. Recall that θk (p) denotes the probability
of a left-to-right crossing with retained squares of side length b−k and
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θ∞(p) := limk θk (p). Let p1×1 := inf
�
p ∈ [0, 1] ; θ∞(p) > 0

	
. For a

level m square A on the bottom of the unit square, let LA be the left side
of the unit square union the bottom side to the left of A, and define RA

analogously (see Figure 5.5 on the preceding page). For k ≥ m, write
θk (p, A) for the probability there exists a path of retained squares at level
k that connects LA to RA and that does not use A. We also adopt the
notation of Exercise 5.70.

(a) Show that 𝜆k (p) ≤ 2pm + 2θk (p, A) for all m ≤ k and every A.
Hint: See Figure 5.6 at right.

(b) Show that there exists A such that θk (p, A)bm ≤ θk (p). Hint:
Use Harris’s inequality.

(c) Deduce that θ∞(p) = 0 implies 𝜆∞(p) = 0.
(d) Conclude that p1×1 = p1×2 and that θ∞(p1×1) > 0.

A
LA RA

A′
LA′ RA′

Figure 5.6. See
Exercise 5.71.

The remaining exercises use the following notions. Let X and
Y be real-valued random variables. Say that X is at least Y in the
increasing convex order if E

�
h(X)� ≥ E

�
h(Y )� for all nonnegative

increasing convex functions h:�→ �.

5.72. Let X and Y be real-valued random variables.
(a) Show that X is at least Y in the increasing convex order iff

∫ ∞
a

P[X > t] dt ≥
∫ ∞
a

P[Y > t] dt
for all a ∈ �.

(b) Suppose that X is at least Y in the increasing convex order. Show that E
�
h(X)� ≥ E

�
h(Y )� for

every convex function h:�→ � if and only if X and Y have the same mean. When the means of X and
Y are the same, one also says that X is stochastically more variable than Y .

5.73. Suppose that Xi are nonnegative independent identically distributed random variables, that Yi
are nonnegative independent identically distributed random variables, and that Xi is stochastically more
variable than Yi for each i ≥ 1.

(a) Show that
∑n

i=1 Xi is at least
∑n

i=1 Yi in the increasing convex order for each n ≥ 1.
(b) Let M and N be nonnegative integer-valued random variables independent of all Xi and Yi .

Suppose that M is at least N in the increasing convex order. Show that
∑M

i=1 Xi is at least
∑N

i=1 Xi in
the increasing convex order, which, in turn, is at least

∑N
i=1 Yi in the increasing convex order.

5.74. Suppose that L(1) is an offspring random variable that is at least L(2) in the increasing convex
order and that Z (i)

n are the corresponding generation sizes of Galton-Watson processes beginning with
one individual each.

(a) Show that Z (1)
n is at least Z (2)

n in the increasing convex order for each n.
(b) Show that P[Z (1)

n = 0] ≥ P[Z (2)
n = 0] for each n if the means of L(1) and L(2) are the same.

(c) Show that the conditional distribution of Z (1)
n given Z (1)

n > 0 is at least the conditional
distribution of Z (2)

n given Z (2)
n > 0 in the increasing convex order for each n.

(d) Show that the following is an example where L(1) is at least L(2) in the increasing convex order.
Write p(i)

k
for P[L(i) = k]. Suppose that p(1)

0 > 0, that a := min{k ≥ 1 ; p(1)
k
> 0}, that p(2)

k
= 0 for

k > K , that p(2)
k

= p(1)
k

for a < k ≤ K , and that E[L(1)] = E[L(2)].
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6 Isoperimetric
Inequalities

Just as the branching number of a tree is for most purposes more important than the growth
rate, there is a number for a general graph that is more important for many purposes than
its growth rate. In the present chapter, we consider this number, or, rather, several variants
of it, called isoperimetric or expansion constants. This is not an extension of the branching
number, however; for that, the reader can see Section 13.7.
Our main interest in expansion constants is to apply them to random walks and percolation

on infinite graphs. In particular, whether the expansion is zero or positive plays a crucial role
in determining qualitative behavior of these probabilistic processes. This will be seen here as
well as in the later Chapters 7, 8, 10, and 11. A similar role is played on finite graphs, but we
touch on finite graphs only briefly in Section 6.4.
The second half of this chapter concerns isoperimetric and expansion profiles, functions

that measure the size of the boundary of a set compared to the size of the set itself, when such
a ratio is not necessarily bounded away from 0. Again, we present applications to random
walks and to percolation.

6.1 Flows and Submodularity

A common illegal scheme for making money, known as a pyramid scheme or Ponzi scheme,
goes essentially as follows. You convince 10 people to send you $100 each and to ask 10
others in turn to send them $100. Everyone who manages to do this will profit $900 (and
you will profit $1000). Of course, some people will lose $100 in the end. But suppose that
we had an infinite number of people. Then no one need lose money and indeed everyone
can profit $900. But what if people can ask only people they know? Suppose that people
are at the vertices of the square lattice and know only their four nearest neighbors. Is it now
possible for everyone to profit $900? If the amount of money allowed to change hands (that
is, the amount crossing any edge) is unbounded, then certainly this is possible. But what if
the amount crossing any edge is bounded by, say, $1,000,000? The answer now is no. In fact,
although it is still possible for everyone to profit, the profit cannot be bounded away from 0.
Why is this? Consider first the case that there are only a finite number of people. If we

simply add up the total net gains, we obtain 0, whence it is impossible for everyone to gain a
strictly positive amount. For the lattice case, consider all the people lying within distance n of
the origin. What is the average net gain of these people? The only reason this average might
not be 0 is that money can cross the boundary. However, because of our assumption that the
money crossing any edge is bounded, it follows that for the average net gain, this boundary
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crossing is negligible in the limit as n → ∞. Hence the average net gain of everyone is 0 and
it cannot be that everyone profits $900 (or even just one cent).
But what if the neighbor graph was that of the hyperbolic tessellation of Figure 2.4?

The figure suggests that the preceding argument, which depended on finding finite subsets
of vertices with relatively few edges leading out of them, will not work. Does that mean
everyone could profit $900? What is the maximum profit everyone could make? The picture
also suggests that the graph is somewhat like a tree, which suggests that significant profit is
possible. Indeed, this is true, as we now show. We will generalize this problem a little by
restricting the amount that can flow over edge e to be at most c(e) and by supposing that the
person at location x has as a goal to profit D(x). We ask, What is the maximum α such that
each person x can profit αD(x)? Thus, on the Euclidean lattice, we saw that α = 0 when c is
bounded above and D is bounded below.
To answer this question, we introduce some terminology. Let G be a connected graph.

Weight the edges by positive numbers c(e) and the vertices by positive numbers D(x). We
call (G, c, D) a network, which is a little more general than the networks we have used before
where we had weights only for the edges. We assume that G is locally finite, or, more
generally, that for each x, ∑

e−=x

c(e) < ∞ . (6.1)

For K ⊂ 𝖵, we define the edge boundary ∂𝖤K to be the set of (unoriented) edges that connect
K to its complement. Write

|K |D :=
∑
x∈K

D(x)

and
|∂𝖤K |c :=

∑
e∈∂𝖤K

c(e) .

Define the edge-expansion constant or edge-isoperimetric constant of (G, c, D) by

Φ𝖤(G) := Φ𝖤(G, c, D) := inf
{ |∂𝖤K |c

|K |D ; ∅ ̸= K ⊂ 𝖵 is finite
}
.

This is a measure of how small we can make the boundary effects in our preceding argument.
The most common choices for (c, D) are (1, 1) and (1, deg). For a network with conductances
c, one often chooses (c, π) (as in Section 6.2). When Φ𝖤(G) = 0, we say the network is edge
amenable (we’ll explain the origin of the name after we define “vertex amenable” later).
Thus, the square lattice is edge amenable; but note that there are large sets in �2 that also
have large boundary. The point is that there exist sets that have relatively small boundary.
This is impossible for a regular tree of degree at least 3.

▷ Exercise 6.1.
Show that Φ𝖤(�b+1, 1, 1) = b − 1 for all b ≥ 1, where �b+1 is the regular tree of degree b + 1.
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The opposite of “amenable” is nonamenable; one also says that a nonamenable network
satisfies a strong isoperimetric inequality.
The following theorem (and Exercise 6.2) shows that Φ𝖤(G) is precisely the maximum

proportional profit α that we seek (actually, because of our choice of d∗, we need to take
the negative of the function θ guaranteed by Theorem 6.1). The theorem thus dualizes the
infimum in the definition of Φ𝖤(G) not only to a supremum, but to a maximum. It is due to
Benjamini, Lyons, Peres, and Schramm (1999b), hereinafter referred to as BLPS (1999b).

Theorem 6.1. (Duality for Edge Expansion) For any network (G, c, D), we have

Φ𝖤(G, c, D) = max
�
α ≥ 0 ; ∃θ ∀e |θ(e)| ≤ c(e) and ∀x d∗θ(x) = αD(x)	 ,

where θ runs over the antisymmetric functions on 𝖤.

Proof. Denote by A the set of α of which the maximum is taken on the right-hand side of
the desired equation. Thus, we want to show that max A = Φ𝖤(G). In fact, we will show that
A =

�
0,Φ𝖤(G)� as a consequence of the max-flow min-cut theorem.

Given α ≥ 0 and any finite nonempty K ⊂ 𝖵, define the network G(K) = G(K , α) with
vertices K and two extra vertices, a and z. The edges are those of G with both endpoints in
K , those in ∂𝖤K where the endpoint not in K is replaced by z, and an edge between a and
each point in K . Give each edge e with both endpoints in K the capacity c(e). Give each
edge [x, z] the capacity of the corresponding edge in ∂𝖤K . Give the other edges capacity
c(a, x) := αD(x).
In view of the cutset consisting of all edges incident to z, it is clear that any admissible

flow from a to z in G(K) has strength at most |∂𝖤K |c . Suppose that α ∈ A, in other words,
that there is a function θ satisfying ∀e |θ(e)| ≤ c(e) and ∀x d∗θ(x) = αD(x). This function
θ induces an admissible flow on G(K) from a to z of strength α|K |D by putting the flow
αD(x) on each edge (a, x) for x ∈ K , whence α ≤ |∂𝖤K |c/|K |D . Since this holds for all K ,
we get α ≤ Φ𝖤(G).

In the other direction, if α ≤ Φ𝖤(G), then for all finite K , we claim that there is an
admissible flow from a to z in G(K) of strength α|K |D . Consider any cutset Π separating a
and z. Let K ′ be the vertices in K that Π separates from z. Then ∂𝖤K ′ ⊆ Π and [a, x] ∈ Π
for all x ∈ K \ K ′. Therefore,∑

e∈Π

c(e) ≥ |∂𝖤K ′|c + α|K \ K ′|D ≥ Φ𝖤(G)|K ′|D + α|K \ K ′|D
≥ α|K ′|D + α|K \ K ′|D = α|K |D .

Thus, our claim follows from the max-flow min-cut theorem. Note that the flow along [a, x]
is αD(x) for every x ∈ K , since the flow’s strength is α|K |D .
Now let Kn be finite sets increasing to 𝖵, and let θn be admissible flows on G(Kn) with

strength α|Kn |D . There is a subsequence ⟨ni⟩ such that for all edges e ∈ 𝖤, the limit
θ(e) := θni

(e) exists; clearly ∀e |θ(e)| ≤ c(e) and, by (6.1) and the dominated convergence
theorem, ∀x d∗θ(x) = αD(x). Thus, α ∈ A. ◀
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▷ Exercise 6.2.
Show that for any network (G, c, D), we have

Φ𝖤(G, c, D) = max
�
α ≥ 0 ; ∃θ ∀e |θ(e)| ≤ c(e) and ∀x d∗θ(x) ≥ αD(x)	 ,

where θ runs over the antisymmetric functions on 𝖤.

Is the infimum in the definition of Φ𝖤(G) a minimum? Certainly not in the edge amenable
case. The reader should find an example where it is a minimum, however. It turns out that in
the transitive case, it is never a minimum, as shown by BLPS (1999b). Here, we say that a
network (G, c, D) is transitive if, for every pair x, y ∈ 𝖵(G), there is an automorphism of the
graph G that takes x to y and that preserves the edge weights c and vertex weights D. To
prove that transitive networks do not have minimizing sets, we will use the following concept.

A function b on finite subsets of 𝖵 is called submodular if

∀K , K ′ b(K ∪ K ′) + b(K ∩ K ′) ≤ b(K) + b(K ′) . (6.2)
For example, K 7→ |K |D is obviously submodular with equality holding in (6.2):

∀K , K ′ |K ∪ K ′|D + |K ∩ K ′|D = |K |D + |K ′|D . (6.3)
The identity

|∂𝖤(K ∪ K ′)|c + |∂𝖤(K ∩ K ′)|c + 2 |∂𝖤(K \ K ′) ∩ ∂𝖤(K ′ \ K)|c = |∂𝖤K |c + |∂𝖤K ′|c (6.4)
is easy, though tedious, to check. It shows that b: K 7→ |∂𝖤K |c is submodular, with equality
in (6.2) iff ∂𝖤(K \ K ′) ∩ ∂𝖤(K ′ \ K) = ∅, which is the same as K \ K ′ not adjacent to K ′ \ K .

Theorem 6.2. If (G, c, D) is an infinite transitive network, then for all finite nonempty K ⊂ 𝖵,
we have |∂𝖤K |c/|K |D > Φ𝖤(G).
Proof. At first, we do not need to suppose that G is transitive. By the submodularity of
b(K) := |∂𝖤K |c and (6.3), we have for any finite K and K ′,

b(K ∪ K ′) + b(K ∩ K ′)
|K ∪ K ′|D + |K ∩ K ′|D ≤

b(K) + b(K ′)
|K |D + |K ′|D ,

with equality iff K \ K ′ is not adjacent to K ′ \ K . Now when a, b, c, d are positive numbers,
we have

min{a/b, c/d} ≤ (a + c)/(b + d) ≤ max{a/b, c/d} .
Therefore

min
{

b(K ∪ K ′)
|K ∪ K ′|D ,

b(K ∩ K ′)
|K ∩ K ′|D

}
≤ max

{
b(K)
|K |D ,

b(K ′)
|K ′|D

}
, (6.5)

with equality iff K \ K ′ is not adjacent to K ′ \ K and all four quotients appearing in (6.5) are
equal. (In case K ∩ K ′ is empty, omit it on the left-hand side.)
Now we use the hypothesis that G is transitive. Suppose for a contradiction that there is

some finite set K with b(K)/|K |D = Φ𝖤(G). Choose some such set K of minimal cardinality.
Let o ∈ K and choose an automorphism γ of G such that γo is outside K but adjacent to
some vertex in K . Define K ′ := γK . Note that b(K ′)/|K ′|D = b(K)/|K |D . If K ∩ K ′ ̸= ∅,
then our choice of K implies that equality cannot hold in (6.5), whence K ∪ K ′ has a strictly
smaller quotient, a contradiction. But if K ∩ K ′ = ∅, then K \ K ′ and K ′ \ K are adjacent,
whence (6.5) shows again that K ∪ K ′ has a strictly smaller quotient, a contradiction. ◀
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Sometimes it is useful to look at boundary vertices rather than boundary edges. Thus,
given positive numbers D(x) on the vertices of a graph G, define the (outer) vertex boundary
∂𝖵K

∂𝖵K := {x /∈ K ; ∃y ∈ K y ∼ x}
and

Φ𝖵(G) := Φ𝖵(G, D) := inf
{ |∂𝖵K |D

|K |D ; ∅ ̸= K ⊂ 𝖵 is finite
}
,

called the vertex-expansion constant or vertex-isoperimetric constant of G. The most
common choice is D = 1. We call G vertex amenable if its vertex-expansion constant
is 0. For two positive functions f1 and f2 on the same domain, write f1 ≍ f2 to mean
that inf f1/ f2 > 0 and sup f1/ f2 < ∞. Note that if (G, c, D) satisfies c ≍ 1 ≍ D ≍ deg,
then (G, c, D) is edge amenable iff (G, D) is vertex amenable. We’ll call (G, c, D) simply
amenable if it is both edge amenable and vertex amenable.

▷ Exercise 6.3.
Suppose that G is a graph such that for some o ∈ 𝖵, we have subexponential growth of balls:
lim infn→∞ |{x ∈ 𝖵 ; d(o, x) ≤ n}|1/n = 1, where d(•, •) denotes the graph distance in G.
Show that (G, 1) is vertex amenable.

▷ Exercise 6.4.
Show that every Cayley graph of a finitely generated abelian group is amenable.

▷ Exercise 6.5.
Suppose that G1 and G2 are roughly isometric graphs with bounded degrees and having both
edge and vertex weights ≍ 1. Show that G1 is amenable iff G2 is.

Because of Exercises 6.5 and 3.12, either all Cayley graphs of a group are amenable or none
are; that is, amenability is a property of the group. In fact, the concept of amenability comes
from groups, not graphs. This origin also explains the name “amenable” in the following way.
Let Γ be any countable group, and let ℓ∞(Γ) be the Banach space of bounded real-valued
functions on Γ. A linear functional on ℓ∞(Γ) is called a mean if it maps the constant function
1 to 1 and nonnegative functions to nonnegative numbers. If f ∈ ℓ∞(Γ) and γ ∈ Γ, we write
(Rγ f )(γ′) := f (γ′γ). We call a mean µ invariant if µ(Rγ f ) = µ( f ) for all f ∈ ℓ∞(Γ) and
all γ ∈ Γ. Finally, we say that Γ is amenable if there is an invariant mean on ℓ∞(Γ). Thus,
“amenable” was introduced as a play on words that evoked the word “mean.” How is this
related to the definitions we have given? Suppose that Γ is finitely generated and that G is
one of its Cayley graphs. If (G, 1) is amenable, then there is a sequence of finite sets Kn with

|∂𝖵Kn |/|Kn | → 0 . (6.6)

Now consider the sequence of means

f 7→ µn( f ) :=
1

|Kn |
∑
x∈Kn

f (x) .
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Then given f ∈ ℓ∞(Γ), for every generator γ of Γ, we see that |µn( f ) − µn(Rγ f )| → 0 as
n → ∞, whence the same holds for all γ ∈ Γ. One can use a weak∗ limit point of the means
µn to obtain an invariant mean and therefore show that Γ is amenable. The converse was
established by Følner (1955) and is usually stated in the form that for every nonempty finite
B ⊂ Γ and all ϵ > 0, there is a nonempty finite set A ⊂ Γ such that |BA △ A| ≤ ϵ |A|; see
Paterson (1988), Theorem 4.13, for a proof of this converse. In this case, one often refers
informally to A as a Følner set. More properly, a sequence ⟨Kn⟩ satisfying (6.6) is called a
Følner sequence. In conclusion, a finitely generated group Γ is amenable iff any of its Cayley
graphs is.
We claim that for any graph G, the balls BG(x, n) in G about every point x of radius n

satisfy
|BG(x, n)|1/n ≥ 1 + Φ𝖵(G, 1) . (6.7)

Indeed, with c = Φ𝖵(G, 1), we have that |∂𝖵B(x, n)| ≥ c|B(x, n)|, which is the same as
|B(x, n + 1)| ≥ (1 + c)|B(x, n)|. This implies (6.7). In particular, if a group Γ is nonamenable,
then all its Cayley graphs G have exponential growth.
Surprisingly, the converse fails, and various classes of counterexamples are known. One

counterexample is the lamplighter group �⊙ defined in Section 3.4, where we saw that it has
growth rate (1 +

√
5)/2. On the other hand, to see that �⊙ is amenable, consider the “boxes”

Kn :=
{(ψ,m) ; m ∈ [−n, n], ψ−1�{1}� ⊆ [−n, n]} . (6.8)

Then |Kn | = (2n + 1)22n+1, while |∂𝖤Kn | = 22n+2.
The analogue for vertex amenability of Theorem 6.1 is due to Benjamini and Schramm

(1997). It involves the amount flowing along edges into vertices,

𝖿 𝗅𝗈𝗐+(θ, x) :=
∑
e+=x

�
θ(e) ∨ 0

�
.

Theorem 6.3. (Duality for Vertex Expansion) For any graph G with vertex weights D, we
have

Φ𝖵(G, D) = max
�
α ≥ 0 ; ∃θ ∀x 𝖿 𝗅𝗈𝗐+(θ, x) ≤ D(x) and d∗θ(x) = αD(x)	 ,

where θ runs over the antisymmetric functions on 𝖤.

Proof. This time we use the max-flow min-cut theorem in the version of Exercise 3.14,
where capacity constraints are imposed on vertices as well as on edges. Given α ≥ 0 and
any finite nonempty K ⊂ 𝖵, define the network G(K) with vertices K ∪ ∂𝖵K and two extra
vertices, a and z. The edges of G(K) are those of G that have both endpoints in K ∪ ∂𝖵K , an
edge between a and each point in K , and an edge between z and each point in ∂𝖵K . Give
all edges incident to a capacity c(a, x) := αD(x). Let the capacity of the vertices in K be
c(x) := (α + 1)D(x), and the capacity of the vertices in ∂𝖵K be D(x). The remaining edges
and vertices are given infinite capacity.
In view of the cutset consisting of all vertices in ∂𝖵K , it is clear that any admissible

flow from a to z in G(K) has strength at most |∂𝖵K |D . Now a function θ satisfying
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∀x 𝖿 𝗅𝗈𝗐+(θ, x) ≤ D(x) and d∗θ(x) = αD(x) induces an admissible flow on G(K) from a to z
of strength α|K |D , whence α ≤ |∂𝖵K |D/|K |D . Since this holds for all K , we get α ≤ Φ𝖵(G).
In the other direction, if α ≤ Φ𝖵(G), then for all nonempty K , we claim that there is an

admissible flow from a to z in G(K) of strength α|K |D . Consider any cutset Π of edges and
vertices separating a and z. We will show that |Π|c ≥ α|K |D , whence our claim will follow
from the max-flow min-cut theorem. If Π contains an edge of infinite capacity, then this is
trivial, so assume it does not. Let K ′ be the vertices in K that Π separates from z. Then
∂𝖵K ′ ⊂ Π and [a, x] ∈ Π for all x ∈ K \ K ′. Therefore,∑
e∈Π∩𝖤

c(e) +
∑

x∈Π∩𝖵
c(x) ≥ α|K \ K ′|D + |∂𝖵K ′|D ≥ α|K \ K ′|D + Φ𝖵(G)|K ′|D ≥ α|K |D .

Thus, our claim follows. Note that the flow along [a, x] is αD(x) for every x ∈ K .
Now let Kn be finite nonempty sets increasing to 𝖵, and let θn be the corresponding

admissible flows on G(Kn). There is a subsequence ⟨ni⟩ such that for all edges e ∈ 𝖤, the
limit θ(e) := θni

(e) exists; clearly ∀x 𝖿 𝗅𝗈𝗐+(θ, x) ≤ D(x) and d∗θ(x) = αD(x). ◀

Not surprisingly, an analogue of Theorem 6.2 holds, that the infimum in the definition of
Φ𝖵(G) is not attained for transitive G; again, this is due to BLPS (1999b). To show it, we
first check that the function K 7→ |∂𝖵K |D is submodular. In fact, the following identity holds,
where K := K ∪ ∂𝖵K :

|∂𝖵(K ∪ K ′)|D + |∂𝖵(K ∩ K ′)|D + |(K ∩ K ′) \ K ∩ K ′|D = |∂𝖵K |D + |∂𝖵K ′|D . (6.9)

Of course, in the transitive case, we must have D is constant.

Theorem 6.4. If G is an infinite transitive graph, then for all finite nonempty K ⊂ 𝖵, we
have |∂𝖵K |/|K | > Φ𝖵(G).
Proof. By the submodularity of b(K) := |∂𝖵K |, we have for any finite K and K ′, as in the
proof of Theorem 6.2, that

min
{

b(K ∪ K ′)
|K ∪ K ′| ,

b(K ∩ K ′)
|K ∩ K ′|

}
≤ b(K) + b(K ′)

|K | + |K ′| , (6.10)

with equality iff both terms on the left-hand side are equal to the right-hand side. (In case
K ∩ K ′ is empty, omit it on the left-hand side.)
Now suppose for a contradiction that G is transitive and that K is a finite set minimizing

|K | among those K with b(K)/|K | = Φ𝖵(G). Let γ be any automorphism of G such that
γK ∩ K ̸= ∅. Define K ′ := γK . Then (6.10) shows that K ′ = K . Thus, if, instead, we choose
γ so that γK ∩ ∂𝖵K ̸= ∅, then γK ∩ K = ∅, whence (6.9) shows that K ′′ := K ∪ γK satisfies
b(K ′′)/|K ′′| < b(K)/|K |, a contradiction. ◀

An interesting aspect of Theorem 6.3 is that it enables us to find (virtually) regular subtrees
in many nonamenable graphs, as shown by Benjamini and Schramm (1997):
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Theorem 6.5. (Regular Subtrees in Nonamenable Graphs) Let G be any graph with
n := ⌊Φ𝖵(G, 1)⌋ ≥ 1. Then G has a spanning forest in which every tree has one vertex of
degree n and all others of degree n + 2.

Proof. The proof of Theorem 6.3 in combination with Exercise 3.15 shows that there is an
integer-valued θ satisfying

∀x 𝖿 𝗅𝗈𝗐+(θ, x) ≤ 1 and d∗θ(x) = n . (6.11)

If there is an oriented cycle along which θ = 1, then we may change the values of θ to
be 0 on the edges of this cycle without changing the validity of (6.11). Thus, we may
assume that there is no such oriented cycle. After this, there is no (unoriented) cycle in the
support of θ because this would force a flow ≥ 2 into some vertex x on the cycle, and hence
𝖿 𝗅𝗈𝗐+(θ, x) ≥ n + 2 > 1. We may similarly assume that there is no oriented bi-infinite path
along which θ = 1. Thus, (6.11) shows that for every x with 𝖿 𝗅𝗈𝗐+(θ, x) = 1, there are exactly
n + 1 edges leaving x with flow out of x equal to 1. Furthermore, the lack of an oriented
bi-infinite path where θ = 1 shows that each component of the support of θ contains a vertex
into which there is no flow, and (6.11) implies that such a vertex has n edges leading out with
flow 1 each. This immediately implies also that no component of the support of θ contains
two vertices into which there is no flow. Thus, the support of θ is the desired spanning forest.

◀

This result can be extended to graphs with Φ𝖵 > 0, but it is more complicated; see
Benjamini and Schramm (1997). It follows from Theorem 6.5 that if Φ𝖵(G, 1) ≥ 1, then G
contains a spanning tree T with Φ𝖵(T , 1) ≥ 1: just add edges to the spanning forest from
Theorem 6.5. However, it is unknown whether “≥ 1” can be replaced here by “> 0,” a
question asked by Benjamini and Schramm (1997). It is also unknown whether every Cayley
graph of exponential growth has a nonamenable subtree, another question asked by Benjamini
and Schramm (1997).

6.2 Spectral Radius

In most infinite networks of interest, the probability of return of random walk to its starting
point decays to 0 as the number of steps tends to infinity. Intuitively, the more the network
spreads out, the more quickly the return probabilities will decay. This section makes precise
this connection; network spread will be measured by the expansion constant, while decay of
return probabilities will be measured by the spectral radius, to be defined.

As in Chapter 2, we use the inner product notation

( f , g)h := ( f h, g) = ( f , gh)

and
∥ f ∥h :=

√( f , f )h .
Also, let D00 denote the collection of functions on 𝖵 with finite support.



182 Chap. 6: Isoperimetric Inequalities

Suppose that ⟨Xn⟩ is a Markov chain on a countable state space 𝖵 with a stationary measure
π. We define the transition operator

(P f )(x) := Ex

�
f (X1)� =

∑
y∈𝖵

p(x, y) f (y) .

Then P maps ℓ2(𝖵, π) to itself with norm

∥P∥π := ∥P∥ℓ2(𝖵,π) := sup
{ ∥P f ∥π
∥ f ∥π ; f ̸= 0

}
at most 1.

▷ Exercise 6.6.
Prove that ∥P∥π ≤ 1.

As the reader should recall from the theory of Markov chains, we have that

(Pn f )(x) =
∑
y∈𝖵

pn(x, y) f (y)

when pn(x, y) := Px[Xn = y].
Let G be a (connected) graph with conductances c(e) > 0 on the edges and π(x) be the

sum of the conductances incident to a vertex x. The operator P that we defined earlier is
self-adjoint: For functions f , g ∈ D00, we have

(P f , g)π =
∑
x∈𝖵

π(x)(P f )(x)g(x) =
∑
x∈𝖵

π(x)
[∑
y∈𝖵

p(x, y) f (y)
]
g(x)

=
∑
x∈𝖵

∑
y∈𝖵

c(x, y) f (y)g(x) .

Since this is symmetric in f and g, it follows that (P f , g)π = ( f , Pg)π . Since the functions
with finite support are dense in ℓ2(𝖵, π), we get this identity for all f , g ∈ ℓ2(𝖵, π).

There are two other expressions for the norm ∥P∥π that will be useful to us. One is in the
following exercise, while the other is in our next proposition.

▷ Exercise 6.7.
(Rayleigh Quotient) Show that

∥P∥π = sup
{ |(P f , f )π |

( f , f )π ; f ∈ D00 \ {0}
}

= sup
{ (P f , f )π

( f , f )π ; f ∈ D00 \ {0}
}
.

Proposition 6.6. For any two vertices x, y ∈ 𝖵, we have

∥P∥π = lim sup
n→∞

sup
z

(
pn(x, z)/√π(z) )1/n

= lim sup
n→∞

pn(x, y)1/n . (6.12)

Moreover,
∀n pn(x, y) ≤

√
π(y)/π(x) ∥P∥nπ . (6.13)
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Proof. Irreducibility of the Markov chain implies that the right-most quantity in (6.12) does
not depend on the choice of x, y. Thus, define

ρ(G) := lim sup
n→∞

pn(x, y)1/n . (6.14)

It is clear that the middle term in (6.12) is at least ρ(G). To see that this middle term is
at most ∥P∥π , use pn(x, z) = �

1{x}, Pn1{z}
�
π
/π(x) and the Cauchy-Schwarz inequality to

deduce that pn(x, z) ≤ √
π(z)/π(x) ∥Pn∥π ≤

√
π(z)/π(x) ∥P∥nπ . This also implies (6.13).

Finally, to show the converse inequality that ∥P∥π ≤ ρ(G), suppose that 0 ≤ f ∈ D00 \ {0}.
Then self-adjointness of P and the Cauchy-Schwarz inequality yield

∥Pn+1 f ∥4
π = (Pn f , Pn+2 f )2 ≤ ∥Pn f ∥2

π ∥Pn+2 f ∥2
π .

This means that ∥Pn+1 f ∥π/∥Pn f ∥π is increasing, whence it has a limit, L. Since the product
of these quotients for n = 0, . . . , N − 1 is ∥PN f ∥π/∥ f ∥π , we have that

L = lim
N→∞

�∥PN f ∥π/∥ f ∥π�1/N = lim
N→∞

∥PN f ∥1/N
π . (6.15)

Now p2n(x, x) ≥ pn(x, x)2, since one way to return after 2n steps is to return after n steps and
then again after n steps. Therefore,

ρ(G) = lim sup
n→∞

p2n(x, x)1/2n .

Thus, for 0 ≤ f ∈ D00 \ {0}, we have, by self-adjointness of P,

lim sup
n→∞

∥Pn f ∥1/n
π = lim sup

n→∞
(P2n f , f )1/2nπ

= lim sup
n→∞

[∑
x,y

π(x) f (x) f (y)p2n(x, y)
]1/2n

= ρ(G) .
Combining this with (6.15), we deduce that L = ρ(G). In particular, ∥P f ∥π/∥ f ∥π ≤ ρ(G).
When f ∈ D00 is not assumed to be nonnegative, we may use the inequality ∥P f ∥π ≤ �

P| f |�
π

to deduce that ∥P f ∥π ≤ ρ(G)∥ f ∥π in general, in other words, ∥P∥π ≤ ρ(G). ◀
Thus, we have proved that the norm ∥P∥π equals the spectral radius,* denoted (as in the

proof) ρ(G).
For example, the spectral radius of simple random walk in �d is 1, since the return

probabilities decay only polynomially fast. If the walk were biased, this might no longer
hold. Likewise, simple random walk on a regular tree of degree d ≥ 3 has spectral radius
less than 1; we will calculate it exactly in several ways (Exercise 6.9, (6.25), Exercise 6.62,
and Proposition 7.35).
Our main result in this section is the following comparison between the expansion constant

and the spectral radius. Recall that π denotes the sum of the conductances c( • ) at a vertex.

* For a general operator on a Banach space, its spectral radius is defined to be max |z | for z in the spectrum of the
operator. For reversible Markov operators acting on ℓ2, this agrees with the definition we gave; see, for example,
Taylor and Lay (1980), Theorem VI.3.3. We will not need this general representation explicitly. For a nonreversible
Markov chain, the norm of the transition operator is not generally equal to its spectral radius.
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Theorem 6.7. (Expansion and Spectral Radius) Let (G, c, π) be a connected infinite
network and Φ𝖤(G) := Φ𝖤(G, c, π) be its edge-expansion constant. The spectral radius ρ(G)
of the associated network random walk satisfies

Φ𝖤(G)2/2 ≤ 1 −
√

1 − Φ𝖤(G)2 ≤ 1 − ρ(G) ≤ Φ𝖤(G) . (6.16)
The most important consequence of this is the qualitative statement that the spectral radius

ρ(G) is less than 1 iff the network (G, c, π) is nonamenable.
To prove Theorem 6.7, we will use the following easy calculation:

▷ Exercise 6.8.
Show that for f ∈ D00, we have d∗(c d f ) = π( f − P f ).
The meaning of the equation in this exercise is this: Recall from Section 2.8 that the

gradient of a function f on 𝖵 is the antisymmetric function
∇ f := c d f

on 𝖤. If we define the divergence by div θ := π−1d∗θ, then Exercise 6.8 says that div∇ = I−P,
where I is the identity. This is the discrete probabilistic Laplace operator. In particular,
div∇ f = 0 iff P f = f , in other words, f is harmonic according to our definition of “harmonic”
in Section 2.1.

Now by Exercise 6.8, we have that for f ∈ D00,
(df , df )c = (c d f , df ) =

�
d∗(c d f ), f

�
=
�
π( f − P f ), f

�
= ( f , f )π − (P f , f )π . (6.17)

Combine this with Exercise 6.7 and Proposition 6.6 to write

ρ(G) = sup
{ (P f , f )π

( f , f )π ; f ∈ D00 \ {0}
}

= sup
{ ( f , f )π − (df , df )c

( f , f )π ; f ∈ D00 \ {0}
}

= 1 − inf
{ (df , df )c

( f , f )π ; f ∈ D00 \ {0}
}
. (6.18)

Choosing f := 1K ∈ D00 shows the last inequality in (6.16). This also illustrates the primary
difference between ρ(G) and Φ𝖤(G): the former is related to all f ∈ D00, whereas the latter is
related only to indicator functions.

We will also use the following lemma for the proof of Theorem 6.7.
Lemma 6.8. For any nonnegative f ∈ D00, we have

Φ𝖤(G, c, π)
∑
x∈𝖵

f (x) π(x) ≤
∑
e∈𝖤1/2

|df (e)| c(e) .

Proof. For t > 0, we may use K := {x ; f (x) > t} in the definition of Φ𝖤 to see that

Φ𝖤 · |{x ; f (x) > t}|π ≤
∑
x,y∈𝖵

c(x, y) 1{ f (x)>t≥ f (y)} . (6.19)

Now ∫ ∞

0
|{x ; f (x) > t}|π dt =

∑
x∈𝖵

f (x) π(x)
and ∫ ∞

0
1{ f (x)>t≥ f (y)} dt = f (x) − f (y)

if f (x) ≥ f (y). Therefore, integrating (6.19) on t ∈ (0,∞) gives the desired result. ◀
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Proof of Theorem 6.7. We have already seen the last inequality in (6.16). The first inequality
in (6.16) comes from the elementary inequality 1 − x/2 ≥

√
1 − x. To prove the crucial

middle inequality, let f ∈ D00. Apply Lemma 6.8 to f 2 to get

( f , f )2π ≤ Φ𝖤(G)−2
( ∑
e∈𝖤1/2

c(e) ��� f (e+)2 − f (e−)2���)2

(6.20)

= Φ𝖤(G)−2
(∑

e

c(e) � f (e+) − f (e−)� · � f (e+) + f (e−)�)2

≤ Φ𝖤(G)−2
(∑

e

c(e) df (e)2
) (∑

e

c(e)� f (e+) + f (e−)�2)
by the Cauchy-Schwarz inequality. The last factor here is∑

e

c(e)[ f (e+)2 + f (e−)2 + 2 f (e+) f (e−)] =
∑
x

π(x) f (x)2 +
∑
x∼y

c(x, y) f (x) f (y)

= ( f , f )π +
∑
x

f (x)π(x)
∑
y∼x

p(x, y) f (y)

= ( f , f )π + ( f , P f )π = 2( f , f )π − (df , df )c
by (6.17). Therefore,

( f , f )2π ≤ Φ𝖤(G)−2�2( f , f )π − (df , df )c�(df , df )c .
A little algebra transforms this to(

1 − (df , df )c
( f , f )π

)2

≤ 1 − Φ𝖤(G)2 .

This gives the middle inequality of (6.16) when combined with (6.18). ◀

▷ Exercise 6.9.
Show that for simple random walk on �b+1, we have ρ(�b+1) = 2

√
b/(b + 1).

As one application of knowing the spectral radius, we give a sufficient condition for random
walk on a network to have positive speed. Later, in Section 13.7, we will give some necessary
conditions for positive speed. Define the upper (exponential) growth rate of a graph to be
lim supn→∞ |B(o, n)|1/n, where B(o, n) is the ball of radius n centered at o, that is, the set of
vertices whose graph distance from o is at most n.

Proposition 6.9. (Speed and Spectral Radius) Let G be a graph with upper exponential
growth rate b ∈ (1,∞). Suppose that the edges are weighted so that the spectral radius
ρ(G) < 1 and π is bounded. Then the network random walk ⟨Xn⟩ on G has positive liminf
speed, that is,

lim inf
n→∞

distG(X0, Xn)/n ≥ log ρ(G)−1/log b a.s.

Note that distG(•, •) denotes the graph distance, so that the quotient whose limit we are
taking is distance divided by time. This is the reason we call it “speed.”
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Proof. Without loss of generality, assume X0 is a fixed vertex, o. Let α < − log ρ(G)/log b,
so that ρ(G)bα < 1. Choose 𝜆 > b so that ρ(G)𝜆α < 1. Equation (6.13), our assumption that
π is bounded, and the definition of b ensure that there is some constant M < ∞ so that for all
n ≥ 0,

∀y ∈ 𝖵 pn(o, y) ≤ M ρ(G)n
and �{y ; distG(o, y) ≤ n}� ≤ M𝜆n .

Therefore,

Po
�
distG(o, Xn) ≤ αn

�
=

∑
distG (o,y)≤αn

pn(o, y) ≤ M2ρ(G)n𝜆αn = M2�ρ(G)𝜆α�n .
Since this is summable in n, it follows by the Borel-Cantelli lemma that distG(o, Xn) ≤ αn
only finitely often a.s. ◀

In Section 7.7, we apply Theorem 6.7 to percolation on nonamenable graphs.

6.3 Nonbacktracking Paths and Cogrowth

A path in a multigraph is called nonbacktracking if no edge is immediately followed by
its reversal. Note that a loop is its own reversal. Nonbacktracking random walks are almost
as natural as ordinary random walks, though more difficult to analyze in most situations.
Moreover, they can be more useful than ordinary random walks when random walks are
used to search for something, as they explore more quickly, not wasting time immediately
backtracking; see Exercise 6.64. In this section, however, we use them to analyze the spectral
radius of ordinary random walks on regular graphs.
We begin with some calculations that count paths and nonbacktracking paths for general

d-regular graphs, G. Write b := d − 1. Let A be the adjacency matrix of G, where A(x, y) is
the number of edges from x to y.
Let Ak be the matrix whose (x, y)-entry is the number of nonbacktracking paths of length

k from x to y for x, y ∈ 𝖵(G). Define A−1 := 0 and note that A0 = I, A1 = A. We claim that

Ak+1 =
{ AAk − bAk−1 for k ∈ � \ {1}

AA1 − dI for k = 1. (6.21)

Indeed, the (x, y)-entry of AAk equals the number of paths x = x0, x1, . . . , xk+1 = y such that
the path from x1 to xk+1 does not backtrack. This includes once each nonbacktracking path
of length k + 1 from x to y, but also includes backtracking paths when x2 = x. For each
nonbacktracking path x2, . . . , xk+1 of length k − 1 from x to y, there are b choices of edges
from x to some x1 that make a path counted by AAk , namely, all the edges incident to x other
than the one used from x2 to x3. (We have to speak of edges in case of multiple edges or
loops.) This exception (to x3) does not occur, however, when k = 1.
Now define F(z) :=

∑
k≥0 Ak zk . Multiplying the recursion (6.21) by zk and summing over

k ≥ 0, we get
F(z) − I

z
= AF(z) − bzF(z) − zI
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whenever all the series involved converge. Since ∥A∥ ≤ d and thus ∥Ak ∥ ≤ ∥A∥k ≤ dk , all
the series do converge when |z | < 1/d. Solving this equation for F(z) gives

F(z) = (1 − z2)�(1 + bz2)I − zA
�−1 (6.22)

for |z | < 1/d.
Next, let the number of cycles of length n starting from some fixed o ∈ 𝖵(G) be cn(G),

whereas the number of those that are nonbacktracking is bn(G). Factor out 1 + bz2 from
(6.22) and expand the inverse as a geometric series. Then look at the (o, o)-entry. Since
|z | < 1/(d + 1) implies that

�
z/(1 + bz2)� < 1/d, we get that for |z | < 1/(d + 1),∑

n≥0

bn(G)zn =
1 − z2

1 + bz2

∑
n≥0

cn(G)
( z

1 + bz2

)n
. (6.23)

Now consider the special case where G = �b+1, the d-regular tree. In that case, bn(G) = 0
for all n ≥ 1 and b0(G) = 1. Put w := z/(1+bz2). Then z/w = 1+bz2, whence 1 = w/z+bwz.
Therefore,

�∑
n≥0 cn(�b+1)wn

�−1 = (1−z2)w/z = 1−dwz. Since z =
�
1−
√

1 − 4bw2
�/(2bw),

we get that ∑
n≥0

cn(�b+1)wn =
2b

b − 1 + (b + 1)√1 − 4bw2
(6.24)

for small w. The radius of convergence of the series on the left is the reciprocal of the
exponential growth rate of c2n, in other words, is equal to 1

/�
dρ(�b+1)�. The right-hand side

of (6.24) shows that the radius of convergence is equal to 1
/�
2
√

b
�
– the function cannot be

analytically continued from a neighborhood of 0 to w = 1
/�

2
√

b
�

– whence

ρ(�b+1) =
2
√

b
b + 1

, (6.25)

as in Exercise 6.9. (Recall that a function is analytic at a point if it is equal to a convergent
power series in a (complex) neighborhood of that point. If f1: Ω1 → � is an analytic function
and Ω′ ⊆ � (possibly a singleton), then we say that f1 can be analytically continued to Ω′ if
there exist an open connected set Ω2 ⊇ Ω1 ∪Ω′ and an analytic function f2: Ω2 → � such
that f2↾Ω1 = f1. If Ω1 is open, then f2 is unique when it exists.)
To compare ρ(G) to ρ(�d) for other d-regular G, we continue analyzing (6.23) for general

d-regular G. Let 𝖼𝗈𝗀𝗋(G) := lim supn→∞ bn(G)1/n, the exponential growth rate of the number
of nonbacktracking cycles containing o. This number is called the cogrowth of G. The reason
for this name is the following: The universal cover of G in the sense of p. 82 of Section 3.3
is �d. Vertices in �d are finite nonbacktracking paths in G starting at o. The covering map
φ:�d → G maps such a path in G to its final endpoint. Then the cogrowth of G equals the
exponential growth rate of φ−1(o) inside �d. One can see by using this covering map that
𝖼𝗈𝗀𝗋(G) does not depend on o. In particular, if G is the Cayley graph of Γ with respect to S
and Γ is (isomorphic to) the quotient of the free group on S by the normal subgroup N , then
𝖼𝗈𝗀𝗋(G) is the growth rate of N inside the free group.
The central result about cogrowth is the following formula (6.27), due to Grigorchuk

(1980) for Cayley graphs and extended by Northshield (1992) to all regular graphs:
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Theorem 6.10. (Cogrowth Formula) If G is a d-regular connected multigraph, then

𝖼𝗈𝗀𝗋(G) > √d − 1 iff ρ(G) > 2
√

d − 1
d

, (6.26)

in which case

dρ(G) =
d − 1

𝖼𝗈𝗀𝗋(G) + 𝖼𝗈𝗀𝗋(G) . (6.27)

If the conditions of (6.26) fail, then ρ(G) = 2
√

d − 1
/
d and 𝖼𝗈𝗀𝗋(G) ≤ √d − 1.

Proof. Suppose that G is d-regular. We may assume that G is not a tree. We follow the
notation previously established. Let g(z) be an analytic continuation of

∑
n≥0 bn(G)zn and

h(z) be an analytic continuation of
∑

n≥0 cn(G)zn. Write ψ(z) := z/(1 + bz2). Thus, (6.23)
becomes in this notation

g(z) =
1 − z2

1 + bz2 h
�
ψ(z)� .

The idea now is to equate radii of convergence, but because of the composition with ψ(z)
on the right, we have to do this carefully. In fact, we are going to look only at analytic
continuation along the real line.
The radius of convergence for g(z) about z = 0 is z1 := 1/𝖼𝗈𝗀𝗋(G) ≤ 1, whereas that for

h(z) is z2 := 1
/�

dρ(G)�. Equation (6.27) is equivalent to ψ(z1) = z2. Because both series
have nonnegative coefficients, Pringsheim’s theorem (see Exercise 6.58) tells us that g can be
analytically continued to [0, z1) but not to [0, z1], and likewise h can be analytically continued
to [0, z2) but not to [0, z2]. Note that ψ(0) = 0, ψ(z) is strictly monotone increasing for
0 < z < 1/

√
b, and ψ(z) is strictly monotone decreasing for z > 1/

√
b.

The fact that g is analytic on [0, z1) implies that h
�
ψ(z)� is analytic on that same interval,

whence ψ(z1) ≤ z2.
Now suppose that 𝖼𝗈𝗀𝗋(G) > √d − 1, that is, z1 < 1/

√
b. Since z1 is a singularity of g

and ψ is strictly increasing on [0, z1), it must be that ψ(z1) is a singularity of h, whence
ψ(z1) ≥ z2. Together with the result of the preceding paragraph, this gives ψ(z1) = z2, that is,
(6.27).

Next, suppose that ρ(G) > 2
√

d − 1
/

d, that is, z2 < ψ
�
1/
√

b
�
. Then the smaller value of

ψ−1(z2) is the first singularity of h
�
ψ(z)� on the positive real line, whence it equals z1. This

is (6.27) again.
Since each condition of (6.26) implies (6.27), it is clear that the two conditions of (6.26)

are equivalent.
Finally, since �b+1 covers G, we may couple simple random walk on G with simple random

walk on �b+1 in such a way that it returns to o ∈ 𝖵(G) if it returns to its starting point in �b+1.
Thus, ρ(G) ≥ ρ(�b+1). ◀

A great advantage of the cogrowth formula is that it allows us to show that ρ(G) > ρ(�b+1)
in many common situations by showing that 𝖼𝗈𝗀𝗋(G) > √b. Kesten (1959b) proved the
following result and various extensions for Cayley graphs:
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Theorem 6.11. If d ≥ 3 and G is a d-regular transitive multigraph that is not a tree, then
ρ(G) > ρ(�d).

It follows that (6.27) holds for all transitive multigraphs, G, other than trees.

Proof. Let L be the length of the shortest cycle in G (which is 1 if there is a loop). Consider a
nonbacktracking random walk ⟨Yn ; n ≥ 1⟩, where each edge Yn+1 is chosen uniformly among
the edges incident to the head Y +

n of Yn, other than the reversal of Yn. We are going to handle
loops differently than other cycles, so it will be convenient to let

L′ :=
{

L if L > 1
3 if L = 1.

Let An be the event that Yn+1, . . . ,Yn+L′ is a nonbacktracking cycle. For n ≥ 1,

P(An | Y1, . . . ,Yn) ≥ 1
dbL′−1 , (6.28)

since if L > 1, then there is a way to traverse a simple cycle starting at Y +
n and not using the

reversal of Yn, whereas if L = 1, then the walk can first choose an edge other than the reversal
of Yn, then traverse a loop, and then return by the reversal of Yn+1. The inequality (6.28)
implies that we may couple the events AkL′ to Bernoulli trials with probability 1/(dbL′−1)
each so that the kth successful trial implies AkL′ . Therefore if we choose ϵ < 1/(dbL′−1),
then in nL′ steps, at least ϵn events AkL′ will occur for 0 ≤ k < n with probability tending to
1 as n → ∞.
Consider the following transformation of a path P = (Y1, . . . ,YnL′) to a “reduced” path P ′:

For each k such that AkL′ occurs, remove the edges Yk+1, . . . ,Yk+L′ . Next, combine P and P ′
to form a nonbacktracking cycle P ′′ by following P with a nonbacktracking cycle of length
L′ that does not begin with the reversal of YnL′ , and then by returning to the tail of Y1 by P ′
in reverse order. Note that the map P 7→ P ′′ is 1-1.
When at least ϵn events AkL′ occur, the length of P ′′ is at most (2n+1−ϵn)L′. The number

of nonbacktracking paths Y1, . . . ,Yn equals dbn−1, whence
∑

k≤(2n+1−ϵn)L′ bk(G) ≥ dbnL′−1/2
for large n. This gives that 𝖼𝗈𝗀𝗋(G) > √b, which implies the result by Theorem 6.10. ◀

Remark 6.12. An alternative way of handling loops in the preceding proof is to use Exer-
cise 6.41. On the other hand, the proof can be modified to go beyond transitive multigraphs,
provided that there is a nonbacktracking cycle of length at most L at every vertex.

▷ Exercise 6.10.
Let G be a d-regular multigraph. Show that ρ(G) = 1 iff 𝖼𝗈𝗀𝗋(G) = d − 1.

▷ Exercise 6.11.
Give an example of a d-regular graph G where 1 < 𝖼𝗈𝗀𝗋(G) < √d − 1.
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6.4 Relative Mixing Rate, Spectral Gap, and Expansion in Finite Networks

In this section we investigate the rate at which random walk on a finite network converges
to the stationary distribution. This is an analogue to spectral radius on infinite networks, and
there is an inequality analogous to Theorem 6.7 that relates this rate to an expansion constant.
There are many ways to measure convergence to the stationary distribution. We’ll consider

one here and another in Section 13.3. Namely, at any time t, we’ll consider here the relative
distance to the stationary distribution, maximized over the initial and current state:

max
x,y∈𝖵

����� pt (x, y) − π(y)π(y)
����� .

In this section, all inner products are with respect to the stationary probability measure π,
that is,

⟨ f , g⟩ := ( f , g)π =
∑
x∈𝖵

π(x) f (x)g(x) .

As we have seen in the preceding section, the transition operator P is self-adjoint with respect
to this inner product. Now the norm of P is at most 1 by Exercise 6.6. Because we are
working now on a finite network, P has 1 as an eigenvector with eigenvalue 1. Thus, we
may write the eigenvalues of P as −1 ≤ 𝜆n ≤ · · · ≤ 𝜆1 = 1, where n := |𝖵|. Since we still
want to use the notation that π(x) = ∑

e−=x c(e), we now assume that the conductances are
normalized so that

∑
e∈𝖤1/2

c(e) = 1/2.
We will show that when the Markov chain is aperiodic, the chain converges to its stationary

distribution at an exponential rate in t, with the exponent given by the gap between 1 and the
absolute values of the other eigenvalues. The idea is that any function can be expanded in
a basis of eigenfunctions. This expansion shows clearly how Pt acts on the given function.
Those parts of the function multiplied by small eigenvalues go quickly to 0 as t → ∞.

▷ Exercise 6.12.
Show that 𝜆2 < 1 iff the network is connected and that 𝜆n > −1 iff the random walk is
aperiodic.

Theorem 6.13. (Relative Mixing Rate and Absolute Spectral Gap) Consider an aperiodic
random walk on a finite connected network. Let πmin := minx π(x) and 𝜆∗ := maxi≥2 |𝜆i |.
Write g∗ := 1 − 𝜆∗. Then, for all vertices x and y,

����� pt (x, y) − π(y)π(y)
����� ≤ e−g∗t

πmin
.

Proof. Consider the functions ψx := 1{x}/π(x) on the vertices, indexed by vertices x. Since
for all x and y, we have (Ptψy)(x) = pt (x, y)/π(y), we get that

pt (x, y) − π(y)
π(y) = ⟨ψx , Ptψy − 1⟩ . (6.29)
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Since P1 = 1, we have

ψx , Ptψy − 1

�
=


ψx , Pt (ψy − 1)� ≤ ∥ψx∥π ∥Pt (ψy − 1)∥π . (6.30)

Let ⟨ f i⟩ni=1 be a basis of orthogonal eigenvectors of P, where f i is an eigenvector of eigenvalue
𝜆i . Since ψy − 1 is orthogonal to 1, there exist constants ⟨ai⟩ni=2 such that ψy − 1 =

∑n
i=2 ai f i ,

whence

�
Pt (ψy − 1)�2

π
=






n∑
i=2

𝜆tiai f i




2

π
=

n∑
i=2

|𝜆tiai |2 ∥ f i∥2
π

≤
n∑
i=2

𝜆2t
∗ |ai |2 ∥ f i∥2

π = 𝜆2t
∗






n∑
i=2

ai f i




2

π

= 𝜆2t
∗ ∥ψy − 1∥2

π . (6.31)

Since (ψy − 1) ⊥ 1, an orthogonal decomposition of ψy is (ψy − 1) + 1, which gives
∥ψy − 1∥π ≤ ∥ψy∥π , and thus by (6.29), (6.30), and (6.31),

����� pt (x, y) − π(y)π(y)
����� ≤ 𝜆t∗∥ψx∥π ∥ψy∥π =

𝜆t∗√
π(x)π(y) ≤

e−g∗t

πmin
. ◀

▷ Exercise 6.13.
Show that the rate of exponential convergence in Theorem 6.13 cannot be faster than 𝜆∗.
More precisely, show that there is an x for which

lim
t→∞
− log |pt (x, x) − π(x)|

t
= − log 𝜆∗ .

Because of the bound in Theorem 6.13, we’d like to know how we can estimate the absolute
spectral gap g∗ := 1 −maxi≥2 |𝜆i | defined in that theorem. Intuitively, if a Markov chain has
a “bottleneck,” that is, a large set of states with large complement that is difficult to transition
into or out of, then it will take it more time to mix, that is, to become close to the stationary
distribution. To formulate this intuition and relate it to the absolute spectral gap, we define
what is known as the expansion constant, the analogue for finite networks of the expansion
constant we defined in Section 6.1 for infinite networks.
For any two subsets of vertices A and B, let c(A, B) :=

∑
a∈A,b∈B c(a, b) and π(A) :=∑

a∈A π(a) (which we have also denoted |A|π).

Definition 6.14. The expansion constant of a finite network is

Φ∗ := min
�
ΦS ; 0 < π(S) ≤ 1/2

	
,

where for S ⊆ 𝖵,

ΦS :=
c(S, Sc)
π(S) .
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Note that 0 ≤ ΦS ≤ 1 and ΦS is the probability that one step from a π-random state
in S will lead to Sc. (The standard notation Φ may suggest a graph cut in two.) A more
symmetrical form of Φ∗ is

Φ∗ = min
{ c(S, Sc)

min{π(S), π(Sc)} ; 0 < π(S) < 1
}
.

Some people prefer to define Φ∗ as the slightly different quantity

min
{ c(S, Sc)
π(S)π(Sc) ; 0 < π(S) < 1

}
,

which is equal to our definition up to a factor of at most 2.
The following theorem is the analogue of Theorem 6.7. Combined with the previous

theorem, it connects the expansion properties of a network with its mixing time via its
spectral gap g := 1− 𝜆2. We assume that the chain is lazy, that is, for any state x we have that
p(x, x) ≥ 1/2. In that case, P = (I + P̃)/2 where P̃ is the transition operator of the random
walk on another network, and hence all the eigenvalues of P are in [0, 1], so 𝜆∗ = 𝜆2. Note
that laziness implies aperiodicity. If the chain is not lazy, then we can always consider the
new chain with transition matrix (I + P)/2, which is lazy.

Theorem 6.15. (Expansion and Spectral Gap) Let 𝜆2 be the second eigenvalue of a
reversible and lazy Markov chain and g := 1 − 𝜆2. Then

Φ∗2

2
≤ g ≤ 2Φ∗ .

We will use the following lemma in the proof of the lower bound. The proof is the same as
that for Lemma 6.8.

Lemma 6.16. Let ψ ≥ 0 be a function on the vertices of a network with stationary probability
distribution π. If π[ψ > 0] ≤ 1/2, then

Φ∗
∑
x

ψ(x)π(x) ≤ 1
2
∑
x,y

�
ψ(x) − ψ(y)� c(x, y) .

We also need the following analogue of Exercise 6.7:

▷ Exercise 6.14.
Show that

𝜆2 = max
f⊥1

⟨P f , f ⟩
⟨ f , f ⟩ .
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Proof of Theorem 6.15. The upper bound is easier. By Exercise 6.14, we have

g = min
f⊥1


(I − P) f , f
�

⟨ f , f ⟩ . (6.32)

As we have seen before in (6.17), expanding the numerator gives


(I − P) f , f
�

=
1
2
∑
x,y

π(x)p(x, y)� f (y) − f (x)�2 .
To obtain g ≤ 2Φ∗, consider any S with π(S) ≤ 1/2. Define a function f by f (x) := π(Sc) for
x ∈ S and f (x) := −π(S) for x ̸∈ S. Then

∑
x f (x)π(x) = 0, so f ⊥ 1. Using this f in (6.32),

we get that

g ≤ 2c(S, Sc)
2π(S)π(Sc) ≤

2c(S, Sc)
π(S) = 2ΦS ,

and so g ≤ 2Φ∗.
To prove the lower bound, take an eigenfunction f2 such that P f2 = 𝜆2 f2 and π[ f2 > 0] ≤

1/2 (if this inequality does not hold, take − f2). Define a new function f := max{ f2, 0}. We
claim that

∀x
�(I − P) f

�(x) ≤ g f (x) .
This is because if f (x) = 0, this inequality translates to −(P f )(x) ≤ 0, which is true since
f ≥ 0, whereas if f (x) > 0, then

�(I − P) f
�(x) ≤ �(I − P) f2

�(x) = g f2(x) = g f (x). Since
f ≥ 0, we get 
(I − P) f , f

�
≤ g⟨ f , f ⟩ ,

or equivalently,

g ≥

(I − P) f , f

�
⟨ f , f ⟩ =: R .

(This looks like a contradiction to (6.32), but it is not, since f is not orthogonal to 1.) Then
just as in the proof of Theorem 6.7, we obtain

1 − Φ∗2

2
≥

√
1 − Φ∗2 ≥ 1 − R ≥ 1 − g . ◀

Families of graphs with rapid mixing are useful in a variety of applications in theoretical
computer science; see, for example, Hoory, Linial, and Wigderson (2006). To ensure rapid
mixing, one usually bounds the expansion constants from below. A family of d-regular
graphs {Gn} is said to be a (d, c)-expander family if the expansion constant of the simple
random walk on Gn satisfies Φ∗(Gn) ≥ c for all n. Note that for a d-regular graph G, we have

Φ∗(G) = min
{ |∂𝖤S|

d |S| ; S ⊂ 𝖵, 0 < |S| ≤ |𝖵|/2
}
.

Although for applications, explicit families of expanders are needed, they are more difficult
to construct than random families. We now construct a 3-regular family ⟨Gn⟩ of expander



194 Chap. 6: Isoperimetric Inequalities

multigraphs. This was the first construction of an expander family of bounded degree, and
it is due to Pinsker (1973).* We will construct Gn = (𝖵, 𝖤) as a bipartite graph with parts
A and B, each with n vertices. Although A and B are distinct, we will denote them both by
{1, . . . , n}. Draw uniformly at random two permutations σ1, σ2 of {1, . . . , n} and take the
edge set to be 𝖤 =

{�
i, i

�
,
�
i, σ1(i)�, �i, σ2(i)� ; 1 ≤ i ≤ n

}
. We’ll call this Pinsker’s model on

2n vertices.

Theorem 6.17. There exists δ > 0 such that with probability tending to 1 as n → ∞,
Pinsker’s model on 2n vertices satisfies ∀S ⊂ 𝖵 with 0 < |S| ≤ n,

|∂𝖤S|
|S| > δ .

Proof. We claim that it is enough to prove that for some δ > 0, with probability tending to 1,
every nonempty S ⊂ A of size k ≤ ⌊n/2⌋ has at least

�(1 + δ)k� neighbors ∂𝖵S in B. To see
this, consider any S ⊂ 𝖵 with 0 < |S| ≤ n. Write S = S1 ∪ S2 with S1 ⊆ A and S2 ⊆ B. We
may assume that |S1 | ≥ |S2 |. If |S1 | > n/2, then let S′ be a subset of S1 of cardinality ⌊n/2⌋;
otherwise, let S′ := S1. In either case, we have |S′| ≥ |S2 |, and so

|∂𝖤S| ≥ |∂𝖵S′| − |S2 | ≥ �(1 + δ)|S′|� − |S′| ≥ δ|S′| ≥ δ|S|/2

if our condition holds.
So let S ⊂ A be a set of size 0 < k ≤ ⌊n/2⌋. We wish to bound from above the probability

that |∂𝖵S| ≤ ⌊(1 + δ)k⌋. Since (i, i) is an edge for every 1 ≤ i ≤ n, we always have
that |∂𝖵S| ≥ k. Consider therefore the possible vertex sets of size

⌊(1 + δ)k⌋ that could
contain ∂𝖵S, and calculate the probability that both σ1(S) and σ2(S) fall within that set. A
first-moment argument (union bound) then gives

P
[
|∂𝖵S| ≤ ⌊(1 + δ)k⌋

]
≤

� n
⌊δk ⌋

�� ⌊(1+δ)k ⌋
k

�2�n
k

�2 .

Considering now all possible S, we obtain

P
[
∃S ⊂ A 0 < |S| ≤ ⌊ n

2
⌋, |∂𝖵S| ≤ ⌊(1 + δ)k⌋

]
≤
⌊n/2⌋∑
k=1

(
n
k

) � n
⌊δk ⌋

�� ⌊(1+δ)k ⌋
⌊δk ⌋

�2�n
k

�2 ,

which tends to 0 for δ > 0 small enough by the following calculation.
Since for any integer ℓ, we have log ℓ! =

∑ℓ
i=2 log i ≥

∫ ℓ
1 log x dx = ℓ log ℓ − ℓ + 1, in other

words, ℓ! ≥ e(ℓ/e)ℓ , it follows that(
n
⌊δk⌋

)
≤ n ⌊δk ⌋

⌊δk⌋! <
(

en
⌊δk⌋

) ⌊δk ⌋
≤

( en
δk

)δk
,

* An earlier random construction with bounded mean degree was due to Kolmogorov and Barzdin’ (1967).
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where the last inequality holds because t 7→ (en/t)t is increasing for t ∈ (0, n). Similarly
bound

� ⌊(1+δ)k ⌋
⌊δk ⌋

�
, while

�n
k

�
≥ nk

kk . This gives

⌊n/2⌋∑
k=1

� n
⌊δk ⌋

�� ⌊(1+δ)k ⌋
⌊δk ⌋

�2�n
k

� <

⌊n/2⌋∑
k=1

( k
n

) (1−δ)k [ e3(1 + δ)2
δ3

]δk
.

Each term clearly tends to 0 as n tends to ∞ given any δ ∈ (0, 1), and since k
n
≤ 1

2 and� 1
2
�(1−δ) [ e3(1+δ)2

δ3

]δ
< 1 for δ ≤ 0.05, for any such δ the whole sum tends to 0 as n tends to∞

by the dominated convergence theorem. ◀

6.5 Planar Graphs

With rare exceptions, planar graphs are the only graphs we can draw in a nice way and
gaze at. See Figures 6.1 and 6.2 for some examples drawn by a program created by Don
Hatch. They also make great art; see Figure 6.3 for a transformation by Doug Dunham of a
print by Escher.

Figure 6.1. A Cayley graph in the hyperbolic disc and its dual in
light blue, with triangles of interior angles π/2, π/3, and π/7.

These are good reasons for studying planar graphs separately. But a mathematical reason
is that they often exhibit special behavior, as we will see several times in this book, and there
are special techniques available as well. Planar duality is a prototype for more general types
of duality, which is yet another reason to study it.
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Figure 6.2. Dual tessellations in the hyperbolic disc.

Figure 6.3. A transformed Escher print, Circle Limit I,
based on a (6,4)-tessellation of the hyperbolic disc.

A planar graph is one that can be drawn in the plane in such a way that edges do not
cross; an actual such embedding is called a plane graph. If G is a plane graph such that
each bounded set in the plane contains only finitely many vertices of G, then G is said to
be properly embedded in the plane. We will always assume without further mention that
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plane graphs are properly embedded. A face of a plane graph is a connected component of
the complement of the graph in the plane. If G is a plane (multi)graph, then the plane dual
G† of G is the (multi)graph formed as follows: The vertices of G† are the faces formed by G.
Two faces of G are joined by an edge in G† precisely when they share an edge in G. A face of
G also gets a loop for each edge in G on both sides of which lie that same face. Thus, 𝖤(G)
and 𝖤(G†) are in a natural one-to-one correspondence. Furthermore, if one draws each vertex
of G† in the interior of the corresponding face of G and each edge of G† so that it crosses
only the corresponding edge of G, then the dual of G† is G.
In this section, drawn from Häggström, Jonasson, and Lyons (2002), we will calculate

the edge-expansion constants of certain regular planar graphs that arise from tessellations of
the hyperbolic plane. The same results were found independently (with different proofs) by
Higuchi and Shirai (2003). Of course, edge graphs of Euclidean tessellations are amenable,
whence their expansion constants are 0. During this section, we assume that G and its plane
dual G† are locally finite, whence each graph has one end, that is, the deletion of any finite
set of vertices leaves exactly one infinite component. We first examine the combinatorial
difference between Euclidean and hyperbolic tessellations. See Section 2.6 for background
on the hyperbolic plane.
A regular Euclidean polygon with d† sides has interior angles π(1 − 2/d†). For such

polygons to form a tessellation of the plane with d polygons meeting at each vertex, we must
have π(1−2/d†) = 2π/d, in other words, 1/d+1/d† = 1/2, or, equivalently, (d−2)(d†−2) = 4.
There are three such cases, and in all three, tessellations have been well known since antiquity.
On the other hand, in the hyperbolic plane, the interior angles of a regular geodesic polygon
with d† sides can take any value in

�
0, π(1 − 2/d†)�, whence a tessellation of degree d exists

only if 1/d + 1/d† < 1/2, or, equivalently, (d − 2)(d† − 2) > 4; again, this condition is
also sufficient for the existence of a hyperbolic tessellation, as has been known since the
19th century. Furthermore, in the hyperbolic plane, any two (regular geodesic) d-gons with
interior angles all equal to some number α are congruent. (There are no homotheties of the
hyperbolic plane.) The edges of a tessellation form the associated edge graph. Clearly, when
the tessellation is any of these under discussion, the associated edge graph is regular and
its dual is regular as well. An example is drawn in Figure 2.4. (We remark that the cases
(d − 2)(d† − 2) < 4 correspond to the spherical tessellations that arise from the five regular
solids.)
Moreover, we claim that if G is a plane regular graph with regular dual, then G is transitive,

as is G†, and that G is the edge graph of a tessellation by congruent regular polygons. The
proof of this claim is a nice application of geometry to graph theory.

First, suppose we are given the edge graphs of any two tessellations by congruent regular
polygons (in the Euclidean or hyperbolic plane, as necessary) of the same type (d, d†) and
one fixed vertex in each edge graph. Then there is an isomorphism of the two edge graphs
that takes one fixed vertex to the other. This is easy to see by going out ring by ring around
the fixed vertices, since the polygons are all congruent. In particular, taking the two edge
graphs the same but with different fixed vertices, we see that such edge graphs are transitive.
Now to prove the general statement, it suffices to prove that any (proper) tessellation of

a plane with degree d and codegree d† has an edge graph that is isomorphic to the edge
graph of the corresponding tessellation by congruent polygons. In case (d − 2)(d† − 2) = 4,
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replace each face by a congruent copy of a flat polygon; in case (d − 2)(d† − 2) > 4, replace
it by a congruent copy of a regular hyperbolic polygon (with curvature −1) of d† sides and
interior angles 2π/d; whereas if (d − 2)(d† − 2) < 4, replace it by a congruent copy of a
regular spherical polygon (with curvature +1) of d† sides and interior angles 2π/d. Glue
these polygons together along their edges. We get a metrically complete Riemannian surface
of curvature 0, −1, or +1, correspondingly, that is homeomorphic to the plane, since our
assumption is that the plane is the union of the faces, edges, and vertices of the tessellation,
without needing any limit points. A theorem of Riemann says that the surface is isometric to
either the Euclidean plane or the hyperbolic plane (the spherical case is impossible). That
is, we now have a tessellation by congruent polygons, as desired. (One could also prove the
existence of tessellations by congruent polygons in a similar manner. We also remark that
either the graph or its dual is a Cayley graph; see Chaboud and Kenyon (1996).)
We write dG for the degree of vertices in G when G is regular. Our main result will be the

following calculation of the edge-expansion constant Φ𝖤(G, 1, 1):
Theorem 6.18. If G is an infinite plane regular graph with regular dual G†, then

Φ𝖤(G, 1, 1) = (dG − 2)
√

1 − 4
(dG − 2)(dG† − 2) .

Compare this to the regular tree of degree d, where the left-hand side is equal to d − 2
(Exercise 6.1). (Note that in Section 6.2, Φ𝖤(G) denoted Φ𝖤(G, 1, deg) for an unweighted
graph G, which differs in the regular case by a factor of dG from Φ𝖤(G, 1, 1) used here.)
To prove Theorem 6.18, we unfortunately need to introduce a few more ways to measure

expansion. For K ⊆ 𝖵, define

E(K) :=
�[x, y] ∈ 𝖤 ; x, y ∈ K

	 (6.33)

and
E∗(K) :=

�[x, y] ∈ 𝖤 ; x ∈ K or y ∈ K
	
.

Thus, ∂𝖤K = E∗(K) \ E(K) and the graph induced by K is G↾K =
�
K , E(K)�. Write

Φ𝖤
′(G) := lim

N→∞
inf

{ |∂𝖤K |
|K | ; K ⊂ 𝖵, G↾K connected, N ≤ |K | < ∞

}
,

β(G) := lim
N→∞

inf
{ |K |
|E(K)| ; K ⊂ 𝖵, G↾K connected, N ≤ |K | < ∞

}
,

δ(G) := lim
N→∞

sup
{ |K |
|E∗(K)| ; K ⊂ 𝖵, G↾K connected, N ≤ |K | < ∞

}
.

When G is regular, we have for all finite K that 2|E(K)| = dG |K | − |∂𝖤K | and, similarly,
2|E∗(K)| = dG |K | + |∂𝖤K |, whence

β(G) =
2

dG − Φ𝖤
′(G) (6.34)
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and
δ(G) =

2
dG + Φ𝖤

′(G) . (6.35)

Combining this with Theorem 6.2, we see that when G is transitive, Φ𝖤
′(G) = Φ𝖤(G) and

δ(G) = sup
{ |K |
|E∗(K)| ; K ⊂ 𝖵 finite and nonempty

}
. (6.36)

A short bit of algebra shows that Theorem 6.18 follows from applying the following identity
to G, as well as to G†, then solving the resulting two equations using (6.34) and (6.35):

Theorem 6.19. For any plane regular graph G with regular dual G†, we have

β(G) + δ(G†) = 1 .

Proof. We begin with a sketch of the proof in the
simplest case. Suppose that K ⊂ 𝖵(G) and that the graph

Figure 6.4. The simplest case.

G↾K looks like Figure 6.4 in the following sense: if K f

denotes the vertices of G† that are faces of G↾K , then
K f consists of all the faces, other than the outer face, of
G↾K ; and |E(K)| = |E∗(K f )|. In this nice case, Euler’s
formula applied to the graph G↾K gives

|K | − |E(K)| +
� |K f | + 1

�
= 2 ,

which is equivalent to

|K |/|E(K)| + |K f |/|E∗(K f )| = 1 + 1/|E(K)| .
Now if we also assume that K can be chosen so that the first term above is arbitrarily close to
β(G) and the second term is arbitrarily close to δ(G†) with |E(K)| arbitrarily large, then the
desired formula follows at once. Thus, our work will consist in reducing or comparing things
to such a nice situation.
Let ϵ > 0, and let K be a finite set in 𝖵(G†) such that G↾K is connected, |K |/|E∗(K)| ≥

δ(G†)− ϵ , and |E∗(K)| > 1/ϵ . Regarding each element of K as a face of G, let K ′ ⊂ 𝖵(G) be
the set of vertices bounding these faces, and let E ′ ⊂ 𝖤(G) be the set of edges bounding these
faces. Then |E(K ′)| ≥ |E ′| = |E∗(K)|. Since the number of faces F of the graph (K ′, E ′) is
at least |K | + 1, we have

|K ′|/|E(K ′)| + |K |/|E∗(K)| ≤ |K ′|/|E ′| + |K |/|E ′|
≤ |K ′|/|E ′| + (F − 1)/|E ′|
= 1 + 1/|E ′| < 1 + ϵ , (6.37)

where the identity comes from Euler’s formula applied to the graph (K ′, E ′). Our choice of
K then implies that

|K ′|/|E(K ′)| + δ(G†) ≤ 1 + 2ϵ .
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Since G↾K ′ is connected and |K ′| → ∞ when ϵ → 0, it follows that β(G) + δ(G†) ≤ 1.
To prove that β(G) + δ(G†) ≥ 1, note that the constant Φ𝖤

′(G) is unchanged if, in its
definition, we require K to be connected and simply connected when K is regarded as a union
of closed faces of G† in the plane. This is because filling in holes increases |K | and decreases
|∂𝖤K |. Since G is regular, the same holds for β(G) by (6.34). Now let ϵ > 0. Let K ⊂ 𝖵(G)
be connected and simply connected (when regarded as a union of closed faces of G† in the
plane) such that |K |/|E(K)| ≤ β(G) + ϵ . Let K f be the set of vertices in G† that correspond
to faces of G↾K . Since |E∗(K f )| ≤ |E(K)| and the number of faces of the graph G↾K is
precisely |K f | + 1, we have

|K |/|E(K)| + |K f |/|E∗(K f )| ≥ |K |/|E(K)| + |K f |/|E(K)| = 1 + 1/|E(K)| ≥ 1

by Euler’s formula applied to the graph G↾K . (In case K f is empty, a comparable calculation
shows that |K |/|E(K)| ≥ 1.) Because G† is transitive, (6.36) allows us to conclude that

β(G) + δ(G†) + ϵ ≥ β(G) + ϵ + |K f |/|E∗(K f )| ≥ |K |/|E(K)| + |K f |/|E∗(K f )| ≥ 1 .

Since ϵ is arbitrary, the desired inequality follows. ◀
Question 6.20. What is Φ𝖵(G) for regular co-regular plane graphs G? What are Φ𝖤(G) and
Φ𝖵(G) for more general transitive plane graphs G?

Question 6.21. Suppose that G is a planar graph with all degrees in [d1, d2] and all co-
degrees in [d†1, d†2]. Do we have

(d1 − 2)
√

1 − 4
(d1 − 2)(d†1 − 2) ≤ Φ𝖤(G, 1, 1) ≤ (d2 − 2)

√
1 − 4

(d2 − 2)(d†2 − 2) ?

For partial results on this question, see Lawrencenko, Plummer, and Zha (2002) and the
references therein.

6.6 Euclidean Lattices and Entropy

Euclidean space is amenable and so does not satisfy the kind of strong isoperimetric
inequality that we have studied in the earlier sections of this chapter. However, it is the origin
of isoperimetric inequalities that continue to be useful today. The main result of this section
is the following discrete analogue of the classical isoperimetric inequality for balls in space.

Theorem 6.22. (Discrete Isoperimetric Inequality) If A ⊂ �d is a finite set, then

|∂𝖤A| ≥ 2d |A| d−1
d .

Observe that the 2d constant in the inequality is the best possible, as the example of the
d-dimensional cube shows: if A = [0, n)d ∩ �d, then |A| = nd and |∂𝖤A| = 2dnd−1. The
same inequality without the sharp constant follows from Theorem 6.29.

To prove this inequality, we will develop other very useful tools concerning entropy.
For every 1 ≤ i ≤ d, define the projection Pi:�d → �d−1 simply as the function dropping

the ith coordinate, that is, Pi(x1, . . . , xd) = (x1, . . . , xi−1, xi+1, . . . , xd). Theorem 6.22 will
follow easily from the following beautiful inequality of Loomis and Whitney (1949).
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Lemma 6.23. (Discrete Loomis and Whitney Inequality) For any finite A ⊂ �d ,

|A|d−1 ≤
d∏
i=1

|Pi(A)| .

Before proving Lemma 6.23, we show how it gives our isoperimetric inequality.

Proof of Theorem 6.22. We claim that

|∂𝖤A| ≥ 2
d∑
i=1

|Pi A| . (6.38)

To see this, observe that any vertex in Pi(A) matches to a straight line in the ith coordinate
direction which intersects A. Thus, since A is finite, to any vertex in Pi(A), we can always
match two distinct edges in ∂𝖤A: the first and last edges on the straight line that intersects A.

Using Lemma 6.23, the arithmetic mean–geometric mean inequality, and (6.38), we get

|A|d−1 ≤
d∏
i=1

|Pi(A)| ≤
( 1

d

d∑
i=1

|Pi(A)|
)d
≤

( |∂𝖤A|
2d

)d
,

as desired. ◀
To prove Lemma 6.23, we introduce the powerful notion of entropy. Let X be a random

variable taking values x1, . . . , xn. Denote p(x) := P[X = x], and define the entropy of X to
be

H(X) :=
n∑
i=1

p(xi) log
1

p(xi) = −
n∑
i=1

p(xi) log p(xi) .

Clearly H(X) depends only on the law µX = p( • ) of X , and it will be convenient to write
this functional as H[µX]. The entropy is the same as the expectation of log

�
1/p(X)�. This

logarithm can be thought of as the “surprise” (or information) of seeing the actual value of
X , measured in bits when the logarithm is to base 2. For example, if one of the values of X
has probability 1/25, then seeing that value gives 5 bits of surprise. (Note, though, that we
use log to mean natural logarithm.) Suppose, however, that one has an incorrect idea of the
distribution of X , thinking that it is the function q(x). In this case, one’s surprise will be
log

�
1/q(X)�, whose expectation is at least H(X), because

n∑
i=1

p(xi) log
1

q(xi) −
n∑
i=1

p(xi) log
1

p(xi) = −
n∑
i=1

p(xi) log
q(xi)
p(xi)

≥ −
n∑
i=1

p(xi)
( q(xi)

p(xi) − 1
)

= 0 ,
(6.39)

due to the inequality log t ≤ t − 1 for t > 0, with equality iff t = 1. The difference, or excess
surprise from using the wrong distribution, is

n∑
i=1

p(xi) log
1

q(xi) −
n∑
i=1

p(xi) log
1

p(xi) =
n∑
i=1

p(xi) log
p(xi)
q(xi) =: DKL(p ∥ q) ,
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which is called the Kullback-Leibler divergence of q from p or the relative entropy for using
q instead of p. Inequality (6.39) is due to Gibbs. Note that DKL(p ∥ q) = 0 iff p = q. As an
example, if we use the uniform measure q(xi) := 1/n, then we see that

H(X) ≤ log n , (6.40)

with equality iff X is uniform on n values.
The fact that DKL(p ∥ q) = 0 iff p = q turns out to be useful to incentivize accurate

predictions. Suppose that we want to predict the value of X and that someone else knows the
distribution p of X . We ask that person for p, but the answer might be q instead. To promote
truthfulness, we offer to pay that person some fixed amount minus a penalty of log 1/q(xi)
when the outcome is xi . Since the expected penalty is minimized when q = p, we hope that
p will indeed be reported. This is part of the field called proper scoring rules; see Winkler
(1969) and Gneiting and Raftery (2007).

Now suppose we are given a pair (X ,Y ) of discrete random variables with joint distribution
µ(X,Y) and marginal distributions µX and µY . We define the mutual information I(X ,Y ) of
X and Y to be

I(X ,Y ) := DKL
�
µ(X,Y)

�
µX ⊗ µY

�
= H(X) + H(Y ) − H(X ,Y ) ;

in this calculation, we used the fact that

log
1

µX(x)µY (y) = log
1

µX(x) + log
1

µY (y) .

Thus, I(X ,Y ) ≥ 0 with equality iff X and Y are independent. We also define the conditional
entropy H(X | Y ) of X given Y as

H(X | Y ) := H(X ,Y ) − H(Y ) = H(X) − I(X ,Y ) . (6.41)

The reason this is called “conditional entropy” is that it can be written in a way using
conditional distributions as follows. Write µX |Y for the conditional distribution of X given Y ;
this is a (vector-valued) random variable, a function of Y , with E[µX |Y ] = µX .

Proposition 6.24. Given two discrete random variables X and Y on the same space, we have
H(X | Y ) = E

�
H[µX |Y ]�.

Proof. We have

E
�
H[µX |Y ]� = −

∑
y

P[Y = y]
∑
x

P[X = x | Y = y] log P[X = x | Y = y]

= −
∑
x,y

P[X = x,Y = y]�log P[X = x,Y = y] − log P[Y = y]�
= H(X ,Y ) − H(Y ) . ◀
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Corollary 6.25. (Shannon’s Inequalities) For any discrete random variables X , Y , and Z ,
we have

0 ≤ H(X | Y ) ≤ H(X) , (6.42)
H(X ,Y ) ≤ H(X) + H(Y ) , (6.43)

and
H(X ,Y | Z) ≤ H(X | Z) + H(Y | Z) . (6.44)

Proof. Since entropy is nonnegative, so is conditional entropy by Proposition 6.24. This
proves the first part of (6.42). Since Kullback-Leibler divergence is nonnegative, we have
(6.43). Combined with the definition of H(X | Y ), (6.43) gives the second part of (6.42).
Because of Proposition 6.24, (6.43) also gives (6.44). ◀

Our last step before proving Lemma 6.23 is the following inequality of Han (1978):

Theorem 6.26. (Han’s Inequality) For any discrete random variables X1, . . . , Xk , we have

(k − 1)H(X1, ..., Xk) ≤
k∑
i=1

H(X1, ..., Xi−1, Xi+1, ..., Xk) .

Proof. Write X ∗i for the vector (X1, ..., Xi−1, Xi+1, ..., Xk). Then a telescoping sum and (6.42)
give

H(X1, ..., Xk) =
k∑
i=1

H(Xi | X1, ..., Xi−1)

≥
k∑
i=1

H(Xi | X∗i ) =
k∑
i=1

�
H(X1, ..., Xk) − H(X ∗i )

�
.

Rearranging the terms gives Han’s inequality. ◀
We now prove the Loomis-Whitney inequality.

Proof of Lemma 6.23. Take random variables X1, . . . , Xd such that (X1, . . . , Xd) is distributed
uniformly on A. Clearly H(X1, . . . , Xd) = log |A|, and by (6.40),

H(X1, . . . Xi−1, Xi+1, . . . , Xd) ≤ log |Pi(A)| .
Now use Theorem 6.26 on X1, . . . , Xd to find that

(d − 1) log |A| ≤
d∑
i=1

log |Pi(A)| ,

as desired. ◀
The proof of Han’s inequality, while short, leaves some mystery as to why the inequality is

true. In fact, a more general and very beautiful inequality due to Shearer, discovered in the
same year but not published until later by Chung, Graham, Frankl, and Shearer (1986), has a
proof that shows not only why the inequality holds but also why it must hold. We present this
now. Shearer’s inequality has many applications in combinatorics.



204 Chap. 6: Isoperimetric Inequalities

Lemma 6.27. Given random variables X1, . . . , Xk and S ⊆ [1, k], write XS for the random
variable ⟨Xi ; i ∈ S⟩. The function S 7→ H(XS) is submodular, where H(X∅) := 0.

Proof. Given S,T ⊆ [1, k], we wish to prove that

H(XS∪T ) + H(XS∩T ) ≤ H(XS) + H(XT ) .

Subtracting 2H(XS∩T ) from both sides, we see that this is equivalent to

H(XS∪T | XS∩T ) ≤ H(XS | XS∩T ) + H(XT | XS∩T ) ,

which is (6.44). ◀

Theorem 6.28. (Shearer’s Inequality) In the notation of Lemma 6.27, let S be a collection
of subsets of [1, k] such that each integer in [1, k] appears in exactly r of the sets in S . Then

rH(X1, . . . , Xk) ≤
∑
S∈S

H(XS) .

Proof. Apply submodularity to the right-hand side by combining summands in pairs as much
as possible and iteratively: When we apply submodularity to the right-hand side, we take
a pair of index sets and replace them by their union and their intersection. We get a new
sum that is smaller. It does not change the number of times that any element appears in the
collection of sets. We repeat on any pair we wish. This won’t change anything if one of the
pair is a subset of the other, but it will otherwise. So we keep going until we can’t change
anything, that is, until every remaining pair has the property that one index set is contained in
the other. (This procedure must terminate because in every step that changes the sets, the sum
of squares of set sizes increases.) Since each element appears exactly r times in S , it follows
that we are left with r copies of [1, k] (and some copies of ∅, which may be ignored). ◀

▷ Exercise 6.15.
Prove the following generalization of the Loomis-Whitney inequality. Let A ⊂ �d be finite
and S be a collection of subsets of {1, . . . , d} such that each integer in [1, d] appears in
exactly r of the sets in S . Write PS for the projection of �d → �S onto the coordinates in S.
Then

|A|r ≤
∏
S∈S

|PS A| .
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6.7 Expansion Profiles and Decay of Transition Probabilities

The next two sections look at the expansion of sets as a function of their size, without
assuming that the network is nonamenable. Recall that nonamenability is equivalent to
the spectral radius being less than 1, in other words, that transition probabilities decay
exponentially fast. Here we will look at transition probabilities that decay more slowly than
exponentially.
This section examines what expansion tells us about long-term transition probabilities,

whereas the next section looks at transience. Both sections extend well-known results for �d .
Kesten (1967) asked whether the recurrent Cayley graphs are precisely those whose growth

is at most quadratic. The results here will allow us to answer Kesten’s question positively.
The reason is that the growth rate of a Cayley graph implies a bound on its expansion, as we
see from the following theorem due to Coulhon and Saloff-Coste (1993). Define the inner
vertex boundary of a set K as ∂in

𝖵 K := {x ∈ K ; ∃y /∈ K y ∼ x}.

Theorem 6.29. (Expansion of Cayley Graphs) Let G be a Cayley graph. Let R(m) be the
smallest radius of a ball in G that contains at least m vertices. Then, for all finite K ⊂ 𝖵, we
have |∂in

𝖵 K |
|K | ≥

1
2R

�
2|K |� .

Proof. Let s be a generator of the group Γ used for the right Cayley graph G. The bijection
x 7→ xs moves x to a neighbor of x. Thus, it moves at most |∂in

𝖵 K | vertices of K to the
complement of K . If γ is the product of r generators, then the map x 7→ xγ is a composition
of r steps of distance 1, each of which moves at most |∂in

𝖵 K | points of K out of K , whence the
composition moves at most r |∂in

𝖵 K | points of K out of K . Let R := R(2|K |). Now by choice
of R, a random γ in the ball of radius R about the identity has chance at least 1/2 of moving
any given x ∈ K out of K , so that, in expectation, a random γ moves at least |K |/2 points of
K out of K . Hence there is some γ that moves this many points, whence R|∂in

𝖵 K | ≥ |K |/2.
This is the desired inequality. ◀

The same proof yields the same lower bound for the outer vertex boundary, ∂𝖵K . An
extension to transitive graphs is given in Lemma 10.46.

Example 6.30. One might expect that the outer boundary of a finite set in an infinite Cayley
graph is at least as big as its inner boundary, especially if the set is a ball. However, this is
not true. Consider the usual Cayley graph of � × �2n, and K :=

�(x, y) ; |x | ≤ n − 1, y ̸= n
	
.

Then K is a “square” whose inner boundary has size 8n − 8 but whose outer boundary has
size 6n − 1, which is smaller when n ≥ 4. To make K a ball, add the generators (1, 1), (1,−1),
and their inverses.

Note that both sides of Theorem 6.29 are of order 1/r for balls of radius r in�d (d ≥ 1) and
also of order r for “boxes” (6.8) of “radius” r in the lamplighter group �⊙, so, up to constant
factors, this bound is sharp for such groups. Of course, it is not sharp for nonamenable
groups.
Let p(•, •) be the transition probabilities of an irreducible Markov chain on a countable state

space 𝖵. In this section, we assume that the chain has an infinite stationary measure π and
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obtain upper bounds on n-step transition probabilities pn(•, •) using information on expansion
of finite sets of varying size.
For x, y ∈ 𝖵, let Q(x, y) := π(x)p(x, y). For S, A ⊂ V , define Q(S, A) :=

∑
s∈S,a∈A Q(s, a)

and |∂𝖤S|Q := Q(S, Sc). The edge expansion of a finite set S ⊂ 𝖵 is ΦS := |∂𝖤S|Q/π(S).
Write πmin := infx∈𝖵 π(x). The expansion profile of the chain is defined for u ∈ (πmin,∞) by

Φ(u) := inf
�
ΦS ; 0 < π(S) ≤ u

	
. (6.45)

For u ∈ (0, πmin], we set Φ(u) := ∞. Recall that a Markov chain on 𝖵 is called lazy if
p(x, x) ≥ 1/2 for all x ∈ 𝖵. The following bound is the main result of this section.

Theorem 6.31. Suppose that the Markov chain (𝖵, P) is either lazy or reversible. If

n ≥ 1 +
∫ 4/ϵ

π(x)∧π(y)
16 du

uΦ2(u) , (6.46)

then
pn(x, y)
π(y) ≤ ϵ . (6.47)

See Exercise 6.77 for a version of the theorem where the laziness assumption is relaxed.
Before we prove the theorem, we describe some applications.

Corollary 6.32. Suppose that the Markov chain (𝖵, P) is lazy or reversible.
(i) If Φ(u) ≥ φ0 for some φ0 > 0 and all u > 0, then

pn(x, y)
π(y) ≤ 4

πmin
exp

(
−
φ2

0(n − 1)
16

)
for all x, y ∈ 𝖵 and n ≥ 1 .

(ii) Let d > 0. If Φ(u) ≥ cu−1/d for some c > 0 and all u > 0, then

pn(x, y)
π(y) ≤ C ′n−d/2 for all x, y ∈ 𝖵 and n ≥ 1 ,

where C ′ = C ′(d, c). In particular, by Theorem 6.29, this applies if the chain is simple
random walk on a Cayley graph where the balls satisfy |B(o, r)| ≥ c0rd for some
c0 > 0, so R(k) = O(k1/d).

(iii) If Φ(u) ≥ c/log (bu) for some b, c > 0 and all u > 0, then

pn(x, y)
π(y) ≤ C1 exp(−C2n1/3) for all x, y ∈ 𝖵 and n ≥ 1 ,

where C1,C2 depend on b, c. In particular, this applies if the chain is simple random
walk on a Cayley graph of exponential growth because of Theorem 6.29.

Proof. (i) Given n > 1, let ϵ satisfy

n = 1 +
∫ 4/ϵ

πmin

16φ−2
0 u−1 du = 1 + 16φ−2

0 log
( 4
ϵπmin

)
.
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By Theorem 6.31,

pn(x, y)/π(y) ≤ ϵ =
4
πmin

e−φ
2
0 (n−1)/16 .

(For lazy chains, 16 in the exponent can be replaced by 2; see Exercise 6.76.)
(ii) Given ϵ ∈ (0, 1), let n ≥ 1 +

∫ 4/ϵ
0 16c−2u2/d−1 du = 1 + c1ϵ

−2/d , where c1 is a constant.
By Theorem 6.31, pn(x, y) ≤ ϵπ(y). Choosing the minimum ϵ in terms of n proves the claim.

(iii) This part is proved similarly, using
∫ 4/ϵ
πmin

log2(bu)
u

du ≤ c2 log3(4b/ϵ). ◀

The bound of Corollary 6.32(ii) in terms of the expansion profile is more general than the
Fourier method discussed in Exercise 2.100: if, say, the edges of �d get weights that are
bounded and bounded away from 0, then the same upper bound on pn(x, y) holds, up to a
bounded factor.
The proof of Theorem 6.31 will use a set-valued Markov chain closely tied to the original

walk. This set-valued Markov chain is often referred to as evolving sets. Given 𝖵, π, and
Q as earlier, consider the Markov chain ⟨Sn ; n ≥ 0⟩ on subsets of 𝖵 with the following
transition rule. If the current state Sn is S ⊂ 𝖵, choose U uniformly in [0, 1] (independently
of ⟨Sj⟩j≤n), and let the next state Sn+1 be

S′ :=
�
y ; Q(S, y) ≥ Uπ(y)	 .

Since Q(𝖵, y) = π(y) by stationarity, we know that Q(S, y) ≤ π(y). Consequently,

P[y ∈ S′ | S] = P
�
Q(S, y) ≥ Uπ(y) � S

�
=

Q(S, y)
π(y) . (6.48)

Write PS( • ) := P( • | S0 = S) and similarly for ES[ • ].
Lemma 6.33. The sequence



π(Sn)�n≥0 forms a martingale.

Proof. By (6.48), we have

E
�
π(Sn+1) � Sn

�
=
∑
y∈𝖵

π(y)P[y ∈ Sn+1 | Sn] =
∑
y∈𝖵

Q(Sn, y) = π(Sn) . ◀

The following two propositions relate the nth order transition probabilities of the original
chain to the evolving set process.

Proposition 6.34. For all n ≥ 0 and x, y ∈ 𝖵, we have

pn(x, y) =
π(y)
π(x) P{x}[y ∈ Sn] .

Proof. We use induction on n. The case n = 0 is trivial. Fix n > 0 and suppose the claim
holds for n − 1. Let U be the uniform variable used to generate Sn from Sn−1. Then

π(x)pn(x, y) = π(x)
∑
z∈𝖵

pn−1(x, z)p(z, y) =
∑
z∈𝖵

P{x}[z ∈ Sn−1]π(z) p(z, y)

= E{x}
[∑
z∈𝖵

1[z∈Sn−1]Q(z, y)
]

= π(y)E{x}
[ 1
π(y)Q(Sn−1, y)

]
= π(y)P{x}[y ∈ Sn]

by (6.48). ◀
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Proposition 6.35. For all n ≥ 0 and x ∈ 𝖵, we have





 pn(x, •)
π( • )





π ≤ E
√
π(Sn)
π(x) . (6.49)

Proof. Let ⟨Sn⟩n≥0 and ⟨Λn⟩n≥0 be two independent replicas of the evolving set process, with
S0 = Λ0 = {x}. Then by Proposition 6.34,





 pn(x, •)
π( • )





2

π
=
∑
y∈𝖵

pn(x, y)2
π(y) =

∑
y∈𝖵

π(y)P[y ∈ Sn]2
π(x)2

=
1

π(x)2
∑
y∈𝖵

π(y)P
�{y ∈ Sn} ∩ {y ∈ Λn}�

=
E
�
π(Sn ∩ Λn)�
π(x)2 ≤

E
�
π(Sn) ∧ π(Λn)�

π(x)2 ≤
E
�√
π(Sn)π(Λn) �
π(x)2 . (6.50)

◀

By Jensen’s inequality and Lemma 6.33,
⟨√
π(Sn)

⟩
is a supermartingale, so the right-hand

side of (6.49) is decreasing. To quantify the rate of decrease, we will need the following four
lemmas.

Lemma 6.36. For every real number φ ∈ [0, 1
2 ], we have√

1 + 2φ +
√

1 − 2φ
2

≤
√

1 − φ2 ≤ 1 − φ2/2 .

Proof. Squaring gives the second inequality and converts the first inequality into

1 +
√

1 − 4φ2 ≤ 2(1 − φ2) .

This last inequality is easily verified by subtracting 1 and squaring again. ◀

The next lemma relates evolving sets to expansion.

Lemma 6.37. Let ∅ ̸= S ⊂ 𝖵. If p(y, y) ≥ 1/2 for all y ∈ 𝖵, then

ES

√
π(S′) ≤ (1 − Φ2

S/2)
√
π(S) .

Proof. Let U be the uniform variable used to generate S′ from S. The laziness assumption
yields

π(y)PS
�
y ∈ S′

�
U < 1

2
�

=
{
π(y) if y ∈ S
2Q(S, y) if y ∈ Sc.

Summing over y ∈ 𝖵, we infer that

ES

�
π(S′) � U < 1

2
�

= π(S) + 2Q(S, Sc) = π(S) + 2|∂𝖤S|Q .
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Thus
ES

�
π(S′) � U < 1

2
�

= π(S)�1 + 2ΦS

�
. (6.51)

By Lemma 6.33, ES

[
π(S′)] = π(S), and comparing this to (6.51) gives

ES

�
π(S′) � U ≥ 1

2
�

= π(S)�1 − 2ΦS

�
.

Therefore, by Jensen’s inequality and Lemma 6.36, we have

ES

√
π(S′) ≤ 1

2

√
ES

�
π(S′) � U ≤ 1

2
�

+ 1
2

√
ES

�
π(S′) � U > 1

2
�

=
[

1
2

√
1 + 2ΦS + 1

2

√
1 − 2ΦS

]√
π(S) ≤

(
1 −

Φ2
S

2

)√
π(S) . ◀

Lemma 6.38. Let f : [0,∞) → [0, 1] be an increasing function. If ⟨Ln⟩n≥0 satisfy Ln ≥ 0
and Ln − Ln+1 ≥ Ln f (Ln) for all n, then for every n ≥

∫ L0
δ

du
u f (u) , we have Ln ≤ δ.

Proof. It suffices to show that for every n, we have∫ L0

Ln

du
u f (u) ≥ n . (6.52)

For all k ≥ 0, the inequality Lk+1 ≤ Lk

�
1 − f (Lk)� ≤ Lke− f (Lk ) holds, whence∫ Lk

Lk+1

du
u f (u) ≥

1
f (Lk)

∫ Lk

Lk+1

du
u

=
1

f (Lk) log
Lk

Lk+1
≥ 1 .

Summing this over k ∈ {0, 1, . . . , n − 1} gives (6.52). ◀
Lemma 6.39. Suppose that Z ≥ 0 is a random variable and f0: [0,∞) → [0,∞) is an
increasing function. Define f (u) := f0(u/2)/2. Then E

�
Z f0(Z)� ≥ EZ · f (EZ).

Proof. Let A := [Z ≥ EZ/2]. Then E[Z1Ac] ≤ EZ/2, so E[Z1A] ≥ EZ/2. Therefore,

E
�
Z f0(Z)� ≥ E

�
Z1A · f0(EZ/2)� ≥ EZ · f (EZ) . ◀

Proof of Theorem 6.31. First, suppose the chain is lazy. Our starting point is the result of
Proposition 6.35:

∥pn(x, •)/π∥π ≤ Ln :=
1

π(x) E
√
π(Sn) . (6.53)

Let S•n have the π-biased law of the evolving set Sn, that is,

P[S•n = A] :=
π(A)
π(x) P{x}[Sn = A] for every finite A ⊂ 𝖵 .

For every nonnegative function F defined on finite subsets of 𝖵,

EF(S•n) = Ex

[
π(Sn)
π(x) F(Sn)

]
; (6.54)
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in particular, E
[
π(S•n)−1/2

]
= Ln. By Lemma 6.37,

1
π(x) E

[√
π(Sn+1) ���� Sn

]
≤

√
π(Sn)
π(x)

(
1 −

Φ2�π(Sn)�
2

)
.

Taking expectations with respect to P{x}, using (6.53) and (6.54), gives

Ln+1 ≤ E
[
π(S•n)−1/2

(
1 − Φ2(π(S•n))

2

)]
= E

[
Zn

�
1 − f0(Zn)�] , (6.55)

where Zn := π(S•n)−1/2 and f0(z) := Φ2(z−2)/2. Since f0 is an increasing function, (6.55)
and Lemma 6.39 imply that Ln+1 ≤ Ln

�
1 − f (Ln)�, where f (z) := f0(z/2)/2. Note that

L0 = π(x)−1/2. By Lemma 6.38, for all

n ≥
∫ L0

√
ϵ

dz
z f (z) =

∫ L0

√
ϵ

4 dz
zΦ2(4/z2) =

∫ 4/ϵ

4π(x)
2 du

uΦ2(u) ≤
∫ 4/ϵ

π(x)
2 du

uΦ2(u) , (6.56)

we have, by Proposition 6.35, ∥pn(x, •)/π∥π ≤ Ln ≤
√
ϵ . (We used the change of variable

u = 4/z2.)
For the reversible case, the next remark is not needed: Recall from Exercise 2.1 that the

reversed chain has transition probabilities p̂(x, y) = π(y)p(y, x)/π(x) and stationary measure
π. By the upcoming Exercise 6.16, the reversed chain p̂(•, •) has the same expansion profile
as p(•, •).

Thus, for all

m, n ≥
∫ 4/ϵ

π(x)∧π(y)
2 du

uΦ2(u) ,

we have ∥pn(x, •)/π∥π ≤ √ϵ and ∥ p̂m(x, •)/π∥π ≤ √ϵ . Observe that���� pn+m(x, z)
π(z)

���� =
����∑
y∈𝖵

pn(x, y)pm(y, z)
π(z)

���� =
����⟨ pn(x, •)

π( • ) ,
p̂m(z, •)
π( • )

⟩
π

���� .
By Cauchy-Schwarz, this is at most ∥pn(x, •)/π∥π · ∥ p̂m(x, •)/π∥π ≤ ϵ . This establishes
Theorem 6.31 for lazy chains, with 4 instead of 16 in the numerator. If the chain is reversible
but not lazy, then we can reduce to the lazy case using the upcoming Exercise 6.17, since for
reversible chains, ∥pn(x, •)/π∥2

π = p2n(x, x)/π(x). ◀
For certain cases, the preceding proof used the next two exercises.

▷ Exercise 6.16.
For the reversed chain, define Q̂(x, y) := π(x)p̂(x, y) = Q(y, x) for all x, y. Prove that for any
finite S ⊂ V , we have |∂𝖤S|Q = |∂𝖤S|Q̂.

▷ Exercise 6.17.
The lazy version of a transition matrix P is given by P̃ = (P + I)/2. Show that the
corresponding expansion profile satisfies Φ̃(r) = Φ(r)/2 for all r > πmin. If the original
matrix P is reversible, show that p2n(x, x) is decreasing in n for all x ∈ 𝖵, and deduce that
p2n(x, x) ≤ 2 p̃2n(x, x).
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We are now able to fulfill our promise to answer Kesten’s question whether the recurrent
Cayley graphs are precisely those whose growth is at most quadratic. Exercise 2.86 showed
that all graphs of at most quadratic growth are recurrent. Gromov (1981a) showed that Cayley
graphs whose growth is not at most quadratic have at least cubic growth. That Cayley graphs
of at least cubic growth are indeed transient was shown finally by Varopoulos (1986). We can
now show this as a consequence of our preceding work:
Theorem 6.40. (Transience of Cayley Graphs) If G is a Cayley graph of at least cubic
growth, then simple random walk on G is transient.

Proof. Because of Theorem 6.29, the hypotheses of Corollary 6.32(ii) are satisfied with
d = 3. Since

∑
n n−3/2 < ∞, transience results. ◀

6.8 Anchored Isoperimetric Profiles and Transience
Write

ψ(G, t) := inf
� |∂𝖤K |c ; t ≤ |K |π < ∞	 .

This is a functional elaboration of the expansion constant: the constant Φ𝖤(G, c, π) measures
only whether ψ(G, t) grows linearly in t. We saw that such linear growth is equivalent to
exponential decay of return probabilities of the network random walk. The function ψ is
similar to the profile function Φ of (6.45), but the former imposes a lower bound on |K |π ,
whereas the latter imposes an upper bound on |K |π ; the latter also uses a quotient. Another
connection to random walk arises from this isoperimetric “profile” via a relationship to
effective resistance, which will allow us to give another proof that Cayley graphs of at least
cubic growth are transient; it will also prove useful to us in Section 10.6. Since we will
consider effective resistance from a set to infinity, we will use the still more refined function

ψ(G, A, t) := inf
� |∂𝖤K |c ; A ⊆ K , K/A is connected, t ≤ |K |π < ∞	 (6.57)

for A ⊂ 𝖵(G). Here, we say that K/A is connected when the graph induced by K in G/A
is connected, where we have identified all of A to a single vertex. If A = {a}, then we’ll
write more simply ψ(G, a, t) for ψ(G, {a}, t). The requirement that K contain A and K/A be
connected is what leads to the adjective “anchored.” When this anchored isoperimetric profile
grows linearly, we will not need to use the profile function; applications of this to percolation
will be in the following section.

It is commonly the case that ψ(t) = ψ(G, A, t) ≥ f (t) for some increasing function f on� |A|π ,∞� that satisfies 0 < f (t) ≤ t and f (2t) ≤ α f (t) for some α. For example, f has
the latter two properties when f has the form f (t) = βta for some β ∈

�
0, |A|−1

π ∧ 1
�
and

a ∈ [0, 1]. In this case, we obtain the following upper bound on effective resistance:
Theorem 6.41. Let A be a finite set of vertices in a network G with |𝖵(G)|π = ∞. Suppose
that ψ(t) := ψ(G, A, t) has the property that ψ(t) ≥ f (t) for some increasing function f on� |A|π ,∞� that satisfies 0 < f (t) ≤ t and f (2t) ≤ α f (t) for some α. Then

R(A↔ ∞) ≤
∫ ∞

|A|π

4α2

f (t)2 dt .

Theorem 6.41 is an easy consequence of a result that does not assume any regularity on
ψ(G, A, t), namely:
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Theorem 6.42. Let A be a finite set of vertices in a network G with |𝖵(G)|π = ∞. Let
ψ(t) := ψ(G, A, t). Define s0 := |A|π and sk+1 := sk + ψ(sk)/2 recursively for k ≥ 0. Then

R(A↔ ∞) ≤
∑
k≥0

2
ψ(sk) .

Before proving Theorem 6.42, we show how it implies Theorem 6.41.

Proof of Theorem 6.41. Define t0 := |A|π and tk+1 := tk + f (tk)/2 recursively. We have that
sk ≥ tk and tk ≤ tk+1 ≤ 2tk , whence for tk ≤ t ≤ tk+1, we have f (t) ≤ f (2tk) ≤ α f (tk), so
that ∫ ∞

|A|π

4α2

f (t)2 dt ≥
∑
k≥0

∫ tk+1

tk

4α2

f (t)2 dt ≥
∑
k≥0

∫ tk+1

tk

4
f (tk)2 dt =

∑
k≥0

4(tk+1 − tk)
f (tk)2

=
∑
k≥0

2 f (tk)
f (tk)2 ≥

∑
k≥0

2
ψ(tk) ≥

∑
k≥0

2
ψ(sk) ≥ R(A↔ ∞) . ◀

To show Theorem 6.42, we’ll prove an analogue for finite networks, Lemma 6.43, which
gives Theorem 6.42 immediately by means of the following exercise:

▷ Exercise 6.18.
Let A be a finite set of vertices in a connected network G with |𝖵(G)|π = ∞. Let H be a
finite connected subnetwork containing A. In HW, identify A to a single vertex a, and let
z be the (wired) boundary vertex; call the new graph H ′. Define ψ(G, A, t) and ⟨sk⟩ as in
Theorem 6.42 and ϕ(H ′, t) with its associated sequence ⟨s′

k
⟩ as in Lemma 6.43. Show that

for all t ≥ 0,
ϕ
�
H ′, π(a) + t

�
≥ ψ

�
G, A, |A|π + t

�
,

and that for all k ≥ 0, we have ϕ(H ′, s′
k
) ≥ ψ(G, A, sk).

Lemma 6.43. Let a and z be two distinct vertices in a finite connected network G. Define

ϕ(t) := ϕ(G, t) := min
� |∂𝖤W |c ; a ∈ W , z /∈ W , W is connected, t ≤ |W |π	

for t ≤ |𝖵(G) \ {z}|π and ϕ(t) := ∞ for t > |𝖵(G) \ {z}|π . Define s′0 := π(a) and
s′
k+1 := s′

k
+ ϕ(s′

k
)/2 recursively for k ≥ 0. Then

R(a ↔ z) ≤
∞∑
k=0

2
ϕ(s′

k
) .

Proof. Let v( • ) be the voltage corresponding to the unit current flow i from z to a, with
v(a) = 0.
For t ≥ 0, let W (t) :=

�
x ∈ 𝖵 ; v(x) ≤ t

	
, and for 0 ≤ t < t ′, let E(t, t ′) be the set of

directed edges from W (t) to
�
x ∈ 𝖵 ; v(x) ≥ t ′

	
. Define t0 := 0 and recursively,

tk+1 := inf
�
t > tk ; |E(tk , t)|c ≤ |∂𝖤W (tk)|c/2	.
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Set k̄ := min
�

j ; z ∈ W (t j)	 = min
�

j ; t j+1 = ∞
	
. Fix some k < k̄. Note that i(e) ≤ 0

for every e ∈ ∂𝖤W (tk) (where edges in ∂𝖤W (tk) are oriented away from W (tk)). Since
E(tk , tk+1) ⊆ ∂𝖤W (tk),

1 =
∑

e∈∂𝖤W (tk )
|i(e)| ≥

∑
e∈E(tk ,tk+1)

c(e) �v(e+) − v(e−)�
≥

∑
e∈E(tk ,tk+1)

c(e) (tk+1 − tk) ≥ (tk+1 − tk) |∂𝖤W (tk)|c
2

,

where the last inequality follows from the definition of tk+1.
Thus

tk+1 − tk ≤ 2/ϕ
�|Wk |π� , (6.58)

where we abbreviate Wk := W (tk). Clearly,

|Wk+1 |π = |Wk |π + |Wk+1 \Wk |π ≥ |Wk |π +
1
2
|∂𝖤Wk |c ≥ |Wk |π +

1
2
ϕ
�|Wk |π� .

Since ϕ is an increasing function, it follows by induction that |Wk |π ≥ s′
k
for k < k̄, and so

(6.58) gives

R(a ↔ z) = v(z) = t k̄ − t0 ≤
k̄−1∑
k=0

2
ϕ
�|Wk |π� ≤

k̄−1∑
k=0

2
ϕ(s′

k
) . ◀

We can now give a second proof of transience for Cayley graphs of at least cubic growth:

Proof of Theorem 6.40. In the notation of Theorem 6.29, we have R(m) ≤ cm1/3 for some
positive constant c. By that theorem, therefore, we have ψ(G, o,m) ≥ c′m2/3 for some other
positive constant c′. Hence, transience is a consequence of Theorem 6.41. ◀

6.9 Anchored Expansion and Percolation

Recall the probability measure Pp defining Bernoulli percolation from Section 5.2 and
the critical probability pc. There, we took a random subset of edges, but an alternative is
to take the subgraph induced by a random subset of vertices. This alternative is called site
percolation. The adjective Bernoulli applies when each vertex is present independently with
the same probability. When we need different notation for these two processes, we use Psite

p

and Pbond
p for the two product measures on 2𝖵 and 2𝖤, respectively, and psite

c and pbond
c for the

two critical probabilities. If we don’t indicate whether the percolation is bond or site and
both make sense in context, then results we state should be taken to apply to both types of
percolation.
Grimmett, Kesten, and Zhang (1993) showed that simple random walk on the infinite

cluster of Bernoulli percolation in �d (when p > pc) is transient for d ≥ 3; in other words, in
Euclidean lattices, transience is preserved when the whole lattice is replaced by an infinite
percolation cluster. (We gave a proof of part of this result in Section 5.5, where we also noted
that another proof based on ideas in the present section was given by Pete (2008).) In general,
what aspects of Cayley graphs are preserved under percolation?
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Conjecture 6.44. (Percolation and Transience) If G is a transient Cayley graph, then a.s.
every infinite cluster of Bernoulli percolation on G is transient.

Conjecture 6.45. (Percolation and Speed) Let G be a Cayley graph. Then simple random
walk on G has positive speed iff simple random walk on infinite clusters of Bernoulli
percolation has positive speed a.s.

These conjectures were made by Benjamini, Lyons, and Schramm (1999), who proved that
simple random walk on an infinite cluster of any nonamenable Cayley graph has positive
speed. One might hope to use Proposition 6.9 to establish this result, but, in fact, the infinite
clusters are amenable:

▷ Exercise 6.19.
For any p < 1, every infinite cluster K of Bernoulli(p) percolation on any graph G of bounded
degree has Φ𝖤(K) = 0 a.s.

On the other hand, the infinite clusters might satisfy the following weaker “anchored
expansion” property, which is known to imply positive speed (Theorem 6.53).

Fix o ∈ 𝖵(G). The anchored expansion constants of G are

Φ∗𝖤(G) := lim
n→∞

inf
{ |∂𝖤K |

|K | ; o ∈ K ⊂ 𝖵, G↾K is connected, n ≤ |K | < ∞
}

and

Φ∗𝖵(G) := lim
n→∞

inf
{ |∂𝖵K |

|K | ; o ∈ K ⊂ 𝖵, G↾K is connected, n ≤ |K | < ∞
}
.

These are closely related to the number ψ(G, o, 0) of (6.57), but have the advantage that
Φ∗𝖤(G) and Φ∗𝖵(G) do not depend on the choice of the basepoint o. We say that a graph G has
anchored expansion if Φ∗𝖤(G) > 0.

▷ Exercise 6.20.
Show that if G is a transitive graph, then Φ𝖤(G) = Φ∗𝖤(G) and Φ𝖵(G) = Φ∗𝖵(G).

▷ Exercise 6.21.
Show that for every graph G, the balls BG(x, n) in G about every point x of radius n satisfy

lim inf
n→∞

|BG(x, n)|1/n ≥ 1 + Φ∗𝖵(G) . (6.59)

An important feature of anchored expansion is that several probabilistic implications of
nonamenability remain true with this weaker assumption. Furthermore, anchored expansion
is quite stable under percolation, as we will see.
First, we give a simple relationship between anchored expansion and percolation via the

following upper bound on pc due to Benjamini and Schramm (1996b):



§9. Anchored Expansion and Percolation 215

Theorem 6.46. (Percolation and Anchored Expansion) For any graph G, we have
pbond

c (G) ≤ 1
/�

1 + Φ∗𝖤(G)� and psite
c (G) ≤ 1

/�
1 + Φ∗𝖵(G)�.

Note that equality holds in both inequalities when G is a regular tree. For the proof, as
well as later, we will identify a subset ω ⊆ 𝖤 with its indicator function, so that ω(e) takes
the value 0 or 1 depending on whether e lies in the subset.

Proof. The proofs of both inequalities are completely analogous, so we prove only the first.
In fact, we prove it with Φ𝖤(G) in place of Φ∗𝖤(G), leaving the improvement to Exercise 6.22.
Choose any ordering ⟨e1, e2, . . .⟩ of 𝖤 so that o is an endpoint of e1. Fix p > 1

/�
1+Φ𝖤(G)�

and let ⟨Yk⟩ and ⟨Y ′k ⟩ be independent {0, 1}-valued Bernoulli(p) random variables. If A is the
event that

1
n

n∑
k=1

Yk >
1

1 + Φ𝖤(G)
for all n ≥ 1, then A has positive probability by the strong law of large numbers.
Define E0 := ∅. We will look at a finite or infinite subsequence of edges ⟨en j

⟩ via a
recursive procedure and define a percolation ω as we go. Suppose that the edges Ek :=
⟨en1 , . . . , enk

⟩ have been selected and that ω(en j
) = Yj for j ≤ k. Let Vk be the union of {o}

and the endpoints of the open edges of Ek . Let nk+1 be the smallest index of an edge in
𝖤 \ Ek that has exactly one endpoint in Vk , if any. If there are none, then stop; the cluster
K(o) of o is finite and we set ω(e j) := Y ′j for the remaining edges e j ∈ 𝖤 \ Ek . Otherwise, let
ω(enk+1 ) := Yk+1.

If this procedure never ends, then K(o) is infinite; assign ω(e j) := Y ′j for any remaining
edges e j ∈ 𝖤 \ Ek .
In both cases (whether K(o) is finite or infinite), ω is a fair sample of Bernoulli(p)

percolation on G.
We claim that K(o) is infinite on the event A. This would imply that p ≥ pbond

c (G) and
would complete the proof.

For suppose that K(o) is finite and contains m vertices. Let En be the final set of selected
edges. Note that En contains ∂𝖤K(o) (all edges of which are closed) and a spanning tree of
K(o) (all edges of which are open). This implies that n ≥ |∂𝖤K(o)|+m−1 and

∑n
k=1 Yk = m−1.

Since |∂𝖤K(o)|/m ≥ Φ𝖤(G), we have

1
n

n∑
k=1

Yk ≤
m − 1

|∂𝖤K(o)| + m − 1
=

1
1 + |∂𝖤K(o)|/(m − 1) <

1
1 + |∂𝖤K(o)|/m ≤

1
1 + Φ𝖤(G)

and the event A does not occur. ◀

▷ Exercise 6.22.
Prove the first inequality of Theorem 6.46 as written with anchored expansion.

Similar ideas show the following general property. Given two multigraphs G and G′,
a homomorphism ϕ:G → G′ is a weak covering map if, for every vertex x ∈ 𝖵(G) and
every edge e′ incident to ϕ(x), there is some edge e incident to x such that ϕ(e) = e′. For
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example, if ϕ: Γ → Γ′ is a group homomorphism that maps a generating set S for Γ onto a
generating set S′ for Γ′, and if G, G′ are the corresponding Cayley graphs, then ϕ is also a
weak covering map. In the case |S| = |S′| and G, G′ are simple, we get a stronger notion than
weak covering map, one which is closer to the topological notion of covering map; we now
define it for networks. Given two graphs G = (𝖵, 𝖤) and G′ = (𝖵′, 𝖤′) with edges weighted by
c, c′, respectively, and vertices weighted by D, D′, respectively, call a surjection ϕ:𝖵→ 𝖵′

a covering map if for every vertex x ∈ 𝖵, the restriction ϕ:T(x) → T(ϕ(x)) is a network
isomorphism, where T(x) denotes the star at x, that is, the network induced on the edges
incident to x. If there is such a covering map, then we call G a covering network of G′. To
illustrate the distinction, map the nearest-neighbor graph on {−1, 0, 1} with unit weights to
the edge between 0 and 1 by mapping −1 to 1. This provides a weak covering map but not a
covering map. The following result is due to Campanino (1985), but our proof is modeled on
that of Benjamini and Schramm (1996b).

Theorem 6.47. (Covering and Percolation) Suppose that ϕ:G → G′ is a weak covering
map of multigraphs. Then, for any x ∈ 𝖵(G) and p ∈ (0, 1), we have

Pp[x ↔ ∞] ≥ Pp[ϕ(x)↔ ∞] .

Therefore pc(G) ≤ pc(G′).
Proof. Write G = (𝖵, 𝖤) and G′ = (𝖵′, 𝖤′). We prove the theorem for bond percolation,
the proof for site percolation being almost identical. We will construct a coupling of the
percolation measures on the two graphs. That is, given ω′ ∈ 2𝖤′ , we will define ω ∈ 2𝖤 in
such a way that, first, if ω′ has distribution Pp on G′, then ω has distribution Pp on G; and,
second, if K(ϕ(x)) is infinite, then so is K(x).
Choose any ordering ⟨e′1, e′2, . . .⟩ of 𝖤′ so that ϕ(x) is an endpoint of e′1 and so that for each

k > 1, one endpoint of e′
k

is also an endpoint of some e′j with j < k.
Let e1 be any edge that ϕmaps to e′1. Defineω(e1) := ω′(e′1) and set n1 := 1. We will select

a subsequence of edges ⟨e′n j
⟩ via a recursive procedure. Suppose that E ′

k
:= {e′n1

, . . . , e′nk
}

have been selected and edges e j that ϕ maps onto e′n j
( j ≤ k) have been chosen. Let nk+1 be

the smallest index of an edge in 𝖤′ \ E ′
k
that shares an endpoint with at least one of the open

edges in E ′
k
, if any. If there are none, then stop; K(ϕ(x)) is finite and ω(e) for the remaining

edges e ∈ 𝖤 may be assigned independently in any order. Otherwise, if e′nk+1
is incident with

e′n j
∈ E ′

k
, then let ek+1 be any edge that ϕ maps to e′nk+1

and that is incident with e j ; such an
edge exists because ϕ is a weak covering map. Set ω(ek+1) := ω′(e′nk+1

).
If this procedure never ends, then K(ϕ(x)) is infinite; assigning ω(e) for any remaining

edges e ∈ 𝖤 independently in any order gives a fair sample of Bernoulli percolation on G that
has K(x) infinite. This proves the theorem. ◀

In the appendix to Chen and Peres (2004), G. Pete strengthened the conclusion of Theo-
rem 6.46 as follows:

Theorem 6.48. (Anchored Expansion of Clusters) Consider Bernoulli(p) bond perco-
lation on a graph G with Φ∗𝖤(G) > 0. If p > 1/

�
1 + Φ∗𝖤(G)�, then almost surely on the
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event that the open cluster K containing o is infinite, it satisfies Φ∗𝖤(K) > 0. Likewise, for
p > 1

/�
1 + Φ∗𝖵(G)�, we have Pp

�
Φ∗𝖵(K) > 0

� |K | = ∞
�

= 1.

Proof. We prove only the first assertion, as the second is similar. Define

An :=
�
K ⊂ 𝖵(G) ; o ∈ K , G↾K is connected and finite, |∂𝖤K | = n

	
. (6.60)

We will consider edge boundaries with respect to both G↾K and G, so we denote them by
∂K𝖤 and ∂G𝖤 , respectively. Note that in Bernoulli(p) bond percolation, for any 0 < α < p and
S ∈ An, we can estimate the conditional probability

P
[ |∂K𝖤 S|
|∂G𝖤 S| ≤ α

���� S ⊆ K
]

= P
�
Bin(n, p) ≤ αn

�
≤ e−nIp (α) , (6.61)

where the large deviation rate function

Ip(α) := α log
α

p
+ (1 − α) log

1 − α
1 − p

(6.62)

is continuous in α and − log (1 − p) = Ip(0) > Ip(α) > 0 for 0 < α < p (see Billingsley
(1995), p. 151, or Dembo and Zeitouni (1998), Exercise 2.2.23(b)). Therefore,

P
[
∃S ∈ An, S ⊆ K ;

|∂K𝖤 S|
|∂G𝖤 S| ≤ α

]
≤

∑
S∈An

P
[
S ⊆ K ,

|∂K𝖤 S|
|∂G𝖤 S| ≤ α

]
≤

∑
S∈An

e−nIp (α) P[S ⊆ K]

= en[Ip (0)−Ip (α)]
∑
S∈An

(1 − p)n P[S ⊆ K]

= en[Ip (0)−Ip (α)]
∑
S∈An

P[K = S]

= en[Ip (0)−Ip (α)] P
� |K | < ∞, |∂G𝖤 K | = n

�
. (6.63)

To estimate P
� |K | < ∞, |∂G𝖤 (K)| = n

�
for p > 1

/�
1 + Φ∗𝖤(G)�, recall the argument of

Theorem 6.46. Choose h < Φ∗𝖤(G) such that p > 1/(1 + h). Then there exists nh < ∞ such
that |∂G𝖤 S|/|S| > h for all S ∈ An with n > nh. We showed that

� |K | < ∞, |∂G𝖤 (K)| = n
	
⊂

∞∪
N=n

BN ,

where

BN :=
[ N∑

j=1

Yj ≤
N

1 + h

]
and ⟨Yj⟩ is an i.i.d. sequence of Bernoulli(p) random variables.
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As earlier, P[BN ] ≤ e−Nδp where δp := Ip
� 1

1+h
�
> 0, since p > 1/(1 + h). Thus for some

constant Cp < ∞,

P
� |K | < ∞, |∂G𝖤 (K)| = n

�
≤

∞∑
N=n

e−Nδp ≤ Cpe−nδp . (6.64)

Taking α > 0 in (6.63) so small that Ip(0)− Ip(α) < δp , we deduce that (6.63) is summable
in n. By the Borel-Cantelli lemma,

lim
n→∞

inf
{ |∂K𝖤 S|
|∂G𝖤 S| ; o ∈ S ⊂ 𝖵(K), S is connected, n ≤ |∂G𝖤 S|

}
≥ α a.s.,

whence
Φ∗𝖤(K) ≥ αΦ∗𝖤(G) > 0

almost surely on the event that K is infinite. ◀
The following possible extension is open:

Question 6.49. If Φ∗𝖤(G) > 0, does every infinite cluster K in a Bernoulli percolation satisfy
Φ∗𝖤(K) > 0 a.s.?

A partial result is due to Pete (2008). A converse is known, namely, that if G is a transitive
amenable graph, then for every invariant percolation on G, a.s. each cluster has 0 anchored
expansion constant; see Corollary 8.38.
Percolation is one way of randomly thinning a graph. Another way is to replace an edge

by a random path of edges. What happens to expansion then? We will use the following
notation.

Let G be an infinite graph of bounded degree, and pick a probability distribution 𝜈 on the
positive integers. Replace each edge e ∈ 𝖤(G) by a path of Le ≥ 1 edges, where the random
variables ⟨Le⟩e∈𝖤(G) are independent with law 𝜈. Let G𝜈 denote the random graph obtained
from G in this way. We call G𝜈 a random subdivision of G. Say that 𝜈 has an exponential
tail if, for some ϵ > 0 and all sufficiently large ℓ, we have 𝜈[ℓ,∞) < e−ϵℓ . This is equivalent
to the condition that if X ∼ 𝜈, then E[sX] < ∞ for some s > 1.

▷ Exercise 6.23.
Show that if the support of 𝜈 is unbounded, then Φ𝖤(G𝜈) = 0 a.s.

Define another anchored expansion constant,

Φ∗∗𝖤 (G) := lim
n→∞

inf
{ |∂𝖤K |
|E(K)| ; o ∈ K ⊂ 𝖵, G↾K is connected, n ≤ |K | < ∞

}
,

with notation as in (6.33). Since |E(K)| ≥ |K | − 1, we have

Φ∗∗𝖤 (G) ≤ Φ∗𝖤(G)
for every graph G. Conversely, if the maximum degree of G is D, then

Φ∗∗𝖤 (G) ≥ Φ∗𝖤(G)/D

since |E(K)| ≤ D|K |. On the other hand, for trees G, we have |E(K)| = |K | − 1, so
Φ∗∗𝖤 (G) = Φ∗𝖤(G) for trees.
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Theorem 6.50. (Anchored Expansion and Subdivision) Suppose that Φ∗∗𝖤 (G) > 0. If 𝜈
has an exponential tail, then the random subdivision satisfies Φ∗∗𝖤 (G𝜈) > 0 a.s. In particular,
if G has bounded degree and Φ∗𝖤(G) > 0, then Φ∗𝖤(G𝜈) > 0 a.s.

To prove this, we use the following combinatorial aspect of anchored expansion.

Proposition 6.51. As in (6.60), let

An :=
�
K ⊂ 𝖵(G) ; o ∈ K , G↾K is connected and finite, |∂𝖤K | = n

	 (6.65)
and

hn := inf
{ |∂𝖤K |

|K | ; K ∈ An

}
. (6.66)

Then
|An | ≤ Ψ(hn)n , (6.67)

where Ψ( • ) is the monotone decreasing function

Ψ(h) := (1 + h)1+ 1
h /h, Ψ(0) := ∞ .

Proof. Consider Bernoulli(p) bond percolation in G. Let K(o) be the open cluster containing
o. For any K ∈ An, we have |E(K)| ≥ |K | − 1, since a spanning tree on K has |K | − 1 edges;
also, |∂𝖤K | ≥ hn |K |. Therefore,

P
�
𝖵(K(o)) = K

�
≥ p|K |−1(1 − p)|∂𝖤K | ≥ pn/hn (1 − p)n ,

whence

1 ≥ P
�
𝖵(K(o)) ∈ An

�
=

∑
K ∈An

P
�
𝖵(K(o)) = K

�
≥ |An |pn/hn (1 − p)n.

Thus,

|An | ≤
( 1

p

)n/hn
( 1

1 − p

)n
for every p ∈ (0, 1). Letting p := 1/(1 + hn) concludes the proof. ◀
Proof of Theorem 6.50. Since 𝜈 has an exponential tail, there is an increasing convex rate
function I( • ) such that I(c) > 0 for c > ELi and P

[∑n
i=1 Li > cn

]
≤ exp

�
−nI(c)� for all

n (see Dembo and Zeitouni (1998), Theorem 2.2.3) when Li ∼ 𝜈 are independent. Fix
h < Φ∗𝖤(G). Choose c large enough that I(c) > log Ψ(h). For S ∈ An,

P

∑

e∈E∗(S) Le

|E∗(S)| > c
 ≤ exp

�
−|E∗(S)|I(c)� ≤ exp

�
−|∂𝖤S|I(c)�

since ∂𝖤S ⊆ E∗(S). Therefore for all n,

P
∃S ∈ An ;

∑
e∈E∗(S) Le

|E∗(S)| > c
 ≤ |An |e−I(c)n ,
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which is summable by (6.67) since hn (defined in (6.66)) is strictly larger than h for all large
n. By the Borel-Cantelli lemma, with probability one, we have

lim sup
n→∞

sup
S∈An

∑
e∈E∗(S) Le

|E∗(S)| ≤ c .

Therefore

lim
n→∞

inf
{ |∂𝖤S|∑

e∈E∗(S) Le

; o ∈ S ⊂ 𝖵(G), G↾S is connected, n ≤ |∂𝖤S|
}
≥

Φ∗∗𝖤 (G)
c
�
1 + Φ∗∗𝖤 (G)�

a.s., since E∗(S) = E(S) ∪ ∂𝖤S.
Since G𝜈 is obtained from G by adding new vertices, 𝖵(G) can be embedded into 𝖵(G𝜈) as

a subset. In particular, we can choose the same basepoint o in G𝜈 and in G. For S connected
in G such that o ∈ S ⊂ 𝖵(G), there is a unique maximal connected S̃ ⊂ 𝖵(G𝜈) such that
S̃ ∩ 𝖵(G) = S; it satisfies |E(S̃)| ≤∑

e∈E∗(S) Le. In computing Φ∗𝖤(G𝜈), it suffices to consider
only such maximal sets S̃, so we conclude that Φ∗∗𝖤 (G𝜈) ≥ Φ∗∗𝖤 (G)/(c�1 + Φ∗∗𝖤 (G)�) > 0. ◀
The exponential tail condition is necessary to ensure the positivity of Φ∗𝖤(G𝜈); see Exer-

cise 6.88.
Do Galton-Watson trees have anchored expansion? Clearly they do when the offspring

distribution ⟨pk⟩ satisfies p0 = p1 = 0. On the other hand, when p1 ∈ (0, 1), the tree can be
obtained from a different Galton-Watson tree with p1 = 0 by randomly subdividing the edges.
This will allow us to use Theorem 6.50 to establish that Galton-Watson trees do indeed have
anchored expansion when p0 = 0, and another argument will cover the case p0 > 0.

Theorem 6.52. (Anchored Expansion of Galton-Watson Trees) For a supercritical
Galton-Watson tree T , given nonextinction we have Φ∗𝖤(T) > 0 a.s.

Proof. Case (i): p0 = p1 = 0. For every finite S ⊂ 𝖵(T), we have

|S| ≤ |∂𝖤S|
(1

2
+

1
22 + · · ·

)
≤ |∂𝖤S| .

So Φ∗𝖤(T) ≥ Φ𝖤(T) ≥ 1.
Case (ii): p0 = 0, p1 > 0. In this case, let x be the vertex closest to the root that has at least

two children. Then T x has the law of a random subdivision G𝜈 of another Galton-Watson tree
G, and T differs from T x by a finite path. Here, G is generated according to the offspring
distribution ⟨p′

k
; k ≥ 0⟩, where p′

k
:= pk/(1 − p1) for k = 2, 3, . . . and p′0 := p′1 := 0, and

𝜈 is the geometric distribution with parameter 1 − p1. By Theorem 6.50 and the fact that
Φ∗∗𝖤 = Φ∗𝖤 for trees, Φ∗𝖤(T) = Φ∗𝖤(T x) = Φ∗𝖤(G𝜈) > 0 a.s.
Case (iii): p0 > 0. Let A(n, h) be the event that there is a subtree S ⊂ T having n vertices,

including the root of T , and satisfying |∂𝖤S| ≤ hn. We claim that

P
�
A(n, h)� ≤ enf (h) P

�
n ≤ |𝖵(T)| < ∞� (6.68)

for some function f :�+ → �+ that satisfies limh↓0 f (h) = 0. The idea is that the event
A(n, h) is “close” to the event that 𝖵(T) is finite but at least n. That is, it could have happened
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that the hn leaves of the growing Galton-Watson tree had no children after it already had n
vertices, and for T ∈ A(n, h), this alternative scenario isn’t too unlikely compared to what
actually happened.
For the proof, we can map any tree T in A(n, h) to a finite tree ϕ(T) with at least n vertices

as follows: Given x ∈ 𝖵(T), label its children from 1 to the number of children of x. Use
this to place a canonical total order on all finite subtrees of T that include the root. (This
can be done in a manner similar to the lexicographic order of finite strings.) Choose the first
n-vertex S in this order such that the edge boundary of S in T has at most hn edges. Define
ϕ(T) from T by retaining all edges in S and its edge boundary in T , while deleting all other
edges. Note that for each vertex x ∈ T , the tree ϕ(T) contains either all children of x or none.
Any finite tree t with m vertices arises as ϕ(T) from at most

∑
k≤hm

�m
k

�
choices of S,

because for n ≤ m, there are at most hn ≤ hm edges in t \ S, whereas for n > m, there are no
choices of S. Now

∑
k≤hm

�m
k

�
≤ exp

�
m f1(h)�, where

f1(α) := −α log α − (1 − α) log (1 − α) ,

by (6.61). Given S and a possible tree t in the image of ϕ on A(n, h), we have

P
�
ϕ(T) = t

�
≤ p−hn0 P[T = t] .

Indeed, let L(t) denote the leaves of t and J(t) := 𝖵(t) \ L(t). Let d(x) be the number of
children in t of x ∈ J(t). Then

P
�
ϕ(T) = t

�
=

∏
x∈J(t)

pd(x) = p−|L(t)|0 P[T = t] ≤ p−hn0 P[T = t] .

Thus, if we let f (α) := f1(α) − α log p0, we obtain (6.68).
Now a supercritical Galton-Watson process conditioned on extinction is the same as a

subcritical process with p.g.f. f̃ (s) := f (qs)/q by Proposition 5.28(ii). Since f̃ (1/q) < ∞
and 1/q > 1, the total size of this subcritical Galton-Watson process decays exponentially by
Exercise 5.33. Therefore, the last term of (6.68) decays exponentially in n. By choosing h
small enough, we can ensure that also the left-hand side P

�
A(n, h)� also decays exponentially

in n. ◀
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6.10 Notes

Kesten (1959a, 1959b) proved the qualitative statement that a countable group Γ is nonamenable
iff some (or every) symmetric random walk with support generating Γ has spectral radius less than 1.
Making this quantitative, as in Theorem 6.7, was accomplished by Cheeger (1970) in the continuous
setting; he dealt with the bottom of the spectrum of the Laplacian, rather than any spectral radius,
but this is equivalent: in the discrete case, the Laplacian is I − P, so the bottom of the spectrum of
I − P equals 1 minus the spectral radius of P. Cheeger’s inequality states the following: Let M be a
closed n-dimensional Riemannian manifold. Let 𝜆1(M) denote the smallest positive eigenvalue of the
Laplace-Beltrami operator on M . Let h(M) be the infimum of Vn−1(E)/min{Vn(A),Vn(B)} when M is
divided into two pieces A and B by an (n − 1)-submanifold E and Vk denotes k-dimensional volume.
Then

𝜆1(M) ≥ h(M)2/4 .
An inequality in the opposite direction was proved later by Buser (1982), who showed that in this
context, if the Ricci curvature of M is always at least −(n − 1)a2, then

𝜆1(M) ≤ 2a(n − 1)h(M) + 10h(M)2 .

In the discrete case, the direction of Buser’s inequality is the easy one. Cheeger’s result was
transferred to the discrete setting in various contexts of infinite graphs by Dodziuk (1984), Dodziuk and
Kendall (1986), Varopoulos (1985a), Ancona (1988), Gerl (1988), Biggs, Mohar, and Shawe-Taylor
(1988), and Kaimanovich (1992). Cheeger’s method of proof is used in all of these. We have
incorporated an improvement due to Mohar (1988). Similar inequalities were proved independently for
finite graphs, again inspired by Cheeger (1970). The first results were by Alon and Milman (1985) and
Alon (1986), and the final form was given by Jerrum and Sinclair (1989) and Lawler and Sokal (1988)
independently. Analogous inequalities for measure-preserving actions of groups are due to Lyons and
Nazarov (2011).

Theorem 6.7 is used mostly to deduce whether ρ(G) is less than 1, depending on whether G is
nonamenable or amenable. However, it has also been used to deduce amenability of some groups that
had not been known to be amenable, by analyzing simple random walks thereon. This proved that
the class of amenable groups is not the closure (under natural operations) of the class of groups of
subexponential growth. See Bartholdi and Virág (2005), Kaimanovich (2005), Brieussel (2009), and
Bartholdi, Kaimanovich, and Nekrashevych (2010).

Lubotzky, Phillips, and Sarnak (1988) defined a connected d-regular graph G with d ≥ 3 to be
Ramanujan if every eigenvalue 𝜆 of its adjacency matrix is either ±d or satisfies |𝜆| ≤ 2

√
d − 1.

Such expanders (which, in light of the Alon-Boppana theorem discussed in Exercise 6.47, have an
asymptotically optimal spectral gap) were first constructed by Lubotzky, Phillips, and Sarnak (1988)
and independently by Margulis (1988). The mixing time (see Section 13.3) of simple random walk on
these graphs was determined by Lubetzky and Peres (2015): on a d-regular non-bipartite Ramanujan
graph with n vertices,

|tmix(ϵ) − d
d − 2

logd−1 n| ≤ C
√

log n

for every ϵ ∈ (0, 1), where C = C(d, ϵ). The key tool in the proof is the analysis of nonbacktracking
walks following Exercise 6.64.

See Bartholdi (1999) for a relationship between the numbers of cycles of different lengths at a vertex
and the numbers of cycles of different lengths with given numbers of backtracking edge pairs. His
analysis extends that of the generating functions used in Section 6.3. Our proof of Theorem 6.11 is
taken from Lyons and Peres (2015a). This method of proof can be shown to work with even weaker
hypotheses: see Lyons and Peres (2015a), inspired by Theorem 5 of Abért, Glasner, and Virág (2016).
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The latter authors prove quantitative versions and other extensions, with conclusions about spectral radii
also derived from the analysis of nonbacktracking walk.

Much more is known about spectral gap for random regular graphs than what is implied by
Theorem 6.17; see Puder (2015) for some history and new results.

The fact proved in Section 6.5 that proper tessellations of the same type are isomorphic and transitive
is folklore. The sizes of the spheres in the tessellations analyzed in Section 6.5 are given by explicit
rational generating functions: see Paul and Pippenger (2011).

Loomis and Whitney (1949) proved an inequality analogous to Lemma 6.23 for bodies in �d . It
implies the inequality we stated by taking a cube in �d centered at each point of A.

Our proof of Theorem 6.29 is modeled on the one presented by Gromov (1999), p. 348. Results
similar to Theorem 6.29 were proved earlier by Aldous (1987) and Babai (1991).

Upper bounds for transition probabilities using expansion profiles, as in Theorem 6.31, were first
discovered by Varopoulos (1985a). These were later refined by Coulhon (1996) and Coulhon, Grigor’yan,
and Pittet (2001). For surveys of the analytic approach to these bounds, see Pittet and Saloff-Coste
(2001) and Section 14 of Woess (2000). The probabilistic approach to Theorem 6.31 is from Morris
and Peres (2005), where similar bounds on mixing times of finite Markov chains are also obtained using
the evolving set process. A related process was investigated earlier by Diaconis and Fill (1990), who
discovered a powerful coupling of the evolving set process with the underlying Markov chain; see also
Levin, Peres, and Wilmer (2009) for an exposition of this coupling. Mixing-time bounds involving the
same integral as in Theorem 6.31 were first obtained by Lovász and Kannan (1999).

Fix a real d > 0, a graph G = (𝖵, 𝖤) and a vertex x ∈ 𝖵. For simple random walk on G, an upper
bound on transition probabilities of the form pn(x, x) = O(n−d/2) as obtained in Corollary 6.32(ii), in
conjunction with an upper bound |B(x, r)| = O(rd) on the growth of balls, imply a matching lower
bound pn(x, x) ≥ cn−d/2 for some c > 0. See Pittet and Saloff-Coste (2001) or Theorems 14.12 and
14.19 in Woess (2000). By Gromov’s theorem, discussed in Section 7.9, and its extension by Trofimov
(1984), the hypotheses hold for some integer d if G is a transitive graph of polynomial growth.

The notion of anchored expansion was implicit in Thomassen (1992) and made explicit by Benjamini,
Lyons, and Schramm (1999). Theorem 6.42 is due to Lyons, Morris, and Schramm (2008); it refines
Thomassen (1992) and is adapted from a similar result of He and Schramm (1995). It is very similar to
an independent result of Benjamini and Kozma (2005). The relevance of anchored expansion to random
walks, beyond the issue of transience, is exhibited by the following theorem of Virág (2000a), the first
part of which was conjectured by Benjamini, Lyons, and Schramm (1999).

Theorem 6.53. Let G be a bounded degree graph with Φ∗𝖤(G) > 0. For a vertex x, denote by |x | the
distance from x to the basepoint o in G. Then simple random walk ⟨Xn⟩ in G, started at o, satisfies
lim infn→∞ |Xn |/n > 0 a.s., and there exists C > 0 such that P[Xn = o] ≤ exp(−Cn1/3) for all n ≥ 1.

Note that this theorem, combined with Theorem 6.48, implies positive speed on the infinite clusters
of Bernoulli(p) percolation on any G with Φ∗𝖤(G) > 0, provided p > 1

/�
1 + Φ∗𝖤(G)�. This partially

answers Question 6.49. Furthermore, in conjunction with Theorem 6.52, we get that the speed of simple
random walk on supercritical Galton-Watson trees is positive, a result first proved in Lyons, Pemantle,
and Peres (1995b); see Theorem 17.13 and Exercise 17.6, where a formula for the speed is given.

▷ Exercise 6.24.
Show that the bound of Theorem 6.53 on the return probabilities is sharp by giving an example of a
graph with anchored expansion that has P[Xn = o] ≥ exp(−Cn1/3) for some C < ∞. Hint: Take a
Galton-Watson tree T with offspring distribution p1 = p2 = 1/2, rooted at o. Look for a long pipe (of
length n1/3) starting at level n1/3 of T .

Benjamini, Lyons, and Schramm (1999) initiated a systematic study of the properties of a transitive
graph G that are preserved for infinite percolation clusters. Both Theorem 6.50 and Proposition 6.51
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are from Chen and Peres (2004). The idea of the proof of the latter originates in Kesten (1982).
Theorem 6.52 is due to Chen and Peres (2004), but the original proof was incomplete.

A combination of ideas from Sections 6.8, 6.9, and 6.6 was used by Pete (2008) to show that transient
wedges in �3 (see (2.19)) also have transient percolation clusters for supercritical percolation, provided
a mild technical condition on the function f of (2.19) is satisfied. The result is true without this
technical condition; see Angel, Benjamini, Berger, and Peres (2006).

6.11 Collected In-Text Exercises
6.1. Show that Φ𝖤(�b+1, 1, 1) = b − 1 for all b ≥ 1, where �b+1 is the regular tree of degree b + 1.

6.2. Show that for any network (G, c, D), we have
Φ𝖤(G, c, D) = max

�
α ≥ 0 ; ∃θ ∀e |θ(e)| ≤ c(e) and ∀x d∗θ(x) ≥ αD(x)	 ,

where θ runs over the antisymmetric functions on 𝖤.

6.3. Suppose that G is a graph such that for some o ∈ 𝖵, we have subexponential growth of balls:
lim infn→∞ |{x ∈ 𝖵 ; d(o, x) ≤ n}|1/n = 1, where d(•, •) denotes the graph distance in G. Show that
(G, 1) is vertex amenable.

6.4. Show that every Cayley graph of a finitely generated abelian group is amenable.

6.5. Suppose that G1 and G2 are roughly isometric graphs with bounded degrees and having both
edge and vertex weights ≍ 1. Show that G1 is amenable iff G2 is.

6.6. Prove that ∥P∥π ≤ 1.

6.7. (Rayleigh Quotient) Show that

∥P∥π = sup
{ |(P f , f )π |

( f , f )π ; f ∈ D00 \ {0}
}

= sup
{ (P f , f )π

( f , f )π ; f ∈ D00 \ {0}
}
.

6.8. Show that for f ∈ D00, we have d∗(c d f ) = π( f − P f ).
6.9. Show that for simple random walk on �b+1, we have ρ(�b+1) = 2

√
b/(b + 1).

6.10. Let G be a d-regular multigraph. Show that ρ(G) = 1 iff 𝖼𝗈𝗀𝗋(G) = d − 1.

6.11. Give an example of a d-regular graph G where 1 < 𝖼𝗈𝗀𝗋(G) < √d − 1.

6.12. Show that 𝜆2 < 1 iff the network is connected and that 𝜆n > −1 iff the random walk is
aperiodic.

6.13. Show that the rate of exponential convergence in Theorem 6.13 cannot be faster than 𝜆∗. More
precisely, show that there is an x for which

lim
t→∞
− log |pt (x, x) − π(x)|

t
= − log 𝜆∗ .

6.14. Show that
𝜆2 = max

f⊥1

⟨P f , f ⟩
⟨ f , f ⟩ .

6.15. Prove the following generalization of the Loomis-Whitney inequality. Let A ⊂ �d be finite
and S be a collection of subsets of {1, . . . , d} such that each integer in [1, d] appears in exactly r of
the sets in S . Write PS for the projection of �d → �S onto the coordinates in S. Then

|A|r ≤
∏
S∈S

|PS A| .

6.16. For the reversed chain, define Q̂(x, y) := π(x)p̂(x, y) = Q(y, x) for all x, y. Prove that for any
finite S ⊂ V , we have |∂𝖤S|Q = |∂𝖤S|Q̂ .
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6.17. The lazy version of a transition matrix P is given by P̃ = (P+ I)/2. Show that the corresponding
expansion profile satisfies Φ̃(r) = Φ(r)/2 for all r > πmin. If the original matrix P is reversible, show
that p2n(x, x) is decreasing in n for all x ∈ 𝖵, and deduce that p2n(x, x) ≤ 2 p̃2n(x, x).

6.18. Let A be a finite set of vertices in a connected network G with |𝖵(G)|π = ∞. Let H be a finite
connected subnetwork containing A. In HW, identify A to a single vertex a, and let z be the (wired)
boundary vertex; call the new graph H′. Define ψ(G, A, t) and ⟨sk ⟩ as in Theorem 6.42 and ϕ(H′, t)
with its associated sequence ⟨s′k ⟩ as in Lemma 6.43. Show that for all t ≥ 0,

ϕ
�
H′, π(a) + t

�
≥ ψ

�
G, A, |A|π + t

�
,

and that for all k ≥ 0, we have ϕ(H′, s′k ) ≥ ψ(G, A, sk ).
6.19. For any p < 1, every infinite cluster K of Bernoulli(p) percolation on any graph G of bounded

degree has Φ𝖤(K) = 0 a.s.

6.20. Show that if G is a transitive graph, then Φ𝖤(G) = Φ∗𝖤(G) and Φ𝖵(G) = Φ∗𝖵(G).
6.21. Show that for every graph G, the balls BG (x, n) in G about every point x of radius n satisfy

lim inf
n→∞

|BG (x, n)|1/n ≥ 1 + Φ∗𝖵(G) . (6.59)

6.22. Prove the first inequality of Theorem 6.46 as written with anchored expansion.

6.23. Show that if the support of 𝜈 is unbounded, then Φ𝖤(G𝜈) = 0 a.s., where G𝜈 is the random
subdivision defined in Section 6.9.

6.24. Show that the bound of Theorem 6.53 on the return probabilities is sharp by giving an example
of a graph with anchored expansion that has P[Xn = o] ≥ exp(−Cn1/3) for some C < ∞. Hint: Take a
Galton-Watson tree T with offspring distribution p1 = p2 = 1/2, rooted at o. Look for a long pipe (of
length n1/3) starting at level n1/3 of T .

6.12 Additional Exercises
6.25. If (G1, c1, D1) and (G2, c2, D2) are networks, consider the Cartesian product graph (𝖵, 𝖤) =

G1 □ G2 defined by 𝖵 := 𝖵1 × 𝖵2,

𝖤 :=
{�(x1, x2), (y1, y2)� ;

�
x1 = y1, (x2, y2) ∈ 𝖤2

�
or

�(x1, y1) ∈ 𝖤1, x2 = y2
�}

with the weights D
�(x1, x2)� := D1(x1)D2(x2) on the vertices and

c
(�(x1, x2), (x1, y2)�) := D1(x1)c2

�[x2, y2]� and c
(�(x1, x2), (y1, x2)�) := D2(x2)c1

�[x1, y1]�
on the edges. Show that with these weights, Φ𝖤(G1 □ G2) = Φ𝖤(G1) + Φ𝖤(G2).

6.26. Let G = (𝖵, 𝖤) be an infinite graph and M a matching in G, that is, a set of edges that are
pairwise nonadjacent. Show that Φ𝖤(G\M, 1, 1) ≥ Φ𝖤(G, 1, 1) − 1.

6.27. Use Theorem 6.1 and its proof to give another proof of Theorem 6.2.

6.28. Refine Theorem 6.2 to show that if K is any finite vertex set in a transitive infinite graph G,
then |∂𝖤K |/|K | ≥ Φ𝖤(G) + 1/|K |.
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6.29. Show that if G is a transitive graph of degree d and the edge-expansion constant Φ𝖤(G, 1, 1) =
d − 2, then G is a tree.

6.30. Show that if G is a finite transitive network, then the minimum of |∂𝖤K |c/|K | over all K of
size at most |𝖵|/2 occurs only for |K | > |𝖵|/4.

6.31. Suppose that we had used the inner vertex boundary ∂in
𝖵 K := {x ∈ K ; ∃y /∈ K y ∼ x} of

sets K in place of the outer vertex boundary to define vertex amenability. Show that this would not
change the class of networks that are vertex amenable. Moreover, show that

inf
{ |∂in

𝖵 K |D
|K |D ; ∅ ̸= K ⊂ 𝖵 is finite

}
=

Φ𝖵(G, D)
1 + Φ𝖵(G, D) .

6.32. Let G and G† be plane dual graphs such that G† has bounded degrees. Show that if G is
amenable, then so is G†.

6.33. Show that every finitely generated subgroup of an amenable finitely generated group is itself
amenable.

6.34. Use Theorem 6.3 and its proof to give another proof of Theorem 6.4.

6.35. Refine Theorem 6.4 to show that if K is any finite vertex set in a transitive infinite graph G,
then |∂𝖵K |/|K | ≥ Φ𝖵(G) + 1/|K |.

6.36. Recall from Exercise 6.31 the inner vertex boundary of sets K . Let Φint
𝖵 (G) be the corresponding

expansion constant. Show that if G is a transitive network, then for all finite K , we have |∂in
𝖵 K |/|K | >

Φint
𝖵 (G).
6.37. Let G be a transitive graph and b be a submodular function that is invariant under the

automorphisms of G and is such that if K and K ′ are disjoint but adjacent, then strict inequality holds
in (6.2). Show that there is no finite set K that minimizes b(K)/|K |.

6.38. Show that a transitive graph G is nonamenable iff there exists a function f :𝖵(G) → 𝖵(G)
having the two properties that (i) supx∈𝖵(G) distG

�
x, f (x)� < ∞, and (ii) for all x ∈ 𝖵(G), the cardinality

of f −1(x) is at least 2.

6.39. Does every subperiodic tree with exponential growth have a nonamenable subtree?

6.40. Consider any network random walk and x, y ∈ 𝖵 and n ≥ 0.
(a) Show that

p2n(x, y) ≤
√
π(y)
π(x)

√
p2n(x, x)p2n(y, y)

and

p2n+1(x, y) ≤
√
π(y)
π(x)

√
p2n(x, x)p2n+2(y, y) .

Hint: Look at the proof of Proposition 6.6.
(b) Show that if the walk is lazy, then

pn(x, y) ≤
√
π(y)
π(x)

√
pn(x, x)pn(y, y) .

(c) Find a 3-regular infinite graph G and vertices yn ∈ 𝖵(G) for all n such that lazy simple random
walk on G satisfies pn(y0, yn)/pn(y0, y0)→ ∞ as n → ∞.
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6.41. Consider a random walk on a graph with spectral radius ρ. Suppose that we introduce a delay
so that each step goes nowhere with probability pdelay, and otherwise chooses a neighbor with the same
distribution as before. Show that the new spectral radius equals pdelay + (1 − pdelay)ρ.

6.42. Show that if G is a covering network of G′, then Φ𝖤(G) ≥ Φ𝖤(G′), Φ𝖵(G) ≥ Φ𝖵(G′), and
ρ(G) ≤ ρ(G′).

6.43. Show that if G is a graph of maximum degree d, then its edge-expansion constant satisfies
Φ𝖤(G, 1, 1) ≤ d − 2.

6.44. Let T be a tree and �b+1 be the regular tree of degree b + 1.
(a) Show that if the degree of each vertex in T is at least b + 1, then ρ(T) ≤ ρ(�b+1).
(b) Show that if, for every r, the ball of radius r in �b+1 is isomorphic to some ball in T , then

ρ(T) ≥ ρ(�b+1).
6.45. Let G be a graph and H be a transitive graph. Which of the following extensions of

Exercise 6.44 are valid?
(a) If each vertex in G is contained in a subgraph of G that is isomorphic to H , then ρ(G) ≤ ρ(H).
(b) If for every r , the ball of radius r in H is isomorphic to some ball in G, then ρ(G) ≥ ρ(H).

6.46. Give another proof of (6.20) by using Theorem 6.1.

6.47. Let G be a d-regular finite connected graph of diameter at least 2k for some integer k ≥ 2. Let
𝜆2 be the second largest eigenvalue of its adjacency matrix. Show that

𝜆2 > 2
√

d − 1 − 2
√

d − 1 − 1
k − 1

.

Hint: Choose a, z ∈ 𝖵 so that their distance is at least 2k. Write b := d − 1. Consider the function f on
𝖵 defined by

f (x) :=



1 if x = a,
b−(i−1)/2 if dist(x, a) = i ∈ [1, k − 1],
cb−(i−1)/2 if dist(x, z) = i ∈ [1, k − 1],
c if x = z,
0 otherwise,

where c is chosen so that
∑

x f (x) = 0. Show that (∆G f , f ) < 1 + b− 2
√

b + (2√b− 1)/(k − 1), where
∆G is the graph Laplacian of Exercise 2.62.

6.48. Show that for a network (G, c, D), we have

Φ𝖤(G, c, D) = inf
{ ∥df ∥ℓ1(c)
∥ f ∥ℓ1(D)

; 0 < ∥ f ∥ℓ1(D) < ∞
}
.

6.49. For a network (G, c, D) with 0 < |𝖵(G)|D < ∞, one of the alternative definitions of the
expansion constant (also known, unfortunately, as the conductance) is

Φc,D (G) := inf
{ |∂𝖤K |c

min
� |K |D , |𝖵 \ K |D	 ; K ⊂ 𝖵, 0 < |K |D < |𝖵|D

}
.

Show that
Φc,D (G) = inf

{ ∥df ∥ℓ1(c)
infa∈� ∥ f − a∥ℓ1(D)

; 0 < ∥ f ∥ℓ1(D) < ∞
}
.

6.50. Let G be a network with spectral radius ρ(G), and let A be a set of vertices in G. Show that for
any x ∈ 𝖵 and n ∈ �, we have Px [Xn ∈ A] ≤ ρ(G)n√|A|π/π(x).



228 Chap. 6: Isoperimetric Inequalities

6.51. Let (G, c) be a network. For a finite nonempty set of vertices A, let πA( • ) = π( • )/π(A) be the
normalized restriction of π to A. Write PπA

for the network random walk ⟨Xn⟩ started at a point x ∈ A
with probability π(x)/π(A). Show that (G, c) is nonamenable iff there is some function f :�→ [0, 1]
that tends to 0 at infinity and that has the following property: for all finite A and all n ∈ �, we have
PπA

[Xn ∈ A] ≤ f (n).
6.52. Let (G, c) be a network with spectral radius ρ < 1. Let v( • ) be the voltage function from a

fixed vertex o to infinity. Show that
∑

x∈𝖵 π(x)v(x)2 < ∞.

6.53. Let (G, c) be a network with spectral radius ρ < 1. Let A ⊂ 𝖵 be a nonempty set of states with
π(A) < ∞ and let πA( • ) = π( • )/π(A) be the normalized restriction of π to A. Show that when the
chain is started according to πA, the chance that it never returns to A is at least 1 − ρ:

PπA

�
Xn never returns to A

�
≥ 1 − ρ .

Hint: Consider the function f (x) defined as the chance that starting from x, the set A will ever be
visited. Use Exercise 6.7.

6.54. Let G be the Cayley graph of a group Γ with respect to a finite generating set S. Without
assuming that S is closed under inverses, let A be the associated averaging operator that includes the
identity, that is, (A f )(x) :=

�
f (x) +∑

s∈S f (xs)�/�|S| + 1
�
for f ∈ ℓ2(Γ). Show that ∥A∥ < 1 iff Γ is

nonamenable.

6.55. Suppose that G is a network with bounded π. Improve Proposition 6.9 to show that

lim inf
n→∞

distG (X0, Xn)/n ≥ 2 log ρ(G)−1/log b a.s.

6.56. Give an example of a graph on which simple random walk has speed 0 a.s. and spectral radius
less than 1.

6.57. Nonbacktracking random walk can be thought of as a Markov chain on directed edges. Show
that if G is a regular graph of degree at least 3, then simple random walk on G is transient iff
nonbacktracking random walk is transient.

6.58. (Pringsheim’s Theorem) Let ⟨an ; n ≥ 0⟩ be a sequence of nonnegative real numbers
and f (z) :=

∑
n≥0 an zn be convergent for some positive z. Suppose that δ := lim supn→∞ a1/n

n > 0.
Show that there is no analytic function whose domain includes [0, 1/δ] and that agrees with f (z) in a
neighborhood of 0. Hint: Assume the contrary. Write R := 1/δ. Then there is a z0 ∈ (0, R) and an
ϵ > 0 so that f has a power series in a disc about z0 that includes R + ϵ . Calculate its coefficients. Note
they are nonnegative. Rearrange terms to show it converges at R + ϵ , a contradiction.

6.59. Let G be a connected graph.
(a) Show that if G has no simple nonloop cycle and at most one loop, then 𝖼𝗈𝗀𝗋(G) = 0.
(b) Show that if G has one simple cycle and no loop or no simple nonloop cycle and two loops,

then 𝖼𝗈𝗀𝗋(G) = 1 and, if G is d-regular, ρ(G) = 2
√

d − 1/d.
(c) Show that in all other cases, 𝖼𝗈𝗀𝗋(G) > 1.

6.60. Let G be a d-regular multigraph. Suppose that there are some L, M < ∞ such that for every
vertex x ∈ 𝖵(G), there is a simple cycle of length at most L that is at distance at most M from x. Show
that ρ(G) > 2

√
d − 1/d.
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6.61. Let G be a graph. Let the number of nonbacktracking cycles of length n starting from x ∈ 𝖵(G)
be bn(x). Among those, let b∗n(x) count the ones whose first edge is not the reverse of its last edge, or is
a loop. Write S(x) := {n ; bn(x) ̸= 0} and S∗(x) := {n ; b∗n(x) ̸= 0}.

(a) Show that b∗m(x)b∗n(x)/2 ≤ b∗m+n(x).
(b) Show that limS∗(x)∋n→∞ b∗n(x)1/n exists and b∗n(x) ≤ 2 𝖼𝗈𝗀𝗋(G)n .
(c) Show that limS(x)∋n→∞ bn(x)1/n exists and does not depend on x.

6.62. Here we give another approach to proving (6.23) and (6.24). Let G be a d-regular graph
with root o. Write b := d − 1. Let the number of cycles of length n starting from o be cn(G),
whereas the number of those that are nonbacktracking is bn(G). Write H0(z) :=

∑
n≥0 cn(�b+1)zn and

H(z) :=
∑

n≥0 cn(T)zn , where T is a b-ary tree.
(a) Show that ∑

n≥0

cn(G)zn =
∑
n≥0

bn(G)znH(z)nH0(z) .

(b) Show that
H(z) =

∑
n≥0

(bz2)nH(z)n

and that
H(z) =

2
1 +
√

1 − 4bz2
.

(c) Show that H0(z) = H(z)/�1 − z2H(z)2� and that

H0(z) =
2b

b − 1 + (b + 1)√1 − 4bz2
.

6.63. Let G be a finite connected graph. Recall that every edge of G comes with both orientations
and ℓ2

−(𝖤) is the Hilbert space of square-summable antisymmetric functions on 𝖤. Let ℓ2
+(𝖤) denote

the Hilbert space of square-summable symmetric functions on 𝖤. Thus, ℓ2(𝖤) = ℓ2
−(𝖤) ⊕ ℓ2

+(𝖤). Given
f ∈ ℓ2(𝖵), let θ−(e) := f (e+) − f (e−) and θ+(e) := f (e+) + f (e−). Note that⋆(G) is the set of θ− of
this form; denote by⋆+(G) the set of θ+ of this form. Show that dim⋆+(G) is |𝖵| − 1 if G is bipartite
and is |𝖵| otherwise.

6.64. Let G be a d-regular graph. Write b := d − 1. Let A be the adjacency matrix of G. Write B for
the matrix indexed by the oriented edges of G such that B

�(x, y), (y, z)� = 1 when (x, y), (y, z) ∈ 𝖤(G)
and x ̸= z, with all other entries of B equal to 0. We will use the notation from Exercise 6.63.

(a) Show that B is invertible and that bB−1 has integer entries.
(b) Let C := bB−1 + B. Show that the subspaces ℓ2

−(𝖤) and ℓ2
+(𝖤) are invariant under C.

(c) Show that C is self-adjoint.
(d) Given f ∈ ℓ2(𝖵), let θ−(e) := f (e+) − f (e−) and θ+(e) := f (e+) + f (e−). Show that if A f = 𝜆 f ,

then Cθ− = 𝜆θ− and Cθ+ = 𝜆θ+.
(e) More generally, show that if 𝜆 belongs to the spectrum σ(A) of A, then it belongs to the

spectrum of C.
(f) Show that if ψ ⊥⋆(G) and ψ ∈ ℓ2

−(𝖤), then Cψ = dψ, whereas if ψ ⊥⋆+(G) and ψ ∈ ℓ2
+(𝖤),

then Cψ = −dψ.
(g) Show that if 𝜆 ̸= ±d belongs to the spectrum of C, then 𝜆 belongs to the spectrum of A.
(h) Show that the set

�
b/κ + κ ; κ ∈ σ(B)	 equals σ(A) ∪ {±d} and that |κ | = √b for all

κ ∈ σ(B) \�.
(i) Show that when d ≥ 3 and G is a finite non-bipartite graph of diameter at least 6, nonback-

tracking random walk mixes faster on G than does simple random walk (in a spectral sense). In other
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words, let M− and M+ be the incidence matrices whose rows are indexed by vertices and columns by
oriented edges, where M−(x, e) is the indicator that x is the tail of e and M+(x, e) is the indicator that x
is the head of e. The (x, y)-entry of Qk := M−Bk MT

+
/�

dbk
�
is the probability that a nonbacktracking

random walk from x is at y at time k + 1, where the superscript T indicates transpose. Show that
nonbacktracking random walk is aperiodic and for all x, y, we have

lim sup
k→∞

�
Qk (x, y) − 1/|𝖵|�1/k < lim

k→∞

�
Pk (x, y) − 1/|𝖵|�1/k ,

where P is the transition matrix for simple random walk.

6.65. For a general irreducible positive recurrent Markov chain with stationary probability measure
π, prove that for any set S of states, we have∑

x∈S
π(x)Ex [τ+

S ] = 1

and ∑
x∈S

∑
y∈Sc

π(x)p(x, y)Ey [τS ] = π(Sc) .

This shows that starting at the stationary measure conditioned on having just made a transition from
S to Sc, the expected time to hit S again is 1/ΦSc . Hint: Write Ex [τ+

S ] = 1 +
∑

y p(x, y)Ey [τS ] and
observe that in the last sum, only y ∈ Sc contribute.

6.66. Let ⟨Xn⟩ be a reversible Markov chain with a stationary probability distribution π on the
state space 𝖵. Let A be a set of states with |A| ≥ 2. Consider the chain ⟨Yn⟩ induced on A, that is,
P[Y0 = x] = π(x)/π(A) and P[Yn+1 = y | Yn = x] = P[Xτ+

A
= y | X0 = x]. Show that the spectral gap for

the chain ⟨Yn⟩ is at least that for the chain ⟨Xn⟩.
6.67. Show that if G is a plane regular graph with regular dual, then Φ𝖤(G) is either 0 or irrational.

6.68. Show that if G is a plane regular graph with nonamenable regular dual G†, then

β(G) + β(G†) > 1 .

6.69. Let G be a plane regular graph with regular dual G†. Write K ′ for the set of vertices incident
to the faces corresponding to K , for both K ⊂ 𝖵 and for K ⊂ 𝖵†. Likewise, let K̂ denote the
faces inside the outermost cycle of E(K ′). Let K0 ⊂ 𝖵 be an arbitrary finite connected set and
recursively define Ln := (K̂n)′ ⊂ 𝖵† and Kn+1 := (L̂n)′ ⊂ 𝖵. Show that |∂𝖤Kn |/|Kn | → Φ𝖤

′(G) and
|∂𝖤Ln |/|Ln | → Φ𝖤

′(G†).
6.70. Let G be a plane graph in the hyperbolic plane whose dual G† has geodesic edges.

(a) Show that Φ𝖤(G, 1, 1) is at least π−1 times the infimum of the hyperbolic areas of the faces of
G†. Hint: Use Theorem 6.1 and the fact that geodesic triangles have area at most π.

(b) Show that if all degrees in G are at least d and all degrees in G† are at least d†, then
Φ𝖤(G, 1, 1) ≥ �(d − 2)(d† − 2) − 4�/d†. Hint: The area of a geodesic polygon of n sides equals (n − 2)π
minus the sum of the interior angles.

6.71. Show that equality holds on the left in (6.42) iff X is a function of Y , whereas equality holds
on the right iff X and Y are independent. Show that equality holds in (6.44) iff X and Y are independent
given Z .
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6.72. (Data Processing Inequality) Suppose that X , Y , and Z are discrete random variables with
X and Z being conditionally independent given Y (in other words, (X ,Y , Z) is a Markov chain).

(a) Show that H(X | Y ) ≤ H(X | Z).
(b) Show that I(X ,Y ) ≥ I(X , Z).

6.73. Show that the functional µ 7→ H[µ] is concave. Use this concavity to prove (6.40) and the
second part of (6.42).

6.74. Show that there exists a constant Cd > 0 such that if A is a subgraph of the box {0, . . . , n−1}d
and |A| < nd/2, then

|∂𝖤A| ≥ Cd |A| d−1
d .

Here, ∂𝖤A refers to the edge boundary within the box, so this is not a special case of Theorem 6.22.

6.75. Consider a stationary Markov chain ⟨Xn⟩ on a finite state space 𝖵 with stationary measure π(•)
and transition probabilities p(•, •). Show that for n ≥ 0, we have

H(X0, . . . , Xn) = H[π] − n
∑
x ,y∈𝖵

π(x)p(x, y) log p(x, y) .

6.76. Suppose that the chain (𝖵, P) is lazy and Φ ≥ φ, where the function z 7→ zφ2(z−2)/2 is convex
on (0,∞). Show that if

n ≥ 1 +
∫ 1/ϵ

π(x)∧π(y)

2 du
uφ2(u) ,

then pn(x, y) ≤ ϵπ(y).
6.77. Suppose that the chain (𝖵, P) is not lazy, but there exist j ≥ 1 and 0 < η < 1/2 so that

pj (x, x) ≥ η for all x ∈ 𝖵. Adapt the proof of Theorem 6.31 to show that, under this assumption, if

⌊n/ j⌋ ≥ 1 +
(1 − η)2

η2

∫ 4/ϵ

πmin

4 du
uΦ2(u) , (6.69)

then
pn(x, y)
π(y) ≤ ϵ . (6.70)

6.78. Show that simple random walk

(Ψ j , X j )� on the Cayley graph of �⊙ (with the standard

generators) satisfies p2n(o, o) ≥ exp(−Cn1/3) for some C and all n. (The matching upper bound was
proved in Corollary 6.32(iii).)

6.79. The upper bound on effective resistance given in Lemma 6.43, while useful for applications to
resistance to infinity as in Theorem 6.42, is very weak for finite networks. Prove the following better
version and some consequences.

(a) Let a and z be two distinct vertices in a finite connected network G. Define

ψ(t) := min
{ |∂𝖤W |c ; a ∈ W , z /∈ W , G↾W is connected, t ≤ min

� |W |π , |𝖵(G) \W |π	}
when this set is nonempty and ψ(t) := ∞ otherwise. Define s0 := π(a) and sk+1 := sk + ψ(sk )/2
recursively for k ≥ 0. Then

R(a ↔ z) ≤
∞∑
k=0

4
ψ(sk ) .

(b) Let a and z be two distinct vertices in a finite connected network G with c(e) ≥ 1 for all edges
e. Show that

R(a ↔ z) ≤ 12
Φ∗

+ 4 ,

where Φ∗ is the expansion constant of Definition 6.14.
(c) Give another proof of the upper bound of Proposition 2.14 that uses (a).
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6.80. Show that there is a function C: (1,∞) × (1,∞) → (0, 1) such that every graph G with the
property that the cardinality of each of its balls of radius r lies in [br/a, abr ] satisfies

|∂𝖵K |
|K | ≥

C(a, b)
log (1 + |K |)

for each finite nonempty K ⊂ 𝖵(G). An outline of its proof is in the following parts (a)–(f). Define
f (x, y) := b−d(x ,y), where the distance is measured in G. Fix K . Set Z :=

∑
x∈K

∑
y∈∂𝖵K f (x, y).

Estimate Z in two ways, depending on the order of summation.
(a) Fix x ∈ K . Choose R so that |B(x, R)| ≥ 2|K | and let W := B(x, R) \ K . For w ∈ W , fix a

geodesic (that is, shortest) path from x to w, and let w′ be the first vertex in ∂𝖵K on this path. Let
B :=

�{(w, w′) ; w ∈ W}�. Show that B ≥ CbR .
(b) Show that B ≤ C′bR

∑
y∈∂𝖵K f (x, y).

(c) Deduce that Z ≥ C |K |.
(d) Fix y ∈ ∂𝖵K . Show that

∑
x∈K f (x, y) ≤ C′ log

�
1 + |K |�.

(e) Deduce that Z ≤ C′ |∂𝖵K | log
�
1 + |K |�.

(f) Deduce the result.
(g) Find a tree with bounded degree and such that every ball of radius r has cardinality in

[2⌊r/2⌋ , 3 · 2r ], yet there are arbitrarily large finite subsets with only one boundary vertex.
(h) Show that if a tree satisfies |∂𝖵K | ≥ 3 for every vertex set K of size at least m, where m is

fixed, then the tree is nonamenable.

6.81. Show that there is a function C: (1,∞) × (1,∞) → (0,∞) such that every graph G with the
property that the cardinality of each of its balls of radius r lies in [br/a, abr ] satisfies R(x ↔ ∞) ≤
C(a, b) for all x ∈ 𝖵(G).

6.82. Find a transient graph of bounded degree that does not contain any transient tree as a subgraph.

6.83. Let G be a Cayley graph of growth rate b. Show that when p > 1/b, a.s. some infinite open
cluster of Bernoulli(p) percolation on G is transient.

6.84. Write out the proof of the second inequality of Theorem 6.46.

6.85. Write out the proof of the second inequality of Theorem 6.48.

6.86. Show that Φ∗𝖤(G) > 0 implies that for p sufficiently close to 1, in Bernoulli(p) percolation the
open cluster K(o) of any vertex o ∈ 𝖵(G) satisfies Pp

[ �
𝖵(K(o))� < ∞, �∂𝖤𝖵(K(o))� = n

]
< Cqn for

some q < 1 and C < ∞.

6.87. Let An and hn be as in (6.65) and (6.66). Suppose that G satisfies an anchored (at-least-)
two-dimensional isoperimetric inequality, that is, hn > c/n for a fixed c > 0 and all n. Show
that |An | ≤ eCn log n for some C < ∞. Give an example of a graph G that satisfies an anchored
two-dimensional isoperimetric inequality, has pc (G) = 1, and |An | ≥ ec1n log n for some c1 > 0.

6.88. Let G be a binary tree. Show that if 𝜈 has a tail that decays slower than exponentially, then
Φ∗𝖤(G) > 0 yet Φ∗𝖤(G𝜈) = 0 a.s., where G𝜈 is the random subdivision defined in Section 6.9.
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7 Percolation on
Transitive Graphs

How many infinite clusters does Bernoulli(p) percolation have on a given graph? How
does this change as p changes? How do the infinite clusters themselves change as p increases?
As we saw in Section 5.2, once p is large enough that there is an infinite cluster a.s., then
the same holds for all larger p. For general graphs, the number of infinite clusters can be
any nonnegative integer or infinity, and can change in an irregular fashion as p increases.
However, many nice properties of infinite clusters ensue when the underlying graph is itself
nice. What do we mean?
Many natural graphs look the same from every vertex. To make this notion precise,

recall that an automorphism of a graph G = (𝖵, 𝖤) is a bijection ϕ:𝖵 → 𝖵 such that
[ϕ(x), ϕ(y)] ∈ 𝖤 iff [x, y] ∈ 𝖤. We write Aut(G) for the group of automorphisms of G. If
G has the property that for every pair of vertices x, y, there is an automorphism of G that
takes x to y, then G is called (vertex-) transitive. The most prominent examples of transitive
graphs are Cayley graphs, defined in Section 3.4. Of course, these include the usual Euclidean
lattices �d, on which the classical theory of percolation has been built.
Our purpose is not to develop the classical theory of percolation, for which Grimmett

(1999) is an excellent source, but we will now briefly state some of the important facts from
that theory that motivate some of the questions that we will treat. Recall from Section 6.9
the probability measures Psite

p and Pbond
p for the two product measures on 2𝖵 and 2𝖤 defining

Bernoulli percolation and the associated critical probabilities pbond
c and psite

c . As we said there,
if we don’t indicate whether the percolation is bond or site and both make sense in context,
then results we state should be taken to apply to both types of percolation. As we will prove,
we have 0 < pc(�d) < 1 for all d ≥ 2. It was conjectured about 1955 that pbond

c (�2) = 1/2,
but this was not proved until Kesten (1980); see Figure 7.1 for an illustration. How many

Figure 7.1. Bernoulli bond percolation on a 40 × 40 square grid graph
at levels p = 0.4, 0.5, 0.6. Each cluster is given a different color.
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infinite clusters are there when p ≥ pc? We will see in Theorem 7.5 that for each p, this
number is a random variable that is constant a.s. More precisely, Aizenman, Kesten, and
Newman (1987) showed that there is a.s. only one infinite cluster when p > pc(�d), and one
of the central conjectures in the field is that there is a.s. no infinite cluster when p = pc(�d)
(d ≥ 2). This was proved for d = 2 partially by Harris (1960) and fully by Kesten (1980), and
for d ≥ 19 by Hara and Slade (1990, 1994) (and for d ≥ 7 when bonds between all pairs of
vertices within distance L of each other are added, for some L). After considerable time, the
result of Hara and Slade was extended to all d ≥ 11 by Fitzner and van der Hofstad (2015).
The conventional notation for Pp[x belongs to an infinite cluster] is θx(p), not to be con-

fused with the notation for a flow used in other chapters. For a transitive graph, it is clear
that this probability does not depend on x, so the subscript is usually omitted. For all
d ≥ 2, van den Berg and Keane (1984) showed that θ(p) is continuous for all p ̸= pc and
is continuous at pc iff θ(pc) = 0; see Exercise 7.33 for a more general result. Thus, θ is a
continuous function on all of [0, 1] iff the conjecture above [that θ(pc) = 0] holds. More
results that lend support to this conjecture are that for all d ≥ 2,

lim
k→∞

pc
�
�

2 □ [0, k]d−2� = pc
�
�

d
�

= pc
�
�

d−1 □ �+� (7.1)

(Grimmett and Marstrand, 1990) and θ(pc) = 0 on the graph �d−1 □�+ (Barsky, Grimmett,
and Newman, 1991). Also, θ(pc) = 0 on every graph of the form �2 □ H for H a finite
connected graph (Duminil-Copin, Sidoravicius, and Tassion, 2016). We will not prove any
results regarding θ(pc) on �d (except that θ(1/2) = 0 for bond percolation on �2), but in
Section 8.4, we will prove that θ(pc) = 0 on nonamenable Cayley graphs.
This chapter is devoted to the basics of percolation theory and especially to the possible

existence of a double phase transition on nonamenable graphs: one phase transition is at pc,
where the number of infinite clusters changes from 0 to positive, while another may occur at a
point denoted pu, where the number of infinite clusters changes from one positive number to
another. This latter phase transition is considerably subtler than the former. Further progress
on these issues requires (at present) another tool, the mass-transport technique, which is
explained in the succeeding chapter. That tool works wonders on Cayley graphs but is not
very effective on all transitive graphs.

In this chapter, all graphs are assumed to be locally finite without explicit mention.
A slight generalization of transitive graphs is the class of quasi-transitive graphs, which

are those that have only finitely many orbits for the action of the automorphism group on the
vertex set. Note that an orbit is an equivalence class of vertices if two vertices are equivalent
when there is an automorphism that takes one vertex to the other. Most results concerning
quasi-transitive graphs can be deduced from corresponding results for transitive graphs or can
be deduced in a similar fashion but with some additional attention to details. In this context,
the following construction is useful: Suppose that Γ ⊆ Aut(G) acts quasi-transitively on
𝖵, that is, the orbit space 𝖵/Γ is finite. Let o be a vertex in G. Let r be such that every
vertex in G is within distance r of some vertex in the orbit Γo. Form the graph G′ from
the vertex set Γo by joining two vertices by an edge if their distance in G is at most 2r + 1.
It is easy to see that G′ is connected: if f :𝖵 → Γo is a map such that distG

�
x, f (x)� ≤ r

for all x, then any path x0, x1, . . . , xn in G between two vertices of Γo maps to a path
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x0, f (x1), f (x2), . . . , f (xn−1), xn in G′. Also, restriction of the elements of Γ to G′ yields a
subgroup Γ′ ⊆ Aut(G′) that acts transitively on G′, that is, 𝖵′ is a single orbit. We call G′ a
transitive representation of G.
We begin with a section giving additional background on Cayley graphs before we turn to

percolation theory.

7.1 Groups and Amenability

In Section 3.4, we looked at some basic constructions of groups. Another useful but
more complex construction is that of amalgamation. Suppose that Γ1 = ⟨S1 | R1⟩ and
Γ2 = ⟨S2 | R2⟩ are groups that both have a subgroup isomorphic to Γ′. We want to
take the free product of Γ1 and Γ2 while identifying the copies of Γ′. More precisely,
suppose that ϕi: Γ′ → Γi are monomorphisms for i = 1, 2 and that S1 ∩ S2 = ∅. Let
R := {ϕ1(γ)ϕ−1

2 (γ) ; γ ∈ Γ′}. The relations in R allow us to identify the copies ϕi(Γ′) in
forming the new group ⟨S1 ∪ S2 | R1 ∪ R2 ∪ R⟩, which is called the amalgamation of Γ1
and Γ2 over Γ′ and denoted Γ1 ∗Γ′ Γ2. The name and notation do not reflect the role of the
maps ϕi , even though they are crucial. For example, � ∗2�� = ⟨a, b | a2b−2⟩ has a Cayley
graph that, if its edges are not labeled,* looks just like the usual square lattice; see Figure 7.2.
However, � ∗3�� = ⟨a, b | a3b−3⟩ is quite different: it is nonamenable by Exercise 6.42, as it
has the quotient ⟨a, b | a3b−3, a3, b3⟩ = �3 ∗�3. Of course, both 2� and 3� are isomorphic
to �; our notation evokes inclusion as the appropriate maps ϕi .

a a

a a

a

a a

a a

a

b b

b b

b

b

b

b b

b

b

Figure 7.2. A portion of the edge-labeled Cayley graph of � ∗2� �.

In this chapter, we will use Φ𝖤(G) to mean always the expansion constant Φ𝖤(G, 1, 1)
and Φ𝖵(G) to mean always Φ𝖵(G, 1). This also makes the latter directly comparable to the
anchored expansion constant Φ∗𝖵(G). Since |∂𝖤K | ≥ |∂𝖵K |, we have Φ𝖤(G) ≥ Φ𝖵(G). In the
other direction, for any graph of degree bounded by d, we have Φ𝖵(G) ≥ Φ𝖤(G)/d. For a
tree T , it is clear that Φ𝖤(T) = Φ𝖵(T). See Section 6.5 for the calculation of Φ𝖤(G) when
G arises from certain hyperbolic tessellations; for example, Φ𝖤(G) = √5 for the graph in
Figure 2.4. Many of the edge graphs of hyperbolic tessellations are not Cayley graphs but are

* When the edges are oriented and labeled by the generators, we get the Cayley diagram.



236 Chap. 7: Percolation on Transitive Graphs

still transitive graphs. The graph in Figure 2.4 is a Cayley graph; see Chaboud and Kenyon
(1996) for an analysis of which regular tessellations are Cayley graphs. Another Cayley graph
is shown in Figure 6.1.
Besides the hyperbolic graphs just mentioned, some other transitive graphs that are not

Cayley graphs can be constructed as follows.

Example 7.1. (Grandparent Graph) Let ξ be a fixed end of a regular tree T of degree
at least 3. Ends in graphs will be defined more generally in Section 7.3, but for trees, the
definition is simpler. Namely, an end is an equivalence class of rays (that is, infinite simple
paths), where rays may start from any vertex and two rays are equivalent if they share all
but finitely many vertices. Thus, given an end ξ, for every vertex x in T , there is a unique
ray xξ := ⟨x0, x1, x2, . . .⟩ in the class ξ that starts from x = x0; for each pair x, y, the rays
xξ and yξ differ by only finitely many vertices. Call x2 in this ray the ξ-grandparent of x.
Let G be the graph obtained from T by adding, for every x, an edge [x, x2] between x and
its ξ-grandparent. This is shown in Figure 7.3. Then G is a transitive graph that is not the

Figure 7.3. The grandparent graph, with the new edges shown in magenta.

Cayley graph of any group. A proof that this is not a Cayley graph is given in Section 8.2. To
see that G is transitive, let x and y be two of its vertices. Let ⟨xn ; n ∈ �⟩ be a bi-infinite
simple path in T that extends xξ to negative integer indices. We have redrawn the grandfather
graph using this line in Figure 7.4. There is some k such that xk ∈ yξ . We claim that there is

Figure 7.4. The grandparent graph redrawn.

an automorphism of G that takes x to xk ; this implies transitivity since there is then also an
automorphism that takes xk to y. Indeed, the graph G \ {xn ; n ∈ �} consists of components
that are isomorphic, one for each n ∈ �. Seeing this, we also see that it is easy to shift along
the path ⟨xn ; n ∈ �⟩ by any integer amount, in particular, by k, via an automorphism of G.
This proves the claim. These examples were described by Trofimov (1985).
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Example 7.2. (Diestel-Leader Graph) Let T(1) be a 3-regular tree with edges oriented
toward some distinguished end, and let T(2) be a 4-regular tree with edges oriented toward
some distinguished end. (An edge ⟨x, y⟩ is oriented toward an end in a tree if y is on the
ray starting from x that belongs to that end.) Let 𝖵 be the Cartesian product of the vertices
of T(1) and the vertices of T(2). Join (x1, x2), (y1, y2) ∈ 𝖵 by an edge if ⟨x1, y1⟩ is an edge
of T(1) and ⟨x2, y2⟩ is an edge of T(2), and precisely one of these edges goes against the
orientation. The resulting graph G has infinitely many components, any two components
being isomorphic. Each component is a transitive graph, but not a Cayley graph for the
same (still-to-be-explained) reason as in Example 7.1. To see that each component of G
is transitive, note that if ϕi is an automorphism of T(i) that preserves its distinguished end,
then ϕ1 × ϕ2: (x1, x2) 7→ �

ϕ1(x1), ϕ2(x2)� is an automorphism of G. We saw in Example 7.1
that such automorphisms ϕi act transitively. Therefore, G is transitive, whence so is each
of its components (and all components are isomorphic). One way to describe this graph is
as a family graph: Suppose that there is an infinity of individuals, each of which has two
parents and three children. The children are shared by the parents, as is the case in the real
world. If an edge is drawn between each individual and his parent, then one obtains this graph
for certain parenthood relations (with one component if each individual is related to every
other individual). This graph is not a tree: if, say, John and Jane are both parents of Alice,
Betty, and Carl, then one cycle in the family graph is from John to Alice to Jane to Betty to
John. This example of a transitive graph was first discovered by Diestel and Leader (2001)
for the purpose of providing a potential example of a transitive graph that is not roughly
isometric to any Cayley graph. The question whether there was any such transitive graph was
asked by Woess (1991). Finally, Eskin, Fisher, and Whyte (2012) showed that indeed the
Diestel-Leader graph is not roughly isometric to any Cayley graph.

7.2 Tolerance and Ergodicity

This section is devoted to some quite general and elementary properties of the product
measures Pp. Notation we will use throughout is that 2A denotes the collection of subsets
of A. It also denotes {0, 1}A, the set of functions from A to {0, 1}. These two spaces are
identified by identifying a subset with its indicator function.
The first general property that we treat is that Pp is insertion tolerant, which means the

following. Given a configuration ω ∈ 2𝖤 and an edge e ∈ 𝖤, write

Πeω := ω ∪ {e} ,

where we regard ω as the subset of open edges. The notation is chosen to evoke the phrase
“put e in ω.” Extend this notation to events A by

ΠeA := {Πeω ; ω ∈ A} .

Also, for any set F of edges, write

ΠFω := ω ∪ F
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and extend to events in the same way. A bond percolation process P on G is insertion
tolerant if P(ΠeA) > 0 for every e ∈ 𝖤 and every measurable A ⊂ 2𝖤 satisfying P(A) > 0.
Here, we use the Borel σ-field generated by the product topology on 2𝖤. For Bernoulli(p)
percolation, we have the stronger inequality

Pp(ΠeA) ≥ p Pp(A) . (7.2)
▷ Exercise 7.1.

Prove (7.2).

Likewise, a bond percolation process P on G is deletion tolerant if P(Π¬eA) > 0 whenever
e ∈ 𝖤 and P(A) > 0, where Π¬eω := ω \ {e}. We extend this notation to sets F by
Π¬Fω := ω \ F. By symmetry, Bernoulli percolation is also deletion tolerant, with

Pp(Π¬eA) ≥ (1 − p)Pp(A) .
Similar definitions hold for site percolation processes.*

▷ Exercise 7.2.
Let G be a connected graph and x, y ∈ 𝖵(G). Consider Bernoulli(p) percolation on G. Prove
that if θy(p) > 0, then also θx(p) > 0.

We will use insertion and deletion tolerance often. Another crucial pair of properties is
invariance and ergodicity. Suppose that Γ is a group of automorphisms of a graph G. A
measure P on 2𝖤, on 2𝖵, or on 2𝖤∪𝖵 is called a Γ-invariant percolation if P(γA) = P(A)
for all γ ∈ Γ and all events A. In the case of a measure on 2𝖤∪𝖵, we assume that P is
concentrated on subgraphs of G, that is, whenever an edge lies in a configuration, so do both
of its endpoints. Let Γ denote the σ-field of events that are invariant under all elements
of Γ. The measure P is called Γ-ergodic if, for each A ∈ Γ, we have either P(A) = 0
or P(¬A) = 0. Bernoulli percolation on any infinite Cayley graph is both invariant and
ergodic with respect to translations. The invariance is obvious, and ergodicity is proved in
the following proposition.

Proposition 7.3. (Ergodicity of Bernoulli Percolation) If Γ acts on a connected locally
finite graph G in such a way that each vertex has an infinite orbit, then Pp is Γ-ergodic.

Note that if some vertex in G has an infinite Γ-orbit, then every vertex has an infinite
Γ-orbit. Recall that we identify a subset ω ⊆ 𝖤 with its indicator function, so that ω(e) takes
the value 0 or 1 depending on whether e lies in the subset. Also, recall that a cylinder event
B is one for which there is a finite set F ⊂ 𝖤 with the property that for every pair ω1, ω2 ∈ 2𝖤
that agree on F, we have either both ω1, ω2 are in B or neither are in B. In this case, we say
that B depends only on F.

* In the statistical physics literature, a measure that is both insertion- and deletion-tolerant is said to have finite
energy, whereas one that is assumed only insertion-tolerant has positive finite energy. Of course, these terms have
nothing to do with the energy of flows in electrical networks. Rather, they arise by analogy to other processes where
a different form of energy plays a role.
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Proof. Our notation will be for bond percolation. The proof for site percolation is identical.
Let A ∈ Γ. The idea is to show that A is almost independent of γA = A for “large” γ.
To make this precise, we approximate A by a cylinder event. Thus, let ϵ > 0. Because A
is measurable, there is a cylinder event B that depends only on some finite set F such that
Pp(A△ B) < ϵ . For all γ ∈ Γ, we have Pp(γA△ γB) = Pp

�
γ(A△ B)� < ϵ . By the assumption

that vertices have infinite orbits, there is some γ such that F and γF are disjoint (because
their graph distance can be made arbitrarily large). Since γB depends only on γF, it follows
that B and γB are independent. Now for any events C1,C2, D, we have�

Pp(C1 ∩ D) − Pp(C2 ∩ D)� ≤ Pp

�(C1 ∩ D) △ (C2 ∩ D)� ≤ Pp(C1 △ C2) .

Therefore,

|Pp(A) − Pp(A)2 | =
�
Pp(A ∩ γA) − Pp(A)2�

≤
�
Pp(A ∩ γA) − Pp(B ∩ γA)� +

�
Pp(B ∩ γA) − Pp(B ∩ γB)�

+
�
Pp(B ∩ γB) − Pp(B)2� +

�
Pp(B)2 − Pp(A)2�

≤ Pp(A △ B) + Pp(γA △ γB) +
�
Pp(B)Pp(γB) − Pp(B)2�

+
�
Pp(B) − Pp(A)� �Pp(B) + Pp(A)�

< ϵ + ϵ + 0 + 2ϵ .

It follows that Pp(A) ∈ {0, 1}, as desired. ◀

Another way we could have proved Proposition 7.3 is to use Kolmogorov’s zero-one law in
combination with the fact that every invariant event is a tail event up to a set of probability
0. Recall what the tail events are: For a set of edges K ⊆ 𝖤, let F (K) denote the σ-field of
events depending only on K . Define the tail σ-field to be the intersection of F (𝖤 \ K) over
all finite K .

Lemma 7.4. (Invariant Events Are Almost Tail Events) Let Γ act on a connected locally
finite graph G in such a way that each vertex has an infinite orbit. Let P be a Γ-invariant
percolation on G. Then, for every Γ-invariant event A, there is a tail event B such that
P(A △ B) = 0.

Proof. Since A is measurable, there exist increasing finite sets Kn ⊂ 𝖤 whose union is 𝖤 and
cylinder events Bn that depend only on Kn with

∑
n≥1 P(A△ Bn) < ∞. Choose γn ∈ Γ so that

γnKn ∩ Kn = ∅. Since P and A are Γ-invariant, we have P(A △ γnBn) = P(A △ Bn), whence∑
n≥1 P(A △ γnBn) < ∞. The Borel-Cantelli lemma implies that P

�
lim supn(A △ γnBn)� = 0,

whence P(A △ lim supn γnBn) = 0. The event lim supn γnBn is the tail event we seek. ◀
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7.3 The Number of Infinite Clusters
The number of infinite clusters in Bernoulli percolation could be any nonnegative integer,

or infinity, with positive probability (see Exercise 7.22), but on transitive graphs, it is quite
restricted, as shown by the following theorem of Newman and Schulman (1981). The proof
is a beautiful combination of insertion tolerance and ergodicity.

Theorem 7.5. If G is a transitive connected graph, then the number of infinite clusters is
constant Pp-a.s. and equal to either 0, 1, or∞. In fact, it suffices that G is connected and that
vertices have infinite orbits under the automorphism group of G.

Proof. Let 𝖭∞ denote the number of infinite clusters and Γ denote the automorphism group
of the infinite graph G. The action of any element of Γ on a configuration does not change
𝖭∞. That is, 𝖭∞ is measurable with respect to the σ-field Γ of events that are invariant
under all elements of Γ. By ergodicity (Proposition 7.3), this means that 𝖭∞ is constant a.s.
Now suppose that 𝖭∞ ∈ [2,∞) a.s. Then there must exist two vertices x and y that belong

to distinct infinite clusters with positive probability. For bond percolation, let e1, e2, . . . , en
be a path of edges from x to y. If A denotes the event that x and y belong to distinct
infinite clusters and B denotes the event Π{e1,e2, · · ·,en} A, then by insertion tolerance, we have
Pp(A) > 0 and Pp(B) > 0. Yet 𝖭∞ takes a strictly smaller value on B than on A, which
contradicts the constancy of 𝖭∞. (The proof for site percolation is parallel.) ◀
The result mentioned in the introduction that there is at most one infinite cluster for

percolation on �d, due to Aizenman, Kesten, and Newman (1987), was extended and
simplified until the following result appeared, due to Burton and Keane (1989) and Gandolfi,
Keane, and Newman (1992).

Theorem 7.6. (Amenability Yields at Most One Infinite Cluster) If G is a connected
transitive amenable graph, then Pp-a.s. there is at most one infinite cluster, no matter the
value of p.

The proof of Theorem 7.6 makes a more complicated use of insertion and deletion tolerance,
but it is still quite striking. A major open conjecture is that the converse of Theorem 7.6
holds; see Conjecture 7.31.

To prove Theorem 7.6, we will use the result of the following exercise.

▷ Exercise 7.3.
Let T be a tree that has no vertices of degree 1. Let B be the set of vertices of degree at least
3. Let K be a finite nonempty subset of vertices of T . Show that |∂𝖵K | ≥ |K ∩ B| + 2.

We also use the following notation and concept. Let ER(x) denote the set of edges that
have at least one endpoint at distance at most R − 1 from x. This is the edge interior of the
ball of radius R about x. We denote the component of x in a percolation configuration by
K(x). Call a vertex x a furcation of a configuration ω if closing all edges incident to x would
split K(x) into at least three infinite clusters.* Similarly, call x a site-furcation of a (site)
configuration ω if closing all vertices adjacent to x would split K(x) into at least three infinite
clusters.

* In Burton and Keane (1989), these vertices were called encounter points. When K(x) is split into exactly three
infinite clusters, x is called a trifurcation by Grimmett (1999).
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Proof of Theorem 7.6. We first do the proof for bond percolation, then state the modifications
needed for the case of site percolation. Let 0 < p < 1 and fix a vertex o ∈ 𝖵. Let Λ = Λ(ω)
denote the set of furcations of ω. We claim that if there is more than one infinite cluster with
positive probability, then there are sufficiently many furcations as to create tree-like structures
that force G to be nonamenable. To be precise, we claim first that

c := Pp[o ∈ Λ] > 0

and, second, that for each finite set K ⊂ 𝖵,

|∂𝖵K | ≥ c|K | . (7.3)
These two claims together imply that G is nonamenable.

Now our assumption that there is more than one infinite cluster with positive probability
implies that there are, in fact, infinitely many infinite clusters a.s. by Theorem 7.5. We turn
these into furcations as follows. Choose some R > 0 such that the ball of radius R about o
intersects at least three infinite clusters with positive probability. When this event occurs and
then ER(o) is closed, this event still occurs. Thus, by deletion tolerance, we may choose x, y, z
at the same distance, R, from o such that Pp(A) > 0, where A is the event that x, y, z belong to
distinct infinite clusters and ER(o) is closed. Join x to y by a geodesic P1 in the graph induced
by G on the ball BR(o). Then join z to P1 by a geodesic P2 in BR(o). Let the vertex where P2
meets P1 be u. By insertion tolerance, Pp(A′) > 0, where A′ := Π𝖤(P1)∪𝖤(P2)A. Furthermore,
u is a furcation on the event A′. Hence c = Pp[o ∈ Λ] = Pp[u ∈ Λ] ≥ Pp(A′) > 0.

It follows that for every finite K ⊂ 𝖵,

Ep

� |K ∩ Λ| � =
∑
x∈K

Pp[x ∈ Λ] = c|K | . (7.4)

We next claim that
|∂𝖵K | ≥ |K ∩ Λ| . (7.5)

Taking the expectation of (7.5) and using (7.4) shows (7.3).
To see why (7.5) is true, let T be a spanning tree of an infinite component η of ω. Remove

all vertices of degree 1 from T and iterate until there are no more vertices of degree 1; call the
resulting tree T(η). Note that every furcation in η has degree ≥ 3 in T(η). Apply Exercise 7.3
to conclude that�(∂𝖵K) ∩ T(η)� ≥ ���∂𝖵(T (η))�K ∩ T(η)���� ≥ �

K ∩ Λ ∩ T(η)� =
�
K ∩ Λ ∩ η

�
.

If we sum this over all components η of ω, we arrive at (7.5).
Now we describe the modifications for site percolation. Let Λs denote the set of site-

furcations of ω. We choose R, x, y, and z as before. Note, however, that now we close the
vertices of BR(o) (except for x, y, and z), rather than the edges, to get the event A. Let x ′, y′,
and z′ be vertices at distance R − 1 from o that are adjacent to x, y, and z, respectively. Let
P1 be a geodesic from x ′ to y′ in BR−1(o) (which, if x ′ = y′, is just that vertex x ′) and P2 be
a geodesic from z′ to P1. If z′ is on P1, then let u := z′. Otherwise, let u be the vertex of P2
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adjacent to P1; this is unique, since P2 is a shortest path to P1. Then u is a site-furcation on
the event A′ := Π𝖵(P1)∪𝖵(P2)A, where Pp(A′) > 0 by insertion tolerance. This gives us that
Pp[o ∈ Λs] ≥ Pp(A′) > 0.
We claim that for every finite K ⊂ 𝖵, we have |∂𝖵(K ∪ ∂𝖵K)| ≥ |K ∩ Λs |/(d + 1), where

d is the degree of G, which is sufficient to complete the proof as before. To prove this, we
again use the trees T(η). It is not necessarily the case any longer that every site-furcation in η
has degree at least 3 in T(η). However, if u is a site-furcation of η, then either u or one of its
neighbors has degree at least 3 in T(η). This proves the desired inequality. ◀

There is an extension of Theorem 7.6 to invariant insertion-tolerant percolation that was
proved in the original papers: we used deletion tolerance in one place of our proof. Because
this theorem is so important, we give a second proof that yields this more general theorem.
Our proof uses a technique from BLPS (1999b), which will itself be important in Chapter 8.
The method uses trees as well as the important notion of ends of graphs.

Let G = (𝖵, 𝖤) be any graph. The number of ends of G is defined to be the supremum of
the number of infinite components of G \ K over all finite subsets K of G. In particular, G
has no ends iff all components of G are finite and only one end iff the complement of each
finite set in G has exactly one infinite component. This definition suffices for our purposes,
but nevertheless, what is an end? To define an end, we make two preliminary definitions.
First, an infinite set of vertices V0 ⊂ 𝖵 is end convergent if, for every finite K ⊂ 𝖵, there
is a component of G \ K that contains all but finitely many vertices of V0. Second, two
end-convergent sets V0, V1 are equivalent if V0 ∪ V1 is end convergent. Now an end of G is
an equivalence class of end-convergent sets. For example, � has two ends, which we could
call +∞ and −∞. For a tree, this definition agrees with the one in Example 7.1, and the ends
are in natural one-to-one correspondence with the boundary with respect to any fixed root.

▷ Exercise 7.4.
Show that for any finitely generated group, the number of ends is the same for all of its Cayley
graphs. Thus, we may speak of the number of ends of a group, not merely of a Cayley graph.
In fact, show that if two graphs are roughly isometric, then they have the same number of
ends.

▷ Exercise 7.5.
Show that if G and G′ are any two infinite connected graphs, then the Cartesian product
graph G □ G′ (defined on p. 1) has only one end.

▷ Exercise 7.6.
Show that if Γ and Γ′ are any two finitely generated groups with |Γ| ≥ 2 and |Γ′| ≥ 3, then
Γ ∗ Γ′ has infinitely many ends.

Lemma 7.7. (Forests in Percolation) Let P be a Γ-invariant percolation process on a
graph G. If with positive probability there is a component of ω with at least three ends, then
(on a larger probability space) there is a random forest F ⊂ ω such that the distribution of
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the pair (F, ω) is Γ-invariant and with positive probability, there is a component of F that
has at least three ends.

Proof. Assign independent uniform [0, 1] random variables to the edges (independently of
ω). Define the free minimal spanning forest F of ω by taking an edge e ∈ ω to be present
in F iff there is no cycle in ω containing e in which e is assigned the maximum value. There
is no cycle in F, since the edge with the largest label in any cycle could not belong to F. In
addition, all components (trees) of F that lie in infinite components of ω are a.s. infinite,
since if K were a finite component, then consider the element of ∂𝖤K with smallest label.
Provided all labels are distinct, which occurs a.s., this element would be in F by definition of
F, a contradiction. Thus, each vertex in an infinite component of ω belongs to some infinite
tree of F. (Minimal spanning forests are studied in Chapter 11.)

Suppose that K(x) has at least three ends with positive probability. Choose any finite tree
T containing x so that with positive probability, T ⊂ K(x) and K(x) \ 𝖵(T) has at least three
infinite components. Then with positive probability, all of the following four events occur:
(1) T ⊂ K(x); (2) K(x) \ 𝖵(T) has at least three infinite components; (3) all edges in T are
assigned values less than 1/2; and (4) all edges incident to 𝖵(T) but not in T are assigned
values greater than 1/2. On this event, F contains T , and T is part of a tree in F with at least
three ends. ◀

We next show that a version of Theorem 7.5 holds for insertion-tolerant invariant percola-
tion.

Theorem 7.8. If P is an insertion-tolerant invariant percolation on a transitive connected
graph, G, then the number of infinite clusters is P-a.s. equal to 0, 1, or∞.

Proof. The proof of Theorem 7.5 would apply if we knew that the number of infinite clusters
were constant a.s. However, this does not follow from our hypotheses. Yet if we condition on
the number of infinite clusters being a fixed number k, and if we are able to show that the
conditioned percolation is still insertion tolerant and invariant, then the old proof will work
just fine. Luckily, such conditioning does indeed preserve these properties.
To see this, we show that actually, conditioning P on any invariant event A of positive

probability preserves insertion tolerance and invariance. The fact that P( • | A) is invariant is
immediate from the invariance of P and A. To show insertion tolerance, let B be any event
with P(B | A) > 0 and e be any edge. By Lemma 7.4, we may assume that A is a tail event,
so that ΠeA ∪ Π¬eA = A. Thus,

P(ΠeB | A) =
P(ΠeB ∩ A)

P(A) =
P
�
Πe(B ∩ A)�

P(A) > 0

since P(B ∩ A) > 0. In other words, P( • | A) is insertion tolerant. ◀
Here is the promised extension of Theorem 7.6:

Theorem 7.9. (Amenability Yields at Most One Infinite Cluster) If Γ acts transitively on
a connected amenable graph G and P is a Γ-invariant insertion-tolerant percolation process
on G, then P-a.s. there is at most one infinite cluster.

Proof. We prove the case of bond percolation, as the case of site percolation is virtually the
same. By Theorem 7.8, it suffices to show that if there are infinitely many infinite clusters
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with positive probability, then G is not amenable. Let x, y, and z be three vertices such
that the event A that they belong to distinct infinite clusters has positive probability. Choose
a finite set of edges F that connect x, y, and z. By insertion tolerance, P(ΠF A) > 0. On
the event ΠF A, there is an infinite cluster with at least three ends. Thus, the hypothesis of
Lemma 7.7 holds. Let F be as in Lemma 7.7. Since F has a component with at least three
ends with positive probability, there is a furcation of F with positive probability. This shows
(7.4) for some c > 0, where Λ is the set of furcations of F. Exercise 7.3 then gives (7.5),
which completes the proof. ◀

7.4 Inequalities for pc

In Section 6.9, we saw that pc can be bounded above by using an anchored expansion
constant, and we also saw how pc behaves under covering maps. How do pbond

c and psite
c

compare to each other? When is there a real phase transition in the sense that 0 < pc < 1?
These are the questions we address in this section, but, as we will see, there is still a basic
hole in our knowledge.
Our first two results show that pbond

c and psite
c are comparable in a uniform sense depending

on the maximum degree.

Proposition 7.10. (Hammersley, 1961a) For any graph G, any p ∈ (0, 1), and any vertex
o ∈ G, we have θsite

o (p) ≤ θbond
o (p). Therefore psite

c (G) ≥ pbond
c (G).

Proof. As we have done to prove other percolation inequalities, we will construct a coupling
of the two percolation measures. That is, given ξ ∈ 2𝖵, we will construct ω ∈ 2𝖤 in such a
way that, first, if ξ has distribution Psite

p on G, then ω has distribution Pbond
p on G; and, second,

if Kξ (o) is infinite, then so is Kω(o), where the subscript indicates which configuration
determines the cluster of o. This implies the desired inequalities.
Choose any ordering ⟨x1, x2, . . .⟩ of 𝖵 with x1 = o. Let ⟨Ye⟩e∈𝖤 be Bernoulli(p) random

variables.
We will look at a finite or infinite subsequence of vertices ⟨xn j

⟩ via a recursive procedure.
If ξ(o) = 0, then stop. Otherwise, let V1 := {o}, W1 := ∅, and set n1 := 1. Suppose that Vk

and Wk have been selected. Let nk+1 be the smallest index of a vertex in 𝖵 \ (Vk ∪Wk) that
neighbors some vertex in Vk , if any. If there is such a vertex, then let x ′

k+1 be the vertex in
Vk that neighbors xnk+1 and that has smallest index, and set ω

�[x ′
k+1, xnk+1]

�
:= ξ(xnk+1 ). If

ξ(xnk+1) = 1, then put Vk+1 := Vk ∪ {xnk+1} and Wk+1 := Wk , whereas if ξ(xnk+1 ) = 0, then put
Vk+1 := Vk and Wk+1 := Wk ∪ {xnk+1}. When nk+1 is not defined, stop; Kξ (o) is finite, and we
set ω(e) := Ye for the remaining edges e ∈ 𝖤 for which we have not yet specified ω(e).
If this procedure never ends, then both Kξ (o) and Kω(o) are infinite; assigning ω(e) := Ye

for any remaining edges e ∈ 𝖤 gives a fair sample of Bernoulli(p) bond percolation on G
when ξ ∼ Psite

p . This gives the desired coupling. ◀
In the preceding proof, we constructed a certain coupling of two percolation measures.

Another kind of coupling that is important is the following. Given two percolation measures
P and P′ on G, we say that P stochastically dominates P′, written P≽ P′, if there are random
variables ω and ω′ with laws P and P′, respectively, such that ω ≥ ω′ a.s., which we could
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also write as ω ⊇ ω′ a.s.* We use this idea to prove inequalities in the other direction to
those in Proposition 7.10. For an intuitive understanding of the next inequality, think about p
close to 1.

Proposition 7.11. (Grimmett and Stacey, 1998) For any graph G of maximal degree d,
any p ∈ (0, 1), and any vertex o ∈ G of degree do, we have

θsite
o

�
1 − (1 − p)d−1� ≥ �

1 − (1 − p)do
�
θbond
o (p) .

Therefore
psite

c (G) ≤ 1 −
�
1 − pbond

c (G)�d−1
.

Proof. We will again construct a coupling of the two percolation measures. This time, given
ω ∈ 2𝖤, we will construct ξ ∈ 2𝖵 in such a way that, first, if ω has distribution Pbond

p on
G, then ξ has a distribution that is stochastically dominated by Psite

q on G conditioned on
ξ(o) = 1, where q := 1 − (1 − p)d−1; and, second, if Kω(o) is infinite, then so is Kξ (o).
Choose any ordering ⟨x1, x2, . . .⟩ of 𝖵 with x1 = o. Let ⟨Yx⟩x∈𝖵 be Bernoulli(q) random

variables.
We will look at a finite or infinite subsequence of vertices ⟨xn j

⟩ via a recursive procedure.
If ω(e) = 0 for all edges e incident to o, then stop. Otherwise, let V1 := {o}, W1 := ∅,
ξ(o) := 1, and n1 := 1. Note that the probability that some edge incident to o is open is
1 − (1 − p)do .
Suppose that Vk and Wk have been selected. Let nk+1 be the smallest index of a vertex in

𝖵 \ (Vk ∪Wk) that neighbors some vertex in Vk , if any. Define ξ(xnk+1 ) to be the indicator that
there is some vertex x not in Vk ∪Wk for which ω

�[xnk+1 , x]� = 1. Note that the conditional
probability that ξ(xnk+1 ) = 1 is 1− (1− p)r ≤ q, where r is the degree of xnk+1 in G \ (Vk ∪Wk).
If ξ(xnk+1) = 1, then put Vk+1 := Vk ∪ {xnk+1} and Wk+1 := Wk ; otherwise put Vk+1 := Vk and
Wk+1 := Wk ∪ {xnk+1}. When nk+1 is not defined, stop; Kω(o) is finite and we set ξ(x) := Yx
for the remaining vertices x ∈ 𝖵 \ Vk .

If this procedure never ends, then Kξ (o) (though perhaps not Kω(o)) is infinite; assigning
ξ(x) := Yx for any remaining vertices x ∈ 𝖵 gives a law of ξ that is dominated by Bernoulli(q)
site percolation on G conditioned to have ξ(o) = 1. This gives the desired inequality. ◀
We now discuss whether 0 < pc < 1. It turns out that a lower bound for pc is rather simple

to obtain and implies that pc > 0 for all graphs of bounded degree. (It is easy to see that
there are graphs of unbounded degree for which pc = 0.) The idea for our lower bound was
used already in Chapter 5, where we calculated pc for general trees. Namely, we use a simple
first-moment argument as in Proposition 5.8. We can apply a similar argument on a general
graph by using the associated tree of self-avoiding walks. Recall that in Example 3.6, we
described a tree formed from the self-avoiding walks in �2. If G is any graph, not necessarily
transitive, we may again form the tree TSAW of self-avoiding walks of G, where all walks
begin at some fixed base point, o. The lower growth rate of this tree, µ(G) := gr TSAW, is
called the connective constant of G. This does not depend on choice of o, although that will
not matter for us. If G is transitive, then TSAW is 0-subperiodic, whence µ(G) = br TSAW by
Theorem 3.8.

* See Exercise 4.46(a) and Section 10.2 for more on this concept.
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Proposition 7.12. For any connected infinite graph G, we have pc(G) ≥ 1/µ(G). In
particular, if G has bounded degree, then pc(G) > 0.

Proof. In view of Proposition 7.10, it suffices to prove the inequality for bond percolation.
Let K(o) be the component of o in Bernoulli(p) percolation. Write Kn(o) for the self-

avoiding walks of length n within K(o). Thus, Kn(o) ⊆ TSAW
n . If K(o) is infinite, then

Kn(o) ̸= ∅ for each n. It follows that

θbond
o (p) ≤ Pp[Kn(o) ̸= ∅] ≤ Ep

� |Kn(o)| � = |TSAW
n |pn .

Taking nth roots and letting n → ∞, we obtain 1 ≤ µ(G)p whenever θbond
o (p) > 0. In

particular, this holds for p > pbond
c . ◀

Upper bounds for pc are more difficult. In fact, we have seen examples of graphs (trees)
that have exponential growth, bounded degree, and pc = 1. The transitive case is thought to
be better behaved, according to the following conjecture of Benjamini and Schramm (1996b):

Conjecture 7.13. (Quadratic Growth Yields a Phase Transition) If G is a transitive
graph with at least quadratic growth (that is, the ball of radius n grows at least as fast as
some quadratic function of n), then pc(G) < 1.

We will prove “most” cases of this conjecture. Now given a group, certainly the value of
pc depends on which generators are used. Nevertheless, whether pc < 1 does not depend
on the generating set chosen. To prove this, consider two generating sets, S1 and S2, of a
group Γ. Let G1 and G2 be the corresponding Cayley graphs. We will transfer Bernoulli
percolation on G1 to a dependent percolation on G2 by making an edge of G2 open iff a certain
corresponding path in G1 is open. We then want to compare this dependent percolation on
G2 to Bernoulli percolation on G2. To do this, we use a weak form of a comparison result
of Liggett, Schonmann, and Stacey (1997). That, in turn, will rely on the following general
coupling principle:

▷ Exercise 7.7.
Suppose that Pi (i = 1, 2, 3) are three percolation measures on 2A such that P1≽ P2 and P2≽ P3.
Show that there exist random variables ωi on a common probability space such that ωi ∼ Pi
for all i and ω1 ≥ ω2 ≥ ω3 a.s.

In the following comparison principle, Bernoulli percolation on a set A is transferred to a
dependent percolation on a set B, where the dependency is given by a set D ⊆ A × B. The
resulting dependent percolation on B then dominates a Bernoulli percolation on B whose
parameter depends on the amount of dependencies introduced.

Proposition 7.14. Write PA
p for the Bernoulli(p) product measure on a set 2A. Let A and B

be two sets and D ⊆ A × B. Write Da :=
�{a} × B

�
∩ D and Db :=

�
A × {b}� ∩ D. Suppose

that m := supa∈A |Da | < ∞ and that n := supb∈B |Db | < ∞. Given 0 < p < 1, let

q :=
�
1 − (1 − p)1/m�n .
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Given ω ∈ 2A, define ω′ ∈ 2B by

ω′(b) :=
{

min{ω(a) ; (a, b) ∈ Db} if Db ̸= ∅
1 if Db = ∅.

Let P be the law of ω′ when ω has the law of PA
p . Then P stochastically dominates PB

q .

Proof. Let η have law PA×B
q1/n . Define

𝜁(a) :=
{ max η↾Da if Da ̸= ∅

0 if Da = ∅ and 𝜁 ′(b) :=
{

min η↾Db if Db ̸= ∅
1 if Db = ∅.

Then the collection 𝜁 ′ has a law µ′ that dominates PB
q , since 𝜁 ′(b) are mutually independent

for b ∈ B and
PA×B
q1/n [𝜁 ′(b) = 1] = (q1/n)|Db | ≥ q .

Similarly, PA
p dominates the law µ of 𝜁 , since 𝜁(a) are mutually independent for a ∈ A and

PA×B
q1/n [𝜁(a) = 0] = (1 − q1/n)|Da | = (1 − p)|Da |/m ≥ 1 − p .

Therefore, if ω ∼ PA
p , then we may couple ω and 𝜁 so that ω ≥ 𝜁 . Since 𝜁(a) ≥ η(a, b), we

have that for each fixed b with Db ̸= ∅, under our coupling (as extended by Exercise 7.7),

ω′(b) = min
�
ω(a) ; (a, b) ∈ Db

	
≥ min

�
𝜁(a) ; (a, b) ∈ Db

	
≥ min η↾Db = 𝜁 ′(b) ,

whereas ω′(b) = 1 = 𝜁 ′(b) if Db = ∅. It follows that P≽ µ′ ≽ PB
q , as desired. ◀

Theorem 7.15. Let S1 and S2 be two finite generating sets for a countable group Γ, yielding
corresponding Cayley graphs G1 and G2. Then pc(G1) < 1 iff pc(G2) < 1.

Proof. Left and right Cayley graphs with respect to a given set of generators are isomorphic
via x 7→ x−1, so we consider only right Cayley graphs. We also give the proof only for bond
percolation, as site percolation is treated analogously.
Express each element s ∈ S2 in terms of a minimal-length word φ(s) using letters from

S1. If s−1 ∈ S2, then we take φ
�
s−1� = φ(s)−1. Let ω1 be Bernoulli(p) percolation on G1,

and define ω2 on G2 by letting [x, xs] ∈ ω2 (for s ∈ S2) iff the path from x to xs in G1
determined by φ(s) lies in ω1. Then we may apply Proposition 7.14 with A the set of edges
of G1, B the set of edges of G2, and D the set of pairs (e, e′) such that e is used in a path
between the endpoints of e′ determined by some φ(s) for an appropriate s ∈ S2. Clearly
n = max

�|φ(s)| ; s ∈ S2
	
and m is finite, whence we may conclude that ω2 stochastically

dominates Bernoulli(q) percolation on G2. Since o lies in an infinite cluster with respect
to ω1 if it lies in an infinite cluster with respect to ω2, it follows that if q > pc(G2), then
p ≥ pc(G1), showing that pc(G2) < 1 implies pc(G1) < 1. ◀
It is easy to see that the preceding proof extends beyond Cayley graphs to cover the case of

two graphs that are roughly isometric and have bounded degrees.
We now show that the Euclidean lattices �d (d ≥ 2) have a true phase transition for

Bernoulli percolation in that pc < 1. The argument again relies on a first-moment calculation,
but the new ingredient is planar duality, which introduces “contours.”



248 Chap. 7: Percolation on Transitive Graphs

Theorem 7.16. For all d ≥ 2, we have pc(�d) < 1.

Proof. We use the standard generators of �d. In view of Proposition 7.11, it suffices to
consider bond percolation. Also, since �d contains a copy of �2, it suffices to prove the result
for d = 2. Consider the plane dual lattice (�2)†. (See Section 6.5 for the definition.) To each
configuration ω in 2𝖤, we associate the dual configuration ω× in 2𝖤† by ω×(e†) := 1 − ω(e).
Those edges of (�2)† that lie in ω× we call “open.” If K(o) is finite, then ∂𝖤K(o)† contains a
simple cycle of open edges in (�2)† that surrounds o. Now each edge in (�2)† is open with
probability 1− p. Furthermore, the number of simple cycles in (�2)† of length n surrounding
o is at most n3n, since each one must intersect the x-axis somewhere in (0, n). Let M(n) be
the total number of open simple cycles in (�2)† of length n surrounding o. Then

1 − θ(p) = Pp

[ |K(o)| < ∞]
= Pp

[∑
n

M(n) ≥ 1
]

≤ Ep

[∑
n

M(n)
]

=
∑
n

Ep

�
M(n)� ≤∑

n

(n3n)(1 − p)n .

By choosing p sufficiently close to 1, we may make this last sum less than 1, and that makes
θ(p) > 0. ◀

The preceding proof introduced the dual percolation ω×, which is another Bernoulli
percolation. When p = 1/2, the dual percolation has the same law as the original percolation.
Some thought may suggest from this that pbond

c (�2) = 1/2. Although we will not prove the
full theorem that pbond

c (�2) = 1/2 and θ(pc,�
2) = 0, we will give a beautiful proof due to

Zhang, taken from Grimmett (1999), of Harris’s theorem that θ(1/2,�2) = 0. This implies
that pbond

c (�2) ≥ 1/2; a short proof of the converse inequality is given by Duminil-Copin and
Tassion (2015). The proof we are about to give of Harris’s theorem uses the self-duality of
Bernoulli(1/2) percolation and the uniqueness of the infinite cluster, if there were one.

Theorem 7.17. For bond percolation on �2, we have θ(1/2) = 0.

Proof. Assume for a contradiction that θ(1/2) > 0. By Theorem 7.6, there is a unique
infinite cluster a.s. Let B be a square box with sides parallel to the axes in �2. Let A be
the event that B intersects the infinite cluster. Then P1/2(A) is arbitrarily close to 1 provided
we take B large enough. Let Ai (1 ≤ i ≤ 4) be the event that there is an infinite path in ω
whose only intersection with B is on the ith side of B. These events are increasing and have
equal probability. Since Ac =

∩4
i=1 Ac

i , it follows from Exercise 5.18 that P1/2(Ai) are also
arbitrarily close to 1 when B is large. As in the proof of Theorem 7.16, to each configuration
ω in 2𝖤, we associate the dual configuration ω× in 2𝖤† by ω×(e†) := 1 − ω(e). Let B′ be
the smallest square box in the dual lattice (�2)† that contains B in its interior. Then similar
statements apply to the sides of B′ with respect to ω×. In particular, the probability is close
to 1 when B is large that there are infinite paths in ω from the left and right sides of B and
simultaneously infinite paths in ω× from the top and bottom sides of B′. See Figure 7.5.
However, on the event that these four things occur simultaneously, there cannot be a unique
infinite cluster in both �2 and its dual, which is the contradiction we sought. ◀
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B

B′

Figure 7.5. Infinite open paths from two sides of B and infinite closed paths from two sides of B′.

In Corollary 7.19 and Theorem 7.20, we establish that pc < 1 for the “majority” of groups.
The following language will be useful. We say that a group almost has a property if it has a
subgroup of finite index that has the property in question. We will use the following fact:

Theorem 7.18. If Γ is a finitely generated group of at most polynomial growth, then either Γ
is almost (isomorphic to) � or Γ contains a subgroup isomorphic to �2.

See Section 7.9 for the proof, which relies on a deep theorem of Gromov (1981a).
Combining this with Theorems 7.16 and 7.15, we may immediately deduce what we want for
groups of polynomial growth:

Corollary 7.19. (Polynomial Growth Yields a Phase Transition) If G is a Cayley graph
of a group Γ with at most polynomial growth, then either Γ is almost (isomorphic to) � or
pc(G) < 1.

Now we continue with groups of exponential growth, which are quite a bit easier to handle
given what we know about trees. This result is due to Lyons (1995).

Theorem 7.20. (Exponential Growth Yields a Phase Transition) If G is a Cayley graph
of a group with exponential growth, then pc(G) < 1.

Proof. Let b be the exponential growth rate of balls in G. Recall the construction in Sec-
tion 3.4 (p. 89) of the lexicographically-minimal spanning tree, T lexmin(G). This subperiodic
tree is isomorphic to a subgraph of G, whence

pc(G) ≤ pc(T lexmin) = 1/br(T lexmin) = 1/gr(T lexmin) = 1/b < 1 (7.6)

by Theorems 5.15 and 3.8. ◀

▷ Exercise 7.8.
Extend Theorem 7.20 to quasi-transitive graphs with exponential growth.
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The reason that Corollary 7.19 and Theorem 7.20 do not cover all groups is that there
exist groups that have superpolynomial growth but subexponential growth. These are called
groups of “intermediate growth.” The examples constructed by Grigorchuk (1983) also have
pc < 1 (Muchnik and Pak, 2001). It is not proved that all other groups of intermediate growth
have pc < 1. Among Cayley graphs, these are the only cases of Conjecture 7.13 that remain
unresolved.

7.5 Merging Infinite Clusters and Invasion Percolation

As p is increased, Bernoulli(p) percolation adds more edges, whence if there is an infinite
cluster a.s. at p0, then there is also an infinite cluster a.s. at each p > p0. This intuition was
made precise by using the standard coupling defined in Section 5.2. How does the number of
infinite clusters vary as p is increased through the range where there is at least one infinite
cluster? There are two competing features of increasing p: the fact that finite clusters can join
up means that new infinite clusters could form, while the fact that infinite clusters can join up
or can absorb finite clusters means that the number of infinite clusters could decrease.
For general graphs, either one of these two features could be dominant. For example, if the

Cayley graph of �2 is joined by an edge to a tree T with branching number in
�
1, 1/pc(�2)�,

then for pc(�2) < p < 1/br T , there is a unique infinite cluster, while for 1/br T < p < 1,
there are infinitely many infinite clusters (see Exercise 7.37). On the other hand, we will
see in Theorem 7.37 that for graphs that are the product of � with a regular tree of large
degree, the number of infinite clusters is first 0 in an interval of p, then ∞, and then 1. In
Theorem 8.24, we will see the same for the self-dual hyperbolic pentagonal tessellation graph
shown in Figure 2.4. By combining examples such as these, one can obtain more complicated
behavior of the number of infinite clusters.
However, on quasi-transitive graphs, it turns out that once there is a unique infinite cluster,

then that remains the case for all larger values of p. To prove this, we use the standard
coupling and prove something stronger, due to Schonmann (1999b) and Häggström, Peres,
and Schonmann (1999). It shows that the dominant feature of percolation clusters is that the
infinite ones grow faster than finite ones can create new infinite clusters. Let Θ(G) be the
set of p ∈ [0, 1] for which there is an infinite cluster Pp-a.s. on G (so that pc(G) = inf Θ(G)).
It is conjectured that Θ(G) =

�
pc(G), 1� when G is quasi-transitive and pc(G) < 1: see

Conjecture 8.15.

Theorem 7.21. (Merging Infinite Clusters) Let G be a quasi-transitive graph. If p1 ∈ Θ(G)
is such that there exists a unique infinite cluster Pp1-a.s., then for all p2 > p1, there is a
unique infinite cluster Pp2 -a.s. Furthermore, in the standard coupling of Bernoulli percolation
processes, a.s. simultaneously for all p1, p2 ∈ Θ(G) with p2 > p1, every infinite p2-cluster
contains an infinite p1-cluster.

If we define

pu(G) := inf
�
p ; there is a.s. a unique infinite cluster in Bernoulli(p) percolation

	
, (7.7)
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then it follows from Theorem 7.21 that when G is a quasi-transitive graph,

pu(G) = sup{p ; there is a.s. not a unique infinite cluster in Bernoulli(p) percolation} .
(7.8)

Of course, pc(G) ≤ pu(G) ≤ 1 and two new questions immediately arise: When is pu < 1?
When is pc < pu? We address these questions in Sections 7.6 and 7.7.

Our first order of business, however, is to prove Theorem 7.21. For this, we introduce
invasion percolation, which will also be important in our study of minimal spanning forests
in Chapter 11. There are two types of invasion percolation, bond and site. We describe
first invasion bond percolation. Fix distinct labels U(e) ∈ [0, 1] for e ∈ 𝖤, usually a sample
of independent uniform random variables. Fix a vertex x. Imagine U(e) as the height of
e and the height of x as 0. If we pour water gradually on x, then when the water reaches
the height of the lowest edge incident to x, water will flow along that edge. As we keep
pouring, the water will continue to “invade” the lowest edge that it touches. This is invasion
percolation. More precisely, let I1(x) be the lowest edge incident to x and define In(x)
recursively thereafter by letting In+1(x) := In(x)∪ {e}, where e is the lowest among the edges
that are not in In(x) but are adjacent to (some edge of) In(x). Finally, define the invasion
basin of x to be I(x) :=

∪
n In(x). This is the set of all edges invaded from x. Invasion site

percolation is similar, but the vertices are labeled rather than the edges and the invasion basin
is a set of vertices rather than a set of edges. For invasion site percolation, we start with
I1(x) := {x}.
Given the labels U(e), we have the usual subgraphs ωp := {e ; U(e) < p} that form the

standard coupling of Bernoulli percolation. The first connection of invasion percolation to
Bernoulli percolation is that if x belongs to an infinite cluster η of ωp, then I(x) ⊆ η (this
is clear). Similarly, if there is some edge e adjacent to I(x) but not in I(x) that satisfies
U(e) < p, then |I(x) ∩ η | = ∞ for some infinite cluster η of ωp. A much deeper connection
is the following result of Häggström, Peres, and Schonmann (1999):

Theorem 7.22. (Invasion of Infinite Clusters) Let G be an infinite quasi-transitive graph.
Then in the standard coupling of Bernoulli percolation processes, a.s. for all p > pc(G) and
all x ∈ 𝖵, there is some infinite p-cluster that intersects I(x).
The proof of Theorem 7.22 is rather tricky. The main steps will be to show that I(x)

contains arbitrarily large balls, that it comes infinitely often within distance 1 of infinite
p-clusters, and finally that it actually invades some infinite p-cluster. We present the proof for
invasion bond percolation, as the site case is similar.
The first step does not require quasi-transitivity. Recall that ER(x) denotes the set of edges

that have at least one endpoint at distance at most R − 1 from x. From now on, invasion
percolation uses the edge labels from the standard coupling of Bernoulli percolation.

Lemma 7.23. (Invasion of Large Balls) Let G be any infinite graph with bounded degrees,
x ∈ 𝖵, and R ∈ �. Then a.s. the invasion basin of x contains ER(y) for some y ∈ 𝖵.

Proof. The idea is that as the invasion from x proceeds, it will encounter balls of radius R for
the first time infinitely often. Each time, the ball might have all its labels fairly small, in which
case that ball would eventually be contained in the invasion basin. Since the encountered
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balls can be chosen far apart, these events are independent, and therefore one of them will
eventually happen.

To make this precise, fix an enumeration of 𝖵. Let d be the maximum degree in G,

Sr := {y ; distG(x, y) = r} ,

and
τn := inf

{
k ; distG

�
Ik(x), S2nR

�
= R

}
.

Since I(x) is infinite, τn < ∞ for all n ∈ �. Let Yn be the first vertex in the enumeration of 𝖵
such that Yn ∈ S2nR and distG

�
Iτn (x),Yn

�
= R. Let A be the event of probability 1 that there

is no infinite p-cluster for any p < pc(G) and consider the events

An :=
�
∀e ∈ ER(Yn) U(e) < pc(G)� .

On the event A ∩ An, we have ER(Yn) ⊂ I(x), so that it suffices to show that a.s. some An

occurs. The sets ER(Yn) are disjoint for different n. Also, the invasion process up to time τn
gives no information about the labels of ER(Yn). Since |ER(y)| ≤ dR for all y, it follows that
P(An | Yn, A1, A2, . . . , An−1) = pc(G)|ER (Yn)| ≥ pc(G)dR , so that P(An | A1, A2, . . . , An−1) ≥
pc(G)dR . Since pc(G) > 0 by Proposition 7.12, it follows that a.s. some An occurs. ◀

We next need an extension of insertion and deletion tolerance that holds for the edge labels.
It allows us to change the labels on a finite set of edges while maintaining the positivity of the
probability of events.

Lemma 7.24. (Change Tolerance of Labels) Let X be a denumerable set and A be an
event in [0, 1]X . Let LX be the product of Lebesgue measures on [0, 1]X . Given a finite
Y ⊂ X and a continuously differentiable injective map φ: [0, 1]Y → [0, 1]Y with a.e. nonzero
Jacobian determinant, let

A′ :=
{
ω ∈ [0, 1]X ; ∃η ∈ A ω↾(X \ Y ) = η↾(X \ Y ) and ω↾Y = φ(η↾Y )} .

Then LX(A′) > 0 if LX(A) > 0.

Proof. Regard [0, 1]X as [0, 1]Y × [0, 1]X\Y . Apply Fubini’s theorem to this product to
see that it suffices to prove the case where X = Y . But this case follows from the usual
change-of-variable formula

LX(A′) =
∫
A

|J | dLX ,

where J is the Jacobian determinant of φ. ◀

We now come to the second step, proving that I(x) comes infinitely often within distance 1
of infinite p-clusters. Let ξp(x) be the number of edges [y, z] with y ∈ I(x) and z in some
infinite p-cluster. (It is irrelevant to the definition whether z ∈ I(x), but if z ∈ I(x) and in
some infinite p-cluster, then ξp(x) = ∞.)
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Lemma 7.25. If G is a quasi-transitive graph, p ∈ Θ(G), and x ∈ 𝖵, then ξp(x) = ∞ a.s.

Proof. Let p ∈ Θ(G) and ϵ > 0. Because G is quasi-transitive, there is some R so that

∀y ∈ 𝖵 P
�
some infinite p-cluster comes within distance R of y

�
≥ 1 − ϵ . (7.9)

This is the only way that quasi-transitivity will enter the proof. Indeed, the rest of the section
will not use quasi-transitivity at all but only that ξp(x) = ∞ a.s. However, we need to
reformulate (7.9). Given a set of edges F, write V (F) for the set of its endpoints. By (7.9), if
F ⊂ 𝖤 and F contains some set ER(y), then with probability at least 1−ϵ , the set F is adjacent
to some infinite p-cluster. Let A(F) be the event that there is an infinite path in ωp that starts
at distance 1 from V (F) and that does not use any vertex in V (F). Our reformulation of (7.9)
is that if F ⊂ 𝖤 is finite and contains some set ER(y), then P

�
A(F)� ≥ 1 − ϵ .

By Lemma 7.23, there is a.s. a smallest finite k for which Ik(x) contains some ER(y). Call
this smallest time τ. Since the invasion process up to time τ gives no information about the
labels of edges that are not adjacent to Iτ(x), we have P

�
A(Iτ(x)) � Iτ(x)� ≥ 1 − ϵ , whence

P
�
A(Iτ(x))� ≥ 1 − ϵ . Since ξp(x) ≥ 1 on the event A(Iτ(x)) and ϵ was arbitrary, we obtain

P[ξp(x) ≥ 1] = 1.
Now suppose for a contradiction that P[ξp(x) = n] > 0 for some finite n. Then there is a

set F1 of n edges such that P(A1) > 0 for the event A1 that F1 is precisely the set of edges
joining I(x) to an infinite p-cluster. Among the edges adjacent to F1, there is a nonempty set
F2 of edges such that P(A1 ∩ A2) > 0 for the event A2 that F2 is precisely the set of edges
adjacent to F1 that belong to an infinite p-cluster. Now changing the labels U(e) for e ∈ F2 to
be p + (1 − p)U(e) changes A1 ∩ A2 to an event A3 where ξp(x) = 0, since I(x) on A1 ∩ A2 is
the same as I(x) on the corresponding configuration in A3. By Lemma 7.24, P(A3) > 0, so
P[ξp(x) = 0] > 0. This contradicts the preceding conclusion. Therefore, ξp(x) = ∞ a.s. ◀

Proof of Theorem 7.22. First fix p1 and p2 with p2 > p1 > pc(G) and fix x ∈ 𝖵. Given a
labeling of the edges, color an edge blue if it lies in an infinite p1-cluster. Color an edge red if
it is adjacent to some blue edge but is not itself blue. Observe that for red edges e, the labels
U(e) are independent and uniform on [p1, 1].

Now consider invasion from x given this coloring information. We claim that a.s., some
edge of I(x) is adjacent to some colored edge e with label U(e) < p2. To see this, note that
by Lemma 7.25, ξp1 (x) = ∞ a.s., so that infinitely many edges of I(x) are adjacent to colored
edges. When invasion from x first becomes adjacent to a colored edge, e, the distribution
of U(e), conditional on the colors of all edges and on the invasion process so far, is still
concentrated on [0, p1) if e is blue or is uniform on [p1, 1] if e is red. Hence U(e) < p2 with
conditional probability at least (p2 − p1)/(1 − p1) > 0. Since the same holds every time a
colored edge is encountered, there must be one colored edge with label less than p2 a.s. that
is adjacent to some edge of I(x). This proves the claim.
Now the claim we have just established implies that I(x) a.s. intersects some infinite

p2-cluster by the observation preceding the statement of Theorem 7.22.
Apply this result to a sequence of values of p2 approaching pc(G) to get the theorem. ◀

Before we can deduce Theorem 7.21, we need one more lemma.
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Lemma 7.26. If G is a quasi-transitive graph, p1 < p2 are fixed with p1, p2 ∈ Θ(G), then a.s.
every infinite p2-cluster contains an infinite p1-cluster.

Proof. Consider a labeling U of the edges. Because of Lemma 7.25, we know that for
each vertex x in an infinite p2-cluster C, there are a.s. infinitely many edges [y, z] with
y ∈ I(x) ⊆ C and z in some infinite p1-cluster. If C does not contain an infinite p1-cluster,
then it must be that C is adjacent via infinitely many edges e to infinite p1-clusters a.s. Those
edges e must then have labels U(e) ≥ p2.
To show that this is impossible, condition on the set F of all edges e having labelU(e) < p1.

All other edges have i.i.d. distribution uniform on [p1, 1] conditional on F. Given any vertex
x that does not belong to an infinite cluster in F (that is, an infinite p1-cluster), grow the
p2-cluster of x one edge at a time: Choose any deterministic ordering ⟨e1, e2, . . .⟩ of 𝖤.
Define E0 := F0 := ∅. We will look at a finite or infinite subsequence of edges ⟨en j

⟩ via a
recursive procedure and discover the p2-cluster C of x at the end. Suppose that the edges
Ek := ⟨en1 , . . . , enk

⟩ have been looked at and that Fk has been defined. Let Vk be the union
of {x} and the endpoints of the edges of Ek whose labels are less than p2. Let nk+1 be the
smallest index of an edge in 𝖤 \ Ek that has an endpoint in Vk , if any. If there are none, then
stop; C is finite with vertex set Vk . Otherwise, define

Fk+1 :=
{ Fk ∪ {nk+1} if enk+1 has exactly one endpoint in an infinite F-cluster

Fk otherwise.

Define F∞ :=
∪

Fk . Let ⟨Yi ; i ≥ 1⟩ be the random variables U(e j) for j ∈ F∞ ordered in
the same order as F∞. The random variables Yi are i.i.d. uniform on [p1, 1] (consider the
distribution of Yi given all Ym with m < i). If C is infinite and does not contain an infinite
F-cluster, then F∞ is infinite, as we said at the start of the proof. If F∞ is infinite, then Yi < p2
a.s. for some i ≥ 1. But this implies that C does contain an infinite F-cluster. So this proves
the lemma. ◀

Proof of Theorem 7.21. We give the proof for bond percolation, as site percolation is treated
in an identical manner. We consider first only pairs pc(G) < p1 < p2 and use Theorem 7.22.
Let A be the event of probability 1 that all edge labels are distinct and that for all p > pc(G)
and all x ∈ 𝖵, there is some infinite p-cluster that intersects I(x). On A, for each infinite
cluster η2 of ωp2 and each x ∈ η2, there is some infinite cluster η1 of ωp1 that intersects I(x).
Since I(x) ⊆ η2, it follows that η1 intersects η2, whence η1 ⊆ η2 on A, as desired.
To finish the proof, we need to consider pairs pc(G) = p1 < p2 in case pc(G) ∈ Θ(G).

But for each p2, this is the statement of Lemma 7.26, whence it holds simultaneously for
any countable collection of p2. So let ⟨pn ; n ≥ 2⟩ be converging to p1 from above. We
have that a.s. every pair (p1, pn) satisfies the conclusion, and by what we have shown in
the preceding paragraph, also simultaneously every pair (pn, p) with n ≥ 2 and pn < p
satisfies the conclusion. However, whenever a p-cluster contains an infinite pn-cluster and
that pn-cluster in turn contains an infinite p1-cluster, then the p-cluster also contains an
infinite p1-cluster, so we are done. ◀
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7.6 Upper Bounds for pu

If G is a regular tree, then it is easy to see that pu(G) = 1. (In fact, this is true for any tree;
see Exercise 7.37.) What about the Cayley graph of a free group with respect to a non-free
generating set? A special case of the following exercise (combined with Exercise 7.4) shows
that such a Cayley graph still has pu(G) = 1.

▷ Exercise 7.9.
(a) Show that if ω is an a.s. nonempty Aut(G)-invariant percolation on a quasi-transitive

graph G, then a.s. every end of G contains an end-convergent subset of ω.
(b) Show that if G is a quasi-transitive graph with more than one end, then pu(G) = 1.

In fact, one can show that the property pu(G) < 1 does not depend on the generating set
for any group (Lyons and Schramm, 1999), but this would be subsumed by the following
conjecture, suggested by a question of Benjamini and Schramm (1996b):

Conjecture 7.27. If G is a quasi-transitive graph with one end, then pu(G) < 1.

This conjecture has been verified in many cases, most notably, when G is the Cayley
graph of a finitely presented group. The present section is devoted to proving this case.
(See Section 7.9 for a discussion of other known cases.) A key ingredient is the following
combinatorial fact.

Lemma 7.28. Let k ≥ 1. Suppose that G is a graph that has a set K of cycles of length at
most k such that every cycle belongs to the linear span (in ℓ2

−(𝖤)) of K . Fix y, z ∈ 𝖵. Let Π
be a (possibly infinite) cutset of edges that separates y and z and that is minimal with respect
to inclusion. Then, for each nontrivial partition Π = Π1 ∪Π−1, there exist vertices xi ∈ 𝖵(Πi)
(i = 1,−1) such that the distance between x1 and x−1 is at most k/2.

Note that when a presentation ⟨S | R⟩ has relators (elements of R) with length at most k,
then the associated Cayley graph satisfies the hypothesis of Lemma 7.28.

Proof. It suffices to show that there is some cycle of K that intersects both Πi . By the
assumption of minimality, for i = 1,−1, there is a path Pi from y to z that does not intersect
Π−i . Considering Pi as elements of ℓ2

−(𝖤), we may write the cycle P1 − P−1 as a linear
combination of cycles

∑
C∈K ′ αCC for some finite set K ′ ⊂ K with αC ∈ �. Let K ′1 denote

the cycles of K ′ that intersect Π1 and K ′−1 := K ′ \ K ′1. We have

θ := P1 −
∑
C∈K ′1

αCC = P−1 +
∑

C∈K ′−1

αCC .

The right-hand side is composed of a path and cycles that do not intersect Π1, whence
θ(e) = 0 for all e ∈ Π1. Since θ is a unit flow from y to z, it follows that θ(e) ̸= 0 for some
e ∈ Π−1. Since P1 does not include an edge from Π−1, we deduce that some cycle in K ′1 does.
This provides precisely the sort of cycle we sought. ◀
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Write �̂� :=
�(e, f ) ∈ 𝖤×𝖤 ; e, f are adjacent

	
to define the line graph∗ of G as Ĝ := (𝖤, �̂�).

Write 𝖤k :=
�(x, y) ∈ 𝖵×𝖵 ; 1 ≤ distG(x, y) ≤ k

	
to define the k-fuzz of G as Gk := (𝖵, 𝖤k).

Finally, write Ĝk := (Ĝ)k . If every cycle in G can be written as a (finite) linear combination
of cycles with length < 2k, then according to Lemma 7.28,

every minimal cutset in G is the vertex set of a connected subgraph of Ĝk . (7.10)
Theorem 7.29. (Babson and Benjamini, 1999) If G is the Cayley graph of a nonamenable
finitely presented group with one end, then pu(G) < 1. In fact, the same holds for any
nonamenable quasi-transitive graph G with one end such that there is a set of cycles with
bounded length whose linear span contains all cycles.

An extension to the amenable case (where pu = pc) is given in Exercise 7.42. In particular,
pc < 1 for finitely presented amenable Cayley graphs. However, since it is unknown whether
there are any finitely presented groups of intermediate growth, it is not clear that this extension
adds to what we know already (that pc < 1 for groups other than possibly those of intermediate
growth).

Proof. Let 2k be strictly larger than the lengths of cycles of some generating set. We do the
case of bond percolation and prove that

pbond
u (G) ≤ max

�
pbond

c (G), 1 − psite
c (Ĝk)	 .

The case of site percolation is left as Exercise 7.38. Choose p < 1 so that p > pbond
c (G) and

p > 1 − psite
c (Ĝk). This is possible by Theorem 7.20, (6.7), and Proposition 7.12. Because

G has only one end, any two open infinite clusters must be separated by a closed infinite
minimal cutset (indeed, one within the edge boundary of one of the open infinite clusters).
Combining this with (7.10), we obtain

Pbond
p,G [∃ at least two open infinite clusters] ≤ Pbond

p,G [∃ a closed infinite minimal cutset in G]
≤ Psite

p,Ĝk
[∃ a closed infinite cluster in Ĝk]

= Psite
1−p,Ĝk

[∃ an open infinite cluster in Ĝk] = 0 .

On the other hand, Pbond
p,G [∃ at least 1 open infinite cluster] = 1 since p > pbond

c (G). This
proves the result. ◀
Remark 7.30. The proof shows that for every graph G with one end such that there is a
set of cycles with bounded length whose linear span contains all cycles, if pc(G) < 1, then
pu(G) < 1. For example, this applies to every plane graph with a bounded number of sides
on its faces.

∗ Since site percolation on Ĝ is equivalent to bond percolation on G, one might wonder why we study bond
percolation separately. There are three principal reasons for this: One is that other sorts of bond percolation processes
have no natural site analogue. Another is that planar duality is quite different for bonds than for sites. Third, various
quantities for graphs would have differing values for line graphs; for example, in Theorem 6.46, Φ∗𝖤(G) ≥ Φ∗𝖵(Ĝ), so
using site percolation on Ĝ might give a worse bound for pbond

c (G).
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7.7 Lower Bounds for pu

According to Theorem 7.6, when G is amenable and transitive, there can never be
infinitely many infinite clusters, whence pc(G) = pu(G). Behavior that is truly different from
the amenable case arises when there are infinitely many infinite clusters. This has been
conjectured always to be the case on nonamenable transitive graphs for some interval of p:

Conjecture 7.31. (Benjamini and Schramm, 1996b) If G is a quasi-transitive nonamen-
able graph, then pc(G) < pu(G).
It is not easy even to give examples of quasi-transitive graphs where 0 < pc < pu < 1, and

thus where we have three phases in Bernoulli percolation. But we will, and we will even
prove that every nonamenable group has some Cayley graph where pbond

c < pbond
u . Our first

tool will be the following lower bound for pu. Recall that a simple cycle is a cycle that does
not use any vertex or edge more than once. Let an(G) be the number of simple cycles of
length n in G that contain o and

γ(G) := lim sup
n→∞

an(G)1/n , (7.11)

where a cycle is counted only as a set without regard to ordering or orientation. (We do not
know whether limn→∞ a2n(G)1/2n exists for every transitive, or even every Cayley, graph.)

Theorem 7.32. If G is a transitive graph, then

pu(G) ≥ 1/γ(G) . (7.12)
Proof. We give the proof for site percolation, the proof for bond percolation being similar. Let
ωp for 0 ≤ p ≤ 1 be the standard coupling associated to independent uniform [0, 1] random
variables U(x) indexed by 𝖵. Consider p > pu . To show that pu(G) ≥ lim infn→∞ an(G)−1/n,
we will show that

∑
n an(G)pn = ∞.

First, since ωp contains a.s. a unique infinite cluster, that infinite cluster K has only one
end: otherwise, removing a finite number of sites would create more than one infinite cluster
and deletion tolerance would give more than one infinite cluster with positive probability.
Second, with positive probability, there are two (edge- and vertex-) disjoint infinite rays

in K . To see this, suppose not. Then by Menger’s theorem (Exercise 3.16), for every vertex
x ∈ K , a.s. there would be infinitely many vertices xn, each of whose removal would leave x
in a finite open component. Now the law of U(y) given ωp is uniform on [0, p] for y ∈ ωp.
Since K is independent of all U(y) given ωp, it follows that the law of U(y) given ωp and
that y ∈ K is still uniform on [0, p]. The same holds for the law of U(xn), since the xn are
determined simply by x and K . Choose any p′ ∈ (pc, p). Then given ωp, given any such
vertex x as earlier, and given any such vertices xn, we have that U(xn) > p′ a.s. for some
n. This means that the cluster of x in ωp′ is finite a.s. The fact that this holds for all x ∈ K
contradicts p′ > pc .
Therefore, with positive probability, there are two infinite rays in ωp starting at o that are

disjoint except at o. Since K has only one end, the two rays may be connected by paths in ωp

that stay outside arbitrarily large balls. In particular, there are an infinite number of simple
cycles in ωp through o, whence the expected number of simple cycles through o in ωp must
be infinite. That is,

∑
n an(G)pn = ∞. ◀
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It seems difficult to calculate γ(G), although Hammersley (1961b) showed that γ(�d) =
µ(�d) for all d ≥ 2, where µ is the connective constant defined in Section 7.4; in particular,
γ(�2) ≈ 2.64 (Madras and Slade, 1993). However, although it is crude, quite a useful
estimate of γ(G) arises from the spectral radius of G, which is much easier to calculate. For
any graph G, recall that the spectral radius of (simple random walk on) G is defined to be

ρ(G) := lim sup
n→∞

Po[Xn = o]1/n ,

where
�⟨Xn⟩,Po� denotes simple random walk on G starting at o.

▷ Exercise 7.10.
Show that for any graph G, the spectral radius satisfies ρ(G) = limn→∞ Po[X2n = o]1/2n and
Po[Xn = o] ≤ ρ(G)n for all n.

Lemma 7.33. For any graph G of maximum degree d, we have γ(G) ≤ ρ(G)d.

Proof. For any simple cycle o = x0, x1, . . . , xn−1, xn = o, one way that simple random walk
could return to o at time n is by following this cycle. That event has probability at least 1/dn.
Therefore Po[Xn = o] ≥ an(G)/dn, which gives the result. ◀

Since every simple cycle is a nonbacktracking cycle, we also have the better inequality

γ(G) ≤ 𝖼𝗈𝗀𝗋(G) . (7.13)
Recall that Theorem 6.10 gives a formula for 𝖼𝗈𝗀𝗋(G) in terms of ρ(G) when G is a transitive
graph. It would be useful to have a still better estimate of γ(G), even for G = �b+1 □ �.

Proposition 7.34. (Spectral Radius of Products) Let G and G′ be transitive graphs of
degrees dG and dG′ . We have

ρ(G □ G′) =
dG

dG + dG′
ρ(G) +

dG′

dG + dG′
ρ(G′) .

Proof. We first sketch the calculation, then show how to make it rigorous. We will use
superscripts on Po to denote on which graph the walk is taking place. The degree in G □G′ is
dG + dG′ , whence each step of simple random walk has chance dG/(dG + dG′) to be along an
edge coming from G. Take o in G □ G′ to be the product of the basepoints in the two graphs.
Then a walk of n steps from o in G □ G′ that takes k steps along edges from G and the rest
from G′ is back at o iff the k steps in G lead back to o in G and likewise for the n − k steps in
G′. Thus,

PG□G′
o [Xn = o] =

n∑
k=0

(
n
k

) (
dG

dG + dG′

)k (
dG′

dG + dG′

)n−k
PG
o [Xk = o]PG′

o [Xn−k = o]

≈
n∑

k=0

(
n
k

) (
dG

dG + dG′

)k (
dG′

dG + dG′

)n−k
ρ(G)k ρ(G′)n−k

=
(

dG ρ(G) + dG′ ρ(G′)
dG + dG′

)n
.
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Taking nth roots gives the result.
To make this argument rigorous, we will replace the vague approximation by inequalities

in both directions.
For an upper bound, we may use the inequality of Exercise 7.10.
For a lower bound, we note that according to Exercise 7.10, it suffices to consider only

even n, which we now do. Then we may sum over even k only (for a lower bound) and
use PG

o [Xk = o] ≥ C
�
ρ(G) − ϵ�k and PG′

o [Xn−k = o] ≥ C
�
ρ(G′) − ϵ�n−k , where ϵ is chosen

arbitrarily small and then C is chosen sufficiently small. Note that for any 0 < p < 1, we have

lim
n→∞

n∑
k=0

(
2n
2k

)
p2k(1 − p)2n−2k = 1/2 .

Putting together these ingredients with p := dG(ρ(G) − ϵ)/�dG(ρ(G) − ϵ) + dG′(ρ(G′) − ϵ)�
completes the proof. ◀

Since ρ(�) = 1, it follows that ρ(�d) = 1 as well, a fact that is also easy to verify directly.
Another particular value of ρ that is useful for us is that of regular trees:

Proposition 7.35. (Spectral Radius of Trees) For all b ≥ 1, we have

ρ(�b+1) =
2
√

b
b + 1

.

In fact, we proved this in Exercise 6.9, as well as in (6.25); see also Exercises 7.45 and
7.46. We give a more direct proof here.

Proof. If Xn is simple random walk on �b+1, then |Xn | is a biased random walk on �, with
probability p := b/(b + 1) to increase by 1 and q := 1/(b + 1) to decrease by 1 when Xn ̸= 0.
Let τ+

0 := inf
�
n ≥ 1 ; |Xn | = 0

	
. Now the number of paths of length 2n from 0 to 0 in � that

do not visit 0 in between is equal to the number of paths of length 2n − 2 from 1 to 1 in �
minus the number of the latter that visit 0. The former number is clearly

�2n−2
n−1

�
. The latter

number is
�2n−2

n

�
, since reflection after the first visit to 0 of a path from 1 to 1 that visits 0

yields a bijection to the set of paths from 1 to −1 of length 2n − 2. Hence, the difference is(
2n − 2
n − 1

)
−

(
2n − 2

n

)
=

1
n

(
2n − 2
n − 1

)
.

(This is the sequence of Catalan numbers, which appear in many combinatorial problems.)
Each path of length 2n from 0 to 0 in � that does not visit 0 has probability pn−1qn, whence
we have

P[τ+
0 = 2n] =

1
n

(
2n − 2
n − 1

)
pn−1qn =

−1
2
(−4)n

(
1/2
n

)
pn−1qn .

We have written this probability in a second way because to find the asymptotics as n → ∞,
we will use a generating function, and this will turn out to fit just right. That is, provided |z |
is sufficiently small,

g(z) := E[zτ+
0 ] =

∑
n≥1

−1
2
(−4)n

(
1/2
n

)
pn−1qnz2n =

�
1 −

√
1 − 4pqz2 �/(2p) . (7.14)
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Since the square root function cannot be analytically continued in a neighborhood of z =
1/(2√pq ), it follows that the radius of convergence of the power series for g is 1/(2√pq ).
We now use a generating function to find the spectral radius as well. Since

G(z) :=
∑
n≥0

P
� |Xn | = 0

�
zn =

1
1 − g(z) ,

it follows that the radius of convergence of G is also 1/(2√pq), which shows that the spectral
radius is 2√pq, as desired. ◀

Combining this with Proposition 7.34, we get:

Corollary 7.36. For all b ≥ 1, we have

ρ(�b+1 □ �) =
2
√

b + 2
b + 3

. ◀

We now have enough tools at our disposal to give our first example of a graph with two
phase transitions. This was also historically the first example ever given, when Grimmett and
Newman (1990) gave a version of the following result.

Theorem 7.37. For all b ≥ 6, we have 0 < pc(�b+1 □ �) < pu(�b+1 □ �) < 1.

Proof. The first inequality follows from Proposition 7.12. Since �b+1 and � are both finitely
presented, so is their product, whence the last inequality is a consequence of Theorem 7.29.
To prove the middle inequality, note that by Theorem 7.32 and (7.13),

pc(�b+1 □ �) ≤ pc(�b+1) =
1
b
<

1
𝖼𝗈𝗀𝗋(�b+1 □ �) ≤ pu(�b+1 □ �)

if 𝖼𝗈𝗀𝗋(�b+1 □ �) < b. Combining Theorem 6.10 and Corollary 7.36, we obtain that
𝖼𝗈𝗀𝗋(�b+1 □ �) < b iff ρ(�b+1 □ �)(b + 3) = 2

√
b + 2 < b + 1 + 2/b. It is easy to check that

this holds for b ≥ 6. ◀
Using Exercise 7.47, the proof of Theorem 7.37 extends immediately to all b ≥ 4. On the

other hand, using the weaker bound Lemma 7.33 in place of (7.13), the proof would work
only for b ≥ 8.
To establish some more cases of Conjecture 7.31, we use the following consequence of

(6.16). (Recall that in this chapter, Φ𝖤(G) means Φ𝖤(G, 1, 1), whereas in (6.16), it meant
Φ𝖤(G, c, π).)
Theorem 7.38. If G is a regular graph of degree d, then

ρ(G)2 +
(

Φ𝖤(G)
d

)2

≤ 1 (7.15)

and
ρ(G) +

Φ𝖤(G)
d

≥ 1 . (7.16)
◀
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The following corollary is due to Schonmann (2001) (parts (i) and (ii)) and Pak and
Smirnova-Nagnibeda (2000) (part (iii)).
Corollary 7.39. Let G be a transitive graph of degree d.

(i) If Φ𝖤(G)/d ≥ 1/
√

2, then pbond
c (G) < pbond

u (G).
(ii) If Φ𝖵(G)/d ≥ 1/

√
2, then psite

c (G) < psite
u (G).

(iii) If ρ(G) ≤ 1/2, then pbond
c (G) < pbond

u (G).
Proof. We will use the following implications:

ρ(G)d ≤ Φ𝖤(G) =⇒ pbond
c (G) < pbond

u (G) (7.17)
ρ(G)d ≤ Φ𝖵(G) =⇒ psite

c (G) < psite
u (G) . (7.18)

To prove (7.17), use Theorem 6.46, Lemma 7.33, and Theorem 7.32 to see that when
ρ(G)d ≤ Φ𝖤(G), we have

pbond
c (G) ≤ 1

1 + Φ𝖤(G) <
1

Φ𝖤(G) ≤
1

ρ(G)d ≤
1

γ(G) ≤ pbond
u (G) .

Similarly, when ρ(G)d ≤ Φ𝖵(G), we have

psite
c (G) ≤ 1

1 + Φ𝖵(G) <
1

Φ𝖵(G) ≤
1

ρ(G)d ≤
1

γ(G) ≤ psite
u (G) .

Part (i) is now an immediate consequence of (7.15) and (7.17). Part (ii) follows similarly
from (7.15) and (7.18), with the observation that Φ𝖤(G) ≥ Φ𝖵(G), so that if Φ𝖵(G)/d ≥ 1/

√
2,

then also Φ𝖤(G)/d ≥ 1/
√

2, so that ρ(G)d ≤ d/
√

2 ≤ Φ𝖵(G). Part (iii) follows from (7.16)
and (7.17). ◀
To get a sense of the strength of the hypotheses of Corollary 7.39, note that by Exercise 6.1,

we have Φ(�b+1)/d�b+1 = (b− 1)/(b+ 1). Also, for a given degree, the regular tree maximizes
Φ( • ) over all graphs by Exercise 6.43.
It turns out that any nonamenable group has a generating set that gives a Cayley graph

satisfying the hypotheses of Corollary 7.39(iii). To show this, consider the following
construction. Let G be a graph and k ≥ 1. Define a new multigraph G[k] to have vertex set
𝖵(G) and to have one edge joining x, y ∈ 𝖵(G) for every path in G of length exactly k that
joins x and y. Thus G[1] = G. Furthermore, if G is the Cayley graph of Γ corresponding to
a generating set S that is closed under inverses, then for any odd k, we have that G[k] is the
Cayley graph of the same group Γ but presented as ⟨S[k] | R[k]⟩, where

S[k] := {xw1,w2,...,wk
; wi ∈ S}

and R[k] is the set of products xw1,1,w1,2,...,w1,k xw2,1,w2,2,...,w2,k · · · xwn,1,wn,2,...,wn,k
of elements

from S[k] such that w1,1w1,2 · · ·w1,kw2,1w2,2 · · ·w2,k · · ·wn,1wn,2 · · ·wn,k is the identity in
Γ. (To see that G[k] is connected, note that for every s ∈ S, we have S[k] ∋ xs,s−1,s,s−1,...,s = s.
If G is not bipartite, then G[k] is connected also for even k.) Of course, this does have the
disadvantage that S[k] is not a subset of Γ. That disadvantage can be removed by a result of
Thom (2015).
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Corollary 7.40. (Pak and Smirnova-Nagnibeda, 2000) If G is any nonamenable transitive
graph, then pbond

c (G[k]) < pbond
u (G[k]) for all odd k ≥ − log 2/log ρ(G). In particular, every

finitely generated nonamenable group has a generating set whose Cayley graph satisfies
pbond

c < pbond
u .

Proof. Let k be as given. Then ρ(G)k ≤ 1/2. Now simple random walk on G[k] is the
same as simple random walk on G sampled every k steps. Therefore ρ(G[k]) = ρ(G)k by
Exercise 7.10. This means that ρ(G[k]) ≤ 1/2, whence the result follows from Corollary 7.39.

◀
Corollary 7.40 would confirm Conjecture 7.31 if the following conjecture were established:

Conjecture 7.41. (Benjamini and Schramm, 1996b) If G and G′ are roughly isometric
quasi-transitive graphs and pc(G) < pu(G), then pc(G′) < pu(G′).
More detailed information about percolation requires additional tools, which we develop in

the next chapter.

7.8 Bootstrap Percolation on Regular Trees

The last section in this chapter is devoted to a different model, bootstrap percolation,
which, like ordinary percolation, was introduced by physicists. Our limited study of it
will be restricted to regular trees. We will combine some ideas from Sections 5.7 and 5.8.
Bootstrap percolation on an infinite graph G begins with a random initial configuration
where each vertex is occupied with probability p, independently of each other – in other
words, with Bernoulli(p) site percolation. It then evolves at positive integer times according to
a deterministic spreading rule with a fixed parameter k: if a vacant site has at least k occupied
neighbors at a certain time step, then it becomes occupied in the next step. Perhaps all sites
are eventually occupied; the probability of this happening depends on p and k. If we fix k,
then we define the critical probability p(G, k) as the infimum of the initial probabilities p
that make Pp[complete occupation] > 0. If k = 1, then clearly everything becomes occupied
when G is connected and p > 0, so p(G, 1) = 0, whereas if k is the maximum degree of G,
then clearly not everything becomes occupied when p < 1, and so p(G, k) = 1.

▷ Exercise 7.11.
Show that p(�2, 2) = 0 for the usual square lattice graph.

Bootstrap percolation is well studied on �d and on finite boxes where some surprising
“metastability” phenomena occur (see, for example, Aizenman and Lebowitz (1988), Schon-
mann (1992), Holroyd (2003), Adler and Lev (2003), Gravner and Holroyd (2009), Balogh,
Bollobás, and Morris (2009), Balogh, Bollobás, Duminil-Copin, and Morris (2012)). Balogh,
Peres, and Pete (2006) investigated bootstrap percolation on regular and general infinite trees
and on graphs with anchored expansion (such as nonamenable Cayley graphs).
For example, Balogh, Peres, and Pete (2006) showed that if Γ is a finitely generated

group that contains a free subgroup on two elements, then Γ has a Cayley graph G such that
0 < p(G, k) < 1 for some k. In contrast, Schonmann (1992) proved that p(�d, k) = 0 if
k ≤ d and = 1 if k > d. These results raise the following open question:



§8. Bootstrap Percolation on Regular Trees 263

Question 7.42. (Balogh, Peres, and Pete, 2006) Is a group amenable if and only if for any
finite generating set, the resulting Cayley graph G has p(G, k) ∈ {0, 1} for every k?

It turns out that finding the critical probability p(�d+1, k) on a (d + 1)-regular tree is
equivalent to the problem of finding certain regular subtrees in a Bernoulli percolation
process, so the results of Section 5.7 are directly applicable to this case.

To see this, we introduce the following notion:

Definition 7.43. A finite or infinite connected subset F ⊆ 𝖵 of vertices is called a k-fort if,
for each x ∈ F, there are at most k edges that join x to (some vertex in) 𝖵 \ F.

What’s the relationship of forts to the occupation question? If there is an initially vacant
(k − 1)-fort, then it will remain vacant and so there will never be complete occupation. On
the other hand, the unoccupied sites in the final configuration are a (k − 1)-fort and thus form
an initial vacant (k − 1)-fort. Therefore, the failure of complete occupation by the k-neighbor
rule for a given initial configuration ω is equivalent to the existence of a nontrivial vacant
(k − 1)-fort in ω.
We can now analyze bootstrap percolation on the (d + 1)-regular tree, �d+1, where d ≥ 2

is a fixed integer. Let 1 ≤ k ≤ d. Consider Bernoulli(p) bond percolation on �d+1; does
the cluster of a fixed vertex contain a (k + 1)-regular subtree with positive probability?
Define π(d, k) to be the infimum of probabilities p for which the answer is yes. Harris’s
inequality (Section 5.8) implies that this critical probability is the same as the one for having
a k-ary subtree at the root in a Galton-Watson tree with offspring distribution Bin(d, p),
which we analyzed in Section 5.7. Ergodicity also shows that the probability is either 0
or 1 that somewhere there is a (k + 1)-regular subtree in Bernoulli(p) percolation on �d+1;
this probability is monotonic in p and changes at π(d, k). The relationship of the critical
probabilities π(d, k) to those for bootstrap percolation are as follows. Asymptotics for large d
and k lead to the very cute asymptotic p(�d+1, k) ∼ k/d:

Proposition 7.44. (Balogh, Peres, and Pete, 2006) Let 1 ≤ k ≤ d, and consider k-neighbor
bootstrap percolation on the (d + 1)-regular tree, �d+1. We have the following equality of
critical probabilities:

p(�d+1, k) = 1 − π(d, d + 1 − k) . (7.19)
In particular, for any constant γ ∈ [0, 1] and sequence of integers kd with limd→∞ kd/d = γ,
we have

lim
d→∞

p(�d+1, kd) = γ. (7.20)
Proof. The tree �d+1 has no finite (k − 1)-forts, and it is easy to see that any infinite (k − 1)-
fort of �d+1 contains a complete (d + 2 − k)-regular subtree. Hence, unsuccessful complete
occupation for the k-neighbor rule is equivalent to the existence of a (d +2− k)-regular vacant
subtree in the initial configuration. Furthermore, the set of initial configurations that lead
to complete occupation on �d+1 is invariant under the automorphism group of �d+1, hence
has probability 0 or 1: see Proposition 7.3. So incomplete occupation has probability 1 if
and only if a fixed origin is contained in a (d + 2 − k)-regular vacant subtree with positive
probability. Since the vacant vertices in �d+1 form a Bernoulli(1 − p) percolation process, we
find that (7.19) holds.
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Note that if limd→∞ kd/d = γ, then limd→∞(d + 1 − kd)/d = 1 − γ, so equation (5.29) of
Proposition 5.31 implies (7.20). ◀

Proposition 5.30 showed that for k ≥ 2 we already have a k-ary subtree at the critical
probability π(d, k). For bootstrap percolation, this means that the probability of complete
occupation is still 0 at p = p(�d+1, k) if k < d.

7.9 Notes

Results similar to (7.1) are part of a general conjecture due to Schramm, first mentioned in print by
Benjamini, Nachmias, and Peres (2011):

Conjecture 7.45. Suppose that Gn are infinite transitive graphs that converge to G in the sense that for
every r > 0, the balls of radius r in Gn are isomorphic to those in G for all large n. If supn pc(Gn) < 1,
then limn→∞ pc(Gn) = pc(G).

Other known cases include nonamenable Gn with girth tending to infinity (Benjamini, Nachmias, and
Peres, 2011); G is a Cayley graph of an abelian group (Martineau and Tassion, 2013); and Exercise 8.43.

In the nonamenable case, two Cayley graphs are roughly isometric iff there is a bijective rough
isometry between them, which is the same as a bi-Lipschitz map: see Whyte (1999). However, in
the amenable case, this is not so and there are lamplighter groups that are roughly isometric but not
bi-Lipschitz equivalent: see Dymarz (2010). These lamplighter groups are of the form

∑
x∈� �m Y �;

other lamplighter groups of interest in probability replace the base space � by �d (see Section 14.2).
The grandparent graph G of Example 7.1 is built on a tree T with a fixed end, ξ. The automorphism

group of G is the same as the subgroup of automorphisms of T that fix ξ, called the affine group of T .
The reasons for this name are given on p. 1252 of Cartwright, Kaimanovich, and Woess (1994).

The proof in this chapter of Proposition 5.27 is due to Pemantle and Peres (1996), Lemma 4.2(i). A
modification of this proof is used by Peres, Pete, and Scolnicov (2006).

Special cases of Proposition 7.10 were proved by Fisher (1961).
Proposition 7.12 was first observed for bond percolation on �2 by Broadbent and Hammersley (1957)

and Hammersley (1959).
Proposition 7.14 comes from Lyons and Schramm (1999), Remark 6.2.
The contour argument used to prove Theorem 7.16 is often referred to as a “Peierls argument,” after

Peierls (1936), who used such an argument to prove that the two-dimensional Ising model has a phase
transition.

Inequality (7.6), that pc(G) ≤ 1/b, also follows from the following result of Aizenman and Barsky
(1987):

Theorem 7.46. (Expected Cluster Size) If G is any transitive graph and p < pc(G), then we have
Ep

� |K(o)| � < ∞.

Aizenman and Barsky (1987) worked only on �d , but their proof works in greater generality. A very
short proof, inspired by theirs, is given by Duminil-Copin and Tassion (2016).

To prove Theorem 7.18, we will use the following result:

Proposition 7.47. A subgroup of finite index in a finitely generated group is itself finitely generated.

Proof. Let Γ be generated by the set S. Given a subgroup Γ′ < Γ, choose a set A ⊂ Γ such that A
intersects each coset of Γ′ exactly once. We may assume that o ∈ A, where o is the identity of Γ.
Thus, for each γ ∈ Γ, there is a unique k(γ) ∈ A and a unique h(γ) ∈ Γ′ such that γ = k(γ)h(γ).
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Now if γ = ah(γ) and γ′ = a′h(γ′), then γγ′ = γa′h(γ′) = a′′h(γa′)h(γ′) for some a′′ ∈ A, whence
h(γγ′) = h

�
γk(γ′)�h(γ′). It follows by induction that

h(γ1 · · · γm) = h
�
γ1k(γ2 · · · γm)�h�γ2k(γ3 · · · γm)� · · · h�γm−1k(γm)�h(γm) .

Therefore, given any choice of si ∈ S ∪ S−1, the element h(s1 · · · sm) is a product of elements from
S′ :=

�
h(sa) ; s ∈ S ∪ S−1, a ∈ A

	
. Since o ∈ A, h(γ) = γ for all γ ∈ Γ′, whence if s1 · · · sm ∈ Γ′, then

h(s1 · · · sm) = s1 · · · sm . This means that Γ′ is generated by S′. ◀
Proof of Theorem 7.18. The principal fact we need is the difficult theorem of Gromov (1981a), who
showed that Γ is almost a nilpotent group, as conjectured by Carlitz, Wilansky, Milnor, Struble, Felsinger,
Simoes, Power, Shafer, and Maas (1968). (The converse is true as well; see Wolf (1968). See Kleiner
(2010) or Ozawa (2015) for other proofs of Gromov’s theorem.) Now every finitely generated nilpotent
group is almost torsion-free,∗ while the upper central series of a torsion-free finitely generated nilpotent
group has all factors isomorphic to free abelian groups (Kargapolov and Merzljakov (1979), Theorem
17.2.2 and its proof). Thus, Γ has a subgroup Γ′ of finite index that is torsion-free and either Γ′ equals
its center, C, or there is a subgroup C′ of Γ′ such that C′/C is the center of Γ′/C and C′/C is free abelian
of rank at least 1. If the rank of C is at least 2, then C already contains �2, so suppose that C ≈ �. If
Γ′ = C, then Γ is almost �. If not, then let C′′ be a subgroup of C′ such that C′′/C is isomorphic to
�. We claim that C′′ is isomorphic to �2, and thus that C′′ provides the subgroup we seek. Choose
γ ∈ C′′ such that γC generates C′′/C. Let D be the group generated by γ. Then clearly D ≈ �. Since
C′′ = DC and C lies in the center of C′′, it follows that C′′ ≈ D × C ≈ �2. ◀

Transitive graphs of polynomial growth are very close to Cayley graphs of the same growth rate.
This was proved by Trofimov (1984). A cleaner way to say that they are “close” to Cayley graphs was
noted by Godsil, Imrich, Seifter, Watkins, and Woess (1989) as a consequence of results by Trofimov
(1984) and Sabidussi (1964): every transitive graph G of polynomial growth has the property that for
some n ≥ 1, the graph nG is a Cayley graph, where nG has vertex set 𝖵(G) × {1, . . . , n} and edges
connecting pairs (x, j) to (y, k) when [x, y] ∈ 𝖤(G). In fact, Sabidussi (1964) shows that if Γ is any
subgroup of Aut(G) that acts transitively, n is the cardinality of the Γ-stabilizer of a vertex, o, and
S := {γ ∈ Γ ; γo ∼ o}, then nG is the Cayley graph of Γ with respect to S. The fact that n and S are
necessarily finite follows from Trofimov (1984).

Alexander (1995b) proved Theorem 7.21 in the case of �d . The extension of his result to the first
part of Theorem 7.21 and a weakening of the second part, when p1 and p2 are fixed in advance, was
shown by Häggström and Peres (1999) for Cayley graphs and other unimodular transitive graphs, then
by Schonmann (1999b) in general. This answered affirmatively a question of Benjamini and Schramm
(1996b). Finally Häggström, Peres, and Schonmann (1999) proved Theorem 7.21 in general. They
also showed that Theorem 7.21 holds for semitransitive graphs, which are those graphs G for which
there exists a finite set F of vertices with the property that for every x ∈ 𝖵(G), there is some injective
homomorphism of G that maps some y ∈ F to x. For example, �d □ �+ is semitransitive, as is every
superperiodic tree. Since semitransitive graphs satisfy (7.9), our proof gives this result.

Invasion percolation was introduced by Wilkinson and Willemsen (1983). Chayes, Chayes, and
Newman (1985) proved Theorem 7.22 in the case of �d . A detailed study of invasion percolation
on regular trees is given by Angel, Goodman, den Hollander, and Slade (2008), with its scaling limit
studied by Angel, Goodman, and Merle (2013).

Lemma 7.28 is due to Babson and Benjamini (1999), who used topological definitions and proofs.
Our proof is due to Timár (2007). If instead of hypothesizing that K spans the cycles with real
coefficients, one assumes that K spans the cycles with �2 coefficients, where �2 is the field of two
elements, then the same statement is true with a very similar proof.

∗ A group is torsion-free if all its elements have infinite order, other than the identity element.
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That pu < 1 for planar quasi-transitive graphs with one end follows from Theorem 7.29 and
Exercise 7.42. An alternative proof is given in Section 8.5. Other techniques have established
Conjecture 7.27 for the Cartesian product of two infinite graphs (Häggström, Peres, and Schonmann,
1999) and for Cayley graphs of Kazhdan groups, that is, groups with Kazhdan’s property (T) (Lyons
and Schramm, 1999).

The definition of Kazhdan’s property is the following. Let Γ be a countable group and S be a finite
subset of Γ. A unitary representation of Γ is an action π of Γ by unitary maps on a Hilbert space. An
invariant vector of π is a vector v such that π(γ)v = v for all γ ∈ Γ. Let UΓ(H ) denote the set of
unitary representations of Γ on H that have no invariant vectors except 0. Set

κ(Γ, S) := max
�
ϵ ; ∀H ∀π ∈ UΓ(H ) ∀v ∈ H ∃s ∈ S ∥π(s)v − v∥ ≥ ϵ ∥v∥	 .

Then Γ is called Kazhdan (or has Kazhdan’s property (T)) if κ(Γ, S) > 0 for all finite S (or, equivalently,
for a single S that generates Γ). The only amenable Kazhdan groups are the finite ones. Examples of
Kazhdan groups include SL(n,�) for n ≥ 3. See de la Harpe and Valette (1989) for background; in
particular, every Kazhdan group is finitely generated (p. 11 there) but not necessarily finitely presentable
(as shown by examples of Gromov; see p. 43 there). Every infinite Kazhdan group has only one end.
See Żuk (1996) for examples of Kazhdan groups arising as fundamental groups of finite simplicial
complexes. There is a beautiful probabilistic characterization of Kazhdan groups. Let P∗ be the
probability measure on subsets of Γ that is the empty set half the time and all of Γ half the time. Recall
that Γ acts by translation on the probability measures on 2Γ.

Theorem 7.48. (Glasner and Weiss, 1997) A countable infinite group Γ is Kazhdan iff P∗ is not in
the weak∗ closure of the Γ-invariant ergodic probability measures on 2Γ.

The inequality pu(G) ≥ 1
/�
ρ(G)d� for quasi-transitive graphs of maximum degree d, which follows

from Theorem 7.32 combined with Lemma 7.33, was proved earlier by Benjamini and Schramm
(1996b).

Theorem 7.32 is due to Schramm; his proof was published by Lyons (2000). A strengthening of
Theorem 7.32 and of a result in the proof of Theorem 4 of Benjamini and Schramm (1996b) is the
following:

Theorem 7.49. If G is a transitive graph and p < 1/γ(G), then limx→∞ Pp[o↔ x] = 0.

The reason that this implies Theorem 7.32 is that when there is a unique infinite p-cluster, we have
Pp[o↔ x] ≥ Pp

� |K(o)| = ∞, |K(x)| = ∞
�
≥ θ(p)2 by Harris’s inequality (Section 5.8).

Proof. Consider first site percolation. Let p < p+ < 1/γ(G). We use the standard coupling of Bernoulli
percolation. A vertex z is called an (x, y)-cutpoint if x and y belong to the same p+-open cluster
but would not if z were closed. Let uk (r) denote the probability that for some x outside the ball
B(o, r), we have that o and x are connected via a p+-open path with at most k (o, x)-cutpoints (for the
p+-open vertices). When there are no (o, x)-cutpoints, there are two disjoint paths joining o to x by
Menger’s theorem (Exercise 3.16), in other words, there is a simple cycle containing o and x. Thus,
u0(r) ≤ ∑

n>2r an(G)pn
+ → 0 as r → ∞. For k ≥ 0 and r ≤ R, consider x /∈ B(o, R). If there is

a p+-open path from o to x that has at most k + 1 (o, x)-cutpoints, then either this path contains no
cutpoints in B(o, r) or it has at most k cutpoints outside B(o, r). In the latter case, it intersects the
sphere of radius r in one of at most dr points, where d is the degree of G. Therefore, we obtain the
bound

uk+1(R) ≤ u0(r) + druk (R − r) . (7.21)
The inequality (7.21) implies inductively that (for any fixed k) uk (R) tends to zero as R→ ∞. (Given ϵ ,
first choose r such that u0(r) < ϵ and then choose R′ so that druk (R − r) < ϵ for all R ≥ R′.)
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Next, let τp(R) denote the maximum over x /∈ B(o, R) of the probability that o and x are in the same
p-cluster. Then, for every k, we have

τp(R) ≤ (p/p+)k+1 + uk (R) (7.22)
by considering whether there is a p+-open path from o to x with at most k cutpoints; in the latter case,
there are k +1 cutpoints that lie on every p+-open path from o to x, and they must also be p-open. Finally
(7.22) implies that τp(R) tends to zero as R → ∞. (Given ϵ , first choose k such that (p/p+)k+1 < ϵ ,
then choose R′ so that uk (R) < ϵ for all R ≥ R′.)

The proof for bond percolation is similar but needs just the following modification: replace (p/p+)k+1

by
�
1 − (1 − p/p+)d�(k+1)/2 in (7.22), because if o and x are in the same p-cluster and there is a no

p+-open path from o to x with at most k cutpoints, then at least one edge incident to each cutpoint must
also be p-open. Furthermore, the cutpoints must appear in a fixed order in every p+-open path from o to
x, and two cutpoints can share at most one edge. ◀

According to Schonmann (1999a), techniques of that paper combined with those of Stacey (1996)
can be used to show the same inequality as that of Theorem 7.37 for all b ≥ 2, but the proof “is quite
technical.”

The only groups for which it is known that all their Cayley graphs satisfy pc < pu are the groups
of “cost” larger than 1. This concept is defined in Section 10.2, but we give a few classes of examples
here. This includes, first, free groups of rank at least 2 and fundamental groups of compact surfaces
of genus larger than 1. Second, let Γ1 and Γ2 be two groups of finite cost with Γ1 having cost larger
than 1. Then every amalgamation of Γ1 and Γ2 over an amenable group has cost larger than 1. Third,
every so-called HNN extension of Γ1 over an amenable group has cost larger than 1. Also, every HNN
extension of an infinite group over a finite group has cost larger than 1. For proofs that these groups
have cost larger than 1, see Gaboriau (1998, 2000, 2002). The proof that pc(G) < pu(G) when G is a
Cayley graph of a group Γ with cost larger than 1 follows fairly easily from Theorem 8.21 in the next
chapter, as noted by Lyons (2000); see Lyons (2013b) for the details. If Γ is a group with a Cayley
graph G and the free and wired uniform spanning forest measures on G differ (equivalently, there exist
nonconstant harmonic Dirichlet functions), then Γ has cost larger than 1. These are the same as the
groups with strictly positive first ℓ2-Betti number; see Sections 10.2 and 10.8. Possibly these are exactly
the groups of cost larger than 1; see Question 10.12. Notably, although it is known (Bekka and Valette,
1997) that Kazhdan groups have first ℓ2-Betti number equal to 0, it is not known that they have cost 1.
Likewise, it is not known that all Cayley graphs of Kazhdan groups have pc < pu. If the free and wired
uniform spanning forests differ on a unimodular quasi-transitive graph G, then again pc(G) < pu(G):
see Corollary 4.5 of Gaboriau (2005).

The following results concerning the uniqueness phase of Bernoulli percolation are also known. (The
definition of “unimodular” is in the next chapter; it includes all Cayley graphs.)

Theorem 7.50. Let G be a quasi-transitive graph.
(i) (Schonmann, 1999b) We have

pu(G) = inf
{

p ; sup
R

inf
x

Pp

�
B(o, R)↔ B(x, R)� = 1

}
. (7.23)

(ii) (Lyons and Schramm, 1999) If G is unimodular and infx Pp[o ↔ x] > 0, then there is a
unique infinite cluster Pp-a.s. Therefore,

pu(G) = inf
�
p ; inf

x
Pp[o↔ x] > 0

	
. (7.24)

Equation (7.24) implies (7.23), but it is unknown whether (7.24) holds in the nonunimodular case.
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It is not known which Cayley graphs have the property that there is a unique infinite cluster Ppu -a.s.
It is known that there is a unique infinite cluster at pu when G is planar, nonamenable, and transitive
(Theorem 8.24). On the other hand, Schonmann (1999a) proved that this does not happen on �b+1 □�
with b ≥ 2, which Peres (2000) extended to all nonamenable Cartesian products of infinite transitive
graphs. Likewise, there are infinitely many infinite clusters at pu when G is a Cayley graph of a Kazhdan
group (due to Peres; see Lyons and Schramm (1999)). For further groups with this property, see
Gaboriau and Tucker-Drob (2015).

▷ Exercise 7.12.
Show that for every transitive graph G, psite

u (G) ≥ pbond
u (G).

▷ Exercise 7.13.
Show that if G and G′ are roughly isometric quasi-transitive graphs, then pu(G) < 1 iff pu(G′) < 1.

▷ Exercise 7.14.
Let G be a unimodular transitive graph. Suppose that there are constants C < ∞ and 𝜁 < 1 such that for
all vertices x in G, there is a probability measure µ on paths from o to x that satisfies

(µ × µ)� |ξ ∩ ξ′ | = n
�
≤ C𝜁n

for all n. Show that pu(G) ≤ 𝜁 .

An analogue of nonamenable graphs in the world of finite graphs is a sequence of finite graphs
whose expansion constants are bounded away from 0; such a sequence is usually called an expander
sequence. Properties of percolation on an expander sequence that are analogues of the existence or
uniqueness of infinite percolation clusters for infinite graphs are studied by Alon, Benjamini, and Stacey
(2004) and Angel and Benjamini (2007). The analogue of the existence of an infinite cluster is the
existence of a “giant” component, that is, a cluster that contains a positive proportion of all vertices; if
there is such a giant component, then it is unique. It is somewhat of a mystery, then, what uniqueness
of the infinite cluster could correspond to. The answer may be this: the analogue of the uniqueness
of infinite clusters is that for a random pair of neighboring vertices, conditioned that they belong to
the giant component, the distributions of their distance within the giant component form a tight family.
This is similar to whether the limit of uniform spanning trees in an exhaustion of an infinite graph (that
is, the free spanning forest) has only one component, a topic studied in Chapter 10. Much remains to be
understood for percolation in this finite-analogue world.

7.10 Collected In-Text Exercises

7.1. Prove (7.2).

7.2. Let G be a connected graph and x, y ∈ 𝖵(G). Consider Bernoulli(p) percolation on G. Prove
that if θy (p) > 0, then also θx (p) > 0.

7.3. Let T be a tree that has no vertices of degree 1. Let B be the set of vertices of degree at least 3.
Let K be a finite nonempty subset of vertices of T . Show that |∂𝖵K | ≥ |K ∩ B| + 2.

7.4. Show that for any finitely generated group, the number of ends is the same for all of its Cayley
graphs. Thus, we may speak of the number of ends of a group, not merely of a Cayley graph. In fact,
show that if two graphs are roughly isometric, then they have the same number of ends.
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7.5. Show that if G and G′ are any two infinite connected graphs, then the Cartesian product graph
G □ G′ (defined on p. 1) has only one end.

7.6. Show that if Γ and Γ′ are any two finitely generated groups with |Γ| ≥ 2 and |Γ′ | ≥ 3, then
Γ ∗ Γ′ has infinitely many ends.

7.7. Suppose that Pi (i = 1, 2, 3) are three percolation measures on 2A such that P1≽ P2 and P2≽ P3.
Show that there exist random variables ωi on a common probability space such that ωi ∼ Pi for all i
and ω1 ≥ ω2 ≥ ω3 a.s.

7.8. Extend Theorem 7.20 to quasi-transitive graphs with exponential growth.

7.9. (a) Show that if ω is an a.s. nonempty Aut(G)-invariant percolation on a quasi-transitive graph
G, then a.s. every end of G contains an end-convergent subset of ω.

(b) Show that if G is a quasi-transitive graph with more than one end, then pu(G) = 1.

7.10. Show that for any graph G, the spectral radius satisfies ρ(G) = limn→∞ Po[X2n = o]1/2n and
Po[Xn = o] ≤ ρ(G)n for all n.

7.11. Show that p(�2, 2) = 0 for the usual square lattice graph.

7.12. Show that for every transitive graph G, psite
u (G) ≥ pbond

u (G).
7.13. Show that if G and G′ are roughly isometric quasi-transitive graphs, then pu(G) < 1 iff

pu(G′) < 1.

7.14. Let G be a unimodular transitive graph. Suppose that there are constants C < ∞ and 𝜁 < 1
such that for all vertices x in G, there is a probability measure µ on paths from o to x that satisfies

(µ × µ)� |ξ ∩ ξ′ | = n
�
≤ C𝜁n

for all n. Show that pu(G) ≤ 𝜁 .

7.11 Additional Exercises
7.15. Show that if G′ is a transitive representation of a quasi-transitive graph G, then G is amenable

iff G′ is amenable.

7.16. Show that a tree is quasi-transitive iff it is a directed cover of a finite directed multigraph (as on
p. 82 of Section 3.3).

7.17. Let x and y be two vertices of any graph and define τp(x, y) := Pp[x ↔ y]. Show that τ is
continuous from the left as a function of p.

7.18. Find the Cayley graph of the lamplighter group �⊙ with respect to the four generators (0, 1),
(0,−1), (1{0}, 1), and (1{0},−1).

7.19. Show that if bn is the size of a ball of radius n in the graph �b+1 □ �d , then limn→∞ b1/n
n = b

for all b ≥ 1 and d ≥ 0.

7.20. Use Harris’s inequality to do Exercise 7.2.

7.21. Let T be a finite tree. Call a vertex x a k-branch point of T if T\x has at least three components
that each have at least k vertices. Let Bk be the set of k-branch points of T . Show that if |Bk | ≥ 1, then
|𝖵(T) \ Bk | ≥ k

�|Bk | + 2
�
.
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7.22. Give an example of a connected graph such that for some p, the number of infinite clusters of
Bernoulli(p) percolation is finite and at least 2 with positive probability.

7.23. Suppose thatω is an invariant percolation on a transitive graph G. Let Λ be the set of furcations
of ω. Show that Φ𝖵(G, 1, 1) ≥ P[o ∈ Λ].

7.24. Suppose that P is an invariant percolation on an amenable transitive graph. Show that all
infinite clusters have at most two ends a.s.

7.25. Let F be an invariant random forest on a transitive graph G. Show that

E[degF o] ≤ Φ𝖵(G, 1, 1) + 2 .

7.26. Show that if G is a quasi-transitive graph with at least three ends, then G has infinitely many
ends.

7.27. Extend Theorem 7.9 to quasi-transitive amenable graphs.

7.28. Refine Proposition 7.10 to prove that θsite
o (p) ≤ pθbond

o (p).
7.29. Extend Proposition 7.10 to show that there is a coupling of ξ ∼ Psite

p and ω ∼ Pbond
p such that

every ξ-cluster is contained in some ω-cluster.

7.30. Strengthen Proposition 7.12 to show that for any connected graph G, we have the lower bound
pc(G) ≥ 1/br TSAW.

7.31. Suppose that G is a graph such that for some constant a < ∞ and all n ≥ 1, we have

����{Π ⊂ 𝖤 ; Π is a minimal cutset separating o from∞, |Π| = n
}���� ≤ aean , (7.25)

where o is a fixed vertex in G. Show that pbond
c (G) < 1.

7.32. Prove that pbond
c (�2) ≤ 1 − 1/µ(�2).

7.33. Let G be an infinite graph and x ∈ 𝖵(G). Write K(x) for the cluster of x in percolation; as
usual, θx (p) := Pp

� |K(x)| = ∞
�
.

(a) Show that θx (p) is continuous from the right at all p ∈ [0, 1).
(b) For 0 < p ≤ 1, show that θx (p) − θx (p−) = Pp

� |K(x)| = ∞, pc(K(x)) = 1
�
.

(c) Show that if G is quasi-transitive, then θx (p) is continuous from the left at all p ∈ (0, 1] with
an exception at p = pc iff θ(pc) > 0.

7.34. Let


U(e)� be distinct labels on an infinite graph, yielding invasion basins I(x). Show that if

inf
�
U(e) ; e ∈ ∂𝖤I(x)	 < p, then |I(x) \ η | < ∞ for some infinite cluster η of ωp .

7.35. Give an example of a graph with a vertex x whose invasion basin I(x) satisfies

P
�
∃p > pc I(x) ∩ ωp has no infinite component

�
> 0 .

7.36. Let G be an infinite quasi-transitive graph with pu < 1. Show that in the standard coupling of
Bernoulli percolation, a.s. for all p > pu, every infinite cluster in ωp has one end.

7.37. Show that if T is any tree and p < 1, then Bernoulli(p) percolation on T has either no infinite
clusters a.s. or infinitely many infinite clusters a.s.

7.38. Prove Theorem 7.29 for site percolation.
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7.39. Let G = (𝖵, 𝖤) be a graph with a fixed base point o. A finite subset of vertices that includes o
and that induces a connected subgraph is called a site animal. Let an be the number of n-vertex site
animals. Show that if all vertices have degrees at most d, then lim supn→∞ a1/n

n < ed, where e is the
base of natural logarithms.

7.40. Let G = (𝖵, 𝖤) be a graph with a fixed base point o. A finite set of edges that includes some
edge incident to o and that form a connected subgraph is called a bond animal. Let bn be the number of
n-edge bond animals. Show that if all vertices have degrees at most d, then lim supn→∞ b1/n

n < e(d − 1),
where e is the base of natural logarithms.

7.41. A sequence of vertices ⟨xk ⟩k∈� is called a bi-infinite geodesic if distG (x j , xk ) = | j − k | for all
j, k ∈ �. Show that an infinite transitive graph contains a bi-infinite geodesic passing through o.

7.42. Show that if G is a transitive graph such that there is a set of cycles with bounded length whose
linear span contains all cycles, then pc(G) < 1. For example, this holds when G is the Cayley graph of a
finitely presented group with respect to a finite presentation.

7.43. Let G be any connected graph. Let an(G, x) be the number of simple cycles of length n in G
from x to x and

γ(G) := sup
x

lim sup
n→∞

an(G, x)1/n .

Show that if there is a unique infinite cluster Pp-a.s., then p ≥ 1/γ(G). Moreover, show that if
p < 1/γ(G), then limx→∞ Pp[o↔ x] = 0.

7.44. Let G and G′ be transitive networks with conductance sums at vertices π and π′, respectively.
(These are constants by transitivity.) Define the Cartesian product network as in Exercise 6.25. Show
that

ρ(G □ G′) =
π

π + π′
ρ(G) +

π′

π + π′
ρ(G′) .

7.45. Combine Exercises 5.34 and 5.35(a) to give another proof of (7.14).

7.46. Give another proof of (7.14) by conditioning on the second step to get a recursion for g(z).
7.47. Prove that pbond

c (�b+1 □�) ≤ �
b + 1 −

√
b2 + 2b − 3

�
/2.

7.48. Prove that pbond
c (�b+1 □�) is at least the smaller positive solution of (b + 2)2p2 − (b + 1)p4 = 1.

7.49. Prove that for every transitive graph G, if b is sufficiently large, then we have the inequality
pc(�b+1 □ G) < pu(�b+1 □ G).

7.50. Show that in Corollary 7.39, the hypotheses of (i)–(iii) may be replaced by, respectively,
Φ𝖤(G)/(d − 1) ≥ 1/

√
2; Φ𝖵(G)/(d − 1) ≥ 1/

√
2; and ρ(G) ≤ 1/2 +

√
d − 1/d.

7.51. Show that Corollary 7.39 holds for quasi-transitive graphs when d is replaced by the maximum
degree in G.

7.52. Consider bootstrap percolation with the k-neighbor rule on a 2k-regular graph, G. Show that if
Φ∗𝖤(G) > 0, then p(G, k) > 0. Hint: Suppose not. For small p, given the initial configuration ωp , find
an arbitrarily large finite set K such that K becomes occupied even if the outside of K were to be made
vacant. Count the increase of the boundary throughout the evolution of the process. Use Exercise 7.39.

7.53. Show that for bootstrap percolation on the d-regular tree �d+1, we have

p(�d+1, d) = 1 − 1
d

and p(�d+1, 2) = 1 − (d − 1)2d−3

dd−1(d − 2)d−2 ∼
1

2d2 . (7.26)
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7.54. For bootstrap percolation, define another critical probability, b(G, k), as the infimum of
initial probabilities for which, following the k-neighbor rule on G, there will be an infinite connected
component of occupied vertices in the final configuration with positive probability. Clearly, we have
b(G, k) ≤ p(G, k). Show that for any integers d and k with 2 ≤ k ≤ d, if T is an infinite tree with
maximum degree d + 1, then p(T , k) ≥ b(�d+1, k) > 0.

7.55. Consider bootstrap percolation on the family tree Tξ of a Galton-Watson process with offspring
distribution ξ.

(a) Show that p(Tξ , k) is a constant almost surely, given nonextinction.
(b) Prove that p(Tξ , k) ≥ p(Tη , k) if η stochastically dominates ξ.

7.56. Consider the Galton-Watson tree Tξ with offspring distribution P(ξ = 2) = P(ξ = 4) = 1/2.
Then br(Tξ ) = Eξ = 3 a.s., there are no finite 1-forts in Tξ , and 0 < p(Tξ , 2) < 1 is an almost sure
constant by Exercise 7.55. Prove that p(Tξ , 2) < p(�3+1, 2) = 1/9.



273

8 The Mass-Transport Technique
and Percolation

Interchanging the order of summation in a double sum is one of the most useful techniques
in a mathematician’s toolkit. It can always be tried when the sums are finite but requires
assumptions when the sums are infinite. This chapter develops a technique that is quite similar
to interchange of summation but applies to certain infinite settings where pure interchange
of summation would not make sense. This technique, based on the so-called mass-transport
principle, is so powerful that its applications often seem magical. The technique has become
indispensable in the context of percolation on nonamenable graphs, whose study is continued
in this chapter. We will use it again in Chapters 10 and 11 as well. Recall that for us,
percolation means simply a probability measure on subgraphs of a given graph. There
are two main types, bond percolation, wherein each subgraph has all the vertices, and site
percolation, where each subgraph is the graph induced by some of the vertices. In this
chapter, all graphs are assumed to be locally finite without explicit mention.

Our main topic is invariant percolation on Cayley graphs. The importance of this topic is,
as we will see, that it has many applications to Bernoulli percolation and to random spanning
forests. This is not only because these percolations are themselves invariant; it is also because
we will construct auxiliary invariant percolations from Bernoulli percolation that will inform
us about Bernoulli percolation. In this way, we will show that there is no infinite cluster a.s.
at pc on nonamenable Cayley graphs and show that there is a unique infinite cluster a.s. at pu
on nonamenable planar Cayley graphs. Likewise, we will also understand what the infinite
clusters look like in Bernoulli percolation when there are infinitely many of them.

8.1 The Mass-Transport Principle for Cayley Graphs

Early forms of the mass-transport technique were used by Liggett (1987), Adams (1990),
and van den Berg and Meester (1991). It was introduced in the study of percolation by
Häggström (1997) and developed further in BLPS (1999b). This method is useful far beyond
Bernoulli percolation. The principle on which it depends is best stated in a form that does
not mention percolation or even probability at all. However, to motivate it, we first consider
probabilistic processes that are invariant with respect to a countable group Γ, meaning, in its
greatest generality, a probability measure P on a space Ω on which Γ acts in such a way as to
preserve P. For example, we could take P:= Pbond

p and Ω := 2𝖤, where 𝖤 is the edge set of a
Cayley graph of Γ. Let F(x, y;ω) ∈ [0,∞] be a function of x, y ∈ Γ and ω ∈ Ω. Suppose
that F is invariant under the diagonal action of Γ; that is, F(γx, γy; γω) = F(x, y, ω) for
all γ ∈ Γ. We think of giving each element x ∈ Γ some initial mass, possibly depending
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on ω, then redistributing it so that x sends y the mass F(x, y;ω). With this terminology,
one hopes for “conservation” of mass, at least in expectation. Of course, the total amount
of mass is usually infinite. Nevertheless, it turns out that there is a sense in which mass is
conserved: the expected mass at an element before transport equals the expected mass at an
element afterward. Since F enters this equation only in expectation, it is convenient to set
f (x, y) := EF(x, y;ω). Then f is also diagonally invariant, that is, f (γx, γy) = f (x, y) for
all γ, x, y ∈ Γ, because P is invariant. This function f satisfies the following principle:

The Mass-Transport Principle for Countable Groups. Let Γ be a countable group and o
be its identity element. If f : Γ × Γ→ [0,∞] is diagonally invariant, then∑

x∈Γ

f (o, x) =
∑
x∈Γ

f (x, o) .

Proof. Just note that f (o, x) = f (x−1o, x−1x) = f (x−1, o) and that summation of f (x−1, o)
over all x−1 is the same as

∑
x∈Γ f (x, o), since inversion is a permutation of Γ. ◀

Before we use the mass-transport principle in a significant way, we examine a few simple
questions to illustrate where it is needed and how it is different from simpler principles. Let
G be a Cayley graph of the infinite group Γ, and let P be an invariant percolation, that is, an
invariant measure on 2𝖵, on 2𝖤, or even on 2𝖵∪𝖤. Let ω be a configuration with distribution P.

Example 8.1. Could it be that ω is a single vertex a.s.? In other words, is there an invariant
way to pick a vertex at random?

No: if there were, the assumptions would imply that the probability p of picking x is the
same for all x, whence an infinite sum of p would equal 1, an impossibility.

Example 8.2. Could it be that ω is a finite nonempty vertex set a.s.? In other words, is there
an invariant way to pick a finite set of vertices at random?
No: if there were, then we could pick one of the vertices of the finite set at random

(uniformly), thereby obtaining an invariant probability measure on singletons.

Recall that cluster means connected component of the percolation subgraph.

Example 8.3. The number of finite clusters is P-a.s. 0 or ∞. For if not, then we could
condition on the number of finite clusters being finite and positive, then take the set of their
vertices and arrive at an invariant probability measure on 2𝖵 that is concentrated on finite
sets.

Recall that a vertex x is a furcation of a configuration ω if removing x would split the
cluster containing x into at least three infinite clusters.

Example 8.4. The number of furcations is P-a.s. 0 or ∞. For if not, the set of furcations
conditioned to be finite and nonempty has an invariant distribution on 2𝖵.

Example 8.5. P-a.s. each cluster has 0 or∞ furcations.
This does not follow from elementary considerations as the previous examples do but

requires the mass-transport principle. (See Exercise 8.14 for a proof that elementary
considerations do not suffice.) To prove the assertion about furcations, for a vertex x
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and a configuration ω, let N(x, ω) be the number of furcations in the cluster K(x) = K(x, ω).
Define F(x, y;ω) to be 0 if N(x, ω) ∈ {0,∞} and otherwise to be 1/N(x, ω) if y is one of
the furcations of K(x). Then F is diagonally invariant, whence the mass-transport principle
applies to f (x, y) := EF(x, y;ω). Since

∑
y F(x, y;ω) ≤ 1, we have∑

x

f (o, x) ≤ 1 . (8.1)

If any cluster has a finite positive number of furcations, then each of them receives in-
finite mass. More precisely, if o is one of a finite number of furcations of K(o), then∑

x F(x, o;ω) = ∞. Therefore, if with positive probability some cluster has a finite positive
number of furcations, then with positive probability o is one of a finite number of furcations
of K(o), and therefore E

[∑
x F(x, o;ω)] = ∞. That is,∑x f (x, o) = ∞, which contradicts

the mass-transport principle and (8.1).

This is a typical application of the mass-transport principle in that it is qualitative, not
quantitative.

A generalization of Examples 8.2 and 8.5 is the following:

Example 8.6. If there are infinite clusters with positive probability, then there is no invariant
way to pick a finite nonempty subset from one or more infinite clusters, whether deterministi-
cally or with additional randomness. More precisely, there is no invariant measure on pairs
(ω, ϕ) such that ω has infinite clusters with positive probability and with the properties that
ϕ:𝖵→ 2𝖵 is a function such that ϕ(x) ⊆ K(x) is finite for all x, is nonempty for at least one
x with |K(x)| = ∞, and such that whenever x and y lie in the same ω-cluster, ϕ(x) = ϕ(y).
To illustrate a deeper use of the mass-transport principle, we now give another proof

that in the standard coupling of Bernoulli bond percolation on a Cayley graph, G, for all
pc(G) < p1 < p2, a.s. every infinite p2-cluster contains some infinite p1-cluster. (This was
Lemma 7.26. This lemma implies that the two natural definitions of pu are equivalent, (7.7)
and (7.8); the full Theorem 7.21 that we used to deduce (7.8) is not needed.)
Let ω1 ⊆ ω2 be the configurations in the standard coupling of the two Bernoulli(pi)

percolations. Note that (ω1, ω2) is invariant. Write K2(x) for the cluster of x in ω2.
Let η denote the union of all infinite clusters of ω1. Define F

�
x, y; (ω1, ω2)� to be 1 if x

and y belong to the same ω2-cluster and y is the unique vertex in η that is closest in ω2 to x;
otherwise, define F

�
x, y; (ω1, ω2)� := 0. Note that if there is not a unique such y, then x does

not send any mass anywhere. Now F is diagonally invariant and
∑

y F
�
x, y; (ω1, ω2)� ≤ 1.

Suppose that with positive probability there is an infinite cluster of ω2 that is disjoint from
η. Let A(z, y, e1, e2, . . . , en) be the event that K2(z) is infinite and disjoint from η, that y ∈ η,
and that e1, e2, . . . , en form a path of edges from z to y that lies outside K2(z)∪ η. Whenever
there is an infinite cluster of ω2 that is disjoint from η, there must exist two vertices z and
y and some edges e1, e2, . . . , en for which A(z, y, e1, e2, . . . , en) holds. Hence, there exists
z, y, e1, . . . , en such that P

�
A(z, y, e1, . . . , en)� > 0. Let h: [0, 1] → [p1, p2] be affine and

surjective. If B denotes the event obtained by replacing each label U(ek) (k = 1, . . . , n) by
h
�
U(ek)� on each configuration in A(z, y, e1, . . . , en), then P(B) > 0 by Lemma 7.24. On the

event B, we have F
�
x, y; (ω1, ω2)� = 1 for all x ∈ K2(z), whence∑x EF

�
x, y; (ω1, ω2)� = ∞.

This contradicts the mass-transport principle.
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8.2 Beyond Cayley Graphs: Unimodularity

It would be nice if the mass-transport principle, in the form given in Section 8.1, held for all
transitive graphs. But it does not. For example, if G is the grandparent graph of Example 7.1
with T having degree 3, then consider the function f (x, y) that is the indicator of y being the
ξ-grandparent of x. To analyze this, we need the result of the following exercise:

▷ Exercise 8.1.
Show that every automorphism of the grandparent graph G fixes the end ξ and therefore that
f is diagonally invariant under Aut(G).

Although f is diagonally invariant, we have that
∑

x∈𝖵(G) f (o, x) = 1, yet the other way,∑
x∈𝖵(G) f (x, o) = 4. In particular, G is not a Cayley graph.

▷ Exercise 8.2.
Show that the Diestel-Leader graph of Example 7.2 is not a Cayley graph.

Nevertheless, there are many transitive graphs for which the mass-transport principle does
hold, the so-called unimodular graphs, and there is a generalization of the mass-transport
principle that holds for all graphs. The case of unimodular (quasi-transitive) graphs is the
most important case and the one that we will focus on in the rest of this chapter. Even if
we were interested only in Cayley graphs, the use of planar duality for planar Cayley graphs
would force us to consider quasi-transitive graphs, as we will see in Section 8.5.

We will use the following notation throughout the rest of this chapter. Let G be a connected
locally finite graph and Γ be a group of automorphisms of G. Denote the stabilizer of x ∈ G
by S(x) := {γ ∈ Γ ; γx = x}. Since all points in S(x)y :=

�
γy ; γ ∈ S(x)	 are at the same

distance from x and G is connected and locally finite, the set S(x)y is finite for all x and y.

Theorem 8.7. (Mass-Transport Principle) If Γ is a group of automorphisms of a connected
locally finite graph G = (𝖵, 𝖤), f :𝖵 × 𝖵→ [0,∞] is invariant under the diagonal action of
Γ, and u, w ∈ 𝖵, then ∑

z∈Γw

f (u, z) =
∑
y∈Γu

f (y, w) |S(y)w||S(w)y | . (8.2)

This formula is too complicated to remember, but note the form it takes when Γ acts
transitively:

Corollary 8.8. If Γ is a transitive group of automorphisms of a connected locally finite graph
G = (𝖵, 𝖤), f :𝖵 × 𝖵→ [0,∞] is invariant under the diagonal action of Γ, and o ∈ 𝖵, then∑

x∈𝖵
f (o, x) =

∑
x∈𝖵

f (x, o) |S(x)o||S(o)x | . (8.3)

Note how this works to restore “conservation of mass” for the grandparent graph of
Example 7.1: Suppose again that the graph is based on a tree of degree 3. If o is the ξ-
grandparent of x, then |S(x)o| = 1 and |S(o)x | = 4, so that the left-hand side of (8.3) is the sum
of one term equal to 1, whereas the right-hand side is the sum of four terms, each equal to 1/4.
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We say* that Γ is unimodular if |S(x)y | = |S(y)x | for all pairs (x, y) such that y ∈ Γx. We
also say that a graph is unimodular when its full automorphism group is. If Γ is unimodular
and also transitive, then (8.3) simplifies to∑

x∈𝖵
f (o, x) =

∑
x∈𝖵

f (x, o) . (8.4)

Thus, all the applications of the mass-transport principle in Section 8.1, which were qualitative,
apply (with the same proofs) to transitive unimodular graphs. In fact, they apply as well to all
quasi-transitive unimodular graphs, since for such graphs, |S(x)y |/|S(y)x | is bounded over
all pairs (x, y) by the upcoming Theorem 8.10, and we may sum (8.2) over all pairs (u, w)
chosen from a complete set of orbit representatives.
The proof of Theorem 8.7 is not particularly pleasant, but its applications will more than

make up for our trouble. To prove Theorem 8.7, let
Γx,y := {γ ∈ Γ ; γx = y} .

Note that for any γ ∈ Γx1,x2 , we have
Γx1,x2 = γS(x1) = S(x2)γ .

Therefore, for all x1, x2, y1 and any γ ∈ Γx1,x2 ,
|Γx1,x2 y1 | = |γS(x1)y1 | = |S(x1)y1 | , (8.5)

and, writing y2 := γy1, we have
|Γx1,x2 y1 | = |S(x2)γy1 | = |S(x2)y2 | . (8.6)

Proof of Theorem 8.7. Let z ∈ Γw, so that w = γz for some γ ∈ Γz,w. If y := γu, then
f (u, z) = f (γu, γz) = f (y, w). That is, f (u, z) = f (y, w) whenever y ∈ Γz,wu. Therefore,∑

z∈Γw

f (u, z) =
∑
z∈Γw

1
|Γz,wu|

∑
y∈Γz ,wu

f (y, w) =
∑
y∈Γu

f (y, w)
∑

z∈Γy ,uw

1
|Γz,wu| ,

where our interchange of the order of summation in the last step used the calculation�(z, y) ; z ∈ Γw, y ∈ Γz,wu
	

=
�(z, y) ; ∃γ ∈ Γ y = γu, w = γz

	
=
�(z, y) ; ∃γ ∈ Γ u = γ−1y, z = γ−1w

	
=
�(z, y) ; y ∈ Γu, z ∈ Γy,uw

	
.

In particular, for such (z, y), there is some γ ∈ Γz,w such that γu = y. Therefore, using (8.6)
and then (8.5), we may rewrite this as∑

y∈Γu

f (y, w) |Γy,uw|
|S(w)y | =

∑
y∈Γu

f (y, w) |S(y)w||S(w)y | . ◀

▷ Exercise 8.3.
Let Γ be a transitive group of automorphisms of a graph that satisfies (8.4) for all Γ-invariant
f . Show that Γ is unimodular.

* Although we use the term “unimodular” for a group when our definition is in terms of its action on a graph, we
will see that it really depends only on the group, once we are given a natural topology on the group that comes from
its action on the graph. See the paragraph after (8.10).
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▷ Exercise 8.4.
Show that if Γ is a transitive unimodular group of automorphisms and Γ′ is a larger group of
automorphisms of the same graph, then Γ′ is also transitive and unimodular.

By Exercise 8.3 and the mass-transport principle for countable groups, every Cayley graph
is unimodular. How do we find other unimodular graphs? Call a group Γ of automorphisms
discrete if all stabilizers are finite. For example, when a group acts on its Cayley graph, the
stabilizers are singletons. We now show that all discrete groups are unimodular. Recall that
[Γ : Γ′] means the index of a subgroup Γ′ in a group Γ, that is, the number of cosets of Γ′ in Γ.

▷ Exercise 8.5.
Show that for all x and y, we have |S(x)y | =

�
S(x) : S(x) ∩ S(y)�.

Proposition 8.9. If Γ is a discrete group of automorphisms, then Γ is unimodular.

Proof. Suppose that y = γx. Then S(x) and S(y) are conjugate subgroups since γ1 7→ γγ1γ
−1

is a bijection of S(x) to S(y). Thus, |S(x)| = |S(y)|, whence

|S(x)y |
|S(y)x | =

�
S(x) : S(x) ∩ S(y)��
S(y) : S(x) ∩ S(y)� =

|S(x)|/|S(x) ∩ S(y)|
|S(y)|/|S(x) ∩ S(y)| =

|S(x)|
|S(y)| = 1 . ◀

Sometimes we can make additional use of the mass-transport principle by employing the
following fact.

Theorem 8.10. If Γ is a group of automorphisms of any connected locally finite graph G,
then there are nonzero numbers µx (x ∈ 𝖵) that are unique up to a constant multiple such
that for all x and y,

µx
µy

=
|S(x)y |
|S(y)x | . (8.7)

Proof. Recall* that subgroup index is multiplicative: if Γ3 is a subgroup of Γ2, which in turn
is a subgroup of Γ1, then

[Γ1 : Γ2][Γ2 : Γ3] = [Γ1 : Γ3] . (8.8)
Applying (8.8) to Γ3 := S(x) ∩ S(y) ∩ S(z), Γ2 := S(x) ∩ S(y), and Γ1 equal to either S(x) or
S(y), we get �

S(x) : S(x) ∩ S(y)��
S(y) : S(x) ∩ S(y)� =

�
S(x) : S(x) ∩ S(y) ∩ S(z)��
S(y) : S(x) ∩ S(y) ∩ S(z)� .

There are three forms of this equation arising from the three cyclic permutations of the
ordered triple (x, y, z). Combining them with Exercise 8.5, we obtain the “cocycle” identity

|S(x)y |
|S(y)x |

|S(y)z |
|S(z)y | =

|S(x)z |
|S(z)x | (8.9)

* Here is a proof: if A ⊂ Γ1 is a set of coset representatives of Γ1/Γ2, then the map (a, Γ2/Γ3) 7→ aΓ2/Γ3 is a
bijection of A× Γ2/Γ3 → Γ1/Γ3.
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for all x, y, z.
Thus, if we fix o ∈ 𝖵, choose µo ∈ � \ {0}, and define µx := µo |S(x)o|/|S(o)x |, then for

all x, y, we get
µx
µy

=
µo |S(x)o|/|S(o)x |
µo |S(y)o|/|S(o)y | =

|S(x)y |
|S(y)x |

by (8.9). This shows the claimed existence of the numbers µx . On the other hand, if numbers
µ′x (x ∈ 𝖵) also satisfy (8.7), then

µx
µ′x

=
µo |S(x)o|/|S(o)x |
µ′o |S(x)o|/|S(o)x | =

µo
µ′o

for all x, so µ′x = Cµx for all x, where C := µ′o/µo. ◀
Note that Γ is unimodular iff µy = µx whenever y ∈ Γx.
The following exercises makes it easier to check the definition of unimodularity.

▷ Exercise 8.6.
Show that if Γ acts transitively, then Γ is unimodular iff |S(x)y | = |S(y)x | for all edges [x, y].

▷ Exercise 8.7.
Show that if for all edges [x, y], there is some γ ∈ Γ such that γx = y and γy = x, then Γ is
unimodular.

Using the numbers µx , we may write (8.2) as∑
z∈Γw

f (u, z)µw =
∑
y∈Γu

f (y, w)µy . (8.10)

We now state the relevance of Haar measure for the interested reader. Consider the closure
Γ̄ of Γ if Γ is not already closed, where the topology is defined in Exercise 8.20. This is
a locally compact topological group. As such, it has both a left-invariant Borel measure
and a right-invariant Borel measure, each one being finite on compact sets, called left Haar
and right Haar measures. On countable groups, counting measure serves as Haar measure.
See Exercise 8.22 for a simple construction of Haar measures on automorphism groups. If
there is a left Haar measure that is also right invariant, then the group is classically called
unimodular. This agrees with our definition in the sense that Γ is unimodular in our sense iff
Γ̄ is unimodular in the classical sense. It is not hard to prove this by imitating the proof of
Proposition 8.9 to show that µx is the left-invariant Haar measure of S(x) in Γ̄. Since discrete
groups are countable, this also makes clear why discrete groups are unimodular. One can also
use Haar measure to give a simple proof of Theorem 8.7; see Section 8.9. In the amenable
quasi-transitive case, Exercise 8.31 gives another interpretation of the weights µx .
Given that there is such a simple form (8.4) of the mass-transport principle for transitive

unimodular graphs, we might hope for almost as simple a form that applies to quasi-transitive
unimodular graphs. Our hopes will be met by (8.12), which is explicitly written out in our
next corollary:
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Corollary 8.11. Let Γ be a quasi-transitive group of automorphisms of a connected locally
finite graph, G. Choose a complete set {o1, . . . , oL} of representatives in 𝖵 of the orbits of
Γ. Let µi be the weight of oi as given by Theorem 8.10. If Γ is unimodular, then whenever
f :𝖵 × 𝖵→ [0,∞] is invariant under the diagonal action of Γ, we have

L∑
i=1

µ−1
i

∑
z∈𝖵

f (oi, z) =
L∑
j=1

µ−1
j

∑
y∈𝖵

f (y, oj) . (8.11)

Proof. Since Γ is unimodular, µy = µi for y ∈ Γoi . Thus, for each i and j, (8.10) gives∑
z∈Γo j

f (oi, z)µ j =
∑
y∈Γoi

f (y, oj)µi ,

in other words,
µ−1
i

∑
z∈Γo j

f (oi, z) = µ−1
j

∑
y∈Γoi

f (y, oj) .

Adding these equations over all i and j gives the desired result. ◀
Because of this result, in the quasi-transitive unimodular case, we will always assume that

the weights are chosen so that
∑

i µ
−1
i = 1. It then makes sense to think of oi being picked

randomly with probability µ−1
i . If we denote such a random root by ô, then (8.11) assumes a

very simple form:

E
[∑

x

f (ô, x)
]

= E
[∑

x

f (x, ô)
]
. (8.12)

This will be the usual way we apply the mass-transport principle on quasi-transitive unimodu-
lar graphs. We will call such a random root ô normalized. For example, the inverse weights
of the two types of vertices in the graph of Figure 8.1 are 1/5 and 4/5.

Figure 8.1. A quasi-transitive graph, 1/5 of whose vertices are black, and 4/5 are blue.
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To make it even more useful, a converse can be added to Corollary 8.11:

Proposition 8.12. Let Γ be a quasi-transitive group of automorphisms of a connected locally
finite graph, G. Choose a complete set {o1, . . . , oL} of representatives in 𝖵 of the orbits of
Γ. Let µi be the weight of oi as given by Theorem 8.10. If there exist numbers 𝜈x ≥ 0 for
x ∈ 𝖵(G) such that 0 <

∑
x 𝜈x < ∞ and∑
x∈𝖵

𝜈x
∑
z∈𝖵

f (x, z) =
∑
x∈𝖵

𝜈x
∑
y∈𝖵

f (y, x) (8.13)

whenever f :𝖵×𝖵→ [0,∞] is invariant under the diagonal action of Γ, then Γ is unimodular
and

µ−1
i =

∑
x∈Γoi

𝜈x (8.14)

for 1 ≤ i ≤ L.

Note that (8.11) is the special case of (8.13) where 𝜈x = µ−1
i if x = oi , and 𝜈x = 0 otherwise.

Proof. Assume that 𝜈x are as stated. Define

ai :=
∑
x∈Γoi

𝜈x .

We first show that ai > 0. Let each vertex x send mass 1 to each vertex in Γoi that is nearest
to x. Since the left-hand side of (8.13) is positive, so is the right-hand side. Since only
vertices in Γoi receive mass, it follows that ai > 0, as desired.

To see that Γ is unimodular, consider any j, k and any u ∈ Γoj and v ∈ Γok . Let
f (x, y) := 1Γu,x v(y). It is straightforward to check that f is diagonally invariant under Γ.
Note that

|S(x)z | 1Γx(y) = |Γx,y z |
for all x, y, z ∈ 𝖵(G) and that

z ∈ Γu,xv ⇐⇒ x ∈ Γv,zu . (8.15)
Therefore, we have

|S(u)v |a j =
∑
y

𝜈y |Γu,yv | =
∑
y

𝜈y
∑
x

1Γu,yv(x)

=
∑
y

𝜈y
∑
x

f (y, x) =
∑
z

𝜈z
∑
x

f (x, z) [by (8.13)]

=
∑
z

𝜈z
∑
x

1Γu,x v(z) =
∑
z

𝜈z
∑
x

1Γv,zu(x) [by (8.15)]

=
∑
z

𝜈z |Γv,zu| = |S(v)u|ak .

In other words,
|S(u)v | a j = |S(v)u| ak . (8.16)

If we take j = k, then we see that Γ is unimodular. In general, comparison of (8.16) with
(8.7) shows (8.14). ◀
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Remark 8.13. The proof shows that unimodularity and (8.14) follow from verifying (8.13)
only for those f taking values 0 and 1 and for which f (x, y) = 0 whenever distG(x, y) > M ,
where M is a constant that depends on f .

▷ Exercise 8.8.
Extend Exercise 8.4 to the quasi-transitive case: show that if Γ is a quasi-transitive unimodular
group of automorphisms and Γ′ is a larger group of automorphisms of the same graph, then
Γ′ is also quasi-transitive and unimodular.

It is nice to know that when one is in the amenable setting, unimodularity is automatic, as
shown by Soardi and Woess (1990):

Proposition 8.14. (Amenability Implies Unimodularity) Any transitive group Γ of auto-
morphisms of an amenable graph G is unimodular.

Proof. The idea is the same as that which prevents Ponzi schemes from working: mass must
be conserved approximately on Følner sets, and hence exactly in the whole graph in the sense
of the mass-transport principle.
Let ⟨Fn⟩ be a sequence of finite sets of vertices in G such that

�
Fn

�
/|Fn | → 1 as n → ∞,

where Fn := Fn ∪ ∂𝖵Fn is the union of Fn with its exterior vertex boundary.
Fix neighboring vertices x ∼ y. We count the number of pairs (z, w) such that z ∈ Fn and

w ∈ Γx,z y (or equivalently, z ∈ Γy,wx) in two ways: by summing over z first or over w first.
In view of (8.5), this gives

|Fn | |S(x)y | =
∑
z∈Fn

∑
w∈Γx ,zy

1 ≤
∑
w∈Fn

∑
z∈Γy ,wx

1 = |Fn | |S(y)x | .

Dividing both sides by Fn and taking a limit, we get |S(x)y | ≤ |S(y)x |. By symmetry and
Exercise 8.6, we are done. ◀

Likewise, amenable quasi-transitive graphs are unimodular: see Exercise 8.30.

8.3 Infinite Clusters in Invariant Percolation

What happens in Bernoulli percolation at pc itself, that is, is there an infinite cluster a.s.?
Extending the classical conjecture for Euclidean lattices, Benjamini and Schramm (1996b)
made the following conjecture:

Conjecture 8.15. (No Infinite Clusters at Criticality) If G is any quasi-transitive graph
with pc(G) < 1, then θ

�
pc(G)� = 0.

In the next section, we will establish this conjecture under the additional hypotheses that
G is nonamenable and unimodular. This will utilize in a crucial way properties of infinite
clusters in invariant percolation processes beyond Bernoulli percolation. This is the topic
of the present section. What is the advantage conferred by nonamenability that allows a
resolution of this conjecture in that case but not in the amenable case? In essence, it is that
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all finite sets have a comparatively large boundary; since clusters are chosen at random in
percolation, this is an advantage compared to knowing, in the amenable case, that certain
large sets have comparatively small boundary. This may appear to be a tautology at the
moment, but our next theorem should begin to clarify its meaning.
We begin with a simple but powerful result on a threshold for having infinite clusters.

Write degK (x) for the degree of x as a vertex in a subgraph K . As in the preceding chapter,
we will use Φ𝖤(G) to mean the expansion constant Φ𝖤(G, 1, 1).
Theorem 8.16. (Thresholds for Finite Clusters) Let G be a transitive unimodular graph
of degree dG and P be an automorphism-invariant probability measure on 2𝖤. If P-a.s. all
clusters are finite, then

E[degω o] ≤ dG − Φ𝖤(G) .
This was first proved for regular trees by Häggström (1997) and then extended by BLPS

(1999b). Häggström (1997) showed that the threshold is sharp for regular trees. Of course,
it is useless when G is amenable. For Bernoulli percolation, the bound it gives on pc is
worse than Theorem 6.46. But it is extremely useful for a wide variety of other percolation
processes, including those that we will use to study Bernoulli percolation.

We could have stated the theorem more generally with a unimodular group Γ ⊆ Aut(G)
acting transitively on G and P being assumed invariant under Γ. In fact, all such results
that we present have similar generalizations, but for simplicity of language, we will refer
just to “invariant percolation” on a transitive or quasi-transitive graph.

To prove Theorem 8.16, define, for finite subgraphs K =
�
𝖵(K), 𝖤(K)� ⊂ G,

αK :=
1

|𝖵(K)|
∑

x∈𝖵(K)
degK (x) ,

the average (internal) degree of K . Then set*
α(G) := sup {αK ; K ⊂ G is finite} .

If G is a regular graph of degree dG , then
α(G) + Φ𝖤(G) = dG . (8.17)

This is because we may restrict attention to induced subgraphs, and for induced subgraphs,∑
x∈𝖵(K)

degK (x) + |∂𝖤(G)𝖵(K)| =
∑

x∈𝖵(K)
degG(x) = dG |𝖵(K)| .

Dividing by |𝖵(K)| gives (8.17).
In view of (8.17), we may write the conclusion of Theorem 8.16 as

E[degω o] ≤ α(G) . (8.18)
This inequality is actually rather intuitive: it says that random finite clusters have average
degree no more than the supremum average degree of arbitrary finite subgraphs. Of course,
the first sense of “average” is “expectation,” whereas the second is “arithmetic mean.” This
is reminiscent of the ergodic theorem, which says that a spatial average (expectation) is the
limit of time averages (arithmetic means).

* We remark that β(G) = 2/α(G), with β(G) defined as in Section 6.5, except that β was defined with a liminf,
rather than an infimum.
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Proof of Theorem 8.16. We use the mass-transport principle (8.4). Start with mass degω x at
each vertex x and redistribute it equally among the vertices in its cluster K(x) (including x
itself). After transport, the mass at x is αK(x). This is an invariant transport, so that if f (x, y)
denotes the expected mass taken from x and transported to y, then we have

E[degω o] =
∑
x

f (o, x) =
∑
x

f (x, o) = E[αK(o)] .

By definition, αK(o) ≤ α(G), whence (8.18) follows. ◀
One version of Theorem 8.16 for quasi-transitive graphs is as follows.

Corollary 8.17. Let G be a quasi-transitive nonamenable unimodular graph. There is some
ϵ > 0 such that if P is an automorphism-invariant probability measure on 2𝖤 with all clusters
finite P-a.s., then for some x ∈ 𝖵,

E[degω x] ≤ degG x − ϵ .

Proof. Let G′ be a transitive representation of G. Then P induces an invariant percolation P′
on G′ by letting an edge [x, y] in G′ be open iff x and y are joined by a path of open edges in
G of length at most 2r + 1 (where r is as in the definition of transitive representation). If P
gives a high expected degree to all x, then so does P′, whence the conclusion follows easily
from Theorem 8.16. ◀
Some variations on Theorem 8.16 are contained in the following exercises as well as in

others at the end of the chapter.

▷ Exercise 8.9.
Show that for any invariant percolation P on subgraphs of a transitive unimodular graph
that has only finite clusters a.s., E[degω o | o ∈ ω] ≤ α(G). More generally, let G be
a quasi-transitive unimodular graph with a normalized random root ô. Show that if P
is an invariant percolation on subgraphs of G such that all clusters are finite a.s., then
E[degω ô | ô ∈ ω] ≤ α(G).

▷ Exercise 8.10.
Let P be an invariant percolation on subgraphs of a transitive unimodular graph such that
all clusters are finite trees a.s. Show that E[degω o | o ∈ ω] < 2. More generally, let G
be a quasi-transitive unimodular graph with a normalized random root ô. Show that if P
is an invariant percolation on subgraphs of G such that all clusters are finite trees a.s., then
E[degω ô | ô ∈ ω] < 2.

We now take a look at forest percolations with infinite trees. Trees have proved their worth
to us before in studying Cayley graphs, and they will continue to do so.

Proposition 8.18. Let G be a quasi-transitive unimodular graph with a normalized random
root ô. Let F be the configuration of an invariant percolation on G, independent of ô, such
that F is a forest, all of whose trees are infinite a.s. The following dichotomy holds:

(i) if each tree in F has one or two ends a.s., then E
�
degF ô

�
ô ∈ F

�
= 2;

(ii) if some tree in F has ≥ 3 ends with positive probability, then E
�
degF ô

�
ô ∈ F

�
> 2.
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Proof. We use a mass transport that is subtler than our earlier ones. To set it up, let ξ(x, y;F)
be the indicator that there is a ray in F starting at x whose first vertex after x is y. Let

F(x, y;F) :=
{ 2ξ(x, y;F) if ξ(y, x;F) = 0
ξ(x, y;F) otherwise,

and f (x, y) := E
�
F(x, y;F)�. Now

∑
x

�
F(o, x;F) + F(x, o;F)� = 2

�
degF o

�
1[o∈F], so that∑

x

�
f (o, x) + f (x, o)� = 2 E[degF o ; o ∈ F]. By (8.12), we obtain that

E
�
degF ô ; ô ∈ F

�
=

1
2

E
[∑

x

�
f (ô, x) + f (x, ô)�] = E

[∑
x

f (ô, x)
]
. (8.19)

Now in case (i),
∑

x F(o, x;F) = 2 · 1[o∈F], whence by (8.19), we have E
�
degF ô ; ô ∈ F

�
=

2 P[ô ∈ F]. This gives the desired result.
On the other hand, in case (ii),

∑
x F(o, x;F) ≥ 2 for all o ∈ F and

∑
x F(o, x;F) ≥ 3 for

all furcations o ∈ F; note that ô is a furcation with positive probability, since F has trees with
at least three ends. Therefore, (8.19) yields E[degF ô ; ô ∈ F] > 2 P[ô ∈ F]. ◀
As a consequence of this, the number of ends is related to the critical value for Bernoulli

percolation on trees that arise in invariant percolation:

Theorem 8.19. Let G be a quasi-transitive unimodular graph and ô a normalized random
root. Let F be the configuration of an invariant percolation on G, independent of ô, such that
F is a forest a.s. Then the following are equivalent:

(i) some component of F has at least three ends with positive probability;
(ii) some component of F has pc < 1 with positive probability;

(iii) E
�
degF ô

� |K(ô)| = ∞
�
> 2.

Of course, by Theorem 5.15, (ii) is equivalent to saying that some component of F has
branching number > 1 with positive probability.

Proof. Let F′ be the mixed (site and bond) percolation obtained from F by retaining only
those vertices and edges that belong to an infinite cluster. Then we may rewrite (iii) as
E[degF′ ô | ô ∈ F′] > 2.

The implication (i) implies (iii) is immediate from Proposition 8.18.
Now assume (iii). Let p be sufficiently close to 1 that independent Bernoulli(p) bond

percolation on F′ yields a configuration F′′ with E[degF′′ ô | ô ∈ F′′] > 2. (Note that
𝖵(F′′) = 𝖵(F′), so that ô ∈ F′′ iff ô ∈ F′.) According to Exercise 8.10, we have that F′′
contains infinite clusters with positive probability, whence (ii) follows.

Finally, (ii) implies (i) trivially. ◀

Corollary 8.20. (BLPS, 1999b) Let G be a quasi-transitive unimodular graph. Let F be
the configuration of an invariant percolation on G such that F is a forest a.s. Then almost
surely every component that has at least three ends has pc < 1.

Proof. If not, condition on having some tree with at least three ends and pc = 1. Then the
collection of all such components gives an invariant percolation that contradicts Theorem 8.19.

◀
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8.4 Critical Percolation on Nonamenable Transitive Unimodular Graphs

Here we establish Conjecture 8.15 for nonamenable quasi-transitive unimodular graphs.
This was shown by BLPS (1999b), with a more direct proof given in Benjamini, Lyons, Peres,
and Schramm (1999a). The proof here is similar but partly new.

Theorem 8.21. (No Infinite Clusters at Criticality) If G is a nonamenable quasi-transitive
unimodular graph, then θ

�
pc(G)� = 0.

We remark that this also implies that pc(G) < 1; see also Exercise 8.41.

Proof. The proof for site percolation is similar to that for bond, so we treat only bond
percolation.
In light of Theorem 7.5, we must rule out the possibilities that the number of infinite

clusters at criticality is 1 or ∞. We do these separately and use the standard coupling of
percolation arising from i.i.d. uniform [0, 1]-valued random variables U(e) on the edges. As
usual, let ωp consist of the edges e with U(e) < p.
First suppose that there is a unique infinite cluster in ωpc . Let ω′ be that infinite cluster.

The idea is that ω′ is fragile in the sense that pc(ω′) = 1; we extend this to break up all of
G into finite clusters with high marginal, contradicting Corollary 8.17. To do this, first pick
independently for each x ∈ 𝖵(G) uniformly at random one of its nearest vertices W (x) ∈ ω′,
where distance is in G. For ϵ > 0, let ξϵ consist of those edges [x, y] ∈ 𝖤 such that
W (x) and W (y) belong to the same cluster of ωpc−ϵ . Since all clusters of ωpc−ϵ are finite
a.s., the mass-transport principle gives that all clusters of ξϵ are also finite a.s. (for each
x, transport mass 1 from x to W (x)). But ξϵ ⊆ ξϵ ′ for ϵ > ϵ ′ and

∪
ϵ ξϵ = 𝖤 a.s., whence

limϵ↓0 P
�[x, y] ∈ ξϵ � = 1. Thus, Corollary 8.17 implies that G is amenable.

Now suppose that there are infinitely many infinite clusters in ωpc a.s. By insertion
tolerance, as in the proof of Theorem 7.9, some infinite cluster has at least three ends a.s. By
Lemma 7.7, there is a random forest F ⊆ ωpc such that the distribution of the pair (F, ωpc ) is
invariant and such that with positive probability, there is a component of F that has at least
three ends. Since pc(ωpc(G)) = 1 a.s. by Exercise 5.7 and F ⊆ ωpc , we have pc(F) = 1 a.s.
This contradicts Theorem 8.19. ◀

The method of proof of the first part of Theorem 8.21 shows the following extension:

Proposition 8.22. (BLPS, 1999b) If P is an invariant percolation on a nonamenable
quasi-transitive unimodular graph that has a unique infinite cluster ω′ a.s., then pc(ω′) < 1
P-a.s. ◀
Sometimes the following generalization of Theorem 8.21 is useful. Given a family of

probability measures µp (0 ≤ p ≤ 1) on, say, 2𝖤, we say that a smooth monotone coupling
of the family, if it exists, is a random field Z:𝖤 → [0, 1] such that for each p, the law of
{e ; Z(e) < p} is µp. (Here, a random field is just a random variable whose values are
functions from 𝖤 to [0, 1]. Equivalently, it is a collection of random variables Z(e) for e ∈ 𝖤.)
Also, let us call a probability measure P weakly insertion tolerant if there is a function
f :𝖤 × 2𝖤 → 2𝖤 such that

(i) for all e and all ω, we have ω ∪ {e} ⊆ f (e, ω);
(ii) for all e and all ω, the difference f (e, ω) \ [ω ∪ {e}] is finite; and
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(iii) for all e and each event A of positive probability, the image of A under f (e, •) is an
event of positive probability.

Of course, an insertion tolerant probability measure satisfies this definition with f (e, ω) :=
ω ∪ {e}. Weak deletion tolerance has a similar definition.

Theorem 8.23. Let G be a nonamenable quasi-transitive unimodular graph. Let p 7→ µp be
a family of ergodic weakly insertion-tolerant probability measures on 2𝖤. Suppose that the
family has a smooth monotone coupling by a random field Z whose law is invariant under
automorphisms. Let A be the event that all clusters are finite. If

pc := sup
�
p ; µp(A ) = 1

	
> 0 ,

then µpc (A ) = 1.

▷ Exercise 8.11.
Prove Theorem 8.23.

8.5 Bernoulli Percolation on Planar Quasi-transitive Graphs

For planar nonamenable Cayley graphs, we can answer all the most basic questions about
percolation. The case of infinitely many ends is easy by what we have already established,
since pc < 1 by Theorem 7.20 and (6.7), pu = 1 by Exercise 7.9, and θ(pc) = 0 by
Theorem 8.21. The case of two ends is trivial, since pc = 1. This section, adapted from
Benjamini and Schramm (2001a), is devoted to the case of one end.

▷ Exercise 8.12.
Show that a plane (properly embedded locally finite) quasi-transitive graph with one end has
no face with an infinite number of sides.

Planarity is used to exploit properties of percolation on the plane dual of the original
graph. However, this dual is not necessarily a Cayley graph; indeed, it is not necessarily
even transitive. For this reason, we will need to go beyond Cayley graphs. In the setting
of Exercise 8.12, the dual of a Cayley graph is always locally finite, quasi-transitive, and
unimodular, as we will see. Also, recall from Exercise 6.32 that if G is nonamenable, then so
is its plane dual, G†. Thus, the natural setting preserved under duality is that of nonamenable
plane quasi-transitive graphs. The main theorem of this section is the following.

Theorem 8.24. (Double Phase Transition) Let G be a nonamenable planar quasi-transitive
graph with one end. Then 0 < pc(G) < pu(G) < 1 and Bernoulli(pu) percolation on G has a
unique infinite cluster a.s.

We need the following fundamental fact whose proof is given in the appendix to this
chapter, Section 8.8.
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Theorem 8.25. (Planar Unimodularity) If G is a planar quasi-transitive graph with one
end, then G is unimodular. Furthermore, there is some plane embedding of G such that G† is
quasi-transitive.

We will assume for the rest of this section that

G is a nonamenable plane quasi-transitive graph with one end,
G is embedded in such a way that G† is quasi-transitive, and
ω is the configuration of an invariant percolation on G.

 (8.20)

When more restrictions are needed, we will be explicit about them. We define the dual
configuration ω× on the plane dual graph G† by

ω×(e†) := 1 − ω(e) . (8.21)

For a set A of edges, we let A† denote the set of edges e† for e ∈ A. Write 𝖭∞ for the number
of infinite clusters of ω and 𝖭×∞ for the number of infinite clusters of ω×. Duality will severely
constrain the possible values of the pair (𝖭∞,𝖭×∞). We begin by showing they cannot both be 0.

Lemma 8.26. If (8.20) holds, then 𝖭∞ + 𝖭×∞ ≥ 1 a.s.

Proof. Suppose that 𝖭∞ + 𝖭×∞ = 0 with positive probability. Then by conditioning on that
event, we may assume that it holds surely. We are going to create a new invariant percolation
from ω that has very high expected degree, whence has infinite clusters, but yet cannot have
infinite clusters, leading to our desired contradiction.

Now our assumptions tell us that for each (open) cluster K of ω, there is a unique infinite
component of G\K , since K is finite and G has only one end. This means that there is a
unique open component of (∂𝖤K)† that “surrounds” K ; this component of (∂𝖤K)† is contained
in some cluster, K ′, of ω×. Since our assumption implies that K ′ is also finite, this same
procedure yields a cluster K ′′ of ω that surrounds K ′ and hence surrounds K . This allows us
to classify clusters by a “rank” as follows.
Let K0 denote the collection of all clusters of ω. Define recursively the sequence of

collections Kj+1 := {K ′′ ; K ∈ Kj} for j ≥ 0. Since no cluster surrounds infinitely many
other clusters, it follows that lim supj Kj = ∅. Thus, we may define

r(K) := max{ j ; K ∈ Kj}

for all clusters K ∈ K0. Given N ≥ 0, let ωN be the set of those edges whose endpoints
belong to (possibly different) clusters K with r(K) ≤ N , in other words, the “interiors” of
the clusters in KN+1. Then ωN ⊆ ωN+1 for all N and

∪
N ωN = 𝖤. Also, ωN is an invariant

percolation for each N . Since degωN
o → degG o, it follows from Corollary 8.17 that for

sufficiently large N , with positive probability ωN has infinite clusters. Yet the interiors of the
clusters of KN+1 are finite and disjoint. This is a contradiction. ◀

Our next result is like the Newman-Schulman Theorem 7.5, with planarity substituting for
insertion tolerance.
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Lemma 8.27. (BLPS, 1999b) If (8.20) holds, then 𝖭∞ ∈ {0, 1,∞} a.s.

Proof. If not, we may condition on 2 ≤ 𝖭∞ < ∞. In this case, we may pick uniformly at
random two distinct infinite clusters of ω, call them K1 and K2. Let τ consist of those edges
[x, y] such that x ∈ K1 and y belongs to the component of G \ K1 that contains K2. Then τ†
is a bi-infinite path in G† and is an invariant percolation on G†. But the fact that pc(τ†) = 1
contradicts Proposition 8.22. ◀

This lemma has the following consequence:

Corollary 8.28. If (8.20) holds, then 𝖭∞ + 𝖭×∞ ∈ {0, 1,∞} a.s.

Proof. The idea is that the infinite clusters of ω together with the infinite clusters of ω×
form infinite clusters of an invariant percolation on another plane graph. Then we may apply
Lemma 8.27.
To create this new graph from G and G†, draw G and G† in the plane in such a way that

every edge e intersects e† in one point, ve, and there are no other intersections of G and G†.
For e ∈ G, write ê for the pair of edges that result from the subdivision of e by ve, and likewise
for ê†. This defines a new graph Ĝ, whose vertices are 𝖵(G) ∪ 𝖵(G†) ∪ �

ve ; e ∈ 𝖤(G)	 and
whose edges are

∪
e∈𝖤(G)

�
ê∪ ê†

�
. The proof of Theorem 8.25 shows that Ĝ is quasi-transitive.

Consider the percolation on Ĝ given by

ω′ :=
∪
e∈ω

ê ∪
∪

e†∈ω×
ê† .

This percolation is invariant under the quasi-transitive action of the unimodular group Aut(G)
on Ĝ. (The proof of Theorem 8.25 shows how Aut(G) acts on Ĝ.) The number of infinite
clusters of ω′ is 𝖭∞ +𝖭×∞. Applying Lemma 8.27 to ω′, we obtain our desired conclusion. ◀
Putting these results together, with just a bit more duality, leads to the following conclusion:

Theorem 8.29. If (8.20) holds, then (𝖭∞,𝖭×∞) ∈
�(1, 0), (0, 1), (1,∞), (∞, 1), (∞,∞)	 a.s.

Proof. Lemma 8.27 gives 𝖭∞,𝖭×∞ ∈ {0, 1,∞}. Lemma 8.26 rules out (𝖭∞,𝖭×∞) = (0, 0).
Corollary 8.28 rules out (𝖭∞,𝖭×∞) = (1, 1). Since every two infinite clusters of ω must be
separated by at least one infinite cluster of ω× (namely, the one containing the path τ in the
proof of Lemma 8.27), the case (𝖭∞,𝖭×∞) = (∞, 0) is impossible. Dual reasoning shows that
(𝖭∞,𝖭×∞) = (0,∞) cannot happen. This leaves the five cases mentioned. ◀
We now come to the place where more assumptions on the percolation are needed. In

particular, insertion and deletion tolerance become crucial. To treat site percolation as well
as bond percolation, we will use the bond percolation ωξ associated to a site percolation ξ as
follows:

ωξ :=
�[x, y] ; x, y ∈ ξ

	
. (8.22)

The ωN used in the proof of Lemma 8.26 are examples of such associated bond percolations.
Note that even when ξ is Bernoulli percolation, ωξ is neither insertion tolerant nor deletion
tolerant. However, ωξ is still weakly insertion tolerant. More generally, it is clear that
whenever ξ is insertion [resp., deletion] tolerant, then ωξ is weakly insertion [resp., deletion]
tolerant. It is also clear that whenever ξ is ergodic, ωξ is ergodic: if A is an invariant set,
then P

�{ωξ ; ωξ ∈ A }� = P
�{ω ; ωξ ∈ A }� ∈ {0, 1}.
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Theorem 8.30. Assume (8.20) and that ω is ergodic, weakly insertion tolerant, and weakly
deletion tolerant. Then a.s.

(𝖭∞,𝖭×∞) ∈
�(1, 0), (0, 1), (∞,∞)	 .

Proof. By Theorem 8.29, it is enough to rule out the cases (1,∞) and (∞, 1). Let K be a finite
connected subgraph of G. If K intersects distinct infinite clusters of ω, then planarity yields
that ω× \ {e† ; e ∈ 𝖤(K)} must have at least two infinite clusters. Define A(K) to be the event
that K intersects distinct infinite clusters of ω. If 𝖭∞ = ∞ with positive probability, then there
is some finite subgraph K such that A(K) has positive probability. Fix some such K and write
its edge set as {e1, . . . , en}. Let f (e, ω) be a function witnessing the weak insertion tolerance.
Define f (e, A) :=

�
f (e, ω) ; ω ∈ A

	
. Let B(K) := f

(
e1, f

�
e2, · · · f (en, A(K)) · · ·�) . Then

B(K) has positive probability and we have 𝖭×∞ > 1 on B(K) by our earlier observation. But
ergodicity implies that (𝖭∞,𝖭×∞) is an a.s. constant. Hence it is (∞,∞). A dual argument
rules out (1,∞); note that weak insertion tolerance of ω† arises from weak deletion tolerance
of ω. ◀
Now we are almost done. Theorem 8.30 allows us to deduce precisely the value of 𝖭∞

from the value of 𝖭×∞ and thus, for bond percolation, critical values on G from those on G†.
Site percolation will require a little extra arguing.

Theorem 8.31. If (8.20) holds, then pbond
c (G†) + pbond

u (G) = 1 and 𝖭∞ = 1 Ppu -a.s.

Proof. Let ωp be Bernoulli(p) bond percolation on G. Then ω×p is Bernoulli(1 − p) bond
percolation on G†. It follows from Theorem 8.30 that

p > pbond
u (G) =⇒ 𝖭∞ = 1 =⇒ 𝖭×∞ = 0 =⇒ 1 − p ≤ pbond

c (G†)
and

p < pbond
u (G) =⇒ 𝖭∞ ̸= 1 =⇒ 𝖭×∞ ̸= 0 =⇒ 1 − p ≥ pbond

c (G†) .
This gives us pbond

c (G†) + pbond
u (G) = 1. Furthermore, according to Theorem 8.21, we have

𝖭×∞ = 0 Pbond,G†

pbond
c (G†)-a.s., whence Theorem 8.30 tells us that 𝖭∞ = 1 Pbond,G

pbond
u (G)-a.s.

For site percolation, we must prove that 𝖭∞ = 1 Psite
pu

-a.s. Let ξp be the standard coupling
of site percolation and ωξp the corresponding bond percolation processes. As earlier, we may
conclude that for p > psite

u (G), we have that �ωξp �× has no infinite clusters a.s., whereas for
p < psite

u (G), we have that �ωξp �× has infinite clusters a.s. Because p 7→
�
ωξ1−p

�× satisfies all
the hypotheses of Theorem 8.23, it follows that for p = psite

u (G), we have that �ωξp �× has no
infinite clusters a.s. Therefore ωξp has a unique infinite cluster a.s., whence so does ξp. ◀
Proof of Theorem 8.24. We already know that pc > 0 from Proposition 7.12. Applying
this to G† and using Theorem 8.31, we obtain that pbond

u < 1. Fix q ∈ [pbond
u , 1). In light

of Proposition 7.14, there is some p < 1 such that for ξ ∼ Psite
p , we have ωξ stochastically

dominates Pbond
q , whence for such p,

�
ωξ

�× has no infinite clusters a.s. and thus ωξ has a
unique infinite cluster a.s. This proves that psite

u < 1 too. (The result that pu < 1 also follows
from Theorem 7.29.) Comparing Theorems 8.21 and 8.31, we see that it is impossible that
pc = pu, whence pc < pu. ◀
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8.6 Properties of Infinite Clusters

In the proof of Theorem 7.6, we saw that if Bernoulli(p) percolation produces infinitely
many infinite clusters a.s., then a.s. at least one of them has a furcation, whence at least
three ends. This was a consequence of insertion and deletion tolerance. Likewise, deletion
tolerance implies that if there is a unique infinite cluster (and p < 1), then that cluster has a
unique end a.s.
As the reader might suspect from Example 8.5, one can derive stronger results from the

mass-transport principle. Indeed, the following properties are true quite generally:

Theorem 8.32. Let P be an invariant weakly insertion-tolerant percolation process on a
nonamenable quasi-transitive unimodular graph G. If there are infinitely many infinite
clusters a.s., then a.s. every infinite cluster has continuum many ends, no isolated end, and is
transient for simple random walk.

Here, we are using a topology on the set of ends of a graph, defined as follows. Let G be a
graph with fixed base point o. Let Bn be the ball of radius n about o. Let 𝖤𝗇𝖽𝗌 be the set of
ends of G. Define a metric on 𝖤𝗇𝖽𝗌 by putting

d(ξ, 𝜁) := inf
{
1/n ; n = 1 or ∀X ∈ ξ ∀Z ∈ 𝜁 ∃ a component C of G \ Bn

|X \ C | + |Z \ C | < ∞
}
.

It is easy to verify that this is a metric; in fact, it is an ultrametric, that is, for any ξ1, ξ2, ξ3 ∈
𝖤𝗇𝖽𝗌, we have d(ξ1, ξ3) ≤ max

�
d(ξ1, ξ2), d(ξ2, ξ3)	. Since G is locally finite, it is easy to

check that 𝖤𝗇𝖽𝗌 is compact in this metric. Finally, it is easy to see that the topology on 𝖤𝗇𝖽𝗌
does not depend on choice of base point. A vertex-neighborhood of ξ ∈ 𝖤𝗇𝖽𝗌 is a set of
vertices that, for some n, contains the component of G \ Bn that has an infinite intersection
with every set in ξ.

The set of isolated points in any compact metric space is countable; the nonisolated points
form a perfect subset (the Cantor-Bendixson theorem), whence, if there are nonisolated points,
they have the cardinality of the continuum (see, for example, Kuratowski (1966)).
In the case of site percolation ξ, by transience of ξ we mean transience of ωξ , the induced

subgraph defined in (8.22).
Now that we have explained the terms in Theorem 8.32, we devote the remainder of this

section to proving it. We begin with the following proposition.

Proposition 8.33. Let P be an invariant percolation process on a nonamenable quasi-
transitive unimodular graph G. Almost surely each infinite cluster that has at least three ends
has no isolated ends.

Proof. The idea is to send unit mass from each vertex in an isolated end to a nearest point not
in that end, so that some vertex receives infinite mass, which contradicts the mass-transport
principle. However, this is too imprecise to make sense. Thus, for each n = 1, 2, . . . , we
create a new invariant percolation An from ω as follows: An is the union of all vertex sets A
such that there is some cluster K of ω with the properties that K ⊃ A, the diameter of A is at
most n in the metric of K , and K \ A has at least three infinite components. Note that if ξ is
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an isolated end of a percolation cluster K , then for each n, some vertex-neighborhood of ξ
in K is disjoint from An. Also observe that if K is a cluster with at least three ends, then K
intersects An for some n.
Fix some n ≥ 1. Consider the mass transport that sends one unit of mass from each vertex

x in a percolation cluster that intersects An and distributes it equally among the vertices in An

that are closest to x in the metric of K(x). In other words, let C(x) be the set of vertices in
K(x) ∩ An that are closest to x in the metric of ω, and set F(x, y;ω) := |C(x)|−1 if y ∈ C(x)
and otherwise F(x, y;ω) := 0. Then F(x, y;ω) is invariant under the diagonal action. If ξ is
an isolated end of an infinite cluster K that intersects An, then there is a finite set of vertices
B that gets all the mass from all the vertices in some vertex-neighborhood of ξ. But the
mass-transport principle tells us that the expected mass transported to a vertex is at most 1.
Hence, a.s. clusters that intersect An do not have isolated ends. Since this holds for all n, we
gather that a.s. infinite clusters with isolated ends do not intersect

∪
n An, whence they have

at most two ends. ◀
Corollary 8.34. Let P be an invariant weakly insertion-tolerant bond percolation process
on a nonamenable quasi-transitive unimodular graph G. If there are infinitely many infinite
clusters a.s., then a.s. every infinite cluster has continuum many ends and no isolated end.

Proof. It suffices to prove that there are no isolated ends of clusters. To prove this in turn,
observe that if some cluster has an isolated end with positive probability, then because of
weak insertion tolerance, with positive probability, some cluster will have at least three ends
with one of them being isolated. Hence Corollary 8.34 follows from Proposition 8.33. ◀

We proved a weak form of the following principle in Lemma 7.7.

Lemma 8.35. (BLPS, 1999b) Let P be an invariant bond percolation process on a non-
amenable quasi-transitive unimodular graph G. If a.s. there is a component of ω with at least
three ends, then (on a larger probability space) there is a random forest F ⊂ ω such that the
distribution of the pair (F, ω) is invariant and such that a.s. for each component K of ω with
at least three ends, there is a component of K ∩F that has infinitely many ends.

Proof. We begin as in the proof of Lemma 7.7. Assign independent uniform [0, 1] random
variables to the edges (independently of ω). Define the free minimal spanning forest F of ω
by taking an edge e ∈ ω to be present in F iff there is no cycle in ω containing e in which e
is assigned the maximum value. As before, we have (a.s.) that F is a forest with each tree
having the same vertex-cardinality as the cluster of ω in which it lies.

Suppose that K(x) has at least three ends with positive probability. Choose any finite tree
T containing x with edge set 𝖤(T) so that with positive probability, T ⊂ K(x) and K(x) \𝖤(T)
has at least three infinite components. Then with positive probability, T ⊂ K(x), K(x) \ 𝖤(T)
has at least three infinite components, all edges in T are assigned values less than 1/2, and all
edges in ∂𝖤T are assigned values greater than 1/2. On this event, F contains T and T is part
of a spanning tree in F with at least three ends.
To convert this event of positive probability to an event of probability 1, let rx = r(x, ω) be

the least cardinality r of a tree T in G such that K(x) \T has at least three infinite components,
if such an r exists. If not, set r(x, ω) := ∞. Note that r(x, ω) < ∞ iff K(x) has at least
three ends. By Example 8.6, if rx is finite, then there are a.s. infinitely many such trees T in
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K(x). Therefore, given that K(x) has at least three ends, there are a.s. infinitely many trees
T ⊂ K(x) of size rx at pairwise distance at least 2 from each other such that K(x) \ T has
at least three infinite components. For such T , the events that all edges in T are assigned
values less than 1/2 and all edges in ∂𝖤T are assigned values greater than 1/2 are independent
and have probability bounded below, whence an infinite number of these events occur a.s.
Therefore, there is a component of K(x) ∩ F that has at least three ends a.s., whence, by
Proposition 8.33, has infinitely many ends a.s. ◀

Proposition 8.36. Let P be an invariant weakly insertion-tolerant percolation process on
a nonamenable quasi-transitive unimodular graph G. If there are infinitely many infinite
clusters a.s., then a.s. each infinite cluster is transient.

Proof. It suffices to consider bond percolation. By Corollary 8.34, every infinite cluster of ω
has infinitely many ends. Consequently, there is an invariant random forest F ⊂ ω such that
a.s. each infinite cluster K of ω contains a tree ofF with infinitely many ends by Lemma 8.35.
By Corollary 8.20, we know that any such tree has pc < 1. Since it has branching number
> 1, it follows that such a tree is transient by Theorem 3.5. The Rayleigh monotonicity law
then implies that K is transient. ◀

Theorem 8.32 now follows from Corollary 8.34 and Proposition 8.36.

8.7 Invariant Percolation on Amenable Graphs

The mass-transport principle is most useful in the nonamenable setting. In this section, we
give two results that show that nonamenability is in fact necessary for some of our previous
work.

We will use Haar measure for the proofs since it would be artificial and somewhat
cumbersome to avoid it. In particular, given vertices x and y, the set of automorphisms that
take x to y is compact in Aut(G), whence it has finite Haar measure. This means that we can
choose one of its elements at random (via normalized Haar measure). See Exercise 8.22 for a
simple construction of left Haar measure on automorphism groups.

▷ Exercise 8.13.
Let G be a transitive unimodular graph and o ∈ 𝖵. For each x ∈ 𝖵, choose a Haar-random
γx ∈ Aut(G) that takes o to x. Show that for every finite set L ⊂ 𝖵, we have

E
�{x ∈ 𝖵 ; o ∈ γxL}� = |L | .

Our first result is for site percolation; for the bond version, see Exercise 8.58.

Theorem 8.37. (Amenability and Finite Percolation) Let G be a quasi-transitive unimod-
ular graph. Then G is amenable iff for all α < 1, there is an invariant site percolation ω on
G with no infinite clusters and such that P[x ∈ ω] > α for all x ∈ 𝖵(G).
Proof. We assume that G is transitive and leave the quasi-transitive case to Exercise 8.59. One
direction follows from the site version of Theorem 8.16 on thresholds, which is Exercise 8.38.



294 Chap. 8: The Mass-Transport Technique and Percolation

Now we prove the converse. Suppose that G is amenable. If G were�d , we could randomly
center a tiling of G by large cubes and remove the boundaries of the cubes. Since we do
not have such a convenient tiling in general, we instead remove the boundaries of randomly
placed copies of a large set with small boundary. In fact, to make sure that the remaining
clusters are finite, we will remove such boundaries for larger and larger sets that are placed
more and more rarely.
Fix o ∈ 𝖵(G). For a finite set F ⊂ 𝖵, consider the following percolation. For each

x ∈ 𝖵, choose a random γx ∈ Aut(G) that takes o to x, and let 𝜁 be a Bernoulli(1/|F |) site
percolation on G. Choose all γx and 𝜁 independently. Remove the vertices∪

x∈𝜁
∂𝖵(γxF) ;

that is, consider the percolation subgraph

ωF := 𝖵 \
∪
x∈𝜁

∂𝖵(γxF) .

Then the distribution of ωF is an invariant percolation on G.
We claim that

P[o /∈ ωF ] ≤ |∂𝖵F |/|F | (8.23)
and

P
� |K(o, ωF )| < ∞� ≥ 1 − 1/e , (8.24)

where K(o, ωF ) denotes the component of o in ωF and e is the base of natural logarithms.
Both of these will be proved by using the following calculation: For any L ⊂ 𝖵, we have

E
�{x ∈ 𝜁 ; o ∈ γxL}� = |L |/|F | . (8.25)

Indeed,

E
�{x ∈ 𝜁 ; o ∈ γxL}� =

∑
x∈𝖵

P[x ∈ 𝜁 , o ∈ γxL] =
∑
x∈𝖵

P[x ∈ 𝜁]P[o ∈ γxL]

=
∑
x∈𝖵

P[o ∈ γxL]/|F | = E
�{x ∈ 𝖵 ; o ∈ γxL}�/|F | = |L |/|F |

by Exercise 8.13. (Recall that G is unimodular by Proposition 8.14.)
To prove (8.23), note that the probability that o /∈ ωF is at most the expected number of

x ∈ 𝜁 such that o ∈ ∂𝖵(γxF). But this expectation is exactly the right-hand side of (8.23) by
(8.25) applied to L := ∂𝖵F. To prove (8.24), use the independence to calculate that

P
� |K(o, ωF )| < ∞� ≥ P[∃x x ∈ 𝜁 , o ∈ γxF] = 1 − P

[
∀x ¬

�
x ∈ 𝜁 , o ∈ γxF

�]
= 1 −

∏
x∈𝖵

�
1 − P[x ∈ 𝜁 , o ∈ γxF]�

≥ 1 − exp
{
−
∑
x∈𝖵

P[x ∈ 𝜁 , o ∈ γxF]
}

= 1 − exp
{
−E

�{x ∈ 𝜁 ; o ∈ γxF}�} = 1 − 1/e
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by (8.25) again, applied to L := F.
Now, since G is amenable, there is a sequence ⟨Fn⟩ of finite sets of vertices such that∑
n |∂𝖵Fn |/|Fn | < 1 − α. For each n, let ωn = ωFn

be the random subgraph from the
percolation just described based on the set Fn. Choose ωn to be independent and consider the
percolation with configuration ω :=

∩
ωn. By (8.23), we have P[o ∈ ω] > α and by (8.24),

we have P
� |K(o, ω)| < ∞� = 1. ◀

We now use Theorem 8.37 to establish a converse to Theorem 6.48 on anchored expansion
constants in percolation. This result is due to Häggström, Schonmann, and Steif (2000),
Theorem 2.4(ii), with a rather indirect proof. Our proof is due to Oded Schramm (personal
communication).

Corollary 8.38. Let G be a quasi-transitive amenable graph and ω be an invariant bond per-
colation on G. Then a.s. every component of ω has anchored expansion constant equal to 0.

Proof. Again, we do the transitive case and leave the quasi-transitive case to the reader. For
simplicity, we use the anchored expansion constant defined using the inner vertex boundary,
where we define the inner vertex boundary of a set K as

∂in
𝖵 K :=

�
x ∈ K ; ∃y /∈ K y ∼ x

	
.

Choose a sequence αn < 1 with
∑

n(1 − αn) < ∞. Choose a sequence of independent
invariant site percolations ωn, also independent of ω, with no infinite component and such
that P[x ∈ ωn] > αn for all x ∈ 𝖵(G). This exists by Theorem 8.37. Let K(x) denote the
component of x in ω and Kn(x) the component of x in ωn. Since ∂int

𝖵(K(o)
�
K(o) ∩ Kn(o)� ⊆

∂in
𝖵 Kn(o) \ ∂in

𝖵 K(o), it suffices to prove that a.s.,

lim
n→∞

|∂in
𝖵 Kn(o) \ ∂in

𝖵 K(o)|
|K(o) ∩ Kn(o)| = 0 .

Now

E
[ |∂in

𝖵 Kn(o) \ ∂in
𝖵 K(o)|

|K(o) ∩ Kn(o)|
]

= P
�
o ∈ ∂in

𝖵 Kn(o) \ ∂in
𝖵 K(o)� ≤ P

�
o ∈ ∂in

𝖵 Kn(o)�
≤ degG(o)P[o /∈ ωn] < degG(o)(1 − αn)

by the mass-transport principle. (For the equality, every point x ∈ ∂in
𝖵 Kn(x) \ ∂in

𝖵 K(x) sends
mass 1 split equally among the vertices of its component Kn(x) ∩ K(x). For the second
inequality, x sends mass 1 to y when x ∼ y, x ∈ ωn, and y /∈ ωn.) Therefore∑

n

E
[ |∂in

𝖵 Kn(o) \ ∂in
𝖵 K(o)|

|K(o) ∩ Kn(o)|
]
< ∞ ,

whence ∑
n

|∂in
𝖵 Kn(o) \ ∂in

𝖵 K(o)|
|K(o) ∩ Kn(o)| < ∞ a.s.,

which gives the result. ◀



296 Chap. 8: The Mass-Transport Technique and Percolation

8.8 Appendix: Unimodularity of Planar Quasi-transitive Graphs

We prove here Theorem 8.25. Our approach is based on some ideas we heard from
O. Schramm. The transitive case is easier to prove, as this proof simplifies to show that the
graph is 3-connected.
We need several lemmas. A graph G = (𝖵, 𝖤) is called k-connected if |𝖵| ≥ k + 1 and

whenever at most k − 1 vertices are removed from G (together with their incident edges),
the resulting graph is connected. For the next lemmas, let Q(x) denote the set of vertices
that lie in finite components of G \ {x}, and let Q(x, y) denote the set of vertices, other than
Q(x) ∪Q(y), that lie in finite components of G \ {x, y}. Note that x /∈ Q(x) and x /∈ Q(x, y).
Lemma 8.39. If G is a quasi-transitive graph, then supx∈𝖵 |Q(x)| < ∞.

Proof. Since x has finite degree, G \ {x} has a finite number of components, whence Q(x)
is finite. If x and y are in the same orbit, then |Q(x)| = |Q(y)|. Since there are only finitely
many orbits, the result follows. ◀
Lemma 8.40. If G is a quasi-transitive graph with one end, then supx,y∈𝖵 |Q(x, y)| < ∞.

Proof. Suppose not. Since there are only a finite number of orbits, there must be some x and
yn such that d(x, yn)→ ∞ and Q(x, yn) ̸= ∅ for all n. Because of Lemma 8.39, for all large
n, we have x /∈ Q(yn), whence for all large n, there are neighbors an, bn of x that cannot be
joined by a path in G \ {x, yn}, but such that an lies in an infinite component of G \ {x, yn}
and bn can be joined to yn using only vertices in Q(x, yn) ∪ {yn}. There is some pair of
neighbors a, b of x for which a = an and b = bn for infinitely many n. But then a and b lie in
distinct infinite components of G \ {x}, contradicting the assumption that G has one end. ◀

We partially order the collection of sets Q(x, y) by inclusion.

Lemma 8.41. Let G be any graph. If Q(x, y) and Q(z, w) are maximal and nonempty, then
either {x, y} = {z, w} or Q(x, y) ∩Q(z, w) = ∅. Also,

{x, y, z, w} ∩ �
Q(x, y) ∪Q(z, w)� = ∅ . (8.26)

Proof. Suppose that z ∈ Q(x, y). Then we cannot have w ∈ Q(x, y), since that would imply
Q(z, w) ⫋ Q(x, y). Now there is a path from z to w using only vertices in Q(z, w) ∪ {z, w}.
Since z ∈ Q(x, y) and w /∈ Q(x, y), this path must include either x or y – say, y. Therefore
y ∈ Q(z, w) ∪ {w}. We cannot have y = w, since that would imply Q(z, w) ⫋ Q(x, y).
Thus y ∈ Q(z, w). Consider any infinite simple path starting from any vertex in the union

Q(x, y) ∪ Q(z, w). We claim it must visit x or w. For if not, then it must visit z or y. If
the last vertex among {z, y} that it visits is z, then it must visit x, since z ∈ Q(x, y), a
contradiction. If the last vertex among {z, y} that it visits is y, then it must visit w, since
y ∈ Q(z, w), a contradiction. This proves our claim, whence Q(x, w) ⫌ Q(x, y) ∪ Q(z, w).
But this contradicts maximality of Q(x, y).

Thus, we have proved that z /∈ Q(x, y). By symmetry, we deduce (8.26).
Now suppose that Q(x, y) ∩ Q(z, w) ̸= ∅. Choose some a ∈ Q(x, y) ∩ Q(z, w). Then

every infinite simple path from a must pass through {x, y} and through {z, w}. Consider an
infinite simple path from a. Without loss of generality, suppose that the first point among
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{x, y, z, w} that it visits is z. Then z ∈ Q(x, y) ∪ {x, y}. By the preceding, z is equal to x or
y – say, x. Now there is also an infinite simple path from a such that the first point among
{x, y, w} is not x. Say it is w. Then w ∈ Q(x, y) ∪ {y}. By the preceding, w = y, and this
proves the lemma. ◀
Every embedding ϕ of a planar graph into the plane induces a cyclic ordering ⦗ϕ(x)⦘ of

the edges incident to any vertex x by looking at the clockwise ordering of these edges after
embedding. Two cyclic orderings are considered the same if they differ only by a cyclic
permutation. Two cyclic orderings are inverses if they can be written in opposite order from
each other.

The following extends a theorem of Whitney (1932):

Lemma 8.42. (Imrich, 1975) If G is a planar 3-connected graph and ϕ and ψ are two
embeddings of G in the plane, then either for all x, we have ⦗ϕ(x)⦘ = ⦗ψ(x)⦘ or for all x, we
have that ⦗ϕ(x)⦘ and ⦗ψ(x)⦘ are inverses.

Proof. Imrich (1975) gives a proof that is valid for graphs that are not necessarily properly
embedded nor locally finite. To simplify the proof, we will assume that the graph is not only
properly embedded and locally finite but also quasi-transitive and has only one end. This is
the only case we will use.
Given any vertices x ̸= y, Menger’s theorem (Exercise 3.16) shows that we can find three

paths joining x and y that are disjoint except at x and y. Comparison of the first edges
e1, e2, e3 and the last edges f1, f2, f3 of these paths shows that the cyclic ordering of ϕ(ei) is
opposite to that of ϕ( f i), and likewise for ψ. Therefore, it suffices to prove that for each x
separately, we have either ⦗ϕ(x)⦘ = ⦗ψ(x)⦘ or ⦗ϕ(x)⦘ and ⦗ψ(x)⦘ are inverses. For this, it
suffices to show that if e1 and e2 are two edges incident to x and ϕ(e1) is adjacent to ϕ(e2) in
the cyclic ordering ⦗ϕ(x)⦘, then ψ(e1) is adjacent to ψ(e2) in the cyclic ordering ⦗ψ(x)⦘.
So let ϕ

�[x, y]� and ϕ�[x, z]� be adjacent in ⦗ϕ(x)⦘. Assume that ψ
�[x, y]� and ψ�[x, z]�

are not adjacent in ⦗ψ(x)⦘. Let C be the cycle such that ϕ(C) is the border of the (unique)
face having sides that include both ϕ

�[x, y]� and ϕ
�[x, z]�. (This exists by Exercise 8.12.)

Now by our assumption, there are two neighbors v and w of x such that the cyclic ordering
⦗ψ(x)⦘ induces the cyclic order ψ(y), ψ(v), ψ(z), ψ(w) on these latter four points. The Jordan
curve theorem tells us that the ψ-image of every path from v to w must intersect ψ(C), in
other words, that every path from v to w must intersect C.
However, if we return to the picture provided by ϕ, then, since there are three paths joining

v to w that are disjoint except at their endpoints, at least two of these paths do not contain x,
and hence at least one, P ′, is mapped by ϕ to a curve that does not intersect ϕ(C). But this
means P ′ does not intersect C, a contradiction. ◀
Lemma 8.43. If G is a planar 3-connected graph, then Aut(G) is discrete.

Proof. Let x be any vertex. Note that the degree of x is at least 3. By Exercise 8.19, it
suffices to show that only the identity fixes x and all its neighbors. Let ϕ be an embedding of
G in the plane, and let γ ∈ Aut(G) fix x and all its neighbors. Then ϕ ◦ γ is an embedding
of G in the plane that induces the same cyclic ordering of the edges of x as does ϕ. By
Lemma 8.42, it follows that ⦗(ϕ ◦ γ)(y)⦘ = ⦗ϕ(y)⦘ for all y. By induction on the distance of
y to x, it is easy to deduce that γ(y) = y for all y, which proves the claim. ◀
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Because of this and the next corollary, every automorphism of a planar 3-connected graph
can be characterized as either orientation preserving or orientation reversing.

Corollary 8.44. If G is a planar 3-connected graph, γ ∈ Aut(G), and ϕ is an embedding of
G in the plane, then either for all x, we have ⦗ϕ(x)⦘ = ⦗ϕ(γx)⦘ or for all x, we have that
⦗ϕ(x)⦘ and ⦗ϕ(γx)⦘ are inverses.

Proof. Define another embedding ψ of G as follows: Let ψ(x) := ϕ(γx) for x ∈ 𝖵(G) and
ψ(e) := ϕ(γe) for e ∈ 𝖤(G). The conclusion follows from Lemma 8.42. ◀

The next corollary implies that every γ ∈ Aut(G) induces an element of Aut(G†).
Corollary 8.45. If G is a plane 3-connected graph and γ ∈ Aut(G), then γ maps every facial
cycle to a facial cycle.

Proof. Let x0, x1, . . . , xn = x0 be the vertices in counterclockwise order of a facial cycle.
Then, for each i ∈ [0, n − 1], the edge [xi, xi+1] is the edge following [xi−1, xi] in the cyclic
order ⦗xi⦘. Consider the cycle C formed by γx0, γx1, . . . , γxn. If γ is orientation preserving,
then these vertices traverse C in counterclockwise order, so for each i ∈ [0, n − 1], the edge
[γxi, γxi+1] is the edge following [γxi−1, γxi] in the cyclic order ⦗γxi⦘. This means that C
is facial. The argument is similar when γ is orientation reversing. ◀

Proof of Theorem 8.25. Fix an embedding of G. If G is 3-connected, then let G′ := G.
Otherwise, let G′ be the graph formed from G by removing all vertices in the union
W :=

∪
x,y∈𝖵

�
Q(x) ∪Q(x, y)� and by adding new edges [x, y] between each pair of vertices

x, y /∈ W for which Q(x, y) is maximal and nonempty. Because of Lemma 8.39 and
Lemma 8.40, the graph G′ is not empty and has one end. Since each new edge may be
placed along the trace of a path of edges in G, Lemma 8.41 guarantees that G′ is planar.
Furthermore, by construction, G′ is 3-connected (and quasi-transitive with only one end).
Lemma 8.43 shows that Aut(G′) is discrete, whence every subgroup of Aut(G′) is unimodular
by Proposition 8.9. Now the restriction to 𝖵(G′) of an automorphism Γ of G induces an
automorphism of G′. Let Γ be the subgroup of Aut(G′) given by such restrictions. Since Γ
acts quasi-transitively, it is unimodular, whence |S(x)y | = |S(y)x | for x ∈ 𝖵(G′) and y ∈ Γx,
where S denotes the stabilizer in Γ. But in addition, for any pair x, y ∈ 𝖵(G′), the set S(x)y is
the same for the stabilizer in Γ as for the stabilizer in Aut(G), and Γx = Aut(G)x. Therefore,
Aut(G) is unimodular by Exercise 8.28.

We claim next that (G′)† is quasi-transitive. Fix one vertex xi from each orbit of Aut(G).
Given any face, let x be one of its vertices. Then, for some i, there is a γ ∈ Aut(G) that maps
x to xi , whence, by Corollary 8.45, maps the face to a face containing x on its boundary.
That is, there is an induced γ′ ∈ Aut

�(G′)†� that maps the face to one of a finite set of faces.
This proves our claim.

Finally, if G is not 3-connected, then temporarily add a vertex to each face of G′ and
connect such a vertex to each of the vertices on the boundary of that face. Call the new
temporary graph G′′. This graph G′′ produces a triangulation of the region spanned by all
the faces. There is a triangulation of either the Euclidean plane or the hyperbolic plane using
geodesic line segments that is isomorphic to G′′; one way to get this is to use circle packing:
see Beardon and Stephenson (1990), He and Schramm (1995), or Babai (1997). Now use
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this new embedding of G′ (and forget G′′). We can extend each automorphism of G′ to an
isometry of the (Euclidean or hyperbolic) plane. By Selberg’s lemma, there is a torsion-free
finite-index normal subgroup Γ of Aut(G′) (see, for example, Corollary 7.6.4 of Ratcliffe
(2006)). Since Γ has finite index in Aut(G′), it also acts quasi-transitively on G′. The quotient
of the plane by Γ is a compact orientable surface inheriting a finite graph H from G′. Now
replace each edge in H by a corresponding Q(x, y) from G and add Q(x) to each vertex in H
that is an image of x ∈ 𝖵(G). We may do this in a way that results in a graph L embedded in
the surface. Finally, we lift L to the plane by taking the universal cover of the surface; this is
an embedding of G. Furthermore, a subgroup of isometries acts quasi-transitively on this
embedding, whence the dual of G is quasi-transitive. ◀
Remark 8.46. If G is transitive and has one end, then the construction of G′ in the proof of
Theorem 8.25 must yield all of G (because if x is omitted, then so is the entire orbit of x).
Thus, G is 3-connected. Additional results on connectivity were proved by Mader (1970) and
Watkins (1970).

The last part of the proof of Theorem 8.25 is not self-contained, which means that our
proofs of several results from Section 8.5 are also not self-contained. In order that Section 8.5
be self-contained, one can avoid that last part by using an induced percolation on the graph
G′ that occurs in the proof of Theorem 8.25 and by appealing more to Theorem 8.23.

8.9 Notes
The proof of uniqueness monotonicity given in Section 8.1 is essentially that of Häggström and Peres

(1999).
The approach we take to unimodularity for automorphism groups of graphs uses the equivalence first

observed by Schlichting (1979) and Trofimov (1985). The graph structure is not important; it suffices
that Γ act on a set in such a way that S(x)y is finite for all x, y in the set. The approach used in BLPS
(1999b) was the classical notion of unimodularity. There, the proof (due to Woess) of Theorem 8.7 was
the following:
Second proof of Theorem 8.7. We may assume that Γ is closed. Let µ denote a left Haar measure on Γ.
We prove (8.2) in the form (8.10) with µx = µ(S(x)). We have∑

z∈Γw

f (u, z)µ(S(w)) =
∑
z∈Γw

f (u, z)µ(Γw,z ) =
∫

Γ
f (u, γw) dµ(γ)

=
∫

Γ
f (γ−1u, w) dµ(γ) =

∑
y∈Γu

f (y, w)µ�{γ ∈ Γ ; γ−1u = y}�
=
∑
y∈Γu

f (y, w)µ(Γy ,u) =
∑
y∈Γu

f (y, w)µ(S(y)) . ◀

The idea behind the preceding proof was to average over random elements from Γ that take a given
vertex u to another given vertex y. The proof in the text of Theorem 8.7 can be seen as analogous to the
one for Cayley graphs in Section 8.1; instead of using the bijection x 7→ x−1, we use the fact that for any
u and w, the map S(u)z 7→ S(w)γ−1u from {S(u)z ; z ∈ Γw} → {S(w)y ; y ∈ Γu} is independent of
the element γ ∈ Γw,z that takes w to z, is well defined, and is a bijection.

Theorem 8.19 is from BLPS (1999b) and Aldous and Lyons (2007). Using a normalized random root
ô for a unimodular quasi-transitive graph G allows us to treat the randomly rooted graph (G, ô) virtually
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the same as a transitive unimodular graph. In fact, this idea holds much more generally: the graph G can
be random as well, not only its root. A probability measure on rooted graphs is called unimodular if it
satisfies the mass-transport principle in the sense of (8.12), appropriately generalized. Such probability
measures have almost all the properties for percolation that we have seen here, as well as those that
we will study in Chapters 10 and 11; see Aldous and Lyons (2007). These measures arise naturally,
not only as clusters of the root in invariant percolation on a fixed graph or as modified Galton-Watson
trees, but also as limits of uniformly rooted finite graphs. The idea that the mass-transport principle
should be defined in this generality is due to Benjamini and Schramm (2001b). Another approach to the
same idea is taken in ergodic theory, where the focus is more on the actual measure space, now given a
measure-preserving graphed equivalence relation; see Example 9.9 of Aldous and Lyons (2007) for the
definitions and how these ideas relate to each other.

A version of the mass-transport principle holds on continuous spaces as well, such as Euclidean
space or hyperbolic space. Namely, let G be a unimodular locally compact topological group and H be
a compact subgroup. For example, G could be the isometry group of a Euclidean or hyperbolic space
and H the stabilizer of a point. (To see that such isometry groups are unimodular, note that every group
generated by involutions is unimodular, since the value of the modular function at an involution has
square equal to 1 and thus must itself be 1. That the isometries of Euclidean space form such a group is
well known and is proved, for example, as Theorem 4.1.2 of Ratcliffe (2006). The corresponding result
for hyperbolic space is also proved in Chapter 4 of Ratcliffe (2006).) If µ denotes Haar measure on G,
then let 𝜈 be the push-forward of µ under the quotient map G → G/H . Up to a constant factor, 𝜈 is the
unique G-invariant Borel measure on the topological homogeneous space G/H that is finite on compact
sets (Nachbin (1965), Theorem 1 and Corollary 4 of Chapter III, Section 4, or Royden (1988), Theorem
14.25; uniqueness does not depend on unimodularity). The following was proved by Benjamini and
Schramm (2001a).

Theorem 8.47. With the notation of the preceding paragraph, let θ be a Borel measure on G/H ×G/H
that is invariant under the diagonal action of G. Then θ(A×G/H) = θ(G/H×A) for all Borel A ⊆ G/H .
If θ(A × G/H) < ∞ for some open A, then there is a constant c such that θ(A × G/H) = c𝜈(A) for all
Borel A ⊆ G/H .

Proof. Since G is unimodular, µ(B) = µ(B−1) for all Borel B ⊆ G and µ{g ∈ G ; x ∈ gA} = 𝜈(A) is
the same for all x ∈ G/H given any fixed Borel A ⊆ G/H . For A,C ⊆ G/H , write θA(C) := θ(C × A).
Fubini’s theorem yields that∫

θ
�(gA) × A

�
dµ(g) =

∫∫
1[x∈gA] dθA(x) dµ(g) = θ(G/H × A)𝜈(A) .

Since θ
�(gA) × A

�
= θ

�
A × (g−1 A)� by diagonal invariance, a similar computation gives

θ(G/H × A)𝜈(A) = θ(A × G/H)𝜈(A) .

When 0 < 𝜈(A) < ∞, this shows that θ(G/H × A) = θ(A × G/H). In general, this last equation holds
also for 𝜈(A) = 0 by writing such A as a decreasing intersection of sets of positive finite measure and
for 𝜈(A) = ∞ by writing such A as an increasing union of sets of positive finite measure. Finally,
A 7→ θ(A × G/H) is a G-invariant measure, whence if it is finite on some open set, it equals 𝜈 up to a
constant factor. ◀

For a simple illustration of Theorem 8.47, consider an invariant (discrete) point process, Ξ, on G/H ,
such as a Poisson process. Since A 7→ E|Ξ∩ A| is an invariant measure on G/H , it is equal to a constant
times 𝜈; that constant is called the density of Ξ. Suppose that we associate, in a measurable equivariant
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way, to each discrete set W in G/H a measurable partition f (W ) of G/H such that the relation w ∈ A
(w ∈ W , A ∈ f (W )) is a bijection of W to f (W ); for example, this could be the associated Voronoi
partition. Then the expected 𝜈-measure of the part associated to o given that o ∈ Ξ is equal to the
reciprocal of the density of Ξ. More precisely, let N(A) be the 𝜈-measure of the parts of G/H associated
to the points of Ξ ∩ A, and let 𝜆 be the density of Ξ. Then

E
�
N(A)�/E|Ξ ∩ A| = 1/𝜆 , (8.27)

whence if A is such that P
� |Ξ∩ A| ≥ 2

�
= o(𝜈(A)) as 𝜈(A)→ 0, then E

�
N(A) � Ξ∩ A ̸= ∅

�
= 1/𝜆+ o(1).

To see this, let P(x) be the part of G/H associated to x (which is empty if x /∈ Ξ), and let θ(A × B) :=
E
∑

x∈Ξ∩A 𝜈
�
P(x) ∩ B

�
. Then θ(A × G/H) = E

�
N(A)� = θ(G/H × A) = 𝜈(A), from which the identity

(8.27) follows.
Exercise 8.10, Proposition 8.18, and Theorem 8.19 are from BLPS (1999b) in the transitive case.
Using Theorem 7.46 and the main result of Timár (2006c), Hutchcroft (2016) extended Theorem 8.21

to all quasi-transitive graphs of exponential growth.
Theorem 8.21 was used by Schramm (published by Kozma (2011)) to show that if ⟨Xn ; n ≥ 0⟩

is simple random walk on a unimodular nonamenable transitive graph G and ω is critical Bernoulli
percolation on G, then the probability that X0 is connected to Xn in ω decays exponentially fast in n. It
is open whether more generally, P[x ↔ y] decays exponentially fast in the distance between x and y for
critical Bernoulli percolation on nonamenable transitive graphs.

Theorem 8.24 was proved in the transitive case by Benjamini and Schramm (2001a). The quasi-
transitive case is new but not essentially different. This result was proved for certain planar Cayley
graphs earlier by Lalley (1998).

Theorem 8.25 was known in the transitive case (Benjamini and Schramm, 2001a), but the quasi-
transitive case is due to R. Lyons and is published here for the first time.

The history of Theorem 8.32 is as follows. Benjamini and Schramm (1996b) conjectured that for
Bernoulli percolation on any quasi-transitive graph, if there are infinitely many infinite clusters, then a.s.
every infinite cluster has continuum many ends. This was proved by Häggström and Peres (1999) for
transitive unimodular graphs and then by Häggström, Peres, and Schonmann (1999) in general. This
last paper also shows that in the standard coupling of Bernoulli percolation, a.s. simultaneously all
infinite clusters in the nonuniqueness regime have continuum many ends. Proposition 8.33, which
implies that each infinite cluster in that more general setting has one, two, or infinitely many ends,
is from BLPS (1999b). Our proof of Theorem 8.32 is from Lyons and Schramm (1999), which also
proved the statement about transience. It is also true that for any invariant insertion-tolerant percolation
process on a nonamenable quasi-transitive unimodular graph with a unique infinite cluster a.s., that
cluster is transient, but this is more difficult; see Benjamini, Lyons, and Schramm (1999) for a proof.
(In the case of Bernoulli percolation, if Conjecture 7.31 were proven, then this would also follow from
Theorem 8.32 and the Rayleigh monotonicity law.) For amenable transient quasi-transitive graphs,
Benjamini, Lyons, and Schramm (1999) conjectured that infinite clusters are transient a.s. for Bernoulli
percolation, following the theorem of Grimmett, Kesten, and Zhang (1993), who established it in �d ,
d ≥ 3. (We gave a proof of part of this result in Section 5.5. Stronger conjectures were stated in
Section 6.9.)

The conclusion of Lemma 8.35, getting an invariant forest whose trees have at least three ends,
is useful in geometric group theory: it is analogous to finding a free subgroup (of rank at least 2)
in a nonamenable group. However, it is better than the latter in that the latter does not always exist.
Such a theorem was proved by Gaboriau and Lyons (2009). An exposition of its use is given by
Houdayer (2012).

The following theorem was proved by Benjamini, Lyons, and Schramm (1999):
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Theorem 8.48. Let G be a nonamenable transitive unimodular graph. Letω be an invariant percolation
on G that has infinite clusters a.s. Then in each of the following cases (on a larger probability space)
there is a percolation ω′ ⊂ ω such that ω′ ̸= ∅, Φ𝖤(ω′) > 0 a.s., and the distribution of the pair (ω′, ω)
is invariant:

(i) ω is Bernoulli percolation;
(ii) ω has a unique infinite cluster a.s.;

(iii) ω has a cluster with at least three ends a.s.;
(iv) E[degω o | o ∈ ω] > α(G) and ω is ergodic.

A slight generalization of Theorem 4.1 and Lemma 4.3 of Benjamini and Schramm (2001a) is the
following:

Theorem 8.49. Let P be an invariant percolation process on a quasi-transitive graph G embedded in
hyperbolic space�d in such a way that the embedding is a rough isometry. Assume that one of the four
conditions in Theorem 8.48 holds. If there are infinite clusters P-a.s., then P-a.s. the set of points z in
the ideal boundary ∂�d for which there is an open path with limit z is dense in ∂�d .

Theorem 8.37 was proved earlier by Ornstein and Weiss (1987) in a more specialized form. Theorem
5.1 of BLPS (1999b) is somewhat more general than our form of it here, Theorem 8.37. The reader
may have noticed that each time we prove a property of infinite clusters of insertion-tolerant invariant
percolation, when there is more than one infinite cluster all of the clusters have that property; it was
never the case that some do and some don’t. Of course, for some properties, this is not true, like
the property that a cluster contains o. Clearly the interesting properties for this purpose are those
that are automorphism-invariant: a class of subgraphs of G is called automorphism-invariant if the
class is preserved by applying any element of Aut(G) to each of its member subgraphs. Then we say
that a probability measure P on subgraphs of G has indistinguishable infinite clusters if, for every
automorphism-invariant property A of subgraphs, P-a.s. either all components satisfy A or they all
do not. The main result of Lyons and Schramm (1999) is that every insertion-tolerant invariant bond
percolation on a quasi-transitive unimodular graph has indistinguishable infinite clusters. The same
proof works for site percolation and for weakly insertion-tolerant percolation. In fact, a somewhat
stronger version of indistinguishability is proved. In the context of the ergodic theory of equivalence
relations mentioned earlier, it turns out that indistinguishability is equivalent to ergodicity of the
equivalence relation given by the infinite clusters; see Gaboriau and Lyons (2009).

Indistinguishability has a number of consequences, as shown by Lyons and Schramm (1999), besides
such obvious ones as equality of asymptotic growth rates of clusters. For example, it can be used to give
an extremely short proof of Lemma 7.26 in the unimodular case. It is used to prove Theorem 7.50(ii)
that long-range order is equivalent to uniqueness for Bernoulli percolation. This is then used to prove
that pu < 1 for Kazhdan groups and lamplighter groups. Other uses of indistinguishability appear in
Benjamini, Lyons, and Schramm (1999). An ingenious use of the mass-transport principle, together
with indistinguishability, was made by Timár (2006b), who proved that two infinite clusters in Bernoulli
percolation on a quasi-transitive unimodular graph can come within distance 1 of each other only
finitely many times a.s. Häggström, Peres, and Schonmann (1999) asked whether this holds for all
quasi-transitive graphs; it is still open in the nonunimodular case.

Indistinguishability does not hold for deletion-tolerant invariant percolation processes, nor for
insertion-tolerant invariant percolation processes on nonunimodular graphs. However, Häggström,
Peres, and Schonmann (1999) show that Bernoulli percolation on all quasi-transitive graphs satisfies a
version of indistinguishability restricted to so-called robust properties.

For additional results and questions concerning percolation on nonunimodular graphs, see Question
3.17 of Lyons and Schramm (1999), Peres, Pete, and Scolnicov (2006), and Timár (2006c).
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8.10 Collected In-Text Exercises

8.1. Let G be the grandparent graph of Example 7.1 with T having degree 3 and f (x, y) be the
indicator that y is the ξ-grandparent of x. Show that every automorphism of G fixes the end ξ and
therefore that f is diagonally invariant under Aut(G).

8.2. Show that the Diestel-Leader graph of Example 7.2 is not a Cayley graph.

8.3. Let Γ be a transitive group of automorphisms of a graph that satisfies (8.4) for all Γ-invariant f .
Show that Γ is unimodular.

8.4. Show that if Γ is a transitive unimodular group of automorphisms and Γ′ is a larger group of
automorphisms of the same graph, then Γ′ is also transitive and unimodular.

8.5. Show that for all x and y, we have |S(x)y | =
�
S(x) : S(x) ∩ S(y)�.

8.6. Show that if Γ acts transitively, then Γ is unimodular iff |S(x)y | = |S(y)x | for all edges [x, y].
8.7. Show that if for all edges [x, y], there is some γ ∈ Γ such that γx = y and γy = x, then Γ is

unimodular.

8.8. Extend Exercise 8.4 to the quasi-transitive case: show that if Γ is a quasi-transitive unimodular
group of automorphisms and Γ′ is a larger group of automorphisms of the same graph, then Γ′ is also
quasi-transitive and unimodular.

8.9. Show that for any invariant percolation P on subgraphs of a transitive unimodular graph that
has only finite clusters a.s., E[degω o | o ∈ ω] ≤ α(G). More generally, let G be a quasi-transitive
unimodular graph with a normalized random root ô. Show that if P is an invariant percolation on
subgraphs of G such that all clusters are finite a.s., then E[degω ô | ô ∈ ω] ≤ α(G).

8.10. Let P be an invariant percolation on subgraphs of a transitive unimodular graph such that all
clusters are finite trees a.s. Show that E[degω o | o ∈ ω] < 2. More generally, let G be a quasi-transitive
unimodular graph with a normalized random root ô. Show that if P is an invariant percolation on
subgraphs of G such that all clusters are finite trees a.s., then E[degω ô | ô ∈ ω] < 2.

8.11. Prove Theorem 8.23.

8.12. Show that a plane (properly embedded locally finite) quasi-transitive graph with one end has
no face with an infinite number of sides.

8.13. Let G be a transitive unimodular graph and o ∈ 𝖵. For each x ∈ 𝖵, choose a Haar-random
γx ∈ Aut(G) that takes o to x. Show that for every finite set L ⊂ 𝖵, we have

E
�{x ∈ 𝖵 ; o ∈ γx L}� = |L | .
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8.11 Additional Exercises

8.14. Prove that the result of Example 8.5 cannot be proved by invariance alone. In other words, give
an example of an invariant percolation on a transitive graph such that the number of furcations in some
cluster is a.s. finite and positive.

8.15. Show that an invariant nonempty percolation on a regular tree that is connected a.s. is the
entire tree a.s.

8.16. Show that there is no automorphism-invariant probability measure on the set of ends of a
regular tree with degree at least 3.

8.17. Let Ξ be a random closed subset of ends of a regular tree of degree at least 3. Show that if the
law of Ξ is automorphism invariant, then a.s. either Ξ is empty or its complement is empty.

8.18. Show that the universal cover of any finite undirected graph is a unimodular quasi-transitive
tree. Give an example of a quasi-transitive tree that is not unimodular.

8.19. Show that if Γ is a group of automorphisms of a connected graph and the intersection of
stabilizers S(x1) ∩ S(x2) ∩ · · · ∩ S(xn) is finite for some x1, x2, . . . , xn , then Γ is discrete.

8.20. Give Aut(G) the weak topology generated by its action on G, in other words, a base of open
sets at γ ∈ Aut(G) consists of the sets {γ′ ∈ Aut(G) ; γ′↾K = γ↾K} for finite K ⊂ 𝖵. Show that this
topology is metrizable, that a subgroup is discrete in this topology iff it is discrete in the sense of
Section 8.2, and that if Γ is a closed countable subgroup of Aut(G), then Γ is discrete.

8.21. Let G be a transitive graph with weights µx as in Theorem 8.10.
(a) Show that if f :𝖵 × 𝖵→ [0,∞] is invariant, then

∑
x∈𝖵

√
µx f (o, x) =

∑
x∈𝖵

√
µx f (x, o) .

(b) Assign conductances √µe− · µe+ to the edges e ∈ 𝖤. Show that the function x 7→ log µx is
harmonic on this network.

8.22. If Γ is a topological group and µ is a Borel measure on Γ, then we write Lγ µ for the measure
F 7→ µ(γ−1F) and Rγ µ for the measure F 7→ µ(Fγ). We call a Borel measure µ that is finite on
compact sets a left Haar measure if Lγ µ = µ for all γ ∈ Γ and a right Haar measure if Rγ µ = µ for
all γ ∈ Γ. Here we show how to construct Haar measures on automorphism groups of graphs.

(a) Let X be a compact metric space. Given ϵ > 0 and A ⊆ X , write Bϵ (A) for the union of the
closed balls of radius ϵ with centers in A. Suppose that Ai (i = 1, 2) are each subsets of X of minimal
cardinality with Bϵ (Ai ) = X . Show that there is a bijection f : A1 → A2 such that dist

�
x, f (x)� ≤ 2ϵ for

all x ∈ A1. Hint: Use Hall’s theorem, Exercise 3.17.
(b) Given a compact metrized group Γ and n ≥ 1, choose An ⊆ Γ of minimal cardinality so that

B1/n(An) = Γ. Define µn :=
∑

x∈An
δ(x)/|An |, where δ(x) is the unit point mass at x. Show that there

is a weak∗-limit point µ of ⟨µn⟩ and that every such limit point is both a left and right Haar probability
measure.

(c) Show that left and right Haar probability measures are unique. Show that left and right Haar
probability measures are equal on every compact group. Hint: Use Fubini’s theorem.

(d) Let G be a graph and Γ be a closed subgroup of Aut(G). Fix o ∈ 𝖵(G). Choose a maximal set
H ⊆ Γ so that γ1o ̸= γ2o for γ1 ̸= γ2 ∈ H . Write µ for the Haar probability measure on the stabilizer
S(o) in Γ. Show that 𝜈 :=

∑
γ∈H Lγ µ is a left Haar measure on Γ.
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8.23. A perfect matching of a graph G is a subset M of its edges such that each vertex of G belongs
to exactly one edge in M. A graph is called bipartite if its vertex set can be partitioned into two
parts, A and B, such that all edges have one endpoint in A and one in B. A bipartite graph is called
(a, b)-biregular if the degrees in one part are a while the degrees in the other part are b. Show that if a
biregular bipartite quasi-transitive unimodular graph (for example, a biregular tree) has an invariant
percolation that is a perfect matching a.s., then the graph is regular.

8.24. Let G be a quasi-transitive unimodular graph and ω ⊆ F ⊆ G be random with the law of
(ω,F) invariant under Aut(G). Show that if a.s. F is a forest all of whose trees are infinite and ω ∩ T is
connected for each tree T of F, then a.s. for each tree T of F, we have either ω ∩ T = ∅ or ω ∩ T = T .

8.25. Let G be a quasi-transitive unimodular graph and (Ξ,F) be random with Aut(G)-invariant law,
where F is a forest in G all of whose trees have at least three ends and Ξ is a closed set of ends of (trees
in) F. Show that a.s. for each tree T of F, we have either Ξ ∩ ∂T = ∅ or Ξ ∩ ∂T = ∂T .

8.26. Give another proof of Proposition 8.14 by using Exercise 8.3.

8.27. Show that for every d, we have inf Φ𝖵(G) > 0, where the infimum is taken over transitive,
nonunimodular G with degree at most d.

8.28. Show that if Γ is not unimodular and µx are the weights of Theorem 8.10, then supx µx = ∞
and infx µx = 0. In fact, the supremum and infimum may each be taken over any single orbit.

8.29. Let G′ be a transitive representation of a quasi-transitive graph G.
(a) Show that Aut(G′) is unimodular iff Aut(G) is unimodular.
(b) Let Γ act quasi-transitively on G. Show that Γ is unimodular iff Aut(G′) is unimodular.

8.30. Show that Proposition 8.14 is also valid for quasi-transitive automorphism groups.

8.31. Let G be an amenable graph and Γ ⊆ Aut(G) be a quasi-transitive subgroup. Choose a
complete set {o1, . . . , oL} of representatives in 𝖵 of the orbits of Γ. Choose the weights µoi

of
Theorem 8.10 so that

∑
i µ
−1
oi

= 1. Show that if Kn is any sequence of finite subsets of vertices such
that |∂𝖵Kn |/|Kn | → 0, then for all i,

lim
n→∞

|Γoi ∩ Kn |
|Kn | = µ−1

oi
.

See Figure 8.1 for an example.

8.32. Show that if Γ is a compact group of automorphisms of a graph, then Γ is unimodular.

8.33. Call two rooted graphs (rooted) isomorphic if there is a bijection of their vertex sets preserving
adjacency and mapping one root to the other. Our notation for a rooted graph will be (G, o), where
o ∈ 𝖵(G) designates the root. For a rooted graph (G, o), let [G, o] denote the set of rooted graphs that
are isomorphic to (G, o). Suppose ⟨Xn⟩ is random walk on a quasi-transitive network G whose orbit
representatives are o1, . . . , oL . Consider the quotient Markov chain


[G, Xn] ; n ≥ 0
�
on the finite state

space
�[G, oi ] ; 1 ≤ i ≤ L

	
.

(a) Show that if G is unimodular and X0 has the distribution of a normalized root biased by π,
that is, P[X0 = oi ] ∝ µ−1

i π(oi ), then the quotient Markov chain

[G, Xn]� is stationary and reversible.

For example, if G is the graph in Figure 8.1, then the quotient chain on
�[G, o1], [G, o2]	 has a loop at

[G, o1], an edge between the two vertices, and two loops at [G, o2], where all edges have conductance 1.
Thus, the stationary distribution is ⟨2/5, 3/5⟩. The present claim leads to this stationary distribution
as follows: ô = o1 with probability 1/5 and this gets biased by the degree, 8, whereas ô = o2 with
probability 4/5, which gets biased by the degree, 3, giving finally relative weights 8/5 and 3 ·4/5 = 12/5,
which are indeed in the ratio 2 : 3.
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(b) Give an example of a nonunimodular quasi-transitive network where the quotient chain has a
reversible measure.

(c) Give an example of a nonunimodular quasi-transitive network where the quotient chain does
not have a reversible measure.

8.34. Let G be a transitive graph and o ∈ 𝖵. Given a set S ⊆ 𝖵 of “seeds,” the Voronoi cell V (s)
of s ∈ S is the set of vertices x that are closer to s than to any other element of S. Ties are broken at
random, with each seed given equal chance. (The exact random mechanism will not matter, as long as it
is Aut(G)-invariant.) When x ∈ V (s) for s ∈ S, we write V (x) := V (s). Given p ∈ (0, 1), let S be given
by Bernoulli(p) site percolation or, more generally, any invariant site percolation with site marginal p.

(a) Show that if G is unimodular, then E
� |V (o)| � o ∈ S

�
= 1/p.

(b) Show that if G is unimodular, then E
� |V (o)| � ≥ 1/p, with equality iff |V (o)| is constant a.s.

(c) Show that if G is unimodular, then the distribution of |V (o)| equals the size-biased conditional
distribution of |V (o)| given that o ∈ S, that is, for every bounded f :�→ �, we have

E
�

f
�|V (o)|�� =

E
�

f
�|V (o)|� |V (o)| � o ∈ S

�
E
� |V (o)| � o ∈ S

� .

(d) Show that in the case of Bernoulli seeds and where ties are broken independently, even if G is
not unimodular, then E

� |V (o)| � o ∈ S
�

= 1/p and E
� |V (o)| � > 1/p.

(e) Give an example where E
� |V (o)| � o ∈ S

�
̸= 1/p and where the distribution of |V (o)| does not

equal the size-biased conditional distribution of |V (o)| given that o ∈ S.

8.35. Sharpen Theorem 8.16 to conclude that E[degω o] < dG − Φ𝖤(G) by showing that there is
some invariant P′ with all clusters finite and with E[degω o] < E′[degω′ o].

8.36. A subset K of the vertices of a graph is called dominating if every vertex is in K or is adjacent
to some vertex of K . Suppose that an invariant site percolation on a transitive unimodular graph of
degree d is a dominating set a.s. Show that o belongs to the percolation with probability at least
1/(d + 1).

8.37. Show that for any invariant percolation P on a transitive unimodular graph that has finite
clusters with positive probability, E

�
degω o

� |K(o)| < ∞� ≤ α(G).
8.38. Let P be an invariant site percolation on a transitive unimodular graph of degree d such that all

clusters are finite a.s. Show that P[o ∈ ω] < d
/�

d + Φ𝖵(G)�.
8.39. Let G be a quasi-transitive unimodular graph and ô a normalized random root. Let F be

the configuration of an invariant random spanning forest on G such that a.s. each tree has one end.
(“Spanning” means that the forest includes all vertices of G. We will see important examples of such
spanning forests in Chapters 10 and 11.) For a vertex x, denote by ξ(x) = ⟨ξn(x) ; n ≥ 0⟩ the unique
infinite simple path starting at x. If y ∈ ξ(x), call x a descendant of y. Let D(x) be the (finite) set of
all descendants of x.

(a) Show that E
� |D(ô)| � = ∞.

(b) Show that E
� |{y ; ô = ξn(y)}| � = 1 for each n ≥ 0.

(c) Show that E
�∑

n≥0 1
/ |D(ξn(ô))| � = 1.

(d) Show that E
� |D(ξn(ô)) \ D(ξn−1(ô))| � = ∞ for each n ≥ 1.

(e) Show that E
� |D(ô)|(degF ô − 2)� = ∞.

8.40. Let T be a regular tree of degree at least 3. Show that for every p ∈ (0, 1), there is an
Aut(T)-invariant probability measure on {0, 1}𝖵(T ) such that for all [x, y] ∈ 𝖤(T), the probability that x
is assigned 0 equals 1/2, the probability that x and y are assigned the same label is at least p, and the
probability that two vertices have the same label tends to 1/2 as their mutual distance tends to infinity.
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8.41. Extract from the proof of Theorem 8.21 just enough to prove that pc < 1 for nonamenable
quasi-transitive unimodular graphs.

8.42. Show that if an invariant percolation on a nonamenable quasi-transitive unimodular graph has
a finite number of infinite clusters a.s., then a.s. each of those infinite clusters has pc < 1.

8.43. Let G be a nonamenable unimodular transitive graph. Write Pn for the graph that is a path of
n vertices and Cn for the cycle of n vertices.

(a) Show that pc(G □ Pn)→ pc(G □ �) as n → ∞.
(b) Show that pc(G □ Cn)→ pc(G □ �) as n → ∞.

8.44. Let G be the edge graph of the (2, 3, 7)-triangle tessellation of Figure 6.1, that is, the plane dual
of the Cayley graph there. By Theorem 8.25 and Remark 8.46, it is quasi-transitive and unimodular. It
has three vertex orbits. Find the weight of each vertex that is given by Theorem 8.10.

8.45. Let G be a plane transitive graph with one end. By Theorem 8.25 and Remark 8.46, its dual
G† is quasi-transitive and unimodular. Find the distribution of a normalized random root of G†.

8.46. Let G be a plane transitive graph with one end. Every edge e ∈ 𝖤(G) intersects e† ∈ 𝖤(G†)
in one point, ve . (These are the only intersections of G and G†.) For e ∈ 𝖤(G), write ê for the pair of
edges that result from the subdivision of e by ve , and likewise for ê†. This defines a new quasi-transitive
graph Ĝ, whose vertices are 𝖵(G) ∪ 𝖵(G†) ∪ �

ve ; e ∈ 𝖤(G)	 and whose edges are
∪

e∈𝖤(G)
�
ê ∪ ê†

�
.

Show that Ĝ is unimodular and find the distribution of a normalized random root of Ĝ.

8.47. Let G be the usual Cayley graph of the (p, q, r)-triangle group and G† be its dual, where
1/p + 1/q + 1/r ≤ 1. This Cayley graph for (p, q, r) = (2, 3, 7) was shown in Figure 6.1. In general, the
group is generated by reflections in the infinitely extended geodesic sides of a Euclidean or hyperbolic
triangle whose interior angles measure π/p, π/q, and π/r . The edge graph of the tessellation by such
triangles is G†. Let F be an invariant random spanning forest of G† such that all of its trees are infinite
and have at most two ends a.s. (“Spanning” means that the forest includes all vertices of G†.) Let the
edges of G† opposite to the angles of measure π/p, π/q, π/r have probabilities αp , αq , αr of belonging
to F, respectively. Show that αp + αq + αr = 1/p + 1/q + 1/r . Show also that if F× is defined on G as
in (8.21), then E[dego F

×] = 3 − 1/p − 1/q − 1/r .

8.48. Let G be a plane transitive graph with one end. Show that

1
µ(G†) +

1
γ(G) ≤ 1 ,

where µ is the connective constant and γ is defined as in (7.11). Deduce that if G† is regular of degree
d†, then

γ(G) ≥ d† − 1
d† − 2

.

8.49. Let P be an invariant bond percolation on a quasi-transitive unimodular graph such that all
clusters are infinite a.s. Show that E[degω ô] ≥ 2 when ô is a normalized random root.

8.50. Let ω be the configuration of an invariant percolation on a transitive unimodular graph G.
Show that if

(i) some component of ω has at least three ends with positive probability,
then

(ii) a.s. every component of ω with at least three ends has pc < 1 and
(iii) E

�
degω o

� |K(o)| = ∞
�
> 2.
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8.51. Give an example of an invariant random forest on a transitive graph where each component has
three ends, but the expected degree of each vertex is smaller than 2.

8.52. Give an example of an invariant random forest on a transitive graph where each tree has one
end and the expected degree of each vertex is greater than 2.

8.53. Let ω be an invariant percolation on a quasi-transitive unimodular graph. Suppose that all
components of ω have at least three ends a.s. Show that the probability space cannot be enlarged so as
to pick exactly one end from some of the components of ω.

8.54. Let P be an insertion-tolerant invariant bond percolation on a quasi-transitive unimodular
graph that has infinitely many infinite clusters a.s. Show that a.s. for each infinite cluster, there are
infinitely many edges with one endpoint in that cluster and one endpoint in a different infinite cluster.

8.55. Let G be a quasi-transitive unimodular graph with pc(G) < pu(G). Show that in the standard
coupling p 7→ ωp of Bernoulli percolation, a.s. for each pair (p1, p2) with pc < p1 < p2 < pu, we have
that every infinite cluster of ωp2 contains infinitely many infinite clusters of ωp1 .

8.56. Let T be a 3-regular tree and fix an end ξ of T . Define W (e) to be independent symmetric
{−1, 1}-valued random variables for e ∈ 𝖤(T). Let Y (x) := maxe∼x W (e). If xξ denotes the first edge
on the ray from x that belongs to ξ, then let Z(x) := maxe∼x , e ̸=xξ W (e). Clearly Y (x) ≥ Z(x) for all x
and the distribution of Y is Aut(T)-invariant.

(a) Show that the distribution of Z is i.i.d.
(b) Show that the distribution of (Y , Z) is not Aut(T)-invariant.
(c) Show that there is a Z′ equal to Z in distribution such that Y ≥ Z′ and the distribution of

(Y , Z ′) is Aut(T)-invariant.

8.57. Let ω be an invariant bond percolation on a transitive graph, G, such that all clusters are finite
a.s. Fix o ∈ 𝖵. Let K(o) be the cluster of o in ω. Let Z be a uniformly random vertex of K(o). Recall
the notion of rooted isomorphism from Exercise 8.33.

(a) Suppose that G is unimodular. Show that the law of the rooted isomorphism class of
�
K(o), Z

�
is the same as the law of the rooted isomorphism class of

�
K(o), o�.

(b) Give an example on a nonunimodular graph where the result of (a) fails.

8.58. Let G be a quasi-transitive unimodular graph. Show that G is amenable iff for all α < 1, there
is an invariant bond percolation ω on G with no infinite clusters and such that E[degω x] > α degG x
for all x ∈ 𝖵(G).

8.59. Theorem 8.37 was proved only in the transitive case. Prove it in the general quasi-transitive
case.
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9 Infinite Electrical Networks
and Dirichlet Functions

In Chapters 2 and 3, we looked at current flows from a vertex to infinity to analyze
transience and recurrence. We never looked at current flows from one vertex to another in an
infinite network, except briefly on recurrent networks in Exercises 2.71 and 2.72. We had
no need for that; it also turns out to be more complicated. But those complications are also
quite interesting, as we will see in this chapter. Moreover, we will ultimately use our work
here to answer a question of recurrence again. Namely, given a transient network, consider
the subnetwork formed by the edges that are crossed at least once by a random walk on the
original network. Is this random subnetwork transient or recurrent? The answer is in the last
section of this chapter.
Even more importantly, our work here will be the foundation in the next chapter for

extending the study of uniform spanning trees on finite networks to so-called uniform
spanning forests on infinite networks.

9.1 Free and Wired Electrical Currents

We begin by taking a look at currents from one vertex to another on infinite networks. It
turns out that there are two natural ways of defining such currents that correspond to two
ways of taking limits over finite networks. In some sense, these two ways may differ due to
the possibility of current “passing via infinity.” Our approach in this section will be to give
definitions of both these currents using Hilbert space; then we will show how they correspond
to limits of currents over finite graphs.
Let G be a connected network whose conductances c satisfy the usual condition that∑
e−=x c(e) < ∞ for each vertex x ∈ G. Note that this condition guarantees that the stars∑
e−=x c(e)χe of G have finite energy. We assume this condition is satisfied for all networks

in this chapter. We also assume that networks are connected. Let⋆ denote the closure of the
linear span of the stars and ♢ the closure of the linear span of the cycles of a graph G = (𝖵, 𝖤),
both of these closures taking place in the Hilbert space of antisymmetric edge functions of
finite energy,

ℓ2
−(𝖤, r) :=

{
θ:𝖤→ � ; ∀e θ(−e) = −θ(e) and

∑
e∈𝖤

θ(e)2r(e) < ∞
}
.

Recall that by (2.15), we have
∑

e−=x |θ(e)| < ∞ for all x ∈ 𝖵 and all θ ∈ ℓ2
−(𝖤, r).

The exhaustions we considered in Chapter 2 by finite induced networks led to currents in
⋆. Indeed, for a finite induced subnetwork H of G, recall that HW is formed by identifying
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the complement of H to a single vertex and that we identify 𝖤(HW) with a subset of 𝖤(G).
The star space of HW lies in the star space of G, since for all x ∈ 𝖵(H), the star of x in HW

coincides with the star of x in G, while the star of the new vertex of HW equals the negative
of the sum of the other stars of HW. Therefore, the unit current flow ia in G from a vertex a
to infinity (defined in Proposition 2.12) lies in the star space of G.
Since each star is orthogonal to each cycle, it is still true (as for finite networks) that
⋆ ⊥ ♢. However, it is no longer necessarily the case that ℓ2

−(𝖤, r) = ⋆ ⊕♢. Thus, we are
led to define two possibly different currents:

ieF := P⊥♢χ
e , (9.1)

the unit free current between the endpoints of e (also called the limit current), and

ieW := P⋆χe , (9.2)
the unit wired current between the endpoints of e (also called the minimal current).

▷ Exercise 9.1.
Calculate ieF and ieW in a regular tree.

The names for these currents are explained by the following two propositions. Recall that
for a subnetwork Gn ⊂ G, we identify 𝖤(Gn) as a subset of 𝖤(G) and also identify 𝖤(GW

n ) as
a subset of 𝖤(G).
Proposition 9.1. (Free Currents as Limit Currents) Let G be an infinite network exhausted
by finite subnetworks ⟨Gn⟩. Let e be an edge in G1 and in be the unit current flow in Gn from
e− to e+. Then ∥in − ieF∥r → 0 as n → ∞ and E (ieF) = ieF(e)r(e).
Proof. Decompose ℓ2

−(𝖤n, r) = ⋆n ⊕♢n on Gn into the spaces spanned by the stars and
cycles in Gn and recall that in = χe − P♢n

χe. We may regard the spaces ♢n as lying in
ℓ2
−(𝖤, r), where they form an increasing sequence. (Each cycle in Gn lies in Gn+1, but the
same is not true of the stars.) The closure of

∪
n ♢n is ♢. Note that the orthogonal projection

on ♢n of any element of ℓ2
−(𝖤n, r) is the same as its projection on ♢n in ℓ2

−(𝖤, r) since for
θ ∈ ℓ2

−(𝖤n, r), if θ ⊥ ♢n in ℓ2
−(𝖤n, r), then also θ ⊥ ♢n in ℓ2

−(𝖤, r). Thus, the fact that
∥in − ieF∥r → 0 follows from the standard result given in the upcoming Exercise 9.2. Also, we
have that

ieF(e)r(e) = (ieF , χe)r = (ieF , P⊥♢ χe)r = E (ieF) . ◀

▷ Exercise 9.2.
Let Hn be increasing closed subspaces of a Hilbert space H and Pn be the orthogonal
projection on Hn. Let P be the orthogonal projection on the closure of

∪
Hn. Show that for

all u ∈ H , we have ∥Pnu − Pu∥ → 0 as n → ∞.

Proposition 9.2. (Wired Currents as Minimal Currents) Let G be an infinite network
exhausted by finite induced subnetworks ⟨Gn⟩. Form GW

n by identifying the complement of
Gn to a single vertex. Let e be an edge in G1 and in be the unit current flow in GW

n from e− to
e+. Then ∥in − ieW∥r → 0 as n → ∞ and E (ieW) = ieW(e)r(e), which is the minimum energy
among all unit flows from e− to e+.
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▷ Exercise 9.3.
Prove Proposition 9.2.

Since⋆ ⊆ ♢⊥, we have E (ieW) ≤ E (ieF) with equality iff ieW = ieF. Therefore,

ieW(e) ≤ ieF(e) with equality iff ieW = ieF . (9.3)

Proposition 9.3. For any network, ieW = ieF for every edge e iff ℓ2
−(𝖤, r) =⋆ ⊕♢.

Proof. Note that ℓ2
−(𝖤, r) = ⋆ ⊕♢ is equivalent to P⋆ = P⊥♢. Since {χe ; e ∈ 𝖤1/2} spans

ℓ2
−(𝖤, r), this is also equivalent to P⋆χe = P⊥♢χ

e for all edges e, as desired. ◀

Given two vertices a and z, define the free and wired unit currents from a to z as
ia,zF :=

∑n
k=1 iekF and ia,zW :=

∑n
k=1 iekW , where e1, e2, . . . , en is an oriented path from a to z.

▷ Exercise 9.4.
Show that the choice of path in the definition of the free and wired currents from a to z does
not influence their values.

We call RF(a ↔ z) := E (ia,zF ) and RW(a ↔ z) := E (ia,zW ) the free and wired effective
resistance, respectively, between a and z. Note that these are equal to the limits of E (in),
where in is the unit current flow from a to z on Gn or GW

n , respectively, since for any
sequence of vectors un converging in norm to a vector u, we have ∥un∥ → ∥u∥; indeed,�∥un∥ − ∥u∥� ≤ ∥un − u∥ by the triangle inequality. Of course, the reciprocals of the effective
resistances are called the free and wired effective conductances.

9.2 Planar Duality

In this section, we recall from Section 6.5 the basic notions of duality for planar graphs
and show how the dual graphs give related electrical networks.
A planar graph is one that can be drawn in the plane in such a way that edges do not

cross; an actual such embedding is called a plane graph. If G is a plane graph such that
each bounded set in the plane contains only finitely many vertices of G, then G is said to be
properly embedded in the plane. We will always assume without further mention that plane
graphs are properly embedded. A face of a plane graph is a connected component of the
complement of the graph in the plane. If G is a plane (multi)graph, then the plane dual G† of
G is the (multi)graph formed as follows: The vertices of G† are the faces formed by G. Two
faces of G are joined by an edge in G† precisely when they share an edge in G. Thus, 𝖤(G)
and 𝖤(G†) are in a natural one-to-one correspondence. Furthermore, if one draws each vertex
of G† in the interior of the corresponding face of G and each edge of G† so that it crosses
only the corresponding edge of G, then the dual of G† is G.
We choose orientations of the edges so that for e ∈ 𝖤, the corresponding edge e† of the

dual crosses e from right to left as viewed from the direction of e. Thus, the orientation of
the pair (e, e†) is the same as the usual counterclockwise orientation of the plane.
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If conductances c(e) are assigned to the edges e of G, then we define the conductance c(e†)
of e† to be the resistance r(e). In this case, we will assume without mention that G is such
that

∑
(e†)−=u c(e†) < ∞ for each vertex u ∈ G†, so that the stars of G† have finite energy.

The bijection e 7→ e† between edge sets provides a natural isometric isomorphism of
Hilbert spaces †: ℓ2

−
�
𝖤(G), r� → ℓ2

−
�
𝖤(G†), r� via θ†(e†) := r(e)θ(e). That is, θ 7→ θ† is a

surjective linear map such that for all θ, ψ ∈ ℓ2
−
�
𝖤(G), r�, we have θ†, ψ† ∈ ℓ2

−
�
𝖤(G†), r� and

(θ, ψ)r =
∑

e∈𝖤(G)
θ(e)ψ(e)r(e) =

∑
e†∈𝖤(G†)

θ†(e†)ψ†(e†)r(e†) = (θ†, ψ†)r .

Note that (θ†)† = −θ.
It is clear that if θ is a star in ℓ2

−
�
𝖤(G), r�, then θ† is a cycle in ℓ2

−
�
𝖤(G†), r�. Moreover, it is

easy to see that † induces an isomorphism from the star space on G to the cycle space on G†

and from the cycle space on G to the star space on G†. That’s cute. What is the implication
of this for currents? For an edge e ∈ G, consider the orthogonal decomposition

χe = ieW + θ ,

where ieW ∈ ⋆(G) and θ ∈ ⋆(G)⊥. Applying the map †, we obtain

r(e)χe† = (χe)† = (ieW)† + θ† ,

whence
χe† = c(e)(ieW)† + c(e)θ† ,

where the first term on the right is a vector in ♢(G†) and the second is in ♢(G†)⊥. It follows
from this and the definition (9.1) that

ie
†

F = c(e)θ† = χe† − c(e)(ieW)† .
Likewise, one can check that

ie
†

W = χe† − c(e)(ieF)† .
In particular, we obtain

ie
†

F (e†) = χe† (e†) − c(e)(ieW)†(e†) = 1 − c(e)r(e)ieW(e) = 1 − ieW(e) (9.4)
and

ie
†

W(e†) = 1 − ieF(e) .
This has the following curious consequence:

Proposition 9.4. Let G be a plane network and [a, z] be an edge of G. Let the dual edge be
[b, y]. Suppose that the graph G′ obtained by deleting the edge [a, z] from G is connected
and that the graph (G†)′ obtained by deleting the edge [b, y] is connected. Then the free
effective resistance between a and z in G′ equals the wired effective conductance between b
and y in (G†)′.

▷ Exercise 9.5.
Prove Proposition 9.4.
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9.3 Harmonic Dirichlet Functions

As we saw from the definitions, wired and free currents are equal iff ℓ2
−(𝖤, r) = ⋆ ⊕ ♢,

or said another way, iff the orthogonal complement of⋆ ⊕ ♢ in ℓ2
−(𝖤, r) is 0. What is this

orthogonal complement? We will identify it and use this identification to develop criteria for
its vanishing. In preparation for applications in the next sections, we then analyze the limiting
behavior of certain functions along a random walk path.

Recall that the gradient of a function f on 𝖵 is the antisymmetric function

∇ f := c d f

on 𝖤. Ohm’s law in this notation is ∇v = i. Define the space of Dirichlet functions

D :=
�

f ; ∇ f ∈ ℓ2
−(𝖤, r)

	
.

Given a vertex o ∈ 𝖵, we use the inner product on D

⟨ f , g⟩ := f (o)g(o) + (∇ f ,∇g)r = f (o)g(o) + (df , dg)c .
This makes D a Hilbert space, whose norm we denote by ∥ • ∥D. The choice of o does not
matter in the sense that changing it leads to an equivalent norm: for any x, take a path of
edges ⟨e j ; 1 ≤ j ≤ n⟩ leading from x to o and note that by the Cauchy-Schwarz inequality,

f (x)2 =
[

f (o) +
∑
j

df (e j)
]2 ≤

[
1 +

∑
j

r(e j)
] [

f (o)2 +
∑
j

c(e j)df (e j)2
]

≤
[
1 +

∑
j

r(e j)
]⟨ f , f ⟩ ,

whence
f (x)2 + (df , df )c ≤

[
2 +

∑
j

r(e j)
]⟨ f , f ⟩ .

The quantity D( f ) := ∥∇ f ∥2
r = ∥df ∥2

c is called the Dirichlet energy of f .* Of course, the
constant functions, which we identify as �, lie in D. Since it is the gradient of a function that
matters most here, we usually work with D/� using the inner product

⟨ f +�, g +�⟩ := (df , dg)c .
Then D/� is a Hilbert space.

If ϕ:�→ � is a contraction (that is, |ϕ(x) − ϕ(y)| ≤ |x − y | for x, y ∈ �), then f 7→ ϕ ◦ f
maps D to D by decreasing the energy: D(ϕ◦ f ) ≤ D( f ). Useful examples include ϕ(s) := |s|
and the truncation maps

ϕN (s) :=
{ s if |s| ≤ N

sN/|s| if |s| > N .

* The classical Dirichlet energy of a smooth function f in a domain Ω is
∫

Ω |∇ f |2 d𝜆, where 𝜆 is Lebesgue
measure.
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Thus, for f ∈ D, there is a sequence ⟨ϕN ◦ f ⟩ of bounded functions in D that converge to
f in norm by Lebesgue’s dominated convergence theorem. If f , g ∈ D are both bounded
functions, then

∥d( f g)∥c ≤ ∥ f ∥∞∥dg∥c + ∥df ∥c∥g∥∞ (9.5)
since �( f g)(x) − ( f g)(y)� = ��� f (x)�g(x) − g(y)� +

�
f (x) − f (y)�g(y)���

≤ ∥ f ∥∞ |g(x) − g(y)| + ∥g∥∞ | f (x) − f (y)|
= |g̃(x) − g̃(y)| + | f̃ (x) − f̃ (y)| ,

where g̃ := ∥ f ∥∞g and f̃ := ∥g∥∞ f , whence
∥d( f g)∥c ≤ �|dg̃| + |d f̃ |�

c
≤ ∥dg̃∥c + ∥d f̃ ∥c = ∥ f ∥∞∥dg∥c + ∥df ∥c∥g∥∞ .

Recall that⋆ denotes the closed span of the stars in ℓ2
−(𝖤, r) and ♢ the closed span of the

cycles in ℓ2
−(𝖤, r). The gradient map ∇:D/�→ ♢⊥ is an isometric isomorphism (since G is

connected). Just as we reasoned in Section 2.4, an element θ ∈ (⋆ ⊕♢)⊥ is the gradient of a
harmonic function f ∈ D. Thus, if HD denotes the set of f ∈ D that are harmonic, we have
the orthogonal decomposition

ℓ2
−(𝖤, r) =⋆ ⊕♢ ⊕ ∇HD . (9.6)

Since ℓ2
−(𝖤, r) =⋆ ⊕♢ iff ∇HD = 0 iff HD = �, we may add the condition that there are no

nonconstant harmonic Dirichlet functions to those in Proposition 9.3:
Theorem 9.5. (Doyle, 1988) Let G be a denumerable network. We have HD = � iff ieW = ieF
for each e ∈ 𝖤.
Doyle’s theorem is often stated another way as a criterion for uniqueness of currents. We

call the elements i of ♢⊥ currents (with sources where d∗i > 0 and sinks where d∗i < 0).
We say that currents are unique if whenever i, i′ are currents with d∗i = d∗i′, we have i = i′.
Observe that by subtraction and by (2.8), this is the same as saying that ♢⊥ ∩⋆⊥ = 0, in
other words, HD = �. For this reason, the class of networks with unique currents is often
denoted OHD.

Let D0 be the closure in D of the set of f ∈ D with finite support.

▷ Exercise 9.6.
(a) Show that ∇D0 =⋆.
(b) Show that D/� = D̃0/� ⊕HD/�, where D̃0 := D0 +�.
(c) Show that currents are unique iff D/� = D̃0/�.
(d) Show that ∥1 − D0∥2

D = C (o↔ ∞)/�1 + C (o↔ ∞)�, where o is the vertex used to
define the inner product on D.

(e) Show that G is recurrent iff 1 ∈ D0.
(f) (Royden Decomposition) Show that if G is transient, then every f ∈ D has a

unique decomposition f = g + h with g ∈ D0 and h ∈ HD. Note that this is not an orthogonal
decomposition.

(g) With the assumption and notation of part (f), show that g(x) = (∇ f , ix)r and
that g(x)2 ≤ D( f )G (x, x)/π(x), where ix is the unit current flow from x to infinity (from
Proposition 2.12) and G (•, •) is the Green function.

(h) Show that if G is transient, then ∇: D0 →⋆ is invertible with bounded inverse.
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This exercise allows us to show that recurrent networks have unique currents. (This also
follows from Exercise 2.72.) Since current cannot go to infinity at all in recurrent networks,
this fits with our intuition that nonunique currents require the ability of current to pass via
infinity. An extension is in Exercise 9.23.

Corollary 9.6. (Recurrence Yields Unique Currents) A network G is recurrent iff D = D0,
in which case currents are unique.

Proof. If D = D0, then 1 ∈ D0, whence G is recurrent by Exercise 9.6(e). Conversely, suppose
that G is recurrent. By Exercise 9.6(e), we have 1 ∈ D0. Thus, there exist gn → 1 with gn
having finite support and 0 ≤ gn ≤ 1. (We use the contraction ϕ(s) := s1[0,1](s) + 1(1,∞)(s)
if necessary to get the values of gn to be in [0, 1].) Let f ∈ D be bounded. Then f gn ∈ D
by (9.5) and f gn → f in D by the dominated convergence theorem. Hence f ∈ D0, in other
words, D0 contains all bounded Dirichlet functions. Since these functions are dense in D, we
get D0 = D. Finally, when this happens, currents are unique by Exercise 9.6(c). ◀

Some transient networks also have unique currents. To exhibit some of these, we will use
the following criterion, which generalizes a result of Thomassen (1989). It is analogous to
the Nash-Williams criterion. It shows that high connectedness of cutsets, rather than their
small size, can force currents to be unique. This is reasonable given that the difference
between free and wired currents is a matter of whether wiring cutsets matters in the limit. Let
R(x ↔ y ; A) denote the effective resistance between vertices x and y in a finite network
A. We will use this when A is a subnetwork of G; in this case, the effective resistance is
computed purely in terms of the network A. Let

𝖱𝖣(A) := sup
�
R(x ↔ y ; A) ; x, y ∈ 𝖵(A)	

be the “effective-resistance diameter” of A. Note that in the case of unit conductances on the
edges, 𝖱𝖣(A) is at most the graph diameter of A. We say that a subnetwork W separates x
from∞ if every simple infinite path starting at x intersects W in some vertex.

Theorem 9.7. (Unique Currents from Internal Connectivity) If ⟨Wn⟩ is a sequence
of pairwise edge-disjoint finite subnetworks of a locally finite network G such that each
(equivalently, some) vertex is separated from∞ by all but finitely many Wn and such that

∑
n

1
𝖱𝖣(Wn) = ∞ , (9.7)

then G has unique currents.

Proof. Let f be any nonconstant harmonic function. We will show that f /∈ D by bounding
the left-hand side of (9.7) in terms of f . Take an edge e0 whose endpoints have different values
for f , that is, df (e0) ̸= 0. Let n0 be such that Wn separates e0 from infinity for n ≥ n0. Let Hn

be the set of vertices that Wn separates from infinity, including the vertices of Wn. Because G
is locally finite, Hn is finite. Let xn and yn be points of Hn where f takes its maximum and
minimum, respectively, on Hn. By the maximum principle, we may assume that xn, yn ∈ Wn.
Thus, for n ≥ n0, we have f (xn) − f (yn) ≥ |df (e0)|. Normalize f to take the value 1 at xn
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and 0 at yn, that is, define Fn on 𝖵 to be the function Fn :=
�

f − f (yn)�/� f (xn) − f (yn)�.
Then |dFn | ≤ |df |/|df (e0)|. By Dirichlet’s principle (Exercise 2.13), we have

1/𝖱𝖣(Wn) ≤ C (xn ↔ yn ; Wn) ≤
∑
e∈Wn

c(e) dFn(e)2 ≤
∑
e∈Wn

c(e) df (e)2/df (e0)2 .

Since edges of the networks Wn are disjoint, it follows that∑
n≥n0

1/𝖱𝖣(Wn) ≤
∑
n≥n0

∑
e∈Wn

c(e) df (e)2/df (e0)2 ≤ ⟨ f , f ⟩/df (e0)2 .

Therefore our hypothesis implies that f is not Dirichlet. Thus, HD = �, so the conclusion
follows from Theorem 9.5. ◀

▷ Exercise 9.7.
One can define the product of two networks in various ways. For example, given two networks
Gi = (𝖵i, 𝖤i) with conductances ci (i = 1, 2), define the Cartesian product G = (𝖵, 𝖤) with
conductances c by 𝖵 := 𝖵1 × 𝖵2,

𝖤 :=
{�(x1, x2), (y1, y2)� ;

�
x1 = y1, (x2, y2) ∈ 𝖤2

�
or

�(x1, y1) ∈ 𝖤1, x2 = y2
�}
,

and
c
�(x1, x2), (y1, y2)� :=

{ c(x2, y2) if x1 = y1
c(x1, y1) if x2 = y2.

Wewrite G = G1□G2. Show that if Gi are infinite locally finite graphs with unit conductances,
then G has unique currents.

It follows that the usual nearest-neighbor graph on �d has unique currents for all d ≥ 1.
If one network is “similar” to another, must they both have unique currents or both not? One

such case that is easy to decide is a graph with two “similar” assignments on conductances, c
and c′:

Proposition 9.8. Let G be a graph with two assignments of conductances, c and c′. If c ≍ c′,
meaning that the ratio c/c′ is bounded and bounded away from 0, then (G, c) has unique
currents iff (G, c′) does.

Proof. From Exercise 9.6(c), currents are unique iff the functions with finite support span a
dense subspace of D/�. Since the two norms on D/� for the different conductances c and c′

are equivalent, density is the same for both. ◀
This has a very useful extension due to Soardi (1993), analogous to Proposition 2.18.

Theorem 9.9. (Rough Isometry Preserves Unique Currents) Let G and G′ be two infinite
roughly isometric networks with conductances c and c′. If c, c′, c−1, c′−1 are all bounded and
the degrees in G and G′ are all bounded, then G has unique currents iff G′ does.

Proof. Since c ≍ 1 and c′ ≍ 1, we may assume that actually c = 1 and c′ = 1 by
Proposition 9.8.
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Let ϕ:𝖵 → 𝖵′ be a rough isometry. Suppose first that ϕ is a bijection. We claim that
the map Φ: f + � 7→ f ◦ ϕ−1 + � from D/� to D′/� is an isomorphism of Banach spaces,
where D′ is the space of Dirichlet functions on G′. Since the minimum distance between
distinct vertices is 1, the fact that ϕ is a bijective rough isometry implies that ϕ is actually
bi-Lipschitz: for some constant γ1, we have

γ−1
1 d(x, y) ≤ d ′

�
ϕ(x), ϕ(y)� ≤ γ1d(x, y)

for x, y ∈ 𝖵. For e′ =
�
ϕ(x), ϕ(y)� ∈ 𝖤′, let P(e′) be a path of d(x, y) ≤ γ1 edges in 𝖤 that

joins x to y. Given e ∈ 𝖤 and e′ ∈ 𝖤′ with e ∈ P(e′), we know that the endpoints of e′ are
the ϕ-images of vertices that are within distance γ1 of the endpoints of e. Since the degrees
of G are bounded, the number of possibilities for such pairs of endpoints of e′ is no more
than some constant, γ2. Therefore no edge in 𝖤 appears in more than γ2 paths of the form
P(e′) for e′ ∈ 𝖤′. Thus, for f ∈ D, we have by the Cauchy-Schwarz inequality

∥ f ◦ ϕ−1 +�∥2 =
1
2
∑
e′∈𝖤′
∇( f ◦ ϕ−1)(e′)2 =

1
2
∑
e′∈𝖤′

( ∑
e∈P(e′)

∇ f (e)
)2

≤ γ1

2
∑
e′∈𝖤′

∑
e∈P(e′)

∇ f (e)2 ≤ γ1γ2

2
∑
e∈𝖤
∇ f (e)2 = γ1γ2∥ f +�∥2 .

This shows that Φ is a bounded map; symmetry gives the boundedness of Φ−1, establishing
our claim.
Now clearly Φ is a bijection between the subspaces of functions with finite support. Hence

Φ also gives an isomorphism between D0/� and D′0/�. Therefore, the result follows from
Exercise 9.6(c).

Now consider the case that ϕ is not a bijection. We will “fluff up” the graphs G and G′ to
extend ϕ to a bijection so as to use the result we have just established. Because the image
of 𝖵 comes within some fixed distance β of every vertex in G′ and because G′ has bounded
degrees, 𝖵′ can be partitioned into subsets N ′(ϕ(x)) (x ∈ 𝖵) of bounded cardinality in such a
way that every vertex in N ′(ϕ(x)) lies within distance β of ϕ(x) and so that ϕ(x) ∈ N ′(ϕ(x)).
Also, because ϕ does not shrink distances too much and the degrees in G are bounded,
the cardinalities of the preimages ϕ−1(x ′) (x ′ ∈ 𝖵′) are bounded. For each x ′ ∈ ϕ(𝖵), let
ψ(x ′) denote some vertex in ϕ−1(x ′). Create a new graph G∗ by joining each vertex ψ(x ′)
(x ′ ∈ ϕ(𝖵)) to new vertices v1(x ′), . . . , v |N ′(x′)|−1(x ′) by new edges. Also, create a new graph
G′∗ by joining each vertex ϕ(x) (x ∈ 𝖵) to new vertices w1(x), . . . , w|ϕ−1(ϕ(x))|−1(x) by new
edges. Then G∗ and G′∗ have bounded degrees. Define ϕ∗:G∗ → G′∗ as follows: For x ′ ∈ ϕ(𝖵),
let ϕ∗(ψ(x ′)) := x ′, and let ϕ∗ be a bijection from v1(x ′), . . . , v |N ′(x′)|−1(x ′) to N ′(x ′) \ {x ′}.
For x ∈ 𝖵, let ϕ∗ be a bijection from ϕ−1(ϕ(x)) \ �ψ(ϕ(x))	 to w1(x), . . . , w|ϕ−1(ϕ(x))|−1(x).
Then ϕ∗ is a bijective rough isometry. By the first part of the proof, G∗ has unique currents
iff G′∗ does. Since every harmonic function on G∗ has the same value on vi(x ′) as on ψ(x ′)
(x ′ ∈ 𝖵′), it follows that G∗ has unique currents iff G does. The same holds for G′∗ and G′,
which proves the theorem. ◀
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Here’s a simple application. Every finitely generated abelian group is isomorphic to �d ×Γ
for some d and some finite abelian group Γ. Therefore, each of its Cayley graphs is roughly
isometric to the usual graph on �d , whence has unique currents, according to our observation
after Exercise 9.7. We record this conclusion:

Corollary 9.10. Every Cayley graph of a finitely generated abelian group has unique currents.
More generally, every bounded-degree graph roughly isometric to a Euclidean space has
unique currents.

We’ll see in Exercise 10.11 that amenable transitive graphs also have unique currents.
In the next section, we examine whether currents are unique in graphs roughly isometric to

hyperbolic spaces. To do that, we will use the fact that



f (Xn)� converges a.s. for all f ∈ D
on planar transient networks. This is true not only on planar transient networks but on all
transient networks, as we show next. We begin with the following exercise, which illustrates
a basic technique in the theory of harmonic functions.

▷ Exercise 9.8.
Let G be transient and let f ∈ D0. Show that there is a unique g ∈ D0 having minimal energy
such that g ≥ | f |. Show that this g is superharmonic, meaning that for all vertices x,

g(x) ≥ 1
π(x)

∑
y∼x

c(x, y)g(y) .

Theorem 9.11. (Dirichlet Functions along Random Walks) If G is a transient network,
⟨Xn⟩ the corresponding random walk, and f ∈ D, then



f (Xn)� has a finite limit a.s. and

in L2. Furthermore, if f = fD0 + fHD is the Royden decomposition of f , then lim f (Xn) =
lim fHD(Xn) a.s.

This is due to Ancona, Lyons, and Peres (1999).

Proof. A vague idea of the proof is that fluctuations of f (Xn) use energy of f ; since f has
finite energy, the fluctuations must tend to 0. To make this rigorous, we use the Royden
decomposition of f to reduce the problem to one involving martingales and supermartingales.

The following notation will be handy:

E f (x) :=
∑
y

p(x, y)� f (y) − f (x)�2 = Ex

[ | f (X1) − f (X0)|2
]
.

Thus, we have
D( f ) =

1
2
∑
x∈𝖵

π(x)E f (x) .

Since the vertex o used in defining the norm on D is arbitrary, we may take o = X0. (We
assume that X0 is nonrandom, without loss of generality.) We first observe that for any f ∈ D,
it is easy to bound the sum of squared increments along the random walk: For any Markov
chain, we have

G (y, o) =
∑
n≥0

Py[τo = n]Ey

[∑
k≥0

1{Xn+k=o}
���� τo = n

]
= Py[τo < ∞] G (o, o) ≤ G (o, o) .
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In our reversible case, Exercise 2.1(e) tells us that π(o)G (o, y) = π(y)G (y, o) ≤ π(y)G (o, o),
whence

∞∑
k=1

E
� | f (Xk) − f (Xk−1)|2� =

∑
y∈𝖵

∞∑
k=1

E
� | f (Xk) − f (Xk−1)|2 �

Xk−1 = y
�
P[Xk−1 = y]

=
∑
y∈𝖵

E f (y)G (o, y) ≤ G (o, o)
π(o)

∑
y∈𝖵

π(y)E f (y)

= 2
G (o, o)
π(o) D( f ) . (9.8)

Also, we have

E
�

f (Xk)2 − f (Xk−1)2� = E
� | f (Xk) − f (Xk−1)|2� + 2 E

[�
f (Xk) − f (Xk−1)� f (Xk−1)

]
≤ E

� | f (Xk) − f (Xk−1)|2�
in case f is harmonic (since then



f (Xn)� is a martingale) or f is superharmonic and

nonnegative (since then



f (Xn)� is a supermartingale). In either of these two cases, we obtain
by summing these inequalities for k = 1, . . . , n that

E
�

f (Xn)2 − f (X0)2� ≤ n∑
k=1

E
� | f (Xk) − f (Xk−1)|2� ≤ 2

G (o, o)
π(o) D( f )

by (9.8). That is,

E
�

f (Xn)2� ≤ 2
G (o, o)
π(o) D( f ) + f (o)2 (9.9)

in case f is harmonic or f is superharmonic and nonnegative.
It follows from (9.9) applied to fHD that



fHD(Xn)� is a martingale bounded in L2, whence

by Doob’s theorem it converges a.s. and in L2. It remains to show that fD0 converges to
0 a.s. and in L2. Given ϵ > 0, write fD0 = f1 + f2, where f1 is finitely supported and
D( f2) < π(o)ϵ /�3G (o, o)�. Exercise 9.8 applied to f2 ∈ D0 yields a superharmonic function
g ∈ D0 that satisfies g ≥ | f2 | and D(g) ≤ D(| f2 |) ≤ D( f2). Also, g(o)2 ≤ G (o, o)D(g)/π(o)
by Exercise 9.6(g) applied to g ∈ D0 (that is, g = g + 0 is its Royden decomposition).
Combining this with (9.9) applied to g, we get that E

�
g(Xn)2� ≤ ϵ for all n. Since



g(Xn)� is a

nonnegative supermartingale, it converges a.s. and in L2 to a limit whose second moment is at
most ϵ . Since | f2(Xn)| ≤ g(Xn), it follows that both E

�
lim supn→∞ f2(Xn)2� and E

�
f2(Xn)2�

are at most ϵ . Now transience implies that f1(Xn)→ 0 a.s. and (by the bounded convergence
theorem) E

�
f1(Xn)2�→ 0 as n → ∞. Therefore, it follows that E

�
lim supn→∞ fD0 (Xn)2� ≤ ϵ

and lim supn→∞ E
�

fD0(Xn)2� ≤ ϵ . Since ϵ was arbitrary, 
 fD0 (Xn)� must tend to 0 a.s. and in
L2. This completes the proof. ◀
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9.4 Planar Graphs and Hyperbolic Graphs

There is a surprising phase transition between dimensions 2 and 3 in hyperbolic space �d:
in graphs that are roughly isometric to�d , currents are not unique when d = 2, but they are
unique when d ≥ 3. We first treat the case of �2. It turns out that this nonuniqueness of
currents is vastly more general: it holds for virtually all transient planar graphs!

Theorem 9.12. (Transient Planar Networks Have Nonunique Currents) Suppose that
G is a transient planar network. Let π(x) denote the sum of the conductances of the edges
incident to x. If π( • ) is bounded, then currents are not unique.

This theorem is due to Benjamini and Schramm (1996a, 1996c). For simplicity, we will
assume from now on that G is a proper simple plane transient network all of whose faces
have a finite number of sides. Since we can always add edges of conductance 0, the last
assumption here does not lose any generality.

To prove Theorem 9.12, we show that in some sense, random walk on G is like Brownian
motion in the hyperbolic disc. Benjamini and Schramm showed this in two geometric senses:
one used circle packing (1996a) and the other used square tiling (1996c). We will show this
in a combinatorial sense that is essentially the same as the approach with square tiling.
Our first goal is to establish a (polar) coordinate system on 𝖵. Fix a vertex o ∈ 𝖵; this, of

course, will be our origin. We will use voltages and currents to assign radii and angles to
the other vertices. Let io be the unit current flow on G from o to∞, and let v be the voltage
function that is 0 at o and 1 at∞, in other words, v(x) is the probability that a random walk
started at x will never visit o. Note that the voltage function corresponding to io is not v but
rather E (io)(1 − v).
Recall our conventions for plane dual graphs from Section 9.2. Define i×o(e†) := io(e). Now

any face of G† contains a vertex of G in its interior. If i×o is summed counterclockwise around
a face of G† surrounding x, then we obtain d∗io(x), which is 0 unless x = o, in which case it
is 1. Since any cycle in G† can be written as a sum of cycles surrounding faces, it follows
that the sum of i×o along any cycle is an integer. Therefore, we may define α:G† → �/� by
picking any vertex o† ∈ G† and, for x† ∈ 𝖵(G†), setting α(x†) to be the sum (mod 1) of i×o
along any path in G† from o† to x†.
We now have the essence of the polar coordinates on 𝖵, with v giving the radial distance

and α giving the angle; however, α is defined on 𝖵†, not on 𝖵. In fact, we prefer to
assign to each x ∈ 𝖵 an arc J(x) of angles to get all angles of �/�. To do this, let
𝖮𝗎𝗍(x) :=

�
e ; e− = x, io(e) > 0

	
and 𝖨𝗇(x) :=

�
e ; e+ = x, io(e) > 0

	
. For example, 𝖨𝗇(o)

is empty.

Lemma 9.13. For every x ∈ 𝖵, the sets 𝖮𝗎𝗍(x) and 𝖨𝗇(x) do not interleave, that is, their
union can be ordered counterclockwise so that no edge of 𝖨𝗇(x) precedes any edge of 𝖮𝗎𝗍(x).
Proof. Consider any x and any two edges ⟨y, x⟩, ⟨z, x⟩ ∈ 𝖨𝗇(x). We have v(y) < v(x) and
v(z) < v(x) by definition of 𝖨𝗇(x). By Corollary 3.3, there are paths from o to y and o to z
using only vertices with v < v(x). Extend these paths to x by adjoining the edges ⟨y, x⟩ and
⟨z, x⟩, respectively. These two paths from o to x bound one or more regions in the plane. By
the maximum principle, any vertices inside these regions also have v < v(x). In particular,
there can be none that are endpoints of edges in 𝖮𝗎𝗍(x). This implies what we want. ◀
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If J(e) denotes the closed counterclockwise arc on �/� from α((e†)−) to α((e†)+), then
we let

J(x) :=
∪

e∈𝖮𝗎𝗍(x)
J(e) .

By Lemma 9.13, we also have J(x) =
∪

e∈𝖨𝗇(x) J(e) for x ̸= o.
This assignment x 7→ J(x) of arcs to vertices gives a nice collection of “rays”: Consider

some ϑ not in the range of α. If ϑ ∈ J(e) for some e ∈ 𝖨𝗇(x), then there is exactly one
e ∈ 𝖮𝗎𝗍(x) with ϑ ∈ J(e) by Exercise 3.1. Thus, there is a unique infinite path Pϑ in G
starting at o and containing only vertices x with ϑ ∈ J(x). Such a path corresponds to a
radial line in the hyperbolic disc. We claim that for every edge e with io(e) > 0, the Lebesgue
measure of {ϑ ; e ∈ Pϑ} is the length of J(e), that is, io(e). Indeed, consider the flow ϕ

defined to be the expectation of the path Pϑ when ϑ is chosen uniformly at random in �/�,
just as we created flows from random paths in Section 2.5. Then ϕ is a unit flow from o and
0 ≤ ϕ(e) ≤ io(e) when io(e) > 0. Therefore, E (ϕ) ≤ E (io), yet i0 has the minimum energy
among all unit flows from o (Proposition 2.12). Hence ϕ = io, which implies our claim.
We illustrate these coordinates for the edge graph G of the (2,3,7)-triangle tessellation

of the hyperbolic plane, that is, the dual of the Cayley graph shown in Figure 6.1. This
embedding of G is shown in Figure 9.1; in the left-hand part, each edge of G corresponds to
an annular region, while each vertex of G corresponds to a collection of adjacent arcs. This is
a little confusing, so to make it look like a standard graph, we can place a vertex in the middle
of the arc collection to which it corresponds; this gives the right-hand part of Figure 9.1.

Figure 9.1. The polar embeddings of the (2,3,7)-triangle tessellation of the hyperbolic plane.

We can also illustrate the coordinates with the square lattice. Although the square lattice
is recurrent, if we make the conductance of each edge ⟨x, y⟩ equal to the maximum of the
distance of x and y to the origin, then it becomes transient. The polar embeddings of this
network are shown in Figure 9.2.
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Figure 9.2. The polar embeddings of the distance-weighted square lattice.

The “rays” Pϑ that we have defined earlier go from the origin to “radius” 1:

Lemma 9.14. For Lebesgue-almost every ϑ ∈ �/�, we have sup{v(x) ; x ∈ Pϑ} = 1.

Proof. Let h(ϑ) := sup{v(x) ; x ∈ Pϑ}. Then h ≤ 1 everywhere. Also,∫
�/�

h(ϑ) dϑ =
∫
�/�

∑
e∈Pϑ

|dv(e)| dϑ =
∑

io (e)>0

|dv(e)| io(e) = 1

since |dv(e)| = io(e)r(e)/E (io) (recall that v is not exactly the voltage function corresponding
to io). Therefore, h = 1 a.e. ◀
It follows that we can go the other way and assign a vertex to a point in the unit disc: for

0 ≤ ρ < 1 and for a.e. ϑ, Lemma 9.14 allows us to define x(ρ, ϑ) as the vertex x ∈ Pϑ where
v(x) ≤ ρ and v(x) is maximum. We now come to the key calculation made possible by our
coordinate system.

Lemma 9.15. For every f ∈ D,

f (ϑ) := lim
ρ↑1

f (x(ρ, ϑ))

exists for Lebesgue-almost every ϑ and satisfies

∥ f ∥L1 ≤
√

1 + E (io) ∥ f ∥D .

Proof. The Cauchy-Schwarz inequality yields the bound∫
�/�

∑
e∈Pϑ

|df (e)| dϑ =
∑

io (e)>0

|df (e)| io(e) ≤ ∥df ∥c∥io∥r < ∞ ,
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whence the integrand is finite a.e. This proves that

lim
ρ↑1

f (x(ρ, ϑ)) = f (o) − lim
ρ↑1

∑
e∈Pϑ ,
v(e+)≤ρ

df (e)

exists a.e. and has L1 norm at most

| f (o)| + ∥df ∥c∥io∥r ≤
√

1 + E (io) ∥ f ∥D

by the Cauchy-Schwarz inequality. ◀

▷ Exercise 9.9.
With f ∈ D and f defined as in Lemma 9.15, show that

�
f (x(ρ, •)) − f

�
L1 → 0 as ρ ↑ 1.

If f has finite support, then of course f ≡ 0. Since the map f 7→ f from D to L1 is
continuous in light of Lemma 9.15, it follows that f = 0 a.e. for f ∈ D0. Therefore, writing
f = fD0 + fHD for the Royden decomposition of f (see Exercise 9.6(f)), we have f = f HD
a.e. To show that HD ̸= �, then, it suffices to show that there is a Dirichlet function f such
that f is not an a.e. constant. An evident candidate for such an f is the angle function, α.
This doesn’t quite work because α is defined on 𝖵† rather than on 𝖵 and because, moreover,
α takes values in �/�. Thus, we make the following modifications. Let Fx be any face of G
with x as one of its vertices. For ϑ ∈ �/�, let |ϑ| denote the distance of (any representative
of) ϑ to the integers. Set ψ(x) := |α(Fx)|.
Lemma 9.16. If π( • ) is bounded, then ψ ∈ D.

Proof. Let π ≤ M . Given adjacent vertices x, y in
G, there is a path of edges e†1, . . . , e

†
j in G† from

Fx to Fy with each ek incident to either x or y (see
Figure 9.3). Therefore,

dψ(x, y)2 ≤ |α(Fx) − α(Fy)|2 ≤
( j∑

k=1

|io(ek)|
)2

≤
j∑

k=1

io(ek)2r(ek)
j∑

k=1

c(ek)

≤ 2M
∑

e−∈{x,y}
io(e)2r(e)

by the Cauchy-Schwarz inequality. Rewrite this as

 

 

 

  

 x

y

Fx

Fy

Figure 9.3. A dual path.

dψ(e)2 ≤ M
∑
e′∼e±

io(e′)2r(e′)
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for every edge e, where e′ ∼ e± denotes that e′ is incident to at least one of the endpoints of e,
including the possibility that e′ = e. (Both orientations of e′ are included, which is why we
lost a factor of 2.) It follows that

D(ψ) =
1
2
∑
e∈𝖤

dψ(e)2c(e) ≤ M
2

∑
e∈𝖤

∑
e′∼e±

io(e′)2r(e′)c(e)

=
M
2

∑
e′∈𝖤

io(e′)2r(e′)
∑
e∼e′±

c(e) ≤ 4M2E (io) < ∞ . ◀

Since α(Fx) ∈ J(x) and J(x) has length tending to zero as the distance from x to o tends to
infinity (by the first inequality of (2.15)), we have that limρ↑1 ψ(x(ρ, ϑ)) = |ϑ| for every ϑ for
which sup{v(x) ; x ∈ Pϑ} = 1, in other words, for a.e. ϑ. Thus, ψ is the sought-for Dirichlet
function with ψ not an a.e. constant. This proves Theorem 9.12.
We can use our polar coordinates to prove another wonderful result. By Theorem 9.11,

ψ(Xn) = |α(FXn
)| converges a.s. when π( • ) is bounded. Since the length of J(Xn)→ 0 a.s.

and J(Xn) ∩ J(Xn+1) ̸= ∅, it follows that α(FXn
) also converges a.s. Benjamini and Schramm

(1996c) showed that its limiting distribution is Lebesgue measure. Of course, the choice
of faces Fx has no effect, since the lengths of the intervals J(Xn) tend to 0 a.s. This angle
convergence is what we meant by saying that random walk on G is similar to Brownian
motion in the disc.

Theorem 9.17. (Benjamini and Schramm, 1996c) If G is a transient simple plane network
with π( • ) bounded, then J(Xn) tends to a point on the circle �/� a.s. The distribution of the
limiting point is Lebesgue measure when X0 = o.

Proof. That J(Xn) tends to a point a.s. follows from the a.s. convergence of α(FXn
). To say

that the limiting distribution is Lebesgue measure is to say that for any arc A,

Po[lim α(FXn
) ∈ A] =

∫
1A(ϑ) dϑ . (9.10)

This is implied by the statement

Eo

�
lim f (Xn)� =

∫
f (ϑ) dϑ (9.11)

for every Lipschitz function f on �/�, where f is defined by

f (x) := f (α(Fx)) . (9.12)

The reason is that if (9.11) holds for all Lipschitz f , then it also holds for 1A, since we can
sandwich 1A arbitrarily closely by Lipschitz functions. This sandwiching gives∫

1A◦(ϑ) dϑ ≤ Po
[
lim 1A◦(α(FXn

))] ≤ Po
[
lim 1Ā(α(FXn

))] ≤ ∫
1Ā(ϑ) dϑ ,



§4. Planar Graphs and Hyperbolic Graphs 325

where A◦ is the interior of A and Ā is the closure of A. In particular, the chance that
lim α(FXn

) is an endpoint of A is 0, so that (9.10) holds.
To show (9.11), note that the same arguments as we used to prove Lemma 9.16 and

Theorem 9.12 yield that all f as in (9.12) are Dirichlet functions and

lim
ρ↑1

f (x(ρ, ϑ)) = f (ϑ)

for all ϑ for which sup{v(x) ; x ∈ Pϑ} = 1. Now for any f ∈ D, Theorem 9.11 gives that

Eo

�
lim f (Xn)� = Eo

�
lim fHD(Xn)� = lim Eo

�
fHD(Xn)� = fHD(o) ,

where we use the convergence in L1 in the middle step. On the other hand, Exercise 9.9 gives∫
f (ϑ) dϑ = lim

ρ↑1

∫
f (x(ρ, ϑ)) dϑ = lim

ρ↑1

∫ [
f (o) −

∑
e∈Pϑ ,
v(e+)≤ρ

df (e)
]

dϑ

= f (o) − (∇ f , io)r = f (o) − fD0 (o) = fHD(o)

by Exercise 9.6(g). Comparing these two results gives (9.11). ◀

We may now completely analyze which graphs roughly isometric to a hyperbolic space
have unique currents.

Theorem 9.18. If G is a bounded-degree graph that is roughly isometric to �d for some
d ≥ 2, then currents are unique on G iff d ≥ 3.

Proof. That graphs roughly isometric to�d are transient was established in Theorem 2.19;
an example appeared in Figure 2.4. Thus, by Theorems 9.12 and 9.9, they do not have unique
currents when d = 2.
Suppose now that d ≥ 3. By Theorem 9.9, it suffices to prove unique currents for a

particular graph. Choose an origin o ∈ �d. For each n ≥ 1, choose a maximal 1-separated
set An in the sphere Sn of radius n centered at o. Let G := (𝖵, 𝖤) with 𝖵 :=

∪
n An and 𝖤 the

set of pairs of vertices with mutual distance at most 3. Clearly G is roughly isometric to �d .
Consider the subgraphs Wn of G induced on An. We claim that they satisfy the hypotheses of
Theorem 9.7.

Elementary hyperbolic geometry shows that Sn is isometric to a Euclidean sphere of
radius rn := αneβnn for some numbers αn and βn (depending on d) that have positive finite
limits as n → ∞. Let 𝖱𝖣(Wn) be the effective resistance diameter of Wn. The random path
method shows, just as in the proof of Proposition 2.15, that 𝖱𝖣(Wn) is comparable to log rn
if d = 3 and to a constant if d ≥ 4. Therefore, we have 𝖱𝖣(Wn) ≤ Cn for some constant C.
Theorem 9.7 completes the proof. ◀
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9.5 Random Walk Traces

Consider the network random walk on a locally finite transient network (G, c) when it
starts from some fixed vertex o. The trace of the random walk is the random set of edges
traversed at least once by the random walk. How big can the trace be? We show that it cannot
be very large in that the trace forms a.s. a recurrent graph (for simple random walk). This
result is due to Benjamini, Gurel-Gurevich, and Lyons (2007), from which this section is
taken.

Our proof will demonstrate the following stronger results. Let N(x, y) denote the number
of traversals of the edge [x, y].
Theorem 9.19. (Recurrence of Traces) The network

�
G,E[N]� is recurrent. The networks

(G, N) and (G, 1[N>0]) are a.s. recurrent.

By Exercise 2.97, if
�
G,E[N]� is recurrent, then so a.s. is (G, N). Furthermore, Rayleigh’s

monotonicity principle implies that when (G, N) is recurrent, so is (G, 1[N>0]).
Thus, it remains to prove that

�
G,E[N]� is recurrent.

Recall from Proposition 2.12 that the effective resistance from o to infinity in the network
(G, c) equals

R := G (o, o)/π(o) . (9.13)
Let the voltage function be v( • ) throughout this section, where v(o) = 1 and v( • ) is 0 at∞.
Then v(x) is the probability of ever visiting o for a random walk starting at x.

Note that

E
�
N(x, y)� = G (o, x)p(x, y) + G (o, y)p(y, x) =

(
G (o, x)/π(x) + G (o, y)/π(y)) c(x, y)

and, by Exercise 2.1 and Proposition 2.12,

π(o)G (o, x) = π(x)G (x, o) = π(x)v(x)G (o, o) .
Thus, we have (from the definition (9.13))

E
�
N(x, y)� = Rc(x, y)�v(x) + v(y)� (9.14)

≤ 2R max
�
v(x), v(y)	c(x, y) . (9.15)

In a finite network (H, c), we write C (A↔ z; H, c) for the effective conductance between a
subset A of its vertices and a vertex z. Clearly, the inclusions A ⊂ B ⊂ 𝖵 imply the inequality
C (A↔ z; H, c) ≤ C (B ↔ z; H, c). The effective conductance to infinity from an infinite set
A of vertices is defined to be the supremum of the effective conductance from B to infinity
over all finite subsets B ⊂ A.

Lemma 9.20. Let (H, c) be a finite network and a, z ∈ 𝖵(H). Let vH be the voltage function
that is 1 at a and 0 at z. For 0 < t < 1, let At be the set of vertices x with vH (x) ≥ t. Then
C (At ↔ z; H, c) ≤ C (a ↔ z; H, c)/t. More generally, for every A ⊂ 𝖵(H) \ {z}, we have

C (A↔ z; H, c) ≤ C (a ↔ z; H, c)
min

�
vH↾A

� .
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Proof. It is easy to prove the result when the voltages at all the inner boundary vertices of At

are equal to t. To compare to this case, we subdivide edges as follows. If any edge (x, y) is
such that vH (x) > t and vH (y) < t, then subdividing the edge (x, y) with a vertex z by giving
resistances

r(x, z) :=
vH (x) − t

vH (x) − vH (y)r(x, y)
and

r(z, y) :=
t − vH (y)

vH (x) − vH (y)r(x, y)

will result in a network such that vH (z) = t while no other voltages change (this is the
series law). Doing this for all such edges gives a possibly new graph H ′ and a new set
of vertices A′t ⊇ At whose inner vertex boundary is a set W ′

t on which the voltage is
identically equal to t. We have C (At ↔ z; H, c) = C (At ↔ z; H ′, c) ≤ C (A′t ↔ z; H ′, c).
Now C (A′t ↔ z; H ′, c) = C (a ↔ z; H, c)/t, since the current flowing in (H ′, c) from a
to z induces a current from A′t to z with strength C (a ↔ z; H, c) and voltage difference t.
Therefore, C (At ↔ z; H, c) ≤ C (a ↔ z; H, c)/t, as desired.

For a general A, let t := min vH↾A. Then C (A ↔ z; H, c) ≤ C (At ↔ z; H, c) since
A ⊂ At . Combined with the previous inequality, this yields the final conclusion. ◀

For t ∈ (0, 1), let 𝖵t := {x ∈ 𝖵 ; v(x) < t}. Let Wt be the outer vertex boundary of 𝖵t ,
that is, the set of vertices outside 𝖵t that have a neighbor in 𝖵t . Write Gt for the subgraph of
G induced by 𝖵t ∪Wt .

We will refer to the conductances c as the original ones and the conductances E[N] as the
new ones for convenience.

Lemma 9.21. For t ∈ (0, 1), the effective conductance from Wt to ∞ in the network
(Gt ,E[N]) is at most 2.

Proof. Again, we want to compare to the case where v↾Wt ≡ t, so we subdivide. If any edge
(x, y) is such that v(x) > t and v(y) < t, then subdividing the edge (x, y) with a vertex z as in
the proof of Lemma 9.20 and consequently adding z to Wt has the effect of replacing the edge
(x, y) by an edge (z, y) with conductance c(z, y) = c(x, y)�v(x) − v(y)�/�t − v(y)� > c(x, y)
in the original network and, by (9.14), with larger conductance in the corresponding new
network:

E
�
N(z, y)� = Rc(z, y)�t + v(y)� = Rc(z, y)�t − v(y) + 2v(y)�

= Rc(x, y)�v(x) − v(y)� + 2Rc(z, y)v(y)
> Rc(x, y)�v(x) − v(y)� + 2Rc(x, y)v(y) = E

�
N(x, y)� .

Since raising edge conductances clearly raises effective conductance, it suffices to prove the
lemma in the case that v(x) = t for all x ∈ Wt . Thus, we assume this case for the remainder
of the proof.
Suppose that

⟨�
Hn, c↾𝖤(Hn)� ; n ≥ 1

⟩
is an increasing exhaustion of (G, c) by finite

induced networks that include o. Identify the boundary (in G) of Hn to a single vertex,
zn. Let vn be the corresponding voltage functions with vn(o) = 1 and vn(zn) = 0. Then
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we have the limits C (o ↔ zn; Hn, c) ↓ 1/R and vn(x) ↑ v(x) as n → ∞ for all x ∈ 𝖵(G).
Let A be a finite subset of Wt . By Lemma 9.20, as soon as A ⊂ 𝖵(Hn), we have that the
effective conductance from A to zn in Hn is at most C (o↔ zn; Hn, c)/min{vn(x) ; x ∈ A}.
Therefore, by Rayleigh’s monotonicity principle, C (A ↔ ∞;Gt , c) ≤ C (A ↔ ∞;G, c) =
limn→∞ C (A↔ zn; Hn, c) ≤ 1/(Rt). Since this holds for all such A, we have

C (Wt ↔ ∞; Gt , c) ≤ 1/(Rt) . (9.16)
By (9.15), the new conductances on Gt are obtained by multiplying the original conduc-

tances by factors that are at most 2Rt. Combining this with (9.16), we obtain that the new
effective conductance from Wt to infinity in Gt is at most 2. ◀
When the complement of 𝖵t is finite for all t, which is the case for “most” networks, this

completes the proof by the following lemma (and by the fact that
∩

t>0 𝖵t = ∅):

Lemma 9.22. If H is a transient locally finite network, then for all m > 0, there exists a
finite subset K ⊂ 𝖵(H) such that for all finite K ′ ⊇ K , the effective conductance from K ′ to
infinity is more than m.

▷ Exercise 9.10.
Prove this lemma.

Even when the complement of 𝖵t is not finite for all t, this is enough to show that the
network (G, N) is a.s. recurrent. For if Xn denotes the position of the random walk on (G, c)
at time n, then v(Xn) → 0 a.s.: it converges a.s., since it is a nonnegative supermartingale,
and its expectation tends to the probability that the random walk visits o infinitely often,
that is, to 0. Thus, the path is a.s. contained in 𝖵t after some time, no matter the value of
t > 0. Let Bn be the ball of radius n about o. By Lemma 9.22, if (G, N) is transient with
probability p > 0, then C (Bn ↔ ∞;G, N) tends in probability, as n → ∞, to a random
variable that is infinite with probability p. In particular, this effective conductance is at least
6/p with probability at least p/2 for all large n. Fix n with this property. Let t > 0 be
such that 𝖵t ∩ Bn = ∅. Write D for the (random finite) set of endpoints of edges e /∈ Gt

with N(e) > 0. Then C (Wt ↔ ∞;Gt , N) = C (Wt ∪ D ↔ ∞;G, N) ≥ C (Bn ↔ ∞;G, N).
However, in combination with Exercise 2.75, this implies that C

�
Wt ↔ ∞; Gt ,E[N]� ≥

E
�
C (Wt ↔ ∞; Gt , N)� ≥ (p/2)(6/p) = 3, which contradicts Lemma 9.21.
We now complete the proof that (G,E[N]) is recurrent in general. This depends on the

following extension of Lemma 9.22. This lemma will approximate a current flow by a flow
that is 0 on many edges that we’d prefer to ignore.

Lemma 9.23. Let (H, c) be a transient locally finite network, o ∈ 𝖵(H), and B ⊂ 𝖵(H) be
such that o ∈ B, the induced subgraph H↾B is connected, and the network random walk on
H starting at o visits B only finitely many times a.s. Let i be the unit current flow on H from
o to ∞ and ϵ > 0. Then there is a unit flow θ on H from o to ∞ such that θ(e) ̸= 0 for only
finitely many edges e incident to B and∑

e∈𝖤(H)\(B×B)
θ(e)2r(e) ≤ ϵE (i) +

∑
e∈𝖤(H)\(B×B)

i(e)2r(e) .
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Proof. The idea is to take θ to be the unit current flow corresponding to the random walk
conditioned not to visit a very large subset of B that is very far from o. Let H1 := H↾B. Let
B′ ⊂ B be finite with B′ ∋ o and∑

e∈𝖤(H1)∩(B′×B′)
i(e)2r(e) ≥ (1 − ϵ/3)

∑
e∈𝖤(H1)

i(e)2r(e) . (9.17)

Given D ⊂ B, let hD(x) be the probability that when the random walk on H starts from x, it
never visits D. Since the random walk visits B only finitely often a.s., there is some (possibly
empty) set D ⊂ B \ B′ such that B \ D is finite and hD(x) ≥ 1 − δ for all x ∈ B′, where we
will choose δ > 0 later. Enlarge D if necessary to h−1

D (0) so that hD(x) > 0 for all x /∈ D.
Then hD is positive and harmonic off D, so by the solution to Exercise 2.32, the random walk
conditioned never to visit D corresponds to the conductances c′(e) := c(e)hD(e−)hD(e+) on
the graph K := H↾(𝖵(H) \ D). Let θ be the unit current flow on (K , c′) from o to ∞. We
claim that θ satisfies the desired conclusions. It is clear that θ(e) ̸= 0 for only finitely many
edges e incident to B, so it remains to verify the inequality.
Write πH (o) :=

∑
e∼o c(e) and πK (o) :=

∑
e∼o c′(e). Since c′ ≤ c everywhere, we may

choose D so that πK (o)/πH (o) ∈ (1 − δ, 1]. We may couple random walks on (K , c′) and
on (H, c) as follows: if the random walk on H never visits D, then the random walks are
the same; otherwise, the random walks are independent. Thus, the random walks starting
at o are identical with probability at least hD(o) ≥ 1 − δ. Therefore, the escape probability
from o in K differs from the escape probability in H by at most δ. It follows from (2.4) that
E ′(θ)/E (i) ∈ (1 − ϵ/3, 1 + ϵ/3) for an appropriate choice of δ, where E denotes energy for
the conductances c and E ′ denotes energy for the conductances c′.
Now c(e) ≥ c′(e) ≥ (1 − δ)2c(e) for e ∈ 𝖤(K) ∩ (B′ × B′). If v denotes the voltage

function on H that is 1 at o and 0 at ∞, and v′ denotes the similar voltage function on K ,
then |v′(x) − v(x)| ≤ δ for all x ∈ B′ (by the same coupling as we used in the previous
paragraph, except starting from x this time). Since the voltage function for the unit current
flow θ is E ′(θ)v′, we have θ(e)2r ′(e) = E ′(θ)2�v′(e−) − v′(e+)�2c′(e) for every edge e. A
similar relation holds for i on H . Therefore, we may choose δ so that∑

e∈𝖤(K)∩(B′×B′)
θ(e)2r ′(e) ≥

∑
e∈𝖤(K)∩(B′×B′)

i(e)2r(e) − ϵE (i)/3 .

We may now put together all our inequalities to achieve the conclusion:∑
e∈𝖤(H)\(B×B)

θ(e)2r(e) ≤
∑

e∈𝖤(H)\(B′×B′)
θ(e)2r(e)

≤
∑

e∈𝖤(H)\(B′×B′)
θ(e)2r ′(e)

= E ′(θ) −
∑

e∈𝖤(K)∩(B′×B′)
θ(e)2r ′(e)

≤ (1 + ϵ/3)E (i) −
∑

e∈𝖤(K)∩(B′×B′)
i(e)2r(e) + ϵE (i)/3
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≤ (1 + ϵ/3)E (i) − (1 − ϵ/3)
∑

e∈𝖤(H1)
i(e)2r(e) + ϵE (i)/3

[by (9.17)]

≤ ϵE (i) +
∑

e∈𝖤(H)\(B×B)
i(e)2r(e) . ◀

Proof of Theorem 9.19. The function x 7→ v(x) has finite Dirichlet energy for the original
network, hence for the new (since conductances are multiplied by a bounded factor). Assume
(for a contradiction) that the new random walk is transient. Then by Theorem 9.11,



v(Xn)�

converges a.s., where v is the original voltage function and ⟨Xn⟩ is the new random walk.
Consider t > 0. By Exercise 2.98, the complement of 𝖵t induces a recurrent network for the
original conductances; since the new conductances are at most 2R times the original ones by
(9.15), this recurrence holds also for the new conductances. By Exercise 2.81, it follows that

v(Xn)� a.s. cannot have a limit > t. Thus, it converges to 0 a.s.
We can therefore apply Lemma 9.23 with H being

�
G,E[N]� and B being the complement

of 𝖵t . Here, we choose t so that the unit current flow i on H from o to ∞ satisfies∑
e∈𝖤(Gt ) i(e)2/E[N] < ϵ . We obtain in this way a unit flow θt from o to ∞ that is nonzero

on only finitely many edges incident to B, whence θt restricts to a unit flow on Gt from (a
finite subset of) Wt to ∞. The energy of this restriction is at most ϵR(o ↔ ∞; H) + ϵ by
Lemma 9.23. For sufficiently small ϵ , this contradicts Lemma 9.21. ◀

9.6 Notes
Propositions 9.1 and 9.2 go back in some form to Flanders (1971) and Zemanian (1976).
Equation (9.6) is an elementary form of the Hodge decomposition of L2 1-cochains. To see this, add

an oriented 2-cell with boundary θ for each cycle θ in some spanning set of cycles.
Proposition 9.4 is classical in the case of a finite plane network and its dual. The finite case can also

be proved using Kirchhoff’s laws and Ohm’s law, combined with the max-flow min-cut theorem: the
cycle law for i implies the node law for i†, while the node law for i implies the cycle law for i†.

Theorem 9.7 is due to the authors and is published here for the first time. Thomassen (1989) proved
the weaker result for (unweighted) graphs where 𝖱𝖣(A) is replaced by the diameter of A.

The proof we have given of Theorem 9.9 was communicated to us by O. Schramm.
Cayley graphs of infinite Kazhdan groups have unique currents: see Bekka and Valette (1997).
Ancona, Lyons, and Peres (1999) also prove a crossing inequality related to Theorem 9.11.
Our proof of Theorem 9.12 was influenced by the proof of a related result by Kenyon (1998). The

tiling associated by Benjamini and Schramm (1996c) to a transient plane network is the following.
We use the notation at the beginning of Section 9.4. Let R := R(o ↔ ∞). If io(e) > 0, then let
S(e) := J(e) × �

Rv(e−), Rv(e+)� in the cylinder �/� × [0, R]. Each such S(e) is a square and the set
of all such squares tiles �/� × [0, R]. For the (2,3,7)-triangle tessellation of the hyperbolic place, the
result is shown in Figure 9.4. This works on finite networks too, of course. For example, a square
tiling of a cylinder arising from a 21 × 21 grid in the plane is shown in Figure 9.4. When current
flows from one vertex to another on the same face (such as the outer face), then one can unroll the
cylinder to a rectangle, as in Figure 9.5. The polar embeddings of large pieces of the square lattice
have an interesting structure, as shown in Figure 9.6. See Section II.2 of Bollobás (1998) for more on
square tilings, following the original work of Brooks, Smith, Stone, and Tutte (1940). There are also
connections to Riemann’s mapping theorem; see Cannon, Floyd, and Parry (1994).



§6. Notes 331

Figure 9.4. Tilings of cylinders by squares corresponding to the (2,3,7)-
triangle tessellation of the hyperbolic plane on the left and the 21× 21 grid
with current from its center vertex to its boundary vertices on the right.

Figure 9.5. A tiling of a rectangle by squares corresponding to the 10× 10
grid with current from one corner vertex to its opposite corner vertex.
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Figure 9.6. The polar embeddings of a 41 × 41 square
grid graph from its center vertex to its boundary vertices.

▷ Exercise 9.11.
We have seen that in square tilings of cylinders corresponding to planar graphs, the squares correspond
to edges and horizontal segments correspond to vertices. What corresponds to the faces of the planar
graphs?

▷ Exercise 9.12.
Given distinct ai > 0 with

∑k
i=1 ai = 1, let N(a1, . . . , ak ) be the number of tilings of a unit square by

rectangles whose areas are a1, . . . , ak . Show that N(a1, . . . , ak ) depends on k but not otherwise on ai .

Carmesin and Georgakopoulos (2015) show that every nonamenable planar graph has nonunique
currents. The proof relies on a result of Carmesin (2012), which says that a network (G, c) has
nonunique currents iff there are disjoint W1,W2 ⊂ 𝖵(G) such that G↾Wi are both transient and there is
a function f :𝖵(G)→ �with finite Dirichlet energy and with f ↾Wi each being constant, different for
i = 1 than for i = 2.

Theorem 9.18 also follows immediately from a theorem of Holopainen and Soardi (1997), which
says that the property HD = � is preserved under rough isometries between graphs and manifolds,
together with a theorem of Dodziuk (1979), which says that �d satisfies HD = � iff d ≥ 3.

We say that a Markov chain has the Liouville property if all bounded harmonic functions for that
chain are constant. In contrast to Proposition 9.8, the Liouville property of a network (G, c) is not stable
under change of conductances by a bounded factor; see Exercise 14.19.

Determining which random walks on groups have the Liouville property is very important, and is a
central theme of Chapter 14. Here we discuss only the abelian case. The following is due to Blackwell
(1955), later generalized by Choquet and Deny (1960). We say a function f is µ-harmonic if, for all x,
we have f (x) =

∑
µ(g)>0 µ(g) f (xg).

Theorem 9.24. If Γ is an abelian group and µ is a probability measure on Γ with countable support
that generates Γ, then there are no nonconstant bounded µ-harmonic functions.

Proof. (Due to Dynkin and Maljutov (1961).) Let f be a harmonic function. For any element g of the
support of µ, the function wg(x) := f (x) − f (xg) is also harmonic because Γ is abelian. If f is not
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constant, then for some g, the function wg is not identically 0, whence it takes, say, a positive value.
Let M := supwg . If M = ∞, then f is not bounded. Otherwise, for any x, we have

wg(x) =
∑
µ(h)>0

µ(h)wg(xh) ≤ M
�
1 − µ(g)� + µ(g)wg(xg) ,

which is to say that
M − wg(xg) ≤ �

M − wg(x)�/µ(g) .
Iterating this inequality gives for all n ≥ 1,

M − wg(xgn) ≤ �
M − wg(x)�/µ(g)n .

Choose x so that M − wg(x) < Mµ(g)n/2. Then wg(xgk ) > M/2 for k = 0, . . . , n, whence∑n
k=0 wg(xgk ) = f (x) − f (xgn+1) > M(n + 1)/2. Since n is arbitrary, f is not bounded. ◀
By Exercise 9.44, if a graph has no nonconstant bounded harmonic functions, then it also has no

nonconstant Dirichlet harmonic functions. Thus, Theorem 9.24 strengthens Corollary 9.10 for abelian
groups.

▷ Exercise 9.13.
Give another proof of Theorem 9.24 using the Kreı̆n-Milman theorem.

▷ Exercise 9.14.
Give another proof of Theorem 9.24 using the Hewitt-Savage theorem.

▷ Exercise 9.15.
Complete the following alternative proof of Theorem 9.24. Let f be a bounded µ-harmonic function.
Define

un(x) :=
∑

y1 , . . .,yn

(
f
(
x +

n∑
i=1

yi

)
− f

(
x +

n∑
i=2

yi

))2 n∏
i=1

µ(yi ) .

(a) Show that un(x) ≤ un+1(x).
(b) Show that

un(x) =
∑

y1 , . . .,yn

f
(
x +

n∑
i=1

yi

)2 n∏
i=1

µ(yi ) −
∑

y2 , . . .,yn

f
(
x +

n∑
i=2

yi

)2 n∏
i=2

µ(yi ) .

(c) Show that
∑

n un(x) < ∞.
(d) Show that u1(x) = 0.

▷ Exercise 9.16.
Show that if G is a Cayley graph of a finitely generated abelian group Γ and µ is a symmetric probability
measure on Γ with finite support that generates Γ, then there are no nonconstant µ-harmonic functions
h whose growth is sublinear in distance, that is, such that h(x)/distG (o, x)→ 0 as distG (o, x)→ ∞.

Benjamini, Gurel-Gurevich, and Lyons (2007) suggest that a Brownian analogue of Theorem 9.19
may be true, that is, given Brownian motion on a transient Riemannian manifold, the 1-neighborhood of
its trace is recurrent for Brownian motion. For background on recurrence in the Riemannian context,
see, for example, Section 2.9. It would be interesting to prove similar theorems for other processes. For
example, consider the trace of a branching random walk on a graph G. Then Benjamini, Gurel-Gurevich,
and Lyons (2007) conjecture that almost surely the trace is recurrent for branching random walk with
the same branching law. Partial results have been proved by Benjamini and Müller (2012).
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9.7 Collected In-Text Exercises

9.1. Calculate ieF and ieW in a regular tree.

9.2. Let Hn be increasing closed subspaces of a Hilbert space H and Pn be the orthogonal
projection on Hn . Let P be the orthogonal projection on the closure of

∪
Hn . Show that for all u ∈ H ,

we have ∥Pnu − Pu∥ → 0 as n → ∞.

9.3. Prove Proposition 9.2.

9.4. Show that the choice of path in the definition of the free and wired currents from a to z does
not influence their values.

9.5. Prove Proposition 9.4.

9.6. (a) Show that ∇D0 =⋆.
(b) Show that D/� = D̃0/� ⊕HD/�, where D̃0 := D0 +�.
(c) Show that currents are unique iff D/� = D̃0/�.
(d) Show that ∥1 − D0∥2

D = C (o↔ ∞)/�1 + C (o↔ ∞)�, where o is the vertex used to define the
inner product on D.

(e) Show that G is recurrent iff 1 ∈ D0.
(f) (Royden Decomposition) Show that if G is transient, then every f ∈ D has a unique

decomposition f = g + h with g ∈ D0 and h ∈ HD. Note that this is not an orthogonal decomposition.
(g) With the assumption and notation of part (f), show that g(x) = (∇ f , ix )r and that g(x)2 ≤

D( f )G (x, x)/π(x), where ix is the unit current flow from x to infinity (from Proposition 2.12) and
G (•, •) is the Green function.

(h) Show that if G is transient, then ∇: D0 →⋆ is invertible with bounded inverse.

9.7. One can define the product of two networks in various ways. For example, given two
networks Gi = (𝖵i , 𝖤i ) with conductances ci (i = 1, 2), define the Cartesian product G = (𝖵, 𝖤) with
conductances c by 𝖵 := 𝖵1 × 𝖵2,

𝖤 :=
{�(x1, x2), (y1, y2)� ;

�
x1 = y1, (x2, y2) ∈ 𝖤2

�
or

�(x1, y1) ∈ 𝖤1, x2 = y2
�}
,

and
c
�(x1, x2), (y1, y2)� :=

{ c(x2, y2) if x1 = y1
c(x1, y1) if x2 = y2.

We write G = G1 □G2. Show that if Gi are infinite locally finite graphs with unit conductances, then G
has unique currents.

9.8. Let G be transient and let f ∈ D0. Show that there is a unique g ∈ D0 having minimal energy
such that g ≥ | f |. Show that this g is superharmonic, meaning that for all vertices x,

g(x) ≥ 1
π(x)

∑
y∼x

c(x, y)g(y) .

9.9. With f ∈ D and f defined as in Lemma 9.15, show that
�

f (x(ρ, •)) − f
�
L1 → 0 as ρ ↑ 1.

9.10. Prove Lemma 9.22.

9.11. We have seen that in square tilings of cylinders corresponding to planar graphs, the squares
correspond to edges and horizontal segments correspond to vertices. What corresponds to the faces of
the planar graphs?
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9.12. Given distinct ai > 0 with
∑k

i=1 ai = 1, let N(a1, . . . , ak ) be the number of tilings of a
unit square by rectangles whose areas are a1, . . . , ak . Show that N(a1, . . . , ak ) depends on k but not
otherwise on ai .

9.13. Give another proof of Theorem 9.24 using the Kreı̆n-Milman theorem.

9.14. Give another proof of Theorem 9.24 using the Hewitt-Savage theorem.

9.15. Complete the following alternative proof of Theorem 9.24. Let f be a bounded µ-harmonic
function. Define

un(x) :=
∑

y1 , . . .,yn

(
f
(
x +

n∑
i=1

yi

)
− f

(
x +

n∑
i=2

yi

))2 n∏
i=1

µ(yi ) .

(a) Show that un(x) ≤ un+1(x).
(b) Show that

un(x) =
∑

y1 , . . .,yn

f
(
x +

n∑
i=1

yi

)2 n∏
i=1

µ(yi ) −
∑

y2 , . . .,yn

f
(
x +

n∑
i=2

yi

)2 n∏
i=2

µ(yi ) .

(c) Show that
∑

n un(x) < ∞.
(d) Show that u1(x) = 0.

9.16. Show that if G is a Cayley graph of a finitely generated abelian group Γ and µ is a symmetric
probability measure on Γ with finite support that generates Γ, then there are no nonconstant µ-
harmonic functions h whose growth is sublinear in distance, that is, such that h(x)/distG (o, x)→ 0 as
distG (o, x)→ ∞.

9.8 Additional Exercises

9.17. Let G be an infinite network exhausted by finite induced subnetworks ⟨Gn⟩. Form GW
n by

identifying the complement of Gn to a single vertex.
(a) Given θ ∈ ℓ2

−(𝖤, r), define f := d∗θ. Let in be the current on GW
n such that d∗in↾𝖵(Gn) =

f ↾𝖵(Gn). Show that in → P⋆θ in ℓ2
−(𝖤, r).

(b) Let f :𝖵 → � and in be the current on GW
n such that d∗in↾𝖵(Gn) = f ↾𝖵(Gn). Show that

sup E (in) < ∞ iff there is some θ ∈ ℓ2
−(𝖤, r) such that f = d∗θ.

9.18. Let G be a network and, if G is recurrent, z ∈ 𝖵. LetH be the Hilbert space of functions f on 𝖵
with

∑
x ,y π(x)G (x, y) f (x) f (y) < ∞. Give H the inner product ⟨ f , g⟩ :=

∑
x ,y π(x)G (x, y) f (x)g(y),

where G (•, •) is the Green function for random walk, absorbed at z if G is recurrent. Define the
divergence operator by div θ := π−1d∗θ. Show that div:⋆→ H is an isometric isomorphism.

9.19. Let G be a transient network. Define the space H as in Exercise 9.18 and G , I, and P as in
Exercise 2.27. Show that I − P is a bounded operator from D0 to H with bounded inverse G .

9.20. Let G be a transient network. Show that if u ∈ D0 is superharmonic, then u ≥ 0.

9.21. Let G be a transient network and f ∈ HD. Show that there exist nonnegative u1, u2 ∈ HD such
that f = u1 − u2.

9.22. Let u ∈ D. Show that u is superharmonic iff D(u) ≤ D(u + f ) for all nonnegative f ∈ D0.
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9.23. Show that if G is recurrent, then the only superharmonic Dirichlet functions are the constants.
Hint: If u is superharmonic, then use f := u − Pu in Exercise 9.17, where P is the transition operator
defined in Exercise 2.27. Use Exercise 2.60 to show that f = 0.

9.24. Suppose that there is a finite set K of vertices such that G\K has at least two transient
components, where this notation indicates that K and all edges incident to K are deleted from G. Show
that G has a nonconstant harmonic Dirichlet function.

9.25. Find the free and wired effective resistances between arbitrary pairs of vertices in regular trees.

9.26. Let r and r′ be two assignments of resistances to a graph with r ≤ r′ everywhere. Let a
and z be two vertices in the graph. Prove the two inequalities RF(a ↔ z; r) ≤ RF(a ↔ z; r′) and
RW(a ↔ z; r) ≤ RW(a ↔ z; r′).

9.27. Let a and z be distinct vertices in a network. Show that the wired effective resistance between
a and z equals

min
�
E (θ) ; θ is a unit flow from a to z

	
,

whereas the free effective resistance between a and z equals

min
{
E (θ) ; θ −

k∑
j=1

χe j ∈ ♢
}

for any oriented path e1, . . . , ek from a to z.

9.28. Let G be a network with an induced exhaustion ⟨Gn⟩. Suppose that a, z ∈ 𝖵(Gn) for all n.
Show that the effective resistance between a and z in Gn is monotone decreasing with limit the free
effective resistance in G, whereas the effective resistance between a and z in GW

n is monotone increasing
with limit the wired effective resistance in G.

9.29. Let G be an infinite network and x, y ∈ 𝖵(G). Show that

RW(x ↔ y) ≤ R(x ↔ ∞) + R(y ↔ ∞) .

9.30. Let G be a finite plane network. In the notation of Proposition 9.4, show that the maximum
flow from a to z in G′ when the conductances are regarded as capacities is equal to the distance between
b and y in (G†)′ when the resistances are regarded as edge lengths.

9.31. Suppose that G is a plane graph with bounded degree and bounded number of sides of its faces.
Show that G is transient iff G† is transient. On the other hand, give an example of a recurrent plane
graph of bounded degree and with one end whose plane dual is transient.

9.32. Let G be transient, a ∈ 𝖵, and f (x) := G (x, a)/π(a). Show that f ∈ D0 and ∇ f = ia , the unit
current flow from a to∞.

9.33. Let BD denote the space of bounded Dirichlet functions with the norm ∥ f ∥ := ∥ f ∥∞ + ∥df ∥c .
Show that BD is a commutative Banach algebra (with respect to the pointwise product) and that BD∩D0
is a closed ideal.

9.34. Let G be a network.
(a) Show that G is recurrent iff every (or some) star lies in the closed span of the other stars.
(b) Show that if G is transient, then the current flow from any vertex a to infinity corresponding

to unit voltage at a and zero voltage at infinity is the orthogonal projection of the star at a on the
orthocomplement of the other stars. (Here, the current flow is ia/E (ia).)
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9.35. Show that no transient tree has unique currents; use Exercise 2.49 instead of Theorem 9.12.

9.36. Let G be a recurrent network. Show that if θ ∈ ℓ2
−(𝖤, r) satisfies

∑
x |d∗θ(x)| < ∞, then∑

x d∗θ(x) = 0.

9.37. Show that ∥d(P f )∥c ≤ ∥df ∥c for all f ∈ D, where P is the transition operator defined in
Exercise 2.27.

9.38. Let (G, c) be an infinite network. Show that Φ𝖤(G, c, π) > 0 iff ℓ2(𝖵, π) = D0.

9.39. Let G be a transient network and ix be the unit current flow from x to infinity. Given
θ ∈ ℓ2

−(𝖤, r), define F(x) := (θ, ix )r . Show that F ∈ D0 and ∇F = P⋆θ.

9.40. Let G be a transient network and ix be the unit current flow from x to infinity. Show that
ix − iy = ix ,yW for all x ̸= y ∈ 𝖵.

9.41. Let a ̸= z ∈ 𝖵.
(a) Show that if F ∈ D, then (∇F, ia,zF )r = F(a) − F(z).
(b) Show that if F ∈ D0, then (∇F, ia,zW )r = F(a) − F(z).

9.42. Let a and z be distinct vertices in a network. Show that the free effective conductance between
a and z equals

min
�
D(F) ; F ∈ D, F(a) = 1, F(z) = 0

	
,

whereas the wired effective conductance between a and z equals

min
�
D(F) ; F ∈ D0, F(a) = 1, F(z) = 0

	
.

9.43. Let a and z be distinct vertices in a network. Show that the free effective conductance between
a and z equals

min
{ ∑

e∈𝖤1/2

c(e)ℓ(e)2
}
,

where ℓ is an assignment of nonnegative lengths so that the associated shortest-path distance from a to
z is 1, whereas the wired effective conductance between a and z equals

inf
{ ∑

e∈𝖤1/2

c(e)ℓ(e)2
}
,

where ℓ is an assignment of nonnegative lengths so that the distance from a to z is 1, where in measuring
the distance, we also allow “extended paths” from a to z that pass via∞, that is, the union of an infinite
path from a and an infinite path from z.

9.44. Show that the bounded harmonic Dirichlet functions are dense in HD.

9.45. Let G be an infinite graph and H be a finite graph. Consider the Cartesian product graph
G □ H .

(a) Show that every f ∈ HD(G □ H) has the property that it does not depend on the second
coordinate, that is, f (x, y) = f (x, z) for all x ∈ 𝖵(G) and all y, z ∈ 𝖵(H).

(b) Show that if e is an edge in G □ H that connects (x, y) and (x, z), then YF(e, e) = YW(e, e).
9.46. Let W ⊆ 𝖵 be such that for all x ∈ 𝖵, random walk started at x eventually visits 𝖵 \W , that is,

Px [τ𝖵\W < ∞] = 1. Show that if f ∈ D is supported on W and is harmonic at all vertices in W , then
f ≡ 0.
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9.47. Prove the following variant of Theorem 9.7. If G is a network such that for every pair P1,P2
of disjoint simple paths, there exist vertices xn ∈ P1 and yn ∈ P2 and edge-disjoint subgraphs Hn of
G containing both xn and yn with the property that

∑
n C (xn ↔ yn; Hn) = ∞, then G has unique

currents.

9.48. Give an example of a graph with unique currents and with nonconstant bounded harmonic
functions.

9.49. Extend Theorem 9.9 to show that under the same assumptions, HD and HD′ have the same
dimensions.

9.50. Suppose that there is a rough embedding from a network G to a network G′ such that each
vertex of G′ is within some constant distance of the image of 𝖵(G). Show that if G has unique currents,
then so does G′.

9.51. Show that the result of Exercise 9.8 also holds when G is recurrent.

9.52. Let G be a transient network. Suppose that f ∈ D0, h is harmonic, and |h| ≤ | f |. Prove that
h = 0.

9.53. Give a transient planar network with unique currents.

9.54. Complete an alternative proof of Theorem 9.17 as follows. Show that by subdividing (adding
vertices to) edges as necessary, we may assume that for each k, there is a set of vertices Πk where
v = 1 − 1/k and such that the random walk visits Πk a.s. Show that the harmonic measure on Πk

“converges” to Lebesgue measure on the circle.

9.55. Give an example of two recurrent graphs (𝖵, 𝖤i ) (i = 1, 2) on the same vertex set 𝖵 whose
union (𝖵, 𝖤1 ∪ 𝖤2) is transient. On the other hand, show that on any transient network, the union of
finitely many traces is a.s. recurrent, even if the random walks that produce the traces are dependent.
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10 Uniform
Spanning Forests

In Chapter 4, we looked at the remarkable model of uniform spanning trees in finite (or
recurrent) graphs. In this chapter, we extend this model to infinite transient graphs.
We will discover several fascinating things. Besides the intimate connections between

spanning trees, random walks, and electric networks exposed in Chapter 4 and deepened here,
we will also find an intimate connection to harmonic Dirichlet functions. This leads to an
unexpected constancy of expected degree when different generators are used to form a Cayley
graph of a given group. We will see some amazing phase transitions of uniform spanning
forests in Euclidean space as the dimension increases, and then again in hyperbolic space.
Many interesting questions remain open, some of which are collected in the last section.
It turns out that there are two important ways to extend the ideas of Chapter 4 to connected

infinite graphs. In each case, sometimes we end up with spanning trees, but other times, with
spanning forests, all of whose trees are infinite. Recall that a forest is a graph all of whose
connected components are trees. Some of the results in Sections 10.5 and 10.6 are the most
difficult to prove in the entire book, but we hope their interest will reward the reader’s efforts.
Most unattributed results in this chapter are from Benjamini, Lyons, Peres, and Schramm
(2001), hereinafter referred to as BLPS (2001).

10.1 Limits over Exhaustions

How can one define a “uniform” spanning tree on an infinite graph? One natural way to try
is to take the uniform spanning tree on each of a sequence of finite subgraphs that grow larger
and larger so as to exhaust the whole infinite graph, hoping all the while that the measures on
spanning trees have some sort of limit. We saw in Section 4.2 that this works for recurrent
graphs. Luckily for us, this works also on transient graphs. In fact, there are two ways to
make it work. Here are the details.
Let G be an infinite connected locally finite network; in fact, throughout this chapter,

assume our graphs are locally finite. Let Gn = (𝖵n, 𝖤n) be finite connected subgraphs that
exhaust G, that is, Gn ⊆ Gn+1 and G =

∪
Gn. Let µF

n be the (weighted) uniform spanning
tree probability measure on Gn that is described in Chapter 4 (the superscript F stands for
“free” and will be explained in the paragraph after next). Given a finite set B of edges, we
have B ⊆ 𝖤n for large enough n and, for such n, we claim that µF

n[B ⊆ T] is decreasing in n,
where T denotes the random spanning tree. To see this, let i(e; H) be the current that flows
along e when a unit current is imposed in the network H from the tail to the head of e. Write



340 Chap. 10: Uniform Spanning Forests

B = {e1, . . . , em}. By Kirchhoff’s effective resistance formula, we have that

µF
n[B ⊆ T] =

m∏
k=1

µF
n[ek ∈ T | ∀ j < k e j ∈ T] =

m∏
k=1

i
�
ek ; Gn/{e j ; j < k}�

≥
m∏
k=1

i
�
ek ; Gn+1/{e j ; j < k}� (10.1)

= µF
n+1[B ⊆ T] ,

where the inequality is from Rayleigh’s monotonicity principle. In particular, µF[B ⊆ F] :=
limn→∞ µ

F
n[B ⊆ T] exists. (Here, we denote a random forest by F and a random tree by T to

avoid prejudice about whether the forest is a tree. We say “forest” since if B contains a cycle,
then by our definition, µF[B ⊆ F] = 0.) It follows that we may define µF on all elementary
cylinder sets (that is, sets of the form {F ; B1 ⊆ F, B2 ∩ F = ∅} for finite disjoint sets
B1, B2 ⊂ 𝖤) by the inclusion-exclusion formula:

µF[B1 ⊆ F, B2 ∩F = ∅] :=
∑
S⊂B2

µF[B1 ∪ S ⊆ F](−1)|S |

=
∑
S⊂B2

lim
n→∞

µF
n[B1 ∪ S ⊆ F](−1)|S |

= lim
n→∞

µF
n[B1 ⊆ T , B2 ∩ T = ∅] .

This lets us define µF on cylinder sets, that is, finite (disjoint) unions of elementary cylinder
sets. Again, µF(A ) = limn→∞ µ

F
n(A ) for cylinder sets A , so these probabilities are consistent

and so, by Kolmogorov’s theorem, uniquely determine a probability measure µF on subgraphs
of G. We call µF the free (uniform) spanning forest measure on G, denoted 𝖥𝖲𝖥 or 𝖥𝖴𝖲𝖥,
since clearly it is carried by the set of spanning forests of G. We say that µF

n converges
weakly to 𝖥𝖲𝖥. The term “free” will be explained in a moment.
How can it be that the limit 𝖥𝖲𝖥 is not concentrated on the set of spanning trees of G?

This happens if, for some x, y ∈ 𝖵, the µF
n-distributions of the distance in T between x and

y do not form a tight family. For example, if G is the lattice graph �d, Pemantle (1991)
proved the remarkable theorem that 𝖥𝖲𝖥 is concentrated on spanning trees iff d ≤ 4 (see
Theorem 10.30).

Now there is another possibility for taking similar limits. In disregarding the complement
of Gn, we are (temporarily) disregarding the possibility that a spanning tree or forest of G may
connect the boundary vertices of Gn in ways that would affect the possible connections within
Gn itself. An alternative approach takes the opposite view and forces all connections outside
of Gn: As in the proof of Theorem 2.11 and in Chapter 9, let GW

n be the graph obtained from
Gn by identifying all the vertices of G \Gn to a single vertex, zn. (The superscript W stands
for “wired,” since we think of GW

n as having its boundary “wired” together.) Assume now that
each subgraph Gn is an induced subgraph. Let µW

n be the random spanning tree measure on
GW

n . For any finite B ⊂ 𝖤 and any n with B ⊂ 𝖤(Gn), we have µW
n [B ⊆ T] ≤ µW

n+1[B ⊆ T]:
this is proved just like the inequality (10.1), with the key difference that

m∏
k=1

i
�
ek ; GW

n /{e j ; j < k}� ≤ m∏
k=1

i
�
ek ; GW

n+1/{e j ; j < k}�
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since GW
n may be obtained from GW

n+1 by contracting still more edges. Thus, we may again
define the limiting probability measure µW, called the wired (uniform) spanning forest and
denoted𝖶𝖲𝖥 or𝖶𝖴𝖲𝖥. In the case where G is itself a tree, the free spanning forest is trivially
concentrated on just {G}, whereas the wired spanning forest is usually more interesting (see
Exercise 10.5). In statistical mechanics, measures on infinite configurations are also defined
using limiting procedures similar to those employed here to define 𝖥𝖲𝖥 and𝖶𝖲𝖥. One needs
to specify boundary conditions, just as we did. The terms “free” and “wired” have analogous
uses there.
As we will see, the wired spanning forest is much better understood than the free one. For

example, there is a direct construction of it that avoids exhaustions: Let G be a transient
network. Define F0 = ∅. Inductively, for each n = 1, 2, . . . , pick a vertex xn and run a
network random walk starting at xn. Stop the walk when it hits Fn−1, if it does, but otherwise
let it run indefinitely. Let Pn denote this walk. Since G is transient, with probability
1, Pn visits no vertex infinitely often, so its loop erasure 𝖫𝖤(Pn) is well defined. Set
Fn := Fn−1 ∪ 𝖫𝖤(Pn) and F :=

∪
nFn. Assume that the choices of the vertices xn are made

in such a way that {x1, x2, . . .} = 𝖵. The same reasoning as in Section 4.1 shows that the
resulting distribution on forests is independent of the order in which we choose starting
vertices. This also follows from the result we are about to prove. We will refer to this method
of generating a random spanning forest as Wilson’s method rooted at infinity (although it
was introduced by BLPS (2001)).

Proposition 10.1. The wired spanning forest on any transient network G is the same as the
random spanning forest generated by Wilson’s method rooted at infinity.

Proof. For any path ⟨xk⟩ that goes to∞, 𝖫𝖤�⟨xk ; k ≤ K⟩� converges to 𝖫𝖤�⟨xk ; k ≥ 0⟩� as
K → ∞. That is, if 𝖫𝖤

�⟨xk ; k ≤ K⟩� = ⟨uK
i ; i ≤ mK ⟩ and 𝖫𝖤

�⟨xk ; k ≥ 0⟩� = ⟨ui ; i ≥ 0⟩,
then for each i and all large K , we have uK

i = ui; this follows from the definition of loop
erasure. Since G is transient, it follows that if ⟨Xk⟩ is a random walk starting from any fixed
vertex, then 𝖫𝖤

�⟨Xk ; k ≤ K⟩�→ 𝖫𝖤
�⟨Xk ; k ≥ 0⟩� as K → ∞ a.s.

Let Gn be an exhaustion of G by induced subgraphs and GW
n the graph formed by

contracting the vertices outside Gn to a vertex zn. Let T(n) be a random spanning tree on GW
n

and F the limit of T(n) in law. Given e1, . . . , eM ∈ 𝖤, let


Xk(ui)� be independent random

walks starting from the endpoints u1, . . . , uL of e1, . . . , eM . Run Wilson’s method rooted
at zn from the vertices u1, . . . , uL in that order; actually, we do not use zn but simply stop
the random walks once they leave Gn. In this way, we can couple all the random walks and
spanning trees by using the same (infinite) random walk paths from each u j regardless of
n. Let τnj be the time that



Xk(u j)� reaches the portion of the spanning tree created by the

preceding random walks


Xk(ul)� (l < j). Then

P[ei ∈ T(n) for 1 ≤ i ≤ M] = P
[
ei ∈

L∪
j=1

𝖫𝖤
�⟨Xk(u j) ; k ≤ τnj ⟩

�
for 1 ≤ i ≤ M

]
.

Let τj be the stopping times corresponding to Wilson’s method rooted at infinity. We use the
same random walks as we did in Gn. By induction on j, we see that τnj → τj as n → ∞, so
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that

P[ei ∈ F for 1 ≤ i ≤ M] = P
[
ei ∈

L∪
j=1

𝖫𝖤
�⟨Xk(u j) ; k ≤ τj⟩� for 1 ≤ i ≤ M

]
;

in other words, F has the same law as the random spanning forest generated by Wilson’s
method rooted at infinity. ◀

We will see that in many important cases, such as �d, the free and wired spanning forests
agree. In fact, such agreement will be crucial to understanding the free spanning forest.

▷ Exercise 10.1.
The choice of exhaustion ⟨Gn⟩ does not change the resulting measure𝖶𝖲𝖥 by the proof of
Proposition 10.1. Show that the choice also does not change the resulting measure 𝖥𝖲𝖥.

An automorphism of a network is an automorphism of the underlying graph that preserves
edge weights.

▷ Exercise 10.2.
Show that 𝖥𝖲𝖥 and 𝖶𝖲𝖥 are invariant under any automorphisms that the network may have.

▷ Exercise 10.3.
Show that if G is an infinite recurrent network, then the wired spanning forest on G is the
same as the free spanning forest, that is, the random spanning tree of Section 4.2.

▷ Exercise 10.4.
Let G be a network such that there is a finite subset of edges whose removal from G leaves at
least two transient components. Show that the free and wired spanning forests are different
on G.

▷ Exercise 10.5.
Let G be a tree with unit conductances. Show that 𝖥𝖲𝖥 = 𝖶𝖲𝖥 iff G is recurrent.

Proposition 10.2. Let G be a locally finite network. For both 𝖥𝖲𝖥 and𝖶𝖲𝖥, all trees are a.s.
infinite.

Proof. A finite tree, if it occurs, must occur with positive probability at some specific location,
meaning that certain specific edges are present and certain other specific edges surrounding
the edges of the tree are absent. But every such event has probability 0 for the approximations
µF
n and µW

n , provided n is large enough, and there are only countably many such events. ◀
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▷ Exercise 10.6.
Let G be an edge-amenable infinite graph as witnessed by the vertex sets ⟨𝖵n⟩ (see Section 4.3).
Let Gn be the subgraph induced by 𝖵n.

(a) Let F be any spanning forest all of whose components (trees) are infinite. Show that
if kn denotes the number of trees of F ∩ Gn, then kn = o

�|𝖵n |�.
(b) Let F be a random spanning forest all of whose components (trees) are infinite.

Show that the average degree, in two senses, of vertices is 2:

lim
n→∞

|𝖵n |−1
∑
x∈𝖵n

degF(x) = 2 a.s.

and
lim
n→∞

|𝖵n |−1
∑
x∈𝖵n

E
�
degF(x)

�
= 2 .

In particular, if G is a transitive graph such as �d , then every vertex has expected degree 2 in
both the free spanning forest and the wired spanning forest.

▷ Exercise 10.7.
Let (T , c) be a network on a tree and e ∈ T . Show that𝖶𝖲𝖥[e ∈ F] < 1 iff both components
of T\e are transient.

10.2 Coupling, Harmonic Dirichlet Functions, and Expected Degree

Often 𝖥𝖲𝖥 = 𝖶𝖲𝖥; investigating when this happens will leads us to some quite interesting
phenomena. In all cases, though, there is a simple inequality between these two probability
measures, namely,

∀e ∈ 𝖤 𝖥𝖲𝖥[e ∈ F] ≥ 𝖶𝖲𝖥[e ∈ F] , (10.2)
since given an induced exhaustion Gn, by Rayleigh’s monotonicity principle, this is true for
µF
n and µW

n as soon as n is large enough that e ∈ 𝖤(Gn). Alternatively, we can write

𝖥𝖲𝖥[e ∈ F] = ieF(e) and 𝖶𝖲𝖥[e ∈ F] = ieW(e) (10.3)

by Propositions 9.1 and 9.2 combined with Kirchhoff’s effective resistance formula. In (9.3),
we saw the inequality (10.2) for these currents.

More generally, we claim that for every increasing cylinder set A , we have

𝖥𝖲𝖥(A ) ≥ 𝖶𝖲𝖥(A ) . (10.4)

Recall that A is called increasing if ω ∪ {e} ∈ A whenever ω ∈ A . We therefore say that
𝖥𝖲𝖥 stochastically dominates 𝖶𝖲𝖥, and we write 𝖥𝖲𝖥 ≽ 𝖶𝖲𝖥. To show (10.4), it suffices
to show that for each increasing cylinder event A , we have µF

n(A ) ≥ µW
n (A ) as soon as n

is large enough that A depends only on the edge set 𝖤n. Note that Gn is a subgraph of GW
n .

Thus, what we want is a consequence of the following more general result:
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Lemma 10.3. Let G be a connected subgraph of a finite connected graph H. Let µG and
µH be the corresponding uniform spanning tree measures. Then µG(A ) ≥ µH (A ) for every
increasing event A in the edge set 𝖤(G).
Proof. By induction, it suffices to prove this when H has only one more edge, e, than G.
Now

µH (A ) = µH [e ∈ T]µH [A | e ∈ T] + µH [e /∈ T]µH [A | e /∈ T] .
If µH [e /∈ T] = 0, then µH (A ) = µG(A ), whereas if µH [e /∈ T] > 0, then

µH [A | e ∈ T] ≤ µH [A | e /∈ T] = µG(A )

by Theorem 4.6. This gives the result. ◀

▷ Exercise 10.8.
Let G be a graph obtained by identifying some vertices of a finite connected graph H , keeping
all edges of H, though some may become loops. Let µG and µH be the corresponding
uniform spanning tree measures. Show that µG(A ) ≤ µH (A ) for every increasing event A

depending on the edges of G.

The stochastic inequality 𝖥𝖲𝖥 ≽ 𝖶𝖲𝖥 implies that the two measures, 𝖥𝖲𝖥 and 𝖶𝖲𝖥, can
be monotonically coupled. What this means is that there is a probability measure on the set{�

F1,F2
�

; Fi is a spanning forest of G and F1 ⊆ F2
}

that projects in the first coordinate to 𝖶𝖲𝖥 and in the second to 𝖥𝖲𝖥. It is easy to see that the
existence of a monotonic coupling implies the stochastic domination inequality. The converse
is surprising. This equivalence between existence of a monotonic coupling and stochastic
domination is quite a general result. In fact, we’ve encountered the notion of stochastic
domination before in Exercise 4.46 and Section 7.4. All these notions can be unified by
considering probability measures on partially ordered sets. In this generality, we present the
two equivalent definitions of stochastic domination on finite sets in the following theorem.
Extension to infinite sets is often straightforward.

Theorem 10.4. (Strassen, 1965) Let (X , ≼) be a partially ordered finite set with two
probability measures, µ1 and µ2. Call a subset A ⊆ X increasing if whenever x ∈ A and
x ≼ y, also y ∈ A. The following are equivalent:

(i) There is a probability measure 𝜈 on
�(x, y) ∈ X × X ; x ≼ y

	
whose coordinate

projections are µi .
(ii) We have µ1(A) ≤ µ2(A) for each increasing subset A ⊆ X .

In case these properties hold, we write µ1 ≼ µ2 and we say that µ1 is stochastically
dominated by µ2. We are interested here in the case where X consists of the subsets of edges
of a finite graph, ordered by ⊆.
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Proof. It turns out that this is a special case of the fecund max-flow min-cut theorem. The
coupling 𝜈 of (i) is a way to distribute the µ1-mass of each point x ∈ X among the points
y ≽ x in such a way as to obtain the distribution of µ2. This is just a more graphic way of
expressing the requirements of (i) that

∀x
∑
y≽x

𝜈(x, y) = µ1(x)

∀y
∑
x≼y

𝜈(x, y) = µ2(y) .

If we make a directed graph whose vertices are
�
X × {1}�∪ �X × {2}�∪ {∆1,∆2} with edges

from ∆1 to each vertex of X × {1}, from each vertex of X × {2} to ∆2, and from (x, 1) to
(y, 2) whenever x ≼ y, then we can think of 𝜈 as a flow from ∆1 to ∆2 by letting 𝜈(x, y) be
the amount of flow on the edge from (x, 1) to (y, 2). To put this into the framework of the
max-flow min-cut theorem, let the capacity of the edge joining ∆i with (x, i) be µi(x) for
i = 1, 2, while we set the capacity of all other edges to be 2.

It is evident that the condition (i) is that the maximum flow from ∆1 to ∆2 is 1. We
claim that the condition (ii) is that the minimum cutset sum is 1, from which the theorem
follows. To see this, note that any cutset of minimum sum does not use any edges of the
form ⟨(x, 1), (y, 2)⟩, since these all have capacity 2. Thus, given a minimum cutset sum, let
B × {1} be the set of vertices in X × {1} that are not separated from ∆1 by the cutset. By
minimality, we have that the set of vertices in X × {2} that are separated from ∆2 is A × {2},
where

A :=
�
y ∈ X ; ∃x ∈ B x ≼ y

	
.

Thus, the cutset sum is µ2(A) + 1 − µ1(B). Note that A is an increasing set that contains
B. Thus, we may increase B to A if B ̸= A while not increasing the cutset sum. That
is, minimality again shows that, without loss of generality, B = A, whence the cutset
sum is µ2(A) + 1 − µ1(A). Conversely, every increasing A yields a cutset sum equal to
µ2(A) + 1 − µ1(A). Thus, the minimum cutset sum equals 1 iff (ii) holds, as claimed. ◀
Corollary 10.5. On every infinite network G, we have 𝖥𝖲𝖥 ≽ 𝖶𝖲𝖥, and there is a monotone
coupling (F1,F2) ∈ 2𝖤(G) × 2𝖤(G) with F1 ∼ 𝖥𝖲𝖥, F2 ∼ 𝖶𝖲𝖥, and F1 ⊇ F2 a.s.

Proof. We have already proved that 𝖥𝖲𝖥 ≽ 𝖶𝖲𝖥, whence by Theorem 10.4, we may
monotonically couple the measures induced by 𝖥𝖲𝖥 and𝖶𝖲𝖥 on any finite subgraph of G. By
taking an exhaustion of G and a weak limit point of these couplings, we obtain a monotone
coupling of 𝖥𝖲𝖥 and 𝖶𝖲𝖥 on all of G. ◀
The coupling shows that 𝖥𝖲𝖥(A ) ≥ 𝖶𝖲𝖥(A ) not only for all increasing cylinder events A

but for all increasing events A .

Question 10.6. The proof of Corollary 10.5 implicitly involves making a choice of a coupling
for each finite graph in an exhaustion of G. Since there is no “canonical” choice, we do not
necessarily get an invariant coupling in the limit, even though 𝖥𝖲𝖥 and𝖶𝖲𝖥 are automorphism
invariant by Exercise 10.2. Is there a “natural” monotone coupling of 𝖥𝖲𝖥 and 𝖶𝖲𝖥? In
particular, is there a monotone coupling that is invariant under all graph automorphisms? As



346 Chap. 10: Uniform Spanning Forests

we will see soon, 𝖥𝖲𝖥 = 𝖶𝖲𝖥 on amenable Cayley graphs, so in that case, there is nothing
to do. Bowen (2004) has proved there is an invariant monotone coupling for all so-called
residually amenable groups. This was extended by Lyons and Thom (2016) to all so-called
sofic groups. On the other hand, there do exist invariant percolation processes that have
monotone couplings but no invariant monotone coupling, as shown by Mester (2013).

▷ Exercise 10.9.
Show that the number of trees in the free spanning forest on a network is stochastically
dominated by the number in the wired spanning forest on the network. Show that if the
number of trees in the free spanning forest is a.s. finite, then, in distribution, it equals the
number in the wired spanning forest iff 𝖥𝖲𝖥 = 𝖶𝖲𝖥.

So when are the free and wired spanning forests the same? Here is one test.

Proposition 10.7. If E
�
degF(x)

�
is the same under 𝖥𝖲𝖥 and 𝖶𝖲𝖥 for every x ∈ 𝖵, then

𝖥𝖲𝖥 = 𝖶𝖲𝖥.

Proof. In the monotone coupling described earlier, the set of edges adjacent to a vertex x in
the 𝖶𝖲𝖥 is a subset of those adjacent to x in the 𝖥𝖲𝖥. The hypothesis implies that for each x,
these two sets coincide a.s. ◀

Note that this proof works for any pair of measures where one stochastically dominates the
other.

Remark 10.8. It follows that if 𝖥𝖲𝖥 and𝖶𝖲𝖥 agree on single-edge probabilities, that is, if
equality holds in (10.2) for all e ∈ 𝖤, then 𝖥𝖲𝖥 = 𝖶𝖲𝖥. This is due to Häggström (1995).

We may now deduce that 𝖥𝖲𝖥 = 𝖶𝖲𝖥 for many graphs, including Cayley graphs of abelian
groups such as �d. Call a graph or network transitive if, for every pair of vertices x and y,
there is an automorphism of the graph or network that takes x to y.

The following is essentially due to Häggström (1995).

Corollary 10.9. On any transitive amenable network, 𝖥𝖲𝖥 = 𝖶𝖲𝖥, and for both measures,
the expected degree of every vertex is 2.

Proof. By transitivity and Exercise 10.6, E
�
degF(x)

�
= 2 for both 𝖥𝖲𝖥 and 𝖶𝖲𝖥. Apply

Proposition 10.7. ◀

▷ Exercise 10.10.
Give an amenable graph on which 𝖥𝖲𝖥 ̸= 𝖶𝖲𝖥.

The amenability assumption gave not only equality of the two forests but restricted their
expected degree to 2. What are the expected degrees otherwise?

Proposition 10.10. If G is a transitive network, the𝖶𝖲𝖥-expected degree of every vertex is
2.

Proof. If G is recurrent, then it is amenable by Theorem 6.7, and the result follows from
Corollary 10.9. So assume that G is transient. Think of the wired spanning forest as oriented
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toward infinity from Wilson’s method rooted at infinity; that is, orient each edge of the forest
in the direction it is last traversed by the associated random walk. We claim that the law of
the orientation does not depend on the choices in Wilson’s method rooted at infinity. Indeed,
since this obviously holds for finite graphs when orienting the tree toward a fixed root, it
follows by taking an exhaustion of G and using the proof of Proposition 10.1. Alternatively,
one can modify the proof of Theorem 4.1 to prove it directly.
Now the out-degree of every vertex in this orientation is 1. Fix a vertex o. We need to

show that the expected in-degree of o is 1. For this, it suffices to prove that for every neighbor
x of o, the probability that the edge ⟨x, o⟩ belongs to the oriented forest is the same as the
probability of the edge ⟨o, x⟩.
Now the probability of the edge ⟨o, x⟩ is

�
π(o)Po[τ+

o = ∞]�−1c(o, x)Px[τo = ∞] by
Exercise 4.26. Since π(x) = π(o) and G (x, x) = G (o, o) by transitivity, it follows from
Exercise 2.26 that

Px[τo < ∞] = Po[τx < ∞] . (10.5)
Combined with the previous sentence, this gives the result. ◀

Now what about the expected degree of a vertex in the 𝖥𝖲𝖥? This turns out to be even more
interesting than in the 𝖶𝖲𝖥. One can show (Lyons, 2009) from (10.3) and Definition 2.9 of
Gaboriau (2005) that the expected degree in an infinite transitive graph G equals 2 + 2β1(G),
where β1(G) is the so-called first ℓ2-Betti number of G. This is a nonnegative real number
whose definition was made originally by Atiyah (1976) in a continuous context, was extended
to a discrete context by Dodziuk (1977), was considerably extended by Cheeger and Gromov
(1986), and was made in this context by Gaboriau (2005). Consider the special case where G
is a Cayley graph of an infinite group, Γ. A marvelous fact is that β1(G) is the same for all
Cayley graphs of Γ, so we normally write β1(Γ) instead. Thus,

E𝖥𝖲𝖥[degF o] = 2 + 2β1(Γ) . (10.6)

For our purposes, we may take (10.6) as a definition of β1(Γ), but we also mention that it
equals the von Neumann dimension of ∇HD(G) with respect to Γ. See Section 10.8 for
definitions and a derivation of (10.6), including the fact that this does not depend on the
generators. Here are some known values of first ℓ2-Betti numbers (see, for example, Gaboriau
(2002), Cheeger and Gromov (1986), and Lück (2009)):

• β1(Γ) = 0 if Γ is finite or amenable
• β1(Γ1 ∗ Γ2) = β1(Γ1) + β1(Γ2) + 1 − 1

|Γ1 | −
1
|Γ2 | if Γi are not trivial

• β1(Γ1 ∗Γ3 Γ2) = β1(Γ1) + β1(Γ2) if Γ3 is amenable and infinite
• β1(Γ2) = [Γ1 : Γ2] β1(Γ1) if Γ2 has finite index in Γ1
• β1(Γ) = 2g − 2 if Γ is the fundamental group of an orientable surface of genus g
• β1(Γ) = s − 2 if Γ is torsion free and can be presented with s ≥ 2 generators and one

nontrivial relation
If we take β1(Γ) = 0 as a definition for finite Γ and (10.6) as a definition for infinite Γ,

then the fact that β1(Γ) = 0 for amenable Γ follows from Exercise 10.6, while the formula
β1(Γ1 ∗ Γ2) = β1(Γ1) + β1(Γ2) + 1 − 1

|Γ1 | −
1
|Γ2 | follows from taking a generating set for Γ1 ∗ Γ2
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by combining generating sets for Γ1 and Γ2: the restriction of the 𝖥𝖲𝖥 of Γ1 ∗ Γ2 to each copy
of the Cayley graph of, say, Γ1 in the Cayley graph of Γ1 ∗ Γ2 has the same law as the 𝖥𝖲𝖥 of
just Γ1, which is the uniform spanning tree if Γ1 is finite.

Question 10.11. If G is a Cayley graph of a finitely presented group Γ, is the 𝖥𝖲𝖥-expected
degree of o a rational number? Atiyah (1976) has asked whether all the ℓ2-Betti numbers (not
only the first one discussed here) are rational if Γ is finitely presented. Various generalizations
of this question have negative answers; see, for example, Grabowski (2014).

An important open question is whether β1(Γ) is equal to one less than the cost of Γ, which
is one-half of the infimum of the expected degree in any random connected spanning graph
of Γ whose law is Γ-invariant (see Gaboriau (2000)). Gaboriau (2002) proved that β1(Γ) is
always at most one less than the cost of Γ. To establish equality, it would therefore suffice
to show that for every ϵ > 0, there is some probability space with two 2𝖤-valued random
variables, F and X, such that the law of F is 𝖥𝖲𝖥, the union F ∪ X is connected and has a
Γ-invariant law, and the expected degree of a vertex in X is less than ϵ . In Chapter 11, we
will see that an analogue of this does hold for the free minimal spanning forest.

Question 10.12. If G is a Cayley graph, F is the 𝖥𝖲𝖥 on G, and ϵ > 0, is there an invariant
connected percolation ω containingF such that for every edge e, the probability that e ∈ ω \F
is less than ϵ? This question was asked by Damien Gaboriau (personal communication,
2001). It is known that whenever G is nonamenable, the union of 𝖶𝖲𝖥 and independent
Bernoulli(ϵ) percolation is not connected a.s. for small ϵ (see BLPS (2001)). Therefore,
when G is nonamenable and 𝖶𝖲𝖥 = 𝖥𝖲𝖥, we cannot connect the 𝖥𝖲𝖥 by adding a small
percolation. In Proposition 10.14, we describe when 𝖶𝖲𝖥 = 𝖥𝖲𝖥.

One use of the invariance of β1(Γ) with respect to generating sets is to prove uniform
exponential growth of certain Cayley graphs, a question we discussed briefly in Section 3.4.
Recall from that discussion that if a Cayley graph has exponential growth, then so does every
Cayley graph of the same group, yet for some groups, the infimum of the growth rates is 1, that
is, those groups do not have uniform exponential growth. Here, we show that if 𝖥𝖲𝖥 ̸= 𝖶𝖲𝖥
for a given Cayley graph of a group Γ, then Γ does have uniform exponential growth. Note
that 𝖥𝖲𝖥 ̸= 𝖶𝖲𝖥 iff β1(Γ) > 0 by (10.6), Proposition 10.10, and Proposition 10.7. The
argument is an elaboration of Exercise 10.6 and was observed by Lyons, Pichot, and Vassout
(2008). It shows even more than uniform exponential growth, namely, a uniform expansion
property.

Theorem 10.13. (Uniform Expansion) Let G be a Cayley graph of a finitely generated
infinite group Γ with respect to a finite generating set S. For every finite K ⊂ Γ, we have

|∂𝖵K |
|K | > 2β1(Γ) .

In particular, this implies that finitely generated groups Γ with β1(Γ) > 0 have uniform
exponential growth: if Bn denotes the ball of radius n centered at o, then

|Bn+1 |/|Bn | > 1 + 2β1(Γ) ,
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so
|Bn | > �

1 + 2β1(Γ)�n .
Proof. LetF ∼ 𝖥𝖲𝖥. LetF′ be the part ofF that touches K , that is, the edges that are incident
to some vertex of K , together with their endpoints. Let L := 𝖵(F′) \ K . Since F′ is a forest,∑

x∈K
degF x ≤

∑
x∈K∪L

degF′ x − |L | = 2|𝖤(F′)| − |L | < 2|𝖵(F′)| − |L |

= 2|K | + |L | ≤ 2|K | + |∂K | .

Take the expectation, use the formula (10.6), and divide by |K | to get the result. ◀

We turn now to an electrical criterion for the equality of 𝖥𝖲𝖥 and 𝖶𝖲𝖥. As we saw
in Chapter 9, there are two natural ways of defining currents between vertices of a graph,
corresponding to the two ways of defining spanning forests.

We may add to Proposition 9.3 and Theorem 9.5 as follows:

Proposition 10.14. For any network, the following are equivalent:
(i) 𝖥𝖲𝖥 = 𝖶𝖲𝖥 ;

(ii) ieW = ieF for every edge e ;
(iii) ℓ2

−(𝖤) =⋆ ⊕♢ ;
(iv) HD = � .

Proof. Use Remark 10.8, (10.3), and (9.3) to deduce that (i) and (ii) are equivalent. The
other equivalences were proved already. ◀

Combining this with Theorem 9.7, we get another proof that 𝖥𝖲𝖥 = 𝖶𝖲𝖥 on �d.

▷ Exercise 10.11.
Show that every transitive amenable network has unique currents.

Let YF(e, e′) := ieF(e′) and YW(e, e′) := ieW(e′) be the free and wired transfer current matrices.

Theorem 10.15. (Free and Wired Transfer Current Theorems) Given any network G
and any distinct edges e1, . . . , ek ∈ G, we have

𝖥𝖲𝖥[e1, . . . , ek ∈ F] = det
�
YF(ei, e j)�1≤i, j≤k

and
𝖶𝖲𝖥[e1, . . . , ek ∈ F] = det

�
YW(ei, e j)�1≤i, j≤k .

Proof. This is immediate from the transfer current theorem of Section 4.2 and Propositions
9.1 and 9.2. ◀
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Figure 10.1. A uniformly chosen wired spanning tree on a
subgraph of �2, drawn by Wilson (see Propp and Wilson (1998)).

10.3 Planar Networks and Euclidean Lattices

Consider now plane graphs. Examination of Figure 10.1 reveals two spanning trees: one in
white, the other in black on the plane dual graph. (See Section 9.2 for the definition of dual.)
Note that in the dual, the outer boundary of the grid is identified to a single vertex. In general,
suppose that G is a simple plane network whose plane dual G† is locally finite. Consider an
exhaustion of G by subnetworks Gn such that G\𝖵(Gn) has only one (infinite) component.
Let G†n be the plane dual of Gn. Note that G†n can be regarded as a finite subnetwork of G† but
with its outer boundary vertices identified to a single vertex. Spanning trees T of Gn are in
one-to-one correspondence with spanning trees T× of G†n in the same way as in Figure 10.1:

e ∈ T ⇐⇒ e† /∈ T× . (10.7)

Furthermore, this correspondence preserves the relative weights of Section 4.1: we have

Ξ(T) =
∏
e∈T

c(e) =
∏
e† /∈T×

r(e†) =
∏

e†∈T× c(e†)∏
e†∈G†n c(e†) =

Ξ(T×)∏
e†∈G†n c(e†) .

Taking n → ∞, we find that the 𝖥𝖲𝖥 of G is “dual” to the 𝖶𝖲𝖥 of G†; that is, the relation
(10.7) transforms one to the other. As a consequence, (10.3) and the definition (10.7) explain
(9.4). Let’s look at this a little more closely for the graph�2. By recurrence and Exercise 10.3,
the free and wired spanning forests are the same as the uniform spanning tree. In particular,
P[e ∈ T] = P[e† ∈ T×]. Since these add to 1, they are equal to 1/2, as we derived in another
fashion in (4.14).
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Let’s see what Theorem 10.15 says more explicitly for unit conductances on the hypercubic
lattice �d . The case d = 2 was treated already in Section 4.3 and Exercise 4.54. The transient
case d ≥ 3 is actually easier, but the approach is the same as in Section 4.3. To find the
transfer currents Y (e1, e2), we will first find voltages, then use i = dv. When i is a unit flow
from x to y, we have d∗i = 1{x} − 1{y}. Hence the voltages satisfy ∆v := d∗dv = 1{x} − 1{y}.
We are interested in solving this equation when x := e−1 and y := e+

1 and then computing
v(e−2 ) − v(e+

2). Unlike in the recurrent case of Section 4.3, however, we can solve ∆v = 1{x},
in other words, the voltage v for a current from x to infinity. Again, we begin with a formal
(that is, heuristic) derivation of the solution, and then prove that the resulting formula is
actually correct.
Let �d := (�/�)d be the d-dimensional torus. For (x1, . . . , xd) ∈ �d and (α1, . . . , αd) ∈
�d, write (x1, . . . , xd) · (α1, . . . , αd) := x1α1 + · · · + xdαd ∈ �/�. For a function f on �d,
define the function f̂ on �d by

f̂ (α) :=
∑
x∈�d

f (x)e−2πix ·α .

For example, 1̂{x}(α) = e−2πix ·α. Now a formal calculation shows that

∆̂ f (α) = f̂ (α)φ(α) ,
where

φ
�(α1, . . . , αd)� := 2d −

d∑
k=1

(e2πiαk + e−2πiαk ) = 2d − 2
d∑

k=1

cos 2παk . (10.8)

Hence, to solve ∆ f = g, we may try to solve ∆̂ f = ĝ by using f̂ := ĝ/φ and then finding f
from f̂ . In fact, a formal calculation shows that we may recover f from f̂ by the formula

f (x) =
∫
�d

f̂ (α)e2πix ·α dα ,

where the integration is with respect to Lebesgue measure. What makes the transient case
easier is that 1/φ ∈ L1(�d), because

φ(α) = (2π)2 |α|2 + O
�|α|4� (10.9)

as |α| → 0 and r 7→ 1/r2 is integrable in �d for d ≥ 3; here, |α| is the minimal distance in
�d between the coset α and �d.

▷ Exercise 10.12.
(The Riemann-Lebesgue Lemma) Show that if F ∈ L1(�d) and

f (x) =
∫
�d

F(α)e2πix ·α dα ,

then lim|x |→∞ f (x) = 0. Hint: This is obvious if F is a trigonometric polynomial, that is, a
finite linear combination of functions α 7→ e2πix ·α. The Stone-Weierstrass theorem implies
that such functions are dense in L1(�d).
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Proposition 10.16. (Voltages on �d) Let d ≥ 3. Define φ as in (10.8). The voltage at x
when a unit current flows from 0 to infinity in �d and the voltage is 0 at infinity is

v(x) =
∫
�d

e2πix ·α

φ(α) dα . (10.10)

Proof. Define v′(x) to be the integral on the right-hand side of (10.10). By the analogue of
Exercise 4.9 for d ≥ 3, we have

∆v′(x) =
∫
�d

e2πix ·α

φ(α) φ(α) dα =
∫
�d

e2πix ·α dα = 1{0}(x) .

That is, ∆v′ = 1{0}. Since v satisfies the same equation, we have ∆(v′ − v) = 0. In other
words, v′ − v is harmonic at every point in �d. Furthermore, v′ is bounded in absolute
value by the L1 norm of 1/φ, whence v′ − v is bounded. Since the only bounded harmonic
functions on �d are the constants (by, say, Theorem 9.24), this means that v′ − v is constant.
Now the Riemann-Lebesgue lemma* (Exercise 10.12) implies that v′ tends to 0 at infinity.
Since v also tends to 0 at infinity (by either Exercise 2.91 and that v′ − v is constant, or else
by Exercise 2.92 and symmetry), this constant is 0. Therefore, v′ = v, as desired. ◀

Now one can compute

Y (e1, e2) = v(e−2 − e−1 ) − v(e+
2 − e−1 ) − v(e−2 − e+

1 ) + v(e+
2 − e+

1 )

using (10.10).

10.4 Tail Triviality

How much does the configuration of a uniform spanning forest in one region influence the
configuration in a far away region? Are they asymptotically independent? It turns out that
they are indeed, in several senses.
For a set of edges K ⊆ 𝖤, let F (K) denote the σ-field of events depending only on K .

Define the tail σ-field to be the intersection of F (𝖤 \ K) over all finite K . Triviality of
the tail σ-field means that every tail-measurable event has probability 0 or 1. For example,
Kolmogorov’s zero-one law says that the tail σ-field is trivial for independent percolation.
More generally, tail triviality is equivalent to a strong form of asymptotic independence:

Proposition 10.17. (Tail Triviality and Asymptotic Independence) For any probability
measure P, tail triviality is equivalent to

∀A1 ∈ F (𝖤) ∀ϵ > 0 ∃K finite ∀A2 ∈ F (𝖤 \ K) �
P(A1 ∩ A2) − P(A1)P(A2)� < ϵ .

(10.11)

* One could avoid the Riemann-Lebesgue lemma by solving the more complicated equation ∆v = 1{x} − 1{y}
instead, as in Section 4.3.
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Proof. Suppose first that (10.11) holds. Let A be a tail event. Then we may take A1 := A2 :=
A in (10.11), no matter what ϵ is. This shows that A is independent of itself, so is trivial.
For the converse, let P be tail trivial. Let ⟨Kn⟩ be an exhaustion of 𝖤. Then T :=∩
n F (𝖤 \ Kn) is the tail σ-field. The reversed-martingale convergence theorem shows that

for every A1 ∈ F (𝖤), we have

Zn := P
�
A1

�
F (𝖤 \ Kn)�→ P(A1 | T )

not only a.s. but in L1(P). Since the tail is trivial, the limit equals P(A1) a.s. Thus, given
ϵ > 0, there is some n such that E

� |Zn − P(A1)| � < ϵ . Hence, for all A2 ∈ F (𝖤 \ Kn), we
have�

P(A1 ∩ A2) − P(A1)P(A2)� = ���E[�Zn − P(A1)�1A2

] ��� ≤ E
[ ��

Zn − P(A1)�1A2

� ]
< ϵ . ◀

This equivalence shows why the following theorem is interesting.

Theorem 10.18. The 𝖶𝖲𝖥 and 𝖥𝖲𝖥 have trivial tail on every network.

Proof. This is a consequence of the fact that the boundary conditions defining𝖶𝖲𝖥 and 𝖥𝖲𝖥
are each extremal. To see this, let G be an infinite network exhausted by finite connected
induced subnetworks ⟨Gn⟩. Write Gn = (𝖵n, 𝖤n). Recall from Section 10.1 that µF

n denotes
the uniform spanning tree measure on Gn, and µW

n denotes the uniform spanning tree
measure on the “wired” graph GW

n . Let 𝜈n be any “partially wired” measure, that is, the
uniform spanning tree measure on a graph G∗n obtained from a finite network G′n satisfying
Gn ⊂ G′n ⊂ G by contracting some of the edges in G′n that are not in Gn. Lemma 10.3 and
Exercise 10.8 give that if B ∈ F (𝖤n) is increasing, then

µW
n (B) ≤ 𝜈n(B) ≤ µF

n(B) . (10.12)
This is what we meant by “extremality” earlier.

To see its consequences, let M > n, and let A ∈ F (𝖤M \ 𝖤n) be a cylinder event such
that µW

M (A ) > 0. If we condition separately on each possible configuration of edges of
GM \ Gn that is in A and use (10.12) on each of these configurations, then we get that for
each increasing B ∈ F (𝖤n), we have

µW
n (B) ≤ µW

M (B | A ) . (10.13)
Fixing A and letting M → ∞ in (10.13) gives

µW
n (B) ≤ 𝖶𝖲𝖥(B | A ) . (10.14)

This applies to all cylinder events A ∈ F (𝖤 \ 𝖤n) with 𝖶𝖲𝖥(A ) > 0, and therefore the
assumption that A is a cylinder event can be dropped. In particular, (10.14) holds for all tail
events A of positive probability. Taking n → ∞ there gives

𝖶𝖲𝖥(B) ≤ 𝖶𝖲𝖥(B | A ) , (10.15)
where B is any increasing cylinder event and A is any tail event. Thus, (10.15) also applies
to the complement A c. Since 𝖶𝖲𝖥(B) = 𝖶𝖲𝖥(A )𝖶𝖲𝖥(B | A ) +𝖶𝖲𝖥(A c)𝖶𝖲𝖥(B | A c),
it follows that 𝖶𝖲𝖥(B) = 𝖶𝖲𝖥(B | A ). Therefore, every tail event A is independent of
every increasing cylinder event. By inclusion-exclusion, such A is also independent of every
elementary cylinder event, whence of every cylinder event, whence of every event. That is,
A is trivial. The argument for the 𝖥𝖲𝖥 is similar. ◀
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Tail triviality has additional consequences when the underlying graph is a Cayley graph.
More generally, consider graphs that have automorphisms that can move points arbitrarily
far from where they start. If Γ is a group of automorphisms of a network or graph G, we
say that Γ acts on G. Any action extends in the obvious way to an action on the collection
of subnetworks or subgraphs of G. We now want to take limits at infinity of functions on Γ.
What does this mean? A “large” element of Γ is one that moves points far. To be precise,
for an action of Γ on G and a real-valued function f on Γ, we write limγ→∞ f (γ) = a to
mean that for every ϵ > 0 and every x ∈ 𝖵, there is some N such that for all γ satisfying
dist(x, γx) > N , we have | f (γ) − a| < ϵ . Similarly, lim supγ→∞ f (γ) ≤ a means that for
every ϵ > 0 and every x ∈ 𝖵, there is some N such that whenever dist(x, γx) > N , we have
f (γ) < a + ϵ . We say that the action is mixing for a Γ-invariant probability measure P on
subnetworks or subgraphs of G if, for any pair of events A and B,

lim
γ→∞

P(A , γB) = P(A )P(B) . (10.16)

We call an action ergodic for P if the only (Γ,P)-invariant events are trivial. Here, an event A
is called (Γ,P)-invariant if P(A △ γA ) = 0 for all γ ∈ Γ. As usual, as long as there is some
infinite orbit, mixing implies ergodicity: if A is an invariant event, then just take B = A in
(10.16). In addition, tail triviality implies mixing: Let A and B be two events. The equation
(10.16) follows immediately from (10.11) in case B is a cylinder. For general B, let ϵ > 0,
and let D be a cylinder such that P(B △ D) < ϵ . Since P is invariant under Γ, we have

|P(A , γB) − P(A )P(B)| ≤ |P(A , γD) − P(A )P(D)| + P
�
A , γ(B △ D)� + P(A )P(B △ D)

< |P(A , γD) − P(A )P(D)| + 2ϵ .

Taking γ to infinity, we get that lim supγ→∞ |P(A , γB) − P(A )P(B)| ≤ 2ϵ . Since ϵ is
arbitrary, the action is mixing.
An interesting consequence of ergodicity is the following: distinct ergodic invariant

probability measures under any group action are always mutually singular. To see this,
suppose that µ1 and µ2 are both invariant and ergodic probability measures for an action of a
group Γ on a network G. According to the Lebesgue decomposition theorem, there is a unique
pair of measures 𝜈1, 𝜈2 such that µ1 = 𝜈1 + 𝜈2 with 𝜈1 ≪ µ2 and 𝜈2 ⊥ µ2. Applying any
element of Γ, we see that 𝜈1 and 𝜈2 are both Γ-invariant. Choose an event A with 𝜈1(A c) = 0
and 𝜈2(A ) = 0. Then A is (Γ, 𝜈1)-invariant and (Γ, 𝜈2)-invariant, whence (Γ, µ1)-invariant,
whence µ1-trivial. If µ1(A ) = 0, then µ1 = 𝜈2 ⊥ µ2. On the other hand, if µ1(A c) = 0, then
µ1 = 𝜈1 ≪ µ2. Let f be the Radon-Nikodým derivative of µ1 with respect to µ2. Then f
is measurable with respect to the σ-field of (Γ, µ2)-invariant events, which is trivial, so f is
constant µ2-a.e. That is, µ1 = µ2.

Thus, by Theorem 10.18 and Exercise 10.2, we obtain the following consequences:

Corollary 10.19. Let Γ be a group acting on a network G so that every vertex has an infinite
orbit. Then the action is mixing and ergodic for 𝖥𝖲𝖥 and for 𝖶𝖲𝖥. If 𝖶𝖲𝖥 and 𝖥𝖲𝖥 on G
are distinct, then they are singular measures on the space 2𝖤.

We do not know if the preceding singularity assertion holds without the hypothesis that
every vertex has an infinite orbit under Aut(G); see Question 10.58.
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10.5 The Number of Trees

We’ve not yet said much about how the uniform spanning forests look. For example, when
is the free spanning forest or the wired spanning forest of a network a.s. a single tree, as in
the case of recurrent networks? There are few cases where we know the answer for the free
spanning forest; almost all of them come from knowing the answer for the wired spanning
forest and then using some relationship between the two forests, such as their being equal or
being dual. So we begin with the wired spanning forest. In that case, we have the following
answer for the wired spanning forest due to Pemantle (1991).

Proposition 10.20. Let G be any network. The wired spanning forest is a single tree a.s.
iff from every (or some) vertex, random walk and independent loop-erased random walk
intersect infinitely often a.s. Moreover, the chance that two given vertices x and y belong
to the same tree equals the probability that random walk from x intersects independent
loop-erased random walk from y.

This is obvious from Proposition 10.1 (which wasn’t available to Pemantle at the time)
but is otherwise quite striking. How, then, do we decide whether a random walk and a
loop-erased random walk intersect a.s.? Pemantle (1991) used results of Lawler (1986, 1988)
to answer this for simple random walk in �d. However, Lyons, Peres, and Schramm (2003)
later showed that for any transient Markov chain, two independent paths started at any pair of
states intersect infinitely often (i.o.) with probability 1 iff the loop erasure of one intersects
the other i.o. with probability 1. In fact, more is true:

Theorem 10.21. Let ⟨Xm⟩ and ⟨Yn⟩ be independent transient Markov chains on the same
state space 𝖵 that have the same transition probabilities but possibly different initial states.
Then, given the event that

�{Xm} ∩ {Yn}� = ∞, almost surely
�
𝖫𝖤⟨Xm⟩ ∩ {Yn}� = ∞.

This makes it considerably easier to decide whether the wired spanning forest is a single
tree. Thus:

Theorem 10.22. Let G be any network. The wired spanning forest is a single tree a.s. iff two
independent random walks started at any different states intersect with probability 1. ◀

And how do we decide whether two random walks intersect a.s.? We will give a useful test
in the transitive case. In fact, this will work for Markov chains that may not be reversible, so
we should say what we mean by “transitive” Markov chain:

Definition 10.23. Let p(•, •) be a transition kernel on a state space 𝖵. Suppose that there is a
group Γ of permutations of 𝖵 that acts transitively (that is, with a single orbit) and satisfies
p(γx, γy) = p(x, y) for all γ ∈ Γ and x, y ∈ 𝖵. Then we call the Markov chain with transition
kernel p(•, •) transitive.

We will use Px0,y0 and Ex0,y0 to denote probability and expectation when independent
Markov chains ⟨Xm⟩ and ⟨Yn⟩ start at x0 and y0, respectively.

In the transitive case, we may use the Green function for our test:

Theorem 10.24. (Intersections of Transitive Markov Chains) Let p(•, •) be the transition
kernel of a transient transitive Markov chain on the countable state space 𝖵. Let X and Y be
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two independent copies of the Markov chain with initial states x0 and y0. Let o be a fixed
element of 𝖵. If ∑

z∈𝖵
G (o, z)2 = ∞ , (10.17)

then Px0,y0

� |{Xm} ∩ {Yn}| = ∞� = Px0,y0

� |𝖫𝖤⟨Xm⟩ ∩ {Yn}| = ∞� = 1, whereas if (10.17) fails,
then Px0,y0

� |{Xm} ∩ {Yn}| < ∞� = 1.

If we specialize still further, we obtain:

Corollary 10.25. (Intersections of Random Walks in Transitive Graphs) Let G be an
infinite, locally finite, vertex-transitive graph. Denote by Vn the number of vertices in G at
distance at most n from a fixed vertex o.

(i) If supn Vn/n4 = ∞, then two independent sample paths of simple random walk in G
have only finitely many intersections a.s.

(ii) Conversely, if supn Vn/n4 < ∞, then two independent sample paths of simple random
walk in G intersect infinitely often a.s.

These results tell us when the𝖶𝖲𝖥 has a single tree. How many trees are there otherwise?
Usually there are infinitely many a.s., but there can be only finitely many:

▷ Exercise 10.13.
Join two copies of the usual nearest-neighbor graph of �3 by an edge at their origins. How
many trees does the free uniform spanning forest have? How many does the wired uniform
spanning forest have?

To give the general answer, we use the following quantity: let α(w1, . . . , wK ) be the proba-
bility that independent random walks started at w1, . . . , wK have no pairwise intersections.

Theorem 10.26. (Constant Number of Trees in the 𝖶𝖲𝖥) Let G be a connected network.
The number of trees of the 𝖶𝖲𝖥 is a.s.

sup
�
K ; ∃w1, . . . , wK α(w1, . . . , wK ) > 0

	
. (10.18)

Moreover, if the probability is 0 that two independent random walks from every (or some)
vertex x intersect infinitely often, then the number of trees of the 𝖶𝖲𝖥 is a.s. infinite.

Corollary 10.27. (𝖶𝖲𝖥 in Nonamenable Networks) If (G, c) is a network such that
Φ𝖤(G, c, π) > 0 and supx∈𝖵 π(x) < ∞, then the number of trees of the 𝖶𝖲𝖥 is a.s. infinite.

Theorem 10.26 tells us that in particular, on any network, the number of trees of the 𝖶𝖲𝖥
is equal a.s. to a constant. The case of the free spanning forest (when it differs from the
wired) is quite a puzzle. In particular, we do not know whether the number of components is
deterministic or random:

Question 10.28. Let G be an infinite network. Is the number of trees of the 𝖥𝖲𝖥 a.s. constant?

If Aut(G) has an infinite orbit, then the number is deterministic, since the number is invari-
ant under automorphisms and the invariant σ-field is trivial by Corollary 10.19. Motivated
by Theorem 7.5, we can ask whether, in this case, the number of trees is either 1 or∞:
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Question 10.29. (O. Häggström) Let G be a transitive network. By ergodicity, the number
of trees of the 𝖥𝖲𝖥 is a.s. constant. Is it 1 or∞ a.s.?

See Theorem 10.53 for one case that is understood completely. For the unimodular case,
Question 10.29 was answered positively and independently by Hutchcroft and Nachmias
(2015) and Timár (2015).

Returning to the 𝖶𝖲𝖥, we deduce the following wonderful result of Pemantle (1991),
which is truly stunning without an understanding of the approach using random walks:

Theorem 10.30. (Phase Transition in �d) The uniform spanning forest on �d has one tree
a.s. for d ≤ 4 and infinitely many trees a.s. for d ≥ 5. ◀

(Recall that by Corollary 10.9, 𝖥𝖲𝖥 = 𝖶𝖲𝖥 on �d.)
We now prove all the preceding claims, though sometimes only in special cases. The special

cases always include simple random walk on �d . In particular, we prove Theorem 10.24 but
not Theorem 10.21.
Nevertheless, we begin with a heuristic argument for Theorem 10.21. On the event that

Xm = Yn, the continuation paths X ′ := ⟨X j⟩j≥m and Y ′ := ⟨Yk⟩k≥n have the same distribution,
whence the chance is at least 1/2 that Y ′ intersects L := 𝖫𝖤⟨X0, . . . , Xm⟩ at an earlier point
than X ′ ever does, where “earlier” means in the clock of L. On this event, the earliest
intersection point of Y ′ and L will remain in 𝖫𝖤⟨X j⟩j≥0

∩{Yk}k≥0. The difficulty in making
this heuristic precise lies in selecting a pair (m, n) such that Xm = Yn, given that such pairs
exist. The natural rules for selecting such a pair (for example, lexicographic ordering)
affect the law of at least one of the continuation paths, and invalidate the argument above;
R. Pemantle (private communication, 1996) showed that this holds for all selection rules.
Our solution to this difficulty is based on applying a second-moment argument to a count
of intersections. In the cases we will prove here (Theorem 10.24), we will show that there
is a second-moment bound for intersections of X and Y . The general case, Theorem 10.21,
also has a similar second-moment bound, as shown by Lyons, Peres, and Schramm (2003),
but this is a little too long to prove here. We will then transfer the second-moment bound for
intersections of X and Y to one for intersections of 𝖫𝖤⟨X⟩ and Y .
Ultimately, the second-moment argument relies on the following widely used inequality.

It allows one to deduce that a random variable has a reasonable chance to be large from
knowing that its first moment is large compared to its second moment. We saw this inequality
in Section 5.5.

The Paley-Zygmund Inequality (1932). Let Z be a random variable with E[Z] ≥ 0 and
P[Z = 0] ̸= 1. Let 0 < ϵ < 1. Then

P
�
Z ≥ ϵ E[Z]� > (1 − ϵ)2 E[Z]2

E[Z2] .

Proof. Let A be the event that Z ≥ ϵ E[Z]. The Cauchy-Schwarz inequality gives

E[Z2]P(A ) = E[Z2]E[12
A ] ≥ E[Z1A ]2 =

�
E[Z] − E[Z1A c ]�2 > �

E[Z] − ϵ E[Z]�2 . ◀



358 Chap. 10: Uniform Spanning Forests

We begin with a second-moment bound on intersections of two Markov chains that start at
the same state. The calculation leading to (10.20) below follows Le Gall and Rosen (1991),
Lemma 3.1. Denote GN (o, x) :=

∑N
m=0 Po[Xm = x]. Let

IN :=
N∑

m=0

N∑
n=0

1[Xm=Yn] (10.19)

be the number of intersections of X and Y by time N . We’ll be interested in whether
E[IN ] → ∞, and the Paley-Zygmund inequality will be used to show that IN → ∞ with
reasonable probability when E[IN ]→ ∞. For that, we’ll need that the first moment of IN is
large compared to its second moment, which is the purpose of the following lemma.

Lemma 10.31. Let p(•, •) be the transition kernel of a transitive Markov chain on a countable
state space 𝖵. Start both Markov chains X ,Y at o ∈ 𝖵. Then

E[IN ]2
E[I2

N ]
≥ 1

4
. (10.20)

Proof. By transitivity, ∑
w∈𝖵

GN (z, w)2 =
∑
w∈𝖵

GN (o, w)2 (10.21)

for all z ∈ 𝖵. We have

IN =
∑
z∈𝖵

N∑
m,n=0

1[Xm=z=Yn] .

Thus,

E[IN ] =
∑
z∈𝖵

N∑
m=0

N∑
n=0

P[Xm = z = Yn]

=
∑
z∈𝖵

N∑
m=0

P[Xm = z] ·
N∑
n=0

P[Yn = z]

=
∑
z∈𝖵

GN (o, z)2 . (10.22)

To estimate the second moment of IN , observe that

N∑
m, j=0

P[Xm = z, X j = w] =
N∑

m=0

N∑
j=m

P[Xm = z]P[X j = w | Xm = z]

+
N∑
j=0

N∑
m=j+1

P[X j = w]P[Xm = z | X j = w]

≤ GN (o, z) GN (z, w) + GN (o, w) GN (w, z) .
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Therefore

E[I2
N ] =

∑
z,w∈𝖵

N∑
m,n=0

N∑
j,k=0

P[Xm = z = Yn, X j = w = Yk]

=
∑
z,w∈𝖵

N∑
m, j=0

P[Xm = z, X j = w] ·
N∑

n,k=0

P[Yn = z,Yk = w]

≤
∑
z,w∈𝖵

�
GN (o, z) GN (z, w) + GN (o, w) GN (w, z)�2

≤
∑
z,w∈𝖵

2
�
GN (o, z)2 GN (z, w)2 + GN (o, w)2 GN (w, z)2�

= 4
∑
z,w∈𝖵

GN (o, z)2 GN (z, w)2 .

Summing first over w and using (10.21), then (10.22), we deduce that

E[I2
N ] ≤ 4

(∑
z∈𝖵

GN (o, z)2
)2

= 4 E[IN ]2 . ◀

We now extend this to any pair of starting points when (10.17) holds.

Corollary 10.32. Let p(•, •) be the transition kernel of a transitive Markov chain on a
countable state space 𝖵. Start the Markov chains X ,Y at o, o′. If (10.17) holds, then

lim inf
N→∞

Eo,o′[IN ]2
Eo,o′[I2

N ]
≥ 1

4
. (10.23)

Proof. Let aN := Eo,o[IN ]. As in the proof of Lemma 10.31, we have for any pair o, o′,

Eo,o′[I2
N ] =

∑
z,w∈𝖵

N∑
m, j=0

Po[Xm = z, X j = w] ·
N∑

n,k=0

Po′[Yn = z,Yk = w]

≤
∑
z,w∈𝖵

�
GN (o, z) GN (z, w) + GN (o, w) GN (w, z)�
·
�
GN (o′, z) GN (z, w) + GN (o′, w) GN (w, z)�

≤
∑
z,w∈𝖵

�
GN (o, z)2 GN (z, w)2 + GN (o, w)2 GN (w, z)2

+ GN (o′, z)2 GN (z, w)2 + GN (o′, w)2 GN (w, z)2�
= 4a2

N (10.24)

by the elementary inequality

(a + b)(c + d) ≤ a2 + b2 + c2 + d2 .
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We also have

Eo,o′[IN ] =
∑

m,n≤N

∑
z∈𝖵

pm(o, z)pn(o′, z) =
∑
z∈𝖵

GN (o, z)GN (o′, z) ≤ aN (10.25)

by the Cauchy-Schwarz inequality, transitivity, and (10.22).
By (10.17), we have aN → ∞. Let uN (x, y) := Ex,y[IN ]/aN . Thus, uN (x, x) = 1 for all x

and uN (x, y) ≤ 1 for all x, y. Fix r such that pr (o, o′) > 0. Now

ar+N = ar+Nur+N (o, o) =
∑

m,n≤r+N

Po,o[Xm = Yn]

=
∑

m,n≤N
Po,o[Xm = Yr+n]

+
∑

m≤r+N

∑
n<r

Po,o[Xm = Yn] (10.26)

+
∑

1≤m≤r

∑
n≤N

Po,o[XN+m = Yr+n] .

The Markov property and (10.25) show that the first of the three latter sums is equal to

Eo,o

�
aNuN (o,Yr )� ≤ aN

�
pr (o, o′)uN (o, o′) + 1 − pr (o, o′)� .

The second sum in (10.26) is∑
z∈𝖵

Gr+N (o, z)Gr−1(o, z) ≤ √ar+Nar−1

by the Cauchy-Schwarz inequality. Similarly, by conditioning on (XN+1,Yr ) and using
transitivity and the Cauchy-Schwarz inequality, we see that the third sum in (10.26) is

Eo,o

[∑
z∈𝖵

Gr−1(XN+1, z)GN (Yr , z)
]
≤ √ar−1aN .

Substituting these bounds in (10.26) yields

1 ≤ (aN/ar+N )�pr (o, o′)uN (o, o′) + 1 − pr (o, o′)� +
√

ar−1/ar+N +
√

ar−1aN/ar+N

≤ pr (o, o′)uN (o, o′) + 1 − pr (o, o′) + o(1)

as N → ∞. This implies that lim infN→∞ uN (o, o′) ≥ 1. Combining this with (10.24) gives
the result. ◀

We now give the crucial step that converts intersections of random walks to intersections
when one of the paths is loop erased.
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Lemma 10.33. Let p(•, •) be a transition kernel on a countable state space 𝖵 that gives a
transient transitive Markov chain. Fix k ≥ 0 and a path ⟨x j⟩0

j=−k in 𝖵. Let ⟨Xm⟩m≥0 and
⟨Yn⟩n≥0 be independent Markov chains on 𝖵 with initial states x0 and y0. Set X j := x j for
−k ≤ j ≤ −1. If (10.17) holds, then the probability that

�
𝖫𝖤⟨Xm⟩m≥−k ∩ {Yn}� = ∞ is at least

1/16.

Proof. Denote
⟨Lm

j ⟩J(m)
j=0 := 𝖫𝖤⟨X−k , X−k+1, . . . , Xm⟩ .

When it happens that Xm = Yn, we want to see which of the continuations of X and Y
intersects ⟨Lm

j ⟩ earlier. On the event [Xm = Yn], define

j(m, n) := min
�

j ≥ 0 ; Lm
j ∈ {Xm, Xm+1, Xm+2, . . .}	 (10.27)

i(m, n) := min
�
i ≥ 0 ; Lm

i ∈ {Yn,Yn+1,Yn+2, . . .}	 . (10.28)
Note that the sets on the right-hand sides of (10.27) and (10.28) both contain J(m) if
Xm = Yn. Define j(m, n) := i(m, n) := 0 on the event [Xm ̸= Yn]. When the continuation
of Y has an earlier intersection than the continuation of X does, then that intersection will
be an intersection of the loop erasure of X with Y . Thus, let χ(m, n) := 1[i(m,n)≤ j(m,n)].
Given [Xm = Yn = z], the continuations ⟨Xm, Xm+1, Xm+2, . . .⟩ and ⟨Yn,Yn+1,Yn+2, . . .⟩ are
exchangeable with each other, so for every z ∈ 𝖵,

E
�
χ(m, n) � Xm = Yn = z

�
= P

�
i(m, n) ≤ j(m, n) � Xm = Yn = z

�
≥ 1

2
. (10.29)

As we said, if Xm = Yn and i(m, n) ≤ j(m, n), then Lm
i(m,n) is in 𝖫𝖤⟨Xr ⟩∞r=−k

∩{Yℓ}∞ℓ=0.
Consider the random variables

ΥN :=
N∑

m=0

N∑
n=0

1[Xm=Yn] χ(m, n)

for N ≥ 1. Obviously ΥN ≤ IN everywhere, so
1

E[Υ2
N ]
≥ 1

E[I2
N ]

. (10.30)
On the other hand, by conditioning on Xm and Yn and by applying (10.29), we see that

E[ΥN ] =
N∑

m=0

N∑
n=0

E
[
1[Xm=Yn ] E

�
χ(m, n) | Xm,Yn

�]
≥ 1

2
E[IN ] . (10.31)

By the Paley-Zygmund inequality, we have, for every ϵ > 0,

P
�
ΥN ≥ ϵ E[ΥN ]� ≥ (1 − ϵ)2 E[ΥN ]2

E[Υ2
N ]

.

By (10.30), (10.31), and Corollary 10.32, we conclude that for every ϵ > 0, we have for large
enough N that

P
�
ΥN ≥ ϵ E[ΥN ]� ≥ (1 − ϵ)2 E[IN ]2

4 E[I2
N ]
≥ (1 − ϵ)2

16
− ϵ .

Since E[ΥN ]→ ∞ by (10.31) and (10.17), it follows that ΥN → ∞ with probability at least
1/16. On the event that ΥN → ∞, we have

�
𝖫𝖤⟨Xm⟩m≥−k ∩ {Yn}� = ∞ by the observation

following (10.29). This finishes the proof. ◀
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Proof of Theorem 10.24. Suppose first that (10.17) holds. Denote by Λ the event of interest,
|𝖫𝖤⟨Xm⟩ ∩ {Yn}| = ∞. We will show that P(Λ) = 1. By virtue of Lévy’s zero-one law, we
have that limn→∞ Px0,y0(Λ | X1, . . . , Xn,Y1, . . . ,Yn) = 1Λ a.s. On the other hand,

Px0,y0 (Λ | X1, . . . , Xn,Y1, . . . ,Yn) = Px0,Yn
(Λ | X1, . . . , Xn) ≥ 1/16

by the Markov property and by Lemma 10.33. Thus, 1Λ ≥ 1/16 a.s., which means that
Px0,y0(Λ) = 1, as desired.
Now suppose that (10.17) fails. Then the expected number of pairs (m, n) such that

Xm = Yn is (by the monotone convergence theorem) limN E[IN ] =
∑

z G (o, z)2 < ∞. ◀

▷ Exercise 10.14.
(Parseval’s Identity) Suppose that F ∈ L1(�d) and that f (x) :=

∫
�d F(α)e2πix ·α dα

for x ∈ �d. Show that
∫
�d |F(α)|2 dα =

∑
�d | f (x)|2. Hint: Prove that the functions

Gx(α) := e−2πix ·α for x ∈ �d form an orthonormal basis of L2(�d).

Proof of Corollary 10.25. For �d, the result is easy: We need treat only the transient case.
By Proposition 2.1, (10.17) is equivalent to the voltage function v of Proposition 10.16 not
being square summable. By Exercise 10.14, this in turn is equivalent to 1/φ /∈ L2(�d), where
φ is defined in (10.8). By (10.9), this holds iff d ≤ 4.
The general statement requires certain facts that are beyond the scope of this book but

otherwise is not hard. For independent simple random walks, reversibility and regularity of
G imply that

∑
z

G (o, z)2 = lim
n→∞

Eo,o[IN ] =
∞∑

m=0

∞∑
n=0

Po,o[Xm = Yn]

=
∞∑

m=0

∞∑
n=0

Po[Xm+n = o] =
∞∑
n=0

(n + 1)Po[Xn = o] . (10.32)

In case (i), the assumption that supn Vn/n4 = ∞ implies that Vn ≥ cn5 for some c > 0 and
all n: see Kleiner (2010). By Corollary 6.32, this yields Px[Xn = x] ≤ Cn−5/2. Thus the sum
in (10.32) converges.
In case (ii), combining the results (14.5), (14.12), and (14.19) in Woess (2000), we infer

that the assumption Vn = O(n4) implies that Px[X2n = x] ≥ cn−2 for some c > 0 and all
n ≥ 1. Thus the series (10.32) diverges.

Hence, both assertions follow from Theorem 10.24. ◀

Proof of Theorem 10.26. Of course, the recurrent case is a consequence of our work in
Chapter 4, so we restrict ourselves to the transient case.
Let ⟨Xn(u) ; n ≥ 0, u ∈ 𝖵⟩ be a collection of independent random walks, one starting

at each u ∈ 𝖵. Denote the event that Xn(wi) ̸= Xm(wk) for all i ̸= k and n,m ≥ j
by Bj(w1, . . . , wK ). Thus, α(w1, . . . , wK ) = P

�
B0(w1, . . . , wK )� and B(w1, . . . , wK ) :=
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j Bj(w1, . . . , wK ) is the event that there are only finitely many pairwise intersections

among the random walks starting at w1, . . . , wK . For every j ≥ 0, we have

lim inf
n→∞

α
�
Xn(w1), . . . , Xn(wK )� ≥ lim

n→∞
P
�
Bj(w1, . . . , wK ) � ⟨Xm(wi) ; m ≤ n, i ≤ K⟩�

= 1B j (w1,...,wK ) a.s.

by Lévy’s zero-one law. It follows that

lim inf
n→∞

α
�
Xn(w1), . . . , Xn(wK )� ≥ 1B(w1,...,wK ) a.s. (10.33)

First suppose that α(w1, . . . , wK ) > 0 for some w1, . . . , wK . Then by (10.33), for every
ϵ > 0, there is an n ∈ � such that α

�
Xn(w1), . . . , Xn(wK )� > 1 − ϵ with positive probability.

In particular, there are w′1, . . . , w
′
K such that α(w′1, . . . , w′K ) > 1− ϵ . Using Wilson’s method

rooted at infinity starting with the vertices w′1, . . . , w
′
K , this implies that with probability

greater than 1 − ϵ , the number of trees for 𝖶𝖲𝖥 is at least K . As ϵ > 0 was arbitrary, this
implies that the number of trees is 𝖶𝖲𝖥-a.s. at least (10.18).
For the converse, suppose that α(w1, . . . , wK ) = 0 for all w1, . . . , wK . By (10.33), we

find that there exist a.s. i ̸= j with infinitely many intersections between


Xn(wi)� and


Xn(w j)�, whence also between 𝖫𝖤
Xn(wi)� and 
Xn(w j)� by Theorem 10.21 in general and
by Theorem 10.24 in the transitive case. By Wilson’s method rooted at infinity, the probability
that all w1, . . . , wK belong to different trees is 0. Since this holds for all w1, . . . , wK , it
follows that the number of trees is 𝖶𝖲𝖥-a.s. at most (10.18).
Moreover, if the probability is zero that two independent random walks X1, X2 intersect

i.o. starting at some w ∈ 𝖵, then limn→∞ α
�
X1
n, X2

n

�
= 1 a.s. by (10.33). Therefore

lim
n→∞

α
�
X1
n, . . . , X k

n

�
= 1

a.s. for any independent random walks X1, . . . , X k . This implies that the number of compo-
nents of 𝖶𝖲𝖥 is a.s. infinite. ◀

Proof of Corollary 10.27. By Theorem 6.7, the spectral radius ρ of random walk in G is
strictly less than 1. Let d be an upper bound for π(x). Fix o ∈ 𝖵 and consider independent
random walks X and Y starting at o. Then by reversibility and (6.13), P[Xm = Yn] ≤
d P[Xm+n = o] ≤ dρm+n. Summing on m and n gives that the expected number of pairs of
times where the two random walks intersect is finite, whence the number of intersections is
finite a.s. Thus, the result follows from the last part of Theorem 10.26. ◀

▷ Exercise 10.15.
Let (T , c) be a network on a tree. Show that 𝖶𝖲𝖥[F ̸= T] = 1 iff there is some edge e ∈ T
such that both components of T \ e are transient iff 𝖶𝖲𝖥[F ̸= T] > 0.
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10.6 The Size of the Trees

In the preceding section, we discovered how many trees there are in the wired spanning
forest. Now we ask how big these trees are. Of course, there is more than one way to define
“big.” The most obvious probabilistic notion of “big” is “transient.” In this sense, all the trees
are small:

Theorem 10.34. (Morris, 2003) Let (G, c) be a network. For𝖶𝖲𝖥-a.e. F, all trees T in F
have the property that the wired spanning forest of (T , c) equals T . In particular, if c( • ) is
bounded, then (T , c) is recurrent.

To prove Morris’s theorem, we will use the following observation:

Lemma 10.35. Let (G, c) be a transient network and ⟨en⟩ an enumeration of its edges. Write
Gn for the network obtained by contracting the edges e1, e2, . . . , en. For any vertex x, we
have limn→∞R(x ↔ ∞; Gn) = 0.

Proof. Let θ be a unit flow in G from x to ∞ of finite energy. The restriction of θ to
⟨ek ; k > n⟩ is a unit flow in Gn from x to infinity with energy tending to 0 as n → ∞.
Since the energy of any unit flow is an upper bound on the effective resistance by Thomson’s
principle, the result follows. ◀

We will also use the result of the following exercise:

▷ Exercise 10.16.
Let (T , c) be a transient network on a tree with bounded conductances c( • ). Show that there
is some e ∈ T such that both components of T\e are transient (with respect to c).

Proof of Theorem 10.34. Consider any edge e of G. Let Ae be the event that both endpoints
of e lie in transient components of F\e (with respect to the conductances c( • )). We’ll prove
that 𝖶𝖲𝖥[e ∈ F, Ae] = 0. The first part of the theorem then follows from Exercise 10.7,
while the last part follows from Exercise 10.16.

Enumerate the edges of G\e as ⟨en⟩. Let Fn be the σ-field generated by the events [ek ∈ F]
for k < n, where n ≤ ∞. Recall that conditioning on an edge being in the spanning forest
is equivalent to contracting the edge from the original network, whereas conditioning on
the edge being absent is equivalent to deleting the edge from the original network. Thus,
for n < ∞, let Gn be the random network obtained from G by contracting ek when ek ∈ F
and deleting ek otherwise, where we do this for all k < n. Let in be the wired unit current
flow in Gn from the tail to the head of e. Then 𝖶𝖲𝖥[e ∈ F | Fn] = in(e) by (10.3). This
is c(e) times the wired effective resistance between e− and e+ in Gn. By Lemma 10.35 and
Exercise 9.29, this tends to 0 on the event Ae. By Lévy’s martingale convergence theorem,
we obtain 𝖶𝖲𝖥[e ∈ F | F∞]1Ae

= 0 a.s. Taking the expectation of this equation gives
𝖶𝖲𝖥[e ∈ F, Ae] = 0, as desired. ◀

We now look at another notion of size of trees. Call an infinite path in a tree that starts at
any vertex and does not backtrack a ray. Call two rays equivalent if they have infinitely many
vertices in common. An equivalence class of rays is called an end. How many ends do the
trees of a uniform spanning forest have?
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Let’s begin by thinking about the case of the wired uniform spanning forest on a regular
tree of degree d + 1. Choose a vertex, o. Begin Wilson’s method rooted at infinity
from o. We obtain a ray ξ from o to start our forest. Now o has d neighbors not in ξ,
x1, . . . , xd. By beginning random walks at each of them in turn, we see that the events
Ai := [xi connected to o] are independent. Furthermore, the resistance from xi to∞ in the
descendant subtree of xi (we think of o as the parent of xi) is 1/d+1/d2+1/d3+· · · = 1/(d−1),
whence the probability that random walk started at xi ever hits o is 1/d. This is the probability
of Ai . On the event Ai , we add only the edge [o, xi] to the forest, and then we repeat the
analysis from xi . Thus, the tree containing o includes, apart from the ray ξ, a critical Galton-
Watson tree with binomial offspring distribution Bin(d, 1/d). In addition, each vertex on ξ has
another random subtree attached to it; its first generation has distribution Bin(d − 1, 1/d), but
subsequent generations yield Galton-Watson trees with distribution Bin(d, 1/d). In particular,
a.s. every tree added to ξ is finite. This means that the tree containing o has only one end, the
equivalence class of ξ. This analysis is easily extended to form a complete description of the
entire wired spanning forest. In fact, if we work on the d-ary tree instead of the (d +1)-regular
tree, the description is slightly simpler: each tree in the forest is a size-biased Galton-Watson
tree grown from its lowest vertex, generated from the offspring distribution Bin(d, 1/d) (see
Section 12.1). The resulting description is due to Häggström (1998), whose work predated
Wilson’s algorithm.

Now consider the 𝖶𝖲𝖥 on general graphs. If we begin Wilson’s algorithm at a vertex o in
a graph, it immediately generates one end of the tree containing o. For this tree to have more
than one end, however, we need a succession of “coincidences” to occur, building up other
ends by gradually adding on finite pieces. This is possible (see Exercises 10.17, 10.48, or
10.49), but it suggests that “usually,” the wired spanning forest has trees with only one end
each. Indeed, we will show that this is very often the case.

▷ Exercise 10.17.
Give a transient graph such that the wired uniform spanning forest has a single tree with more
than one end.

First, we consider the planar recurrent case, which has an amazingly simple analysis:

Theorem 10.36. Suppose that G is a simple plane recurrent network and G† its plane dual.
Assume that G† is locally finite and recurrent. Then the uniform spanning tree on G has only
one end a.s.

Proof. Because both networks are recurrent, their free and wired spanning forests coincide
and are a single tree a.s. We observed in Section 10.3 that the uniform spanning tree T of
G is “dual” to that of G†. If T had at least two ends, the bi-infinite path in T joining two of
them would separate T× into at least two trees. Since we know that T× is a single tree, this is
impossible. ◀
In particular, we have verified the claim in Section 4.3 that the maze in �2 is connected

and has exactly one way to get to infinity from any square. If we want to get a somewhat
more global picture of the uniform spanning tree in �2 incorporating the fact that it has only
one end, then we can look at the uniform spanning tree in a wired piece of the square grid



366 Chap. 10: Uniform Spanning Forests

in a similar fashion to Figure 4.5. That is, we can plot the distance to the outer boundary
vertex: see Figure 10.2. Near the middle, this should be similar to what we would see in the
infinite grid, where “distance” is replaced by “horodistance” to the unique end. Horodistance
is defined only up to an additive constant; if we fix the horodistance to be 0, say, at the origin,
then all other horodistances h(x) are determined by h(x) := dT (x, xn)− dT (0, xn) for all large
n, where dT indicates distance in the uniform spanning tree T and ⟨xn⟩ is a ray that represents
the unique end of T .

Figure 10.2. The distances to the outer boundary in a
uniform spanning tree of a wired 200 × 200 square grid.

Similar reasoning shows the following:

Proposition 10.37. Suppose that G is a simple plane network and G† its plane dual. Assume
that G† is locally finite. If each tree of the𝖶𝖲𝖥 of G has only one end a.s., then the 𝖥𝖲𝖥 of
G† has only one tree a.s. If, in addition, the 𝖶𝖲𝖥 of G has infinitely many trees a.s., then the
tree of the 𝖥𝖲𝖥 of G† has infinitely many ends a.s. ◀

This is illustrated for the Cayley graph of Figure 6.1 and its dual in Figure 10.3.
Now we go beyond the planar cases. By Proposition 10.10 and Theorem 8.19, it follows

that if G is a transient transitive unimodular network, almost surely each tree of the wired
spanning forest has one or two ends. It it one or two? This is less easy to decide. The
answer is that each tree of the 𝖶𝖲𝖥 has only one end a.s. in every quasi-transitive transient
network as well as in a host of other natural networks. The first result of this kind was due to
Pemantle (1991), who proved it for �d with d = 3, 4 and also showed that there are at most
two ends per tree for d ≥ 5. BLPS (2001) extended and completed this for all unimodular
transitive networks, showing that each tree has only one end. This was then extended to all
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Figure 10.3. The 𝖥𝖲𝖥 of a Cayley graph in the hyperbolic disc, which
is a tree, and its thinner dual 𝖶𝖲𝖥, each of whose trees has one end.

quasi-transitive transient networks and more by Lyons, Morris, and Schramm (2008), who
found a simpler method of proof that worked in greater generality. This is the proof we
present here. We prove it first for the case of �d before giving more general results.

Lemma 10.38. Let A be an event of positive probability in a probability space and F be a
σ-field. Then P(A | F ) > 0 a.s. given A .

Proof. Let B be the event where P(A | F ) = 0. We want to show that P(B ∩ A ) = 0. Since
B ∈ F , we have by definition of conditional probability that

P(B ∩ A ) = E
�
1B P(A | F )� = 0 . ◀

Lemma 10.39. Let B(n) be a box in �d for some d ≥ 3 whose sides are parallel to the axes
and of length n. Then

lim
N→∞

inf
{
C
�
K ↔ ∞;�d\B(n)� ; K ⊂ �d\B(n), |K | = N , n ≥ 0

}
= ∞ .

Proof. Since the effective conductance is monotone increasing in K , it suffices to bound it
from below when all points in K are at pairwise distance at least N from each other and lie
on one side of a hyperplane that includes a face of B(n). Since the effective conductance is
also monotone increasing in the rest of the network (Rayleigh’s monotonicity principle), it
suffices to bound from below the conductance from K to ∞ in G := � □ �d−1. That G is
transient follows from the proof of Pólya’s theorem, or can be deduced from Pólya’s theorem
by reflection. Thus, there exists a unit flow θ of finite energy from the origin to∞ in G. Write
θx for the image of θ under the translation of the origin to x ∈ G. Then θK :=

∑
x∈K θx/|K |
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is a unit flow between K and ∞, so it suffices to bound its energy from above. We claim
that the inner product (θx , θy) is small when x and y are far from each other. Indeed, given
ϵ > 0, choose a finite set F ⊂ 𝖤(G) such that∑e/∈F θ(e)2 < ϵ2. Write θx = θ(1)x + θ(2)x , where
θ
(1)
x := θx↾(F + x) and θ(2)x := θx↾(F + x)c. Then if the distance between x and y is so large

that (F + x) ∩ (F + y) = ∅, we have

(θx , θy) = (θ(1)x , θ
(2)
y ) + (θ(2)x , θ

(1)
y ) + (θ(2)x , θ

(2)
y ) ≤ 2ϵE (θ)1/2 + ϵ2

by the Cauchy-Schwarz inequality. Therefore, we have

E (θK ) =
∑
x∈K

E
�
θx/|K |� +

∑
x ̸=y∈K

(θx , θy)/|K |2 = E (θ)/|K | + o(1) = o(1) ,

as desired. ◀

We need one more simple lemma before proving that the uniform spanning forest in �d

has one end in each tree a.s. for d ≥ 2.

Lemma 10.40. Let G be a network and F ⊂ 𝖤(G). For e ∈ F, let us abbreviate re :=
RW(e− ↔ e+; G\F). Then

𝖶𝖲𝖥[F ∩F = ∅] ≥
∏
e∈F

1
1 + c(e)re .

Proof. It suffices to prove the analogous statement for finite networks, so we write T for the
random spanning tree rather than F. For e ∈ F, we have

P[e ∈ T] = c(e)R(e− ↔ e+; G) =
c(e)

c(e) + C (e− ↔ e+; G\e) ≤
c(e)

c(e) + C (e− ↔ e+; G\F)
by Kirchhoff’s effective resistance formula and Rayleigh’s monotonicity principle. Thus,

P[e /∈ T] ≥ 1
1 + c(e)R(e− ↔ e+; G\F) .

If we order F and use this bound one at a time, conditioning each time that the prior edges of
F are not in T and deleting them from G, we get the desired bound. ◀

Recall that the inner vertex boundary of a set K is

∂in
𝖵 K :=

�
x ∈ K ; ∃y /∈ K y ∼ x

	
.

Theorem 10.41. (One End for Trees in �d) In �d with d ≥ 2, every tree in the uniform
spanning forest has only one end a.s.

Proof. The case d = 2 is part of Theorem 10.36, so assume that d ≥ 3 and, thus, that the
graph is transient by Pólya’s theorem. Let Ae be the event that F\e has a finite component.
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The way we will show that every tree inF has one end a.s. is to show that every edge e ∈ 𝖤(G)
has the property that 𝖶𝖲𝖥[Ae | e ∈ F] = 1.
Fix e. Let ⟨Gn⟩ be an exhaustion by boxes that contain e. Let Fn be the σ-field generated

by the events [ f ∈ F] for f ∈ 𝖤(Gn) \ {e}. Let G′n be �d after we delete the edges of
Gn \

�
F ∪ {e}� and contract each edge of Gn ∩

�
F \ {e}�. Note that e ∈ G′n. As in the proof

of Theorem 10.34,

𝖶𝖲𝖥[e ∈ F | Fn] = RW(e− ↔ e+; G′n) =
1

1 + C W(e− ↔ e+; G′n\e) .

Since𝖶𝖲𝖥[e ∈ F | Fn] has a nonzero limit a.s. given e ∈ F by the martingale convergence
theorem and Lemma 10.38, it follows that C W(e− ↔ e+;G′n\e) is bounded a.s. given e ∈ F.
Let T be the component of F that contains e when e ∈ F, and let T := ∅ otherwise. By
combining the previous bound on the wired effective conductance with Lemma 10.39 and
Exercise 9.29, it follows that there is some finite random N with the following property: for
all n, conditional on the event that e ∈ F, a.s. at least one of the two components of T\e has
at most N vertices on the inner vertex boundary of the box Gn. Suppose that the component
T ′ of e− is such a component, so that e− has degree at most 2dN in G′n\e. By Lemma 10.40,
it follows that on the event e ∈ F, the conditional probability that T ′ = T ′ ∩Gn given Fn is at
least ϵ2dN for some ϵ > 0 and all large n. In particular,𝖶𝖲𝖥[Ae | Fn] ≥ ϵ2dN on the event
that e ∈ F. Since Ae lies in the σ-field generated by

∪
Fn, the limit of these conditional

probabilities as n → ∞ is a.s. the indicator of Ae, whence 1Ae
≥ ϵ2dN1[e∈F] a.s., whence

1Ae
≥ 1[e∈F] a.s., as desired. ◀

We now prove the same for networks with a “reasonable isoperimetric profile,” as defined
in Section 6.8. Recall that |F |c :=

∑
e∈F c(e) for F ⊆ 𝖤 and |K |π :=

∑
x∈K π(x) for K ⊆ 𝖵.

Write
ψ(G, t) := inf

� |∂𝖤K |c ; t ≤ |K |π < ∞	 .
We need one more lemma, which states that if G has a good isoperimetric profile (in terms
of ψ), then G can be exhausted by finite subgraphs whose complements still have good
isoperimetric profiles.

Lemma 10.42. Let G be an infinite connected network such that

ψ(G, 0+) := lim
t↓0

ψ(G, t) > 0 and lim
t→∞

ψ(G, t) = ∞ . (10.34)

Then G has an exhaustion ⟨Gn⟩ by finite connected induced subgraphs such that�
∂𝖤U \ ∂𝖤𝖵(Gn)�c ≥ �

∂𝖤U
�
c
/2 (10.35)

for all n and all finite U ⊂ 𝖵(G) \ 𝖵(Gn) and

ψ
�
G\𝖵(Gn), t� ≥ ψ(G, t)/2 (10.36)

for all n and t > 0.

Proof. Given K ⊂ 𝖵(G) such that its induced subgraph G↾K is connected, let W (K) be a set
L that minimizes |∂𝖤L |c over all finite sets L that contain K ∪ ∂𝖵K ; such a set W (K) exists
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by our assumptions (10.34) on G. Furthermore, its induced subgraph G↾W (K) is connected.
Let G′ := G\W (K) and write ∂ ′𝖤 for the edge-boundary operator in G′. If U is a finite subset
of vertices in G′, then

�
∂ ′𝖤U

�
c
≥
�
∂𝖤U

�
c
/2, which is the same as

�
∂𝖤U \ ∂𝖤W (K)�

c
≥
�
∂𝖤U

�
c
/2,

since if not, W (K) ∪ U would have a smaller edge boundary but larger size than W (K),
contradicting the definition of W (K). Thus, ψ(G′, t) ≥ ψ(G, t)/2 for all t > 0. It follows that
we may define an exhaustion having the desired properties by the recursion K1 := W

�{o}�
and Kn+1 := W (Kn), where o is a fixed vertex of G, and Gn := G↾Kn. ◀
The following theorem shows that isoperimetric growth at a rate faster than square root

guarantees one end per tree in the 𝖶𝖲𝖥.

Theorem 10.43. (Isoperimetric Condition for One-Ended Trees) Suppose that G is
an infinite network with π0 := infx∈𝖵 π(x) > 0. If ψ(t) := ψ(G, t) has the property that
ψ(t) ≥ f (t) for some increasing function f on [π0,∞) that satisfies 0 ≤ f (t) ≤ t and
f (2t) ≤ α f (t) for some α and ∫ ∞

π0

dt
f (t)2 < ∞ ,

then 𝖶𝖲𝖥-a.s. every tree has only one end.

Just as we saw that Theorem 6.41 was an easy consequence of Theorem 6.42, so Theo-
rem 10.43 is easy to deduce from the following version that does not assume any regularity
on ψ(G, t):
Theorem 10.44. Suppose that G is an infinite network. Let ψ(t) := ψ(G, t). Define
s1 := ψ(0+)/2 and sk+1 := sk + ψ(sk)/2 inductively for k ≥ 1. If

ψ(0+) > 0 and
∑
k≥1

1
ψ(sk) < ∞ , (10.37)

then 𝖶𝖲𝖥-a.s. every tree has only one end.

Proof. Let Ae be the event that F\e has a finite component. Just as we did in the proof
of Theorem 10.41, we will show that every edge e ∈ 𝖤(G) satisfies 𝖶𝖲𝖥[Ae | e ∈ F] = 1.
Unfortunately, the proof will be rather lengthier, but it is the same in spirit.
Our assumptions (10.37) imply those (10.34) of Lemma 10.42. Let ⟨Gn⟩ be an exhaustion

by finite connected induced subgraphs that contain e and satisfy (10.35) and (10.36). Let
G′n be G after deleting 𝖤(Gn) \ (F ∪ {e}), contracting 𝖤(Gn) ∩ (F \ {e}), and removing any
resulting loops. Note that e ∈ G′n. Let Hn := G′n\e and write πn for the corresponding vertex
weights in Hn. As in the proof of Theorem 10.41,

𝖶𝖲𝖥[e ∈ F | G′n] = c(e)RW(e− ↔ e+; G′n) =
c(e)

c(e) + C W(e− ↔ e+; Hn) .

Since 𝖶𝖲𝖥[e ∈ F | G′n] has a nonzero limit a.s. given e ∈ F by the martingale convergence
theorem and Lemma 10.38, it follows that

sup
n

C W(e− ↔ e+; Hn) < ∞ a.s. given e ∈ F . (10.38)
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If either of the endpoints of e is isolated in Hn, then Ae occurs. If not, then Hn is obtained
from Ln := G\𝖵(Gn) by adding new vertices and edges. Write π′n(x) for the sum of edge
weights incident to x in Ln. We claim that for some fixed R < ∞, all n ≥ 1, and all
x, y ∈ 𝖵(Ln), we have

RW(x ↔ y; Ln) ≤ R . (10.39)
To see this, given x ∈ 𝖵(Ln), define r0 := π′n(x) and rk+1 := rk + ψ(Ln, x, rk)/2 inductively.
Here, as in (6.57), we use the definition

ψ(Ln, x, t) := inf
� |∂𝖤K |c ; x ∈ K ⊂ 𝖵(Ln), Ln↾K is connected, t ≤ |K |π < ∞	 .

We claim that r2k ≥ sk for all k. We prove this by induction on k. Obviously r0 ≥ s0.
Assume that r2k ≥ sk for some k ≥ 0. By (10.36), we have

r2k+2 ≥ r2k+1 + ψ(G, r2k+1)/4 ≥ r2k + ψ(G, r2k)/4 + ψ(G, r2k)/4 ≥ sk + ψ(G, sk)/2 = sk+1 ,

which completes the proof. Since r2k+1 ≥ sk as well, the bound of Theorem 6.42 (which
applies, since ψ(0+) > 0 implies |𝖵(G)|π = ∞) shows that

R(x ↔ ∞; Ln) ≤
∑
k

2
ψ(Ln, x, rk) ≤

∑
k

4
ψ(G, rk) ≤

∑
k

8
ψ(G, sk) .

In combination with Exercise 9.29, this proves (10.39) with R =
∑

k 16/ψ(G, sk). In
addition, the same proof shows that if it happens that π′n(x) ≥ sm for some m, then we get
R(x ↔ ∞; Ln) ≤∑

k≥m 8/ψ(G, sk). This tends to 0 as m → ∞.
Let xn and yn be the endpoints of e in Hn. Consider now

RW(xn ↔ ∞; Hn) ≤ RW(xn ↔ ∞; Jn) ,
where Jn is the network formed by adding to Ln the vertex xn together with the edges joining
it to its neighbors in Hn. By (10.35), ψ(Jn, xn, t) = πn(xn) for t = πn(xn). We claim that

ψ(Jn, xn, t) ≥ ψ(Ln, t/3) (10.40)
for all t ≥ (3/2)πn(xn). Let ∂ ′𝖤 denote the edge-boundary operator in Ln. Let π′′n denote
the vertex weights in Jn. Consider a finite connected set K of vertices in Jn that strictly
contains xn and with |K |π′′n ≥ (3/2)πn(xn). Let K ′ := K \ {xn}. Then |K ′|π′n ≥ |K |π′′n/3,
while |∂ ′𝖤K ′|c ≤ |∂𝖤K |c . This proves the claim. An argument similar to the preceding shows,
therefore, that R(xn ↔ ∞; Jn) is small if πn(xn) is large because the first two terms in the
series of Theorem 6.42 are 2/πn(xn) and 2/ψ

�
Jn, xn, (3/2)πn(xn)�, and the latter is at most

2/ψ
�
Ln, πn(xn)/2� by (10.40). The same holds for yn. If both resistances were small, then

RW(xn ↔ yn; Hn) would also be small by Exercise 9.29, which would contradict (10.38).
Therefore,

�
min{πn(xn), πn(yn)} ; n ≥ 1

	
is bounded a.s. For simplicity, let’s say that

{πn(xn) ; n ≥ 1} is bounded a.s.
Form G′′n from G′n by contracting the edges incident to yn (other than e) that lie in F and

by deleting the others. If none lie in F, then Ae occurs, so assume at least one does belong to



372 Chap. 10: Uniform Spanning Forests

F. If F denotes the set of edges of Hn incident to xn, then by Lemma 10.40, (10.39), and
Rayleigh’s monotonicity principle, we have

𝖶𝖲𝖥[F ∩F = ∅ | G′′n ] ≥ exp
{
−
∑
f ∈F

c( f )�r(e) + R
�}

= exp
{
−πn(xn)�r(e) + R

�}
if neither endpoint of e is isolated in Hn. This is bounded away from 0. In particular,
𝖶𝖲𝖥[Ae | G′′n ] is bounded away from 0 a.s. on the event that e ∈ F. Since the limit of these
conditional probabilities as n → ∞ is a.s. the indicator of Ae, the proof is completed as for
Theorem 10.41. ◀

Which (unweighted) graphs satisfy the hypothesis of Theorem 10.43? Of course, all
nonamenable graphs do – with a linear function f . Combining this with Corollary 10.27, we
get a good description of the 𝖶𝖲𝖥 on bounded-degree nonamenable graphs:

Theorem 10.45. If G is a connected nonamenable graph of bounded degree, then the𝖶𝖲𝖥
a.s. has infinitely many trees, each with one end.

Although it is not obvious, all quasi-transitive transient graphs also satisfy the hypothesis
of Theorem 10.43. To show this, we begin with the following lemma due to Coulhon
and Saloff-Coste (1993), Saloff-Coste (1995), and Lyons, Morris, and Schramm (2008). It
extends Theorem 6.29. (Recall from Proposition 8.14 that nonunimodular transitive graphs
are nonamenable and so satisfy a better inequality than the following one.)

Lemma 10.46. Let G be a unimodular transitive graph. Let R(m) be the smallest radius of a
ball in G that contains at least m vertices. Then, for all finite K ⊂ 𝖵, we have

|∂in
𝖵 K |
|K | ≥

1
2R

�
2|K |� .

Proof. Fix a finite set K and let R := R
�
2|K |�. Let B′(x, r) be the punctured ball of radius

r about x, that is, the ball but missing x itself, and let b := |B′(x, R)|. For x, y, z ∈ 𝖵(G),
define fk(x, y, z) as the proportion of geodesic (that is, shortest) paths from x to z whose
kth vertex is y. Let S(x, r) be the sphere of radius r about x. Write qr := |S(x, r)|. Let
Fr,k(x, y) :=

∑
z∈S(x,r) fk(x, y, z). Clearly,

∑
y Fr,k(x, y) = qr for every x ∈ 𝖵(G) and

r ≥ 1. Since Fr,k is invariant under the diagonal action of the automorphism group of G, the
mass-transport principle gives

∑
x Fr,k(x, y) = qr for every y ∈ 𝖵(G) and r ≥ 1. Now we

consider the sum

Zr :=
∑
x∈K

∑
z∈S(x,r)\K

∑
y∈∂in

𝖵K

r−1∑
k=0

fk(x, y, z) .

If we fix x ∈ K and z ∈ S(x, r) \ K , then the inner double sum is at least 1, since if we fix any
geodesic path from x to z, it must pass through ∂in

𝖵 K . It follows that

Zr ≥
∑
x∈K

|S(x, r) \ K | ,
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whence

Z :=
R∑
r=1

Zr ≥
∑
x∈K

|B′(x, R) \ K | ≥
∑
x∈K

|B′(x, R)|/2 = |K |b/2 .

On the other hand, if we do the summation in another order, we find

Zr =
∑

y∈∂in
𝖵K

r−1∑
k=0

∑
x∈K

∑
z∈S(x,r)\K

fk(x, y, z)

≤
∑

y∈∂in
𝖵K

r−1∑
k=0

∑
x∈𝖵(G)

∑
z∈S(x,r)

fk(x, y, z)

=
∑

y∈∂in
𝖵K

r−1∑
k=0

∑
x∈𝖵(G)

Fr,k(x, y)

=
∑

y∈∂in
𝖵K

r−1∑
k=0

qr = |∂in
𝖵 K |rqr .

Therefore,

Z ≤
R∑
r=1

|∂in
𝖵 K |rqr ≤ |∂in

𝖵 K |Rb .

Comparing these upper and lower bounds for Z , we get the desired result. ◀

An immediate consequence of Lemma 10.46 (and Proposition 8.14) is the following bound:

Corollary 10.47. If G is a transitive graph with balls of radius n having at least cn3 vertices
for some constant c, then

ψ(G, t) ≥ c′t2/3

for some constant c′ and all t ≥ 1. ◀

As in Theorem 6.40, we may deduce transience:

Corollary 10.48. If G is a transitive graph with balls of radius n having at least cn3 vertices
for some constant c, then simple random walk is transient on G. ◀

Since all quasi-transitive transient graphs have at least cubic volume growth by a theorem
of Gromov (1981a) and Trofimov (1985) (see also the discussion of polynomial growth in
Section 7.9), we obtain one-endedness in the 𝖶𝖲𝖥:

Theorem 10.49. If G is a transient transitive network, then 𝖶𝖲𝖥-a.s. every tree has only
one end. ◀

▷ Exercise 10.18.
Show that Theorem 10.49 holds in the quasi-transitive case as well.
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Question 10.50. If G and G′ are two Cayley graphs of the same group and 𝖥𝖲𝖥G is connected
a.s., then is 𝖥𝖲𝖥G′ also connected a.s.?

In contrast to Theorem 10.49, we have:

Proposition 10.51. If G is a unimodular transitive network with 𝖶𝖲𝖥 ̸= 𝖥𝖲𝖥, then 𝖥𝖲𝖥-a.s.,
there is a tree with infinitely many ends – in fact, with branching number > 1.

Proof. We have that E𝖶𝖲𝖥[degF x] = 2 for all x, whence E𝖥𝖲𝖥[degF x] > 2 for all x. Apply
Theorem 8.19 and ergodicity (Corollary 10.19). ◀

Question 10.52. Let G be a transitive network with 𝖶𝖲𝖥 ̸= 𝖥𝖲𝖥. Must all components of
the 𝖥𝖲𝖥 have infinitely many ends a.s.?

In view of Proposition 10.51, this would follow in the unimodular case from a proof of the
following conjecture from BLPS (2001):

Conjecture. The components of the 𝖥𝖲𝖥 on a unimodular transitive graph are indistinguish-
able in the sense that for every automorphism-invariant property A of subgraphs, either a.s.
all components satisfy A or a.s. they all do not. The same holds for the 𝖶𝖲𝖥.

This conjecture was finally proved by Hutchcroft and Nachmias (2015). Independently, it
was proved by Timár (2015) for the 𝖥𝖲𝖥 with the additional assumption that 𝖥𝖲𝖥 ̸= 𝖶𝖲𝖥. It
fails in the nonunimodular setting, however: see Exercise 10.51.
To sum up our results for graphs roughly isometric to hyperbolic space, we need the fact

that such graphs are nonamenable; see Proposition F.6.12 of Benedetti and Petronio (1992).
Taking stock, we arrive at the following surprising results:

Theorem 10.53. Let G be a graph of bounded degree that is roughly isometric to �d.
(i) If G is a plane graph such that both G and its plane dual are roughly isometric to �2,

then the𝖶𝖲𝖥 of G has infinitely many trees a.s., each having one end a.s., whereas the
𝖥𝖲𝖥 of G has one tree a.s. with infinitely many ends a.s.

(ii) If d ≥ 3, then the 𝖶𝖲𝖥 = 𝖥𝖲𝖥 of G has infinitely many trees a.s., each having one end
a.s.

Proof. By Theorem 10.45 and nonamenability of G, the descriptions of the 𝖶𝖲𝖥 follow for
all d ≥ 2. In case (i), the description of the 𝖥𝖲𝖥 follows from Proposition 10.37. In case (ii),
it follows from Theorem 9.18 and Proposition 10.14. In the planar case, it suffices merely to
have both G and its dual locally finite and nonamenable. ◀

An example of a self-dual plane Cayley graph roughly isometric to �2 was shown in
Figure 2.4.
Here is a summary of the phase transitions. It is quite surprising that the free spanning

forest undergoes three phase transitions as the dimension increases. (We think of hyperbolic
space as having infinitely many Euclidean dimensions, since volume grows exponentially in
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hyperbolic space but only polynomially in Euclidean space.)

�d �d

d 2–4 ≥ 5 2 ≥ 3

𝖥𝖲𝖥: trees 1 ∞ 1 ∞
ends 1 1 ∞ 1

𝖶𝖲𝖥: trees 1 ∞ ∞ ∞
ends 1 1 1 1

To go beyond hyperbolic graphs, let G be a proper transient plane graph with bounded
degree and a bounded number of sides to its faces. Recall that Theorem 9.12 and Proposi-
tion 10.14 imply that 𝖶𝖲𝖥 ̸= 𝖥𝖲𝖥. By Theorem 10.26 and Theorem 9.17, 𝖶𝖲𝖥 has infinitely
many trees. If the wired spanning forest has only one end in each tree, then the end containing
any given vertex has a limiting direction that is distributed according to Lebesgue measure in
the parametrization of Section 9.4. Indeed this hypothesis holds:

Theorem 10.54. Let G be a proper transient plane graph with bounded degree and a
bounded number of sides to its faces. Each tree in the wired spanning forest has only one end
a.s., and the free spanning forest is a single tree a.s.

The recurrent case follows by combining Theorem 10.36 with the fact that G† is roughly
isometric to G, and thus that G† is also recurrent by Theorem 2.17. The transient case was
proved (in somewhat greater generality) by Hutchcroft and Nachmias (2016), thus answering
a question of BLPS (2001).
Finally, we mention the following beautiful extension of Pemantle’s Theorem 10.30; see

Benjamini, Kesten, Peres, and Schramm (2004).

Theorem 10.55. Identify each tree in the uniform spanning forest on �d to a single point. In
the new graph metric, the diameter of the resulting (locally infinite) graph is a.s. ⌊(d − 1)/4⌋.

10.7 Loop-Erased Random Walk and Harmonic Measure from Infinity

Infinite loop-erased random walk is defined in any transient network by chronologically
erasing cycles from the random walk path. This was the first stage in constructing the 𝖶𝖲𝖥
via Wilson’s method rooted at infinity. Is there a sensible way to define infinite loop-erased
random walk in a recurrent network? Suppose we try this: run random walk until it first
reaches distance n from its starting point, erase cycles, and take a weak limit as n → ∞.

▷ Exercise 10.19.
Show that on a general recurrent network, such a weak limit need not exist.
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Despite the discouraging results of that exercise, this approach does work in many cases.
In �2, weak convergence of these measures was established by Lawler (1988) using Harnack
inequalities (see Lawler (1991), Proposition 7.4.2). Lawler’s approach yields explicit estimates
of the rate of convergence but is difficult to extend to other networks. Using spanning trees,
however, we can often prove that the limit exists, as shown in the following exercise.

▷ Exercise 10.20.
Let ⟨Gn⟩ be an induced exhaustion of a recurrent network G. Consider the network random
walk ⟨Xk ; k ≥ 0⟩ started from o ∈ G. Denote by τn the first exit time of Gn, and let Ln be
the loop erasure of the path ⟨Xk ; 0 ≤ k ≤ τn⟩. Show that if the uniform spanning tree TG

in G has one end a.s., then the random paths Ln converge weakly to the law of the unique
ray from o in TG . In particular, show that this applies if G is a proper plane network with a
locally finite recurrent dual.

Now we go the other way: Instead of walking to infinity, we walk from infinity. More
precisely, we do not try to find a path coming from infinity but only the hitting distribution on
a finite set of that imagined path. Let A be a finite set of vertices in a recurrent network G.
Denote by τA the hitting time of A, and by hA

u the harmonic measure from u on A:

∀B ⊆ A hA
u (B) := Pu

�
XτA ∈ B

�
.

If the measures hA
u converge as dist(u, A) → ∞, then it is natural to refer to the limit as

harmonic measure from infinity on A. This convergence fails in some recurrent networks
(for example, in �), but it does hold in �2; see Lawler (1991), Theorem 2.1.3. On transient
networks, wired harmonic measure from infinity always exists: see Exercise 2.50. Here,
we show that on recurrent networks with one end in their uniform spanning tree, harmonic
measure from infinity also exists:

Theorem 10.56. Let G be a recurrent network and A be a finite set of vertices. Suppose
that the uniform spanning tree TG in G has one end a.s. Then the harmonic measures hA

u

converge as dist(u, A)→ ∞.

Proof. Essentially, we would like to run Wilson’s algorithm with all of A as root. To do this,
let (A, F) be a tree with F ∩ 𝖤(G) = ∅, and form the graph G′ :=

�
𝖵(G), 𝖤(G) ∪ F

�
. Assign

unit conductances to the edges of F. Note that the event that T has one end belongs to the
tail σ-field of Section 10.4. Now TG′ conditioned on TG′ ∩ F = ∅ has the same distribution
as TG . Therefore, tail triviality (Theorem 10.18) tell us that a.s. TG′ has one end. By this
fact and similar reasoning, because TG′ conditioned on the event

�
TG′ ∩ F = F

�
has the same

distribution as TG′/F , also TG′/F has one end a.s.
The path from u to A in TG′/F is constructed by running a random walk from u until it

hits A and then loop erasing. Thus, when dist(u, A)→ ∞, the measures hA
u must tend to the

conditional distribution, given
�
TG′ ∩ F = F

�
, of the point in A that is closest (in TG′) to the

unique end of TG′ . ◀
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10.8 Appendix: Von Neumann Dimension and ℓ2-Betti Numbers

Our goal is to show that the expected degree of the 𝖥𝖲𝖥 in a Cayley graph depends only on
the group and not on the set of generators. To accomplish this, we will explain what (10.6)
means and why it is true. In particular, we show that the first ℓ2-Betti number of a Cayley
graph depends only on the group.
Let G be the Cayley graph of an infinite group Γ with respect to a finite generating set S

closed under inverses. Write es for the edge joining the identity o to s. By (10.3), we can
express the expected degree in the 𝖥𝖲𝖥 as

E𝖥𝖲𝖥[degF o] =
∑
s∈S

𝖥𝖲𝖥[es ∈ F] =
∑
s∈S

�
P⊥♢χ

es , χes
�
. (10.41)

The idea now is to identify ♢⊥ with a Γ-invariant subspace of ℓ2(Γ × S) ∼= ℓ2(Γ)|S | and to
define von Neumann dimension for Γ-invariant subspaces of ℓ2(Γ)n in general. Note that Γ
acts on ℓ2(Γ)n by (γ f )(γ1, . . . , γn) := f (γ−1γ1, . . . , γ

−1γn). To show that E𝖥𝖲𝖥[degF o] does
not depend on S, we define von Neumann dimension still more generally and then prove its
invariance under embeddings.
The identification of a Γ-invariant closed subspace H ⊆ ℓ2

−(𝖤), such as ♢⊥, with a Γ-
invariant subspace of ℓ2(Γ × S) goes as follows. Let the standard basis elements of ℓ2(Γ × S)
be { fγ,s ; γ ∈ Γ, s ∈ S}. Identify ℓ2

−(𝖤) with the range in ℓ2(Γ × S) of the map defined by
sending χ⟨γ,γs⟩ to the vector ( fγ,s − fγs,s−1 )/√2. This is well defined, since it respects the
identity χ⟨γ,γs⟩ = −χ⟨γs,γ⟩. These image vectors form an orthonormal basis of the range, so
the map is an isometry. Then H becomes identified with a Γ-invariant closed subspace HS .
Write Q for the orthogonal projection of ℓ2(Γ × S) onto HS . Since

�
fγ,s + fγs,s−1

�
⊥ ℓ2

−(𝖤)S ,
and hence

�
fγ,s + fγs,s−1

�
⊥ HS , we have

Q fo,s = −Q fs,s−1 .

Therefore, the sum we encountered in (10.41) can be written in this more general context as∑
s∈S

�
PHχes , χes

�
=
∑
s∈S

∥Q( fo,s − fs,s−1 )/
√

2∥2 =
∑
s∈S

∥√2Q fo,s∥2 = 2
∑
s∈S

�
Q fo,s, fo,s

�
.

(10.42)
To motivate the definition of von Neumann dimension, recall first that the ordinary

dimension is the minimal number of vectors needed to span (in an appropriate sense) a vector
or Banach space. When we have a group acting that preserves a vector space, then the von
Neumann dimension has the same intuitive definition as this, but in spanning, we are allowed
to act via the group. Thus, the von Neumann dimension of ℓ2(Γ) (with respect to Γ) is 1 and
the von Neumann dimension of ℓ2(Γ)2 is 2. However, this does not help us to see clearly what
the von Neumann dimension of a subspace of ℓ2(Γ) is. So let us reformulate our intuitive
definition as the minimal number of vectors needed in the ordinary sense, but per group
element. When Γ is finite, this makes it quite easy to rigorously define the von Neumann
dimension of an invariant subspace H of ℓ2(Γ), namely, dimΓ H := (dim H)/|Γ|. In particular,
note that von Neumann dimension is not always an integer. To extend this idea to infinite
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groups, make the key observation that dim H = tr PH , the trace of the orthogonal projection
to H. When H is invariant, we will see in a moment that all the diagonal elements of the
matrix of PH are the same (in the standard orthonormal basis of ℓ2(Γ)), whence dimΓ H is
simply the common value on the diagonal. This is how we define it in general: when H is a
closed Γ-invariant subspace of ℓ2(Γ), we put dimΓ H := (PH1{o}, 1{o}), which is the same as
(PH1{γ}, 1{γ}) for all γ ∈ Γ.
To see that all the diagonal elements of the matrix of PH are the same, let H be a closed

Γ-invariant subspace of ℓ2(Γ). Then H⊥ is also closed and Γ-invariant, since Γ acts on ℓ2(Γ)
by isometries. Thus, for all f ∈ ℓ2(Γ) and all γ ∈ Γ, the equation f = PH ( f ) + P⊥H ( f ) implies
that γ f = γPH ( f ) + γP⊥H ( f ) is the orthogonal decomposition of γ f with respect to H ⊕ H⊥,
that is,

PH (γ f ) = γPH ( f ) . (10.43)
In particular, (PH1{γ}, 1{γ}) = (PHγ1{o}, γ1{o}) = (PH1{o}, 1{o}), as desired.
For example, if Γ = �, then ℓ2(�) is isometrically isomorphic to L2�[0, 1]� (with Lebesgue

measure) by the Fourier map L2�[0, 1]� ∋ f 7→ f̂ ∈ ℓ2(�) (the inverse of the map used in
Section 10.3, as in Exercise 10.39), and it can be shown that �-invariant subspaces of ℓ2(�)
correspond under this isomorphism to spaces of the form L2(A) for A a measurable subset of
[0, 1]. Then dim� EL2(A) = |A| (the Lebesgue measure of A), since PL2(A) f = f 1A, so that
dim� EL2(A) =

∫ 1
0 (11A)1 = |A|.

We need to extend this notion to closed invariant subspaces H of ℓ2(Γ)n. Note that
ℓ2(Γ)n ∼= ℓ2�Γ × {1, . . . , n}�. The matrix (with respect to the standard orthonormal basis)
of any linear operator on this space can be written in block form, where an n × n-block
corresponds to fixing γ, γ ′ ∈ Γ and taking all rows corresponding to (γ, i) and all columns
corresponding to (γ′, j), where i, j ∈ {1, . . . , n}. The diagonal blocks are those with γ = γ′.
When H is invariant, the diagonal blocks of the matrix of PH are all the same, whence
we define the von Neumann dimension of H with respect to Γ to be the common trace,
dimΓ H :=

∑n
i=1

�
PH1{(o,i)}, 1{(o,i)}

�
. Thus, the sum in (10.42) equals 2 dimΓ HS .

Next we need to show that von Neumann dimension is an intrinsic number, not dependent
on the particular representation as a subspace of any ℓ2(Γ)n. To what, then, is this dimension
intrinsic?* Recall that a Fréchet space is a locally convex topological vector space whose
topology is induced by a complete translation-invariant metric. Define a Fréchet space M
to be a Hilbertable Γ-space if Γ acts on M by continuous linear transformations and there
exists a Γ-equivariant continuous linear injection α: M → ℓ2(Γ)n for some finite n whose
image, img α, is closed. Here, to say that α is Γ-equivariant means that α intertwines the
(left) Γ-actions, that is, α(γ f ) = γα( f ) for all f ∈ M and all γ ∈ Γ. In this case, we define
dimΓ M := dimΓ img α. Clearly, we must show that this does not depend on the choice of α.
This leads us to revisit the earlier use of the trace. Let N(Γ) be the von Neumann algebra

of Γ, that is, the set of Γ-equivariant bounded linear operators on ℓ2(Γ). This includes
orthogonal projections on closed invariant subspaces, as we saw in (10.43).
For ϕ ∈ N(Γ), define trΓ(ϕ) :=

�
ϕ(1{o}), 1{o}

�
. We’ll need the following little device: given

f ∈ ℓ2(Γ), write f̃ for the element of ℓ2(Γ) defined by γ 7→ f
�
γ−1�. (We’re taking complex

* One could avoid this question by using the first part of the proof of Theorem 9.9, but one would still need most
of the mathematics that follows.
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Hilbert spaces to be general, but real ones suffice for our application.) Note that for all
f , g ∈ ℓ2(Γ), we have ( f , g) = (g̃, f̃ ).

As usual, write ϕ∗ for the adjoint of ϕ. We have that

ϕ∗(1{o}) = Kϕ(1{o}) , (10.44)

since for all γ ∈ Γ,�
ϕ∗(1{o}), 1{γ}

�
=
�
1{o}, ϕ(1{γ})� =

�
1{o}, γϕ(1{o})� =

�
γ−11{o}, ϕ(1{o})�

=
�
1{γ−1}, ϕ(1{o})� =

�
1̃{γ}, ϕ(1{o})� =

�Kϕ(1{o}), 1{γ}
�
.

This leads to the key property of a trace:

Proposition 10.57. For all ϕ, ψ ∈ N(Γ), we have trΓ(ϕψ) = trΓ(ψϕ).
Proof. By definition and (10.44), we have

trΓ(ϕψ) =
(
ϕ
�
ψ(1{o})�, 1{o}

)
=
�
ψ(1{o}), ϕ∗(1{o})� =

�
ψ(1{o}),Kϕ(1{o})�

=
�
ϕ(1{o}),Kψ(1{o})� =

�
ϕ(1{o}), ψ∗(1{o})�

=
(
ψ
�
ϕ(1{o})�, 1{o}

)
= trΓ(ψϕ) . ◀

We now extend the trace to the algebra Mn(N(Γ)) of Γ-equivariant bounded linear operators
on ℓ2(Γ)n. For ϕ ∈ Mn(N(Γ)) and ( f1, . . . , fn) ∈ ℓ2(Γ)n, write

ϕ( f1, . . . , fn) =
( n∑

j=1

ϕ1, j f j , . . . ,
n∑
j=1

ϕn, j f j

)
∈ ℓ2(Γ)n .

That is, think of ϕ as an n×n-matrix [ϕi, j], where ϕi, j ∈ N(Γ). Define trΓ(ϕ) :=
∑n

i=1 trΓ(ϕi,i)
= trΓ

(∑n
i=1 ϕi,i

)
. From Proposition 10.57, a short calculation reveals that

trΓ(ϕψ) = trΓ(ψϕ) (10.45)

for all ϕ, ψ ∈ Mn(N(Γ)).
Given a Hilbertable Γ-space M, choose, as the definition allows us, a Γ-equivariant

continuous linear injection α: M → ℓ2(Γ)n with closed image. Note that img α is Γ-invariant.
Define dimΓ M := trΓ

�
Pimgα

�
= dimΓ img α; we must verify that this does not depend on the

choice of α. For example, consider the map α ⊕ 0: M → ℓ2(Γ)n+k for fixed k ≥ 1 induced by
the inclusion f 7→ ( f , 0) of ℓ2(Γ)n into ℓ2(Γ)n+k . Here, it is easy to see from the definition
that trΓ

�
Pimgα

�
= trΓ

�
Pimg(α⊕ 0)

�
. Thus, if we have another Γ-equivariant continuous linear

injection β: M → ℓ2(Γ)m with closed image, then to show that trΓ
�
Pimg β

�
= trΓ

�
Pimgα

�
, we

may assume that n = m. Now define T := βα−1: img α → img β. This is a Γ-equivariant
continuous linear bijection by the open mapping theorem, whence its polar decomposition
gives a Γ-equivariant unitary operator U := T(T∗T)−1/2 that maps img α → img β (see
Theorem 12.35 of Rudin (1991), for example). Extend U to ϕ := U ⊕ 0 ∈ Mn(N(Γ)), where
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ϕ↾img α = U and ϕ↾(img α)⊥ = 0. It is easy to check that ϕ∗ = U∗⊕0 in that ϕ∗↾img β = U∗

and ϕ∗↾(img β)⊥ = 0. From this, it is easy to see that Pimgα = ϕ∗ϕ and Pimg β = ϕϕ∗, whence
(10.45) gives the desired identity.

We have now shown how to define von Neumann dimension for general Hilbertable
Γ-spaces. Clearly dimΓ M = dimΓ M ′ if M and M ′ are isomorphic as Hilbertable Γ-spaces,
that is, if there is a Γ-equivariant continuous linear bijection from M to M ′. The following
properties of von Neumann dimension are not hard to verify, but we will not need them:
dimΓ M ≥ 0 with equality iff M = 0 (use the fact that an orthogonal projection P is equal
to P∗P); dimΓ(M ⊕ M ′) = dimΓ M + dimΓ M ′; and if Γ′ is a subgroup of Γ of index m < ∞,
then dimΓ′ M = m dimΓ M .
The final step is to define ♢⊥ as a Hilbertable Γ-space in a way that does not depend on

the group generators, S. For a function F: Γ → � and γ ∈ Γ, write ρ(γ)F for the function
γ′ 7→ F(γ′γ) for γ′ ∈ Γ. Let

D(Γ) :=
�
F: Γ→ � ; ∀γ

�
ρ(γ)F − F

�
∈ ℓ2(Γ)	 .

Then define Z(Γ) to be the vector space of cocycles, that is,

Z(Γ) :=
�
z: Γ→ ℓ2(Γ) ; ∃F ∈ D(Γ) ∀γ z(γ) = ρ(γ)F − F

	
.

Here, we may always choose F so that F(o) = 0 if we wish, in which case we may recover F
from z by F(γ) = −z(γ−1)(γ). To define a metric on Z(Γ), choose an ordering ⟨γi ; i ≥ 1⟩ of
Γ, and let the distance between z and z′ be the infimum of ϵ > 0 such that ∥z(γi)− z′(γi)∥ < ϵ

for all i < 1/ϵ . It is not hard to check that Z(Γ) is a Fréchet space. The (left) action of Γ on
Z(Γ) is (γz)(γ′): γ′′ 7→ z(γ′)(γ−1γ′′). It is easy to see that z ∈ Z(Γ) satisfies

z(γγ ′) = z(γ) + ρ(γ)z(γ′)

for all γ, γ ′ ∈ Γ. (In fact, Z(Γ) equals the space of all maps z: Γ → ℓ2(Γ) that satisfy this
cocycle identity.) Thus, every cocycle is determined by its values on a generating set. In
other words, the map α: Z(Γ) → ℓ2(Γ)S given by z 7→ z↾S is an injection. It is obviously
Γ-equivariant and continuous. It is not hard to check by using the cocycle identity that img α
is closed, whence Z(Γ) is a Hilbertable Γ-space.
It remains to show that Z(Γ) is isomorphic as a Hilbertable Γ-space to ♢⊥, where the latter

is a Hilbertable Γ-space by virtue of being a Γ-invariant Hilbert subspace of ℓ2
−(𝖤). Note that

D = D(Γ). Also, recall that ♢⊥ = ∇D. Thus, define T :♢⊥ → Z(Γ) by T(θ)(γ) := ρ(γ)F − F
when θ = dF. (Recall that all conductances are 1 here.) This is clearly an isomorphism.

From our earlier calculation (10.41)–(10.42), it follows that E𝖥𝖲𝖥[degF o] = 2 dimΓ Z(Γ)
does not depend on S. This finishes our main task.
We now explain the connection to Betti numbers. Ordinary Betti numbers are the

dimensions of the cohomology groups with real coefficients. In certain cases of infinite
CW-complexes acted on by a group, Γ, one defines ℓ2-Betti numbers as the von Neumann
dimensions of reduced ℓ2-cohomology Hilbert Γ-spaces. We explain part of this and refer to
Eckmann (2000) for more; there are also higher-dimensional analogues of spanning forests
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that corresponding to the higher ℓ2-Betti numbers, as shown by Lyons (2009). Define the
space of coboundaries

B(Γ) :=
�
z: Γ→ ℓ2(Γ) ; ∃F ∈ ℓ2(Γ) ∀γ z(γ) = ρ(γ)F − F

	
.

The only difference between Z(Γ) and B(Γ) is that in the latter, F is required to belong to
ℓ2(Γ), not just to D(Γ). Since Γ is infinite, this implies that for z ∈ B(Γ), there is a unique
F ∈ ℓ2(Γ) with z(γ) = ρ(γ)F − F. Make B(Γ) into a Hilbert space by defining the inner
product (z, z′) := (F, F ′), where F, F ′ ∈ ℓ2(Γ) correspond to z, z′ ∈ B(Γ) as in the definition.
Thus, B(Γ) is isomorphic to ℓ2(Γ). On the other hand, the closure of the inclusion of B(Γ) in
Z(Γ) is isomorphic to⋆ as a Hilbertable Γ-space, whence also B(Γ) is isomorphic to⋆; this
relies on the polar decomposition and is proved as Lemma 2.5.3 of Eckmann (2000). Thus,
1 = dimΓ ℓ

2(Γ) = dimΓ B(Γ) = dimΓ⋆. (This gives another way to prove Proposition 10.10
for Cayley graphs.) Since ♢⊥ = ∇HD ⊕⋆, it follows that

E𝖥𝖲𝖥[degF o] = 2 dimΓ ∇HD + 2 = 2 dimΓ Z(Γ)/B(Γ) + 2 = 2β1(Γ) + 2 ,

where Z(Γ)/B(Γ) is the first reduced ℓ2-cohomology of Γ and β1(Γ) := dimΓ Z(Γ)/B(Γ) is
the first ℓ2-Betti number of Γ. The reason that Z(Γ) ∼= ♢⊥ has the name of cocycles is that if
one adds a 2-cell to the Cayley graph for every relation in the group, then ♢⊥ is the kernel of
the natural coboundary map defined on ℓ2

−(𝖤). Similarly,⋆ is the closure of the image of the
coboundary map defined on ℓ2(𝖵), which accounts for the name “coboundaries.” (In the case
of finite groups, ∇HD = 0, which is why β1(Γ) = 0 when Γ is finite.)

▷ Exercise 10.21.
Let G be the Cayley graph of Γ with respect to S. Assign positive conductances to the edges
in such a way that they depend only on the generators associated to the edges. Show that still
E𝖥𝖲𝖥[degF o] = 2 + 2β1(Γ).

An extension of the invariance of expected degree of the 𝖥𝖲𝖥 can be proved by using
the major result of Gaboriau (2002). Namely, let G be a random connected graph whose
vertex set is Γ and whose law is Γ-invariant. Then still E

�
E𝖥𝖲𝖥(G)[degF o | G]� = 2 + 2β1(Γ).

One immediate consequence of this is the resolution of a conjecture made by Benjamini,
Lyons, and Schramm (1999), namely, that if G is a Cayley graph of Γ and ω is an invariant
percolation with a unique infinite cluster, then G has no nonconstant harmonic Dirichlet
functions iff ω has no nonconstant harmonic Dirichlet functions a.s. See Gaboriau (2005) for
this and for an extension to unimodular quasi-transitive graphs G.



382 Chap. 10: Uniform Spanning Forests

10.9 Notes

The free spanning forest was first suggested by Lyons, but its existence was proved by Pemantle
(1991). Pemantle also implicitly proved the existence of the wired spanning forest and showed that
the free and wired uniform spanning forests are the same on Euclidean lattices �d . The first explicit
construction of the wired spanning forest is due to Häggström (1995).

We have no need for the general theory of weak convergence in defining or analyzing the free or
wired spanning forests. However, since {0, 1}𝖤 is compact, it is easy to verify that our notion of weak
convergence coincides with the usual notion for Borel probability measures on topological spaces.

The version we present of Strassen’s theorem, Theorem 10.4, is only a special case of what he proved.
The main results in this chapter that come from BLPS (2001) are Theorems 10.15, 10.18, 10.26,

10.36, 10.49, 10.45, 10.53, and 10.56 and Propositions 10.1, 10.10, 10.14, 10.37, and 10.51. Theorems
10.49, 10.45, and 10.53 were proved there in more restricted versions. The extended versions proved
here are from Lyons, Morris, and Schramm (2008).

Theorems 10.21 and 10.24, Corollary 10.25, and Lemma 10.31 are from Lyons, Peres, and Schramm
(2003). We have modified the more general results of Lyons, Peres, and Schramm (2003) and simplified
their proofs for the special cases presented here in Theorem 10.24, Corollary 10.32, and Lemma 10.33.
For estimates of the transition kernel for group-invariant random walks, such as those used in the proof
of Corollary 10.25, see also Hebisch and Saloff-Coste (1993). The last part of Theorem 10.34 was
conjectured by BLPS (2001).

Theorem 10.36 was first stated without proof for �2 by Pemantle (1991). It is shown in BLPS (2001)
that the same is true on any recurrent transitive network.

The appendix is based on Lyons (2009) and Eckmann (2000). Although it is known (Bekka and
Valette, 1997) that Kazhdan groups have first ℓ2-Betti number equal to 0, it is not known that they have
cost 1.

Uniform spanning forests help in studying sandpiles on infinite graphs; see Járai and Redig (2008)
and Járai and Werning (2014).

In Section 10.6, we gave several families of examples of graphs for which the 𝖶𝖲𝖥 has one end in
each tree. This has been extended to various random (rooted) transient graphs that satisfy the property
of unimodularity mentioned in Section 8.9; when the degree is bounded, this was done by Aldous
and Lyons (2007), whereas the case of bounded expected degree was done by Hutchcroft (2015a)
and then the completely general case was done by Hutchcroft (2015b). One consequence is that each
component in the wired spanning forest on an infinite supercritical Galton-Watson tree has one end
a.s., a question that was asked by BLPS (2001). A key new tool introduced by Hutchcroft (2015b)
generates the𝖶𝖲𝖥 by extending the Aldous/Broder algorithm to transient graphs via Sznitman’s random
interlacement process (for which see Černý and Teixeira (2012) and Drewitz, Ráth, and Sapozhnikov
(2014)). Hutchcroft (2015b) also showed that there are roughly isometric graphs G and G′ of bounded
degree such that the wired spanning forest in G has only one end in each tree a.s., while a.s., some
tree of the wired spanning forest in G′ has uncountably many ends; this answered a question of Lyons,
Morris, and Schramm (2008).

There are many intriguing open questions related to spanning forests. Besides the ones we have
already given, here are a few more.

Question 10.58. (BLPS, 2001) Let G be an infinite network such that 𝖶𝖲𝖥 ̸= 𝖥𝖲𝖥 on G. Does it
follow that 𝖶𝖲𝖥 and 𝖥𝖲𝖥 are mutually singular measures?

This question has a positive answer for trees (there is exactly one component 𝖥𝖲𝖥-a.s. on a tree, while
the number of components is a constant𝖶𝖲𝖥-a.s. by Theorem 10.26) and for networks G where Aut(G)
has an infinite orbit (Corollary 10.19).
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Question 10.59. (Lyons, Morris, and Schramm, 2008) Is the probability that each tree has only one
end equal to either 0 or 1 for both 𝖶𝖲𝖥 and 𝖥𝖲𝖥? This is true on trees by Theorem 11.1 of BLPS
(2001).

Conjecture 10.60. (BLPS, 2001) Let To be the component of the identity o in the 𝖶𝖲𝖥 on a Cayley
graph, and let ξ = ⟨xn ; n ≥ 0⟩ be the unique ray from o in To . The sequence of “bushes” ⟨bn⟩ observed
along ξ converges in distribution. (Formally, bn is the connected component of xn in T\{xn−1, xn+1},
multiplied on the left by x−1

n .)

A positive answer for Cayley graphs of at least quintic volume growth follows from Proposition 3.2
of Lawler (1983), which shows that x−1

n ξ = ⟨x−1
n xk ; k ≥ 0⟩ converges in distribution (to a bi-infinite

loop-erased random walk). Combined with Wilson’s algorithm rooted at infinity, this ensures the
existence of the limiting distribution of x−1

n To .

10.10 Collected In-Text Exercises

10.1. The choice of exhaustion ⟨Gn⟩ does not change the resulting measure 𝖶𝖲𝖥 by the proof of
Proposition 10.1. Show that the choice also does not change the resulting measure 𝖥𝖲𝖥.

10.2. Show that 𝖥𝖲𝖥 and 𝖶𝖲𝖥 are invariant under any automorphisms that the network may have.

10.3. Show that if G is an infinite recurrent network, then the wired spanning forest on G is the same
as the free spanning forest, that is, the random spanning tree of Section 4.2.

10.4. Let G be a network such that there is a finite subset of edges whose removal from G leaves at
least two transient components. Show that the free and wired spanning forests are different on G.

10.5. Let G be a tree with unit conductances. Show that 𝖥𝖲𝖥 = 𝖶𝖲𝖥 iff G is recurrent.

10.6. Let G be an edge-amenable infinite graph as witnessed by the vertex sets ⟨𝖵n⟩ (see Section 4.3).
Let Gn be the subgraph induced by 𝖵n .

(a) Let F be any spanning forest all of whose components (trees) are infinite. Show that if kn

denotes the number of trees of F ∩ Gn , then kn = o
�|𝖵n |�.

(b) Let F be a random spanning forest all of whose components (trees) are infinite. Show that the
average degree, in two senses, of vertices is 2:

lim
n→∞

|𝖵n |−1
∑
x∈𝖵n

degF(x) = 2 a.s.

and
lim
n→∞

|𝖵n |−1
∑
x∈𝖵n

E
�
degF(x)

�
= 2 .

In particular, if G is a transitive graph such as �d , then every vertex has expected degree 2 in both the
free spanning forest and the wired spanning forest.

10.7. Let (T , c) be a network on a tree and e ∈ T . Show that𝖶𝖲𝖥[e ∈ F] < 1 iff both components
of T\e are transient.

10.8. Let G be a graph obtained by identifying some vertices of a finite connected graph H , keeping
all edges of H, though some may become loops. Let µG and µH be the corresponding uniform
spanning tree measures. Show that µG (A ) ≤ µH (A ) for every increasing event A depending on the
edges of G.
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10.9. Show that the number of trees in the free spanning forest on a network is stochastically
dominated by the number in the wired spanning forest on the network. Show that if the number of trees
in the free spanning forest is a.s. finite, then, in distribution, it equals the number in the wired spanning
forest iff 𝖥𝖲𝖥 = 𝖶𝖲𝖥.

10.10. Give an amenable graph on which 𝖥𝖲𝖥 ̸= 𝖶𝖲𝖥.

10.11. Show that every transitive amenable network has unique currents.

10.12. (The Riemann-Lebesgue Lemma) Show that if F ∈ L1(�d) and

f (x) =
∫
�d

F(α)e2π ix ·α dα ,

then lim|x |→∞ f (x) = 0. Hint: This is obvious if F is a trigonometric polynomial, that is, a finite linear
combination of functions α 7→ e2π ix ·α . The Stone-Weierstrass theorem implies that such functions are
dense in L1(�d).
10.13. Join two copies of the usual nearest-neighbor graph of �3 by an edge at their origins. How
many trees does the free uniform spanning forest have? How many does the wired uniform spanning
forest have?

10.14. (Parseval’s Identity) Suppose that F ∈ L1(�d) and that f (x) :=
∫
�d

F(α)e2π ix ·α dα for
x ∈ �d . Show that

∫
�d

|F(α)|2 dα =
∑
�d | f (x)|2. Hint: Prove that the functions Gx (α) := e−2π ix ·α

for x ∈ �d form an orthonormal basis of L2(�d).
10.15. Let (T , c) be a network on a tree. Show that𝖶𝖲𝖥[F ̸= T] = 1 iff there is some edge e ∈ T such

that both components of T \ e are transient iff 𝖶𝖲𝖥[F ̸= T] > 0.

10.16. Let (T , c) be a transient network on a tree with bounded conductances c( • ). Show that there is
some e ∈ T such that both components of T\e are transient (with respect to c).

10.17. Give a transient graph such that the wired uniform spanning forest has a single tree with more
than one end.

10.18. Show that Theorem 10.49 holds in the quasi-transitive case as well.

10.19. Consider a random walk until it first reaches distance n from its starting point and erase cycles.
Show that on a general recurrent network, a weak limit of these random paths need not exist.

10.20. Let ⟨Gn⟩ be an induced exhaustion of a recurrent network G. Consider the network random
walk ⟨Xk ; k ≥ 0⟩ started from o ∈ G. Denote by τn the first exit time of Gn , and let Ln be the loop
erasure of the path ⟨Xk ; 0 ≤ k ≤ τn⟩. Show that if the uniform spanning tree TG in G has one end a.s.,
then the random paths Ln converge weakly to the law of the unique ray from o in TG . In particular,
show that this applies if G is a proper plane network with a locally finite recurrent dual.

10.21. Let G be the Cayley graph of Γ with respect to S. Assign positive conductances to the
edges in such a way that they depend only on the generators associated to the edges. Show that still
E𝖥𝖲𝖥[degF o] = 2 + 2β1(Γ).
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10.11 Additional Exercises
10.22. Let ⟨Gn⟩ be an exhaustion of G by finite induced subgraphs. Write Fn for the set of spanning
forests of Gn such that each component tree includes exactly one vertex of the inner vertex boundary of
Gn . Show that 𝖶𝖲𝖥 is the limit as n → ∞ of the uniform measure on Fn .

10.23. Show that the 𝖥𝖲𝖥 of the usual Cayley graph of �2 ∗ �3 (shown in Figure 3.3) is a tree whose
branching number equals 1.35+.

10.24. Let G be exhausted by finite induced subgraphs Gn and µF
n be the uniform spanning tree

measure on Gn . Let also µW
n be the uniform spanning tree measure on GW

n . Show that for each n, we
have µF

n ≽ µF
n+1↾2

𝖤(Gn ) and µW
n ≼ µW

n+1↾2
𝖤(GW

n ).

10.25. Consider the free or wired uniform spanning forest measure on an infinite transient network G.
Let X and Y be increasing random variables on {0, 1}𝖤(G) with finite second moments that depend on
disjoint sets of edges. Show that E[XY ] ≤ E[X]E[Y ].
10.26. Let ⟨Xn⟩ be the network random walk on a transitive network. Show that if the speed is 0, that
is, limn→∞ dist(X0, Xn)/n = 0 a.s., then all harmonic Dirichlet functions on the network are constant
and 𝖶𝖲𝖥 = 𝖥𝖲𝖥.

10.27. Let G be a planar Cayley graph. Show that simple random walk on G is transient iff G is
nonamenable iff G has exponential growth.

10.28. Let G be the edge graph of a degree-3 hyperbolic tessellation all of whose faces have the same
number of sides. Show that the probability that the degree of a vertex in the wired uniform spanning
forest on G is 1, 2, or 3 is, respectively, 1/4, 1/2, and 1/4.

10.29. Let (G, c) be a denumerable network with an exhaustion by finite induced subnetworks Gn .
Fix o ∈ 𝖵(G1). Let Zn be the canonical Gaussian field on Gn from Exercise 2.137 (with W = {o} and
u(o) = 0 there). Show that the weak limit of Zn exists; it is called the free canonical Gaussian field.
Show that if ZW

n denotes the canonical Gaussian field on the wired network GW
n , then the weak limit

of ZW
n also exists, called the wired canonical Gaussian field (pinned at o). Let X(e) be independent

normal random variables with variance r(e) for e ∈ 𝖤1/2. Show that if ix ,oF denotes the free unit current
flow from x to o, then x 7→

∑
e∈𝖤1/2

ix ,oF (e)X(e) has the law of the free canonical Gaussian field, where
the sum converges in L2 and a.s. Similarly, show that if ix ,oW denotes the wired unit current flow from x
to o, then x 7→

∑
e∈𝖤1/2

ix ,oW (e)X(e) has the law of the wired canonical Gaussian field. Finally, show
that the wired and free canonical Gaussian fields coincide in distribution iff HD = �.

10.30. Consider the canonical Gaussian field Z on �d with Z(0) = 0, as defined in Exercise 10.29.
Show that

�
Z(x) ; x ∈ �d

	
is a tight collection of random variables iff d ≥ 3.

10.31. Let (G, c) be a transient network with an exhaustion by finite induced subnetworks Gn . Show
that if ZW

n denotes the canonical Gaussian field on the wired network GW
n that is pinned to be 0 at zn ,

the vertex resulting from identifying the complement of Gn , then the weak limit of ZW
n exists, called the

wired canonical Gaussian field, which we can think of as “pinned at infinity.” Show that if ix denotes
the unit current flow from x to infinity and X(e) are independent normal random variables with variance
r(e) for e ∈ 𝖤1/2, then x 7→

∑
e∈𝖤1/2

ix (e)X(e) has the law of the wired canonical Gaussian field, where
the sum converges in L2 and a.s. Show that the wired canonical Gaussian field has a law that is invariant
under all automorphisms of (G, c) and that has a trivial tail σ-field.

10.32. Let (G, c) be a transient network with an exhaustion by finite induced subnetworks Gn . Let
X(e) be independent normal random variables with variance r(e) for e ∈ 𝖤1/2; put X(−e) := −X(e)
for e /∈ 𝖤1/2. Given random walks starting at each x ∈ 𝖵(G), define Sn(x) to be the sum of X(e) over
the edges e traversed by the random walk starting at x until it exits Gn for the first time. Show that
x 7→ limn→∞ E[Sn(x) | X] exists and has the law of the wired canonical Gaussian field.
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10.33. Let G be an infinite graph and H be a finite graph. Consider the Cartesian product graph
G □ H . Fix x ∈ 𝖵(G) and y ∈ 𝖵(H). Show that the free spanning forests F1 in G □ H and F2 in G
satisfy �

E
�
degF1

(x, y)� − 2
�|𝖵(H)| = E[degF2

x] − 2 .

10.34. Let G be a plane network all of whose faces have a finite number of sides. Show that G has
unique currents iff its dual G† has unique currents.

10.35. Let G be the edge graph of a degree-3 hyperbolic tessellation all of whose faces have d sides.
Show that the probability that the degree of a vertex in the free uniform spanning forest on G is 1, 2, or
3 is, respectively, 9/d2, 6/d − 18/d2, and (1 − 3/d)2.

10.36. Let G be a plane regular graph of degree d with regular dual of degree d†. Show that the
𝖥𝖲𝖥-expected degree of each vertex in G is d(1 − 2/d†).
10.37. Let G be the usual Cayley graph of the (p, q, r)-triangle group, where 1/p + 1/q + 1/r ≤ 1,
shown in Figure 6.1 for (2, 3, 7) and defined in Exercise 8.47. It has three generators, which are
reflections in the sides of a fundamental triangle. Show that the expected degree of the 𝖥𝖲𝖥 of G is
3 − 1/p − 1/q − 1/r .

10.38. Complete the following outline of an alternative proof of Proposition 10.16. Let ψ(α) :=
1 − φ(α)/(2d), where φ is as defined in (10.8). For all n ∈ � and x ∈ �d , we have pn(0, x) =∫
�d
ψ(α)ne2π ix ·α dα. Therefore, G (0, x)/(2d) equals the right-hand side of (10.10). Now apply

Proposition 2.1.

10.39. For a function f ∈ L1(�d) and x ∈ �d , define f̂ (x) :=
∫
�d

f (α)e−2π ix ·α dα . Let Y be the
transfer current matrix for the hypercubic lattice �d . Write uk := 1{k} for the vector with a 1 in the kth
place and 0s elsewhere. Let ek

x := [x, x + uk ]. Show that Y (e1
0, e

k
x ) = f̂k (x), where

fk (α1, . . . , αd) :=
(1 − e2π iα1 )(1 − e−2π iαk )

4
∑d

j=1 sin2 πα j

(1 ≤ k ≤ d).

10.40. Let d ≥ 3, and let e be any edge of �d . For n ∈ �, let Xn be the indicator that e + (n, n, . . . , n)
lies in the uniform spanning forest of �d . Show that Xn are i.i.d. The same holds for the other 2d−1

collections of translates given by changing the signs of some of the last d − 1 coordinates.

10.41. Show that if 𝖥𝖲𝖥 = 𝖶𝖲𝖥, then for all cylinder events A and ϵ > 0, there is a finite set of edges
K such that

sup
� |𝖶𝖲𝖥[A | B] −𝖶𝖲𝖥[A ]| ; B ∈ F (𝖤 \ K)	 < ϵ .

10.42. For k ≥ 1, we say that an action of Γ on (Ω,P) is mixing of order k (or k-mixing) if, for any
events A1, . . . , Ak+1, we have

lim
γ1 , . . .,γk→∞,

∀i ̸= j γiγ
−1
j
→∞

P(A1, γ1 A2, γ2 A3, . . . , γk Ak+1) = P(A1)P(A2) · · ·P(Ak+1) .

Let Γ ⊆ Aut(G) have an infinite orbit and P be a Γ-invariant probability measure on
�
Ω, 2𝖤(G)� with a

trivial tail. Show that P is mixing of all orders.

10.43. Define IN as in (10.19). Show that E[IkN ] ≤ (k!)2(EIN )k for every k ≥ 1.
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10.44. Let α(w1, . . . , wK ) be the probability that independent random walks started at w1, . . . , wK

have no pairwise intersections. Let B(w1, . . . , wK ) be the event that the number of pairwise intersec-
tions among the random walks



Xn(wi )� is finite. Show that

lim
n→∞

α
�
Xn(w1), . . . , Xn(wK )� = 1B(w1 , . . .,wK ) a.s.

10.45. Suppose that the number of components in the 𝖶𝖲𝖥 is a.s. k < ∞ and that w1, . . . , wk are
vertices such that with positive probability, independent random walks started at w1, . . . , wk have no
pairwise intersections. Let {X(wi ) ; 1 ≤ i ≤ k} be independent random walks indexed by their initial
states. Consider the random functions

hi (w) := P
�
Y (w) intersects X(wi ) i.o.

�
X(w1), . . . , X(wk )� ,

where the random walk Y (w) starts at w and is independent of all X(wi ). Show that a.s. on the event
that X(w1), . . . , X(wk ) have pairwise disjoint paths, the functions {h1, . . . , hk } form a basis for BH(G),
the vector space BH(G) of bounded harmonic functions on G. Deduce that if the number of components
of the 𝖶𝖲𝖥 is finite a.s., then it a.s. equals the dimension of BH(G).
10.46. It follows from Corollary 10.25 that if two transitive graphs are roughly isometric, then the a.s.

number of trees in the wired spanning forest of one graph is the same as in the other. Show that this is
false without the assumption of transitivity.

10.47. Find an example of a graph G of bounded degree such that
(a) 𝖥𝖲𝖥G has two components a.s.;
(b) 𝖥𝖲𝖥G has two components a.s. and 𝖥𝖲𝖥G ̸= 𝖶𝖲𝖥G .

10.48. Consider a d-ary tree (T , c) with conductances corresponding to the random walk 𝖱𝖶𝜆. Show
that a.s. all the trees in the wired spanning forest on (T , c) have branching number 𝜆 for 1 ≤ 𝜆 ≤ d.

10.49. Let (T , c) be an arbitrary tree with arbitrary conductances and root o. For a vertex x ∈ T , let
α(x) denote the effective conductance of T x (from x to infinity). Consider the independent percolation
on T that keeps the edge e(x) preceding x with probability c(e(x))/�c(e(x)) + α(x)�.

(a) Show that the 𝖶𝖲𝖥 on T has a tree with more than one end with positive probability iff this
percolation on T has an infinite cluster a.s.

(b) In the case of 𝖶𝖲𝖥 on a spherically symmetric tree with unit conductances, show that the
conditions in (a) are equivalent to∑

n

1
|Tn |2ρn

n−1∏
k=1

(
1 +

1
|Tk |ρk

)
< ∞ ,

where ρn :=
∑

k>n 1/|Tk |. In particular, show that this holds if |Tn | ≈ na for some a > 1.
(c) Show that for a spherically symmetric tree with unit conductances, a.s. either every tree in the

𝖶𝖲𝖥 has a single end or a.s. every tree has infinitely many ends.

10.50. Show that if G is a transitive graph such that the balls of radius r have cardinality asymptotic to
αrd for some positive finite α and d, then the lower bound of Lemma 10.46 is optimal up to a constant
factor. In other words, show that in this case,

lim inf
|K |→∞

R
�
2|K |� |∂in

𝖵 K |
|K | < ∞ .

10.51. Let G be the grandparent graph of Example 7.1 defined using the end ξ of a regular tree.
Consider the 𝖥𝖲𝖥 on G□�. Show that the components are distinguishable by an automorphism-invariant
property.

10.52. Let G be the Cayley graph of the free product �d ∗ �2, where �2 is the group with two
elements, with the obvious generating set. Show that the 𝖥𝖲𝖥 is connected iff d ≤ 4 and 𝖥𝖲𝖥 ̸= 𝖶𝖲𝖥 for
all d > 0.
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11 Minimal
Spanning Forests

In Chapters 4 and 10, we looked at spanning trees chosen uniformly at random and their
analogues for infinite graphs. We saw that they are intimately connected to random walks.
Another measure on spanning trees and forests has been studied a great deal, especially
in optimization theory. This measure, minimal spanning trees and forests, turns out to be
connected to percolation rather than to random walks. In fact, one of the measures on forests
is closely tied to critical bond percolation and invasion percolation, whereas the other is
related to percolation at the uniqueness threshold. However, many fundamental questions
remain open for both types of minimal spanning forest measures.
On the whole, minimal spanning forests share many similarities with uniform spanning

forests. In some cases, we know a result for one measure whose analogue is only conjectured
for the other. Occasionally, there are striking differences between the two settings.
The standard coupling of Bernoulli bond percolation will be ubiquitous in this chapter, so

much that we need some special notation for it. Namely, given labels U:𝖤(G) → �, we’ll
write G[p] for the subgraph formed by the edges {e ; U(e) < p}. (In previous chapters,
we denoted G[p] by ωp, but in this chapter, both G and p often assume more complicated
expressions.) Our treatment is drawn from Lyons, Peres, and Schramm (2006), as are most of
the results.

11.1 Minimal Spanning Trees

Let G = (𝖵, 𝖤) be a finite connected (multi)graph. Since loops cannot belong to trees,
we will ignore any loops that G may have. Given an injective function, U:𝖤 → �, we’ll
refer to U(e) as the label of e. The labeling U induces a total ordering on 𝖤, where e < e′ if
U(e) < U(e′). We’ll say that e is lower than e′ and that e′ is higher than e when e < e′.

Define TU to be the subgraph whose vertex set is 𝖵 and whose edge set consists of all
edges e ∈ 𝖤 whose endpoints cannot be joined by a path containing only edges lower than
e. We claim that TU is a spanning tree. First, the largest edge in any cycle of G is not in TU ,
whence TU is a forest. Second, if ∅ ̸= A ⫋ 𝖵, then the lowest edge of G connecting A with
𝖵 \ A must belong to TU , which shows that TU is connected. Thus, it is a spanning tree.

▷ Exercise 11.1.
Show that among all spanning trees of a finite graph, TU is the unique one that has minimum
edge-label sum,

∑
e∈T U(e).
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When ⟨U(e) ; e ∈ 𝖤⟩ are independent uniform [0, 1] random variables, U is a.s. injective
and the law of the corresponding spanning tree TU is called simply the minimal spanning
tree (measure). It is a probability measure on 2𝖤. Note that this independent labeling U
induces a uniform random ordering on 𝖤.
There is an easy monotonicity principle for the minimal spanning tree measure, which is

analogous to a similar principle, Lemma 10.3 and Exercise 10.8, for uniform spanning trees:

Proposition 11.1. Let G and H be connected finite graphs. Denote by TG and TH the
corresponding minimal spanning trees. If G is a subgraph of H, then TG stochastically
dominates TH ∩ 𝖤(G). On the other hand, if G is obtained by identifying some vertices in H ,
then TG is stochastically dominated by TH ∩ 𝖤(G).
Proof. We’ll prove the first part, as the second part is virtually identical. Let U(e) be i.i.d.
uniform [0, 1] random variables for e ∈ 𝖤(H). We use these labels to construct both TG and
TH . In this coupling, if [x, y] ∈ 𝖤(G) is contained in TH , in other words, there is no path in
𝖤(H) joining x and y that uses only lower edges, then a fortiori there is no such path in 𝖤(G),
so that [x, y] is also contained in TG . That is, TH ∩ 𝖤(G) ⊆ TG , which proves the result. ◀

The reader might expect next to see negative correlations for the minimal spanning tree,
as we saw for uniform spanning trees. Surprisingly, however, the presence of two edges can
be positively correlated! To see this, we first present the following formula for computing
probabilities of spanning trees. Let 𝖬𝖲𝖳 denote the minimal spanning tree measure on a
finite connected graph.

Proposition 11.2. Let G be a finite connected graph. Given a set F of edges, let N(F) be
the number of edges of G that do not become loops when each edge in F is contracted.
Note that N(∅) is the number of edges of G that are not loops. Let N ′(e1, . . . , ek) :=∏k−1

j=0 N
�{e1, . . . , e j}� (which does not depend on ek). Let T = {e1, . . . , en} be a spanning

tree of G. Then
𝖬𝖲𝖳(T) =

∑
σ

N ′(eσ(1), . . . , eσ(n))−1 ,

where the sum is over all permutations σ of {1, 2, . . . , n}.

Proof. To make the dependence on G explicit, we write N(F) = N(G; F). Note that
N(G/F;∅) = N(G; F), where G/F is the graph G with each edge in F contracted. Given the
edge labels U, one way to find the minimal spanning tree TU is to choose the lowest edge e1
that is not a loop, put this in TU , then choose the lowest edge e2 that is not a loop in G/e1 and
put this in TU , and so forth. This is known as Prim’s algorithm. Our proof involves simply
keeping track of the probabilities as we follow that algorithm.
Given an edge e that is not a loop, the chance that e is the lowest edge in the minimal

spanning tree of G equals N(G;∅)−1. Furthermore, given that this is the case, the ordering
on the nonloops of the edge set of G/e is uniform. Thus, if f is not a loop in G/e, then the
chance that f is the next lowest edge in the minimal spanning tree of G given that e is the
lowest edge in the minimal spanning tree of G equals N(G/e;∅)−1 = N

�
G; {e}�−1. Hence

we may easily condition, contract, and repeat.
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Thus, the probability that the minimal spanning tree is T and that eσ(1) < · · · < eσ(n) is
equal to

n−1∏
j=0

N
�
G/{eσ(1), eσ(2), . . . , eσ(j)};∅

�−1 = N ′
�
eσ(1), . . . , eσ(n)

�−1
.

Summing this over all possible induced orderings of T gives 𝖬𝖲𝖳(T). ◀

An example of a graph where 𝖬𝖲𝖳 has positive correlations is provided by the following
exercise.

▷ Exercise 11.2.
Construct G as follows. Begin with the complete graph, K4. Let e and f be two of its edges
that do not share endpoints. Replace e by three edges in parallel, e1, e2, and e3, that have the
same endpoints as e. Likewise, replace f by three parallel edges f i . Show that in G,

𝖬𝖲𝖳[e1, f1 ∈ T] > 𝖬𝖲𝖳[e1 ∈ T]𝖬𝖲𝖳[ f1 ∈ T] .

The following difference from the uniform spanning tree must also be kept in mind:

▷ Exercise 11.3.
Show that given an edge, e, the minimal spanning tree measure on G conditioned on the
event not to contain e need not be the same as the minimal spanning tree measure on G\e,
the graph G with e deleted.

In Figure 11.1, we show the distances to the lower left vertex in a minimal spanning tree
on a 100 × 100 square grid as well as the path in the tree that joins the opposite corners.
However, unlike the case of uniform spanning trees (Figure 4.5), it does not seem simple to
sample from the minimal spanning tree distribution conditional on a given distance profile.
Also, the distances seem to be generally lower than for the uniform spanning tree: see the
value for “D f ” reported by Wieland and Wilson (2003), Table III.

▷ Exercise 11.4.
Find an example of a finite graph G with vertex o ∈ G such that there are two spanning trees
T and T ′ of G having the properties that for all x, the distance from x to o in T is the same as
in T ′, yet T and T ′ are not equally likely under the minimal spanning tree measure.

This is all the theory of minimal spanning trees that we’ll need! We can move directly to
infinite graphs.
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Figure 11.1. The distances to a vertex in a minimal spanning tree
in a 100 × 100 grid and the path between the opposite corners.

11.2 Deterministic Results

Just as there were for the uniform spanning trees, there are free and wired extensions to
infinite graphs of the minimal spanning trees. Unlike the uniform case, however, the minimal
case can be done without weak limits and, indeed, without probability whatsoever. We give
these deterministic definitions and associated results in this section.
Let G = (𝖵, 𝖤) be an infinite connected locally finite graph and U:𝖤→ � be an injective

labeling of the edges. Let Ff = Ff(U) = Ff(U,G) be the set of edges e ∈ 𝖤 such that in
every path in G connecting the endpoints of e, there is at least one edge e′ with U(e′) ≥ U(e).
When ⟨U(e) ; e ∈ 𝖤⟩ are independent uniform random variables in [0, 1], the law of Ff (or
sometimes, Ff itself) is called the free minimal spanning forest on G and is denoted by
𝖥𝖬𝖲𝖥 or 𝖥𝖬𝖲𝖥(G).
An extended path joining two vertices x, y ∈ 𝖵 is either a simple path in G joining them

or the union of a simple infinite path starting at x and a disjoint simple infinite path starting
at y. (The latter possibility may be considered as a simple path connecting x and y through
∞.) Let Fw = Fw(U) = Fw(U,G) be the set of edges e ∈ 𝖤 such that in every extended path
joining the endpoints of e, there is at least one edge e′ with U(e′) ≥ U(e). Again, when U is
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chosen according to the product measure on [0, 1]𝖤, we call Fw the wired minimal spanning
forest on G. The law of Fw is denoted 𝖶𝖬𝖲𝖥 or 𝖶𝖬𝖲𝖥(G).

▷ Exercise 11.5.
Show that Fw(U) consists of those edges e for which there is a finite set of vertices W ⊂ 𝖵
such that e is the least edge joining W to 𝖵 \W .

Clearly, Fw(U) ⊂ Ff(U). Note that Fw(U) and Ff(U) are indeed forests, since in every
cycle of G, the edge e with U(e) maximal is not present in either Ff(U) or in Fw(U). In
addition, all the connected components inFf(U) and inFw(U) are infinite. Indeed, the lowest
edge joining any finite vertex set to its complement belongs to both forests.
One of the nice properties that minimal spanning forests have is that there are these direct

definitions on infinite graphs. Although we won’t need this property, one can also describe
them as weak limits, parallel to the definitions for uniform spanning forests:

▷ Exercise 11.6.
Consider an increasing sequence of finite, nonempty, connected (not necessarily induced)
subgraphs Gn ⊂ G (n ∈ �) such that

∪
n Gn = G. For n ∈ �, let GW

n be the graph obtained
from G by identifying the vertices outside of Gn to a single vertex, then removing all resulting
loops based at that vertex. Let Tn(U) and TW

n (U) denote the minimal spanning trees on Gn

and GW
n , respectively, that are induced by the labels U. Show that Ff(U) = limn→∞ Tn(U)

and that Fw(U) = limn→∞ TW
n (U) in the sense that for every e ∈ Ff(U), we have e ∈ Tn(U)

for every sufficiently large n, for every e /∈ Ff(U) we have e /∈ Tn(U) for every sufficiently
large n, and similarly for Fw(U). Deduce that Tn(U) ⇒ 𝖥𝖬𝖲𝖥 and TW

n (U) ⇒ 𝖶𝖬𝖲𝖥.

It will be useful to make more explicit the comparisons that determine which edges belong
to the two spanning forests. Define

Zf(e) = ZU
f (e) := inf

P
max

�
U(e′) ; e′ ∈ P

	
,

where the infimum is over simple paths P in G\e that connect the endpoints of e; if there are
none, the infimum is defined to be∞. Thus, Ff(U) = �

e ; U(e) ≤ Zf(e)	. In the random case,
since Zf(e) is independent of U(e) and U(e) is a continuous random variable, we can also
write Ff(U) =

�
e ; U(e) < Zf(e)	 a.s. Similarly, define

Zw(e) = ZU
w (e) := inf

P
sup

�
U(e′) ; e′ ∈ P

	
,

where the infimum is over extended paths P in G\e that join the endpoints of e. Again, if
there are no such extended paths, then the infimum is defined to be∞. Thus,�

e ; U(e) < Zw(e)	 ⊆ Fw(U) ⊆ �
e ; U(e) ≤ Zw(e)	

and, in the random case, Fw(U) = �
e ; U(e) < Zw(e)	 a.s. The infimum in the definition of

Zw(e) is attained whenever there is some extended path in G\e that connects the endpoints of
e, as we’ll see in the course of proving the next lemma.
It turns out that there are also dual definitions for Zf and Zw. To state these, we use the

following terminology: if W ⊆ 𝖵, then the set of edges ∂𝖤W joining W to 𝖵 \W is a cut.
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Lemma 11.3. (Dual Criteria) For any injection U:𝖤 → � on any locally finite graph G,
we have

Zf(e) = sup
Π

inf
�
U(e′) ; e′ ∈ Π \ {e}	 , (11.1)

where the supremum is over all cuts Π that contain e; also, this supremum is attained.
Similarly,

Zw(e) = sup
Π

inf
�
U(e′) ; e′ ∈ Π \ {e}	 , (11.2)

where now the supremum is over all cuts Π containing e such that Π = ∂𝖤W for some finite
W ⊂ 𝖵.

Proof. We first verify (11.1). If P is a simple path in G\e that connects the endpoints of e
and Π is a cut that contains e, then P ∩

�
Π \ {e}� ̸= ∅, so

max
�
U(e′) ; e′ ∈ P

	
≥ inf

�
U(e′) ; e′ ∈ Π \ {e}	 .

This proves one inequality (≥) in (11.1). To prove the reverse inequality, fix one endpoint x
of e, and let W be the vertex set of the component of x in (G\e)[Zf(e)]. Then Π := ∂𝖤W is a
cut that contains e by definition of Zf . Using this Π in the right-hand side of (11.1) yields the
inequality ≤ in (11.1) and shows that the supremum there is achieved.
The inequality ≥ in (11.2) is proved in the same way as in (11.1). For the other direction, we

dualize the preceding proof. Let Z denote the right-hand side in (11.2); we may assume that
Z < ∞. Let W be the vertex set of the connected component of one of the endpoints of e in the
set of edges e′ ̸= e such that U(e′) ≤ Z . We clearly have U(e′) > Z for each e′ ∈ ∂𝖤W \ {e}.
Thus, by the definition of Z , the other endpoint of e is in W if W is finite, in which case
there is a path in G\e connecting the endpoints of e that uses only edges with labels at most
Z . The same argument applies with the roles of the endpoints of e switched. If the sets W
corresponding to both endpoints of e are infinite, then there is an extended path P connecting
the endpoints of e in G\e with sup

�
U(e′) ; e′ ∈ P

	
≤ Z . This completes the proof of (11.2)

and also shows that the infimum in the definition of Zw(e) is attained (when Z < ∞). ◀
These lead to interesting and useful representations of the two minimal spanning forests,

the wired one as an increasing union of “small” subtrees and the free one as a decreasing
intersection of “large” supergraphs. (If there are edges with U(e) = Zw(e), then the following
representation misses them; but they will a.s. not occur when U is random.)

Proposition 11.4. Let U:𝖤→ � be an injective labeling of the edges of a locally finite graph
G = (𝖵, 𝖤). For each p < 1, the edges e with U(e) < pZw(e) form subtrees of Fw(U) with at
most one end each, whereas the edges e with 1 −U(e) > p

�
1 − Zf(e)� form a supergraph of

Ff(U) that is connected.

Proof. Fix p < 1. Write ηp for the graph formed by the edges e with U(e) < pZw(e). For the
assertion on Fw(U), it suffices to show that ηp does not contain any simple bi-infinite path.
Let P be a simple bi-infinite path and α := supe∈P U(e). If P ⊂ ηp , then we would have

∀e ∈ P U(e) < pZw(e) ≤ p sup
P

U = p α .

This would imply that α ≤ p α, whence α = 0, which is clearly impossible. So P is not a
subset of ηp, as desired.
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Write ξp for the graph formed by the edges e with 1 −U(e) > p
�
1 − Zf(e)�. Consider any

nonempty cut Π in G, and let α := infe∈Π U(e). Then 1−α = supΠ(1−U), so we may choose
e ∈ Π to satisfy 1 −U(e) > p(1 − α). By (11.1), Zf(e) ≥ infΠ\{e} U ≥ α, whence e ∈ ξp.
Since ξp intersects every nonempty cut, it is connected. ◀

The invasion tree T(x) = TU (x) of a vertex x is defined as the increasing union of the trees
tn, where t0 := {x} and tn+1 is tn together with the least edge joining tn to a vertex not in tn.
(If G is finite, we stop when tn contains 𝖵.) Invasion trees play a role in the wired minimal
spanning forest similar to the role played by Wilson’s method rooted at infinity in the wired
uniform spanning forest:

▷ Exercise 11.7.
Let U:𝖤→ � be an injective labeling of the edges of a locally finite graph G = (𝖵, 𝖤). Show
that the union

∪
x∈𝖵 TU (x) of all the invasion trees is equal to Fw(U).

Recall from Section 7.5 that the invasion basin I(x) of a vertex x is defined as the union
of the subgraphs Gn, where G0 := {x} and Gn+1 is Gn together with the lowest edge not in
Gn but incident to some vertex in Gn. Note that I(x) has the same vertices as T(x) but may
have additional edges.
While the invasion basins (and trees) starting from different vertices can certainly differ,

they can differ in only finitely many edges when they belong to the same component of Fw.

Proposition 11.5. Let U:𝖤→ � be an injective labeling of the edges of a locally finite graph
G = (𝖵, 𝖤). If x and y are vertices in the same component of Fw(U), then the symmetric
differences I(x) △ I(y) and TU (x) △ TU (y) are finite.

Proof. We prove only that |I(x) △ I(y)| < ∞, since the proof for TU (x) △ TU (y) is essentially
the same. It suffices to prove this when e := [x, y] ∈ Fw(U). Consider the connected
components C(x) and C(y) of x and y in G[U(e)]. Not both C(x) and C(y) can be infinite,
since e ∈ Fw(U). If both are finite, then invasion from each x and y will fill C(x)∪C(y)∪ {e}
before invading elsewhere, and therefore I(x) = I(y) in this case. Finally, if, say, C(x) is
finite and C(y) is infinite, then I(x) = C(x) ∪ {e} ∪ I(y). ◀

Similarly, changing the edge labels on a finite set can change the free and wired spanning
forests by only finitely many edges. This will be a very useful property for us.

Lemma 11.6. Let G be any infinite locally finite graph with distinct fixed labels U(e) on its
edges. Let F be the corresponding free or wired minimal spanning forest. If the label U(e) is
changed at a single edge e, then the forest changes at most at e and at one other edge (an
edge f with U( f ) = Zf(e) or Zw(e), respectively). More generally, if F′ is the corresponding
forest when labels only in K ⊂ 𝖤 are changed, then |(F △F′) \ K | ≤ |K |.
Proof. Consider first the free minimal spanning forest. Suppose the two values of U(e) are
u1 and u2 with u1 < u2. Let F1 and F2 be the corresponding free minimal spanning forests.
Then F1 \F2 ⊆ {e}. Suppose that f ∈ F2 \F1. Then there must be a path P ⊂ G\e joining
the endpoints of e and including f such that U( f ) = maxP U > u1. Suppose that there were
a path P ′ ⊂ G\e joining the endpoints of e such that maxP′ U < U( f ). Then P ∪ P ′ would
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contain a cycle including f but not e on which f has the maximum label. This contradicts
f ∈ F2. Therefore, Zf(e) = U( f ). Since the labels are distinct, there is at most one such f .
For the wired minimal spanning forest, the proof is the same, only with “extended path”

replacing “path” and “Zw(e)” replacing “Zf(e).”
The second conclusion in the lemma follows by induction from the first. ◀

11.3 Basic Probabilistic Results

Here are some of the easier analogues of several results on uniform spanning forests:

▷ Exercise 11.8.
Let G be a connected locally finite graph. Prove the following.

(a) If G is edge-amenable, then the average degree of vertices in both the free and wired
minimal spanning forests on G is a.s. 2.

(b) The free and wired minimal spanning forests on G are the same if they have a.s. the
same finite number of trees or if the expected degree of every vertex is the same for both
measures.

(c) The free and wired minimal spanning forests on G are the same on any transitive
amenable graph and have expected degree 2.

(d) IfFw is connected a.s. or if each component ofFf has a.s. one end, then𝖶𝖬𝖲𝖥(G) =
𝖥𝖬𝖲𝖥(G).

(e) The measures𝖶𝖬𝖲𝖥(G) and 𝖥𝖬𝖲𝖥(G) are invariant under all automorphisms of G,
as is the law of (Fw,Ff).

(f) If G is unimodular and transitive with 𝖶𝖬𝖲𝖥(G) ̸= 𝖥𝖬𝖲𝖥(G), then a.s. Ff has a
component with uncountably many ends and, in fact, with pc < 1.

When are the free and wired minimal spanning forests the same? Say that a graph G
has almost everywhere uniqueness (of the infinite cluster) if, for almost every p ∈ (0, 1)
in the sense of Lebesgue measure, there is a.s. at most one infinite cluster for Bernoulli(p)
percolation on G. This is the analogue for minimal spanning forests of uniqueness of currents
for uniform spanning forests (Proposition 10.14):

Proposition 11.7. On any connected graph G, we have 𝖥𝖬𝖲𝖥 = 𝖶𝖬𝖲𝖥 iff G has almost
everywhere uniqueness.

Proof. Let A(e) be the event that the two endpoints of e are in distinct infinite components
of (G\e)�U(e)�. When U is injective, A(e) is the same as the event that e ∈ Ff \Fw. Since
Fw ⊂ Ff and 𝖤 is countable, 𝖥𝖬𝖲𝖥 = 𝖶𝖬𝖲𝖥 is equivalent to the statement that P

�
A(e)� = 0

for all edges e. Write f (e, p) for the probability that the endpoints of e belong to distinct
infinite clusters with positive probability in Bernoulli(p) percolation on G\e. Then we have
P
�
A(e) � U(e)� = f (e,U(e)) a.s., whence P

�
A(e)� = ∫ 1

0 f (e, p) dp. Let B(e) ⊆ (0, 1) be the
set of p for which f (e, p) > 0. Then the preceding identity yields that B(e) has measure zero
iff P

�
A(e)� = 0. Insertion and deletion tolerance show that

∪
e B(e) is the set of p for which

Bernoulli(p) percolation gives more than one infinite cluster with positive probability, whence∪
e B(e) has Lebesgue measure zero iff almost everywhere uniqueness holds. It follows that

almost everywhere uniqueness holds iff P
�
A(e)� = 0 for all e. ◀
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Corollary 11.8. On any graph G, if almost everywhere uniqueness fails, then 𝖶𝖬𝖲𝖥 is not
a.s. a tree.

Proof. By Exercise 11.8(b), if 𝖶𝖬𝖲𝖥 is a tree a.s., then 𝖶𝖬𝖲𝖥 = 𝖥𝖬𝖲𝖥. ◀

It is not easy to give a graph on which the 𝖥𝖬𝖲𝖥 is not a tree a.s., especially if the graph is
transitive. This will be done in Section 11.6.

Another corollary of Proposition 11.7 is the following result of Häggström (1998).

Corollary 11.9. If G is a tree, then the free and wired minimal spanning forests are the same
iff pc(G) = 1.

Proof. By Exercise 7.37, only at p = 1 can G[p] have a unique infinite cluster a.s. Thus,
almost everywhere uniqueness is equivalent to pc(G) = 1. ◀

What if we specialize to quasi-transitive graphs? In that setting, Proposition 11.7 and
Theorem 7.21 show that 𝖥𝖬𝖲𝖥 = 𝖶𝖬𝖲𝖥 iff pc = pu; according to Conjecture 7.31, this holds
iff G is amenable. Of course, for a quasi-transitive amenable G and every p ∈ [0, 1], there
is a.s. at most one infinite cluster in G[p]; see Theorem 7.6. This is slightly stronger than
pc = pu, and gives another proof that for quasi-transitive amenable graphs, 𝖥𝖬𝖲𝖥 = 𝖶𝖬𝖲𝖥
(compare Exercise 11.8(c)).

Recall that tail triviality is a strong form of asymptotic independence (Section 10.4).
It holds for minimal spanning forests, just as it does for uniform spanning forests (Theo-
rem 10.18):

Theorem 11.10. Both measures𝖶𝖬𝖲𝖥 and 𝖥𝖬𝖲𝖥 have a trivial tail σ-field on every graph.

Proof. This is really a nonprobabilistic result in the following sense. Let F (K) be the σ-field
generated by U(e) for e ∈ K . We will show that the tail σ-field is contained in the tail σ-field
of the labels of the edges,

∩
K finite F (𝖤 \K). This implies the desired result by Kolmogorov’s

zero-one law.
Let ϕ: [0, 1]𝖤 → 2𝖤 be the map that assigns the (free or wired) minimal spanning forest to

a configuration of labels. (Actually, ϕ is defined only on the configurations of distinct labels.)
Let A be a tail event of 2𝖤. We claim that ϕ−1(A) lies in the tail σ-field

∩
K finite F (𝖤 \ K).

Indeed, for any finite set K of edges and any two labelings U1 and U2 that differ only on K ,
we know by Lemma 11.6 that ϕ(U1) and ϕ(U2) differ at most on 2|K | edges, whence both
ϕ(Ui) are in A or neither are, in other words, both Ui are in ϕ−1(A) or neither are. In other
words, ϕ−1(A) ∈ F (𝖤 \ K). ◀
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11.4 Tree Sizes

Here we prove analogues of results from Section 10.6. There, we gave very general
sufficient conditions for each tree in the wired uniform spanning forest to have one end a.s.
We do not know such a general theorem for the wired minimal spanning forest. Even in
the transitive case, we do not know how to prove this without assuming unimodularity (see
Section 8.2 for its definition) and θ(pc) = 0; recall that θ(p) is the probability that a vertex
belongs to an infinite cluster in Bernoulli(p) percolation and that when G is nonamenable and
unimodular, it is known that θ(pc) = 0 (Theorem 8.21). On the other hand, we will be able
to answer the analogue of Question 10.52 in the unimodular case and to prove analogues of
Theorem 10.34 for both the wired and free minimal spanning forests and in great generality.

We begin by showing that the trees in the 𝖶𝖬𝖲𝖥 have at most two ends each.

Theorem 11.11. (𝖶𝖬𝖲𝖥 Expected Degree 2) Let G be a unimodular transitive graph.
Then the 𝖶𝖬𝖲𝖥-expected degree of each vertex is 2 and each tree has at most two ends a.s.

Proof. Fix p < 1. Write ηp for the graph formed by the edges e with U(e) < pZw(e). By
Proposition 11.4, the trees in ηp have at most one end each, whence by Exercise 8.10 and
Proposition 8.18, the expected degree in ηp is at most 2. Since Fw =

∪
p ηp a.s., the same

follows for Fw. This in turn implies that the trees in Fw have at most two ends each a.s.
Finally, Proposition 8.18 implies that the expected degree in 𝖶𝖬𝖲𝖥 is at least 2. ◀
With an additional hypothesis on critical Bernoulli percolation, we can assert that the trees

have only one end.

Theorem 11.12. (One End) Let G be a unimodular transitive graph. If θ(pc,G) = 0, then
a.s. each component of the 𝖶𝖬𝖲𝖥 has one end.

Proof. Suppose that θ(pc) = 0. Fix a vertex x. Let e1, e2, . . . be the edges in the invasion tree
of x, in the order they are added. Then supn≥k U(en) > pc for every k. By Theorem 7.22,
lim sup U(en) = pc. Therefore, there are infinitely many k such that U(ek) = supn≥k U(en).
For each such k, we have that U(en) < U(ek) for all n > k, whence en is on the other side of
ek from x. Thus, the edge ek separates x from∞ in the invasion tree of x. It follows that the
invasion tree of x a.s. has one end. It also follows that the limsup of the labels U along that
end is equal to pc.
Thus, all invasion trees have one end a.s. Since each pair of invasion trees is either disjoint

or shares all but finitely many vertices by Proposition 11.5, there is a well-defined special end
for each component of Fw, namely, the end of any invasion tree contained in that component
(by Exercise 11.7).

Suppose that with positive probability, the event A occurs that some component has two
ends. Let the trunk of a component with two ends be the unique bi-infinite path that it
contains. Enumerate the vertices of the trunk as xn (n ∈ �), with ⟨xn, xn+1⟩ being the edges
of the trunk, oriented toward the special end. Since θ(pc) = 0, we have

ϵ :=
[
sup
n∈�

U
�[xn, xn+1]� − pc

]
/2 > 0

a.s. on A. By the first paragraph, lim supn→∞U
�[xn, xn+1]� = pc a.s. Thus, a.s. on A, there is

a largest m ∈ � such that U
�[xm, xm+1]� > pc + ϵ . We can then transport mass 1 from each
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vertex in such a component to the vertex xm. The vertex xm would then receive infinite mass,
contradicting the mass-transport principle. Therefore, all components have only one end a.s.

◀

Question 11.13. Let G be a transitive graph whose automorphism group is not unimodular.
Does every tree of the𝖶𝖬𝖲𝖥 on G have one end a.s.? Are there reasonably general conditions
to guarantee one-ended trees in the 𝖶𝖬𝖲𝖥 without any homogeneity of the graph?

Theorem 11.12 gives one relation between the𝖶𝖬𝖲𝖥 and critical Bernoulli percolation.
Another is an immediate consequence of Theorem 7.22 and Exercise 11.7:

Proposition 11.14. Provided G is quasi-transitive, a.s. for every p > pc(G) and for every
component T of 𝖶𝖬𝖲𝖥(G), there is some infinite cluster K of G[p] such that T ∩ K has an
infinite connected component. ◀

This is not true for general graphs:

▷ Exercise 11.9.
Give an infinite connected graph G such that for some p > pc(G), with positive probability,
there is some component of the 𝖶𝖬𝖲𝖥 that intersects no infinite cluster of G[p].

Now we answer the analogue of Question 10.52 in the unimodular case. This result is due
to Timár (2006a).

Theorem 11.15. (Infinitely Many Ends) If G is a quasi-transitive unimodular graph and
𝖶𝖬𝖲𝖥 ̸= 𝖥𝖬𝖲𝖥, then a.s. every tree in Ff has infinitely many ends and contains infinitely
many trees of Fw.

Proof. Suppose that 𝖶𝖬𝖲𝖥 ̸= 𝖥𝖬𝖲𝖥. Then G is nonamenable by Exercise 11.8. Since
Fw ⊆ Ff , each tree of Ff consists of trees of Fw together with edges joining them. By
Example 8.6, the number of edges in a tree of Ff that do not belong to Fw is either 0 or ∞.
By Theorems 11.12 (as extended to quasi-transitive unimodular graphs in Exercise 11.23)
and 8.21, each tree of Fw has one end, so it remains to show that no tree of Ff is a tree of Fw.
Call a tree of Ff that is a tree of Fw lonely. All other trees of Ff have infinitely many ends.
Suppose for a contradiction that there is a lonely tree with positive probability.
By the discussion in Section 11.3, we have pc < pu, so we may choose p ∈ (pc, pu). In

view of Proposition 11.14, we may then choose a finite simple path P with vertices ordered as
⟨x1, x2, . . . , xn⟩ such that P(A) > 0 for the event A that x1 and xn belong to distinct infinite
clusters of G[p], that x1 belongs to a lonely tree, T , and that T does not intersect P except at
x1. Let F ⊂ 𝖤 be the set of edges not in P that have an endpoint in {x2, . . . , xn−1}. Since T
has one end, so does T ∩ G[p].
Define A′ to be the event that results from A by changing the labels U(e) for e ∈ F to

p + (1 − p)U(e). This increases all the labels in F and also makes them larger than p. Let
F
′
f be the new free minimal spanning forest and T ′ be the component of F′f that contains x1.

By Lemma 11.6, F′f △Ff is finite. Furthermore, T ′ ⊇ T . Therefore, if T ′ is not lonely on A′,
then it contains infinitely many ends and an isolated end (the end of T). Since P(A′) > 0 by
Lemma 7.24, this is impossible by Proposition 8.33. Hence, T ′ is lonely on A′.
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Define A′′ to be the event that results from A′ by changing the labels U(e) for e ∈ P to
pU(e). This decreases all the labels in P and also makes them smaller than p. Let F′′f be
the new free minimal spanning forest and T ′′ be the component of F′′f that contains x1. By
Lemma 11.6, F′′f △Ff is finite. On A′′, the path P belongs to a single infinite cluster of G[p].
Furthermore, P ⊂ F′′f on A′′, since all cycles containing an edge of P must contain an edge
with label larger than p. In addition, T ′ ∩ G[p] ⊆ T ′′ for the same reason: Let e ∈ T ′ ∩ G[p],
and let C be a cycle containing e. If C ∩ P = ∅, then the labels on C are the same on A′′ as
on A′, in which case e is not the highest edge on C, since e ∈ T ′; whereas if C ∩ P ̸= ∅, then
C contains an edge labeled more than p, in which case again e is not the highest edge on C,
since e ∈ G[p]. Thus, e ∈ T ′′. By symmetry, the intersection of G[p] with the component of
F
′
f that contains xn has all its edges inF′′f , which means that T ′′ has at least two and hence (by

our first paragraph) infinitely many ends and an isolated end (the end of T ′). Since P(A′′) > 0
by Lemma 7.24, this is again impossible by Proposition 8.33. This contradiction proves the
theorem. ◀

We believe that unimodularity is not needed for this property:

Conjecture 11.16. If G is a quasi-transitive graph and 𝖶𝖬𝖲𝖥 ̸= 𝖥𝖬𝖲𝖥, then 𝖥𝖬𝖲𝖥-a.s.
every tree has infinitely many ends.

Theorem 11.12 and Proposition 11.14 give two relations between the 𝖶𝖬𝖲𝖥 and critical
Bernoulli percolation. The next result, though not much related to the title of this section,
gives a relation between the 𝖥𝖬𝖲𝖥 and Bernoulli(pu) percolation. Recall that

pu(G) := inf
�
p ; there is a.s. a unique infinite cluster in Bernoulli(p) percolation

	
for a general graph, G.

Proposition 11.17. Under the standard coupling, a.s. each component of 𝖥𝖬𝖲𝖥(G) intersects
at most one infinite cluster of G[pu]. Thus, the number of trees in 𝖥𝖬𝖲𝖥(G) is a.s. at least the
number of infinite clusters in G[pu]. If G is quasi-transitive with pu(G) > pc(G), then a.s.
each component of 𝖥𝖬𝖲𝖥(G) intersects exactly one infinite cluster of G[pu].
Proof. Let ⟨pj⟩ be a sequence satisfying limj→∞ pj = pu and that is contained in the set of
p ∈ [pu, 1] such that there is a.s. a unique infinite cluster in G[p]. Let P be a finite simple
path in G, and let A be the event that P ⊂ Ff and the endpoints of P are in distinct infinite
pu-clusters. Since a.s. for every j = 1, 2, . . . there is a unique infinite cluster in G[pj], a.s.
on A there is a path joining the endpoints of P in G[pj]. Because P ⊂ Ff on A , we have
maxP U ≤ pj a.s. on A . Thus, maxP U ≤ pu a.s. on A . On the other hand, maxP U ≥ pu
a.s. on A , since on A , the endpoints of P are in distinct pu components. This implies
P[A ] ≤ P[maxP U = pu] = 0, and the first statement follows.
The second sentence follows from the fact that every vertex belongs to some component

of Ff . Finally, the third sentence follows from Theorem 7.22 and the fact that invasion trees
are contained in the wired minimal spanning forest, which, in turn, is contained in the free
minimal spanning forest. ◀

There is a related conjecture of Benjamini and Schramm (personal communication, 1998):
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Conjecture 11.18. Let G be a quasi-transitive nonamenable graph with pu(G) < 1. Then
𝖥𝖬𝖲𝖥 is a single tree a.s. iff there is a unique infinite cluster in G[pu] a.s.

We can strengthen this conjecture to say that the number of trees in the 𝖥𝖬𝖲𝖥 equals the
number of infinite clusters at pu. An even stronger conjecture would be that in the natural
coupling of Bernoulli percolation and the 𝖥𝖬𝖲𝖥, each infinite cluster at pu intersects exactly
one component of the 𝖥𝖬𝖲𝖥 and each component of the 𝖥𝖬𝖲𝖥 intersects exactly one infinite
cluster at pu.

Question 11.19. Must the number of trees in the 𝖥𝖬𝖲𝖥 and the 𝖶𝖬𝖲𝖥 in a quasi-transitive
graph be either 1 or∞ a.s.? This question for �d is due to Newman (1997).

When 𝖥𝖬𝖲𝖥 ̸= 𝖶𝖬𝖲𝖥 and the quasi-transitive graph is unimodular, a positive answer was
given by Timár (2015).
We now prove an analogue of Theorem 10.34, which showed that the trees in the wired

uniform spanning forest of a graph are all a.s. recurrent. What is the analogue of recurrence?
It is pc = 1: see Exercise 11.14 for one reason to consider this as a proper analogue. We show
pc = 1, in fact, for something even larger than the trees of the wired minimal spanning forest.
Namely, define the invasion basin of infinity, I(∞) = IU (∞), as the set of edges [x, y] such
that there do not exist disjoint infinite simple paths from x and y consisting only of edges e
satisfying U(e) < U

�[x, y]�. Thus, we have

I(∞) ⊃
∪
x∈𝖵

I(x) ⊃
∪
x∈𝖵

TU (x) = Fw(U) .

In addition, I(∞) does not contain any edge that joins different trees in Fw. For an edge e,
define

ZU
∞ (e) := Z∞(e) := inf

P
sup

�
U( f ) ; f ∈ P \ {e}	 ,

where the infimum is over bi-infinite simple paths that contain e; if there is no such path P,
define Z∞(e) := 1. Similarly to the expression for Fw in terms of Zw, we have�

e ; U(e) < Z∞(e)	 ⊆ I(∞) ⊆ �
e ; U(e) ≤ Z∞(e)	

and a.s. I(∞) =
�
e ; U(e) < Z∞(e)	.

Theorem 11.20. Let G = (𝖵, 𝖤) be a graph of bounded degree. Then pc
�
I(∞)� = 1 a.s.

Therefore pc(Fw) = 1 a.s.

To prove this, we begin with the following lemma that will provide a coupling between
percolation and invasion that is different from the usual one we work with.

Lemma 11.21. Let G = (𝖵, 𝖤) be a locally finite infinite graph and ⟨U(e) ; e ∈ 𝖤⟩ be i.i.d.
uniform [0, 1] random variables. Let A ⊂ 𝖤 be finite. Conditioned on A ⊂ I(∞), the random
variables

U(e)
Z∞(e) (e ∈ A)

are i.i.d. uniform [0, 1].
The heart of the lemma is that a uniform random variable conditioned on a set of possible

values is uniform on that set. The form of this that we use is in the following exercise:
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▷ Exercise 11.10.
Consider two independent random vectors U = ⟨Ui ; 1 ≤ i ≤ k⟩ and Z = ⟨Zi ; 1 ≤ i ≤ k⟩,
whereU is distributed uniformly in [0, 1]k and Z has an arbitrary distribution in (0, 1]k . Show
that, given Ui < Zi for all 1 ≤ i ≤ k, the conditional law of the vector ⟨Ui/Zi ; 1 ≤ i ≤ k⟩ is
uniform in [0, 1]k .

Proof of Lemma 11.21. Given Exercise 11.10, the essence of the proof is the plausible fact
that Z∞↾I(∞) gives no information about U↾I(∞) other than U ≤ Z∞ on I(∞). This is
reasonable because no edge in I(∞) can be the highest edge in any bi-infinite simple path,
whence its label cannot determine the value of Z∞ anywhere. Let A ⊂ 𝖤 be finite. Define
Ũ(e) := 0 for e ∈ A and Ũ(e) := U(e) for e /∈ A, and let ZU

A
:= ZU

∞↾A denote the restriction
of ZU

∞ to A. Certainly ZŨ
A

is independent of U↾A.
We claim that on the event

�
A ⊂ IU (∞)�, we have ZU

A
= ZŨ

A
. Indeed, consider any

bi-infinite simple path P. If e ∈ IU (∞) ∩ P, then U(e) < sup{U(e′) ; e ̸= e′ ∈ P}. Hence,
for every such P,

sup
P

U = sup
P\A

U = sup
P\A

Ũ = sup
P

Ũ

on the event
�
A ⊂ IU (∞)�. This proves the claim.

One consequence is that the symmetric difference of the two events
�
A ⊂ IU (∞)� and�

U↾A < ZŨ
A

�
has probability 0. Indeed, the second event is contained in the first event since

ZŨ
A
(e) ≤ ZU

A
(e) for all e ∈ A. For the converse, A ⊂ IU (∞) implies that U↾A < ZU

A
a.s. and

ZU
A

= ZŨ
A

, as we saw in the preceding paragraph. Together, these give the converse.
Thus, the distribution of ⟨U(e)/ZU

A
(e) ; e ∈ A⟩ conditional on �A ⊂ IU (∞)� is a.s. the same

as the distribution of ⟨U(e)/ZŨ
A
(e) ; e ∈ A⟩ conditional on �U↾A < ZŨ

A

�
. By Exercise 11.10,

this distribution is uniform on [0, 1]A, as desired. ◀
We also need the following fact.

Lemma 11.22. If a graph H of bounded degree does not contain a simple bi-infinite path,
then pbond

c (H) = 1.

Proof. Suppose that H does not contain a simple bi-infinite path. Let x be a vertex of H.
Since every pair of infinite paths from x must share another vertex besides x, it follows by
Menger’s theorem (Exercise 3.16) that there is a vertex y ̸= x that belongs to every infinite
path from x. That is, removal of y from H leaves x in a finite component. We can then repeat
the argument with infinite paths starting at y and eventually find infinitely many vertices z
such that x is in a finite component of H \ {z}. Since H has bounded degree, it follows that
pbond

c (H) = 1. (Even without bounded degree, we get that psite
c (H) = 1.) ◀

Proof of Theorem 11.20. A random subset ω of 𝖤 is Bernoulli(p) percolation on I(∞) iff
ω ⊆ I(∞) a.s. and for all finite A ⊂ 𝖤, the probability that A ⊆ ω given that A ⊂ I(∞) is p|A|.
Let ηp be the set of edges e satisfying U(e) < p Z∞(e). Lemma 11.21 implies that ηp has the
law of Bernoulli(p) percolation on I(∞). Thus, by Lemma 11.22, it suffices to show that ηp
does not contain any simple bi-infinite path. In fact, this was already shown for a larger set of
edges in Proposition 11.4. ◀
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Thinking about planar duality leads one to suspect that a dual statement holds for the
𝖥𝖬𝖲𝖥. (Planar duality is explored in the next section.) And indeed, a dual argument shows
that the 𝖥𝖬𝖲𝖥 is almost connected in the following sense.

Theorem 11.23. Let G be a locally finite connected graph and ϵ ∈ (0, 1). Let Ff have the
law 𝖥𝖬𝖲𝖥 and ω be an independent copy of G[ϵ]. Then Ff ∪ ω is connected a.s.

For this, we use a lemma dual to Lemma 11.21; it will provide a coupling ofFf andFf ∪ω.

Lemma 11.24. Let G = (𝖵, 𝖤) be a locally finite infinite graph and ⟨U(e) ; e ∈ 𝖤⟩ be i.i.d.
uniform [0, 1] random variables. Let A ⊂ 𝖤 be a finite set such that P[A ∩Ff = ∅] > 0. Let
B ⊂ 𝖤 be a finite set disjoint from A. Conditioned on A ∩Ff = ∅ and B ⊂ Ff , the random
variables

1 −U(e)
1 − Zf(e) (e ∈ A)

are i.i.d. uniform [0, 1].
Proof. Let Ũ(e) := 1 for e ∈ A and Ũ(e) := U(e) for e /∈ A, and let ZU

A
denote the restriction

of ZU
f to A. Consider any cut Π. If e ∈ Π \Ff(U), then

U(e) > ZU
f (e) ≥ inf

�
U(e′) ; e′ ∈ Π \ {e}	

by (11.1). Hence, if A ∩Ff = ∅, then for every cut Π,

inf
Π

U = inf
Π\A

U = inf
Π\A

Ũ = inf
Π

Ũ ,

and therefore (still assuming that A ∩ Ff = ∅ and using (11.1) again) ZU
A

= ZŨ
A
. Hence

A ∩Ff(U) = ∅ implies U > ZŨ
A
on A. Moreover, A ∩Ff(U) = ∅ is actually equivalent to

U > ZŨ
A
on A, because ZŨ

A
≥ ZU

A
. In addition, Ff(U) = Ff(Ũ) on the event A ∩Ff(U) = ∅.

Thus, conditioned on A ∩ Ff(U) = ∅ and B ⊂ Ff(U), which is the same as conditioning
on U↾A > ZŨ

A
and B ⊂ Ff(Ũ), the random variables

⟨�
1 − U(e)�/�1 − Zf(e)� ; e ∈ A

⟩
=⟨�

1 −U(e)�/�1 − ZŨ
A
(e)� ; e ∈ A

⟩
are i.i.d. uniform in [0, 1] by Exercise 11.10. ◀

Proof of Theorem 11.23. According to Lemma 11.24, Ff ∪ ω has the same law as ξ :={
e ; 1 −U(e) ≥ (1 − ϵ)�1 − Zf(e)�}. We saw in Proposition 11.4 that ξ is connected. ◀

Recall that an analogous question about the 𝖥𝖴𝖲𝖥, Question 10.12, is open. One difficulty
in trying to provide an analogous solution is to imagine what corresponds to Bernoulli(ϵ)
percolation in the 𝖥𝖴𝖲𝖥 world.
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11.5 Planar Graphs

When we add planar duality to our tools, it will be easy to deduce all the major properties
of both the free and wired minimal spanning forests on planar quasi-transitive graphs.

Recall the definition (10.7)

e ∈ ω ⇐⇒ e† /∈ ω× .

Proposition 11.25. Let G and G† be proper locally finite dual plane graphs. For any
injection U:𝖤→ �, let U†(e†) := 1 −U(e). We have

(Ff(U,G))× =
�
e† ; U†(e†) < ZU†

w (e†)	 ,
whence (Ff(U,G))× = Fw(U†,G†) if U†(e†) ̸= ZU†

w (e†) for all e† ∈ 𝖤†.

Proof. The Jordan curve theorem implies that a set P ⊂ 𝖤 \ {e} is a simple path between
the endpoints of e iff the set Π := { f † ; f ∈ P} ∪ {e†} is a cut of a finite set. Thus
ZU

f (e) = 1 − ZU†
w (e†) by (11.2). This means that e† ∈ (Ff(U,G))× iff e /∈ Ff(U,G) iff

U(e) > ZU
f (e) iff U†(e†) < ZU†

w (e†). ◀

The following corollary is proved in the same way that Proposition 10.37 is proved.

Corollary 11.26. Let G be a proper plane graph with G† locally finite. If each tree of the
𝖶𝖬𝖲𝖥 of G has only one end a.s., then the 𝖥𝖬𝖲𝖥 of G† has only one tree a.s. If, in addition,
the 𝖶𝖬𝖲𝖥 of G has infinitely many trees a.s., then the tree of the 𝖥𝖬𝖲𝖥 of G† has infinitely
many ends a.s. ◀

This allows us decide what happens on �2, a result of Alexander and Molchanov (1994).

Corollary 11.27. The minimal spanning forest of �2 is a.s. a tree with one end.

Proof. The hypothesis θ(pc) = 0 of Theorem 11.12 applies by Harris (1960) and Kesten
(1980). Therefore, each tree in the 𝖶𝖬𝖲𝖥 has one end. By Corollary 11.26, this means that
the 𝖥𝖬𝖲𝖥 has one tree. On the other hand, the wired and free measures are the same by
Exercise 11.8.
However, we can get by in our proof with less than Kesten’s theorem, namely, with only

Harris’s Theorem 7.17. To see this, consider the labels U†(e†) := 1 −U(e) on (�2)†. Let
U be an injective [0, 1]-labeling where all the (1/2)-clusters in �2 and (�2)† are finite and
U(e) ̸= ZU

w (e) for all e ∈ 𝖤, which happens a.s. for the standard labeling. Suppose that e
is an edge where U(e) ≤ 1/2. We claim that the endpoints of e belong to the same tree
in Fw(U,�2). Indeed, the invasion basin of e− contains e by our assumption, whence the
invasion tree of e− contains e+.
Therefore, ifFw(U,�2) contains more than one tree, all edges joining two of its components

have labels larger than 1/2. If F is the edge boundary of one of the components, then F†

contains an infinite path with labels all less than 1/2, which contradicts our assumption. This
proves that Fw(U,�2) is one tree. So is Ff

�
U†, (�2)†�, whence Fw(U,�2) = �

Ff(U†,G†)
�×

has just one end. ◀
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Similar reasoning can be applied in the nonamenable case:

Proposition 11.28. Let G be a connected nonamenable quasi-transitive planar graph with
one end. Then the 𝖥𝖬𝖲𝖥 on G is a.s. a tree.

The nonamenability assumption can be replaced by the assumption that the planar dual of
G satisfies θ(pc) = 0. The latter assumption is known to hold in many amenable cases (see
Kesten (1982)).
Proof. Let G be such a graph. By Theorem 8.25, Aut(G) is unimodular, and we may embed
G so that Aut(G†) is also unimodular. By Exercise 6.32, the graph G† is also nonamenable.
Thus, we may apply Theorem 8.21 to G† to see that θ(pc,G†) = 0. Theorem 11.12 and
Corollary 11.26 now yield the desired conclusion. ◀
It is amusing to see how we can use minimal spanning forests now to give another proof of

the bond percolation part of Theorem 8.24.

Corollary 11.29. If G is a connected nonamenable quasi-transitive planar graph with one
end, then for bond percolation, pc(G) < pu(G). In addition, there is a unique infinite cluster
in Bernoulli(pu(G)) bond percolation.

Proof. Again, by Theorem 8.25, Aut(G) is unimodular and we may embed G so that Aut(G†)
is also unimodular. By Theorem 7.21 and Proposition 11.7, for the first part, it suffices
to show that 𝖶𝖬𝖲𝖥 ̸= 𝖥𝖬𝖲𝖥 on G. Now if the forests were the same, then they would
also be the same on G†, so that each would be one tree with one end, as in the proof of
Proposition 11.28. But this is impossible by Proposition 8.22.
Furthermore, by Proposition 11.28, the 𝖥𝖬𝖲𝖥 is a tree on G, whence by the second

sentence of Proposition 11.17, there is a unique infinite cluster in Bernoulli(pu) percolation
on G. ◀

11.6 Nontreeable Groups

We don’t know any good way to tell when the free minimal spanning forest is a.s. a single
tree, even for �d when d ≥ 3. So far in this chapter, we have not presented a single example
of a Cayley graph where it is not a tree. One way to present such an example is to use
Proposition 11.17 and give a Cayley graph where there are infinite many infinite clusters
in Bernoulli(pu) percolation. In Section 7.9, some examples of such Cayley graphs were
mentioned. As it happens, all of those examples have another surprising property: they don’t
admit any invariant random spanning tree! That, of course, also implies that the 𝖥𝖬𝖲𝖥 is a.s.
not a tree. This is the method we use here: we give examples of Cayley graphs that have no
invariant random spanning tree. The following theorem is due to Pemantle and Peres (2000).

Theorem 11.30. (Nontreeable Products) Let Γ and ∆ be infinite countable groups and G
be a Cayley graph of Γ × ∆. If there is a random invariant spanning tree of G, then G is
amenable.

Proof. Let H be a Cayley graph of Γ. We’ll use the spanning tree measure assumed to exist to
create an invariant percolation on H with finite clusters and with expected degree arbitrarily
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close to the degree of H; amenability of H (and hence of Γ) then follows from Theorem 8.16.
By symmetry, ∆ is also amenable, whence so is G by Exercise 6.25.
To create this percolation on H, we first define an equivalence relation on Γ. Consider a

fixed spanning tree T of G. Write o for the identities of Γ and ∆. Write Γn for the points
in G that lie within distance n of Γ × {o}. Let Hr denote the points in H that are within
H-distance r of o and let ∆r := Hr × ∆. For n ≥ 1, let δn ∈ ∆ be any element such that the
distance in G from (o, o) to (o, δn) is at least 2n + 1. Given n and r, let C(T , n, r) ∈ Γ × Γ
consist of the pairs (γ, γ′) such that either γ = γ′ or all of the following four properties hold:

(i) the path in T from (γ, o) to (γ′, o) lies in Γn;
(ii) the path in T from (γ, δn) to (γ′, δn) lies in (o, δn)Γn;

(iii) the path in T from (γ, o) to (γ, δn) lies in (γ, o)∆r ; and
(iv) the path in T from (γ′, o) to (γ′, δn) lies in (γ′, o)∆r .

It is easy to see that C(T , n, r) is an equivalence relation for each n and r .
Now let T be random with a Γ × ∆-invariant law. Since C

�(γ, o)T , n, r� = γC(T , n, r) for
every γ ∈ Γ, the law of C(T , n, r) is Γ-invariant. The probabilities of the events in (i) and
(ii), which are the same, tend to 1 as n → ∞. Given n, the probabilities of the events in
(iii) and (iv) tend to 1 as r → ∞. Thus, given any pair γ ̸= γ′, we may choose n and r
large enough that P

�(γ, γ ′) ∈ C(T , n, r)� is as close as desired to 1. On the other hand, when
(γ, γ ′) ∈ C(T , n, r), we may concatenate the paths in T from (γ, o) to (γ′, o) to (γ′, δn) to
(γ, δn) to (γ, o). Since T contains no simple cycles, this means that (γ, o)∆r ∩ (γ′, o)∆r ̸= ∅,
whence γ and γ′ lie within distance 2r of each other. Thus, the equivalence classes of
C(T , n, r) are finite. To make a percolation out of them, just take C(T , n, r) ∩ 𝖤(H). ◀

We do not know much about the number of infinite clusters in Bernoulli(pu) percolation on
Cayley graphs. For example, the following is open:

Question 11.31. Let G be a Cayley graph with pu(G) < 1. Both of the following properties
imply that the 𝖥𝖬𝖲𝖥 on G is a.s. not a tree:

(i) Bernoulli(pu) percolation has more than one infinite cluster a.s.;
(ii) there is no random invariant spanning tree of G.

Is there any implication between (i) and (ii)?

11.7 Notes

Proposition 11.5 was first proved by Chayes, Chayes, and Newman (1985) for �2, then by Alexander
(1995a) for all �d , and finally by Lyons, Peres, and Schramm (2006) for general graphs.

Lemma 11.6 is a strengthening due to Lyons, Peres, and Schramm (2006) of Theorem 5.1(i) of
Alexander (1995a).

All other results in this chapter that are not explicitly attributed are due to Lyons, Peres, and Schramm
(2006), although Proposition 11.4 was only implicit there.

A curious comparison of 𝖥𝖴𝖲𝖥 and 𝖥𝖬𝖲𝖥 was found by Lyons, Peres, and Schramm (2006),
extending work of Lyons (2000) and Gaboriau (2005): Let deg(µ) denote the expected degree of a
vertex under an automorphism-invariant percolation µ on a transitive graph (so that it is the same for all
vertices).
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Proposition 11.32. Let G = (𝖵, 𝖤) be a transitive unimodular connected infinite graph of degree d.
Then

deg(𝖥𝖴𝖲𝖥) ≤ deg(𝖥𝖬𝖲𝖥) ≤ 2 + d
∫ pu

pc

θ(p)2 dp .

It is not known whether the unimodularity assumption is needed.
Some examples of particular behaviors of minimal spanning forests are given by Lyons, Peres, and

Schramm (2006); they are somewhat hard to prove but worth recounting here. Namely, there are
examples of the following: a planar graph whose free and wired minimal spanning forests are equal
and have two components; a planar graph such that the number of trees in the wired minimal spanning
forest is not an a.s. constant; a planar graph such that the number of trees in the free minimal spanning
forest is not an a.s. constant; and a graph for which 𝖶𝖴𝖲𝖥 ̸= 𝖥𝖴𝖲𝖥 and 𝖶𝖬𝖲𝖥 = 𝖥𝖬𝖲𝖥 (unlike the
situation in Proposition 11.32).

Theorem 11.30 is essentially taken from Pemantle and Peres (2000), which contains generalizations.
A precursor is in Adams (1988). Gaboriau (2000) (Corollary VI.22) shows that nonamenable groups of
cost 1 are not treeable, that is, they have no invariant random spanning tree; this implies Theorem 11.30.
Cayley graphs of Kazhdan groups also are not treeable; a version of this result appears in Adams
and Spatzier (1990). More generally, a nonamenable group Γ with first ℓ2-Betti number β1(Γ) = 0 is
nontreeable by Gaboriau (2002), Proposition 6.10. Gaboriau (2000) (Proposition VI.18) shows that
if a group contains a nontreeable subgroup, then the group itself is not treeable. Note that Gaboriau
calls a group “arborable” if all its free actions are treeable and “anti-arborable” if none of them are.
It is unknown if there are any other kinds of groups. An example given by Gaboriau (2000) (Remark
VI.11) of a nontreeable group is (A ⊕ B) ∗B (B ⊕ C), where A, B,C are all isomorphic to �; this group
is nonamenable and has cost 1, yet is an amalgamated product of treeable groups over �.

▷ Exercise 11.11.
Call a graph G almost treeable if there exists a sequence of Aut(G)-invariant spanning forests Fn on G
with the property that for all x, y ∈ 𝖵(G), we have limn→∞ P[x ↔ y in Fn] = 1. Use Theorem 7.48 to
show that Cayley graphs of Kazhdan groups are not almost treeable.

A striking use of the minimal spanning tree on a Poisson process in �2 (minimizing Euclidean
distance) is made by Krikun (2007).

We end with a few more open questions and conjectures, mostly from Lyons, Peres, and Schramm
(2006).

Conjecture 11.33. The components of the 𝖥𝖬𝖲𝖥 on a unimodular transitive graph are indistinguishable
in the sense that for every automorphism-invariant property A of subgraphs, either a.s. all components
satisfy A or a.s. all do not. The same holds for the 𝖶𝖬𝖲𝖥.

This was proved for the 𝖥𝖬𝖲𝖥 by Timár (2015) in the special case that 𝖥𝖬𝖲𝖥 ̸= 𝖶𝖬𝖲𝖥.
This surely does not extend to nonunimodular transitive graphs, though we do not have a proof.

Conjecture 11.34. Let To be the component of the identity o in the 𝖶𝖬𝖲𝖥 on a Cayley graph not
roughly isometric to �, and let ξ = ⟨xn ; n ≥ 0⟩ be a ray from o in To . (This ray is conjectured
to be unique, since θ(pc) = 0 by Conjecture 8.15.) The sequence of “bushes” ⟨bn⟩ observed along
ξ converges in distribution. (Formally, bn is the connected component of xn in T \ {xn−1, xn+1},
multiplied on the left by x−1

n .)

Question 11.35. For which d is the minimal spanning forest of �d a.s. a tree? This question is due to
Newman and Stein (1996), who conjecture that the answer is d < 8 or d ≤ 8. Jackson and Read (2010a,
2010b) suggest instead that the answer is d < 6 or d ≤ 6. This is related to the number of ground states
of the Edwards-Anderson model: see Newman and Stein (2006).
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Question 11.36. One may consider the minimal spanning tree on ϵ�2 ⊂ �2 and let ϵ → 0. It would be
interesting to show that the limit exists in various senses. Aizenman, Burchard, Newman, and Wilson
(1999) have shown that a subsequential limit exists. According to simulations of Wilson (2004a), the
scaling limit in a simply connected domain with free or wired boundary conditions does not have
the conformal invariance property one might expect. This contrasts with the situation of the uniform
spanning forest, where the limit exists and is conformally invariant, as was proved by Lawler, Schramm,
and Werner (2004a). For the triangular lattice, Garban, Pete, and Schramm (2013) establish existence
of the limit.

Question 11.37. If G is a graph that is roughly isometric to a tree, then is the free minimal spanning
forest on G a.s. a tree?

11.8 Collected In-Text Exercises

11.1. Show that among all spanning trees of a finite graph, TU is the unique one that has minimum
edge-label sum,

∑
e∈T U(e).

11.2. Construct G as follows. Begin with the complete graph, K4. Let e and f be two of its edges
that do not share endpoints. Replace e by three edges in parallel, e1, e2, and e3, that have the same
endpoints as e. Likewise, replace f by three parallel edges f i . Show that in G,

𝖬𝖲𝖳[e1, f1 ∈ T] > 𝖬𝖲𝖳[e1 ∈ T]𝖬𝖲𝖳[ f1 ∈ T] .

11.3. Show that given an edge, e, the minimal spanning tree measure on G conditioned on the event
not to contain e need not be the same as the minimal spanning tree measure on G\e, the graph G with e
deleted.

11.4. Find an example of a finite graph G with vertex o ∈ G such that there are two spanning trees T
and T ′ of G having the properties that for all x, the distance from x to o in T is the same as in T ′, yet T
and T ′ are not equally likely under the minimal spanning tree measure.

11.5. Show that Fw(U) consists of those edges e for which there is a finite set of vertices W ⊂ 𝖵
such that e is the least edge joining W to 𝖵 \W .

11.6. Consider an increasing sequence of finite, nonempty, connected (not necessarily induced)
subgraphs Gn ⊂ G (n ∈ �) such that

∪
n Gn = G. For n ∈ �, let GW

n be the graph obtained from G
by identifying the vertices outside of Gn to a single vertex, then removing all resulting loops based at
that vertex. Let Tn(U) and TW

n (U) denote the minimal spanning trees on Gn and GW
n , respectively, that

are induced by the labels U . Show that Ff(U) = limn→∞ Tn(U) and that Fw(U) = limn→∞ TW
n (U) in the

sense that for every e ∈ Ff(U), we have e ∈ Tn(U) for every sufficiently large n, for every e /∈ Ff(U) we
have e /∈ Tn(U) for every sufficiently large n, and similarly for Fw(U). Deduce that Tn(U) ⇒ 𝖥𝖬𝖲𝖥
and TW

n (U) ⇒ 𝖶𝖬𝖲𝖥.

11.7. Let U:𝖤→ � be an injective labeling of the edges of a locally finite graph G = (𝖵, 𝖤). Show
that the union

∪
x∈𝖵 TU (x) of all the invasion trees is equal to Fw(U).

11.8. Let G be a connected locally finite graph. Prove the following.
(a) If G is edge-amenable, then the average degree of vertices in both the free and wired minimal

spanning forests on G is a.s. 2.
(b) The free and wired minimal spanning forests on G are the same if they have a.s. the same finite

number of trees or if the expected degree of every vertex is the same for both measures.
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(c) The free and wired minimal spanning forests on G are the same on any transitive amenable
graph and have expected degree 2.

(d) IfFw is connected a.s. or if each component ofFf has a.s. one end, then𝖶𝖬𝖲𝖥(G) = 𝖥𝖬𝖲𝖥(G).
(e) The measures 𝖶𝖬𝖲𝖥(G) and 𝖥𝖬𝖲𝖥(G) are invariant under all automorphisms of G, as is the

law of (Fw,Ff).
(f) If G is unimodular and transitive with 𝖶𝖬𝖲𝖥(G) ̸= 𝖥𝖬𝖲𝖥(G), then a.s. Ff has a component

with uncountably many ends and, in fact, with pc < 1.

11.9. Give an infinite connected graph G such that for some p > pc(G), with positive probability,
there is some component of the 𝖶𝖬𝖲𝖥 that intersects no infinite cluster of G[p].
11.10. Consider two independent random vectors U = ⟨Ui ; 1 ≤ i ≤ k⟩ and Z = ⟨Zi ; 1 ≤ i ≤ k⟩,

where U is distributed uniformly in [0, 1]k and Z has an arbitrary distribution in (0, 1]k . Show that,
given Ui < Zi for all 1 ≤ i ≤ k, the conditional law of the vector ⟨Ui/Zi ; 1 ≤ i ≤ k⟩ is uniform in
[0, 1]k .

11.11. Call a graph G almost treeable if there exists a sequence of Aut(G)-invariant spanning forests
Fn on G with the property that for all x, y ∈ 𝖵(G), we have limn→∞ P[x ↔ y in Fn] = 1. Use
Theorem 7.48 to show that Cayley graphs of Kazhdan groups are not almost treeable.

11.9 Additional Exercises

11.12. Let G be the graph in Figure 11.2. There are 11 spanning trees
of G. Show that under the minimal spanning tree measure, they are not
all equally likely and calculate their probabilities. Show, however, that
there are conductances such that the corresponding weighted uniform
spanning tree measure equals the minimal spanning tree measure.

Figure 11.2. See
Exercise 11.12.

11.13. Let G be a complete graph on four vertices (that is, all pairs of
vertices are joined by an edge). Calculate the minimal spanning tree
measure and show that there are no conductances that give the minimal
spanning tree measure as a weighted uniform spanning tree.

11.14. Let G be an infinite locally finite graph. Show that if pc(G) = 1, then for all x, we have
I(x) = G a.s., whereas if pc(G) < 1, then for all x, we have I(x) ̸= G a.s. Here, I(x) denotes the invasion
basin of x.

11.15. Show that the 𝖥𝖬𝖲𝖥 of the usual Cayley graph of �2 ∗�3 (as in Figure 3.3) is a tree a.s. whose
branching number equals 1.35+.

11.16. Let G be a transitive graph, possibly with loops. Let ρ = ρ(G) be the spectral radius (6.14).
Show that the expected degree of 𝖥𝖬𝖲𝖥G is at least 1/ρ − 1 + log ρ. Show that if G has no loops, then
the expected degree of 𝖥𝖬𝖲𝖥G is at least 1/ρ − log (1 + 1/ρ). Hint: Consider the edges incident to o.
For each, bound above the probability that it is the largest in some cycle.

11.17. As discussed in Section 10.2, for each finitely generated group, the degree of the 𝖥𝖴𝖲𝖥 does
not depend on the Cayley graph chosen.

(a) Show that there is a finitely generated group Γ such that the expected degree of a vertex in the
𝖥𝖬𝖲𝖥 of a Cayley graph of Γ does depend on which Cayley graph is used.

(b) Let Γ be a finitely generated nonamenable group. Show that for every c > 0, there is a Cayley
graph G of Γ such that the expected degree of 𝖥𝖬𝖲𝖥G is at least c.
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11.18. Let T be a 3-regular tree. Calculate the chance that a given vertex is a leaf in the wired minimal
spanning forest on T .

11.19. Show that for the ladder graph of Exercise 4.2, the minimal spanning forest is a tree a.s. and
calculate the chance that the bottom rung of the ladder is in the minimal spanning tree.

11.20. Let f (p) be the probability that two given neighbors in �d are in different components in
Bernoulli(p) percolation. Show that ∫ 1

0

f (p)
1 − p

dp =
1
d
.

11.21. Let G be a connected graph. Let α(x1, . . . , xK ) be the probability that the invasion basins
I(x1), . . . , I(xK ) are pairwise vertex-disjoint. Show that the 𝖶𝖬𝖲𝖥-essential supremum of the number
of trees is

sup
�
K ; ∃x1, . . . , xK ∈ 𝖵 α(x1, . . . , xK ) > 0

	
.

11.22. Show that if we sum the number of ends over all trees in the free minimal spanning forest of a
graph, then we get an a.s. constant, and likewise for the wired minimal spanning forest.

11.23. Show that if G is a unimodular quasi-transitive graph and θ(pc,G) = 0, then a.s. each
component of the 𝖶𝖬𝖲𝖥 has one end.

11.24. Show that if G is a quasi-transitive nonamenable unimodular graph, then there are infinitely
many trees in the 𝖶𝖬𝖲𝖥 a.s.

11.25. Theorem 11.20 was stated for bounded degree graphs. Prove that if G = (𝖵, 𝖤) is an infinite
graph, then the 𝖶𝖬𝖲𝖥 Fw satisfies pc(Fw) = 1 a.s., and moreover, pc

�∪
v∈𝖵 I(v)� = 1 a.s.

11.26. Show that if G is a unimodular transitive locally finite connected graph, then pc(G) < pu(G) iff
pc(Ff) < 1 a.s.

11.27. Let G be a plane regular graph of degree d with regular dual of degree d†. Show that the
𝖥𝖬𝖲𝖥-expected degree of each vertex in G is d(1 − 2/d†).
11.28. Let G be the usual Cayley graph of the (p, q, r)-triangle group, where 1/p + 1/q + 1/r ≤ 1,
shown in Figure 6.1 for (2, 3, 7) and defined in Exercise 8.47. It has three generators, which are
reflections in the sides of a fundamental triangle. Show that the expected degree of the 𝖥𝖬𝖲𝖥 of G is
3 − 1/p − 1/q − 1/r .

11.29. Consider the Cayley graph corresponding to the presentation ⟨a, b, c, d | a2, b2, c2, abd−1⟩.
Show that the expected degree of a vertex in the 𝖥𝖬𝖲𝖥 is 3.

11.30. Give a Cayley graph with pu = 1 on which the 𝖥𝖬𝖲𝖥 a.s. is not a single tree.
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12 Limit Theorems for
Galton-Watson Processes

How quickly does a supercritical Galton-Watson branching process grow? In Section 5.1,
we gave an answer via the Kesten-Stigum theorem, but its proof was postponed to the present
chapter. How quickly does the survival probability to generation n decay as n → ∞ in
critical and subcritical processes? These are the major questions we answer in this chapter. A
special biasing of the branching process, called size-biasing, transforms these questions to
much easier ones. Size-biased branching processes turn out to be an example of branching
processes with immigration, so we also study those a bit.

This chapter is adapted from Lyons, Pemantle, and Peres (1995a).

12.1 Size-Biased Trees and Immigration

Recall from Section 5.1

The Kesten-Stigum Theorem (1966). Let L be the offspring random variable of a Galton-
Watson process with mean m ∈ (1,∞) and martingale limit W . The following are equivalent:

(i) P[W = 0] = q ;
(ii) E[W ] = 1 ;

(iii) E[L log+ L] < ∞ .

Although condition (iii) appears technical, there is a conceptual proof of the theorem
that uses only the crudest estimates. The dichotomy of Corollary 5.7 as expanded in the
Kesten-Stigum theorem turns out to arise from the following elementary dichotomy:

Lemma 12.1. Let X , X1, X2, . . . be nonnegative i.i.d. random variables. Then a.s.

lim sup
n→∞

1
n

Xn =
{ 0 if E[X] < ∞
∞ if E[X] = ∞.

▷ Exercise 12.1.
Prove this by using the Borel-Cantelli lemma.

We will use Lemma 12.1 mainly via the following consequence:

▷ Exercise 12.2.
Given X , Xn as in Lemma 12.1, show that if E[X] < ∞, then ∑

n eXn cn < ∞ a.s. for all
c ∈ (0, 1), whereas if E[X] = ∞, then

∑
n eXn cn = ∞ a.s. for all c ∈ (0, 1).
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This dichotomy will be applied to an auxiliary random variable. Let L̂ be a random
variable whose distribution is that of size-biased L; that is,

P[L̂ = k] =
kpk
m

,

where, as usual, pk := P[L = k]. Note that

E[ log L̂] =
1
m

E[L log+ L] .

Lemma 12.1 will be applied to log L̂.

▷ Exercise 12.3.
Let X be a nonnegative random variable with 0 < E[X] < ∞. We say that X̂ has the
size-biased distribution of X if P

�
X̂ ∈ A

�
= E

�
X1A(X)�/E[X] for intervals A ⊆ [0,∞).

Show that this is equivalent to E
�

f (X̂)� = E
�
X f (X)�/E[X] for all Borel f : [0,∞)→ [0,∞).

▷ Exercise 12.4.
Suppose that Xn ≥ 0 satisfy 0 < E[Xn] < ∞ and P[Xn > 0]/E[Xn] → 0. Show that the
size-biased random variables X̂n tend to infinity in probability.

We will now define certain “size-biased” random trees, called size-biased Galton-Watson
trees. Note that this process, as well as the usual Galton-Watson process, will be a way
of putting a measure on the space of trees, which we think of as rooted and labeled, as in
Section 5.1. The law of the size-biased random tree will be denoted ĜW, whereas the law
of an ordinary Galton-Watson tree is denoted GW. We will show that the Kesten-Stigum
dichotomy is equivalent to the following: these two measures on the space of trees are either
mutually absolutely continuous or mutually singular.
How can we size bias in a probabilistic manner? Suppose that we have an urn of balls

such that when we reach into the urn and choose a ball uniformly at random, the probability
of picking a ball numbered k is qk . If, for each k, we replace each ball numbered k with k
balls numbered k, then the new probability of picking a ball numbered k is the size-biased
probability. Thus, a probabilistic way of biasing GW according to Zn is as follows: Imagine
an urn containing trees up to generation n, the number copies of each tree being proportional
to its GW probability. If we count trees according to the sizes of their nth generations,
however, then we find that they are size-biased. Thus, reach in the urn and pick a vertex
uniformly at random from among all vertices in the nth generation of some tree. We can
think of the result as a tree with a path from the root to the nth generation (ending in the
chosen vertex). We will couple these measures for all n, giving a random infinite tree with
an infinite path. The resulting joint distribution will be called ĜW∗. This motivates the
following definitions.
For a tree t with Zn vertices at level n, write Wn(t) := Zn/mn. For any rooted tree t and

any n ≥ 0, denote by [t]n the set of rooted trees whose first n levels agree with those of t. (In
particular, if the height of t is less than n, then [t]n = {t}.) If v is a vertex at the nth level of
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t, then let [t; v]n denote the set of trees with distinguished paths such that the tree is in [t]n
and the path starts from the root, does not backtrack, and goes through v.
To construct ĜW, we will construct a measure ĜW∗ on the set of infinite trees with infinite

distinguished paths; this measure will satisfy

ĜW∗[t; v]n =
1

mn
GW[t]n (12.1)

for all n and all [t; v]n as earlier. By using the branching property and the fact that the
expected number of children of v is m, it is easy to verify consistency of these finite-height
distributions. Kolmogorov’s existence theorem thus provides such a measure ĜW∗. However,
this verification may be skipped, as we will give a more useful, direct construction of a
measure with these marginals in a moment.
Note that if a measure ĜW∗ satisfying (12.1) exists, then its projection to the space of

trees, which is denoted simply by ĜW, automatically satisfies

ĜW[t]n = Wn(t)GW[t]n (12.2)

for all n and all trees t. It is for this reason that we call ĜW “size-biased.”
How do we define ĜW∗? Assuming still that (12.1) holds, note that the recursive structure

of Galton-Watson trees yields a recursion for ĜW∗. Assume that t is a tree of height at least
n + 1 and that the root of t has k children with descendant trees t(1), t(2), . . . , t(k). Any vertex
v in level n + 1 of t is in one of these – say, t(i). Now

GW[t]n+1 = pk
k∏
j=1

GW[t(j)]n = kpk ·
1
k
·GW[t(i)]n ·

∏
j ̸=i

GW[t(j)]n .

Thus any measure ĜW∗ that satisfies (12.1) must satisfy the recursion

ĜW∗[t; v]n+1 =
kpk
m
· 1

k
· ĜW∗[t(i); v]n ·

∏
j ̸=i

GW[t(j)]n . (12.3)

Conversely, if a probability measure ĜW∗ on the set of trees with distinguished paths satisfies
this recursion, then induction shows that the measure satisfies (12.1); this observation leads
to the following direct construction of ĜW∗.
Recall that L̂ is a random variable whose distribution is that of size-biased L, in other words,

P[L̂ = k] = kpk/m. To construct a size-biased Galton-Watson tree T̂ , start with an initial
particle v0. Give it a random number L̂1 of children, where L̂1 has the law of L̂. Pick one of
these children at random, v1. Give the other children independently ordinary Galton-Watson
descendant trees and give v1 an independent size-biased number L̂2 of children. Again, pick
one of the children of v1 at random, call it v2, and give the others ordinary Galton-Watson
descendant trees. Continue in this way indefinitely. (See Figure 12.1.) Note that since L̂ ≥ 1,
size-biased Galton-Watson trees are always infinite (there is no extinction).
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v0

v1L̂1 = 4

v2L̂2 = 3

v3L̂3 = 3

GW GW GW

GW GW

GW GW

Figure 12.1. Schematic of size-biased Galton-Watson trees.

Now we can finally define the measure ĜW∗ as the joint distribution of the random tree T̂
and the random path ⟨v0, v1, v2, . . .⟩. This measure clearly satisfies the recursion (12.3), and
hence also (12.1).
Note that, given the first n levels of the tree T̂ , the measure ĜW∗ makes the vertex vn in the

random path ⟨v0, v1, . . .⟩ uniformly distributed on the nth level of T̂ ; this is not obvious from
the explicit construction of this random path, but it is immediate from the formula (12.1) in
which the right-hand side does not depend on v.

▷ Exercise 12.5.
Define ĜW∗ formally on a space analogous to the space T of Exercise 5.2 and define ĜW
formally on T .

The vertices off the distinguished path ⟨v0, v1, . . .⟩ of the size-biased tree form a branching
process with immigration. In general, such a process is defined by two distributions, an
offspring distribution and an immigration distribution. The process starts with no particles,
say, and at every generation n ≥ 1, there is an immigration of Yn particles, where Yn are i.i.d.
with the given immigration law. Meanwhile, each particle has, independently, an ordinary
Galton-Watson descendant tree with the given offspring distribution.
Thus, the ĜW-law of Zn − 1 is the same as that of the generation sizes of an immigration

process with Yn = L̂n − 1. Since E
�
log+(L̂ − 1)� = m−1 E

�
L log+(L − 1)�, the condition (iii) of

the Kesten-Stigum theorem is equivalent to E
�
log+(L̂ − 1)� < ∞. The finiteness of this last

expectation determines the behavior of the variables ⟨log+ Yn⟩ via Lemma 12.1.
We will need to take conditional expectations of random variables that might not have

finite means, so let’s recall how this works. Note that if 𝜈 ≪ µ and µ is σ-finite, then 𝜈
has a Radon-Nikodým derivative with respect to µ without any further assumption on 𝜈
(see, for example, Problem 32.8 of Billingsley (1995)). Suppose that X ≥ 0 is a random
variable and F is a σ-field. We allow X to take the value +∞. We define E[X | F ] to be the
Radon-Nikodým derivative of (X P)↾F with respect to P↾F . Uniqueness of the derivative
shows that

E[X | F ] = E[X1[X<∞] | F ] + ∞ · P[X = ∞ | F ] .
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If E[X | F ] < ∞ a.s., then X < ∞ a.s. The conditional monotone convergence theorem
says that if 0 ≤ Xn ↑ X , then limn→∞ E[Xn | F ] = E[X | F ] a.s. To see this, let
Y be the limit of the increasing sequence



E[Xn | F ]� and use the ordinary monotone

convergence theorem to deduce that for every F ∈ F , we have E[Y1F ] = E[X1F ], as
desired. One can then deduce the conditional version of Fatou’s lemma: if Xn ≥ 0, then
E[lim infn→∞ Xn | F ] ≤ lim infn→∞ E[Xn | F ] a.s.

12.2 Supercritical Processes: Proof of the Kesten-Stigum Theorem
We mentioned that the Kesten-Stigum dichotomy arises from a dichotomy concerning

mutual singularity of measures. The latter dichotomy involves the following lemma, which is
more or less standard.
Lemma 12.2. Let µ be a finite measure and 𝜈 be a probability measure on a σ-field F .
Suppose that Fn are increasing sub-σ-fields whose union generates F and that (µ↾Fn)
is absolutely continuous with respect to (𝜈↾Fn) with Radon-Nikodým derivative Xn. Set
X := lim supn→∞ Xn. Then

µ ≪ 𝜈 ⇐⇒ X < ∞ µ-a.e. ⇐⇒
∫

X d𝜈 =
∫

dµ

and
µ ⊥ 𝜈 ⇐⇒ X = ∞ µ-a.e. ⇐⇒

∫
X d𝜈 = 0 .

Proof. Since

(Xn,Fn)� is a nonnegative martingale with respect to 𝜈 (see Exercise 12.17), it

converges to X 𝜈-a.s. and X < ∞ 𝜈-a.s. We claim that µ has the following decomposition
into a 𝜈-absolutely continuous part and a 𝜈-singular part:

µ = X𝜈 + 1[X=∞]µ . (12.4)
Given this, the lemma follows: For if µ ≪ 𝜈, then X < ∞ µ-a.e.; if X < ∞ µ-a.e., then by
(12.4),

∫
X d𝜈 =

∫
dµ; and if

∫
X d𝜈 =

∫
dµ, then by (12.4), X < ∞ µ-a.e. and µ ≪ 𝜈. On

the other hand, if µ ⊥ 𝜈, then by (12.4), µ = 1[X=∞]µ, whence X = ∞ µ-a.e.; if X = ∞ µ-a.e.,
then by (12.4),

∫
X d𝜈 = 0; and if

∫
X d𝜈 = 0, then by (12.4), X = ∞ µ-a.e., whence µ ⊥ 𝜈.

To establish (12.4), suppose first that µ ≪ 𝜈 with Radon-Nikodým derivative X̃ . Then
Xn is (a version of) the conditional expectation of X̃ given Fn (with respect to 𝜈), whence
Xn → X̃ 𝜈-a.s. by the martingale convergence theorem. In particular, X = X̃ 𝜈-a.s., so the
decomposition is simply the definition of Radon-Nikodým derivative.
To treat the general case, we use a common trick: Define the probability measure ρ :=

(µ + 𝜈)/C, where C :=
∫

d(µ + 𝜈). Then µ, 𝜈 ≪ ρ, so that we may apply what we have
just shown to the variables Un := d(µ↾Fn)/d(ρ↾Fn) and Vn := d(𝜈↾Fn)/d(ρ↾Fn). Let
U := lim sup Un and V := lim sup Vn. Since Un + Vn = C ρ-a.s., we have ρ[U = V = 0] = 0
and thus ρ-a.s.

U/V = lim Un/lim Vn = lim(Un/Vn) = lim Xn = X .

Therefore, using three times what we established in the preceding paragraph, we obtain
µ = U ρ = XV ρ + 1[V=0]U ρ = X µ + 1[X=∞]µ . ◀

The Kesten-Stigum theorem will be an immediate consequence of the following theorem
on the growth rate of immigration processes.
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Theorem 12.3. (Seneta, 1970) Let Zn be the generation sizes of a Galton-Watson process
with immigration Yn. Let m := E[L] ∈ (1,∞) be the mean of the offspring law, and let Y have
the same law as Yn. If E[log+ Y ] < ∞, then lim Zn/mn exists and is finite a.s., whereas if
E[log+ Y ] = ∞, then lim sup Zn/cn = ∞ a.s. for every constant c > 0.

Proof. Assume first that E[log+ Y ] = ∞. By Lemma 12.1, lim supYn/cn = ∞ a.s. Since
Zn ≥ Yn, the result follows.
Now assume that E[ log+ Y ] < ∞. Let G be the σ-field generated by {Yk ; k ≥ 1}. Let

Zn,k be the number of descendants at level n of the Yk particles that immigrated in generation
k. Thus, the total number of vertices at level n is

∑n
k=1 Zn,k . With our notation, we have

E[Zn/mn | G ] = E
[

1
mn

n∑
k=1

Zn,k

����� G

]
=

n∑
k=1

1
mk

E
[

Zn,k

mn−k

����� G

]
.

Note that conditioning on G is just fixing values for all Yk ; since Yk are independent of all other
random variables, conditioning on G amounts to using Fubini’s theorem. Now for k ≤ n, the
random variable Zn,k/mn−k is the (n− k)th element of the ordinary Galton-Watson martingale
sequence starting, however, with Yk particles. Therefore, its conditional expectation is just Yk ,
and so

E[Zn/mn | G ] =
n∑

k=1

Yk
mk

.

Our assumption gives, by Exercise 12.2, that this series converges a.s. This implies by the
conditional Fatou lemma that E[lim inf Zn/mn | G ] < ∞ a.s., whence lim inf Zn/mn < ∞ a.s.
Finally, since ⟨Zn/mn⟩ is a submartingale when conditioned on G with bounded expectation
(given G ), it converges a.s. ◀
Proof of the Kesten-Stigum theorem. (Lyons, Pemantle, and Peres, 1995a) Let Fn be the
σ-field generated by the first n levels of trees. Then (12.2) is the same as

d(ĜW↾Fn)
d(GW↾Fn) (t) = Wn(t) . (12.5)

To define W for every infinite tree t, set

W (t) := lim sup
n→∞

Wn(t) .
From (12.5) and Lemma 12.2 follows the key dichotomy:∫

W dGW = 1 ⇐⇒ ĜW ≪ GW ⇐⇒ W < ∞ ĜW-a.s., (12.6)
whereas

W = 0 GW-a.s. ⇐⇒ GW ⊥ ĜW ⇐⇒ W = ∞ ĜW-a.s. (12.7)
This is key because it allows us to change the problem from one about the GW-behavior of
W to one about the ĜW-behavior of W . Indeed, since the ĜW-behavior of W is described
by Theorem 12.3, the theorem is immediate: if E[L log+ L] < ∞, that is, E[ log L̂] < ∞,
then W < ∞ ĜW-a.s. by Theorem 12.3, whence

∫
W dGW = 1 by (12.6); whereas if

E[L log+ L] = ∞, then W = ∞ ĜW-a.s. by Theorem 12.3, whence W = 0 GW-a.s. by (12.7).
◀
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12.3 Subcritical Processes

When a Galton-Watson process is subcritical or critical, the questions we asked in Sec-
tion 5.1 about rate of growth are inappropriate. Other questions come to mind, however, such
as, How quickly does the process die out? One way to make this question precise is to ask for
the decay rate of P[Zn > 0]. An easy estimate in the subcritical case is

P[Zn > 0] ≤ E[Zn] = mn . (12.8)

We determine in this section when mn is the right decay rate (up to some factor). In the next
section, we treat the critical case.
Theorem 12.4. (Heathcote, Seneta, and Vere-Jones, 1967) For any Galton-Watson pro-
cess with 0 < m < ∞, the sequence ⟨P[Zn > 0]/mn⟩ is decreasing. If m < 1, then the
following are equivalent:

(i) limn→∞ P[Zn > 0]/mn > 0 ;
(ii) sup E[Zn | Zn > 0] < ∞ ;

(iii) E[L log+ L] < ∞ .

The fact that (i) holds when E[L2] < ∞ was proved by Kolmogorov (1938).
To prove Theorem 12.4, we use an approach analogous to that in the preceding section: we

combine a general lemma with a result on immigration.

Lemma 12.5. Let ⟨𝜈n⟩ be a sequence of probability measures on the positive integers with
finite means an. Let �̂�n be size biased, that is, �̂�n(k) = k𝜈n(k)/an. If { �̂�n} is tight, then
sup an < ∞, whereas if �̂�n → ∞ in distribution, then an → ∞.

▷ Exercise 12.6.
Prove Lemma 12.5.

Theorem 12.6. (Heathcote, 1966) Let Zn be the generation sizes of a Galton-Watson
process with immigration Yn. Let Y have the same law as Yn. Suppose that the mean m of
the offspring random variable L is less than 1. If E[log+ Y ] < ∞, then Zn converges in
distribution to a proper* random variable, whereas if E[log+ Y ] = ∞, then Zn converges in
probability to infinity.

Proof. Let G be the σ-field generated by {Yk ; k ≥ 1}. For any n, let Zn,k be the number
of descendants at level n of the Yk vertices that immigrated in generation k. Thus, the total
number of vertices at level n is Zn =

∑n
k=1 Zn,k . Since the distribution of Zn,k depends only

on n − k, this total Zn has the same distribution as
∑n

k=1 Z2k−1,k . This latter sum increases in
n to some limit Z ′∞. By Kolmogorov’s zero-one law, Z ′∞ is a.s. finite or a.s. infinite. Hence,
we need only to show that Z ′∞ < ∞ a.s. iff E[ log+ Y ] < ∞.

Assume that E[ log+ Y ] < ∞. Now E[Z ′∞ | G ] = ∑∞
k=1 Ykmk−1. By Exercise 12.2, this sum

converges a.s. Therefore, Z ′∞ is finite a.s.

* That is, finite a.s.
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Now assume that Z ′∞ < ∞ a.s. Writing Z2k−1,k =
∑Yk

i=1 𝜁k(i), where 𝜁k(i) are the sizes of
generation k − 1 of i.i.d. Galton-Watson branching processes with one initial particle, we
have Z ′∞ =

∑∞
k=1

∑Yk

i=1 𝜁k(i) written as a random sum of independent integer-valued random
variables; the latter are still independent conditioned on G . Almost surely only a finite number
of the 𝜁k(i) are at least one, whence by the conditional Borel-Cantelli lemma with respect to
G , we get

∑∞
k=1 YkGW[Zk−1 ≥ 1] < ∞ a.s. Since GW[Zk−1 ≥ 1] ≥ P[L > 0]k−1, it follows

from Exercise 12.2 that E[log+ Y ] < ∞. ◀

Proof of Theorem 12.4. (Lyons, Pemantle, and Peres, 1995a) Let µn be the law of Zn

conditioned on Zn > 0. For any tree t with Zn(t) > 0, let ξn(t) be the lowest-labeled child of
the root that has at least one descendant in generation n. (Recall we are using the labeling of
Section 5.1.) If Zn(t) > 0, let Hn(t) be the number of descendants of ξn(t) in generation n;
otherwise, let Hn(t) := 0. It is easy to see that

P[Hn = k | Zn > 0] = P[Hn = k | Zn > 0, ξn = v] = P[Zn−1 = k | Zn−1 > 0]

for all children v of the root. Since Hn ≤ Zn, this shows that ⟨µn⟩ increases stochastically as
n increases. Now

P[Zn > 0] =
E[Zn]

E[Zn | Zn > 0] =
mn∫

x dµn(x) .

Therefore, ⟨P[Zn > 0]/mn⟩ is decreasing and (i) ⇔ (ii).
Now µ̂n is not only the size-biased version of µn but also the law of the size-biased random

variable Ẑn. Thus, from Section 12.1, we know that ⟨µ̂n⟩ describes the generation sizes
plus 1 of a process with immigration L̂ − 1. Suppose that m < 1. If (ii) holds, that is, the
means of µn are bounded, then by Lemma 12.5, the laws µ̂n do not tend to infinity. Applying
Theorem 12.6 to the associated immigration process, we see that (iii) holds. Conversely, if
(iii) holds, then by Theorem 12.6, ⟨µ̂n⟩ converges, whence is tight. In light of Lemma 12.5,
(ii) follows. ◀

12.4 Critical Processes

In the critical case, the easy estimate (12.8) is useless. What then is the rate of decay?

Theorem 12.7. (Kesten, Ney, and Spitzer, 1966) Suppose that m = 1, and let σ2 :=
Var(L) = E[L2] − 1. Then we have

(i) Kolmogorov’s estimate: limn→∞ n P[Zn > 0] = 2/σ2 ;
(ii) Yaglom’s limit law: If σ < ∞, then the conditional distribution of Zn/n given Zn > 0

converges as n → ∞ to an exponential law with mean σ2/2 .

Under the assumption that E[L3] < ∞, parts (i) and (ii) of this theorem are due to
Kolmogorov (1938) and Yaglom (1947), respectively. The case where σ = ∞ in (ii) appears
to be open. We give a proof that combines ideas of Lyons, Pemantle, and Peres (1995a)
and Geiger (1999). The exponential limit law in part (ii) will arise from the following
characterization of exponential random variables due to Pakes and Khattree (1992):
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▷ Exercise 12.7.
Let A be a nonnegative random variable with a positive finite mean, and let Â have the
corresponding size-biased distribution. Denote by U a uniform random variable in [0, 1]
that is independent of Â. Prove that U · Â and A have the same distribution iff A has an
exponential distribution.

The size-biased offspring random variable L̂ will arise in the following way:

▷ Exercise 12.8.
Let L be a random variable taking nonnegative integer values with 0 < E[L] < ∞, and let
L̂ be its size-biased version. Suppose that for each n, there are events H (n)

1 , . . . , H (n)
L that,

given L, are independent with probability pn > 0 each and that pn → 0 as n → ∞. Let
Yn :=

∑L
i=1 1

H
(n)
i

be the number of events H (n)
i that occur. Show that the following hold:

(a) limn→∞ P[Yn = 1 | Yn > 0] = 1;
(b) limn→∞ P[L = k | Yn > 0] = P[L̂ = k];
(c) limn→∞ P[H (n)

i | Yn > 0, L = k] = 1/k for 1 ≤ i ≤ k.

We will also use the results of the following exercises.

▷ Exercise 12.9.
Suppose that A, An are nonnegative random variables with positive finite means such that
An → A in law and Ân → B in law. Show that if B is a proper random variable, then B has
the law of Â.

▷ Exercise 12.10.
Suppose that 0 ≤ Ai ≤ Bi are random variables, that Ai → 0 in probability, and that Bi are
identically distributed with finite mean. Show that

∑n
i=1 Ai/n → 0 in probability. Show that

if, in addition, Ci, j are random variables with E
� |Ci, j | � Ai

�
≤ 1 and Ai takes integer values,

then
∑n

i=1
∑Ai

j=1 Ci, j/n → 0 in probability.

▷ Exercise 12.11.
Let A be a random variable independent of the random variables B and C. Suppose that the
function x 7→ P[C ≤ x]/P[B ≤ x] is increasing for x > ess inf B, that P[A ≥ B] > 0, and
that P[A ≥ C] > 0. Show that the law of A given that A ≥ B is stochastically dominated by
the law of A given that A ≥ C. Show that the hypothesis on B and C is satisfied when they
are geometric random variables with B having a larger parameter than C.

Proof of Theorem 12.7. It will be convenient to refer to the lexicographic ordering of
labeled vertices as increasing from left to right. Let Yn be the number of individuals of the
first generation that have a descendant in generation n. Since P[Zn > 0] → 0, it follows
from Exercise 12.8 that P[Yn = 1 | Zn > 0] → 1, that the conditional distribution of Z1
given Zn > 0 tends to the distribution of the size-biased random variable L̂, and that the
conditional distribution of the left-most individual of the first generation that has a descendant
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in generation n tends to a uniform pick among the individuals of the first generation. Since
each child of the initial progenitor independently has a descendant in generation n with
probability P[Zn−1 > 0], we have that the law of Z1 given that Zn > 0 is the law of Z1
given that Z1 ≥ Dn, where Dn is a geometric random variable independent of Z1 with mean
1/P[Zn−1 > 0]. Since P[Zn−1 > 0] > P[Zn > 0], Exercise 12.11 implies that the conditional
distribution of Z1 given Zn > 0 stochastically increases with n. Since P[Z1 ≥ k | Zn > 0]
increases with n, the tail formula for expectation and the monotone convergence theorem
yield E[Z1 | Zn > 0]→ E

�
L̂
�

= σ2 + 1.
Let un

n be the left-most individual in generation n when Zn > 0. Let its ancestors back
to the initial progenitor be un

n−1, . . . , u
n
0 , where un

i is in generation i. Let X ′i denote the
number of descendants of un

i in generation n that are not descendants of un
i+1. Let Xi

be the number of children of un
i that are to the right of un

i+1. Then Zn = 1 +
∑n−1

i=0 X ′i and
E[X ′i | Zn > 0] = E[Xi | Zn > 0], since each of these Xi individuals generates an independent
critical Galton-Watson descendant tree (with offspring law the same as that of the original
process). Therefore,

1
n P[Zn > 0] =

E[Zn]
n P[Zn > 0] =

1
n

E[Zn | Zn > 0] =
1
n

+
1
n

n−1∑
i=0

E[Xi | Zn > 0] .

In the first paragraph of the proof, we have seen that the conditional distribution of Xi given
that Zn > 0 tends to that of ⌊U · L̂⌋, where U denotes a uniform [0, 1]-random variable that is
independent of L̂. Thus, limn→∞ E[Xi | Zn > 0] = E

�
⌊U · L̂⌋

�
= E

�
L̂ − 1

�
/2 = σ2/2, which

gives Kolmogorov’s estimate. Actually, we need to justify this passage to the limit for the
expectations. When σ < ∞, it follows from the fact that the conditional distributions of Z1
given Zn > 0 are uniformly integrable (a consequence of the first paragraph) and that the
conditional distribution of Xi given Zn > 0 is dominated by the conditional distribution of Z1
given that Zn−i+1 > 0, whence the conditional distributions of Xi given Zn > 0 are uniformly
integrable as well. When σ = ∞, the passage to the limit follows from Fatou’s lemma.
Now suppose that σ < ∞. We are going to compare the conditional distribution of Zn/n

given Zn > 0 with the law of Rn/n, where Rn is the number of individuals in generation
n to the right of vn in the size-biased tree with distinguished path v0, v1, . . . . Recall that
Xi denotes the number of children of un

i to the right of un
i+1. Since we are interested in its

distribution as n → ∞, we will be explicit and write X (n)
i

:= Xi . For 1 ≤ j ≤ X (n)
i , let S(n)

i, j

be the number of descendants in generation n of the jth child of un
i to the right of un

i+1. On
the other hand, in the size-biased tree, let X ′′i be the number of children of vi to the right of
vi+1, and let V (n)

i, j be the number of descendants in generation n of the jth child of vi to the
right of vi+1. We may couple all these random variables so that S(n)

i, j and V (n)
i, j are i.i.d. with

mean 1 (since they pertain to n − i − 1 generations of independent critical Galton-Watson
trees) and |X (n)

i − X ′′i | ≤ L̂i+1 with X (n)
i − X ′′i → 0 in measure as n → ∞ (in virtue of the first

paragraph). Since

Zn = 1 +
n−1∑
i=0

X
(n)
i∑
j=1

S(n)
i, j and Rn = 1 +

n−1∑
i=0

X′′i∑
j=1

V (n)
i, j ,
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it follows from Exercise 12.10 that in this coupling, Zn/n − Rn/n → 0 in measure as n → ∞.
Now we prove that the limit of Rn/n exists in law and identify it. The ĜW laws of Zn/n

have uniformly bounded means by Exercise 5.27 and so are tight. This implies the tightness
of {µn}, where µn is the GW-conditional distribution of Zn/n given that Zn > 0, and of
the ĜW∗ laws of Rn/n. Therefore, we can find nk → ∞ so that µnk

and the ĜW∗ laws of
Rnk

/nk converge to the law of a (proper) random variable A and the ĜW laws of Znk
/nk

converge to the law of a (proper) random variable B. Note that the ĜW law of Zn/n can also
be gotten by size biasing µn. By virtue of Exercise 12.9, therefore, the variables Â and B are
identically distributed. Since Rn is a uniform pick from {0, 1, . . . , Zn − 1}, we also have that
A has the same law as U · B, in other words, as U · Â. By Exercise 12.7, it follows that A is an
exponential random variable with mean σ2/2. In particular, the limit of µnk

is independent of
the sequence ⟨nk⟩, and hence we actually have convergence in law of the whole sequence µn
to A, as desired. ◀

12.5 Notes
Ideas related to size-biased Galton-Watson trees occur in Hawkes (1981), Joffe and Waugh (1982),

Waymire and Williams (1996), and Chauvin, Rouault, and Wakolbinger (1991). There have been very
many uses since then of these ideas. The sequence of generation sizes of size-biased Galton-Watson
trees is known as a Q-process in the case m ≤ 1; see Athreya and Ney (1972), pp. 56–60.

The proof of Theorem 12.3 is that of Asmussen and Hering (1983), pp. 50–51. The proof of
Theorem 12.6 is a slight improvement on Asmussen and Hering (1983), pp. 52–53.

The proof that the law of Z1 given Zn > 0 stochastically increases in n that appears at the beginning
of the proof of Theorem 12.7 is due to Matthias Birkner (personal communication, 2000). A rate of
convergence in Yaglom’s limit law is given by Peköz and Röllin (2011), using Stein’s method and ideas
from the proof of Theorem 12.7 given in Lyons, Pemantle, and Peres (1995a).

12.6 Collected In-Text Exercises
12.1. Prove Lemma 12.1 by using the Borel-Cantelli lemma.

12.2. Given X , Xn as in Lemma 12.1, show that if E[X] < ∞, then ∑
n eXn cn < ∞ a.s. for all

c ∈ (0, 1), whereas if E[X] = ∞, then
∑

n eXn cn = ∞ a.s. for all c ∈ (0, 1).
12.3. Let X be a nonnegative random variable with 0 < E[X] < ∞. We say that X̂ has the

size-biased distribution of X if P
�
X̂ ∈ A

�
= E

�
X1A(X)�/E[X] for intervals A ⊆ [0,∞). Show that this

is equivalent to E
�

f (X̂)� = E
�
X f (X)�/E[X] for all Borel f : [0,∞)→ [0,∞).

12.4. Suppose that Xn ≥ 0 satisfy 0 < E[Xn] < ∞ and P[Xn > 0]/E[Xn] → 0. Show that the
size-biased random variables X̂n tend to infinity in probability.

12.5. Define ĜW∗ formally on a space analogous to the space T of Exercise 5.2 and define ĜW
formally on T .

12.6. Prove Lemma 12.5.

12.7. Let A be a nonnegative random variable with a positive finite mean, and let Â have the
corresponding size-biased distribution. Denote by U a uniform random variable in [0, 1] that is
independent of Â. Prove that U · Â and A have the same distribution iff A has an exponential
distribution.
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12.8. Let L be a random variable taking nonnegative integer values with 0 < E[L] < ∞, and let L̂
be its size-biased version. Suppose that for each n, there are events H (n)

1 , . . . , H (n)
L that, given L, are

independent with probability pn > 0 each and that pn → 0 as n → ∞. Let Yn :=
∑L

i=1 1
H

(n)
i

be the
number of events H (n)

i that occur. Show that the following hold:
(a) limn→∞ P[Yn = 1 | Yn > 0] = 1;
(b) limn→∞ P[L = k | Yn > 0] = P[L̂ = k];
(c) limn→∞ P[H (n)

i | Yn > 0, L = k] = 1/k for 1 ≤ i ≤ k.

12.9. Suppose that A, An are nonnegative random variables with positive finite means such that
An → A in law and Ân → B in law. Show that if B is a proper random variable, then B has the law of
Â.

12.10. Suppose that 0 ≤ Ai ≤ Bi are random variables, that Ai → 0 in probability, and that Bi

are identically distributed with finite mean. Show that
∑n

i=1 Ai/n → 0 in probability. Show that
if, in addition, Ci, j are random variables with E

� |Ci, j | � Ai

�
≤ 1 and Ai takes integer values, then∑n

i=1
∑Ai

j=1 Ci, j/n → 0 in probability.

12.11. Let A be a random variable independent of the random variables B and C. Suppose that
the function x 7→ P[C ≤ x]/P[B ≤ x] is increasing for x > ess inf B, that P[A ≥ B] > 0, and that
P[A ≥ C] > 0. Show that the law of A given that A ≥ B is stochastically dominated by the law of A
given that A ≥ C. Show that the hypothesis on B and C is satisfied when they are geometric random
variables with B having a larger parameter than C.

12.7 Additional Exercises

12.12. Let X1, . . . , Xn be independent nonnegative random variables with finite positive mean. Define
X :=

∑n
i=1 Xi and Y :=

∏n
i=1 Xi . Let I be a random variable independent of X1, . . . , Xn with

P[I = i] = E[Xi ]/E[X].
(a) Show that X̂ D=

∑n
i=1

�
Xi1[I ̸=i] + X̂i1[I=i]

�
.

(b) Show that Ŷ D=
∏n

i=1 X̂i .
(c) Show that if Xi are identically distributed, then X̂ D= X̂1 +

∑n
i=2 Xi .

12.13. Show that if X ∼ Bin(n, p) and p > 0, then X̂ ∼ 1 + Bin(n − 1, p), whereas if X ∼ Pois(𝜆) and
𝜆 > 0, then X̂ ∼ 1 + Pois(𝜆).
12.14. Let X be a mixed binomial random variable, that is, there are independent events A1, . . . , An

such that X =
∑n

i=1 1Ai
. Suppose that P[X > 0] > 0. Let I be a random variable independent of

A1, . . . , An such that P[I = i] = P[Ai ]/∑n
j=1 P[Aj ] for all i. Show that X̂ ∼ 1 +

∑n
i=1 1Ai

1[I ̸=i].

12.15. Let X , X1, . . . , Xk be i.i.d. nonnegative random variables for some k ≥ 0. Suppose that
0 < E[X] < ∞, and let X̂ be an independent random variable with the size-biased distribution of X .
Show that

E
[

k + 1
X̂ + X1 + · · · + Xk

]
=

1
E[X] .

12.16. Show that if X ≥ 0 and 0 < E[X] < ∞, then X is stochastically dominated by X̂ . Deduce the
arithmetic mean–quadratic mean inequality, that E[X]2 ≤ E[X2], and determine when equality occurs.
Deduce the Cauchy-Schwarz inequality from this.
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12.17. In the notation of Lemma 12.2, show that

(Xn ,Fn)� is a martingale with respect to 𝜈. Deduce

that if µ is a probability measure and
∫

X2
n d𝜈 < ∞, then


(Xn ,Fn)� is a submartingale with respect to
µ.

12.18. The simplest proof of the Kesten-Stigum theorem along traditional lines is due to Tanny (1988).
Complete the following outline of this proof. A branching process in varying environments (BPVE)
is one in which the offspring distribution depends on the generation. Namely, if ⟨L(n)

i ; n, i ≥ 1⟩
are independent random variables with values in � such that for each n, the variables L(n)

i are
identically distributed, then set Z0 := 1 and, inductively, Zn+1 :=

∑Zn

i=1 L(n+1)
i . Let mn := E[L(n)

i ] and
Mn :=

∏n
k=1 mk . Show that Mn = E[Zn] and that Zn/Mn is a martingale. Its limit is denoted W .

Given a Galton-Watson branching process ⟨Zn⟩ and a number A > 0, define a BPVE


Zn(A)� by

letting the offspring random variables L(n)
i (A) in generation n have the distribution of L1[L<Amn ]. Write

W (A) for the martingale limit of this BPVE. Use the fact that W < ∞ a.s. to show that for any ϵ > 0,
one can choose A sufficiently large that P

�
∀n Zn = Zn(A)� > 1 − ϵ . Show that when Zn = Zn(A) for

all n, we have
W = W (A)

∏
n≥1

�
1 − E[L ; L ≥ Amn]/m�

.

Show that this product is 0 iff E[L log+ L] = ∞. Conclude that if E[L log+ L] = ∞, then W = 0 a.s.
For the converse, define a BPVE



Zn(B)� by letting the offspring random variables L(n)

i (B) in
generation n have the distribution of L1[L<Bm3n/4]. Choose B large enough that Mn(B) := E

�
Zn(B)� > 0

for all n. Show that Zn(B)/Mn(B) is bounded in L2, whence its limit W (B) has expectation 1. From
Zn ≥ Zn(B), conclude that E[W ] ≥ lim Mn(B)/mn . Show that by appropriate choice of B, if
E[L log+ L] < ∞, then this last limit can be made arbitrarily close to 1.

12.19. Let GW be a subcritical or critical Galton-Watson measure. Show that the limit in distribution
as n → ∞ of GW conditioned on Zn > 0 is ĜW.

12.20. Let GW be a critical Galton-Watson measure whose offspring distribution has variance σ2 < ∞.
Let X be an exponential random variable with mean σ2/2. Show that the ĜW-laws of Zn/n tend to the
law of X̂ as n → ∞.

12.21. Let Gn := sup
�|u| ; Tn ⊆ Tu

	
be the generation of the most recent common ancestor of all

individuals in generation n. Show that for a critical Galton-Watson branching process whose offspring
random variable satisfies Var(L) < ∞, the conditional distribution of Gn/n given Zn > 0 tends to the
uniform distribution on [0, 1].

A traditional proof of Theorem 12.7 observes that P[Zn > 0] = 1 − f (n)(0) and analyzes the
rate at which the iterates of f tend to 1. The following exercises outline such a proof.

12.22. Show that if m = 1, then lims↑1 f ′′(s) = σ2.

12.23. Suppose that m = 1, p1 ̸= 1, and σ < ∞.
(a) Define δ(s) :=

�
1 − f (s)�−1 − [1 − s]−1. Show that lims↑1 δ(s) = σ2/2.

(b) Let sn ∈ [0, 1) be such that n(1 − sn)→ α ∈ [0,∞]. Show that

lim
n→∞

n
�
1 − f (n)(sn)� =

1
σ2/2 + α−1 .

(Recall that f (n) denotes the nth iterate of f , not its nth derivative.)

12.24. Use Exercise 12.23 and Laplace transforms to prove Theorem 12.7.
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13 Escape Rate of Random Walks
and Embeddings

If a random walk on a network is transient, how quickly does the walk increase its distance
from its starting point? In particular, the limit of the distance divided by the time (when it
exists) is called speed of the random walk. If this speed is 0, that is, if the rate of escape
is sublinear, then one may ask for the right order of magnitude of the escape rate. In many
cases, the growth of the graph restricts the rate of escape; a key theorem in this direction is
the Varopoulos-Carne bound, Theorem 13.4. We’ll also see some relations to problems of
embedding finite metric spaces, particularly graphs, in Euclidean space. In Chapters 14 and
17, we study random walk on groups (respectively, on Galton-Watson trees) and, in particular,
their speed.

13.1 Basic Examples

If ⟨Sn⟩ is a sum of i.i.d. real-valued random variables, then limn Sn/n could be called its
speed (on the real line) when it exists. Of course, the strong law of large numbers (SLLN)
says that this limit does exist a.s. and equals the mean increment of Sn – when this mean is
well defined. Actually, the independence of the increments is not needed if we have some
other control of the increments. We present two such general results. Recall that X and Y are
called uncorrelated if they have finite variance and E

�(X − E[X])(Y − E[Y ])� = 0.

Theorem 13.1. (SLLN for Uncorrelated Random Variables) Let ⟨Xn⟩ be a sequence of
uncorrelated random variables with supn Var(Xn) < ∞. Then

1
n

n∑
k=1

�
Xk − E[Xk]�→ 0

a.s. as n → ∞.

Proof. We may clearly assume that E[Xn] = 0 and E[X2
n] ≤ 1 for all n. Write Sn :=

∑n
k=1 Xk .

We begin with the simple observation that if ⟨Yn⟩ is a sequence of random variables such
that ∑

n

E
� |Yn |2� < ∞ ,

then E
[∑

n |Yn |2
]
< ∞, whence

∑
n |Yn |2 < ∞ a.s. and Yn → 0 a.s.
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Using this, it is easy to verify the SLLN for n → ∞ along the sequence of squares. Indeed,

E
�(Sn/n)2� =

1
n2 E

� |Sn |2� =
1
n2

n∑
k=1

E
� |Xk |2� ≤ 1

n
.

This is not summable, but if we set Yn := Sn2/n2, we get E
� |Yn | � ≤ 1/n2, which is summable.

Therefore, the preceding observation implies Yn → 0 a.s., that is, Sn2/n2 → 0 a.s.
To deal with the limit over all the integers, consider m2 ≤ n < (m + 1)2. Then

E
[ ���� Sn

m2 −
Sm2

m2
����2
]

=
1

m4 E
[ ����

n∑
k=m2+1

Xk

����2
]

=
1

m4 E
[ n∑
k=m2+1

|Xk |2
]

=
1

m4

n∑
k=m2+1

E
� |Xk |2� ≤ 2

m3 ,

since the sum has at most 2m terms, each of size at most 1. Thus, write

Zn :=
Sn

m(n)2 −
Sm(n)2
m(n)2 ,

where m(n) := ⌊
√

n⌋. Then, since each m = m(n) is associated to at most 2m + 1 different
values of n, we get

∞∑
n=1

E
� |Zn |2� ≤ ∞∑

n=1

2
m(n)3 ≤

∑
m

(2m + 1) 2
m3 < ∞ ,

so by the initial observation, Zn → 0 a.s. This implies Sn/m(n)2 → 0 a.s., which in turn
implies Sn/n → 0 a.s., as desired. ◀
As an example, note that martingale increments (that is, the differences between successive

terms of a martingale) are uncorrelated when they are square integrable.
More refined information for sums of i.i.d. real-valued random variables is given, of course,

by the central limit theorem or by Chernoff-Cramér’s theorem on large deviations. For the
case of simple random walk on �, the latter implies that given 0 < s < 1, the chance that the
location at time n is at least sn is at most e−nI (s), where

I(s) :=
(1 + s) log (1 + s) + (1 − s) log (1 − s)

2
(13.1)

(see Billingsley (1995), p. 151, or Dembo and Zeitouni (1998), Exercise 2.2.23(b)). Note
that for small |s|,

I(s) =
s2

2
+ O(s4) . (13.2)

In other situations, one does not have i.i.d. random variables. An extension (though not as
sharp) of Chernoff-Cramér’s theorem is a large deviation inequality due to Hoeffding (1963)
and rediscovered by Azuma (1967). As an upper bound, the Hoeffding-Azuma inequality is
just as sharp to the first two orders in the exponent as the Chernoff-Cramér theorem is for
simple random walk on �.
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Theorem 13.2. (Hoeffding-Azuma Inequality) Let ⟨X1, . . . , Xn⟩ be bounded random
variables such that

E
�
Xi1 · · · Xik

�
= 0 whenever 1 ≤ i1 < . . . < ik ≤ n

(for instance, independent variables with zero mean, or martingale differences). Then, for all
L > 0,

P
[ n∑
i=1

Xi ≥ L
]
≤ exp

(
− L2

2
∑n

i=1 ∥Xi∥2
∞

)
.

Proof. We will use the hypothesis in the following form: for any sequences of constants ⟨ai⟩
and ⟨bi⟩, we have

E
[ n∏
i=1

(ai + biXi)
]

=
n∏
i=1

ai . (13.3)

The convexity of the function f (x) := eax implies that for any x ∈ [−1, 1],

eax = f (x) ≤ 1 − x
2

f (−1) +
x + 1

2
f (1) = cosh a + x sinh a .

Put x := Xi/∥Xi∥∞ and a := t∥Xi∥∞, with t to be chosen later, and multiply over i = 1, . . . , n:

exp
(
t

n∑
i=1

Xi

)
≤

n∏
i=1

(
cosh

�
t∥Xi∥∞� +

Xi

∥Xi∥∞ sinh
�
t∥Xi∥∞�) .

When we take expectations and use (13.3), we find

Eexp
(
t

n∑
i=1

Xi

)
≤

n∏
i=1

cosh
�
t∥Xi∥∞� .

Combine this with the elementary bound

cosh x =
∞∑
k=0

x2k

(2k)! ≤
∞∑
k=0

x2k

2k k!
= ex

2/2

to obtain

Eexp
(
t

n∑
i=1

Xi

)
≤ exp

(
1
2

t2
n∑
i=1

∥Xi∥2
∞

)
.

By Markov’s inequality and the preceding, we have that for all t > 0,

P
[ n∑
i=1

Xi ≥ L
]

= P
[
exp

(
t

n∑
i=1

Xi

)
≥ eLt

]
≤ e−Lt exp

(
t2

2

n∑
i=1

∥Xi∥2
∞

)
.

By making the (optimal) choice t := L
(∑n

i=1 ∥Xi∥2
∞
)−1

, we obtain the required result. ◀
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For example, consider simple random walk ⟨Xn⟩ on an infinite tree T starting at its root, o.
When the walk is at x, it has a “push” away from the root equal to

f (x) :=
{ (deg x − 2)/deg x if x ̸= o

1 if x = o.

What we mean by “push” is that

|Xn |− |Xn−1 |− f (Xn−1)� is a martingale-difference sequence.

Thus, by either of the preceding theorems, this sequence obeys the SLLN,

lim
n→∞

1
n

(
|Xn | −

n−1∑
k=1

f (Xk)
)

= 0 a.s.

Now the density of times at which the walk visits the root is 0, since the tree is infinite and
has a stationary measure proportional to the degree (see also Exercise 2.46), whence we may
write the preceding equation as

lim
n→∞

( |Xn |
n
− 1

n

n−1∑
k=1

(1 − 2/deg Xk)
)

= 0 a.s. (13.4)

For example, if T is regular of degree d, then the random walk has a speed of 1− 2/d a.s. For
a more interesting example, suppose that T is the universal cover of a finite connected graph
G with at least one cycle (so that T is infinite). Denote the covering map by φ:T → G. Then

φ(Xn)� is simple random walk on G, whence the density of times at which φ(Xk) = y ∈ 𝖵(G)
equals degG y

/�
2|𝖤(G)|� a.s. Of course, degG φ(x) = degT x. Thus, (13.4) tells us that the

speed on T is a.s.

1 −
∑

y∈𝖵(G)

deg y

2|𝖤(G)| (2/deg y) = 1 − |𝖵(G)|/|𝖤(G)| = 1 − 2/d̄(G) , (13.5)

where d̄(G) := 2|𝖤(G)|/|𝖵(G)| is the average degree in G. Furthermore, for any ϵ > 0,
the probability that the speed after n steps differs from 1 − 2/d̄(G) by more than ϵ decays
exponentially in n; this can be shown by combining the Hoeffding-Azuma inequality with the
exponential convergence of occupation times (divided by n) on G to the stationary measure
and the geometric distribution of the number of visits to the root of T . Note that the speed is
positive iff |𝖤(G)| > |𝖵(G)|, in other words, iff G contains at least two distinct simple cycles,
which is also equivalent to br T > 1.

How does this speed compare to 1 − 2/(br T + 1), which is the speed when T is regular?
To answer this, we need an estimate of br T so that we can compare d̄(G) to br T + 1. Let
H be the graph obtained from G by iteratively removing all vertices (if any) of degree 1,
and let T ′ be the universal cover of H. Then clearly br T ′ = br T , while d̄(H) ≥ d̄(G). By
Theorem 3.8, we know that br T ′ = gr T ′. Now gr T ′ equals the growth rate of the number
N(L) of nonbacktracking paths in H of length L (from any starting point) as L → ∞:

gr T ′ = lim
L→∞

N(L)1/L .
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To estimate this limit, write B for the matrix indexed by the oriented edges of H such that
B
�(x, y), (y, z)� = 1 when (x, y), (y, z) ∈ 𝖤(H) and x ̸= z, and all other entries of B are 0.

Consider a stationary Markov chain on the oriented edges 𝖤(H) with stationary probability
measure σ and transition probabilities p(e, f ) such that p(e, f ) > 0 only if B(e, f ) > 0. Such
a chain gives a probability measure on the paths of length L whose entropy is at most that of
the uniform measure, in other words, at most log N(L) (see (6.40)). On the other hand, this
path entropy equals −

∑
e σ(e) logσ(e) − L

∑
e, f σ(e)p(e, f ) log p(e, f ) (see Exercise 6.75).

Thus, log gr T ′ is at least the Markov-chain entropy:

log gr T ′ ≥ −
∑
e, f

σ(e)p(e, f ) log p(e, f ) . (13.6)

Here, given any Markov chain with transition probabilities pi, j and stationary probabilities πi ,
its entropy is defined to be

−
∑
i, j

πipi, j log pi, j .

Now choose p
�(x, y), (y, z)� = 1/(deg y − 1) when B

�(x, y), (y, z)� > 0, in other words,
simple nonbacktracking random walk. It is easy to verify that σ(x, y) = 1/D(H) is a
stationary probability measure. To calculate the entropy of this Markov chain, suppose e+ = y.
Then

−
∑
f

p(e, f ) log p(e, f ) = log(deg y − 1) .

Since there are deg y such edges e, we get that the entropy equals

D(H)−1
∑

y∈𝖵(H)
(deg y) log(deg y − 1) = d̄(H)−1 1

|𝖵(H)|
∑

y∈𝖵(H)
(deg y) log(deg y − 1) .

Because the function t 7→ t log (t − 1) is convex for t ≥ 2, it follows that the entropy is at least
d̄(H)−1d̄(H) log

�
d̄(H) − 1

�
= log

�
d̄(H) − 1

�
. Therefore,

br T = gr T ′ ≥ d̄(H) − 1 ≥ d̄(G) − 1 .

This result is due to David Wilson (personal communication, 1993) but first appeared in print
in an article by Alon, Hoory, and Linial (2002).
Substitute this bound in (13.5) to obtain that the speed on T is at most 1− 2/(br T + 1). For

example, if the branching number is an integer, then this shows that the regular tree of that
branching number has the greatest speed among all covering trees of the same branching
number.
Return now to the qualitative results: For covering trees of finite graphs, we have seen

that simple random walk has positive speed iff the tree has growth rate or branching number
larger than 1. For more general trees, are any of these implications still valid? We consider
these questions now.
If every vertex has at least two children, then by (13.4), the liminf speed of the random

walk, that is, lim infn→∞ |Xn |/n, is positive a.s. A more general sufficient condition is given
in Exercise 13.25. However, it does not suffice that br T > 1 for the speed of simple random
walk on T to be positive:
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▷ Exercise 13.1.
Show that simple random walk has speed 0 on the tree T formed from a binary tree by joining
a unary tree to every vertex, as in Figure 13.1.

Figure 13.1. A binary tree with unary trees attached.

In the other direction, br T > 1 is necessary for positive speed. The following bound was
proved by Peres (1999), Theorem 5.4; see Section 13.9 for a better result due to Virág (2000b).
Note that s 7→ I(s)/s is monotonic increasing on (0, 1) (where I is defined in (13.1)) since its
derivative is −(2s2)−1 log (1 − s2).
Proposition 13.3. If simple random walk on T escapes at a linear rate, then br T > 1. More
precisely, if ⟨Xn⟩ is simple random walk on T and

lim inf
n→∞

|Xn |
n
≥ s > 0

with positive probability, then br T ≥ eI (s)/s.

Proof. We may assume that T has no leaves, since leaves only slow the random walk
and do not change the branching number. (The slowing effect of leaves can be proved
rigorously by coupling a random walk ⟨Xn⟩ on T with a random walk ⟨X ′n⟩ on T ′, where T ′

is the result of iteratively removing the leaves from T . The walks can be coupled so that
lim inf |X ′n |/n ≥ lim inf |Xn |/n by letting ⟨X ′n⟩ take only the moves of ⟨Xn⟩ that do not enter
T \ T ′.) Given 0 < s′ < s, there is some L such that

q := P
�
∀n ≥ L |Xn | > s′n

�
> 0 . (13.7)

Define a general percolation on T by keeping all edges e(x) with |x | ≤ s′L as well as those
edges e(x) such that Xn = x for some n < |x |/s′. According to (13.7), the component of the
root in this percolation is infinite with probability at least q. On the other hand, if |x | > s′L,
then P[o↔ x] is bounded above by the probability that simple random walk ⟨Sk⟩ on � moves
distance at least |x | in fewer than |x |/s′ steps:

P[o↔ x] ≤ P
[

max
n<|x |/s′

|Sn | ≥ |x |
]
. (13.8)
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(This is proved rigorously by coupling the random walk on T to a random walk ⟨Yn⟩ on � by
letting ⟨Yn⟩ take only the moves of ⟨Xn⟩ that lie on the shortest path between o and x.) Now
by the reflection principle,

P
�
max
n≤N

|Sn | ≥ j
�
≤ 2 P

�
max
n≤N

Sn ≥ j
�
≤ 4 P[SN ≥ j] .

We have seen the basic Chernoff-Cramér bound that P[SN ≥ j] ≤ e−NI (j/N ). Therefore, with
j := |x | and N the largest integer less than |x |/s′, (13.8) gives P[o↔ x] ≤ 4e−|x |I(s′)/s′ . Here,
we used the monotonicity of I(t)/t. In light of Proposition 5.8, this means that for any cutset
Π with all edges at level > s′L, we have

q ≤
∑

e(x)∈Π

4e−|x |I (s
′)/s′ .

Therefore, br T ≥ eI (s′)/s′ . Since this holds for all s′ < s, the result follows. ◀

We return to random walks on trees in Chapter 17, where we walk on Galton-Watson trees
and, among other things, calculate the speed exactly, as we did here for covering trees.

13.2 The Varopoulos-Carne Bound

Consider a network random walk. Recall from Section 6.2 that the transition operator

(P f )(x) :=
∑
y

p(x, y) f (y)

is a bounded self-adjoint operator on ℓ2(𝖵, π). We saw in (6.13) that

∀n pn(x, y) ≤
√
π(y)/π(x)∥P∥nπ . (13.9)

Of course, if the distance between x and y is larger than n, then pn(x, y) = 0. How can (13.9)
be modified to show how pn(x, y) depends on d(x, y)?
The following fundamental inequality does that. It is a generalization and improvement

by Carne (1985) of a result of Varopoulos (1985b), which we have improved a bit more by
adding the factor ∥P∥nπ .

Theorem 13.4. (Varopoulos-Carne Bound) For any reversible random walk, we have

pn(x, y) ≤ 2
√
π(y)/π(x) ∥P∥nπ e−d(x,y)

2/(2n) .

Compare this bound to the following bound for simple random walk on �:∑
|k |≥d

qn(k) ≤ 2e−d
2/(2n) , (13.10)
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where qn(k) denotes the probability that simple random walk on � starting at 0 is at k after
the nth step. The inequality (13.10) is an immediate consequence of the Hoeffding-Azuma
inequality specialized to simple random walk on �. As it happens, we will use (13.10) to
establish Theorem 13.4.

To prove Theorem 13.4, we need some standard facts from analysis.
Suppose S is a bounded self-adjoint operator on a Hilbert space H and Q is a polynomial

with real coefficients. If H is finite-dimensional, then by diagonalizing S, we see that all
eigenvalues of Q(S) can be written as Q(𝜆), where 𝜆 is an eigenvalue of S. It follows that

∥Q(S)∥ ≤ max
s∈[−∥S∥,∥S∥ ] |Q(s)| . (13.11)

If H is infinite-dimensional, this inequality still holds. An elementary reduction to the
finite-dimensional case is outlined in Exercise 13.30. Alternatively, one can invoke the
infinite-dimensional spectral theorem; see Section 13.9.
Next, we need the Chebyshev polynomials, Tk for k ∈ �. These are the unique polynomials

of degree |k | such that
Tk(cos θ) = cos kθ (θ ∈ �) . (13.12)

The existence of such polynomials follows by induction from the identity

cos(k + 1)θ + cos(k − 1)θ = 2 cos θ cos kθ .

Alternatively, expand cos kθ + i sin kθ = (cos θ + i sin θ)k , take the real part, and replace every
occurrence of sin2 θ by 1 − cos2 θ.

Since every s ∈ [−1, 1] is of the form cos θ,

|Tk(s)| ≤ 1 whenever − 1 ≤ s ≤ 1 . (13.13)
We are now ready to prove the central formula that allows one to deduce information about

P from information about simple random walk on �. The following formula is a modification
of that proved by Carne (1985).

Lemma 13.5. Let Tk be the Chebyshev polynomials. For any reversible random walk, we
have

Pn = ∥P∥nπ
∑
k∈�

qn(k)Tk

�
P/∥P∥π� . (13.14)

Furthermore, ���Tk

�
P/∥P∥π����π ≤ 1 for all k.

Proof. For z = cos θ and w = eiθ , the binomial expansion gives

zn =
�(w + w−1)/2�n =

∑
k∈�

qn(k)wk =
∑
k∈�

qn(k)(wk + w−k)/2 =
∑
k∈�

qn(k)Tk(z) .

Since this identity holds for all z ∈ [−1, 1], the two polynomials in z must coincide. Thus
we may apply the identity to operators, substituting P/∥P∥π for z to get (13.14). The final
estimate derives from (13.11) (with S := P/∥P∥π) and (13.13). ◀
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Proof of Theorem 13.4. Fix x, y ∈ 𝖵 and write d := d(x, y). Consider the unit vectors
fx := 1{x}/

√
π(x) and fy := 1{y}/

√
π(y). We have

pn(x, y) =
√
π(y)/π(x) ( fx , Pn fy)π . (13.15)

When we substitute (13.14) for Pn here, we may exploit the fact that(
fx ,Tk

�
P/∥P∥π� fy

)
π

= 0 for |k | < d ,

since Tk has degree |k | and pi(x, y) = 0 for i < d. Furthermore, we may use the bound

����( fx ,Tk

�
P/∥P∥π� fy

)
π

���� ≤ 


Tk

�
P/∥P∥π�


π ∥ fx∥π ∥ fy∥π ≤ 1 .

We obtain
pn(x, y) ≤

√
π(y)/π(x) ∥P∥nπ

∑
|k |≥d

qn(k) .

Now use (13.10) to complete the proof. ◀

13.3 An Application to Mixing Time

The basic convergence theorem for finite irreducible aperiodic Markov chains ensures that
the distribution at time t of such a chain approaches the stationary distribution as t → ∞; the
time t required for these distributions to be close (that is, within some prescribed distance ϵ)
is known as the mixing time (which depends on ϵ). One intuitive interpretation of the mixing
time is that it is the time needed for the chain to “forget” its initial state, that is, the time t
required for Xt to become approximately independent of X0, no matter what the distribution
of X0. See the formal definition later.
Mixing time is one of the most important parameters describing a finite Markov chain. It is

studied in computer science, where it is often the main component in randomized algorithms
for sampling and counting combinatorial structures, as well as in statistical physics; we refer
the reader to the books by Aldous and Fill (2002) and Levin, Peres, and Wilmer (2009) for
more information.
The Varopoulos-Carne theorem has a striking consequence for the mixing time of a random

walk on a graph: it implies a lower bound that is close to the square of the diameter. To make
this precise, we define the notions of total variation distance and mixing time. For any two
probability measures µ and 𝜈 on the same measurable space (Ω,F ), their total variation
distance is

∥µ − 𝜈∥TV := sup
A∈F

|µ(A) − 𝜈(A)| .

(This definition is convenient in probability theory; in analysis, the variation of the signed
measure µ − 𝜈 is defined to be twice the preceding value.) For finite Ω, we take F to be the
collection of all subsets.
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▷ Exercise 13.2.
Let Ω be finite or countable, and let µ and 𝜈 be probability measures on Ω.

(a) Show that ∥µ− 𝜈∥TV = 1
2
∑

z∈Ω
�
µ(z)− 𝜈(z)� and 1− ∥µ− 𝜈∥TV =

∑
z∈Ω

�
µ(z)∧ 𝜈(z)�,

where x ∧ y := min{x, y}.
(b) Deduce that

||µ − 𝜈 ||TV = min
X∼µ,Y∼𝜈

P[X ̸= Y ] .

(c) Prove that ∥µP − 𝜈P∥TV ≤ ∥µ − 𝜈∥TV for every transition matrix P on Ω.

Let 𝖵 be a finite state space, and let ⟨Xt⟩ be an irreducible Markov chain on 𝖵 with
transition probabilities p(x, y) and stationary probability measure π. For t ≥ 0, the distance
to stationarity at time t is

δ(t) := max
x∈V

∥pt (x, •) − π∥TV .

Sometimes it is more convenient to work with

δ(t) := max
x,y

∥pt (x, •) − pt (y, •)∥TV .

Both δ(t) and δ(t) are decreasing in t by Exercise 13.2(c). The following exercise relates these
two notions of distance to stationarity to each other and to the maximum relative distance
considered in Section 6.4.

▷ Exercise 13.3.
(a) Show that the two notions of distance to stationarity, δ( • ) and δ( • ), satisfy

δ(t) ≤ δ(t) ≤ 2δ(t) for t ≥ 0 .

(b) Show that δ(t) = max
x∈𝖵

1
2

∑
y∈𝖵

�
pt (x, y) − π(y)� ≤ max

x,y∈𝖵

����� pt (x, y) − π(y)2 π(y)
����� .

For 0 < ϵ < 1, define the mixing time

tmix(ϵ) := min{t ≥ 0 ; δ(t) ≤ ϵ} .

Since δ(t) ≤ 2ϵ at time t = tmix(ϵ), we see that if ϵ is small, then at time tmix(ϵ), the chain has
indeed almost “forgotten” its initial state.
Let πmin := minx π(x). Recall the absolute spectral gap g∗ := 1 − maxj>1 |𝜆j |, where

1 = 𝜆1 > 𝜆2 ≥ · · · ≥ 𝜆n are the eigenvalues of the transition matrix P. (Recall that for lazy
chains, g∗ = 1 − 𝜆2.) Theorem 6.13 and Exercise 13.3 imply that δ(t) ≤ e−g∗t/(2πmin), and
this yields a useful upper bound for mixing time.

Corollary 13.6. In every connected network, tmix(ϵ) ≤ 1 +
�
log (2ϵπmin)�/g∗ for 0 < ϵ < 1.

◀
A bound in the other direction is given in the following exercise.
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▷ Exercise 13.4.
For a reversible chain, define 𝜆∗ := maxj>1 |𝜆j |. Show that 𝜆t∗ ≤ 2δ(t) for all t ≥ 1, and
deduce that tmix(ϵ) ≥ [g−1

∗ − 1] log 1/(2ϵ).
As usual, we define a graph G on 𝖵 where [x, y] is an edge iff p(x, y) > 0. Let d(•, •)

denote the corresponding graph distance, and let D be the diameter of G, that is, the largest
distance between pairs of vertices of G. Fix a, z ∈ 𝖵 such that d(a, z) = D. Then, for
t < D/2, the distributions pt (a, •) and pt (z, •) have disjoint supports, so

δ(t) ≥ ∥pt (a, •) − pt (z, •)∥TV = 1 .

By Exercise 13.3, δ(t) ≥ 1
2 . This gives a crude lower bound of the mixing time for ϵ < 1

2 :

tmix(ϵ) ≥ D
2 .

Using the Varopoulos-Carne bound, we can derive a sharper inequality under some extra
conditions. A lazy simple random walk on a graph is obtained from simple random walk by
averaging the transition matrix with the identity matrix. In many finite transitive graphs, for
example, the discrete torus, the mixing time of lazy simple random walk can be bounded
above by a constant multiple of the diameter squared times the degree. It is an open problem
whether such a bound holds for all transitive graphs.* Next, we prove a related general lower
bound.

Proposition 13.7. Consider random walk on a network G with n vertices and diameter D.
Let π denote the stationary distribution. Then, for

t <
D2

12 log n + 4 | log πmin | ,

we have δ(t) > 1 − 4/
√

n. Consequently, given any ϵ < 1
2 , if n ≥ 16/(1 − 2ϵ)2, then

tmix(ϵ) ≥ D2

12 log n + 4 | log πmin |
.

In particular, for simple random walk (or lazy simple random walk) on an n-vertex simple
graph,

tmix(ϵ) ≥ D2

20 log n
.

Proof. Choose a, z ∈ 𝖵 = 𝖵(G) such that d(a, z) = D. Consider the set of vertices
A :=

�
y ∈ 𝖵 ; d(a, y) ≤ d(z, y)	. Then it is easy to see that

y ∈ Ac =⇒ d(a, y) ≥ D
2

* This conjecture was posed by the second author in lectures; earlier, it was proved for certain graphs of moderate
growth by Diaconis and Saloff-Coste (1994).
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and
y ∈ A =⇒ d(z, y) ≥ D

2 .

Applying the Varopoulos-Carne bound, we obtain that for every t,

pt (a, Ac) =
∑
y∈Ac

pt (a, y) ≤
∑
y∈Ac

2
√
π(y)
π(a) exp

{
−d2(a, y)

2t

}
≤ 2n
√
πmin

exp
{
−D2

8t

}
,

where in the last step we used that |Ac | ≤ n. Now let t <
D2

12 log n + 4 | log πmin | . We get

pt (a, Ac) < 2n
√
πmin

exp
{−3 log n − | log πmin |

2

}
=

2
√

n
.

Similarly, for this value of t, we have pt (z, A) < 2/
√

n, so

pt (z, Ac) > 1 − 2
√

n
.

Now
δ(t) ≥ pt (z, Ac) − pt (a, Ac) > 1 − 2

√
n
− 2
√

n
= 1 − 4

√
n
,

and the first two assertions of the theorem follow. For the last assertion, note that πmin ≥ n−2

in every simple graph. ◀
The bound in Proposition 13.7 is sharp (up to a constant factor) for lazy simple random

walk on expander graphs, as shown in Exercise 13.33.
Combining Proposition 13.7 (for ϵ := 1/4) with Corollary 13.6 yields an upper bound for

the absolute spectral gap g∗ (see Corollary 13.24 for an alternative bound).

Corollary 13.8. For every connected network with n ≥ 64 vertices and diameter D,

g∗ ≤
�
log (πmin/2)� · �24 log n + 8 | log πmin |�

D2 .

In particular, for simple random walk on a simple graph,

g∗ ≤
160 log2 n

D2 . ◀

The dependence on πmin in Proposition 13.7 is not just an artifact of the proof. For example,
given n > 1, consider the Markov chain on the states {0, 1, . . . , n−1} where p(x, x) = 1/2 for
all x and p(x, x+1) = 2p(x, x−1) = 1/3 if 0 < x < n−1, while p(0, 1) = p(n−1, n−2) = 1/2;
otherwise, p(x, y) = 0. Then D = n − 1, and the mixing time satisfies tmix ≍ n. Note that for
this sequence of chains, πmin decays exponentially in n.
Nonetheless, there is an alternative lower bound for mixing time (the upcoming Propo-

sition 13.11) that does not depend on πmin, where the squared diameter is replaced by the
average squared distance

D̂2 :=
∑
x,y

π(x)π(y)d2(x, y) .
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▷ Exercise 13.5.
Prove that in every transitive network, we have D2 ≤ 4D̂2.

For transitive networks, D2 and D̂2 are comparable by Exercise 13.5. For nontransitive
networks, the ratio D/D̂ may be arbitrarily large, as in the case of the chain on {0, 1, . . . , n−1}
described earlier, where D̂ ≍ 1 and D = n − 1.
To prove our next lower bound on mixing time, we require the following proposition. It

implies, in particular, that a stationary reversible chain on n states can escape from its starting
point at linear rate for at most O(log n) steps. Contrast this with biased random walk on the
n-cycle, a nonreversible chain where linear rate of escape is maintained for order n steps.

Proposition 13.9. For an n-vertex network with stationary distribution π, we have

Eπ

�
d(X0, Xt )2� ≤ 3t log n (13.16)

if n > e4, where we use the notation Eπ :=
∑

x∈V π(x)Ex .

Proof. Fix t. For β > 0, let Aβ :=
�(x, y) ; d2(x, y) ≥ βt log n

	
. Using the Varopoulos-

Carne bound, we have for every β > 0 that

Pπ
�
d2(X0, Xt ) ≥ βt log n

�
=

∑
(x,y)∈Aβ

π(x)pt (x, y) ≤
∑

(x,y)∈Aβ
2
√
π(x)π(y) n−β/2

≤
∑
x,y

�
π(x) + π(y)�n−β/2 = 2n1−β/2 .

Thus we have

Eπ

[ d2(X0, Xt )
t log n

]
=
∫ ∞

0
Pπ
�
d2(X0, Xt ) ≥ βt log n

�
dβ ≤

∫ ∞

0

�
2n1−β/2 ∧ 1

�
dβ

≤ 2 + 2n
∫ ∞

2
n−β/2 dβ = 2 +

4
log n

< 3

if n > e4. ◀
We will also need the following key property of mixing in reversible Markov chains, due

to Aldous and Fill (2002).

Lemma 13.10. For every connected network and any two vertices x and y, we have for all t

p2t (x, y)
π(y) ≥

�
1 − δ(t)�2 .

Proof. Sum over all possible positions at time t, then use reversibility and Cauchy-Schwarz:
p2t (x, y)
π(y) =

∑
z

pt (x, z) pt (z, y)
π(y) =

(∑
z

pt (x, z) pt (y, z)
π(z)

)
·
∑
z

π(z)

≥
(∑

z

√
pt (x, z)pt (y, z)

)2
≥

(∑
z

�
pt (x, z) ∧ pt (y, z)�)2

=
(
1 − ∥pt (x, •) − pt (y, •)∥TV

)2
≥
�
1 − δ(t)�2,

where the last step used Exercise 13.2. ◀
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We deduce the following consequence for mixing times.

Proposition 13.11. Let n > e4. For every n-vertex network, we have

tmix(ϵ) ≥ (1 − 2ϵ)2
6

D̂2

log n
(13.17)

for all ϵ < 1/2.

At an intuitive level, it is easy to derive (13.17) from (13.16), since for t = tmix(ϵ), the
random variables X0 and Xt should be roughly independent, and therefore Eπ

�
d2(X0, Xt )�

should be roughly D̂2. The rigorous proof uses Lemma 13.10 as well.

Proof. Let t := tmix(ϵ). On the one hand, (13.16) tells us that

Eπd2(X0, X2t ) ≤ 6t log n (13.18)

for n > e4. On the other hand, δ(t) ≤ 2ϵ < 1 by Exercise 13.3, so Lemma 13.10 implies that

Eπd2(X0, X2t ) =
∑
x,y

π(x)π(y) p2t (x, y)
π(y) d2(x, y)

≥
∑
x,y

π(x)π(y)�1 − δ(t)�2d2(x, y) ≥ (1 − 2ϵ)2D̂2. (13.19)

Combining (13.18) and (13.19) gives (13.17). ◀

13.4 Markov Type of Metric Spaces

The next three sections of this chapter are about sublinear rates of escape. They show how
the escape rate can be constrained by the combinatorial structure of a graph. Also, the escape
rate can force large distortion of Euclidean embeddings of the graph. The third of these
sections shows that Cayley graphs have escape rates at least as large as the rate of simple
random walk on �, in other words, they are at least diffusive.
In this section, we consider Markov chains in metric spaces and see how quickly they

increase their squared distance in expectation. That is, given a metric space (X , d) and a
finite-state reversible stationary Markov chain ⟨Zt ; t ∈ �⟩ whose state space is a subset of
X , how quickly can E

�
d(Zt , Z0)2� increase in t? Since the chain is stationary, the proper

normalization for the distance is E
�
d(Z1, Z0)2�. It turns out that this notion, invented by

Ball (1992), is connected to many interesting questions in functional analysis. It is more
convenient to relax the notion slightly from Markov chains to functions of Markov chains.
Thus, with Ball, we make the following definition, where the “2” in the name refers to the
exponent.
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Definition 13.12. Given a metric space (X , d), we say that X has Markov type 2 if there
exists a constant M < ∞ such that for every positive integer n, every stationary reversible
Markov chain ⟨Zt⟩∞t=0 on {1, . . . , n}, every mapping f : {1, . . . , n} → X , and every time
t ∈ �,

E
[
d
�

f (Zt ), f (Z0)�2] ≤ Mt E
[
d
�

f (Z1), f (Z0)�2] . (13.20)
We will prove that the real line has Markov type 2 (see Exercise 13.6 for a space that does

not have Markov type 2). Since adding the squared coordinates gives squared distance in
higher dimensions, even in Hilbert space, it follows that Hilbert space also has Markov type
2. This result is due to Ball (1992).

Theorem 13.13. � has Markov type 2 with constant M = 1 in (13.20).

Proof. As in Section 6.2, let P be the transition operator of the Markov chain on {1, . . . , n}
with stationary probability measure π. We saw in that section that P is a self-adjoint
operator in ℓ2�{1, . . . , n}, π�. This implies that ℓ2�{1, . . . , n}, π� has an orthogonal basis of
eigenfunctions of P with real eigenvalues. We also saw (Exercise 6.6) that ∥P∥π ≤ 1, whence
all eigenvalues lie in [−1, 1].
The first step is to reexpress the left-hand side of (13.20) in terms of the operator P. Note

that Pt is also reversible with respect to π. By virtue of (6.17), we have

Ed
�

f (Zt ), f (Z0)�2 =
∑
i, j

πip
(t)
i j

�
f (i) − f ( j)�2 = 2

�(I − Pt ) f , f
�
π
. (13.21)

In particular,
Ed

�
f (Z1), f (Z0)�2 = 2

�(I − P) f , f
�
π
.

Thus, we want to prove that �(I − Pt ) f , f
�
π
≤ t

�(I − P) f , f
�
π

for all functions f . Note that if f is an eigenfunction with eigenvalue 𝜆, this reduces to the
inequality (1 − 𝜆t ) ≤ t(1 − 𝜆). Since |𝜆| ≤ 1, this in turn reduces to

1 + 𝜆 + · · · + 𝜆t−1 ≤ t ,

which is obviously true.
The claim follows for functions f that are not eigenfunctions by taking f =

∑n
j=1 a j f j ,

where { f j} is an orthonormal basis of eigenfunctions:

�(I − Pt ) f , f
�
π

=
n∑
j=1

a2
j

�(I − Pt ) f j , f j
�
π
≤

n∑
j=1

a2
j t
�(I − P) f j , f j

�
π

= t
�(I − P) f , f

�
π
. ◀

▷ Exercise 13.6.
A collection of metric spaces has uniform Markov type 2 if there exists a constant M < ∞
such that each space in the collection has Markov type 2 with constant M . Prove that the set
of k-dimensional hypercube graphs {0, 1}k does not have uniform Markov type 2. From this,
deduce that ℓ1 does not have Markov type 2.
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Our next goal is to extend Theorem 13.13 to trees, by showing that tree metrics have
uniform Markov type 2. The proof will involve a martingale decomposition of a function
of a stationary reversible Markov chain; this decomposition has multiple uses. A tree with
prescribed edge lengths defines a metric on the vertices: the distance between two vertices v
and w is the sum of the edge lengths in the unique path from v to w.

Theorem 13.14. Trees (with arbitrary edge lengths) have uniform Markov type 2.

The key to Theorem 13.14 is the following lemma, a maximal-inequality version of
Theorem 13.13.

Lemma 13.15. Consider a stationary reversible Markov chain ⟨Zt⟩∞t=0 on {1, . . . , n} and a
function f : {1, . . . , n} → �. Then, for every time t > 0,

E
[

max
0≤s≤t

�
f (Zs) − f (Z0)�2] ≤ 15t E

[�
f (Z1) − f (Z0)�2] .

Proof. Let π be the stationary distribution of ⟨Zt⟩. Define P: ℓ2(π) → ℓ2(π) by (P f )(i) :=
E[ f (Z1) | Z0 = i] =

∑n
j=1 pi j f ( j). For every s ∈ {0, . . . , t − 1}, let

Ds := f (Zs+1) − (P f )(Zs) .
Since E[Ds | Z0, . . . , Zs] = E[Ds | Zs] = 0, the Ds are martingale differences with respect to
the natural filtration of Z0, . . . , Zt . Also, because of reversibility,

D̃s := f (Zs−1) − (P f )(Zs)
are martingale differences with respect to the natural filtration of Zt , . . . , Z0. Now Ds − D̃s =
f (Zs+1) − f (Zs−1), which implies that for every m ≥ 1,

f (Z2m) − f (Z0) =
m∑
k=1

D2k−1 −
m∑
k=1

D̃2k−1 .

Thus,

max
0≤s≤t

f (Zs) − f (Z0) ≤ max
m≤t/2

m∑
k=1

D2k−1 + max
m≤t/2

m∑
k=1

−D̃2k−1 + max
ℓ≤t/2

| f (Z2ℓ+1) − f (Z2ℓ)| .

Square and use the arithmetic mean–quadratic mean (AM-QM) inequality, (a + b + c)2 ≤
3(a2 + b2 + c2), to get

max
0≤s≤t

| f (Zs) − f (Z0)|2 ≤ 3 max
m≤t/2

����
m∑
k=1

D2k−1
����2 + 3 max

m≤t/2

����
m∑
k=1

D̃2k−1
����2 + 3

∑
ℓ<t/2

| f (Z2ℓ+1) − f (Z2ℓ)|2 .

We will use Doob’s L2-maximal inequality for martingales ⟨Ms⟩ (see, for example, Theo-
rem 5.4.3 in Durrett (2010)),

E
[

max
0≤s≤t

M2
s

]
≤ 4 E

� |Mt |2� .
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Consider

Ms :=
⌊s/2⌋∑
j=1

D2j−1 .

Since ⟨Ms⟩ is a martingale, we have

E
[

max
0≤s≤t

| f (Zs) − f (Z0)|2
]
≤12 E

[ ����
⌊t/2⌋∑
k=1

D2k−1
����2] + 12 E

[ ����
⌊t/2⌋∑
k=1

D̃2k−1
����2]

+ 3
∑

0≤ℓ<t/2
E
� | f (Z2ℓ+1) − f (Z2ℓ)|2� .

Denote V := E
� | f (Z1) − f (Z0)|2�, and notice that

∀s Ds = f (Zs+1) − f (Zs) − E
�

f (Zs+1) − f (Zs) | Zs

�
,

which implies that Ds is orthogonal to E
�

f (Zs+1) − f (Zs) | Zs

�
in ℓ2(π). By the Pythagorean

law, for every s, we have E[D2
s ] = E[D2

0] ≤ V . Summing up, using orthogonality of
martingale differences, gives

E
[

max
0≤s≤t

| f (Zs) − f (Z0)|2
]
≤ 6tV + 6tV + 3(t + 1)V/2 ≤ 15tV ,

which concludes our proof. ◀
Proof of Theorem 13.14. Let T be a weighted tree, ⟨Z j⟩ be a stationary reversible Markov
chain on {1, . . . , n}, and F: {1, . . . , n} → T . Choose an arbitrary root, o, and set ψ(v) :=
d(o, v) for all vertices v. If v0, . . . , vt is a path in T , then

d(v0, vt ) ≤ max
0≤ j≤t

(|ψ(v0) − ψ(v j)| + |ψ(vt ) − ψ(v j)|
)
,

since choosing the vertex v j closest to the root yields equality.
Let X j := F(Z j). Connect Xi to Xi+1 by the shortest path for every 0 ≤ i ≤ t − 1 to get a

path between X0 and Xt . Since on this path, the closest vertex to the root can be on any of the
shortest paths between X j and X j+1, we get

d(X0, Xt ) ≤ max
0≤ j≤t

(|ψ(X0) − ψ(X j)| + |ψ(Xt ) − ψ(X j)|
)

+ max
0≤ j<t

2 d(X j , X j+1) .
Square and use the AM-QM inequality to obtain

d(X0, Xt )2 ≤ 3 max
0≤ j≤t

(|ψ(X0) − ψ(X j)|2 + |ψ(Xt ) − ψ(X j)|2
)

+ 12
∑

0≤ j<t
d(X j , X j+1)2 .

By Lemma 13.15 with f := ψ ◦ F, we get

E
�
d(X0, Xt )2� ≤ 90t E

� |ψ(X0) − ψ(X1)|2� + 12
∑

0≤ j<t
E
�
d(X j , X j+1)2� .

By the triangle inequality, |ψ(X1) − ψ(X0)| ≤ d(X0, X1). Since the Markov chain is
stationary, we have E

�
d(X0, X1)2� = E

�
d(X j , X j+1)2� for every j. Thus

E
�
d(X0, Xt )2� ≤ 102t E

�
d(X0, X1)2� ,

which concludes our proof. ◀
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13.5 Embeddings of Finite Metric Spaces

If we map one metric space into another, distances can change in various ways. For example,
a homothety merely multiplies all distances by the same constant. Thus, a homothety does not
change the “shape” of the domain space. We can measure changes in shape, or distortion, by
how much some distances change compared to the change in other distances. This motivates
the following definition.

Definition 13.16. Given metric spaces (X , dX) and (Y , dY ), a mapping f : X → Y has
distortion at most C if there exists a number r > 0 such that for all x1, x2 ∈ X ,

rdX(x1, x2) ≤ dY
�

f (x1), f (x2)� ≤ CrdX(x1, x2) . (13.22)

The infimum of such numbers C is called the distortion of f .

We will consider only the case where Y is Hilbert space and X is finite. In this case,
the infimum of the distortions of all embeddings is a minimum and is called the Hilbert
distortion of X , also called the Euclidean distortion. Usually X will be a finite graph with
the shortest-path metric.
For example, consider X to be a hypercube graph. The distance in the graph is an ℓ1-metric,

whereas an embedded image in Hilbert space gets an ℓ2-metric. These metrics are generally
incomparable: as norms, they do not induce the same topology (in infinite dimensions). A
finitistic and quantitative version of this inequivalence is that there must be a fair amount
of distortion. The obvious embedding of the hypercube {0, 1}k has distortion

√
k. Enflo

(1969) proved that
√

k is indeed the minimum distortion. We first prove a weaker version of
this result because our method, via random walks and Markov type, applies in much greater
generality. It is inspired by Linial, Magen, and Naor (2002).

Proposition 13.17. (Distortion of Hypercubes) There exists c > 0 such that for all k, the
Hilbert distortion of the hypercube {0, 1}k is at least c

√
k.

Proof. In the solution to Exercise 13.6, we showed that if ⟨Zt⟩ is a simple random walk in
the hypercube, then

E
�
d(Z0, Zt )2� ≥ t2

4
∀t ≤ k/4 .

Take t := ⌊k/4⌋. Now let f : {0, 1}k → ℓ2(�) be a map. Assume that (13.22) holds; we
may take r = 1 there. We saw that Hilbert space has Markov type 2 with constant M = 1.
Therefore, if we take Z0 to be uniform on the vertices of the hypercube, we obtain

Ed2� f (Z0), f (Zt )� ≤ t Ed2� f (Z0), f (Z1)� ≤ C2t Ed2(Z0, Z1) = C2t ,

where C is the distortion of f . We conclude

C2t ≥ Ed2� f (Z0), f (Zt )� ≥ Ed2(Z0, Zt ) ≥ t2/4 ,

whence C ≥
√

t/2, which implies the result. ◀
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We give another beautiful approach to prove lower bounds on distortion that is flexible in a
different way and also gives Enflo’s sharp result. This approach uses a spectral gap, similar to
that defined in Section 6.4. This method appears first in Gromov (1983), Section 9.1, where
the author thanks V. Milman for these ideas. It was refined by Jolissaint and Valette (2014).
The essential difference between Section 6.4 and the approach we are about to explain is that
the Rayleigh quotient, Exercise 6.7, was used in Section 6.4 to bound the spectral gap, whereas
here we use the spectral gap to bound the distortion. This will require a simple observation
that extends the Rayleigh quotient from real-valued to Hilbert-space-valued functions, as well
as another observation that relates norms of functions to norms of differences.
For a finite connected network (G, c) with corresponding transition operator P, write 𝜆2(P)

for the second largest eigenvalue of P. Thus, 1 − 𝜆2(P) is what we called the spectral gap
in Section 6.4. As we did there, we write π(x) for the stationary probability measure on
𝖵(G). However, we do not want to assume that the conductances are normalized. If we write
γ :=

∑
e∈𝖤1/2

c(e), then π(x) =
∑

e−=x c(e)/(2γ).
Lemma 13.18. Let (G, c) be a finite connected network with transition operator P and
stationary probability measure π. Then, for every map f :𝖵 → H , where H is a Hilbert
space, we have

�
1 − 𝜆2(P)� ∑

x,y∈𝖵
π(x)π(y)� f (x) − f (y)�2 ≤ 1∑

e∈𝖤1/2
c(e)

∑
e∈𝖤1/2

c(e) ∥ f (e+) − f (e−)∥2 .

Proof. Recall (6.32) for real-valued functions f :𝖵→ �:

1 − 𝜆2(P) = min
f⊥1

�(I − P) f , f
�
π

( f , f )π .

The numerator, as we saw earlier, can also be written as
∑

e∈𝖤1/2
c(e)| f (e+) − f (e−)|2/(2γ)

(whether f ⊥ 1 or not). The condition that f ⊥ 1 is inconvenient here, but we may easily
remove it by using f − f̄ in place of f , where f̄ :=

∑
x π(x) f (x). Now 2∥ f − f̄ ∥2

π =∑
x,y∈𝖵 π(x)π(y)| f (x) − f (y)|2, whence we can write

�
1 − 𝜆2(P)� ∑

x,y∈𝖵
π(x)π(y)| f (x) − f (y)|2 ≤

∑
e∈𝖤1/2

c(e)| f (e+) − f (e−)|2/γ

for all f :𝖵→ �. By considering the coordinates with respect to an orthonormal basis of H ,
we see that the same holds for all f :𝖵→ H , provided we replace absolute values by norms.

◀

Recall that D̂2 is the π-weighted average squared distance between pairs of vertices in G.
The preceding inequality says that if the π-weighted average squared distance between images
of vertices is at least D̂2 (for example, if (13.22) holds with r = 1), then the c-weighted
average squared distance between images of neighboring vertices is at least D̂2�1 − 𝜆2(P)�.
In particular, a lower bound for the distortion is D̂

√
1 − 𝜆2(P):
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Corollary 13.19. (Spectral Bound on Distortion) Let (G, c) be a finite connected network
with transition operator P and stationary probability measure π. Then the Hilbert distortion
of (G, c) is at least [�

1 − 𝜆2(P)� ∑
x,y∈𝖵

π(x)π(y)d(x, y)2
]1/2

. ◀

For example, suppose that G is a graph with n vertices and all degrees at most k ≥ 3. The
ball of radius r about any vertex x has at most

�
k(k − 1)r − 2

�
/(k − 2) vertices, which is

< n/2 when r ≤ log (n/2)/log (k − 1). Therefore D̂ > log (n/2)/�2 log (k − 1)�. This gives
the following result of Linial, London, and Rabinovich (1995):

Corollary 13.20. (Distortion of Expanders) Let k ≥ 3 be an integer and 𝜆 < 1. There is a
constant Ck,𝜆 such that for each graph G on n vertices with 𝜆2(P) ≤ 𝜆 and maximal degree k,
where P stands for the simple random walk transition operator, the Hilbert distortion of G is
at least Ck,𝜆 log n. ◀

Recall that such graphs do exist for arbitrarily large n: see Theorems 6.17 and 6.15.
Corollary 13.19 could instead be phrased in terms of the expansion constants: using

Theorem 6.15, we have that the distortion of a network with expansion constant Φ∗ is at least
D̂Φ∗/

√
2, where D̂ is as previously.

In the special case of transitive networks, such as unweighted Cayley graphs, we can
refine the preceding bounds to be sometimes sharp. Denote by diam(G) the diameter of G.
For a finite Cayley graph G, there is a permutation σ of the vertex set (not necessarily an
automorphism of G) such that d(x, σ(x)) = diam(G) for all x ∈ 𝖵: if d(x, xγ) equals the
diameter for some x and some group element γ, then it equals the diameter for all x and the
same γ, so we may choose σ(x) := xγ. There is also such a permutation for every transitive
graph G: see Exercise 13.42.

Theorem 13.21. (Spectral Bound on Distortion – Transitive Case) Let (G, c) be a finite
connected transitive network with transition operator P. Then the Hilbert distortion of G is
at least diam(G)√(1 − 𝜆2(P))/2.

Proof. Transitivity of the network implies that π(x) = 1/|𝖵| for all vertices x. In the proof of
Lemma 13.18, we saw that for real-valued f ⊥ 1, we have�

1 − 𝜆2(P)� 1
|𝖵|

∑
x∈𝖵

| f (x)|2 =
�
1 − 𝜆2(P)� ∥ f ∥2

π ≤
∑
e∈𝖤1/2

c(e) | f (e+) − f (e−)|2/(2γ) .

Given a permutation σ of𝖵, consider the unitary operatorU on ℓ2(𝖵) defined byU( f ) := f ◦σ.
Let I be the identity operator. The triangle inequality tells us that ∥I −U∥ ≤ 2, whence∑

x∈𝖵

��� f (x) − f (σ(x))���2 ≤ 4
∑
x∈𝖵

| f (x)|2 .

Therefore, we have

1 − 𝜆2(P)
|𝖵|

∑
x∈𝖵

��� f (x) − f (σ(x))���2 ≤ 2
γ

∑
e∈𝖤1/2

c(e) | f (e+) − f (e−)|2 .
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At this point, it no longer matters whether f ⊥ 1. Furthermore, as before, this inequality
extends to H -valued f if we replace absolute values by norms:

1 − 𝜆2(P)
|𝖵|

∑
x∈𝖵

��� f (x) − f (σ(x))���2 ≤ 2
γ

∑
e∈𝖤1/2

c(e) ∥ f (e+) − f (e−)∥2 . (13.23)

Now take σ so that d(x, σ(x)) = diam(G) for all x ∈ 𝖵. Assume (13.22) holds with r = 1.
Then the left-hand side of (13.23) is at least (1 − 𝜆2(P)) diam(G)2, while the right-hand side
is at most 2C2. This gives the result. ◀

Some interesting special cases are detailed in the exercises, as is an extension to variable
edge lengths. We do one example here. The identity embedding of {0, 1}k → �k shows that
the Hilbert distortion of the k-dimensional hypercube G is at most

√
k. To apply our spectral

bound, we must find 𝜆2(P). The hypercube is a Cartesian product graph, so let’s consider
the general problem of the eigenvalues of Cartesian product Markov chains. In other words,
let Pi be transition matrices for Markov chains on state spaces 𝖵i for i = 1, . . . , k. Also,
let αi be probabilities summing to 1. Then consider the Markov chain on the product state
space 𝖵1 × · · · × 𝖵k with each transition occurring in one coordinate only; the ith coordinate
changes with probability αi , and when it does, it uses the transition matrix Pi . Write P for
the transition operator of this Markov chain. It is easy to see that if f i is an eigenvector of
Pi with eigenvalue 𝜆i , then ( f1, . . . , fk) is an eigenvector of P with eigenvalue

∑
i αi𝜆i . It

follows that the eigenvalues of P include the α-averages of eigenvalues of Pi , with geometric
multiplicities accordingly. If each Pi is reversible, then this gives all eigenvalues of P. For
the k-dimensional hypercube, simple random walk is a product Markov chain of this form,
where Pi is simple random walk on an edge and all αi = 1/k. Since the eigenvalues of Pi are
±1, we obtain that 1 − 𝜆2(P) = 2/k. Since diam(G) = k, Theorem 13.21 gives Enflo’s result
that the distortion of the k-dimensional hypercube is exactly

√
k.

We now consider metric spaces more general than graphs. What if we know nothing about
the finite metric space X other than its cardinality: how little can we distort X by embedding
in Euclidean space, and how small can we take the dimension of the Euclidean space to be?
Of course, if the space has n points, then its image in Hilbert space spans a subspace of
Hilbert space with dimension at most n, so we may always embed it in �n just as well as in
Hilbert space. It turns out that the dimension of the codomain can always be made much
smaller than n without increasing the distortion much: the dimension need be only O(log n).
It turns out that also the distortion need never be more than O(log n). Both of these theorems
are proved via probability: a certain clever random embedding will give the distortion result,
while once the original space of n points is embedded in �n, the reduction in dimension can
be effectuated by a random linear map, shown to have the desired property with positive
probability.
The dimension-reduction proposition is due to Johnson and Lindenstrauss (1984). It

is now widely used in theoretical computer science. Embeddings of networks, regarded
as metric spaces given by shortest-path distance using the edge labels as lengths, allow
one to use Euclidean geometry and analysis to solve (at least, approximately) discrete
optimization problems. Although the proofs of many theorems, including Proposition 13.22,
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are probabilistic, producing a desired object only with positive probability, that still allows
one to construct probabilistic algorithms that work with probability as close to 1 as desired.
One such optimization problem is to find a “sparsest cut,” that is, to determine a subset of a
network whose edge boundary is as small as possible relative to the product of the size of
the set and the size of its complement; see Naor (2010) for a discussion of its relationship to
embeddings.

Proposition 13.22. (Dimension Reduction) For any 0 < ϵ < 1/2 and any finite number
of distinct points v1, . . . , vn ∈ �l with the Euclidean metric, there exists a linear map
A:�l → �k , where k := ⌈24 log n/ϵ2⌉, that has distortion at most (1 + ϵ)/(1 − ϵ) when
restricted to the n-point space {v1, . . . , vn}.

Proof. Let A := 1√
k

�
Xi, j

�
1≤i≤k,1≤ j≤l be a k × l matrix where the entries Xi, j are independent

standard normal random variables. We prove that with probability at least 1/n, this map has
distortion at most (1 + ϵ)/(1 − ϵ).
Consider a pair vp ̸= vq . Since A is a linear map, the distortion of A on the pair vp, vq is

measured by ∥Au∥, where u := (vp − vq)/∥vp − vq∥ has norm 1. Denote the coordinates of u
by u = (u1, . . . , ul). Clearly,

Au =
1
√

k

( l∑
j=1

u jX1, j , · · · ,
l∑
j=1

u jXk, j

)
,

so

∥Au∥2 =
1
k

k∑
i=1

( l∑
j=1

u j Xi, j

)2

.

Note that for any i the sum
∑l

j=1 u j Xi, j is distributed as a standard normal random variable.
So ∥Au∥2 is distributed as 1

k

∑k
i=1 Y 2

i , where Y1, . . . ,Yk are independent standard normal
random variables. We wish to show that Au is quite concentrated around its mean. To
achieve that, we compute the moment generating function of Y 2, where Y ∼ N(0, 1). For any
𝜆 ∈ (0, 1/2), we have

Ee𝜆Y
2

=
1
√

2π

∫ ∞

−∞
e𝜆y

2
e−y

2/2dy =
1

√
1 − 2𝜆

,

and using Taylor expansion, we get

φ(𝜆) := ���log Ee𝜆(Y
2−1)��� =

����−1
2 log (1 − 2𝜆) − 𝜆

����
=
∞∑
k=2

2k−1𝜆k

k
≤ 2𝜆2�1 + 2𝜆 + (2𝜆)2 + · · ·

�
=

2𝜆2

1 − 2𝜆
.

Now,

P
�∥Au∥2 > 1 + ϵ

�
= P

[
e𝜆

∑k
i=1(Y2

j −1) > e𝜆ϵk
]
≤ e−𝜆ϵkekφ(𝜆) ≤ exp

(
−𝜆ϵk +

2𝜆2k
1 − 2𝜆

)
.
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Choose 𝜆 := ϵ/4; this gives that the exponent

−𝜆ϵk +
2𝜆2k

1 − 2𝜆
= − ϵ

2k
4

1/2 − ϵ/2
1 − ϵ/2 < − ϵ

2k
12

since ϵ < 1/2. With our definition of k := ⌈24 log n/ϵ2⌉, this yields

P
�∥Au∥2 > 1 + ϵ

�
≤ exp(−ϵ2k/12) ≤ n−2 .

One can prove similarly that

P
�∥Au∥2 < 1 − ϵ

�
≤ n−2 .

Since we have
�n

2
�
pairs of vectors vp, vq , it follows that with probability at least 1/n, for

all p ̸= q,
(1 − ϵ)∥vp − vq∥ ≤ ∥Avp − Avq∥ ≤ (1 + ϵ)∥vp − vq∥ .

In this case, the distortion of A is no more than (1 + ϵ)/(1 − ϵ). ◀
We now prove a theorem of Bourgain (1985) that any metric space on n points can be

embedded in Hilbert space with distortion O(log n); the proof gives an embedding into
Euclidean space of dimension O(log n)2. Corollary 13.20 showed that there are graphs on n
vertices whose distortion is at least a constant times log n.

Theorem 13.23. (Log Upper Bound on Distortion) For all n ≥ 2, every n-point metric
space (X , d) can be embedded in Hilbert space with distortion at most 52 log n.

Proof. We may obviously assume that n ≥ 4. Let α ≥ 60 and put L := ⌈α log n⌉. For each
integer k ≤ n that is a positive power of 2, randomly pick L sets A ⊆ X independently, by
including in A independently each x ∈ X with probability 1/k; in other words, each such set
A is a Bernoulli(1/k) site percolation on X . Write m := ⌊log2 n⌋. Then altogether, we obtain
Lm random sets A1, . . . , ALm; they are independent but not identically distributed. Define
the mapping f : X → �Lm by

f (x) :=
�
d(x, A1), d(x, A2), . . . , d(x, ALm)� . (13.24)

Here, we interpret d(x,∅) := 0. We will show that with probability at least 1−n2−α/20 log n >
0, the distortion of f is at most 52 log n.

For x, y ∈ X and Ai ⊂ X , the triangle inequality gives |d(x, Ai) − d(y, Ai)| ≤ d(x, y), so

∥ f (x) − f (y)∥2
2 =

Lm∑
i=1

|d(x, Ai) − d(y, Ai)|2 ≤ Lm d(x, y)2 .

For the lower bound, let B(x, r) := {z ∈ X ; d(x, z) ≤ r} denote the closed ball of radius
r centered at x and B◦(x, r) := {z ∈ X ; d(x, z) < r} denote the open ball. Fix two points
x ̸= y ∈ X . Set r0 := 0. Consider an integer t ≥ 0. If there is some r ≤ d(x, y)/4 such that
both |B(x, r)| ≥ 2t and |B(y, r)| ≥ 2t , then define rt to be the least such r. This gives us
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a sequence of radii r0, r1, . . . , r t̂ , where t̂ ∈ [0,m] is the largest index for which such an r
exists. Define one more radius, r t̂+1 := d(x, y)/4. Note that B(x, ri) and B(y, r j) are always
disjoint for i, j ≤ t̂ + 1.
Let 1 ≤ t ≤ t̂ + 1. By definition, either |B◦(x, rt )| < 2t or |B◦(y, rt )| < 2t . Let us assume

the former, without loss of generality. Now for any set A ⊆ X , we have that

A ∩ B◦(x, rt ) = ∅ ⇐⇒ d(x, A) ≥ rt

and
A ∩ B(y, rt−1) ̸= ∅ =⇒ d(y, A) ≤ rt−1 .

Therefore, if both conditions hold, then |d(x, A) − d(y, A)| ≥ rt − rt−1. Now, we also have
|B(y, rt−1)| ≥ 2t−1. Suppose A is a Bernoulli(2−t ) percolation on X . Then

P
�
A misses B◦(x, rt )� = (1 − 2−t )|B◦(x,rt )| > (1 − 2−t )2t ≥ 1

4
and

P
�
A hits B(y, rt−1)� = 1 − (1 − 2−t )|B(y,rt−1)| ≥ 1 − (1 − 2−t )2t−1 ≥ 1 − e−1/2 ≥ 1

3 .

Since these two balls are disjoint, these two events are independent, whence such an A has
probability > 1/12 to simultaneously miss B◦(x, rt ) and intersect B(y, rt−1). Since we choose
L such sets independently at random, the probability that fewer than L/81 of them have that
last property is less than

e−LI1/12(1/81) < e−L/20 ≤ n−α/20

by (6.61). So with probability at least 1 − n2−α/20 log n, simultaneously for every pair
x ̸= y ∈ X and every t ∈ [1, t̂ + 1], we have at least L/81 sets that satisfy the condition. In
this case,

∥ f (x) − f (y)∥2
2 ≥

t̂+1∑
t=1

L
81

(rt − rt−1)2 .

Since
∑t̂+1

t=1(rt − rt−1) = r t̂+1 = d(x, y)/4 and 2 · 2t̂ ≤ n, we then have

∥ f (x) − f (y)∥2
2 ≥

L
81

(
d(x, y)
4(t̂ + 1)

)2

(t̂ + 1) =
L d(x, y)2
362(t̂ + 1) ≥

L d(x, y)2
362m

.

In this case, the distortion of f is at most 36m < 52 log n, which proves our claim. ◀
If we combine this upper bound on distortion with the lower bound for networks that we

proved earlier (Corollary 13.19) in terms of average distance and spectral gap, we obtain the
following upper bound on the gap:

Corollary 13.24. Let (G, c) be an n-vertex connected network with transition operator P
and stationary probability measure π. Let D̂2 be the π-weighted average squared distance
between pairs of vertices in G. Then

1 − 𝜆2(P) ≤ 2704 log2 n

D̂2
. ◀

The advantage of this bound over Corollary 13.8 is that it does not involve πmin; however,
for simple random walk on graphs, the bound in the earlier corollary is better.
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13.6 A Diffusive Lower Bound for Cayley Graphs

As we know from a trivial calculation of variance, simple random walk on � has variance
n at time n. Given that � is the smallest infinite Cayley graph, it is reasonable to conjecture
that every infinite Cayley graph has the property that the distance of simple random walk at
time n has second moment at least of order n. Indeed this is true; proving it is the goal of this
section. In fact, the same holds for finite Cayley graphs as long as the time n is not too large,
as suggested by simple random walk on a cycle.

Let Γ be a (finite or countable) group, with a finite generating set S of size d. We assume
that S = S−1 and denote by G the right Cayley graph determined by S on the vertex set Γ. Let
dist denote graph distance in G, and let P be the transition matrix for simple random walk
⟨Xn⟩n≥0 on G. In this section, we prove the following lower bounds on the rate of escape.

Theorem 13.25. If |Γ| < ∞, then E
�
dist(X0, Xn)2� ≥ n

2d
for n ≤ 1

1 − 𝜆
, where 𝜆 = 𝜆2(P) is

the second largest eigenvalue of P.

Theorem 13.26. If |Γ| = ∞ and Γ is amenable, then E
�
dist(X0, Xn)2� ≥ n

d
for all n ≥ 1.

Note that the time bound (1 − 𝜆)−1 in Theorem 13.25 is of order k2 for a k-cycle, as we
would expect.

Why are nonamenable groups not included in Theorem 13.26? One answer is that
we know something even stronger for them: If Γ is nonamenable, then ρ(G) < 1 by
Theorem 6.7. Proposition 6.9 then implies that for some constant cG > 0 and all n, we have
E
�
dist(X0, Xn)� ≥ cGn, so that E

�
dist(X0, Xn)2� ≥ c2

Gn2. Unfortunately, however, this does
not establish a universal lower bound of the form in Theorem 13.26 for such groups, as cG
might be arbitrary small. Indeed, such a universal bound is not known, which is curious.
To prove these theorems, we use the following lemma. For each n ≥ 1, define the Dirichlet

form Dn: ℓ2(Γ) → � by Dn( f ) :=

(I − Pn) f , f

�
. (The form D1 differs from the Dirichlet

energy D in Section 9.3 by a factor of d: see (6.17).)

Lemma 13.27. Let G be a d-regular Cayley graph of a (finite or countable) group Γ and
suppose that f ∈ ℓ2(Γ) is not constant. Then simple random walk on G satisfies, for every n,

E
�
dist(X0, Xn)2� ≥ 1

d
Dn( f )
D1( f ) .

Before proving the lemma, we show it implies Theorem 13.25.

Proof of Theorem 13.25. Let f ∈ ℓ2(Γ) be an eigenfunction such that P f = 𝜆 f with ∥ f ∥2 = 1.
Then Dn( f ) = 1 − 𝜆n, whence the lemma gives that for n ≤ 1/(1 − 𝜆),

d ·E
�
dist(X0, Xn)2� ≥ 1 − 𝜆n

1 − 𝜆
=

n−1∑
j=0

𝜆−j ≥
n−1∑
j=0

(
1− 1

n

) j
= n

[
1−

(
1− 1

n

)n] ≥ n
(
1− 1

e

)
. ◀

Now we prove the lemma itself.
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Proof of Lemma 13.27. Given a nonconstant f ∈ ℓ2(Γ), we use an associated Hilbert
embedding F: Γ → ℓ2(Γ), defined by F(x)(γ) := f (γx). For every possible starting point
X0 := x0, use (6.17) to compute (as in (13.21))

E∥F(X0) − F(Xn)∥2 = E
∑
γ∈Γ

�
f (γX0) − f (γXn)�2 =

∑
x∈Γ

∑
y∈Γ

�
f (x) − f (y)�2pn(x, y)

= 2

(I − Pn) f , f

�
= 2 Dn( f ) . (13.25)

Observe that (13.25) with n = 1 implies that 1
d
∥F(x0) − F(y)∥2 ≤ 2 D1( f ) for any x0, y ∈ Γ

that are neighbors in G. Thus, F is Lipschitz with Lip(F) ≤ √
2d D1( f ). Therefore,

2 Dn( f ) = E∥F(Xn) − F(X0)∥2 ≤ Lip(F)2 · E�dist(X0, Xn)2� ≤ 2d D1( f )E
�
dist(X0, Xn)2� .

◀
The proof of Theorem 13.25 does not extend as is to the infinite case because we may not

have the relevant eigenfunctions. However, use of the infinite-dimensional spectral theorem
enables a proof to go through that is virtually identical. The notes, Section 13.9, review the
spectral theorem and use it to give a short proof of Theorem 13.26.
To give a direct proof without using the spectral theorem, we use the following exercise

and lemma.

▷ Exercise 13.7.
Let P be the transition matrix for simple random walk on an infinite graph (𝖵, 𝖤). Prove that
⟨Piψ, ψ⟩→ 0 as i → ∞ for every ψ ∈ ℓ2(𝖵).
Lemma 13.28. Given f ∈ ℓ2(Γ) and n ≥ 1,

E
�
dist(X0, Xn)2� ≥ n

d
− n2

2d
∥(I − P) f ∥2

D1( f ) .

Proof. We use Lemma 13.27. We need to lower bound Dn( f ) and show it grows almost
linearly. For this, we bound second differences. First,

∆j := D j+1( f ) − D j( f ) =


P j f − P j+1 f , f

�
=

(I − P)P j f , f

�
=


P j f , (I − P) f

�
.

Second, if δ := ∥(I − P) f ∥, then by Cauchy-Schwarz,

|∆j − ∆j−1 | =
�


P j−1(I − P) f , (I − P) f
��
≤ ∥P j−1(I − P) f ∥ · ∥(I − P) f ∥ ≤ δ2 ,

since P is a contraction (Exercise 6.6). Since ∆0 = D1( f ), it follows that ∆j ≥ ∆0 − jδ2,
whence

Dn( f ) =
n−1∑
j=0

∆j ≥ n∆0 −
n(n − 1)

2
δ2 ≥ n D1( f ) − n2δ2

2
.

Thus,
Dn( f )
D1( f ) ≥ n − n2∥(I − P) f ∥2

2 D1( f )
and the lemma follows from Lemma 13.27. ◀
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Proof of Theorem 13.26. We first prove the theorem assuming that G is transient and that the
Green function G (x0, x) = ∑∞

j=0 pj(x0, x) satisfies G (x0, •) ∈ ℓ2(Γ), and later remove those
assumptions.
Let ⟨Ak⟩ be a sequence of Følner sets, that is, δk := |∂𝖵Ak |/|Ak | → 0 as k → ∞. Write

ψk := 1Ak
and fk :=

∑∞
j=0 P jψk . The assumptions of the preceding paragraph imply that

fk ∈ ℓ2(G). Note that (I − P) fk = ψk and fk(x) = Ex

�∑∞
j=0 1[Xj ∈Ak ]

�
. If dist(x, Ac

k
) ≥ r ,

then fk(x) ≥ r , whence

D1( fk) =

(I − P) fk , fk

�
= ⟨ψk , fk⟩ =

∑
x∈Ak

fk(x) ≥ r
�{x ∈ Ak ; dist(x, Ac

k) ≥ r}�
≥ r

� |Ak | − dr |∂𝖵Ak | � = r |Ak |(1 − drδk)

for every r > 0. Letting k → ∞ gives lim infk→∞ D1( fk)/|Ak | ≥ r, so D1( fk)/|Ak | → ∞.
By Lemma 13.28,

E
�
dist(X0, Xn)2� ≥ n

d
− n2

2d
|Ak |

D1( fk) .

Letting k → ∞ proves the theorem under the assumptions of the preceding paragraph.
Next, we prove the theorem without those assumptions. Since Γ is amenable, for every

θ ∈ (0, 1/2) there exists ψ ∈ ℓ2(Γ) such that ∥ψ∥ = 1 and ∥Pψ − ψ∥ ≤ θ (see Exercise 6.7 or
take ψ = 1√|A|1A for a suitable Følner set, A). By Exercise 13.7, ⟨Piψ, ψ⟩→ 0 as i → ∞, so

the upcoming Lemma 13.29 yields a function φ ∈ ℓ2(Γ) such that ∥(I − P)φ∥2 ≤ 32 θD1(φ).
Thus, by Lemma 13.28, we conclude that

E
�
dist(X0, Xn)2� ≥ n

d
− 32θn2

2d
.

Letting θ → 0 completes the proof. ◀
Lemma 13.29. Suppose that P is a self-adjoint contraction on ℓ2(𝖵) and ψ ∈ ℓ2(𝖵) has
∥ψ∥ = 1 and ⟨Piψ, ψ⟩ → 0 as i → ∞. If ∥Pψ − ψ∥ ≤ θ ∈ (0, 1/2), then there exists k ≥ 1
such that φk =

∑k−1
i=0 Piψ satisfies

∥(I − P)φk ∥2

⟨φk , (I − P)φk⟩ ≤ 32θ. (13.26)

Proof. Since (I − P)φk = (I − Pk)ψ and I − Pk is self-adjoint,



φk , (I − P)φk� =



φk , (I − Pk)ψ� =

⟨
(I − Pk)

k−1∑
i=0

Piψ, ψ
⟩

= ⟨2φk − φ2k , ψ⟩ .

Combining this with ∥(I − P)φk ∥ = ∥(I − Pk)ψ∥ ≤ 2 yields

∥(I − P)φk ∥2

⟨φk , (I − P)φk⟩ ≤
4

⟨2φk − φ2k , ψ⟩ . (13.27)
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Thus, our proof will be concluded once we demonstrate the existence of k ∈ � such that

⟨2φk − φ2k , ψ⟩ ≥ 1
8θ . (13.28)

To find such a k, note first that since P is a contraction, ∥P jψ − P j−1ψ∥ ≤ θ for every
j ≥ 1, so by the triangle inequality, ∥P jψ − ψ∥ ≤ jθ for every j ≥ 1. Cauchy-Schwarz then
gives ⟨ψ, (I − P j)ψ⟩ ≤ jθ, in other words, ⟨ψ, P jψ⟩ ≥ 1 − jθ. Thus for every j ≥ 1, we have
⟨φ2 j , ψ⟩ ≥ 2j(1 − 2jθ).

Fix ℓ ∈ � so that 2ℓθ ≤ 1/2 ≤ 2ℓ+1θ, yielding

⟨φ2ℓ , ψ⟩ ≥ 1
8θ . (13.29)

Let am := ⟨φ2m , ψ⟩, and write, for N > ℓ,

aℓ −
aN

2N−ℓ =
N−1∑
m=ℓ

2am − am+1

2m−ℓ+1 . (13.30)

The hypothesis that ⟨Piψ, ψ⟩→ 0 as i → ∞ implies that limN→∞ aN/2N = 0. Using (13.29)
and taking N → ∞ in (13.30) yields

1
8θ
≤ aℓ =

∞∑
m=ℓ

2am − am+1

2m−ℓ+1 .

Since
∑∞

m=ℓ 1/2m−ℓ+1 = 1, there must exist some m ≥ ℓ with 2am − am+1 ≥ 1
8θ . This

establishes the property (13.28) for k = 2m. ◀

13.7 Branching Number of a Graph

In Proposition 13.3, we gave an upper bound for the liminf speed of simple random walk
on a tree in terms of the branching number of the tree. Here we do the same for general
graphs. For a connected locally finite graph G, choose some vertex o ∈ G and define the
branching number br G of G as the supremum of those 𝜆 ≥ 1 such that there is a positive
flow from o to infinity when the edges have capacities 𝜆−|e|, where distance is measured from
o. By the max-flow min-cut theorem, this is the same as

br G = inf
{
𝜆 ≥ 1 ; inf

{∑
e∈Π

𝜆−|e| ; Π separates o from∞
}

= 0
}
.

Let M̃n be the number of edges that lead from a vertex at distance n − 1 from o to a vertex at
distance n. Then consideration of spherical cutsets shows that

br G ≤ lim inf
n→∞

M̃1/n
n .

We have seen already that when G is a tree, strict inequality may hold here; we can even have
that the left-hand side is 1, while the right-hand side is not.
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▷ Exercise 13.8.
Show that br G does not depend on the choice of vertex o.

▷ Exercise 13.9.
Show that if G′ is a subgraph of G, then br G′ ≤ br G.

If G is nonamenable, then br G > 1 by this exercise combined with the result of Benjamini
and Schramm (1997) mentioned at the end of Section 6.1.
Our bound for trees, Proposition 13.3, can be extended to general graphs as follows, but it

is not as good as the one obtained for trees. See Section 13.9 for a better result.

Proposition 13.30. If G is a connected locally finite graph with bounded degree on which
simple random walk has positive speed, then br G > 1. More precisely, if

lim inf
n→∞

|Xn |
n
≥ s

with positive probability, then br G ≥ es/2.

Proof. For s with the property stated, consider 0 < s′ < s′′ < s. There is some L such that

q := P
�
∀n ≥ L |Xn | > s′′n

�
> 0 . (13.31)

Orient all edges e of G so that e+ is farther from o than is e−. As in the proof of Proposi-
tion 13.3, define a general percolation on G by keeping all edges e with |e+ | ≤ s′′L as well as
those edges e such that Xn = e+ for some n < |e+ |/s′′. According to (13.31), the component
of the root in this percolation is infinite with probability at least q. On the other hand, if
|x | > s′′L, then by the Varopoulos-Carne bound,

P[o↔ x] ≤ P
�
∃n < |x |/s′′ Xn = x

�
≤

|x |/s′′∑
n=1

pn(o, x) ≤
|x |/s′′∑
n=1

2
√

deg(x)/deg(o) e−|x |
2/(2n)

≤ 2
�|x |/s′′

�√
deg(x)/deg(o) e−s

′′ |x |/2 < Ce−s
′ |x |/2

for some constant C. In light of Proposition 5.8, this means that for any cutset Π, we have

q <
∑
e∈Π

Ce−s
′ |e+ |/2 .

Therefore, br G ≥ es
′/2. Since this holds for all s′ < s, the result follows. ◀

We saw in Exercise 13.1 that the converse of Proposition 13.30 fails for trees. It fails even
for Cayley graphs, which is rather surprising. Recall from Section 3.4 that we call a subtree T
of G rooted at o geodesic if for every vertex x ∈ T , the distance from x to o is the same in T
as in G. Note that for such trees, br T ≤ br G by Exercise 13.9. Let �⊙ be the lamplighter
group on � described in Section 3.4. We showed there that �⊙ has exponential growth rate
(1 + √5 )/2; in fact, the sets Tn there are parts of the nth levels of a geodesic subtree of �⊙,
whence br�⊙ = (1 +

√
5 )/2. On the other hand, simple random walk has speed 0 on �⊙, as

mentioned in Section 3.4 (see Corollary 14.21 for a proof).
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Of course, for trees T , we earlier established that br T is the critical value of 𝜆 separating
transience from recurrence for 𝖱𝖶𝜆 on T . Things are not so nice in general (Exercise 13.55),
but we do have some useful relationships. Recall that 𝜆c(G) denotes the critical value of 𝜆
separating transience from recurrence for 𝖱𝖶𝜆 on G.

▷ Exercise 13.10.
Show that 𝜆c(G) ≤ br G.

It follows from Section 3.4 that when G is a Cayley graph of a finitely generated group of
growth rate b, there is a geodesic spanning tree T of G with br T = b = 𝜆c(G). Hence, we
also have br G = b = 𝜆c(G). Most of this also holds for many planar graphs, as we show
now. The proof will show how planar graphs are like trees. (For other resemblances of planar
graphs to trees, see Theorems 9.12 and 10.53 and Proposition 11.28.)

Theorem 13.31. Let G be an infinite connected plane graph of bounded degree such that
only finitely many vertices lie in any bounded region of the plane. Suppose that G has a
geodesic spanning tree T with no leaves. Then 𝜆c(G) = br G = br T .

Proof. We first prove that br T = br G. Since br T ≤ br G, it suffices to show that for 𝜆 > br T ,
we have 𝜆 ≥ br G. Given a cutset Π of T , we will define a cutset Π∗ of G whose corresponding
cutset sum is not much larger than that of Π. We may assume that o is at the origin of the
plane and that all vertices in Tn are on the circle of radius n in the plane. Now every vertex
x ∈ T has a descendant subtree T x ⊆ T . For n ≥ |x | > 0, this subtree cuts off an arc of the
circle of radius n; in the clockwise order of T x ∩ Tn, there is a least element xn and a greatest
element xn. Each edge in Π has two endpoints; collect the ones farther from o in a set W .
Define Π∗ to be the collection of edges incident to the set of vertices

W ∗ :=
{
xn, xn ; x ∈ W , n ≥ |x |} .

We claim that, since T has no leaves, Π∗ is a cutset of G. For if o = y1, y2, . . . is a path in G
with an infinite number of distinct vertices, let yk be the first vertex belonging to T x for some
x ∈ W . Planarity implies that yk ∈ W ∗, whence the path intersects Π∗, as desired.

Now let c be the maximum degree of vertices in G. We have∑
e∈Π∗

𝜆−|e| ≤ c
∑
x∈W ∗

𝜆−|x |+1 ≤ c
∑
x∈W

∑
n≥|x |

2𝜆−n+1

=
2c𝜆
𝜆 − 1

∑
x∈W

𝜆−|x |+1 =
2c𝜆
𝜆 − 1

∑
e∈Π

𝜆−|e| .

This makes it evident that br G ≤ br T . It also implies that 𝜆c(G) ≤ br G, which we knew as
well from Exercise 13.10.

To finish, it remains to show that 𝜆c(G) ≥ br G. Let 𝜆 < br G. Since 𝜆 < br T , it follows
from Theorem 3.5 that 𝖱𝖶𝜆 is transient on T . Therefore, 𝖱𝖶𝜆 is also transient on G. ◀
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13.8 Tree-Indexed Random Walks

Label the vertices of a tree T by a collection of i.i.d. real random variables ⟨Xv⟩v∈𝖵(T ).
Define the tree-indexed random walk ⟨Sv⟩v∈𝖵(T ) by

Sv :=
∑
w≤v

Xw ,

where w ≤ v means that v is a descendant of w. Throughout this section, we will assume
that each variable Xv satisfies, for some 𝜆 > 0,

Xv is not a.s. constant, E[Xv] = 0, and E[e𝜆Xv ] < ∞ . (13.32)
We want to determine the speed of tree-indexed random walks, or at least recognize when

the speed is positive. Here are three natural notions of speed for such walks:

Cloud Speed lcloud := lim sup
n

max
|v|=n

Sv/n ;

Burst Speed lburst := sup
ξ ∈∂T

lim sup
v∈ξ

Sv/|v | ;
Sustainable Speed lsust := sup

ξ ∈∂T
lim inf
v∈ξ

Sv/|v | .

Each of these speeds is a.s. constant by Kolmogorov’s zero-one law.
In general, lcloud ≥ lburst ≥ lsust. Exercises 13.11 and 13.15 show that the inequalities may

be strict.

▷ Exercise 13.11.
Show that if the 1–3 tree in Example 1.2 is labeled by ±1-valued random variables ⟨Xv⟩ of
mean zero, then lcloud > 0, but lburst = lsust = 0.

Denote by ⟨S̃n⟩n≥0 the ordinary random walk indexed by the nonnegative integers with
i.i.d. increments distributed like Xv. Since

P
[
S̃n+m ≥ (n + m)a] ≥ P

[
S̃n ≥ na

]
P
[
S̃m ≥ ma

]
,

Fekete’s lemma (Exercise 3.9) implies that for all a ∈ �, the limit

I(a) := lim
n→∞

−1
n

log P
�
S̃n ≥ na

�
exists. This limiting function of a is known as the rate function for the random walk
⟨S̃n⟩n≥0. By Exercise 3.9(a), we have that P

�
S̃n ≥ na

�
≤ e−nI (a) for all n and a. Write

s∞ := ess sup Xo ∈ [0,∞]. Then I(a) < ∞ for a < s∞ and I(a) = ∞ for a > s∞. We also
have I(s∞) = − log P[Xo = s∞]. By Chernoff-Cramér’s theorem on large deviations (see
Durrett (2010), (2.6.2) and Lemma 2.6.2, and Dembo and Zeitouni (1998), (2.2.6)), (13.32)
implies that I(a) > 0 for all a > 0, and I( • ) is convex on �where it is finite. Since I(0) = 0
by the central limit theorem, I( • ) is strictly increasing on [0, s∞]. For α > 0, consider

s∗ := s∗(α) := sup{s ; I(s) ≤ α} .
If I(s∗) ̸= α, then s∗ = s∞.
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▷ Exercise 13.12.
Verify that if the law of Xv is N(0, 1), then I(a) = a2/2, whereas if Xv are ±1 valued with
mean zero, then I(a) = (1+a)

2 log (1 + a) + (1−a)
2 log (1− a). (That this rate function is an upper

bound for simple random walk is noted in (13.1); for biased walks, a similar inequality is
(6.62).)

If the underlying tree T is a family tree of a Galton-Watson process, then the speed is
determined by the mean of the offspring distribution and the rate function.

Theorem 13.32. (Biggins, 1977) Let T be a Galton-Watson tree with mean m > 1. Suppose
that the vertices of T are labeled by random variables Xv that satisfy (13.32). Given the event
that T is infinite, a.s. all three speeds coincide and equal s∗ = s∗(log m), where

I(s∗) = log m

unless P[Xo = s∞] > m−1, in which case s∗ = s∞.

Proof. We first show that lcloud ≤ s∗. By the definition of s∗, for any ϵ > 0 there is δ > 0
such that I(s∗ + ϵ) > log m + δ. Therefore,

P
�
S̃n ≥ n(s∗ + ϵ)� ≤ e−n(logm+δ) = m−ne−nδ .

Consequently,

P
�
Sv ≥ n(s∗ + ϵ) for some v ∈ Tn

�
nonextinction

�
≤ mn

1 − q
m−ne−nδ ,

where q is the probability of extinction. The proof is concluded by invoking the Borel-Cantelli
lemma.
To prove the reverse inequality, lsust ≥ s∗, let a < s∗ be given. Using the strict monotonicity

of the rate function and the definition of s∗, choose ϵ so that I(a) + 2ϵ < log m. For each
k ≥ 1 and M ∈ [1,∞], we define a new embedded branching process as follows: start
from the root of T , and take the set of offspring T(v, k, M) of a vertex v to consist of all its
descendants w in T that satisfy
• |w| = |v | + k in T ,
• Sw ≥ Sv + ka, and
• Su > Sv − M for all u on the path from v to w.

(If M = ∞, then the last requirement holds automatically.) It is not hard to calculate that
E|T(v, k,∞)| = mk P

�
S̃k ≥ ka

�
, so the definition of I yields that for sufficiently large k,

E|T(v, k,∞)| ≥ mke−k[I(a)+ϵ ] > ekϵ > 2 .

By choosing M large, we can ensure that the embedded process has mean offspring

E|T(v, k, M)| ≥ 1
2 E|T(v, k,∞)| > 1 .
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Thus for large k and M, this embedded process is supercritical. Therefore lsust > a with
positive probability. Since

{T ; T finite or lsust ≤ a on T}

is an inherited property, Proposition 5.6 implies that P[lsust > a | survival] = 1. Hence, given
survival, we have that a.s.,

s∗ ≥ lcloud ≥ lburst ≥ lsust ≥ s∗ . ◀

Theorem 13.32 was extended by Lyons and Pemantle (1992), who determined the sustain-
able speed for a general tree-indexed walk. For the other speed notions, there is no analogous
exact formula, but there is a characterization for positivity of speed; see the notes.

Theorem 13.33. Suppose that T is an infinite locally finite tree, labeled with random
variables ⟨Xv⟩ satisfying (13.32). Let I( • ) be the corresponding rate function. Then
lsust = s∗(log br T), so

I(lsust) = log br(T)
unless P[Xo = s∞] > (br T)−1, in which case lsust = s∞.

The proof will use Exercise 3.25, repeated here:

▷ Exercise 13.13.
Given a tree T and k ≥ 1, form the tree T [k] by taking the vertices x of T for which |x | is a
multiple of k and joining x and y by an edge in T [k] when their distance is k in T . Show that
br T [k] = (br T)k .

Proof of Theorem 13.33. Suppose that I(a) > log br T . Choose a sequence of cutsets Πk such
that the cutset sums ck :=

∑
e(v)∈Πk

e−I(a)|v| → 0 as k → ∞. Since P
�
S̃n ≥ na

�
≤ e−nI (a)

for all n, we have that P
�
∃v ∈ Πk Sv ≥ |v |a� ≤ ck , whence lsust ≤ a a.s. Hence, lsust ≤

s∗(log br T).
For the other inequality, fix a so that I(a) < log br T . Choose an integer k that satisfies

P
[
S̃k ≥ ka

]
> (br T)k and then select M < ∞ such that

P
[
S̃k ≥ ka and S̃j > −M for all j ∈ (0, k)] > (br T)k .

Define a general percolation on the compressed tree T [k] in which, for v the parent of w, the
edge [v, w] is retained if Sw − Sv ≥ ka and Su > Sv − M for all u on the path in T from
v to w. This general percolation process is not independent; however, for each fixed k, it
is quasi-independent. By Theorem 5.19 and Exercise 13.13, this percolation survives with
positive probability, whence lsust ≥ a a.s by the Kolmogorov zero-one law. It follows that
lsust ≥ s∗(log br T) a.s. ◀
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13.9 Notes
The spectral theorem on Hilbert spaces can be used in this chapter to greatly shorten some proofs.

We first summarize what that theorem says for bounded self-adjoint operators on a (real or complex)
Hilbert space, H . For more details, see, for example, Rudin (1991), Chapter 12. Let B be the Borel
σ-field in �. A resolution of the identity E( • ) is a map from B to the set of orthogonal projections
on H that satisfies properties similar to a probability measure, namely, E(∅) = 0; E(�) = I; for all
B1, B2 ∈ B, we have E(B1 ∩ B2) = E(B1)E(B2) and, if B1 ∩ B2 = ∅, then E(B1 ∪ B2) = E(B1) + E(B2);
and for all f , g ∈ H , the map B 7→ ⟨E(B) f , g⟩ is a finite (real or complex) measure on B. Note that
B 7→



E(B) f , f

�
= ∥E(B) f ∥2 is a positive measure of norm ∥ f ∥2.

Now suppose that T :H → H is a bounded self-adjoint operator. The spectrum of T is the set
of 𝜆 ∈ � such that T − 𝜆I does not have an inverse on H ; the spectrum is compact and contained
in

�
−∥T ∥, ∥T ∥ �. Isolated points 𝜆 of the spectrum are necessarily eigenvalues, that is, values where

T − 𝜆I has a nonzero kernel. The spectral theorem says that there is a unique resolution of the identity,
ET ( • ), such that T =

∫
𝜆 dET (𝜆) in the sense that for all f , g ∈ H , we have ⟨T f , g⟩ = ∫

𝜆 d


ET (𝜆) f , g

�
.

Furthermore, ET is supported on the spectrum of T . For a bounded Borel-measurable function
h:�→ �, one can define (via what is called the functional calculus) a bounded self-adjoint operator
h(T) by h(T) :=

∫
h(𝜆) dET (𝜆), with integration meant in the same sense as earlier. The operator h(T)

commutes with T . As an instance of this, we have 1B(T) = ET (B).
If H is finite-dimensional and T has spectrum σ, then ET (B) =

∑
𝜆∈σ∩B P𝜆, where P𝜆 is the

orthogonal projection onto the 𝜆-eigenspace. Writing T =
∑

𝜆∈σ 𝜆P𝜆 amounts to diagonalizing T . Here
we have h(T) = ∑

𝜆∈σ h(𝜆)P𝜆 for any function h; because only finitely many values of h are used, we
may take h to be a polynomial.

We now use the spectral theorem to prove (13.11) when H is infinite-dimensional. Let E be the
resolution of the identity for S:

S =
∫ ∥S∥

−∥S∥
s dE(s) .

If Q is a polynomial with real coefficients, then

Q(S) =
∫ ∥S∥

−∥S∥
Q(s) dE(s) .

Applying this to any f ∈ H , we obtain

|
Q(S) f , f
�| =

����
∫ ∥S∥

−∥S∥
Q(s) d



E(s) f , f

����� ≤ max
−∥S∥≤s≤∥S∥

|Q(s)| ·
∫

d


E(s) f , f

�
= max
−∥S∥≤s≤∥S∥

|Q(s)| · ∥ f ∥2 .

Since Q(S) is self-adjoint, this proves (13.11).
We next give a second proof of Theorem 13.26 via the spectral theorem.

Second proof of Theorem 13.26. Since Γ is amenable, 1 lies in the spectrum of P, which is self-adjoint.
However, 1 is not an eigenvalue since Γ is infinite. Therefore, E(1 − ϵ, 1) ̸= 0 for every ϵ > 0, where
E( • ) is the resolution of the identity for P. Consider ϵ > 0. Choose f ∈ ℓ2(Γ) \ {0} in the image of
E(1 − ϵ, 1). Write µ( • ) :=



E( • ) f , f

�
for the spectral measure of f . Then

Dn( f ) =
∫ 1

1−ϵ
(1 − 𝜆n) dµ(𝜆) =

∫ 1

1−ϵ
(1 − 𝜆)

n−1∑
j=0

𝜆 j dµ(𝜆)

≥ 1 − (1 − ϵ)n
ϵ

∫ 1

1−ϵ
(1 − 𝜆) dµ(𝜆) =

1 − (1 − ϵ)n
ϵ

D1( f ) ̸= 0 .

Letting ϵ → 0, we obtain inf f ̸=0 Dn( f )/D1( f ) ≥ n. Use of Lemma 13.27 now completes the proof. ◀
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Our exposition of Theorem 13.2 follows that of Steele (1997). Another version of Hoeffding’s
inequality for martingales says this:

Theorem 13.34. Let

(Y1,F1), . . . , (Yn ,Fn)� be a martingale and

ci := inf
�∥Yi − Z∥∞ ; Z ∈ Fi−1

	
,

where F0 := {∅,Ω} is the trivial σ-field. Then, for all L > 0,

P
�
Yn − E[Yn] ≥ L

�
≤ exp

(
− L2

2
∑n

i=1 c2
i

)
.

A very useful special case is the following inequality of McDiarmid (1989):

Theorem 13.35. (Bounded-Differences Inequality) Let ⟨Z1, . . . , Zn⟩ be independent random vari-
ables and f (z1, . . . , zn) be a real-valued function such that

| f (z) − f (z′)| ≤ ai

when the vectors z and z′ differ only in the ith coordinate. Write Y := f (Z1, . . . , Zn). Then, for all
L > 0,

P
�
Y − E[Y ] ≥ L

�
≤ exp

(
− 2L2∑n

i=1 a2
i

)
.

Proof. Put Yi := E
�

f (Z1, . . . , Zn) �
Z1, . . . , Zi

�
for 0 ≤ i ≤ n, so that Yn = Y . We may apply

Theorem 13.34 to this martingale with ci ≤ ai/2. To see this bound, write Yi = f i (Z1, . . . , Zi ). Define
g±i (z1, . . . , zi−1) := sup f i (z1, . . . , zi−1, zi ) ± inf f i (z1, . . . , zi−1, zi ). Since 0 ≤ g−i ≤ ai , it follows that
∥Yi − g+

i (Z1, . . . , Zi−1)/2∥∞ ≤ ai/2. ◀
See McDiarmid (1989) for a proof of Theorem 13.34, variations, and applications.
The first statement of (13.5) was in Lyons, Pemantle, and Peres (1996b). An extension to the much

harder case of directed covers was achieved by Takacs (1997), while an extension to the biased random
walks 𝖱𝖶𝜆 was done by Takacs (1998).

A probabilistic proof of the Varopoulos-Carne bound, Theorem 13.4, was given by Peyre (2008).
The application of this bound to mixing time was prompted by discussions with Itai Benjamini, James
Lee, and Manor Mendel.

Spielman and Teng (2007) used circle packing to give a (short) proof that on a planar graph G with
n vertices and maximum degree d, the spectral gap of simple random walk satisfies 1 − 𝜆2 ≤ 8d/n.
Consider now lazy simple random walk on such planar graphs. Write D for the diameter of G. Jian
Ding and Asaf Nachmias (personal communication) noted that in conjunction with Proposition 13.7,
the above bound implies that tmix(ϵ) ≥ cd D2/log D, where cd is a constant. This can be seen by
Exercise 13.4 and by considering whether D ≤

√
n. In view of Corollary 13.6, again considering

whether D ≤
√

n, it follows that 1 − 𝜆2 ≤ c′d(log D)2/D2, as first proved by Louder and Souto (2012).
In that paper and in Lee and Qin (2012), examples were given of planar graphs for which this lower
bound on the spectral gap is sharp.

Naor, Peres, Schramm, and Sheffield (2006) proved Theorem 13.14. They also showed that Lp

spaces for p > 2 have Markov type 2, as conjectured by Ball, as do word-hyperbolic groups and simply
connected Riemannian manifolds of pinched negative curvature. A key technique is a decomposition
of a function of a stationary reversible Markov chain into a difference of a forward and a backward
martingale. This decomposition idea was discovered independently by Kesten (1986) and T. Lyons and
Zheng (1988) and employed later by Barlow and Perkins (1989) and T. Lyons and Zhang (1994). The
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same martingale decomposition was also used by Ding, Lee, and Peres (2013), who proved that planar
graphs and doubling metric spaces have Markov type 2. In fact, the result of Kesten (1986) that simple
random walk on supercritical percolation clusters of �d is at most diffusive in the metric of �d can be
proved by using the fact that �d has Markov type 2; see Peres, Stauffer, and Steif (2015) for a more
general result proved this way.

Corollary 13.20 was proved by Linial, London, and Rabinovich (1995) not for embeddings in Hilbert
space but in L1 spaces. That is harder, since ℓ2 embeds isometrically in L1: Let Zn (n ≥ 0) be i.i.d.
standard normal random variables. Given u = ⟨un ; n ≥ 0⟩ ∈ ℓ2(�), define the random variable
Z(u) :=

√
π/2

∑
n≥0 unZn . Then Z(u) is a centered normal random variable with standard deviation

equal to
√
π/2 ∥u∥2. Therefore, E

� |Z(u)| � = ∥u∥2, so u 7→ Z(u) is an isometry.
Theorem 13.21 and Exercise 13.46 are straightforward extensions of a special case of the main result

of Jolissaint and Valette (2014).
Our proof of Proposition 13.22 is a small variant of the original proof; it was known to many people

shortly after the original paper appeared. A version of it was published by Indyk and Motwani (1999).
For more variants and history, see Matoušek (2008). The dependence of the smallest dimension on ϵ is
not known, even up to constant factors. Alon (2003) shows that embedding a simplex on n points with
distortion at most 1 + ϵ requires a space of dimension at least c log n

/�
ϵ2 log (1/ϵ)� for some constant c.

An easier implementation of dimension reduction, Proposition 13.22, uses random variables Xi, j

that independently take the values ±1 with probability 1/2 each. That this is possible was first noted by
Achlioptas and McSherry (2001, 2007). Actually, it is possible to use random variables that have the
distribution of a random variable X for which there exists a constant C > 0 such that Ee𝜆X ≤ eC𝜆2 (for
X = ±1 with probability 1/2 each, we have Ee𝜆X = cosh(𝜆) ≤ e𝜆

2/2). This is proved by the following
argument due to Assaf Naor (personal communication, 2004):

Let Xi be i.i.d. with the same distribution as X , and set Y :=
∑k

i=1 ui Xi with
∑k

j=1 u2
j = 1. Take

Z to be a standard normal random variable independent of {Xi}. Recall that for all real α, we have
EeαZ = eα

2/2. Since Y and Z are independent, using Fubini’s theorem, we get that for any 𝜆 < C/4,

Ee𝜆Y
2 = Ee(

√
2𝜆Y )2/2 = Ee

√
2𝜆YZ = Ee

∑k
i=1
√

2𝜆uiXiZ = EE
�
e
∑k

i=1
√

2𝜆uiXiZ
�

Z
�

≤ EeC
∑k

i=1 2𝜆u2
i Z

2 = Ee2C𝜆Z2 =
1

√
1 − 4C𝜆

.

Then the rest of the argument is the same as Proposition 13.22.
Our exposition of the proof of Theorem 13.23 follows Linial, London, and Rabinovich (1995), but

the idea is the same as the original proof of Bourgain. Embeddings of the sort (13.24) are known
as Fréchet embeddings. For more on the use of embeddings in computer science, see Chapter 15 of
Matoušek (2002).

The following theorem was proved by Benjamini, Lyons, and Schramm (1999):

Theorem 13.36. (Speed on Percolation Clusters) Let G be a nonamenable transitive unimodular
graph. Let ω be an invariant percolation on G. Then simple random walk on some infinite cluster of ω
has positive speed with positive probability in each of the following cases:

(i) ω is Bernoulli percolation that has infinite components a.s.;
(ii) ω has a unique infinite cluster a.s.;

(iii) ω has a cluster with at least three ends with positive probability;
(iv) E[degω o | o ∈ ω] > α(G).
Equivariant maps f : Γ → H , where Γ is a (finitely generated) group and H is a Hilbert Γ-space,

that is, a Hilbert space on which Γ acts by isometries, are also related to speed of random walks. Fix a
Cayley graph G of Γ (it doesn’t matter which one). Using the metric of G, we see that all such maps
f are Lipschitz with Lipschitz constant maxx∼o ∥ f (x) − f (o)∥. Let α#(Γ) be the supremum of α for
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which there exists some equivariant f and c > 0 with ∥ f (x) − f (y)∥ ≥ c dG (x, y)α . We call α#(Γ) the
equivariant Hilbert compression exponent of Γ. Let β∗(Γ) be the supremum of β for which simple
random walk ⟨Xn⟩ on some Cayley graph G of Γ satisfies E

�
dG (X0, Xn)� ≥ cnβ for some c > 0 and all

n ≥ 0. Then α#(Γ)β∗(Γ) ≤ 1/2; see Naor and Peres (2008).
Theorem 13.26 was discovered by Anna Erschler (private communication), who noted that it follows

from a result of Mok (1995) and Korevaar and Schoen (1997) that ensures the existence of a nonconstant
equivariant harmonic map from Γ to a Hilbert Γ-space H , provided Γ is not Kazhdan. Kleiner (2010)
presents a short proof of the existence of such a map. The proof we present of Theorems 13.25 and
13.26 follows Lee and Peres (2013), where these results were extended to random walks on transitive
graphs. That paper also establishes the existence of an automorphism-equivariant harmonic map to H

in this setting, provided the automorphism group of the graph is not Kazhdan. Lee, Peres, and Smart
(2014) deduced that for every infinite vertex-transitive graph G, there is a constant CG > 0 such that, if
⟨Xt ⟩ is the simple random walk on G, then for every ϵ > 0 and t ≥ 1/ϵ2,

P
[
dist(Xt , X0) ≤ ϵ

√
t
]
≤ CG ϵ .

Although simple random walk on nonamenable Cayley graphs escapes at positive (linear) speed, the
inequality E

�
dist(X0, Xt )2� ≥ t/d of Theorem 13.26 without a group-dependent constant is not known

for such graphs (except for Cayley graphs of non-Kazhdan groups, which are precisely the infinite
groups that admit a nonconstant equivariant harmonic map to a Hilbert space, H ).

Proposition 13.30 is due to Peres (1997), unpublished. The inequalities of Propositions 13.3 and
13.30 were sharpened in remarkable work of Virág (2000b, 2002). In the first paper, he proved that if
𝖱𝖶𝜆 is considered instead of simple random walk, then we have the bound

br G − 𝜆
br G + 𝜆

≥ s (13.33)

for all graphs G, where s is the essential supremum of the liminf speed. In other words, the liminf speed
is a.s. at most the left-hand side of (13.33). In fact, he defined the branching number for networks and
proved that

br G − 1
br G + 1

≥ s (13.34)
holds for all networks. Here, for a network (G, c), its branching number is

br(G, c) = inf
{
𝜆 > 0 ; inf

{∑
e∈Π

c(e)𝜆−|e | ; Π separates o from∞
}

= 0
}
.

Thus, if G𝜆 is the network on the graph G corresponding to 𝖱𝖶𝜆, then br G𝜆 = (br G)/𝜆, so that (13.34)
includes (13.33). In this same first paper, Virág defined a more refined notion of branching number, the
essential branching number

ess br G = inf
{
𝜆 > 0 ; inf

{ ∑
e∈∂𝖤W

c(e)𝜆−|e | ; the random walk from o a.s. leaves W
}

= 0
}
, (13.35)

where W is a set of vertices, possibly infinite. When W is restricted to be finite, this is simply another
form of the definition of branching number for a network. Virág (2000b) showed that

ess br G − 1
ess br G + 1

∨ 0 ≥ s . (13.36)

In his second paper, Virág proved an inequality analogous to (13.34) that relates limsup speed to a
notion of upper growth for general networks.
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Theorem 13.31 is due to Lyons (1996).
The first reference we know to tree-indexed random walk is Dubins and Freedman (1967). They

considered the case where T is a binary tree and Xv = ±1 with probabilities p and 1 − p.
Biggins (1977) gave a result more general than our Theorem 13.32, as he allowed dependencies

among siblings, as in Section 5.9.
Cloud speed and burst speed of tree-indexed walks were studied in Benjamini and Peres (1994b),

while sustainable speed was studied earlier by Lyons and Pemantle (1992).
To describe when a tree-indexed walk has positive burst speed, we will need one more definition, due

(in greater generality) to Tricot (1982). The packing dimension of ∂T is defined by
dimP(∂T) := inf

�
sup
i

log gr T (i)	 ,
where the infimum extends over all countable collections

�
T (i)	 of subtrees of T such that ∂T =

∪
i ∂T (i).

In particular, dimP(∂T) ≤ log gr T . For the 1–3 tree of Example 1.2, we have dimP(∂T) = 0 and
log gr T = log 2.

Theorem 13.37. (Benjamini and Peres, 1994b) Suppose that the vertices of an infinite locally finite
tree T are labeled by random variables Xv that satisfy (13.32). Then

(i) lcloud > 0 ⇔ log gr(T) > 0, provided that T has no leaves, and
(ii) lburst > 0 ⇔ dimP(∂T) > 0.

A quantitative version of part (i) of this theorem can be given if the labeling variables Xv are
Gaussian.

▷ Exercise 13.14.
Suppose that T is an infinite tree without leaves and that its vertices are labeled by i.i.d. variables
Xv ∼ N(0, 1). Denote d∗ := log gr(T). Prove that√

d∗/2 ≤ lcloud ≤
√

2d∗

and both bounds can be achieved.

Part (ii) of the preceding theorem, combined with Theorem 13.33, can be used to show that on some
trees, burst speed is strictly smaller than sustainable speed:

▷ Exercise 13.15.
Let ⟨nk ⟩k≥1 be an increasing sequence of positive integers. Construct a tree T as follows: The first n1
levels of T are as in the 1–3 tree. To each vertex v in level n1 of T , attach a copy of the first n2 − n1
levels of the 1–3 tree, with v as its root. Continue iteratively by attaching a copy of the first nk+1 − nk

levels of the 1–3 tree to each vertex at level nk of T . Show that for every choice of ⟨nk ⟩ (and for
every distribution of the variables Xv that satisfies (13.32)), we have lburst > 0, but if the nk increase
sufficiently quickly, then lsust = 0.

For further probabilistic applications of packing dimension, see Khoshnevisan, Peres, and Xiao
(2000).

Let T be a tree without leaves. Instead of a T-indexed random walk, one can consider a T-indexed
Markov chain determined by a transition kernel p(•, •) on a countable state space 𝖵. Along any infinite
ray of T , this reduces to the trajectory of a standard Markov chain on 𝖵 with transition kernel p(•, •).
Let ρ be the spectral radius of the latter chain, defined as in (6.14). Benjamini and Peres (1994a)
proved that there exists a ray in T with a bounded trajectory iff ρ · br T > 1. (This is closely related to
Example 5.20.) Call a T-indexed Markov chain recurrent if infinitely many vertices of T are mapped
to the image of the root a.s. Given a tree T without leaves and a transition matrix p(•, •), Benjamini
and Peres (1994a) also showed that gr T > 1 iff there exists a nonamenable graph where the resulting
T-indexed chain is recurrent.
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13.10 Collected In-Text Exercises
13.1. Show that simple random walk has speed 0 on the tree T formed from a binary tree by joining

a unary tree to every vertex, as in Figure 13.1.

13.2. Let Ω be finite or countable, and let µ and 𝜈 be probability measures on Ω.
(a) Show that ∥µ − 𝜈∥TV = 1

2
∑

z∈Ω
�
µ(z) − 𝜈(z)� and 1 − ∥µ − 𝜈∥TV =

∑
z∈Ω

�
µ(z) ∧ 𝜈(z)�, where

x ∧ y := min{x, y}.
(b) Deduce that

||µ − 𝜈 ||TV = min
X∼µ, Y∼𝜈

P[X ̸= Y ] .

(c) Prove that ∥µP − 𝜈P∥TV ≤ ∥µ − 𝜈∥TV for every transition matrix P on Ω.

13.3. (a) Show that the two notions of distance to stationarity, δ( • ) and δ( • ), satisfy

δ(t) ≤ δ(t) ≤ 2δ(t) for t ≥ 0 .

(b) Show that δ(t) = max
x∈𝖵

1
2

∑
y∈𝖵

�
pt (x, y) − π(y)� ≤ max

x ,y∈𝖵

����� pt (x, y) − π(y)
2 π(y)

����� .
13.4. For a reversible chain, define 𝜆∗ := max j>1 |𝜆 j |. Show that 𝜆t∗ ≤ 2δ(t) for all t ≥ 1, and deduce

that tmix(ϵ) ≥ [g−1
∗ − 1] log 1/(2ϵ).

13.5. Prove that in every transitive network, we have D2 ≤ 4D̂2.

13.6. A collection of metric spaces has uniform Markov type 2 if there exists a constant M < ∞
such that each space in the collection has Markov type 2 with constant M. Prove that the set of
k-dimensional hypercube graphs {0, 1}k does not have uniform Markov type 2. From this, deduce that
ℓ1 does not have Markov type 2.

13.7. Let P be the transition matrix for simple random walk on an infinite graph (𝖵, 𝖤). Prove that
⟨Piψ, ψ⟩→ 0 as i → ∞ for every ψ ∈ ℓ2(𝖵).

13.8. Show that br G does not depend on the choice of vertex o.

13.9. Show that if G′ is a subgraph of G, then br G′ ≤ br G.

13.10. Show that 𝜆c (G) ≤ br G.

13.11. Show that if the 1–3 tree in Example 1.2 is labeled by ±1-valued random variables ⟨Xv⟩ of
mean zero, then lcloud > 0, but lburst = lsust = 0.

13.12. Verify that if the law of Xv is N(0, 1), then I(a) = a2/2, whereas if Xv are ±1 valued with mean
zero, then I(a) = (1+a)

2 log (1 + a) + (1−a)
2 log (1 − a). (That this rate function is an upper bound for

simple random walk is noted in (13.1); for biased walks, a similar inequality is (6.62).)

13.13. Given a tree T and k ≥ 1, form the tree T [k] by taking the vertices x of T for which |x | is
a multiple of k and joining x and y by an edge in T [k] when their distance is k in T . Show that
br T [k] = (br T)k .

13.14. Suppose that T is an infinite tree without leaves and that its vertices are labeled by i.i.d.
variables Xv ∼ N(0, 1). Denote d∗ := log gr(T). Prove that√

d∗/2 ≤ lcloud ≤
√

2d∗

and both bounds can be achieved.
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13.15. Let ⟨nk ⟩k≥1 be an increasing sequence of positive integers. Construct a tree T as follows: The
first n1 levels of T are as in the 1–3 tree. To each vertex v in level n1 of T , attach a copy of the first
n2 − n1 levels of the 1–3 tree, with v as its root. Continue iteratively by attaching a copy of the first
nk+1 − nk levels of the 1–3 tree to each vertex at level nk of T . Show that for every choice of ⟨nk ⟩ (and
for every distribution of the variables Xv that satisfies (13.32)), we have lburst > 0, but if the nk increase
sufficiently quickly, then lsust = 0.

13.11 Additional Exercises

13.16. Does expected distance from the starting point always increase monotonically for a random
walk? If the whole graph is a single edge, then the answer is no; perhaps we want to make an assumption
on the walk, such as that it is lazy, that is, for every vertex x we have that p(x, x) ≥ 1/2. Still, if we take
a binary tree of large height and then identify the leaves to a single vertex which we join to the root by a
new edge, then for (lazy) simple random walk starting at the root, the expected distance from the root
will increase for a while but will eventually be small, approximately

∑
n≥1 n/2n = 2. This suggests

that we might want to take expectation over a stationary starting distribution. However, this is still not
enough, though it does suffice for the distance not to go down by a factor of more than 2.

(a) Show that the expected distance of simple random walk on the usual Cayley graph of �d is
monotonic.

(b) Consider a cycle on N points to which we add new edges of conductance 2−N between every
pair of points whose distance in the cycle is at least

√
N . If cN denotes the sum of conductances at

a vertex in this network, then add a loop at each vertex of conductance cN . For this new (transitive)
network, where N is large and fixed, show that the expected distance of this lazy random walk is not
monotone in the number of steps.

(c) Given a finite connected network, let X = ⟨Xn⟩ be the associated network random walk with
X0 having the stationary probability distribution. Write d(x, y) for the graph distance between two
vertices x and y in the network. Define D(n) := E

�
d(X0, Xn)�. Show that for j, k ≥ 0, we have

D( j + k) = E
�
d(X j , X ′k )

�
X0 = X ′0

�
when X ′ is an independent copy of X .

(d) In the setting of part (c), show that if 0 ≤ k ≤ min{m, n}, then D(n) ≤ D(m) + D(m + n − 2k).
In particular, if n = 2k, then D(n) ≤ 2D(m) and if n = 2k + 1, then D(n) ≤ D(m) + D(m + 1) and
D(n) ≤ 2D(m) + 1.

(e) In the setting of part (c), show that if X is lazy, then there is a stationary random walk Y on
another network so that for all n ≥ 0, we have Xn = Y2n .

(f) Deduce that in the setting of part (c), if X is lazy, then D(n) ≤ 2D(m) whenever m ≥ n/2.

13.17. Show that every submartingale ⟨Yn⟩ with bounded increments satisfies lim infn→∞ Yn/n ≥ 0.

13.18. Extend Theorem 13.1 beyond the uncorrelated case as follows.
(a) Show that if an ≥ 0 satisfy

∑
n an/n < ∞, then there exists an increasing sequence of integers

nk such that
∑

k ank
< ∞ and limk→∞ nk+1/nk = 1.

(b) Show that if Xn are random variables with |Xn | ≤ 1 a.s. and

∑
n

1
n

E
[����1n

n∑
k=1

Xk

����2
]
< ∞ ,

then
∑n

k=1 Xk/n → 0 a.s.
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13.19. Extend Theorem 13.1 beyond the uncorrelated case as follows.
(a) Show that if an ≥ 0 satisfy

∑
n an/n < ∞, then there exists an increasing sequence of integers

nk such that
∑

k a2
nk

< ∞ and
∑

k

�
nk+1/nk − 1

�2
< ∞.

(b) Show that if Xn are random variables with E[X2
n] ≤ 1 and

∑
n

1
n

E
[����1n

n∑
k=1

Xk

����2
]1/2

< ∞ ,

then
∑n

k=1 Xk/n → 0 a.s.

13.20. Extend Theorem 13.2 to show that under the same hypotheses,

P(A ) ≤ e−L
2
/(2

∑n
i=1 ∥Xi ∥2

∞)

whenever A is an event such that E
�∑n

i=1 Xi

�
A
�
≥ L.

13.21. Let ⟨X1, . . . , Xn⟩ be bounded random variables such that their partial sums Sk =
∑k

i=1 Xi form
a supermartingale.

(a) Show that the Hoeffding-Azuma inequality holds, that is, for all L > 0,

P
�
Sn ≥ L

�
≤ exp

(
− L2

2
∑n

i=1 ∥Xi ∥2
∞

)
.

(b) Show that for all L > 0,

P
�

max
1≤k≤n

Sk ≥ L
�
≤ exp

(
− L2

2
∑n

i=1 ∥Xi ∥2
∞

)
.

13.22. Let G be a finite directed graph such that at every vertex x, the number of edges going out from
x equals the number of edges coming into x, which we denote by d(x). Let b(G) denote the maximum
growth rate of the directed covers of G (the maximum is taken over possible starting vertices of paths).
Show that b(G) ≥∑

x∈𝖵 d(x)/|𝖵|.
13.23. Suppose that G is a finite directed graph such that there is a (directed) path from each vertex
to each other vertex. Show that there is a stationary Markov chain on the vertices of G such that the
transition probability from x to y is positive only if (x, y) ∈ 𝖤(G) and such that the entropy of the
Markov chain equals the log of the growth rate of the directed cover of G.

13.24. One version of continuous-time random walk on a network can be described in either of the
following two equivalent ways: Let X := ⟨Xn ; n ∈ �⟩ be the usual discrete-time network random walk.
Let Sn be exponential random variables that are independent given X , with the parameter of Sn being
π(Xn). For t ∈ [0,∞), write n(t) := inf

�
k ;

∑k
j=0 Sj ≥ t

	
. Now define Yt := Xn(t ). Alternatively, there

are independent Poisson processes associated to all edges, where the process associated to e has rate
c(e). When the process Y is at x, it moves across the edge incident to x at the next arrival time for the
Poisson processes associated to the edges incident to x.

Consider the 3-regular tree and a perfect matching F of the tree. Let c(e) = 1 for every edge
e /∈ F and c(e) = α for all e ∈ F. Calculate limt→∞ |Yt |/t.
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13.25. Let T be a tree and N be an integer such that for every vertex u, there is some vertex x ≥ u
with at least two children and with |x | < |u| + N . Show that if ⟨Xn⟩ is simple random walk on T , then

lim inf
n→∞

|Xn |
n
≥ 1

3N
a.s.

13.26. One might expect that the speed of 𝖱𝖶𝜆 would be monotonic decreasing in 𝜆. But this is not
the case, even in simple examples: Let T be a binary tree to every vertex of which is joined a unary tree
as in Figure 13.1. Show that for 1 ≤ 𝜆 ≤ 2, the speed is

(2 − 𝜆)(𝜆 − 1)
𝜆2 + 3𝜆 − 2

,

which is maximized at 𝜆 = 4/3.

13.27. Find a finite connected graph whose universal cover has the property that the speed of 𝖱𝖶𝜆 is
not monotonic.

13.28. Consider the directed graph shown in Figure 13.2. Let T be
one of its directed covers (shown in Figure 3.2). Why is T called the
Fibonacci tree? Show that the speed of 𝖱𝖶𝜆 on T is�√

𝜆 + 1 + 2
��√

𝜆 + 1 − 𝜆
�

√
𝜆 + 1

�
2 + 𝜆 +

√
𝜆 + 1

�
for 0 ≤ 𝜆 < (√5 + 1)/2.

Figure 13.2. A directed
graph whose cover is the
Fibonacci tree.

13.29. Identify the binary tree with the set of all finite sequences of 0s and 1s. Let the conductance of
an edge be x + 1 when its vertex farthest from the root ends in x, where x ∈ {0, 1}. Calculate the speed
of the corresponding random walk.

13.30. Prove (13.11) by reducing to the spectral theorem from linear algebra on finite-dimensional
spaces as follows. Let Hn be finite-dimensional subspaces increasing to the entire Hilbert space. Let An

be the orthogonal projection onto Hn . Then An converges to the identity operator in the strong operator
topology, that is, An f converges to f in norm for every f . Since An has norm 1, it follows that AnSAn

converges to S in the strong operator topology. Furthermore, AnSAn is really a self-adjoint operator
of norm at most ∥S∥ on Hn . Since Q(AnSAn) converges to Q(S) in the strong operator topology and
thus ∥Q(AnSAn)∥ → ∥Q(S)∥, the result (13.11) can be applied to AnSAn and then deduced for S.

13.31. Suppose that (G, c) is a network with π( • ) bounded above. Suppose that for all large r, the
balls B(o, r) have cardinality at most Ard for some finite constants A, d. Write |x | := d(o, x). Show
that the network random walk ⟨Xn⟩ obeys

lim sup
n→∞

|Xn |√
n log n

≤
√

d a.s.

13.32. Suppose that (G, c) is a network with π( • ) bounded above. Suppose that for all large r, the
balls B(o, r) have cardinality at most ArdeBrα for some finite constants A, B, d, α, with 0 < α ≤ 1.
Write |x | := d(o, x). Show that the network random walk ⟨Xn⟩ obeys

lim sup
n→∞

|Xn |
n1/(2−α) ≤ (2B)1/(2−α) a.s.

13.33. Let ⟨Gn⟩ be a (k, c)-expander family as defined before Theorem 6.17, that is, Gn is a regular
graph of degree k with n vertices and expansion at least c. We use the notation xn ≍ yn to mean that
the ratio yn/xn is bounded above and below by positive constants. Show that diam(Gn) ≍ log n and
the mixing time of the lazy simple random walk on Gn satisfies tmix(Gn) ≍ log n, where the implied
constants depend only on k and c.
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13.34. Show that for any finite network and any vertex a, there is a random time τ such that the network
random walk ⟨Xt ⟩ satisfies Pa[Xτ = •] = π( • ), the stationary distribution, and Ea[τ] ≤ 4 tmix(1/4).
13.35. Show that a metric space (X , d) has Markov type 2 iff there exists a constant M < ∞ such that
for every reversible Markov chain ⟨Zt ⟩∞t=0 with a stationary probability measure on a countable state
space W , every mapping f : W → X , and every time t ∈ �,

E
�
d
�

f (Zt ), f (Z0)�2� ≤ Mt E
�
d
�

f (Z1), f (Z0)�2�
.

13.36. Combine the martingale decomposition in the proof of Lemma 13.15 with the Hoeffding-
Azuma inequality to obtain a large deviation bound for functions of stationary reversible Markov chains
taking values in �d with bounded increments.

13.37. Show that the lamplighter group �⊙ defined in Section 3.4 has Markov type 2.

13.38. Consider a finite lamplighter group �3
n
⊙ where the lamps are attached to vertices of the

three-dimensional discrete torus �3
n . Show that �3

n
⊙ has Hilbert distortion at least cn3/2 for some

absolute constant c > 0.

13.39. For simple random walk in �2, show that the probability not to return to the starting point for
k steps is of order (log k)−1. Deduce that the expected range of simple random walk on �2 after t steps
is of order t/(log t). Hint: Consider the effective conductance from 0 to the circles of radii k or k1/4.

13.40. Suppose G is an amenable transitive graph where the graph metric has Markov type 2 with
constant M. Prove that simple random walk on G satisfies E

�
d(X0, Xt )2� ≤ M2t for all t ∈ �, and

show that the amenability assumption is needed. Deduce that for d ≥ 2, the Cayley graph of �d⊙ , the
lamplighter group over the lattice �d , does not have Markov type 2.

13.41. Show that there is a constant c > 0 such that for all graphs G with all degrees at least 3 and
girth at least g, the Hilbert distortion of G is at least c

√
g. Here, girth is the length of the smallest

simple cycle.

13.42. Let G be a finite connected transitive graph of diameter D. Show that there is a permutation σ
of 𝖵 such that for all x ∈ 𝖵, we have d(x, σ(x)) = D.

13.43. Let G be a finite connected graph with maximum degree k ≥ 3. Show that there exists a
permutation σ of 𝖵 such that for all x ∈ 𝖵, we have d(x, σ(x)) > log

�|𝖵|/2�/�2 log (k − 1)�. Hint:
Choose σ at random, not quite uniformly.

13.44. Let (G, c) be a finite connected network. Define the network Laplacian ∆G to be the 𝖵 × 𝖵
matrix whose (x, y) entry is −c(x, y) if x ̸= y and is π(x) if x = y. Another way to define ∆G is that
for a function f on 𝖵, we have ∆G ( f ) = d∗cd f . In particular,

�
∆G ( f ), f

�
= ∥df ∥2

c ≥ 0 and ∆G is
self-adjoint on ℓ2(𝖵). Thus, the eigenvalues of ∆G are nonnegative. Since each row sum of ∆G is 0, the
smallest eigenvalue is 0; denote the next smallest by 𝜆1(G, c). Write c̄ := 2

∑
e∈𝖤1/2

c(e)/|𝖵|. Show that
for every permutation σ of 𝖵 and every map f :𝖵→ H , where H is a Hilbert space, we have

𝜆1(G, c)
2c̄

· 1
|𝖵|

∑
x∈𝖵

�
f (x) − f (σ(x))�2 ≤ 1∑

e∈𝖤1/2
c(e)

∑
e∈𝖤1/2

c(e) ∥ f (e+) − f (e−)∥2 . (13.37)

13.45. Let (G, c) be a finite connected network. Define 𝜆1(G, c) and c̄ as in Exercise 13.44. Show
that for every map f :𝖵→ H , where H is a Hilbert space, we have

𝜆1(G, c)
2c̄

· 1
|𝖵|2

∑
x ,y∈𝖵

�
f (x) − f (y)�2 ≤ 1∑

e∈𝖤1/2
c(e)

∑
e∈𝖤1/2

c(e) ∥ f (e+) − f (e−)∥2 .

Show that if D̂2 is the average squared distance between pairs of vertices in G, then the distortion is at
least D̂

√
𝜆1(G, c)/(2c̄).
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13.46. Let (G, c) be a finite connected network. Define 𝜆1(G, c) and c̄ as in Exercise 13.44. Consider
a permutation σ of 𝖵; define the displacement of σ to be

�̂�(σ) :=
√

1
|𝖵|

∑
x∈𝖵

d(x, σ(x))2
.

Then define the maximal displacement of G to be

�̂�(G) := max
σ

�̂�(σ) .

Show that the Hilbert distortion of G is at least �̂�(G)√𝜆1(G, c)/(2c̄).
13.47. Let (G, c) be a network. Define 𝜆1(G, c) as in Exercise 13.44. Give each edge e the length ℓ(e)
and use the induced shortest-path metric dℓ on 𝖵. Define the associated displacement of a permutation
σ by

�̂�(σ, ℓ) :=
√

1
|𝖵|

∑
x∈𝖵

dℓ
�
x, σ(x)�2

and the maximal displacement �̂�(G, ℓ) := maxσ �̂�(σ, ℓ) accordingly. Show that the Hilbert distortion of
(𝖵, dℓ ) is at least �̂�(G, ℓ)√𝜆1(G, c)/(2 c̃ ), where c̃ := 2

∑
e∈𝖤1/2

c(e)ℓ(e)2/|𝖵|.
13.48. Let G be the k-dimensional hypercube graph, but give all edges in direction i the length ℓi

(1 ≤ i ≤ k). Show that the Hilbert distortion of G (in the sense of Exercise 13.47) has the value
(ℓ1 + · · · + ℓk )/

√
ℓ2

1 + · · · + ℓ2
k .

13.49. Show that the Hilbert distortion of the cycle on 2n vertices equals n sin
�
π/(2n)� for every

integer n ≥ 1.

13.50. Suppose that the Hilbert distortion of G equals CG := �̂�(G)√𝜆1(G)/(2c̄(G)), with notation as
in Exercise 13.46. Show that the Hilbert distortion of the n-fold Cartesian product G□n of G with itself
equals CG

√
n.

13.51. Let G be the Cartesian product of a 3-cycle and an edge. Show that the Hilbert distortion of
the n-fold Cartesian product G□n of G with itself equals

√
n.

13.52. Suppose that Gi for i = 1, 2 are transitive networks on two Cayley graphs of the same diameter
δ that have Hilbert distortion Ci := δ

√(1 − 𝜆2(Pi ))/2. Show that the Hilbert distortion of G1 □ G2

equals 2
√

C1C2/(C1 + C2).
13.53. Let G be the Cartesian product of a 6-cycle and the three-dimensional hypercube. Calculate

the Hilbert distortion of the n-fold Cartesian product G□n of G with itself.

13.54. Show that the hypothesis of bounded degree in Proposition 13.30 is necessary.

13.55. Give an example of a graph G of bounded degree such that 𝜆c (G) < br(G).
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14 Random Walks on Groups
and Poisson Boundaries

In this chapter we examine group-invariant random walks and, more generally, transitive
Markov chains. What can we say about their asymptotic behavior? It turns out that a
key particular asymptotic, the speed of the random walk, determines whether there is any
nontrivial asymptotic behavior. Asymptotic behavior is also closely related to the existence
of nonconstant bounded harmonic functions and to entropy.
Consider first simple random walk on a Cayley graph. For instance, in �d, simple

random walk has speed zero; also, every bounded harmonic function is constant, as shown in
Section 9.6. On the other hand, on free groups other than �, simple random walk has positive
speed; also, it is easy to construct nonconstant bounded harmonic functions: the value at
x can be the probability that the random walk is in some given part of the Cayley graph
from some arbitrary time onward. Although there are no nonconstant Dirichlet harmonic
functions on the product of � with a free group, there are nonconstant bounded harmonic
functions there. Very interesting examples intermediate between abelian and free groups and
that mix features of both are provided by the lamplighter groups �d ⊙. These groups have the
same definition as �⊙ from Section 3.4, but the base group is �d for d ≥ 1. All of them are
amenable groups of exponential growth. But, surprisingly, the speed of simple random walk
on �d ⊙ is positive iff d ≥ 3; see Corollary 14.21.
Returning to simple random walks on general Cayley graphs, let H(Xn) be the entropy

of the distribution of Xn. The sequence ⟨H(Xn) ; n ≥ 0⟩ is subadditive (see Section 14.1),
whence the limit

h := lim
n→∞

H(Xn)
n

exists; it is the Avez entropy of the random walk. We will prove the following fundamental
theorem, which is a consequence of work of Avez, Derriennic, Kaimanovich and Vershik,
and Varopoulos.

Theorem 14.1. (Speed, Entropy, Tail, and Liouville) For a simple random walk ⟨Xn⟩ on
a Cayley graph, the following four properties are equivalent:

(i) The random walk has positive speed, that is, there exists some l > 0 such that

d(X0, Xn)
n

→ l almost surely.

(ii) The Avez entropy h > 0.
(iii) The random walk has a nontrivial tail σ-field.
(iv) The Cayley graph admits nonconstant bounded harmonic functions.
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Recall that a σ-field F is P-trivial iff every A ∈ F satisfies P(A) ∈ {0, 1}. Since we may
interpret “asymptotic behavior” as the tail σ-field, this theorem does indeed show that the
speed determines whether there is any nontrivial asymptotic behavior. Here, “nontrivial”
means behavior that has probability strictly between 0 and 1; the law of the iterated logarithm
is highly nontrivial and describes asymptotic behavior of random walks on �, but it describes
almost sure behavior.
The preceding theorem is valid in a more general setting; see Theorem 14.20. In particular,

we will show that the equivalence of (ii), (iii), and (iv) does not require symmetry. In contrast,
biased simple random walk on � has positive speed but zero Avez entropy.
Although the above theorem provides powerful dichotomies, it does not describe the tail

σ-field when it is nontrivial, nor does it describe the set of bounded harmonic functions. In
fact, one can easily describe the tail σ-field in terms of the set of bounded harmonic functions
and vice versa: see Proposition 14.12 and Theorem 14.18. Furstenberg gave a framework for
concrete descriptions of the bounded harmonic functions in terms of what he called Poisson
boundaries, and also gave a criterion for identifying them. It turns out that an extension of
the above theorem due to Kaimanovich provides a more powerful tool for the purpose of
identification; see Section 14.4.

14.1 Tail, Entropy, and Speed for Transitive Markov Chains

A Markov chain is determined by a countable state space 𝖵, a transition matrix P =�
p(x, y)�

x,y∈𝖵, and an initial distribution. Endow the sequence space 𝖵� with the usual Borel
σ-field B (the minimal σ-field that contains all the elementary cylinders ⟨y0, . . . , yk⟩ ×
𝖵{k+1,k+2,...} for all k and y0, . . . , yk ∈ 𝖵). The left-shift S acts on 𝖵� via S(x0, x1, . . .) :=
(x1, x2, . . .). For each x ∈ 𝖵, let Px denote the law of the Markov chain X0, X1, . . . with
transition matrix P and X0 = x. For any probability measure θ on 𝖵, write Pθ :=

∑
x∈𝖵 θ(x)Px

for the law of the chain with initial distribution θ. The tail σ-field on 𝖵� is defined by
T :=

∩∞
n=0 S−nB. A function f :𝖵� → � is called a tail function if it is T -measurable.

It is sometimes convenient to think of tail events and functions via the corresponding
equivalence relation, although we will not use this interpretation explicitly.

▷ Exercise 14.1.
For y, z ∈ 𝖵�, write y T∼ z iff ∃n ∀m ≥ n ym = zm. Let A ⊆ 𝖵� be a Borel set. Show that
A ∈ T iff A is a union of tail equivalence classes (that is, y ∈ A, y T∼ z ⇒ z ∈ A). Similarly,
show that a Borel function f :𝖵� → � is a tail function iff y

T∼ z implies f (y) = f (z).
Example 14.2. Consider the 3-regular infinite tree �3 with a distinguished vertex, o. Remov-
ing o yields three connected components, each a binary tree, denoted by T1,T2,T3. Then the
three events Ei := {y ∈ 𝖵� ; ∃N ∀n ≥ N yn ∈ Ti} are in T , and for simple random walk
on �3 started at any vertex x, we have 0 < Px(Ei) < 1.

▷ Exercise 14.2.
Let (T , c) be a transient network on a tree with bounded conductances. Show that the network
walk has a nontrivial tail.



§1. Tail, Entropy, and Speed for Transitive Markov Chains 469

Let Γ be a countable group, and let µ be a probability measure on Γ. A random walk
on Γ with step distribution µ, also called a µ-walk, is a Markov chain ⟨Xn⟩ with transition
probabilities p(x, y) := µ(x−1y). We often assume that the support of µ generates Γ as a
semigroup; this ensures that the µ-walk is irreducible on Γ. If the walk is started at the
identity o, then Xn can be represented as a random product g1g2 · · · gn, where the increments
gi are i.i.d. with law µ. A special case is simple random walk on the right Cayley graph of a
finitely generated group. When X ∼ µ and Y ∼ 𝜈 are independent, the law of XY is usually
denoted by µ ∗ 𝜈, which is called the convolution of µ and 𝜈. For this reason, we refer to
µ-walks as convolution random walks.

Example 14.3. For a convolution random walk on an abelian group started at x, every tail
event is invariant under finite permutations of the increments. Since the exchangeable σ-field
of the i.i.d. increments is trivial by the Hewitt-Savage zero-one law, it follows that the tail
σ-field of a random walk on an abelian group is Px-trivial. Note, however, that the tail σ-field
need not be Pθ -trivial for other initial distributions θ: for simple random walk on �, the tail
event A :=

∪
k≥1

∩
n≥k{y ; yn − n ∈ 2�} has 0 < Pθ (A) < 1 if θ(0) θ(1) > 0.

Definition 14.4. Let P be a transition matrix on 𝖵, and let γ be a permutation of 𝖵. We
say that γ is an automorphism of (𝖵, P), and write γ ∈ Aut(𝖵, P), if p(γx, γy) = p(x, y)
for all x, y in 𝖵. A Markov chain with transition matrix P is called transitive (or spatially
homogeneous) if Aut(𝖵, P) acts transitively on 𝖵, that is, for all z, w in 𝖵 there exists
γ ∈ Aut(𝖵, P) such that γ(z) = w. Simple random walks on transitive graphs are, of course,
transitive chains; so are convolution random walks on groups.

We will show that for transitive chains, tail triviality may be characterized via entropy.
Indeed, entropy will be a key tool throughout this chapter. Recall that for a discrete random
variable X , the entropy of X is defined by H(X) = −∑x P[X = x] log P[X = x]. More
generally, given a σ-field F , the conditional entropy of X is

H(X | F ) := −E
[∑

x

P[X = x | F ] · log P[X = x | F ]
]
. (14.1)

▷ Exercise 14.3.
Show that if a discrete random variable X satisfies H(X | F ) = H(X) a.s., then X is
independent of F .

▷ Exercise 14.4.
Prove that we always have H(X ,Y | F ) ≥ H(X | F ).

The conditional entropy is monotone decreasing in F , which extends (6.42):

Lemma 14.5. (Monotonicity of Conditional Entropy) Let X be a discrete random variable
defined on a measure space (Ω,F ,P).

(i) If G ⊂ F is a smaller σ-field, then H(X | G ) ≥ H(X | F ). Equality holds if and only
if P[X = • | F ] = P[X = • | G ] a.s.

(ii) Suppose that ⟨Gn⟩ is a decreasing sequence of sub-σ-fields of F , with
∩

n Gn = G .
Then H(X | Gn) ↑ H(X | G ).
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Proof. (i) The tower property of conditional expectations (conditioning on G in the right-hand
side below) yields that

H(X | G ) = −E
[∑

x

P[X = x | F ] · log P[X = x | G ]
]
.

Therefore

H(X | F ) − H(X | G ) = E
[∑

x

P[X = x | F ] · log
P[X = x | G ]
P[X = x | F ]

]
. (14.2)

Observe that
∑

x P[X = x | F ] = E[1 | F ] = 1 a.s. Invoking the inequality log r ≤ r − 1
implies that the right-hand side of (14.2) is nonpositive. For the right-hand side to vanish, the
ratio P[X = x | G ]/P[X = x | F ] must equal 1 a.s. for all x with P[X = x | F ] > 0, since the
inequality log r ≤ r − 1 is strict for positive r ̸= 1. Equivalently, we can rewrite (14.2) in the
form

H(X | G ) − H(X | F ) = E
[
DKL

�
P[X = • | F ] � P[X = • | G ]�] ,

and deduce the assertion of (i) from nonnegativity of the relative entropy, (6.39).
(ii) The Lévy zero-one law implies that limn P[X = x | Gn] = P[X = x | G ] a.s. for every

x, so by Fatou’s lemma, H(X | G ) ≤ lim infn H(X | Gn) = limn H(X | Gn). The reverse
inequality follows from (i). ◀

Consider a transitive chain ⟨Xn⟩ on 𝖵 started at X0 = o. Transitivity gives us the identity
H(Xm+n | Xm) = H(Xn), so H(Xm+n) ≤ H(Xm) + H(Xn) by (6.41) and (6.43). In particular,
if H(X1) < ∞, then H(Xn) < ∞ for all n. Also, the special case H(Xn+1 | X1) = H(Xn)
shows that the sequence



H(Xn)� is (weakly) increasing. By Fekete’s lemma (Exercise 3.9),

the Avez (asymptotic) entropy

h := lim
n→∞

H(Xn)
n

. (14.3)
exists.

Avez (1976) proved a lower bound for entropy in terms of the spectral radius, ρ.

Proposition 14.6. For any symmetric Markov chain (p(x, y) = p(y, x) for all x, y) and any
initial state o, we have lim infn→∞ H(Xn)/n ≥ 2 log (1/ρ). In particular, transitive symmetric
chains with ρ < 1 have h > 0.

Proof. By Jensen’s inequality and symmetry,

−H(Xn) =
∑
x

pn(o, x) log pn(o, x) ≤ log
∑
x

p2
n(o, x) = log

∑
x

pn(o, x)pn(x, o)

= log p2n(o, x) .

Dividing by −n and taking lim inf yield the claim. ◀

The next theorem already indicates the usefulness of the Avez entropy.
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Theorem 14.7. (Entropy and Tail Triviality) For a transitive Markov chain with initial
state X0 = o and H(X1) < ∞, the tail field T is Po-trivial if and only if h = 0.

In particular, this theorem readily implies that for any transitive graph with subexponential
growth, simple random walk has a trivial tail field. Since abelian groups have polynomial
growth, we obtain another proof of Example 14.3. Note that transitivity is crucial here, since
simple random walk on a transient tree has a nontrivial tail by Exercise 14.2, and there exist
transient trees of polynomial growth.

Proof of Theorem 14.7. For k < n, decompose H(Xk , Xn) in two ways:

H(Xk | Xn) + H(Xn) = H(Xk , Xn) = H(Xk) + H(Xn | Xk) = H(Xk) + H(Xn−k) . (14.4)

By the Markov property, we have that

H(Xk | ⟨X j⟩j≥n) = H(Xk | Xn) .

Thus (14.4) implies

H(Xk | ⟨X j⟩j≥n) = H(Xk) + H(Xn−k) − H(Xn) . (14.5)

The left-hand side is increasing in n and converges to H(Xk | T ) by Lemma 14.5. Considering
k = 1, we see that H(Xn) − H(Xn−1) converges as n → ∞; since the averages H(Xn)/n tend
to h, we infer that

H(Xn) − H(Xn−1)→ h . (14.6)
By taking n → ∞ in (14.5), we conclude that

H(Xk | T ) = H(Xk) − kh . (14.7)

Thus h = 0 if T is Po-trivial.
To see the converse, note that by the Markov property,

H(X1, . . . , Xk−1 | Xk ,T ) = H(X1, . . . , Xk−1 | Xk) ;

adding this to (14.7) yields

H(X1, . . . , Xk | T ) = H(X1, . . . , Xk) − kh . (14.8)

Therefore, if h = 0, then the sequence X1, . . . , Xk is independent of T for every k by
Exercise 14.3, whence T must be Po-trivial. ◀

To study the speed of random walk, a suitable metric is needed.
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Definition 14.8. Suppose that P is a transition matrix on 𝖵 and G = (𝖵, 𝖤) is a graph, with
corresponding graph metric d. If for all z, w in 𝖵 there exists γ ∈ Aut(𝖵, P) ∩ Aut(G) such
that γ(z) = w, then we call the chain with transition matrix P a transitive Markov chain with
an invariant graph metric.

The simplest example is simple random walk on a transitive graph. Another example is
a convolution walk on a countable group Γ, where the metric d arises from a right Cayley
graph G on Γ. In this case, transitions need not be restricted to edges of G, yet the action of
the group on itself by left multiplication defines automorphisms of (𝖵, P) and of G.

Next, consider a transitive chain on 𝖵 with an invariant graph metric d determined by the
transitive graph G = (𝖵, 𝖤). Fix a basepoint o ∈ 𝖵. By transitivity, the balls in G satisfy
|B(o, r + s)| ≤ |B(o, r)| · |B(o, s)|. Therefore, Fekete’s lemma (Exercise 3.9) implies that the
volume growth exponent v := limr→∞

1
r

log |B(o, r)| exists. Similarly, if ⟨Xn⟩ is a transitive
Markov chain on 𝖵 started at o, then transitivity implies that E|Xn+m | ≤ E|Xn | + E|Xm |,
where we write |x | := d(o, x) for x ∈ 𝖵. Thus, by Fekete’s lemma, if E|X1 | < ∞, then the
asymptotic speed l := limn E|Xn |/n exists. The next lemma relates these quantities to the
entropy h and the spectral radius ρ of the chain.

Theorem 14.9. (Entropy and Speed) Let ⟨Xn⟩ be a transitive Markov chain on 𝖵 with an
invariant graph metric d determined by a transitive graph G = (𝖵, 𝖤). Fix an initial state o.

(i) If E|X1 | < ∞, then the entropy, speed, and volume growth are related by h ≤ lv.
(ii) Suppose that ⟨Xn⟩ is a network random walk for some transitive network on G. (In

particular, p(x, y) = p(y, x) for all x and y by transitivity, and l < 1.) Then we have
h ≥ l2/2 + log (1/ρ).

Part (i) is intuitive, since Xn is likely to be in B
�
o, n(l +ϵ)�, so H(Xn) should be bounded by

the logarithm of the volume of this ball. This intuition can be rigorized using Theorem 14.10;
see Exercise 14.26. Here we give a direct, elementary (though less intuitive) proof.

Proof. Abbreviate pn(x) := pn(o, x).
(i) We may assume that v < ∞, since the inequality is vacuous otherwise. Define the

spheres Sk :=
�
x ∈ 𝖵 ; |x | = k

	
. Given ϵ > 0, consider the probability measure 𝜈ϵ on 𝖵

defined by 𝜈ϵ (x) := e−zϵ−kϵ |Sk |−1 for x ∈ Sk (where e−zϵ = 1 − e−ϵ is a normalizing constant).
By the nonnegativity of Kullback-Leibler divergence, (6.39),

0 ≤ DKL(pn ∥ 𝜈ϵ ) =
∞∑
k=0

∑
x∈Sk

pn(x) log
�
pn(x)ezϵ +kϵ |Sk |� .

By the definition of v, there exists Cϵ < ∞ such that log |Sk | ≤ k(v + ϵ) + Cϵ for all k ≥ 0.
Therefore,

H(Xn) ≤
∞∑
k=0

Po[Xn ∈ Sk]�zϵ + kϵ + log |Sk |� ≤ ∞∑
k=0

Po[Xn ∈ Sk]�zϵ + Cϵ + k(v + 2ϵ)�
= E

� |Xn | �(v + 2ϵ) + zϵ + Cϵ .

Dividing by n and taking limits yields h ≤ l(v + 2ϵ). This concludes the proof.
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(ii) Since π is constant, the Varopoulos-Carne bound, Theorem 13.4, states that for every
x ∈ 𝖵,

pn(x) ≤ 2ρn exp
(
− |x |

2

2n

)
, or equivalently, log

1
pn(x) ≥

|x |2
2n
− n log ρ − log 2 .

Therefore,

H(Xn) ≥
∑
x∈𝖵

pn(x) |x |
2

2n
− n log ρ − log 2 =

E
� |Xn |2�

2n
− n log ρ − log 2 .

Divide by n and use the arithmetic mean–quadratic mean inequality to get

H(Xn)
n

≥
�
E|Xn | �2

2n2 − log ρ − log 2
n

.

Passing to the limit yields the claimed inequality. ◀

▷ Exercise 14.5.
(a) Show that simple random walk on a (b + 1)-regular tree �b+1 satisfies h = lv.
(b) Find a Cayley graph where simple random walk satisfies h < lv. Hint: Consider a

Cartesian product of trees.

The following lemma gives pathwise interpretations of the asymptotic speed l and the
Avez entropy h, which were defined via expectations.

Theorem 14.10. (Pathwise Limits) Let ⟨Xn⟩ be a transitive Markov chain starting at o.
(i) If the chain is endowed with an invariant graph metric d and E

�
d(o, X1)� < ∞, then

almost surely
lim
n

1
n

d(o, Xn) = l .

(ii) If H(X1) < ∞, then almost surely

lim
n

1
n

log pn(o, Xn) = −h .

Proof. (i) Since d(o, Xn+m) ≤ d(o, Xn) + d(Xn, Xn+m), almost sure existence of the limit
limn

1
n

d(o, Xn) follows from the subadditive ergodic theorem (Theorem 14.44). The expecta-
tion of this limit must be l by the same theorem, so it remains only to check that the limit
is a.s. constant. If ⟨Xn⟩ is a random walk on a group, then (taking o to be the identity)
Xn =

∏n
i=1 Zi with Zi i.i.d., whence the assertion follows from the Kolmogorov zero-one law.

For a general transitive graph, invoke the upcoming Lemma 14.11.
(ii) Since pn+m(o, Xn+m) ≥ pn(o, Xn) · pm(Xn, Xn+m), almost sure existence of the limit

Λ(X0, X1, . . .) := limn
1
n

log pn(o, Xn) follows from the subadditive ergodic theorem. To see
that Λ is almost surely constant, observe that pn(X0, Xn) ≥ p(X0, X1)pn−1(X1, Xn); taking
logarithms, we see that Λ(X0, X1, . . .) ≥ Λ(X1, X2 . . .), so all the hypotheses of Lemma 14.11
are satisfied. ◀
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The next lemma was invoked in the preceding proof to establish that certain parameters for
transitive chains are a.s. constant.

Lemma 14.11. Let ⟨Xn⟩n≥0 be a Markov chain on 𝖵 and let Λ:𝖵� → � be a Borel function.
If the law of Λ(X0, X1, . . .) does not depend on the initial state X0 and Λ(X1, X2, . . .) ≤
Λ(X0, X1, . . .) a.s., then Λ(X0, X1, . . .) is a.s. constant.

Proof. We will show that for all t ∈ �, we have P
�
Λ(X0, X1, . . .) ≤ t

�
∈ {0, 1}. Indeed,

the two sides of Λ(X1, X2, . . .) ≤ Λ(X0, X1, . . .), have the same law, so they have the same
probability to be at most t. As this holds for all t ∈ �, it follows that Λ(X1, X2, . . .) =
Λ(X0, X1, . . .) a.s. Then, by using this shift-invariance of Λ, the independence of Λ from X0,
and the Markov property, then again the shift-invariance of Λ, we get that

P
�
Λ(X0, X1, . . .) ≤ t

�
= P

�
Λ(Xk , Xk+1, . . .) ≤ t

�
Fk

�
= P

�
Λ(X0, X1, . . .) ≤ t

�
Fk

�
,

which tends to 0 or 1 as k → ∞ by the Lévy zero-one law. ◀
A result similar to Theorem 14.10 about the behavior of Markov chains, which we will use

later, is the following.

▷ Exercise 14.6.
Given a transitive Markov chain ⟨X j⟩ on a state space 𝖵, denote the number of distinct states
among its first n by Rn := |{X0, X1, . . . , Xn−1}|. Fix o ∈ 𝖵, and show that limn→∞ Eo[Rn]/n =
Po[∀ j ≥ 1 X j ̸= o] as n → ∞. Deduce that Rn/n converges Po-a.s. to the same limit.

14.2 Harmonic Functions and the Liouville Property

Recall that a function u:𝖵 → � is harmonic for a transition matrix P = p(•, •) on 𝖵 if
Pu = u, where (Pu)(x) :=

∑
y∈𝖵 p(x, y)u(y). We say that a Markov chain has the Liouville

property if all bounded harmonic functions for that chain are constant. The main goal of
this section is to characterize which transitive Markov chains have this property. (Some of
our theorems will not require transitivity, so we will state explicitly whenever transitivity is
assumed.)

To this end, we define another important σ-field on the sequence space 𝖵�, the invariant
σ-field  := {A ∈ B ; S−1(A) = A}. (This is also sometimes called the stationary σ-field.)
As we will see,  is closely related to harmonic functions on 𝖵; in particular, x 7→ Px(A) is
harmonic for every A ∈ .
One might be inclined to interpret “asymptotic behavior” as  rather than T . How are

these two σ-fields related? Clearly  ⊆ T . For simple random walk on �, the event
A∗ := {y ; ∀n yn ≡ n mod 2} is a tail event but is not invariant. On the other hand, this
event A∗ has probability 0 or 1 for every Px . This is not an accident: for transitive chains, the
Px-completions of  and T coincide for every x; see Section 14.6. Here, we will prove this
also holds for lazy chains, that is, ones for which p(x, x) ≥ 1/2 for all x ∈ 𝖵.

We generally assume that our Markov chains are irreducible but will include that assump-
tion when used.
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Our first proposition exhibits the promised connection between the invariant σ-field and
the space BH(𝖵, P) of bounded harmonic functions on 𝖵. A function f :𝖵� → � is called an
invariant function if it is -measurable (equivalently, if f = f ◦ S). Say that two functions
f , g:𝖵� → � are Px-equivalent if Px[ f = g] = 1. Recall that L∞(𝖵�, ,Po) denotes the
space of Po-equivalence classes of bounded invariant functions on 𝖵�. We are going to
exhibit an isometric isomorphism between the Banach spaces L∞(𝖵�, ,Po) and BH(𝖵, P)
(with the sup norm). We invite the reader to warm up by doing the following exercise.

▷ Exercise 14.7.
Suppose that u is a bounded harmonic function on an irreducible Markov chain (𝖵, P) and c
is a constant such that limn u(Xn) = c almost surely-Po. Show that u(x) = c for all x ∈ 𝖵.

Proposition 14.12. (Equivalence of  and BH) For every bounded invariant function
f :𝖵� → �, the function Uf :𝖵→ � defined by

Uf (x) := Ex

�
f (X0, X1, . . .)� (14.9)

is harmonic. Moreover, if the chain is irreducible, the mapping f 7→ Uf is a linear isometry
from L∞(𝖵�, ,Po) onto BH(𝖵, P). In this case, its inverse is given by u 7→ Fu , where

Fu(x0, x1, . . .) := lim sup
n→∞

u(xn) . (14.10)
Proof. Let f :𝖵� → � be a bounded invariant function. For notational clarity, let both ⟨X j⟩
and ⟨Yj⟩ denote realizations of the Markov chain. Then f (X0, X1, . . .) = f (X1, X2, . . .) by
invariance of f , so for all x ∈ 𝖵,

Uf (x) = Ex f (X1, X2, . . .) =
∑
y∈𝖵

p(x, y)Ey f (Y0,Y1, . . .) = (PUf )(x) ,

showing that Uf is harmonic. To check that the map f 7→ Uf is well defined on the space
L∞(𝖵�, ,Po) of equivalence classes, consider two Po-equivalent bounded invariant functions
f and g on 𝖵�. Then 1[ f ̸=g] is invariant. Therefore, x 7→ Px[ f ̸= g] is a nonnegative harmonic
function vanishing at o, whence it must vanish on all of 𝖵 by irreducibility and the maximum
principle. Thus Uf = Ug identically on 𝖵, as desired. Linearity of the map f 7→ Uf is clear.
We will verify that its inverse is given by u 7→ Fu defined in (14.10).

First, let u:𝖵 → � be bounded and harmonic. Then Fu:𝖵� → � is clearly an invariant
function. Writing g := Fu , we have, for every x ∈ 𝖵,

Ug(x) = Ex lim sup
n→∞

u(Xn) = Ex lim
n→∞

u(Xn) = u(x)
by the martingale convergence theorem and the bounded convergence theorem.

Conversely, consider an invariant bounded function f :𝖵� → �. Since f is invariant,

Eo

�
f (X0, X1, . . .) � X0, . . . , Xn

�
= Eo

�
f (Xn, Xn+1, . . .) � X0, . . . , Xn

�
.

By the Markov property, this equals Uf (Xn). Lévy’s zero-one law then gives

lim
n→∞

Uf (Xn) = f (X0, X1, . . .) Po-a.s.,

in other words, FUf
= f a.s.-Po.

Finally, both f 7→ Uf and u 7→ Fu are clearly contractions. Being inverses of each other,
they must be isometries. ◀
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Since the only functions measurable with respect to a trivial σ-field are the constants, we
obtain the following corollary.

Corollary 14.13. Consider an irreducible Markov chain. Then the invariant σ-field  on
𝖵� is Po-trivial (that is, Po(A) ∈ {0, 1} for all A ∈ ) if and only if all bounded harmonic
functions on 𝖵 are constant. ◀

The next example shows that for general Markov chains, the completions of  and T need
not coincide.

Example 14.14. Consider again the 3-regular infinite tree �3, with a distinguished vertex
o. Removing o gives three connected components denoted by T1,T2,T3. The three events
Ei :=

�
y ∈ 𝖵� ; ∃N ∀n ≥ N yn ∈ Ti

	
are in , and for simple random walk on �3, the three

functions ui(x) := Px(Ei) are nonconstant bounded harmonic functions of x ∈ �3.

Example 14.15. Consider the network walk ⟨X j⟩ on � obtained by assigning conductance
2(k2) to the edge between k − 1 and k for every k ≥ 1. If τk denotes the hitting time of k, then
P0[τk+1 ̸= τk + 1] = (1 + 2k)−1. By Borel-Cantelli, the sequence j − X j is eventually constant
P0-a.s. Therefore shifts of ⟨X j⟩ all look the same eventually, so  is P0-trivial. However, for
every m ≥ 0, the tail event Am :=

�
lim supj→∞( j − X j) = 2m

�
satisfies 0 < P0(Am) < 1.

To show that for lazy Markov chains, the invariant σ-field coincides with the tail σ-field up
to sets of Px-measure 0, we need the following lemma. Recall that ∥µ − 𝜈∥TV = 1

2 ∥µ − 𝜈∥1 =
supA |µ(A) − 𝜈(A)|.
Theorem 14.16. Let P̃ be the transition matrix for a lazy Markov chain on 𝖵. Then, for
every x ∈ 𝖵,

lim
n→∞

∥ p̃ n(x, •) − p̃ n+1(x, •)∥TV = 0 . (14.11)

Proof. Laziness implies that P̃ = (I + P)/2 for some transition matrix P. Since

2(I + P)n − (I + P)n+1 =
n+1∑
k=0

[
2
(
n
k

)
−

(
n + 1

k

)]
Pk =

n+1∑
k=0

[(n
k

)
−

(
n

k − 1

)]
Pk

(with the convention
� n
n+1

�
=
� n
−1
�

= 0), we have

∥ p̃ n(x, •) − p̃ n+1(x, •)∥1 ≤ 2−n−1
n+1∑
k=0

����
(
n
k

)
−

(
n

k − 1

) ����
= 2−n

⌊n/2⌋∑
k=0

����
(
n
k

)
−

(
n

k − 1

) ���� = 2−n
(

n
⌊n/2⌋

)
.

(To see the penultimate identity, consider separately n odd and n even.) ◀

We saw that invariant functions can be described in terms of harmonic functions. It turns
out that tail functions can be described using the following auxiliary notion, which we will
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then use to show the equivalence of  and T for lazy chains. A function Λ:𝖵 ×�→ � is
called space-time harmonic if

∀x ∈ 𝖵 ∀n ∈ � Λ(x, n) =
∑
y∈𝖵

p(x, y)Λ(y, n + 1) ,

in other words, Λ is a harmonic function for the space-time chain

(Xn, n) ; n ≥ 0

�
. To see a

relationship of these functions to the tail field, consider a bounded tail function f :𝖵� → �.
If the Markov chain is either lazy, irreducible, or transitive, then for any state x ∈ 𝖵 and any
n ∈ �, we may choose z ∈ 𝖵 such that pn(z, x) > 0 and define

Λ f (x, n) := Ez

�
f (X0, X1, . . .) � Xn = x

�
; (14.12)

this definition does not depend on the choice of z, since f is a tail function. By considering
all possibilities for Xn+1, we see that Λ f is space-time harmonic.
Next we show that for lazy chains, bounded space-time harmonic functions do not depend

on time, and so coincide with harmonic functions on 𝖵.
Proposition 14.17. Consider a lazy chain with transition matrix P̃ on 𝖵, and let Λ:𝖵×�→
� be a bounded space-time harmonic function.

(i) For every x ∈ 𝖵 and ℓ ≥ 0, we have Λ(x, ℓ) = Λ(x, ℓ + 1).
(ii) There exists a bounded harmonic function u:𝖵→ � such that for all x ∈ 𝖵 and n ∈ �,

u(x) = Λ(x, n) . (14.13)
Proof. (i) Since Λ is space-time harmonic, for every n ∈ �

Λ(x, ℓ) = ExΛ(Xn+1, ℓ + n + 1) and Λ(x, ℓ + 1) = ExΛ(Xn, ℓ + n + 1) .
Therefore,

|Λ(x, ℓ) − Λ(x, ℓ + 1)| ≤ 2 sup |Λ| · ∥ p̃ n(x, •) − p̃ n+1(x, •)∥TV → 0 as n → ∞ .

(ii) For every x ∈ 𝖵 and n ∈ �, define u(x) := Λ(x, n). Part (i) implies this does not
depend on the choice of n. Harmonicity of u follows. ◀

We can now relate the tail and invariant fields, as promised.
Theorem 14.18. Consider a lazy chain on 𝖵, and let o ∈ 𝖵. Then, for every x ∈ 𝖵, the
P̃x-completions of the corresponding tail σ-field T̃ and the corresponding invariant σ-field
̃ coincide.
Proof. Since ̃ ⊆ T̃ , it suffices to show that for any bounded tail function f :𝖵� → �, there
is an invariant function that coincides with it P̃o-a.s. Define Λ := Λ f as in (14.12), and let u
be the corresponding harmonic function in (14.13). In particular,

pn(o, y) > 0 =⇒ u(y) = Λ f (y, n) := Eo

�
f (X0, X1, . . .) � Xn = y

�
. (14.14)

The invariant function Fu corresponding to u was described in (14.10); it will be the sought-for
invariant function. Indeed,

Fu(X0, X1, . . .) = lim sup
n

u(Xn) = lim sup
n

Eo

�
f (X0, X1, . . .) � Xn

�
= lim sup

n
Eo

�
f (X0, X1, . . .) � X0, . . . , Xn

�
,

by the Markov property of ⟨Xi⟩. The Lévy zero-one law thus yields P̃o[Fu = f ] = 1, as
desired. ◀
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Of course, we are not interested only in chains that are lazy. Luckily, the speed and entropy
of a transitive chain are easily related to the speed and entropy of the corresponding lazy
chain.

Lemma 14.19. Let P be the transition matrix for a transitive Markov chain ⟨Xn⟩ on 𝖵, and
let ⟨X̃n⟩ be the corresponding lazy chain, with transition matrix P̃ = (P + I)/2. Then the Avez
entropy h̃ of the lazy chain satisfies h̃ = h/2. If, moreover, 𝖵 is equipped with an invariant
graph metric d, then the speed l̃ of the lazy chain satisfies l̃ = l/2.

Proof. Let B0 = 0 and suppose that ⟨Bn+1 − Bn⟩n≥0 are independent Bernoulli(1/2) random
variables, so we can write X̃n = XBn

for all n ≥ 0. Since H(Xk) = kh
�
1 + o(1)� as k → ∞, it

follows that H(XBn
| Bn) = ∑n

k=0 P[Bn = k]H(Xk) = nh
�
1/2 + o(1)� as n → ∞. By (6.42),

we have 0 ≤ H(XBn
) − H(XBn

| Bn) ≤ H(Bn) < log (n + 1); dividing by n yields h̃ = h/2.
The statement concerning speed is even easier. ◀

Putting together the results of the preceding two sections, we arrive at the following striking
equivalence.

Theorem 14.20. (Speed, Entropy, and Harmonic Functions for Transitive Chains) For
an irreducible transitive Markov chain with transition matrix P on a countable state space 𝖵
and H(X1) < ∞, the following four properties are equivalent:

(i) The invariant σ-field is Po-trivial for some (hence for every) o ∈ 𝖵.
(ii) The Liouville property holds (all bounded harmonic functions are constant).

(iii) The Avez entropy h = 0.
(iv) The chain has a Po-trivial tail for some (hence for every) o ∈ 𝖵.

Moreover, suppose that the transitive chain (𝖵, P) is endowed with an invariant graph metric.
If the asymptotic speed l = limn

1
n

E
�
d(X0, Xn)� vanishes and v < ∞, then (i)–(iv) hold;

conversely, for network walks, (i)–(iv) imply that l = 0.

Proof. That (i) ⇔ (ii) follows from Proposition 14.12. Next, assume (ii). Then the lazy
version of the chain also has the Liouville property, since Pu = u iff P̃u = u. Therefore P̃ has
a trivial invariant σ-field and, by Theorem 14.18, a trivial tail. By Theorem 14.7, the Avez
entropy of the lazy chain is h̃ = 0, so Lemma 14.19 yields that h = 0. Thus (ii)⇒ (iii). The
converse (iii) ⇒ (ii) is proved similarly. The equivalence (iii) ⇔ (iv) is Theorem 14.7.
Finally, if the chain has an invariant graph metric with v < ∞ and l = 0, then h = 0

by Theorem 14.9(i); for transitive network walks, part (ii) of the same theorem yields the
implication h = 0 ⇒ l = 0. ◀

To illustrate the preceding theorem, we consider lamplighter graphs, a generalization of �⊙
from Section 3.4. Given any graph G, the direct sum

∑
x∈𝖵(G)�2 is the collection of maps

ψ:𝖵(G) → �2 such that ψ−1({1}) is a finite set. Now define the lamplighter graph G⊙ as
follows. First, let 𝖵(G⊙) :=

(∑
x∈𝖵(G)�2

)
× 𝖵(G). Second, declare that two configurations,

(ψ, x) and (φ, y) in 𝖵(G⊙), form an edge in 𝖤(G⊙) if either x = y and ψ, φ differ only at x,
or if ψ = φ and [x, y] ∈ 𝖤(G). We regard a configuration (ψ, x) as a collections of lamps,
one at each vertex of G, and a lamplighter at x. We call the lamp at y “on” when ψ(y) = 1.
Thus, crossing an edge on G⊙ means either changing the state of the lamp at the location of
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the lamplighter, or moving the lamplighter to a neighboring location. Observe that if G is a
transitive graph, then so is G⊙. The next corollary is due to Kaimanovich and Vershik (1983).

Corollary 14.21. Let G be an infinite transitive graph. Then G⊙ has the Liouville property
if and only if simple random walk on G is recurrent. In particular, �d ⊙ has the Liouville
property iff d ≤ 2.

Proof. Denote the simple random walk on G⊙ by

(Ψn, Xn)�. Fix o ∈ 𝖵(G). If G is transient,

then define u(ψ, x) := P(ψ,x)
�
limn Ψn(o) = 1

�
. Clearly,

u(1{o}, o) ≥ Po[X1 = o and ∀n ≥ 2 Xn ̸= o] > 0 .

(This event says that first the lamp at o is turned on, then the lamplighter never returns to o.)
On the other hand,

lim
k

Eo

�
u(0, Xk)� ≤ lim

k
Po[∃n ≥ k Xn = o] = 0 .

Thus u is a nonconstant bounded harmonic function on G⊙.
Conversely, if G is recurrent, then Rn := |{X0, X1, . . . , Xn−1}| satisfies Eo[Rn] = o(n) by

Exercise 14.6. For any finite connected graph G0, there is a cyclic tour in G0 of length
at most 2𝖵(G0) − 2 that visits all vertices of G0 (to see this, consider depth-first search
on a spanning tree of G0). Applying this to the induced subgraph of G on the vertex set
{X0, X1, . . . , Xn−1}, it follows that the distance in G⊙ satisfies d

�(Ψ0, X0), (Ψn−1, Xn−1)� ≤
4|Rn |, so E

[
d
�(Ψ0, X0), (Ψn−1, Xn−1)�] = o(n). ◀

The proof of the last implication in Theorem 14.20 (Liouville ⇒ l = 0) relied on the
Varopoulos-Carne bound, so it was restricted to network walks. Karlsson and Ledrappier
(2007) proved the same implication for symmetric random walks on groups with steps of
finite mean distance, as we now show. Let Γ be a finitely generated group with identity o,
endowed with a Cayley-graph metric d(•, •). Thus |x | = d(o, x) is the minimal length of a
word in the generators that represents x.

Proposition 14.22. (Symmetry and Liouville Implies Speed 0) Let µ be a probability
measure on Γ that satisfies

∫
Γ |x | dµ < ∞. If (Γ, µ) is Liouville, then there is a group

homomorphism φ: Γ → � such that
∫

Γ φ(x) dµ = l, the speed of the µ-walk ⟨Xn⟩. If, in
addition, µ is symmetric (that is, µ(x) = µ(x−1) for all x ∈ Γ), then l = 0.

Proof. Let X0 := o, the identity in Γ. Using the Cantor diagonal method, we can find a
sequence n j → ∞ such that the limit

φ(γ) := lim
j

1
n j

n j−1∑
k=0

E
� |γXk | − |Xk | � (14.15)

exists for every γ ∈ Γ. Suppose Z1 is independent of ⟨Xk⟩ and has law µ. Then Z1Xk has the
same law as Xk+1 for each k, so

E
�
φ(γZ1)� = lim

j

1
n j

n j−1∑
k=0

E
� |γXk+1 | − |Xk | �

= φ(γ) + lim
j

1
n j

E
� |γXn j

| − |γ | � = φ(γ) + l .

(14.16)
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For γ, x ∈ Γ, define uγ(x) := φ(γx) − φ(x). Since � |γxXk | − |xXk | � ≤ |γ |, it follows that uγ
is bounded. Moreover,

E
�
uγ(xZ1)� = E

�
φ(γxZ1)� − E

�
φ(xZ1)� = φ(γx) − φ(x) = uγ(x) ,

in other words, uγ is µ-harmonic; by the Liouville hypothesis, uγ is constant. Clearly
uγ(o) = φ(γ), so uγ(x) = φ(γ) for all x ∈ Γ. Thus φ is indeed a homomorphism; it satisfies∫

Γ φ(x) dµ = l by (14.16) with γ := o. Finally, if µ is symmetric, then
∫

Γ φ(x−1) dµ = l, and
adding this to the previous identity shows that l = 0. ◀

14.3 Harmonic Functions and the Poisson Boundary

Given a continuous function u on the closed unit disc � = {z ∈ � ; |z | ≤ 1} that is
harmonic on the open unit disc �, the classical Poisson formula (see, for example, Rudin
(1987), Theorem 11.8) represents u(z) for z ∈ � in terms of boundary values on the circle
∂�:

u(z) =
1

2π

∫ 2π

0
P(z, eiθ ) u(eiθ ) dθ , (14.17)

where P(z, w) := 1−|z |2
|w−z |2 is the Poisson kernel. Moreover, every bounded harmonic function

u on � has a representation of the form (14.17). In this case the boundary values u(eiθ ) are
not given; rather, they have to be defined, for example, as radial limits,

u(eiθ ) := lim
r↑1

u(reiθ ) , (14.18)

that exist for a.e. θ. See Rudin (1987), Theorems 11.23 and 11.30, for such results. The
“harmonic” measures d𝜈z(eiθ ) := P(z, eiθ ) dθ

2π that appear in the Poisson formula have a
probabilistic meaning: 𝜈z is the hitting measure on the unit circle for Brownian motion started
at z; see, for example, Bass (1995) or Mörters and Peres (2010). Moreover, (14.17) defines an
isometric isomorphism u|∂� 7→ u|� from L∞(∂�,B∂�, dθ) to the Banach space of bounded
harmonic functions BH(�); the inverse mapping is given by (14.18).
The utility of this Poisson representation led Furstenberg (1963) to define the notion of

“Poisson boundary” for random walks on groups. We proceed to discuss this concept in the
more general setting of Markov chains. As a running example, consider simple random walk
on the four-regular tree �4, the Cayley graph of the free group on two letters �2 = ⟨a, b | ⟩. In
this case, as we will see, there is a natural analogue of (14.17), with the circle ∂� replaced
by the space ∂�4 of ends of �4 and the harmonic measure 𝜈z replaced by the hitting measure
of random walk.
For a general Markov chain, a coarse analogue of (14.17) is provided by Proposition 14.12:

the measures ⟨Px ; x ∈ 𝖵⟩ on 𝖵� satisfy

u(x) = Ex

�
Fu(X0, X1, . . .)� =

∫
𝖵�

Fu dPx (14.19)
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for all u in the space BH(𝖵, P) of bounded harmonic functions. Here, Fu(x) = lim sup u(xn)
from (14.10). Moreover, the correspondence Fu 7→ u given by (14.19) (or (14.9)) is a linear
isometry from L∞(𝖵�, ,Po) to BH(𝖵, P) (the choice of basepoint o is immaterial).
However, the measurable space (𝖵�, ) is too large to serve as a proper boundary, since does not separate points in 𝖵�. One can see this already in �4, where we would like to

identify any two paths that converge to the same end.

Definition 14.23. Let P be the transition matrix for an irreducible Markov chain on 𝖵 and
recall that 𝖵� is endowed with the Borel σ-field, B𝖵� . A (measure theoretic) boundary
(Θ,FΘ, bΘ) of the Markov chain (𝖵, P) is a measurable space (Θ,FΘ) with a measurable
boundary map b = bΘ: (𝖵�,B𝖵� )→ (Θ,FΘ) satisfying the following two properties:

(a) FΘ is countably generated and separates points: there is a collection of sets {An}n≥1
in FΘ such that FΘ = σ{An}n≥1, and for every pair θ ̸= ξ of points in Θ, there exists n
such that 1An

(θ) ̸= 1An
(ξ).

(b) bΘ is shift-invariant: bΘ(x0, x1, . . .) = bΘ(x1, x2, . . .) for all x = (x0, x1, . . .) ∈ 𝖵�.
Every boundary (Θ,FΘ, bΘ) of (V , P) is naturally endowed with the family of harmonic
measures 𝜈x := Px◦b−1

Θ for x ∈ 𝖵.

We call the elements of the family ⟨𝜈x ; x ∈ 𝖵⟩ “harmonic measures” because they vary
harmonically in the sense that for every A ∈ FΘ, the function x 7→ 𝜈x(A) is harmonic on
(𝖵, P). By irreducibility of P, these measures are all mutually absolutely continuous. Thus,
if one wishes, one can fix a basepoint o and define an analogue of the Poisson kernel to be
the collection of Radon-Nikodým derivatives (x, θ) 7→ d𝜈x

d𝜈o (θ).
For any boundary, the harmonic measures yield a solution of the Dirichlet problem, which

is half of what we want from a Poisson boundary:

Proposition 14.24. Given a boundary (Θ,FΘ, b) of (𝖵, P) and φ ∈ L∞(Θ,FΘ, 𝜈o), the
function

u(x) :=
∫

Θ
φ(θ) d𝜈x(θ) (14.20)

is harmonic and bounded on 𝖵 and satisfies limn u(Xn) = φ�b(X)� a.s.-Po as n → ∞ for all
o ∈ 𝖵, where X := (X0, X1, . . .).
Proof. Define f = φ ◦ b and fix o ∈ 𝖵. Then f is an invariant function on 𝖵� since b is
shift-invariant, so by Proposition 14.12,

Uf (x) = Ex f (X0, X1, . . .) =
∫
𝖵�

(φ ◦ b) dPx=
∫

Θ
φ d𝜈x = u(x)

satisfies limn Uf (Xn) = f (X) = φ
�
b(X)� a.s.-Po. ◀

We will look at the other half of being a Poisson boundary later, that is, whether every
harmonic function can be represented on the boundary.
We say that a boundary is trivial if one of the measures 𝜈x is concentrated at a point; in

such a case, every 𝜈x is concentrated at the same point. Condition (a) in the definition of
boundary imparts meaning to individual points in Θ, as illustrated in the following proof.
Without condition (a), the introduction of boundaries is pointless – one could just consider
σ-fields of invariant sets in 𝖵� instead.
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Proposition 14.25. (Boundary Triviality) The irreducible chain (𝖵, P) is Liouville if and
only if all boundaries of (𝖵, P) are trivial.

Proof. First suppose that (𝖵, P) is Liouville and (Θ,FΘ, b) is a boundary. By Proposi-
tion 14.12, 𝜈o(A) = Pob−1(A) ∈ {0, 1} for every A ∈ FΘ. In particular, this applies to the
sets An in part (a) of the definition. Replacing An by its complement when necessary, we
may assume that 𝜈o(An) = 1 for all n ≥ 1. Then 𝜈o

(∩
n An

)
= 1. On the other hand, this

intersection must be a singleton, since if it contained two distinct points, the point separation
assumption in (a) would yield a contradiction.
Conversely, if (𝖵, P) is not Liouville, then by Proposition 14.12, there is an invariant set

A ⊂ 𝖵� such that 0 < Po(A) < 1. Then
�{0, 1}, 2{0,1}, 1A

�
is a nontrivial boundary of (𝖵, P)

since 𝜈o(1) = Po(A). ◀

Alternatively, to prove the preceding converse more directly, suppose that all boundaries
of (𝖵, P) are trivial and u ∈ BH(𝖵, P). Construct a boundary (�,B�, b) by letting b(x) :=
lim supn u(xn). Since 𝜈o = Pob−1 is concentrated at a point, limn u(Xn) is Po-a.s. constant,
so u must be constant by Exercise 14.7.
An appealing way to ensure condition (a) in Definition 14.23, used by Furstenberg (1971b),

is to consider compactifications.

Definition 14.26. We say that (Θ,FΘ, b) is a compactification boundary of the Markov
chain (𝖵, P) if

(i) 𝖵 ∪ Θ is a compact metric space in which 𝖵 is discrete (that is, each point in 𝖵 is an
open set) and dense, so that Θ = ∂𝖵 in this metric;

(ii) FΘ = BΘ is the Borel σ-field;
(iii) ∀x ∈ 𝖵 the chain ⟨Xn⟩ converges to an element of Θ a.s.-Px ; and
(iv) b(x) = limn xn ∈ Θ for all x ∈ 𝖵�conv, the set of sequences in 𝖵� that converge to an

element of Θ. On 𝖵� \ 𝖵�conv, we just require that b is a shift-invariant and measurable
map to Θ (for instance, b(x) = η for all x /∈ 𝖵�conv, where η ∈ Θ is fixed).

Observe that conditions (a) and (b) in Definition 14.23 follow from (i)–(iv) in Defini-
tion 14.26, so a compactification boundary is indeed a boundary as defined there.

Example 14.27. Suppose that T is a locally finite tree with prescribed edge conductances
such that the corresponding network walk (T , P) is transient. Recall that the space of ends
of T (described in Example 7.1) can be identified with the set ∂T of rays emanating from a
fixed root o; the latter set was equipped in Section 1.8 with a natural metric d(ξ, θ) = e−|ξ∩θ |
(considering each ray as a set of edges) that makes it a compact metric space. The same
metric extends to T ∪ ∂T if we identify each vertex x ∈ T with the shortest path [o, x] from o
to x, that is, for x, y ∈ 𝖵 and θ ∈ ∂T , we let d(x, θ) := e−|[o,x]∩θ | and d(x, y) := e−|[o,x]∩[o,y]|.
Then (i), (ii), and (iii) in Definition 14.26 hold, so if we define b as in (iv) (in particular,
b(x) = limn xn for x ∈ 𝖵�conv), then (∂T ,B∂T , b) is a compactification boundary of (T , P). (If
T is not locally finite, then ∂T is a metric boundary that is not compact.)

Returning for a moment to the classical setting of the unit disc �, we note that the group
of the Möbius transformations γ preserving the unit disc acts naturally on the space BH(�)
(via u 7→ u ◦ γ) and also on the boundary ∂�. They transform harmonic measures via
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𝜈γz = 𝜈z ◦ γ−1 for all z ∈ �. Similarly, in the setting of discrete Markov chains, it is natural
to require that any symmetries of the chain also be reflected in the boundary. This leads to
the next definition.

Definition 14.28. Let (Θ,FΘ, b) be a boundary of (𝖵, P). Suppose that Γ is a group of
automorphisms of (𝖵, P) that also acts on Θ. Note that Γ acts diagonally on 𝖵� via
γ(x0, x1, . . .) := (γx0, γx1, . . .). Suppose that b is Γ-equivariant, that is, γ ◦ b = b ◦ γ for all
γ ∈ Γ.

(i) We say that (Θ,FΘ, b) is a Γ-boundary of the Markov chain (𝖵, P) if Γ acts FΘ-
measurably on Θ.

(ii) If (Θ,FΘ, b) is a compactification boundary and Γ acts continuously on Θ, then we
call (Θ,FΘ, b) a compactification Γ-boundary of (𝖵, P).

In particular, for a µ-walk on a group Γ where p(x, y) = µ(x−1y) for all x, y ∈ Γ, every
γ ∈ Γ acts as an automorphism of (Γ, P) via x 7→ γx. In this case, we will focus on describing
Γ-boundaries of (Γ, P).
Recall that boundaries can be used to represent harmonic functions: we used (14.20)

to define u, but we could have regarded the same formula as a Poisson representation for
u on Θ. However, for some boundaries, not all bounded harmonic functions have such
a representation. For instance, consider a one-point boundary for a non-Liouville chain.
Boundaries that support a Poisson representation for all bounded harmonic functions (that is,
Poisson boundaries) are the subject of the next theorem/definition.

Theorem 14.29. Let (Θ,FΘ, b) be a boundary of the irreducible chain (𝖵, P) with harmonic
measures ⟨𝜈x⟩x∈𝖵. Fix o ∈ 𝖵. Then the following are equivalent:

(i) (Poisson Representation) For every bounded harmonic u:𝖵→ �, there is a bounded
measurable function ũ: Θ→ � such that u(x) =

∫
Θ ũ(θ) d𝜈x(θ) for all x ∈ 𝖵.

(ii) (Harmonic Limits Determined) For every bounded harmonic u:𝖵 → �, there is
a bounded measurable ũ: Θ → � such that limn u(Xn) = ũ

�
b(X)� Po-a.s., where

X = (X0, X1, . . .).
(iii) (Invariant σ-field Saturation) b−1(FΘ) =  mod Po, that is, for every A ∈ , there

is an E ∈ FΘ such that Po
�
A △ b−1(E)� = 0.

(iv) (Maximality) For every other boundary (Θ′,FΘ′ , b′) of (𝖵, P), there is a measurable
map π: Θ→ Θ′ that satisfies b′ = π ◦ b almost surely-Po.

A boundary (Θ,FΘ, b) that satisfies these conditions is called a Poisson boundary of (𝖵, P).
We will need a simple equivalence from measure theory.

▷ Exercise 14.8.
(Saturation) Let (M1,F1,Q1) and (M2,F2,Q2) be two probability spaces, and suppose
that Φ: (M1,F1)→ (M2,F2) is measurable with Q2 = Q1 ◦ Φ−1. Show that the following are
equivalent:

(i) The Q1-completions of F1 and Φ−1F2 coincide.
(ii) The mapping f2 7→ f2 ◦ Φ from L∞(M2,F2,Q2) to L∞(M1,F1,Q1) is surjective.
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Proof of Theorem 14.29. The implication (i) ⇒ (ii) is part of Proposition 14.24, and the
equivalence (ii) ⇔ (iii) follows from Proposition 14.12.
(iii) ⇒ (i): Given u ∈ BH(𝖵, P), Proposition 14.12 yields a bounded invariant function

f :𝖵� → � such that u(x) = Ex f (X0, X1, . . .) for all x ∈ 𝖵. By (iii) and Exercise 14.8, f
coincides mod Po with ũ ◦ b for some (bounded) ũ: Θ→ � that is FΘ-measurable. Thus, for
all x ∈ 𝖵,

u(x) =
∫
𝖵�

ũ ◦ b dPx=
∫

Θ
ũ d𝜈x .

(iv)⇒ (iii): For A ∈ , consider the corresponding 2-point boundary
�{0, 1}, 2{0,1}, 1A

�
.

By (iv), there is a measurable π: Θ → {0, 1} such that 1A = π ◦ b a.s.-Po. This yields (iii)
with E := π−1(1).

(iii) ⇒ (iv): Suppose {A′n ; n ≥ 1} separates points in Θ′ and generates FΘ′ . By (iii),
there exist sets En ∈ FΘ such that Po

�
1A′n ◦ b′ = 1En

◦ b
�

= 1 for all n. Let

Ω1 :=
∩
n

{
x ∈ 𝖵� ; 1A′n

�
b′(x)� = 1En

�
b(x)�} .

Since Po(Ω1) = 1, it suffices to define π on b(Ω1). If θ = b(x) and x ∈ Ω1, define
π(θ) := b′(x). To see this does not depend on the choice of x, suppose that x, y ∈ Ω1 satisfy
b(x) = b(y), yet b′(x) ̸= b′(y). Then 1A′n

�
b′(x)� ̸= 1A′n

�
b′(y)� for some n by the separation

assumption, which implies that 1En

�
b(x)� ̸= 1En

�
b(y)�, a contradiction. Clearly, b′ = π ◦ b

almost surely-Po. ◀

The utility of the maximality condition is shown in the next exercise.

▷ Exercise 14.9.
(a) Prove that the map π in Theorem 14.29(iv) is unique up to a set of 𝜈o-measure 0.
(b) Prove that the Poisson boundary of a Markov chain (𝖵, P) is unique up to a pointwise

isomorphism π of measure spaces, defined 𝜈o-a.e., that respects boundary maps. In other
words, show that if (Θ,FΘ, b) and (Θ′,FΘ′ , b′) are both Poisson boundaries of (𝖵, P), then
the map π in Theorem 14.29(iv) is one-to-one on a set Θ1 ∈ FΘ of full 𝜈o-measure, and π−1

is measurable.
(c) Show that if both of these Poisson boundaries in (b) are Γ-boundaries for some

countable Γ, then π is Γ-equivariant (that is, π ◦ γ(θ) = γ ◦ π(θ) for 𝜈o-a.e. θ ∈ Θ and all
γ ∈ Γ).

Next, we apply Theorem 14.29 to transient trees.

Example 14.30. (Poisson Boundary of a Tree) Let T be a locally finite tree with given edge
conductances such that the corresponding network walk (T , P) is transient. In Example 14.27
we described a compactification boundary (∂T ,B∂T , b) for (T , P). Now we prove that it
is a Poisson boundary by using criterion (ii) in Theorem 14.29. The network walk ⟨Xn⟩,
started at o, almost surely converges to a random ray Z = ⟨Z0, Z1, . . .⟩ ∈ ∂T . Observe
that Z is obtained by iteratively erasing backtracks from ⟨Xn⟩; in particular, the former is a
subsequence of the latter. Let u be a bounded harmonic function on T . For z = ⟨z j⟩ ∈ ∂T ,
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denote ũ(z) := lim sup u(z j). Then limn u(Xn) a.s. exists and equals limj u(Z j) = ũ(Z). This
verifies criterion (ii), as promised. If Γ is a group of automorphisms of (T , P), then for
each γ ∈ Γ and every ray (x0, x1, . . .) in ∂T , the path (γx0, γx1, . . .) eventually coincides
(up to a time-shift) with a unique ray (y0, y1, . . .) in ∂T . It is easy to check that defining
γ(x0, x1, . . .) := (y0, y1, . . .) makes (∂T ,B∂T , b) a Γ-boundary.

We turn now to proving the existence of Poisson boundaries in general. Let us write
L1�𝖵�,F ,P, {0, 1}� for the collection of equivalence classes of {0, 1}-valued functions in
L1(𝖵�,F ,P). We will use the following measure-theoretic exercise.

▷ Exercise 14.10.
Suppose that (Ω,F ,P) is a probability space. Show that if {An ; n ≥ 1} ⊂ F is such that
{1An

} is dense in L1�𝖵�,F ,P, {0, 1}�, then the P-completions of F and of σ
�{An ; n ≥ 1}�

coincide.

Theorem 14.31. (Poisson Boundary Existence) Every irreducible chain (𝖵, P) has a
Poisson boundary. If Γ is a countable group of automorphisms of (𝖵, P), then the Poisson
boundary can be taken to be a Γ-boundary.

Proof. Since the Borel σ-field B𝖵� in the sequence space 𝖵� is countably generated (by
the cylinder sets), the metric space L1�𝖵�,B𝖵� ,Po, {0, 1}

�
is separable, whence so is

the subspace L1�𝖵�, ,Po, {0, 1}� of invariant indicators. Let ⟨In⟩n∈� be a countable dense
sequence in this subspace. Define b:𝖵� → {0, 1}� by b(x) :=



In(x)�n∈� and let Θ := b(𝖵�)

be the closure, in the product topology, of the image of b. Recall that the product topology
on {0, 1}� can be metrized by

ρ(ξ, η) =
∑
k

2−k |ξk − ηk | .

The Borel σ-field BΘ in Θ is generated by the elementary cylinder sets {θ ∈ Θ ; θn = 1};
clearly these separate points in Θ. Since In are invariant functions, b◦S = b. Thus (Θ,BΘ, b)
is a boundary of (𝖵, P). To see that it is a Poisson boundary, we will verify condition (iii)
in Theorem 14.29. Let πn: Θ → {0, 1} be the coordinate projections. By construction,
(b ◦ πn)−1 is dense in L1�𝖵�, ,Po, {0, 1}�, whence saturation follows from Exercise 14.10.
Next, suppose that Γ is a countable group of automorphisms of (𝖵, P). Then Γ also acts on

𝖵� by the diagonal action γ(x0, x1, . . .) := (γx0, γx1, . . .). Enlarging the collection ⟨In⟩n∈�,
we may assume that for every k ∈ � and γ ∈ Γ, the composition Ik ◦ γ is also in ⟨In⟩n∈�.
Therefore, if x, y ∈ 𝖵� satisfy Ik(x) = Ik(y) for all k, then also Ik(γx) = Ik(γy) for all k.
Thus, we may define the action of γ ∈ Γ on b(𝖵�) by γ�b(x)� := b(γx). This defines a
uniformly continuous self-map of b(𝖵�) with respect to the metric ρ, so it extends uniquely
to a continuous self-map of Θ = b(𝖵�). The resulting action of Γ on Θ is equivariant by
construction on b(𝖵�) and so by continuity on all of Θ. ◀
If Γ is an uncountable subgroup of Aut(𝖵, P), then we can find a countable dense subgroup

Γ∗ ⊂ Γ (in the weak topology described in Exercise 8.20) and verify that the Γ∗-boundary of
(𝖵, P) constructed above can also serve as a Γ-boundary; see Exercise 14.33.
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Remark 14.32. (The Poisson Boundary as a Compactification Boundary) Suppose that
(𝖵, P) is not Liouville. Let un(x) := Ex[In] be the harmonic function that corresponds to the
invariant indicator In in the preceding proof. We may extend the metric ρ to 𝖵 ∪Θ by setting
ρ(v, ξ) :=

∑
n 2−n |un(v) − ξn | for v ∈ 𝖵 and ξ ∈ Θ, and ρ(v, w) := infξ ∈Θ

�
ρ(v, ξ) + ρ(w, ξ)�

for distinct v, w ∈ 𝖵. Thus, v ∈ 𝖵 is close to ξ ∈ Θ iff un(v) is close to ξn for all n. Since there
is some nonconstant un, the maximum principle guarantees that ρ(v,Θ) > 0 for all v ∈ 𝖵. In
particular, ρ(v, w) ≥ ρ(v,Θ) + ρ(w,Θ) > 0 for v ̸= w. Since limk un(xk) = In(x) for Po-a.e.
x ∈ 𝖵� and every n, it follows that the set of limit points Θ′ := ∂𝖵 ⊂ Θ, in the metric ρ,
has full 𝜈o-measure in Θ. Define b′ as in Definition 14.26, and observe that it coincides
with b a.e.-𝜈o. The other conditions of Definition 14.26 are satisfied, so (Θ′,BΘ′ , b′) is a
compactification boundary of (𝖵, P).
Let us unravel this development and see how this meets our original goal of describing

the asymptotic behavior of Markov chains. Since  describes the asymptotic behavior, so
does ⟨In ; n ≥ 1⟩, and therefore so does Θ′. That is, the points of Θ′ tell us all the possible
asymptotic behaviors of the Markov chain. Furthermore, if vn → ξ ∈ Θ′, then as far as the
Markov chain can distinguish, ξ tells us everything about the way that vn tends to infinity.
In Example 14.30, we showed that the Poisson boundary is the natural geometric boundary.

That is, asymptotic behavior of the random walk is determined entirely by erasing all
backtracks.
In general, one wants not merely to know that the Poisson boundary exists but to identify

it. Such an identification would allow us to determine all possible asymptotic behavior.
Normally one can easily observe certain kinds of asymptotic behavior; one then wants to
establish that such kinds are the only kinds. Techniques for doing so are the subject of the
next section.

14.4 Identifying the Poisson Boundary
Here, we develop a powerful method, due to Kaimanovich (1985, 1994, 2000), to identify

when a boundary (Θ,FΘ, b) of a transitive Markov chain is, in fact, a Poisson boundary.
We are going to study the Markov chain conditioned on a subfield of the invariant σ-field,. We begin this study with some elementary aspects of such conditioning. Given a Markov

chain ⟨Xn⟩ and a σ-field  in 𝖵�, write
pn(x, y) := Px[Xn = y |  ] .

For instance, if m > n and  = σ(Xm), then

p
n(x, y) =

pn(x, y)pm−n(y, Xm)
pm(x, Xm)

by the Markov property.

▷ Exercise 14.11.
Suppose that the Markov chain (𝖵, P) is simple random walk on a (d + 1)-regular tree, and 
is the σ-field determined by the boundary mapping b in Example 14.27. For any two vertices
x, y and every z ∈ 𝖵�conv, there is a unique first meeting point of the rays from x and y that
belong to the same end as b(z). Show that pn(x, y)(z) = pn(x, y) · dkx−ky for Px-a.e. z ∈ 𝖵�,
where kx = kx(x, y, z) is the distance from x to this meeting point.



§4. Identifying the Poisson Boundary 487

Lemma 14.33. Given an irreducible (but possibly periodic) chain (𝖵, P), a vertex x ∈ 𝖵
and a σ-field  ⊆ , denote by Qx the restriction of Px to  . Then, for all x, y ∈ 𝖵, the
measures Qx and Qy are mutually absolutely continuous and the Radon-Nikodým derivative
satisfies

pn(x, y) = pn(x, y) · dQy

dQx
Px-a.e. (14.21)

Proof. We first show absolute continuity. By irreducibility, there is some k for which
pk(x, y) > 0. Suppose A ∈  and Qy(A) > 0. Then

Qx(A) = Qx(S−k A) ≥ pk(x, y)Qy(A) > 0 ,

as desired.
Now for A ∈  , the Markov property yields∫

A

1[Xn=y] dPx= pn(x, y)Qy(A) =
∫
A

pn(x, y) · dQy

dQx
dPx .

The integrand on the right-hand side is clearly  -measurable, so it is a version of the
conditional expectation Ex[1{Xn=y} |  ]. ◀

A similar statement holds when we consider the chain at two different times:

▷ Exercise 14.12.
In the setting of Lemma 14.33, show that for all x, y, z ∈ 𝖵, we have Px-a.s.

Px[Xn = y, Xn+m = z |  ] = pn(x, y)pm(y, z) dQz

dQx
= pn(x, y)pm(y, z) . (14.22)

Suppose that Γ is a group acting on 𝖵�. We say that a σ-field  in 𝖵� is Γ-closed (also
called “Γ-invariant”) if, for all A ∈  and γ ∈ Γ, we have γ(A) ∈  .
The main properties we need of conditioning a Markov chain on  are given in the

following proposition. These properties are analogues of those we saw already for the
unconditioned chain.

Proposition 14.34. Let Γ be a transitive group of automorphisms of (𝖵, P), acting on 𝖵� via
the diagonal action. If ⟨Xn⟩ is a Markov chain determined by (𝖵, P) with initial state X0 = o
and H(X1) < ∞ and  ⊂  is a Γ-closed σ-field, then for every y ∈ 𝖵 and m ≥ 1, we have

−Ey

∑
z∈𝖵

pm(y, z) log pm(y, z) = H(Xm |  ) . (14.23)

Therefore
H(Xm+n |  ) ≤ H(Xn, Xm+n |  ) = H(Xn |  ) + H(Xm |  ) , (14.24)

and the limit
h := lim

n

H(Xn |  )
n

(14.25)
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exists. Moreover,

lim
n

1
n

log pn(o, xn) = −h for Po-a.e. x ∈ 𝖵� . (14.26)

Proof. Choose γ ∈ Γ that maps y to o. For every z ∈ 𝖵, we have pm(y, z) = pγm (o, γz) ◦ γ =
pm(o, γz) ◦ γ, since  is Γ-closed, so

−pm(y, z) log pm(y, z) = −
[
pm(o, γz) log pm(o, γz)] ◦ γ .

Summing over z ∈ 𝖵, then applying Ey to both sides, and using the identity Ey[ f ◦γ] = Eo[ f ]
for measurable functions f :𝖵� → �+, we obtain (14.23). By (14.22),

H(Xn, Xm+n |  ) = −Eo

[ ∑
y,z∈𝖵

pn(o, y)pm(y, z) log
�
pn(o, y)pm(y, z)�] . (14.27)

Rewrite the logarithm of a product as a sum of logarithms in (14.27) and use the identity∑
z pm(y, z) = 1 and Lemma 14.33 to deduce that

H(Xn, Xm+n |  ) = −Eo

[∑
y∈𝖵

pn(o, y) log pn(o, y)
]

−
∑
y

pn(o, y)
∑
z

Eo

[ dQy

dQo
pm(y, z) log pm(y, z)

]
.

By definition, Eo

[
f · dQy

dQo

]
= Ey[ f ] for any  -measurable function f . Thus,

H(Xn, Xm+n |  ) − H(Xn |  ) = −
∑
y

pn(o, y)Ey

[∑
z

pm(y, z) log pm(y, z)
]
,

which equals H(Xm |  ) by (14.23). Together with Exercise 14.4, this proves (14.24),
and (14.25) follows using Fekete’s lemma. The proof of (14.26) is similar to the proof of
Theorem 14.10(ii): the existence of the limit follows from the subadditive ergodic theorem,
and this limit is a.e. constant by Lemma 14.11. The subadditivity required for (14.26) follows
from the inequality pn+m(x, z) ≥ pn(x, y) · pm(y, z), a consequence of Exercise 14.12. ◀

The next theorem is the main goal of this section. Recall that T is the tail σ-field in 𝖵�.

Theorem 14.35. (Kaimanovich’s Conditional Entropy Criterion) Let Γ be a transitive
group of automorphisms of (𝖵, P), acting on 𝖵� via the diagonal action. Suppose that ⟨Xn⟩
is a Markov chain determined by (𝖵, P) with initial state X0 = o and H(X1) < ∞ and that ⊂  is a Γ-closed σ-field. Then  = T mod Po if and only if h = 0.

Since  ⊂ T , the equality  = T mod Po immediately implies that  =  mod Po. The
converse follows from the identity  = T mod Po, proved in Theorem 14.18 (for lazy chains)
and in Theorem 14.47 (in general).
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Proof. For k < n, by (14.24),

H(Xk | Xn, ) + H(Xn |  ) = H(Xk , Xn |  ) = H(Xk |  ) + H(Xn−k |  ) . (14.28)

Since  ⊂ σ{X j}j≥n, the Markov property implies that

H(Xk | Xn, ) = H(Xk | Xn) = H(Xk | {X j}j≥n) .

This allows us to rewrite (14.28) as

H(Xk | {X j}j≥n) = H(Xk |  ) + H(Xn−k |  ) − H(Xn |  ) . (14.29)

The left-hand side is increasing in n and converges to H(Xk | T ) by Lemma 14.5. Considering
k = 1, we see that H(Xn |  ) − H(Xn−1 |  ) converges as n → ∞. Since the averages
n−1H(Xn |  ) tend to h , we infer that

H(Xn |  ) − H(Xn−1 |  )→ h . (14.30)

By taking n → ∞ in (14.29), we conclude that

H(Xk | T ) = H(Xk |  ) − kh . (14.31)

Thus h = 0 if  = T mod Po.
To see the converse, note that by the Markov property,

H(X1, . . . , Xk−1 | Xk ,T ) = H(X1, . . . , Xk−1 | Xk , ) ;

adding this to (14.31) yields

H(X1, . . . , Xk | T ) = H(X1, . . . , Xk |  ) − kh . (14.32)

Suppose that h = 0. Then (14.32) and Lemma 14.5(i) imply that

Po
�(X1, . . . Xk) = •

�  �
= Po

�(X1, . . . Xk) = •
�
T
�

for all k, whence
Eo[ f |  ] = Eo[ f | T ] (14.33)

for every Borel measurable function f :𝖵� → � that depends on finitely many coordinates.
Such functions are dense in L1(𝖵�,B𝖵� ,Po), so (14.33) holds for all f in this L1 space.
Considering indicator functions of events in T shows that  = T mod Po. ◀
Although Theorem 14.35 provides a necessary and sufficient condition to identify T , it

is not so clear how one might actually use it. For example, how does one understand the
Markov chain conditioned on  ? The following corollary is aimed at making this easier. In
its statement, we use random finite subsets of 𝖵; here, the collectionW of all finite subsets
of 𝖵 is itself countable, whenceW comes with the σ-field consisting of all subsets ofW .
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Corollary 14.36. (Kaimanovich’s Enumeration Criterion) Let Γ be a transitive group
of automorphisms of (𝖵, P), and let  ⊂  be a Γ-closed σ-field in the sequence space
𝖵�. Denote by ⟨Xn⟩ a Markov chain determined by (𝖵, P) with initial state X0 = o and
H(X1) < ∞. If for every n there is a finite  -measurable random set Wn ⊂ 𝖵 such that

lim sup
n→∞

Po[Xn ∈ Wn] > 0 (14.34)

and |Wn |1/n → 1 a.s.-Po as n → ∞, then  = T mod Po. More generally, it suffices that
for every ϵ > 0, there is a sequence ⟨Wn⟩n≥1 = ⟨W ϵ

n ⟩n≥1 of  -measurable random sets that
satisfies (14.34) and

lim sup
n

1
n

log |Wn | ≤ ϵ Po-a.s. (14.35)

Proof. We prove the more general criterion. It is enough to show that h = 0. Suppose that
h > 0 and define

Sn :=
{
x ∈ 𝖵 ; p

n(o, x) ≤ exp
�
−nh/2�} .

By (14.26), Po[Xn /∈ Sn] → 0 as n → ∞. Take ϵ := h /4 and find sets Wn that satisfy
(14.34) and (14.35). Then

Po[Xn ∈ Wn ∩ Sn |  ] ≤ |Wn | · exp
�
−nh/2�→ 0 Po-a.s. as n → ∞ .

Taking expectations and using bounded convergence, we get that Po[Xn ∈ Wn ∩ Sn]→ 0 as
n → ∞, whence also Po[Xn ∈ Wn]→ 0, contradicting (14.34). ◀

We may also express the preceding theorem and corollary in terms of boundaries.

Corollary 14.37. Let Γ be a transitive group of automorphisms of (𝖵, P). Suppose that
X = ⟨Xn⟩ is a Markov chain determined by (𝖵, P) with initial state X0 = o and H(X1) < ∞.
Given a Γ-boundary (Θ,FΘ, b) of (𝖵, P), it is a Poisson boundary iff H(Xn | b−1FΘ) = o(n).
To verify the latter condition, it suffices to find a sequence of FΘ-measurable mappings Wn,
from Θ to the collection of finite subsets of 𝖵, such that lim supn Po

�
Xn ∈ Wn(b(X))� > 0 and�

Wn(b(X))�1/n → 1 a.s.-Po. ◀

To illustrate the power of Corollary 14.36, we apply it to several examples. The simplest is
random walks with drift on lamplighter groups. Looking again at the proof of Corollary 14.21
that simple random walk on �d ⊙ is non-Liouville for d ≥ 3, we see that, in fact, an entire
sub-σ-field of  is apparent, namely, the final configuration of the lamps. Indeed, for any
random walk


(Ψn, Xn)� on a lamplighter graph G⊙ where ⟨Xn⟩ is transient, there is a limiting
lamp configuration Ψ∞ := limn→∞ Ψn a.s. Clearly σ(Ψ∞) ⊆ , and we may ask whether these
are equal mod Po. We shall show that this is indeed the case in at least certain situations.
Consider a µ-walk on �d ⊙ with µ supported on

�(0, x)	
x∈�d ∪

�(δ0, 0)	, where 0 is the
function that is 0 at every site in �d . Such a support entails that in every step of the walk, the
only lamp that can change is at the current location of the lamplighter.
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Corollary 14.38. (Lamplighter Boundaries: Biased Walks) Fix d ≥ 1, and let µ be
a probability measure on �d ⊙ that is supported on

�(0, x)	
x∈�d ∪

�(δ0, 0)	 with support
generating �d ⊙ as a semigroup. Denote by


(Ψn, Xn)� the corresponding convolution walk.
Suppose that Eµ

� |X1 | � = ∫ |x | dµ(ψ, x) < ∞ and Eµ[X1] =
∫

x dµ(ψ, x) ̸= 0. Then the tail
σ-field of


(Ψn, Xn) ; n ≥ 0
�

is generated by Ψ∞:�d → {0, 1}, where Ψ∞(x) := limn Ψn(x).
Proof. The hypothesis implies that for some i ≤ d, the standard basis vector ei satisfies
Eµ

�⟨X1, ei⟩� ̸= 0. Fix such an i, and without loss of generality, assume this expectation is
positive. For each n, the events An and Bn are clearly independent, where

An :=
�
∀k < n ⟨Xk − Xn, ei⟩ < 0

�
and Bn :=

�
∀m > n ⟨Xm − Xn, ei⟩ > 0

�
.

By transience of the convolution random walk

⟨Xn, ei⟩ ; n ≥ 0

�
on �, there exists some

δ > 0 such that P(An) ≥ δ and P(Bn) ≥ δ for all n ≥ 1. Let Dn :=
� |Xn | ≤ n2�, so that

limn→∞ P(Dn) = 1. Consider the half-space �i :=
�
v ∈ �d ; ⟨v, ei⟩ ≤ 0

	
. On the event

An ∩ Bn ∩ Dn, the random walk satisfies (Ψn, Xn) ∈ Wn, where

Wn = Wn(Ψ∞) :=
�(ψ, x) ; |x | ≤ n2, ψ(z) = Ψ∞(z)1�i

(z − x)	 .
Since |Wn |1/n → 1 and lim infn P(An ∩ Bn ∩ Dn) ≥ δ2, Corollary 14.36 implies that σ(Ψ∞)
coincides with the tail T mod Po. ◀

The next result we present was conjectured by Vershik and Kaimanovich (1979, 1983); it
was proved by Erschler (2011, 2010) for d ≥ 5 and by Lyons and Peres (2015b) for d = 3, 4.

Theorem 14.39. (Lamplighter Boundaries: Unbiased Walks) Fix d ≥ 3. Let

(Ψn, Xn)�

denote simple random walk on the Cayley graph of �d ⊙, endowed with the standard 2d + 1
generators

�(0,±ei)	di=1 ∪
�(δ0, 0)	. Then the tail σ-field of


(Ψn, Xn) ; n ≥ 0
�
is generated

by Ψ∞:�d → {0, 1}, where Ψ∞(x) := limn Ψn(x).
In the next two proofs, Cd will denote a constant that depends only on d and could vary

from line to line.

Lemma 14.40. Let ⟨Xn⟩ be simple random walk on �d , except for a little laziness: for each
n, we have P[Xn = Xn+1] = α ∈ (0, 1). Then, for all n, k, r ∈ � with k ≤ n,

E
� |{m > n ; |Xk − Xm | ≤ r}| � ≤ Cdrd(n + 1 − k)−(d−2)/2 .

Proof. Such a random walk in �d satisfies pt (x, y) = Px[Xt = y] ≤ Cdt−d/2 for all x, y ∈ �d

and t ≥ 1 (see Exercise 2.100 and Exercise 6.40, or Corollary 6.32). Thus, for k ≤ n < m,
we have

P
� |Xk − Xm | ≤ r

�
= P0

� |Xm−k | ≤ r
�
≤ Cdrd(m − k)−d/2 .

Summing this bound over all m > n gives the result. ◀
We will also need the elementary inequality

k ≤ n/3 =⇒
k∑
j=0

(
n
j

)
≤ 2nk . (14.36)

(Proof:
� n
j+1

�
≥ 2

�n
j

�
for j < n/3.)
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Proof of Theorem 14.39. For x ∈ �d, denote by B(x, r) :=
�
y ∈ �d ; |x − y | ≤ r

	
the ball

of radius r in the graph metric, centered at x. Set rn := ⌊log n⌋ and sn := ⌈n/rn⌉. Define
Wn(ψ∞) to be the set of all (ψn, x) such that there are S and U satisfying

(i) S = ⟨x0, x1, . . . , xsn ⟩ ∈ (�d)sn+1 with xi+1 ∈ B(xi, rn) for 0 ≤ i < sn, x0 = 0, and
xsn = x,

(ii) U ⊆ B(S, rn) :=
∪sn

i=0 B(xi, rn) with |U | ≤ n3/4,
and
(iii) ψn(y) =

{
ψ∞(y) for y ∈ B(S, rn) \U
0 for y /∈ B(S, rn).

The number of sequences S satisfying (i) is at most (Cdrdn )sn , which is subexponential in
n. For each such S, the number of sets U satisfying (ii) is at most

�
Cdsnrdn

�n3/4
by (14.36),

and this bound is also subexponential in n. Given S and U, the number of choices of ψn

satisfying (iii) is at most 2|U | ≤ 2n3/4 . Multiplying these bounds, we obtain that |Wn(ψ∞)| is
subexponential.

We will prove that limn→∞ P
�
X̂n ∈ Wn(Ψ∞)� = 1.

Write S := ⟨X0, Xrn , X2rn , . . . , X(sn−1)rn , Xn⟩. Obviously S satisfies (i).
LetU := B(S, rn)∩�Xm ; m > n

	
. Write An :=

� |U | ≤ n3/4�. It follows from Lemma 14.40
that E

� |U | � ≤ Cdrdnn1/2 = o
�
n3/4�, whence P(An)→ 1 as n → ∞ by Markov’s inequality.

Now Ψn(x) = Ψ∞(x) for every x ∈ B(S, rn) \U, and Ψn(x) = 0 for all x /∈ B(S, rn). That
is, X̂n ∈ Wn(Ψ∞) on the event An. ◀

In Example 14.30, we described the Poisson boundary for nearest-neighbor walks on a
tree. Our next application of Corollary 14.36 is to general convolution random walks on a
free group. The most natural questions for such walks are transience and convergence to
an end. For simplicity, we will continue to identify ends of a tree with rays from o. Recall
from Section 7.3 that a set S of vertices of a tree T converges to a ray ξ = ⟨ξ0, ξ1, . . .⟩ ∈ ∂T ,
where ξ0 = o, if for all n, all but finitely many vertices in S are separated from o by ξn.
We will then write lim S = ξ. Let �4 be the 4-regular tree, regarded as the usual Cayley
graph of the free group � ∗ � on two letters. Then � ∗ � acts on the boundary ∂�4 by
(γ, ξ) 7→ lim{γξn ; n ≥ 0}. Let µ be a measure on � ∗ � with support that generates � ∗ �
as a group (not necessarily as a semigroup). A startling argument of Furstenberg (1973),
as described in Exercise 14.36, shows – with no other assumptions – that the µ-walk is
transient and, with a little further work, converges a.s. to an end. (Transience also follows
from Theorem 14.48.) Building on these results, Kaimanovich (2000) proved the following.

Proposition 14.41. (Long-Range Walks on Free Groups) Let �4 be the 4-regular tree,
regarded as the usual Cayley graph of the free group � ∗� on two letters. Denote the identity
by o and graph distance of x ∈ �4 from the identity by |x |. Let µ be a measure on � ∗ � with
support that generates that group as a semigroup. Suppose that µ has finite entropy H(µ) and
finite logarithmic moment

∫
log

�
1 + |x |� dµ. Define b(S) := lim S when S is end-convergent

and to be some fixed end ξ ′ otherwise. Then (∂�4,B∂�4 , b) is a Poisson boundary for the
µ-walk ⟨Xn⟩ on �4, and also a compactification � ∗ �-boundary.

Proof. As stated earlier, the µ-walk ⟨Xn⟩ converges Po-a.s. to a random ray Z = ⟨Z j⟩j≥0 with
Z0 = o. Observe that every orbit of the action of � ∗ � on ∂�4 is dense. Since the support
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of µ generates � ∗ �, it follows that the law of Z has full support in ∂�4. This implies that
(∂�4,B∂�4 , b) is a compactification � ∗ �-boundary for ⟨Xn⟩. It remains to identify it as
a Poisson boundary, or equivalently, that the σ-field generated by Z coincides with the tail
of ⟨Xn⟩ mod Po. By the preceding, there is some δ > 0 so that each of the four neighbors
y of o in �4 satisfies P[Z1 = y] ≤ 1 − δ. Because the increments of the µ-walk are i.i.d., it
follows that given Xn ̸= o, the first step on the ray from Xn toward the end Z will coincide
with the first step on the geodesic from Xn toward o with probability at most 1 − δ. Therefore,
P[Xn ∈ Z] ≥ δ for all n. Write Xn = Y1 · Y2 · · · · · Yn, where ⟨Yj⟩ are i.i.d. random elements of
� ∗ � with distribution µ. Given ϵ > 0, for large n we have

P
� |Xn | ≥ enϵ

�
≤ n P

� |Y1 | ≥ enϵ/n
�
≤ n P

�
log |Y1 | ≥ nϵ/2

�
→ 0

as n → ∞. Thus, the sets Wn = W ϵ
n (Z) := ⟨Z j ; 0 ≤ j ≤ enϵ ⟩ satisfy the hypotheses (14.34)

and (14.35) of Corollary 14.36, so σ(Z) generates T mod Po. ◀
We conclude this section with the following enhanced version of Corollary 14.36 from

Lyons and Peres (2015b). For applications, see Exercises 14.13 and 14.38.

Proposition 14.42. Let Γ be a transitive group of automorphisms of (𝖵, P), and let  ⊂ 
be a Γ-closed σ-field in the sequence space 𝖵�. Denote by ⟨Xn⟩ a Markov chain determined
by (𝖵, P) with initial state X0 = o and H(X1) < ∞. If, for every ϵ > 0, there is a sequence of
finite  -measurable random sets ⟨Wϵ

n⟩n≥1 in 𝖵 such that

lim sup
n→∞

Po
�
∃m ≥ n Xm ∈Wϵ

n

�
> 0 (14.37)

and
lim sup
n→∞

1
n

log |Wϵ
n | ≤ ϵ Po-a.s.,

then  = T mod Po.

Proof. It suffices to show that h = 0. Suppose that h > 0 and define

Sm :=
�
x ∈ 𝖵 ; pm(o, x) ≤ exp(−mh /2)	 .

For ϵ > 0,
Po[Xm ∈Wϵ

n ∩ Sm |  ] ≤ |Wϵ
n | · exp(−mh /2) .

Summing over m ≥ n, we deduce that for 0 < ϵ < h /2,

Po[∃m ≥ n Xm ∈Wϵ
n ∩ Sm |  ] ≤ |Wϵ

n | · C exp(−nh /2)→ 0 (14.38)
almost surely as n → ∞, where C = C(h ) is a constant. Therefore,

Po
�
∃m ≥ n Xm ∈Wϵ

n ∩ Sm
�
→ 0 as n → ∞ . (14.39)

By (14.26), Po[∃m ≥ n Xm /∈ Sm]→ 0 as n → ∞, since the intersection of these events has
probability 0. In conjunction with (14.39), this implies that

Po
�
∃m ≥ n Xm ∈Wϵ

n

�
→ 0 as n → ∞ ,

contradicting the hypothesis (14.37). ◀
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▷ Exercise 14.13.
Let �3 be a 3-regular tree, and suppose that ξ is an end of �3. Consider the Markov chain
(Ψn, Xn)� on the lamplighter graph �3

⊙ where p
�(ψ, x), (ϕ, y)� is 1/3 if x = y and ψ, ϕ differ

only at x or if ψ = ϕ and y is the parent of x (the unique neighbor of x in the direction of ξ);
p
�(ψ, x), (ϕ, y)� = 1/6 if ψ = ϕ and x is the parent of y; and otherwise p

�(ψ, x), (ϕ, y)� = 0.
The projected Markov chain ⟨Xn⟩ is invariant under the transitive group of automorphisms of
�3 that preserve ξ. Fix o ∈ �3.

(a) Show that the projected chain ⟨Xn⟩ tends to ξ.
(b) Show that the Avez entropy is 0 for the projected chain ⟨Xn⟩.
(c) For the Markov chain


(Ψn, Xn)� started at (0, o), show that the tail is generated by
the final configuration of the lamps, Ψ∞.

14.5 Appendix: Ergodic Theorems

In this section we give proofs of Birkhoff’s pointwise ergodic theorem and Kingman’s
subadditive ergodic theorem. Kingman’s theorem was used in this chapter to show that
random walks on groups have an asymptotic speed and to prove a Shannon theorem for
entropy. Birkhoff’s theorem is used in Chapter 17 to analyze speed and harmonic measure for
random walks on Galton-Watson trees. The proof we give of Birkhoff’s theorem is one that
easily extends to prove Kingman’s.
Suppose that (Ω,F ,P) is a probability space. Recall that T : (Ω,F )→ (Ω,F ) means that

T is measurable, that is, T−1 maps F to itself, and that T : (Ω,F ,P) → (Ω,F ,P) means
that T is also measure preserving, that is, P◦T−1 = P. In this case, we call (Ω,F ,P,T)
a probability measure-preserving system. The system is ergodic if every F -measurable
f : Ω → � that satisfies f = f ◦ T is constant almost everywhere. If I is the T-invariant
σ-field {A ∈ F ; T−1(A) = A}, then ergodicity is equivalent to I being P-trivial.

▷ Exercise 14.14.
Often a system is defined to be ergodic if the only f that satisfy f = f ◦ T a.s. are constant
a.s. Show that this is equivalent to the preceding definition.

Let ⟨Xn⟩n≥0 be a real-valued stochastic process defined on (Ω,F ,P). If T is measure
preserving and Xn ◦ T = Xn+1 for all n, in other words, Xn = X0 ◦ Tn, then the process
⟨Xn⟩n≥0 is stationary, that is, for every n, the distribution of ⟨X0, X1, . . . , Xn⟩ is the same as
that of ⟨X1, X2, . . . , Xn+1⟩. If we are not interested (Ω,F ,P) beyond the random variables Xn,
then we can use instead the measure-preserving system

�
��,B�� ,S, µ

�
, where µ is the law

of ⟨Xn ; n ≥ 0⟩ and S is the left shift. When this latter system is ergodic, then we also say
that ⟨Xn ; n ≥ 0⟩ is ergodic. Note that ergodicity here is equivalent to the invariant σ-field of
⟨Xn⟩ being trivial.
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▷ Exercise 14.15.
(a) Prove that if the random variables Xn are i.i.d., then ⟨Xn⟩ is ergodic.
(b) Let (Ω,F ,P,T) be a probability measure-preserving system. Let (Λ, G ) be a

measurable space, and suppose there are measurable maps Ψ:Ω → Λ and T̃ : Λ → Λ such
that Ψ ◦ T = T̃ ◦ Ψ. Prove that (Λ, G ,P◦Ψ−1, T̃ ) is a probability measure-preserving system.
Moreover, prove that if (Ω,F ,P,T) is ergodic, then so is (Λ, G ,P◦Ψ−1, T̃ ).

(c) Use (b) to deduce the following statement: if ⟨Xn⟩ is ergodic, g:�� → � is
measurable with respect to the product σ-field, and Yn = g(Xn, Xn+1, . . .), then the process
⟨Yn⟩n≥0 is also ergodic.

For 0 ≤ k < m, define

S[k,m) :=
m−1∑
j=k

X j .

Theorem 14.43. (Birkhoff’s Ergodic Theorem) Suppose ⟨Xn⟩n≥0 is stationary and satis-
fies E

� |X0 | � < ∞. Then almost surely and in L1,

lim
n→∞

1
n

S[0, n) = E[X0 | I ] .

Proof. We will assume ergodicity and leave the general case to Exercise 14.16. We may
assume that Xn ≥ 0. The general case then follows by writing Xn = X+

n − X−n . Let

Ā := lim sup
n→∞

1
n

S[0, n) .

Since Ā = Ā ◦ T , ergodicity of T implies that Ā ∈ [0,∞] is constant a.s. It remains to show
that

Ā = lim inf
n→∞

1
n

S[0, n) a.s. (14.40)

The basic approach is to look at partial averages ℓ−1S[k, k + ℓ) that are close to Ā; these
should occur regularly enough to imply (14.40).

Given ϵ > 0, let α := (Ā ∧ 1/ϵ) − ϵ , where x ∧ y := min{x, y}. For each k, define

L(k) := min
{
ℓ ≥ 1 ;

S[k, k + ℓ)
ℓ

≥ α
}
< ∞ .

Note that by stationarity, the distribution of L(k) does not depend on k.
First we consider the case where L(k) is uniformly bounded by a constant, M. The key

idea is to break the sum
∑n−1

j=0 X j into sums over blocks [ki, ki+1) where the average in each
block is at least α, plus a remainder block of length less than M . Let k1 := 0, and for i ≥ 1,
define

ki+1 := ki + L(ki) .



496 Chap. 14: Random Walks on Groups and Poisson Boundaries

Discarding the remainder block, we obtain for n > M that

n−1∑
j=0

X j ≥
m∑
i=1

S
�
ki, ki + L(ki)� ≥ m∑

i=1

L(ki)α ≥ (n − M)α ,

where m := max{i ; ki + L(ki) < n}. The last inequality follows from our assumption that
L(k) ≤ M . Dividing by n and taking liminf on both sides, we deduce that

lim inf
n→∞

1
n

n−1∑
j=0

X j ≥ lim inf
n→∞

n − M
n

α = α = (Ā ∧ 1/ϵ) − ϵ .

Letting ϵ ↓ 0, it follows that lim infn→∞ S[0, n)/n ≥ Ā, whence limn→∞ S[0, n)/n = Ā.
Now suppose that



L(k)� is unbounded. Pick M ≥ 1 so large that P

�
L(k) > M

�
< ϵ for all

k (the probability does not depend on k). For each k, define

X∗k :=
{ Xk if L(k) ≤ M
α if L(k) > M .

Note that if L(k) > M , then Xk = S[k, k + 1) < α, whence X∗
k
≥ Xk . Also, let

S∗[k,m) :=
m−1∑
j=k

X ∗j and L∗(k) := min
{
ℓ ≥ 1 ;

S∗[k, k + ℓ)
ℓ

≥ α
}
.

Then L∗(k) ≤ M , since X ∗j ≥ X j for all j. Splitting the sum as in the previous case, we have

n−1∑
j=0

X ∗j ≥ (n − M)α . (14.41)

Hence n E[X∗0 ] ≥ (n − M)α. Note that E[X∗0 ] ≤ E[X0] + αϵ by definition of X∗. It follows
that

E[X0] ≥ n − M
n

α − αϵ .

Letting n → ∞ gives E[X0] ≥ α − αϵ ; since α = (Ā ∧ 1/ϵ) − ϵ , by taking ϵ ↓ 0 we deduce
that a.s.

E[X0] ≥ Ā . (14.42)
Next, define Zn := X∗n − Xn ≥ 0 for all n. Since ⟨Zn⟩ is ergodic, we can apply the

conclusions already obtained for ⟨Xn⟩ to ⟨Zn⟩. Thus, by (14.42), we find that a.s.

αϵ ≥ E[Z0] ≥ lim sup
n→∞

1
n

n−1∑
j=0

Z j .
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Taking liminf in (14.41), we obtain that a.s.

lim inf
n→∞

1
n

n−1∑
j=0

X j + lim sup
n→∞

1
n

n−1∑
j=0

Z j ≥ lim inf
n→∞

1
n

( n−1∑
j=0

X j +
n−1∑
j=0

Z j

)
≥ α .

Combining the two preceding displays of inequalities, we get

lim inf
n→∞

S[0, n)
n

+ αϵ ≥ α a.s.;

letting ϵ ↓ 0 gives lim infn→∞ S[0, n)/n ≥ Ā a.s.
This completes the proof of a.s. convergence, except for identifying Ā as E[X0]. If ⟨Xn⟩ is

bounded, then Ā = E[X0] by the bounded convergence theorem. In general, for each C > 0,
the bounded case we just established shows that a.s.

Ā ≥ lim
n→∞

1
n

n−1∑
j=0

(Xi ∧ C) = E[X0 ∧ C] .

Letting C → ∞ and using the monotone convergence theorem yields Ā ≥ E[X0]. On the
other hand, Fatou’s lemma and (14.40) show the reverse inequality.
Finally, the convergence in L1 of S[0, n)/n to Ā follows from Theorem 5.5.2 in Durrett

(2010). ◀

▷ Exercise 14.16.
Prove the general version of the Birkhoff ergodic theorem that does not require ergodicity.

The method we used to prove Birkhoff’s ergodic theorem can also be applied to prove
the subadditive ergodic theorem. This theorem has many applications, for example, in first-
passage percolation and random walk on groups. The version we present is due to Kingman
(1968). (In fact, what we state is the superadditive version.) This includes Birkhoff’s theorem:
take Y (m, n) := S[m, n).
Theorem 14.44. (Kingman’s Superadditive Ergodic Theorem) Let (Ω,F ,P,T) be a
probability measure-preserving system. Let



Y (m, n) ; 0 ≤ m ≤ n

�
be a stochastic process

such that for all m ≤ n,
(i) Y (0, n) ≥ Y (0,m) + Y (m, n),

(ii) Y (m, n) ◦ T = Y (m + 1, n + 1), and
(iii) E

� |Y (m, n)| � < ∞.
Then almost surely the following limit exists:

β := lim
n→∞

Y (0, n)
n

∈ (−∞,∞] .

Moreover, β = limn→∞ E
�
Y (0, n) � I

�/
n a.s. and if E[β] < ∞, then E

[���Y (0, n)n
− β���] → 0.

Proof. We will assume ergodicity and leave the general case to Exercise 14.17. By the
superadditivity assumption (i), Y (0, n) ≥ Y (0, n − 1) + Y (n − 1, n), which inductively yields
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that Y (0, n) ≥ ∑n
k=1 Y (k − 1, k). Applying this to n − m in place of n and using (ii), we

deduce that

Ỹ (m, n) := Y (m, n) −
n∑

k=m+1

Y (k − 1, k) ≥ 0 .

Since the process S(m, n) :=
∑n

k=m+1 Y (k − 1, k) is additive, the process Ỹ (m, n) satisfies (i),
(ii), and (iii). Birkhoff’s ergodic theorem may be applied to



Y (k − 1, k)�. This reduction

allows us to assume that Y (m, n) ≥ 0, since otherwise we may replace Y by Ỹ .
Let β := lim supn→∞ Y (0, n)/n. Since β = β ◦ T , ergodicity ensures that β is constant

almost surely. Given ϵ > 0, let α := (β ∧ 1/ϵ) − ϵ and define

L(k) := min
�
ℓ ≥ 1 ; Y (k, k + ℓ) ≥ ℓα	 .

Choose M so large that P
�
L(k) > M

�
< ϵ for all k. Define

L∗(k) :=
{ L(k) if L(k) ≤ M

1 if L(k) > M .

Let k1 := L(0) and ki+1 := ki + L∗(ki). Analogously to the proof of Birkhoff’s ergodic
theorem, we have

Y (0, n) ≥ Y (0, k1) + Y (k1, k2) + · · · + Y (km−1, km) ≥
[
(n − M) −

n∑
k=0

1[L(k)>M]
]
α ,

where m := max{i ; ki + L∗(ki) ≤ n}. Since 
1[L(k)>M]
�
k
is ergodic, by Birkhoff’s ergodic

theorem, we have that a.s.

lim inf
n→∞

Y (0, n)
n

≥ α
�
1 − P[L(0) > M]� ≥ α(1 − ϵ) .

Letting ϵ ↓ 0 and recalling the definition of α, we conclude that lim infn→∞ Y (0, n)/n ≥ β

a.s., whence limn→∞ Y (0, n)/n = β a.s.
We next prove that β = limn→∞ E

�
Y (0, n)�/n. First, note that limn→∞ E

�
Y (0, n)�/n exists

by superadditivity (see Exercise 3.9). By Fatou’s lemma,

β ≤ lim inf
n→∞

E
�
Y (0, n)�

n
= lim

n→∞

E
�
Y (0, n)�

n
.

If β < ∞, then we still need to prove the other direction. For every integer n > 0, by
Birkhoff’s ergodic theorem and superadditivity, almost surely

1
n

E
�
Y (0, n)� = lim

k→∞
1

kn

k∑
j=1

Y
�( j − 1)n, jn

�
≤ lim

k

1
kn

Y (0, kn) = β .

The convergence in L1 of Y (0, n)/n to β now follows from Theorem 5.5.2 in Durrett (2010).
◀
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▷ Exercise 14.17.
Prove the more general version of Kingman’s subadditive ergodic theorem that does not
require ergodicity.

Just as Birkhoff’s ergodic theorem applies to stationary sequences of random variables,
Kingman’s subadditive ergodic theorem applies to stationary triangular arrays of random
variables. That is, let ◣ :=

�(m, n) ; 0 ≤ m ≤ n
	
and suppose



Y (m, n) ; (m, n) ∈ ◣

�
is a

triangular array of real-valued random variables whose law on the space �◣ is unchanged
under the shift T :



y(m, n)� 7→ 


y(m + 1, n + 1)�. Then (i) and (iii) of Theorem 14.44 imply
the conclusions of that theorem.

14.6 Appendix: The Zero-Two Law for Transitive Markov Chains

In this section, we show that for transitive Markov chains, the invariant σ-field coincides
with the tail σ-field up to sets of Po-measure 0. The first step is the following theorem. Recall
the notation ∥µ − 𝜈∥TV := supA∈F |µ(A) − 𝜈(A)|.
Theorem 14.45. Let pn(•, •) be the n-step transition probabilities for a transitive Markov
chain on a countable set 𝖵. Fix a basepoint o. Then, for any integer k > 0,

lim
n→∞

∥pn+k(o, •) − pn(o, •)∥TV ∈ {0, 1} . (14.43)

Because of transitivity, the norm in (14.43) does not depend on the choice of o.
The distance ∥pn+k(o, •) − pn(o, •)∥TV is decreasing in n by Exercise 13.2(iii). Therefore, if

the limit in (14.43) is 1, then

∀n ∥pn+k(o, •) − pn(o, •)∥TV = 1 .

Theorem 14.45 as stated does not hold without the assumption of transitivity (as demon-
strated in the following exercise), but there is an extension valid for general chains; see
Theorem 14.53 in the notes.

▷ Exercise 14.18.
Let G denote �3 with a loop added at o. Show that simple random walk on G satisfies
0 < limn→∞ ∥pn+1(o, •) − pn(o, •)∥TV < 1 .

As a warm-up to the general proof, it will be useful to consider first a special case.

Proof of Theorem 14.45 for random walks on groups. We first consider the case where 𝖵 is
a countable group Γ and p(x, y) = µ(x−1y) for some probability measure µ on Γ. Take the
basepoint o to be the identity and abbreviate pℓ( • ) := pℓ(o, •).
Suppose there exists an integer ℓ > 0 such that ∥pℓ+k − pℓ∥TV < 1. This implies that there

exists ϵ > 0 and γ∗ ∈ Γ such that pℓ+k(γ∗) ≥ ϵ and pℓ(γ∗) ≥ ϵ . Let µ⊗ℓ be the ℓ-fold product
probability measure on the Cartesian product Γℓ . In this notation, for every γ ∈ Γ, we have

µ⊗ℓ
��(γ1, . . . , γℓ) ; γ1 · · · γℓ = γ

	�
= pℓ(γ) . (14.44)
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Let 𝜈ℓ denote µ⊗ℓ conditioned on
�(γ1, . . . , γℓ) ; γ1 · · · γℓ = γ∗

	
. Then µ⊗ℓ ≥ ϵ𝜈ℓ , since

pℓ(γ∗) ≥ ϵ . Thus, we can define a probability measure θℓ on Γℓ by

µ⊗ℓ = ϵ𝜈ℓ + (1 − ϵ)θℓ . (14.45)
We can similarly write µ⊗(ℓ+k) = ϵ𝜈ℓ+k + (1 − ϵ)θℓ+k , where 𝜈ℓ+k is µ⊗(ℓ+k) conditioned on�(γ1, . . . , γℓ+k) ; γ1 · · · γℓ+k = γ∗

	
and θℓ+k is a probability measure on Γℓ+k .

Next, we will construct a sequence of i.i.d. random variables W1,W2, . . . taking values in
the union Γℓ ∪ Γℓ+k with distribution

1
2
�
µ⊗ℓ + µ⊗(ℓ+k)� . (14.46)

(To pick a variable W from the distribution (14.46), toss a fair coin and pick W from µ⊗ℓ if it
falls heads and from µ⊗(ℓ+k) otherwise.) We will couple this sequence with another sequence
W ′

1,W
′
2, . . . that has the same law.

We start by describing the joint law of one pair (W ,W ′). Toss a coin with probability ϵ of
heads. If it falls heads, sample the pair (W ,W ′) from 1

2 (𝜈ℓ ⊗ 𝜈ℓ+k + 𝜈ℓ+k ⊗ 𝜈ℓ); if tails, sample
W from 1

2 (θℓ + θℓ+k) and set W ′ := W . As a formula, the joint distribution of (W ,W ′) is
ϵ

2 (𝜈ℓ ⊗ 𝜈ℓ+k) + ϵ

2 (𝜈ℓ+k ⊗ 𝜈ℓ) + 1 − ϵ
2 diag∗(θℓ) + 1 − ϵ

2 diag∗(θℓ+k) , (14.47)
where diag∗(θ) is the distribution of the random variable (U,U) when U is distributed
according to θ. Clearly, the marginal distributions of both W and W ′ in (14.47) are the law
specified in (14.46).
We define (Wi,W ′

i ) inductively. First, pick the pair (W1,W ′
1) from the joint distribution

(14.47). For the inductive step, suppose that (Wi,W ′
i ) have been defined for all i < m. If

∀ j < m
j∑

i=1

length(W ′
i ) ̸= k +

j∑
i=1

length(Wi) ,

then let (Wm,W ′
m) be an independent pick from (14.47); otherwise, let Wm be an independent

pick from µℓ and set W ′
m := Wm.

Observe that t 7→
∑t

i=1
�
length(W ′

i ) − length(Wi)� is a symmetric, nondegenerate random
walk on � with increments {−k, 0, k}, started at 0 and absorbed at k; this walk is recurrent,
so the first time τ that it reaches k is a.s. finite. The concatenation W1W2 . . . is an infinite
word in which the first n letters have the distribution µ⊗n for all n. Thus, the product of the
first n letters, for any n, gives an element Xn ∈ Γ distributed according to pn. The same holds
for the product X ′n ∈ Γ of the first n letters of the concatenation W ′

1W ′
2 . . . .

This coupling ensures that for each i, either Wi = W ′
i , or Wi and W ′

i are two words with
lengths differing by k but both representing the same group element γ∗. Therefore, on the
event

∑τ
i=1 length(Wi) ≤ n, the first n letters of the concatenation W1W2 . . . and the first n+ k

letters of the concatenation W ′
1W ′

2 . . . yield products Xn and X ′
n+k that are equal in Γ because

of the coupling. Thus, by the coupling interpretation of total variation, Exercise 13.2(ii), we
have

∥pn+k − pn∥TV ≤ P[X ′n+k ̸= Xn] ≤ P
[ τ∑
i=1

length(Wi) > n
]
→ 0

as n → ∞, since τ < ∞ a.s. ◀
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Next we prove Theorem 14.45 in general. The proof is similar to the group case but
involves paths rather than words.

Proof of Theorem 14.45 for general transitive chains. Suppose that

∥pℓ+k(o, •) − pℓ(o, •)∥TV < 1 .

By transitivity, there exists ϵ > 0 such that for every x ∈ 𝖵, there is a vertex y = y(x) ∈ 𝖵
that satisfies pℓ+k(x, y) ≥ ϵ and pℓ(x, y) ≥ ϵ . Denote by px0

[1,ℓ]( • ) the distribution on paths of
length ℓ in 𝖵 given by

px0
[1,ℓ](x1, . . . , xℓ) =

ℓ∏
i=1

p(xi−1, xi) .

For every x, z ∈ 𝖵, we have

px
[1,ℓ]

(�(x1, . . . , xℓ) ; xℓ = z
	)

= pℓ(x, z) . (14.48)
For x, x1, . . . , xℓ ∈ 𝖵, define 𝜈xℓ (x1, . . . , xℓ) := px

[1,ℓ](x1, . . . , xℓ)/pℓ(xℓ) if xℓ = y(x), and
𝜈xℓ (x1, . . . , xℓ) := 0 otherwise. Then, for every x ∈ 𝖵, we have px

[1,ℓ]( • ) ≥ ϵ𝜈xℓ , so we can
define a probability measure θxℓ on 𝖵ℓ by

px
[1,ℓ]( • ) = ϵ𝜈xℓ + (1 − ϵ)θxℓ . (14.49)

We can similarly write px
[1,ℓ+k]( • ) = ϵ𝜈x

ℓ+k + (1 − ϵ)θx
ℓ+k .

Given x ∈ 𝖵, let (W ,W ′) be a pair of random paths in 𝖵 with joint law

Υ
x := ϵ

2 (𝜈
x
ℓ ⊗ 𝜈xℓ+k) + ϵ

2 (𝜈
x
ℓ+k ⊗ 𝜈xℓ ) + 1 − ϵ

2 diag∗(θxℓ ) + 1 − ϵ
2 diag∗(θxℓ+k) . (14.50)

Clearly, the marginal distributions of both W and W ′ in (14.50) are
1
2
�
px
[1,ℓ]( • ) + px

[1,ℓ+k]( • )
�
. (14.51)

Observe that under Υx , the paths W and W ′ have the same final vertex a.s.
Next, we define inductively a sequence of pairs (Wi,W ′

i ) of paths in 𝖵. First, pick the
pair (W1,W ′

1) from the joint distribution Υo in (14.50). For the inductive step, suppose that
(Wi,W ′

i ) has been defined for all i < m and that zm is the final vertex of Wm−1. If

∀ j < m
j∑

i=1

length(W ′
i ) ̸= k +

j∑
i=1

length(Wi) ,

then let (Wm,W ′
m) be an independent pick from Υzm ; otherwise, let Wm be an independent

pick from pzm
[1,ℓ]( • ) and set W ′

m := Wm. As before, the first time τ that the random walk
t 7→

∑t
i=1

�
length(W ′

i ) − length(Wi)� reaches k is a.s. finite. The concatenation W1W2 . . . is
an infinite path where for every n, the nth vertex Xn is distributed according to pn(o, •). The
same holds for the nth vertex X ′n on the infinite path W ′

1W ′
2 . . . . Therefore,

∥pn+k(o, •) − pn(o, •)∥TV ≤ P[X ′n+k ̸= Xn] ≤ P
[ τ∑
i=1

length(Wi) > n
]
→ 0

as n → ∞, since τ < ∞ a.s. ◀
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Recall from Section 14.2 that a function Λ:𝖵 ×�→ � is called space-time harmonic if
it is a harmonic function for the space-time chain


(Xn, n) ; n ≥ 0
�
.

The following consequence of the zero-two law shows that bounded space-time harmonic
functions coincide with harmonic functions on the Markov chain trajectory. The meaning of
this latter phrase is spelled out in (14.52). Note that it need not be the case that u(x) = Λ(x, n)
for all x and n: to see this, consider simple random walk on � and define Λ(x, n) to be the
indicator that x and n have the same parity.

Proposition 14.46. Consider a transitive chain with transition kernel p(•, •) on 𝖵, and let
Λ:𝖵 ×�→ � be a bounded space-time harmonic function.

(i) Suppose that x ∈ 𝖵, ℓ ≥ 0, and k ≥ 1. If pℓ(o, x) > 0 and pℓ+k(o, x) > 0, then
Λ(x, ℓ) = Λ(x, ℓ + k).

(ii) There exists a bounded harmonic function u:𝖵→ � such that for all x ∈ 𝖵 and n ∈ �,

pn(o, x) > 0 =⇒ u(x) = Λ(x, n) . (14.52)

Proof. (i) The hypothesis implies that ∥pℓ(o, •) − pℓ+k(o, •)∥TV < 1, so by the zero-two law
and transitivity, ∥pn(x, •) − pn+k(x, •)∥TV → 0 as n → ∞. Since Λ is space-time harmonic,
for every n ∈ �,

Λ(x, ℓ) = ExΛ(Xn+k , ℓ + n + k) and Λ(x, ℓ + k) = ExΛ(Xn, ℓ + n + k) .

Therefore,

|Λ(x, ℓ) − Λ(x, ℓ + k)| ≤ 2 sup |Λ| · ∥pn(x, •) − pn+k(x, •)∥TV → 0 as n → ∞ .

(ii) For every x ∈ 𝖵 and n ∈ � with pn(o, x) > 0, define u(x) := Λ(x, n). Part (i) implies
this does not depend on the choice of n. Harmonicity of u follows: Given x and n as earlier,
if p(x, y) > 0, then pn+1(o, y) ≥ pn(o, x)p(x, y) > 0, so u(y) = Λ(y, n + 1). Thus

u(x) = Λ(x, n) =
∑
y∈𝖵

p(x, y)Λ(y, n + 1) =
∑
y∈𝖵

p(x, y)u(y) . ◀

We can now deduce the main goal of this section. Given the preceding proposition, the
proof is identical to the proof of Theorem 14.18, so we do not repeat it. Although (14.52) is
weaker than what was established for lazy chains, namely, (14.13), it was all that was used:
see (14.14).

Theorem 14.47. Consider a transitive chain on 𝖵, and let o ∈ 𝖵. Then the Po-completions
of the tail σ-field T and the invariant σ-field  coincide. ◀
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14.7 Notes

The theory developed in this chapter originates with the pioneering works of Furstenberg (1963,
1971a, 1971b). Given a discrete group Γ and a measure µ on it, recall that (Γ, µ) is Liouville if all
bounded µ-harmonic functions on Γ are constant. Furstenberg (1973) conjectured that Γ is amenable iff
there is a symmetric µ whose support generates Γ such that (Γ, µ) is Liouville. This was established by
Rosenblatt (1981) and Kaimanovich and Vershik (1983). These authors also proved the following.

Theorem 14.48. Let Γ be a nonamenable discrete group. Then every distribution µ on Γ is non-
Liouville.

For symmetric µ of finite entropy, this follows from Proposition 14.6 and Theorem 14.20. If we just
assume finite entropy, then we can replace Proposition 14.6 by Corollary 6.32(i) to deduce that h > 0
(using the observation that P is Liouville iff (P + I)/2 is Liouville). For other µ, this can be deduced
from Exercise 14.22; see Kaimanovich and Vershik (1983), Theorem 4.2. The following elegant general
argument was given by Björklund (2014).

Proof of Theorem 14.48. Since Γ is nonamenable, there exists a compact Hausdorff space K on which
Γ acts by homeomorphisms without an invariant measure (this follows from one of the standard
characterizations of amenability; see, for example, Paterson (1988)). By Exercise 14.36(a), there is a
probability measure 𝜈 on K that satisfies µ ∗ 𝜈 = 𝜈, that is,∫

Γ

∫
K

φ(γx) d𝜈(x) dµ(γ) =
∫
K

φ d𝜈 (14.53)

for all φ ∈ C(K). Since 𝜈 is not invariant, there exists ψ ∈ C(K) such that u(g) :=
∫
K
ψ(gx) d𝜈(x) is

not constant on Γ. Clearly u is bounded. Applying (14.53) with φ = ψ ◦ g yields∫
Γ

u(gγ) dµ(γ) =
∫

Γ

∫
K

ψ(gγx) d𝜈(x) dµ(γ) =
∫
K

ψ(gx) d𝜈(x) = u(g) ;

in other words, u is µ-harmonic, so (Γ, µ) is not Liouville. ◀
Another open question had been whether there exists an amenable group Γ with a symmetric

non-Liouville measure whose support generates Γ as a group. To answer this, Vershik and Kaimanovich
(1979, 1983) utilized the lamplighter groups �d⊙ = �2 ≀ �d , which are key examples in this chapter;
they denoted �d⊙ by Gd .

Every convolution walk on every nilpotent group is Liouville, as shown by Dynkin and Maljutov
(1961). By a celebrated theorem of Gromov (1981a), it follows that the same holds for all groups
of polynomial growth, as noted by Kaimanovich and Vershik (1983) (compare Exercise 14.30). As
described in Section 7.9, transitive graphs of polynomial growth are very close to Cayley graphs of the
same growth rate. This was proved by Trofimov (1984). A cleaner way to say that they are “close” to
Cayley graphs was noted by Godsil, Imrich, Seifter, Watkins, and Woess (1989) as a consequence of
results by Trofimov (1984) and Sabidussi (1964): every transitive graph G of polynomial growth has the
property that for some n ≥ 1, the graph nG is a Cayley graph of a transitive subgroup of Aut(G), where
nG has vertex set 𝖵(G) × {1, . . . , n} and edges connecting pairs (x, j) to (y, k) when [x, y] ∈ 𝖤(G).
Thus, we have the following theorem:

Theorem 14.49. Every transitive Markov chain with invariant graph metric on a graph of polynomial
growth is Liouville.

Proof. Let n be such that nG is a Cayley graph of a transitive subgroup, Γ, of the automorphism
group preserving the Markov chain and the graph, G. In fact, Sabidussi (1964) shows that for γ ∈ Γ,
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1 ≤ j ≤ n, and x ∈ 𝖵(G), there is some k ∈ [1, n] such that γ(x, j) = (γx, k). In other words, the
left translations of Γ on nG project to the action of Γ on G as a subgroup of Aut(G). If p(•, •) are
the transition probabilities on 𝖵(G), then let q

�(x, j), (y, k)� := p(x, y)/n to define a transitive Markov
chain on nG. It follows from the above relationship of the actions of Γ that this chain is invariant under
Γ, whence it is a convolution walk. Since Γ has polynomial growth, this chain on nG is Liouville.
Exercise 14.28 then gives that the original chain is also Liouville. ◀

When Eo

�
log

�
1 + d(o, X1)�� < ∞, Theorem 14.49 is also a consequence of Exercise 14.23 and

Theorem 14.7.
Kaimanovich and Vershik (1983) asked whether the Liouville property for simple random walk on a

Cayley graph of a finitely generated group is stable under change of generators. More generally, it is
natural to ask the following: suppose a transitive network (G, c) with the Liouville property is roughly
isometric to another transitive network (G, c′); must the second network be Liouville as well?

If the transitivity assumption is omitted, then the answer is negative; indeed, the Liouville property
of a network (G, c) is not even stable under change of conductances by a bounded factor (compare
Proposition 9.8). The first example of this is due to T. Lyons (1987); the next exercise indicates a
simpler example from Benjamini (1991). The latter paper also describes graphs of polynomial growth
where the Liouville property is unstable under bounded conductance perturbations.

▷ Exercise 14.19.
Let T be an infinite binary tree, where every vertex except the root has an address consisting of a finite
sequence of left and right turns. Let ⟨v j ⟩ be an enumeration of all vertices of T with |v j | ≥ 100 that
have more left turns than right turns in their address. Construct a graph G from T and �4 by gluing v j
to the node ( j, 0, 0, 0) of �4 for every j ≥ 1. Show that simple random walk on G is Liouville, but if all
the tree edges in G leading right are assigned conductance 2 (while all other edges have conductance 1),
then the resulting network (G, c) is not Liouville.

As noted in (14.3), for a transitive Markov chain of finite entropy, a subadditivity argument implies
that limn H(Xn)/n exists. However, when H(Xn) grows sublinearly, it can fluctuate wildly; indeed,
Brieussel (2013) gives examples of random walks on groups where

lim inf
log H(Xn)

log n
= 1/2 and lim sup

log H(Xn)
log n

= 1 .

It can also grow more regularly with lim log H(Xn)
log n

existing and equal to any prescribed value in [1/2, 1):
see Amir and Virág (2016). Similar results hold for the speed: Brieussel (2013) gives examples of
random walks on groups where

lim inf
log E|Xn |

log n
= 1/2 and lim sup

log E|Xn |
log n

= 1 ,

while between the two papers Amir and Virág (2016) and Brieussel and Zheng (2015), we obtain

examples where lim log E|Xn |
log n

exists and equals any prescribed value in [1/2, 1).
Another interesting result similar to Theorem 14.10 is the following: Recall the notation τx :=

inf{n ≥ 0 ; Xn = x}. Denote by 𝜁Gr(x, y) := − log Px [τy < ∞], the negative log of the probability that
the chain, started at x, ever visits y ∈ 𝖵. This is not a metric since it need not be symmetric; however, it
is nonnegative and satisfies the triangle inequality. These properties are actually enough for the proof of
Theorem 14.9(i) to hold when E

�
𝜁Gr(o, X1)� < ∞ and the chain is transitive, as is easily checked. The

following result is due to Benjamini and Peres (1994b) and Blachère, Haı̈ssinsky, and Mathieu (2008):
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Theorem 14.50. Let ⟨Xn⟩ be a transitive Markov chain with an invariant graph metric on a graph of
finite degree. Suppose that X0 = o and H(X1) < ∞. Then Po-almost surely and in L1,

lim
n
− 1
n

log 𝜁Gr(o, Xn) = h .

Proof. Because of the triangle inequality, the subadditive ergodic theorem ensures the existence of
the desired limit, both a.s. and in L1. Denote the limit by α. Since Px [τy < ∞] · G (y, y) = G (x, y)
and G (y, y) does not depend on y, the claim is equivalent to saying that limn −n−1 Eo log G (o, Xn) = h.
Now

−Eo log G (o, Xn) = −
∑
x

pn(x) log G (o, x) ≤ −
∑
x

pn(x) log pn(x) = H(Xn) ,

whence α ≤ h.
To show that h ≤ α, we may assume that h > 0. In particular, by Theorem 14.49, we may

assume that the graph has superpolynomial growth, that is, for every d ∈ (0,∞), there is some c > 0
such that the graph balls of radius r have at least crd points. In addition, just as in Lemma 14.19,
we may assume that the chain is lazy. By Lemma 10.46 and the upcoming Exercise 14.20, it
follows that for some c1, all x ∈ 𝖵, and all k ≥ 1, we have pk (o, x) ≤ c1k−d/2. Consider the sets
A(r) := {x ∈ 𝖵 ; − log G (o, x) ≤ r} = {x ∈ 𝖵 ; G (o, x) ≥ e−r }. Define s by s2−d = e−r . Choose
c2 > 0 such that

∑
k>c2s2 c1k−d/2 ≤ s2−d/2 = e−r/2; note that c2 does not depend on r . Then, for all

x ∈ A(r), we have
∑

k≤c2s2 pk (o, x) ≥ e−r/2, whence

c2s2 + 1 ≥
∑
x∈𝖵

∑
k≤c2s2

pk (o, x) ≥
∑

x∈A(r )

∑
k≤c2s2

pk (o, x) ≥ |A(r)|e−r/2 = |A(r)|s2−d/2 .

In other words, |A(r)| ≤ 2c2sd + 2sd−2 ≤ c3er d/(d−2) for some c3 that does not depend on r. Since
A(r) is the “ball” of “radius” r + log G (o, o) in the “metric” 𝜁Gr, this means that in the “metric” 𝜁Gr,
we have v ≤ d/(d − 2). As this holds for all d, we deduce that v ≤ 1. Notice that in this “metric,”
Eo

�
𝜁Gr(o, X1)� = −∑x p(o, x) log Po[τx < ∞] ≤ −∑x p(o, x) log p(o, x) = H(X1) < ∞. Therefore

Theorem 14.9(i) yields h ≤ α, as desired. ◀

▷ Exercise 14.20.
Consider a transitive lazy Markov chain on (𝖵, P) with an invariant graph metric on a graph G of finite
degree. Suppose that for some constant c > 0 and all r ≥ 1, the balls of radius r have at least crd points
in them. Show that for some c1, all x ∈ 𝖵, and all k ≥ 1, we have pk (o, x) ≤ c1k−d/2.

The proof method of Lemma 14.11 is from Benjamini, Lyons, and Schramm (1999). Proposi-
tion 14.12, a cornerstone of the theory, is due to Blackwell (1955).

For symmetric transitive chains, Ledrappier (1992) proved the inequality h ≥ 4(1 − ρ) relating
the entropy and the spectral radius. For ρ near 1, this improves on Avez’s bound h ≥ −2 log ρ in
Proposition 14.6. An estimate that improves on both of these bounds was established in Gouëzel,
Mathéus, and Maucourant (2015). Avez (1972, 1974) proved that for finitely supported random walks
on groups, h = 0 implies the Liouville property. Theorem 14.7 for random walks on groups is due
to Vershik and Kaimanovich (1979, 1983) and Derriennic (1980). The equivalence of (i)–(iv) in
Theorem 14.20 was also proved in those papers. These results were later generalized to transitive chains
by Kaimanovich and Woess (2002). Theorem 14.9(i), due to Guivarc’h (1980), is sometimes referred to
as the “fundamental inequality”; our exposition follows Karlsson and Ledrappier (2007). That paper
also showed that the implication h = 0 ⇒ l = 0 holds for all symmetric µ-walks with jumps in L1: see
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Proposition 14.22. Part (ii) of Theorem 14.9 is a streamlined version of an inequality from Varopoulos
(1985b). These two inequalities yield the statements on speed in Theorem 14.20. In free products and
certain related groups, speed and entropy can be calculated explicitly; see, for example, Mairesse and
Mathéus (2007a, 2007b) and Gilch (2007, 2011). Theorem 14.10(i) is due to Guivarc’h (1980), p. 174,
and Woess (2000), Theorem 8.14, and Theorem 14.10(ii) is due to Vershik and Kaimanovich (1979,
1983), Derriennic (1980), and Kaimanovich and Woess (2002).

Another way to prove part of Theorem 14.20 is from the following inequality of Benjamini, Duminil-
Copin, Kozma, and Yadin (2015b), which makes more explicit results of Erschler and Karlsson
(2010):

Theorem 14.51. Let µ be a symmetric measure of finite entropy on a discrete group Γ, and let ⟨Xn⟩ be
the corresponding µ-walk. For every harmonic function f on Γ, we have

�
E| f (X1) − f (o)|�2 ≤ 4 E

� | f (Xn) − f (o)|2��H(Xn) − H(Xn−1)� .
For the promised application, note that if the harmonic function f is not constant and the support of

µ generates Γ, then the left-hand side is not 0, whence if f is also bounded, then H(Xn) − H(Xn−1) is
bounded away from 0, whence h ̸= 0. This proves that (iii) implies (ii) in Theorem 14.20.

A related inequality is due to Erschler and Karlsson (2010), as sharpened by Benjamini, Duminil-
Copin, Kozma, and Yadin (2015a) (who also provide an extension to a wider setting): let µn = pn(o, •)
denote the distribution of Xn .

Theorem 14.52. Let ⟨Xn⟩ be simple random walk on the Cayley graph of a group Γ determined by the
symmetric finite generating set S. Then, for n ≥ 1,

∑
s∈S

∑
x∈Γ

�
µn(sx) − µn(x)�2

µn(sx) + µn(x) ≤ 2|S|�H(Xn) − H(Xn−1)� .
A related inequality giving a lower bound on H(µ ∗ 𝜈) − H(𝜈) appears at the end of Section 3 of

Ozawa (2015).
Proposition 14.22 is due to Karlsson and Ledrappier (2007). The short proof we give is due to

Björklund (2014), who was inspired by Erschler and Karlsson (2010).
The equivalence of parts (i), (ii), and (iv) of Theorem 14.29 in the context of random walks on

groups is due to Furstenberg (1963, 1971b). The extension to more general chains and the equivalence
with (iii) are due to Kaimanovich and Vershik (1983). The construction of the Poisson boundary in
Theorem 14.31 is a streamlined version of the construction in Furstenberg (1971b). The passage from
(𝖵�, ,Po) to (Θ,BΘ, 𝜈o) is part of a theory of Rokhlin (1949) concerning standard probability spaces.

Furstenberg (1971b) and Kaimanovich and Vershik (1983) gave entropy criteria for identifying the
Poisson boundary. Two notable papers by Ledrappier (1984, 1985) used this criterion to determine the
Poisson boundary for discrete matrix groups; see also Ballmann and Ledrappier (1994). Ledrappier
(1984) inspired Kaimanovich (1985, 1994, 2000) to refine the entropy method and prove the key criteria
Theorem 14.35 and Corollary 14.36. (More precisely, those papers were written for random walks on
groups; the extension to transitive chains was made later in Kaimanovich and Woess (2002).) One of
Kaimanovich’s important observations was that the sets Wn in Corollary 14.36 can often be defined
geometrically, using “rays” or “strips.”

Kaimanovich’s criteria led to much progress in identifying Poisson boundaries, such as the works by
Kaimanovich and Masur (1996, 1998), Karlsson (2003), Malyutin (2003), Karlsson and Woess (2007),
Sava (2010b), Brofferio and Schapira (2011), Gautero and Mathéus (2012), Malyutin, Nagnibeda, and
Serbin (2016), Nevo and Sageev (2013), Maher and Tiozzo (2014), and Malyutin and Svetlov (2014).
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Vershik and Kaimanovich (1979, 1983) asked for a description of the Poisson boundary for finitely
supported µ on the lamplighter groups �d⊙ when it is nontrivial, in other words, when the projected
walk on �d is transient. Moreover, they suggested a natural candidate, namely, (�2)�d with the
probability measure given by the final configuration of lamps, Ψ∞.

Kaimanovich (2001) made some progress on this lamplighter question by proving that for µ whose
projection on the base group, �d , has nonzero mean, the final lamps do indeed give the Poisson
boundary; in particular, this includes Corollary 14.38.

In 2008, Erschler (2011, 2010) achieved a breakthrough, proving that the conjecture of Vershik and
Kaimanovich (1979) holds when d ≥ 5 and allowing infinitely supported µ with a finite third moment.
This was extended by Lyons and Peres (2015b) to all d ≥ 3, allowing µ with finite second moment.

The result of Exercise 14.13 is due to Sava (2010a), where an extension to walks with bounded jumps
was conjectured; this conjecture was proved by Lyons and Peres (2015b) using the enhanced criterion,
Proposition 14.42.

Let G be a one-ended planar graph of bounded degree. The Poisson boundary for simple random
walk on G was conjectured by Benjamini and Schramm (1996c) to be a circle, endowed with the
harmonic measure obtained from convergence of the walk in its square tiling representation, as in
Section 9.4. This conjecture was proved by Georgakopoulos (2016). An alternative representation
of the Poisson boundary, using circle packings, was obtained in Angel, Barlow, Gurel-Gurevich, and
Nachmias (2016). A simplified proof for both representations, and an extension to graphs that are
roughly isometric to one-ended planar graphs of bounded degree, are given by Hutchcroft and Peres
(2015).

Our proof of Theorem 14.43 follows the lines of Katznelson and Weiss (1982) and Keane (1995),
who were in turn inspired by Kamae (1982); see also Shields (1987). The proof of Kingman’s theorem
that we present follows Steele (1997) and is modeled after the proofs of Birkhoff’s theorem mentioned
earlier. An alternative proof of Kingman’s theorem with slightly weaker hypotheses was found by
Liggett (1985). A different concise proof of the Birkhoff theorem is given by Ross and Peköz (2007);
that proof does not generalize as easily to the subadditive case.

Zero-two laws for positive operators were first proved by Orstein and Sucheston (1970) and Foguel
(1971, 1976). The version in Theorem 14.45 is due to Derriennic (1976). The reason for the name
“zero-two law” is that in these papers, the L1 distance between measures, ∥µ− 𝜈∥1 =

∑
x∈𝖵 |µ(x)− 𝜈(x)|,

which is twice the total variation distance ∥µ − 𝜈∥TV, was used (see Exercise 13.2).
As noted after the zero-two law, Theorem 14.45, that theorem requires the transitivity assumption.

Nevertheless, Derriennic (1976) did prove the following extension.

Theorem 14.53. (Derriennic’s General Zero-Two Law) Let pn(•, •) be the n-step transition proba-
bilities for a Markov chain on a countable set 𝖵. Then, for any integer k > 0,

sup
x∈𝖵

lim
n→∞

∥pn+k (x, •) − pn(x, •)∥TV ∈ {0, 1} . (14.54)

It can be proved similarly to our proof of Theorem 14.45.
Kaimanovich and Vershik (1983) pointed out that the zero-two law implies the coincidence of the

tail and invariant σ-fields (Theorems 14.18 and 14.47).
The theory of this chapter can be extended to random walks in random environments: see

Kaimanovich (1990), Benjamini and Curien (2012), and Benjamini, Duminil-Copin, Kozma, and
Yadin (2015a).

There is also a theory of positive harmonic functions, involving the so-called Martin boundary. For
an exposition, see Dynkin (1969) or Sawyer (1997). The latter explains the relationship of the Martin
boundary to the Poisson boundary. Kaimanovich (1996) surveys the topic of this chapter and discusses
symmetric spaces and Martin boundaries as well.
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14.8 Collected In-Text Exercises

14.1. For y, z ∈ 𝖵�, write y T∼ z iff ∃n ∀m ≥ n ym = zm. Let A ⊆ 𝖵� be a Borel set. Show that
A ∈ T iff A is a union of tail equivalence classes (that is, y ∈ A, y T∼ z ⇒ z ∈ A). Similarly, show that
a Borel function f :𝖵� → � is a tail function iff y

T∼ z implies f (y) = f (z).
14.2. Let (T , c) be a transient network on a tree with bounded conductances. Show that the network

walk has a nontrivial tail.

14.3. Show that if a discrete random variable X satisfies H(X | F ) = H(X) a.s., then X is
independent of F .

14.4. Prove that we always have H(X ,Y | F ) ≥ H(X | F ).
14.5. (a) Show that simple random walk on a (b + 1)-regular tree �b+1 satisfies h = lv.

(b) Find a Cayley graph where simple random walk satisfies h < lv. Hint: Consider a Cartesian
product of trees.

14.6. Given a transitive Markov chain ⟨X j ⟩ on a state space 𝖵, denote the number of distinct states
among its first n by Rn := |{X0, X1, . . . , Xn−1}|. Fix o ∈ 𝖵, and show that limn→∞ Eo[Rn]/n =
Po[∀ j ≥ 1 X j ̸= o] as n → ∞. Deduce that Rn/n converges Po-a.s. to the same limit.

14.7. Suppose that u is a bounded harmonic function on an irreducible Markov chain (𝖵, P) and c is
a constant such that limn u(Xn) = c almost surely-Po . Show that u(x) = c for all x ∈ 𝖵.

14.8. (Saturation) Let (M1,F1,Q1) and (M2,F2,Q2) be two probability spaces, and suppose that
Φ: (M1,F1)→ (M2,F2) is measurable with Q2 = Q1 ◦ Φ−1. Show that the following are equivalent:

(i) The Q1-completions of F1 and Φ−1F2 coincide.
(ii) The mapping f2 7→ f2 ◦ Φ from L∞(M2,F2,Q2) to L∞(M1,F1,Q1) is surjective.

14.9. (a) Prove that the map π in Theorem 14.29(iv) is unique up to a set of 𝜈o-measure 0.
(b) Prove that the Poisson boundary of a Markov chain (𝖵, P) is unique up to a pointwise

isomorphism π of measure spaces, defined 𝜈o-a.e., that respects boundary maps. In other words,
show that if (Θ,FΘ, b) and (Θ′,FΘ′ , b′) are both Poisson boundaries of (𝖵, P), then the map π in
Theorem 14.29(iv) is one-to-one on a set Θ1 ∈ FΘ of full 𝜈o-measure, and π−1 is measurable.

(c) Show that if both of these Poisson boundaries in (b) are Γ-boundaries for some countable Γ,
then π is Γ-equivariant (that is, π ◦ γ(θ) = γ ◦ π(θ) for 𝜈o-a.e. θ ∈ Θ and all γ ∈ Γ).

14.10. Suppose that (Ω,F ,P) is a probability space. Show that if {An ; n ≥ 1} ⊂ F is such that
{1An } is dense in L1�𝖵�,F ,P, {0, 1}�, then the P-completions of F and of σ

�{An ; n ≥ 1}� coincide.
14.11. Suppose that the Markov chain (𝖵, P) is simple random walk on a (d + 1)-regular tree, and 
is the σ-field determined by the boundary mapping b in Example 14.27. For any two vertices x, y and
every z ∈ 𝖵�conv, there is a unique first meeting point of the rays from x and y that belong to the same
end as b(z). Show that p

n(x, y)(z) = pn(x, y) · dkx−ky for Px -a.e. z ∈ 𝖵�, where kx = kx (x, y, z) is the
distance from x to this meeting point.

14.12. In the setting of Lemma 14.33, show that for all x, y, z ∈ 𝖵, we have Px -a.s.

Px [Xn = y, Xn+m = z |  ] = pn(x, y)pm(y, z) dQz

dQx

= p
n(x, y)p

m(y, z) . (14.22)

14.13. Let �3 be a 3-regular tree, and suppose that ξ is an end of �3. Consider the Markov chain
(Ψn , Xn)� on the lamplighter graph �3
⊙ where p

�(ψ, x), (ϕ, y)� is 1/3 if x = y and ψ, ϕ differ only at x
or if ψ = ϕ and y is the parent of x (the unique neighbor of x in the direction of ξ); p

�(ψ, x), (ϕ, y)� = 1/6
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if ψ = ϕ and x is the parent of y; and otherwise p
�(ψ, x), (ϕ, y)� = 0. The projected Markov chain ⟨Xn⟩

is invariant under the transitive group of automorphisms of �3 that preserve ξ. Fix o ∈ �3.
(a) Show that the projected chain ⟨Xn⟩ tends to ξ.
(b) Show that the Avez entropy is 0 for the projected chain ⟨Xn⟩.
(c) For the Markov chain


(Ψn , Xn)� started at (0, o), show that the tail is generated by the final
configuration of the lamps, Ψ∞.

14.14. Often a system is defined to be ergodic if the only f that satisfy f = f ◦ T a.s. are constant a.s.
Show that this is equivalent to the definition in the appendix.

14.15. (a) Prove that if the random variables Xn are i.i.d., then ⟨Xn⟩ is ergodic.
(b) Let (Ω,F ,P,T) be a probability measure-preserving system. Let (Λ, G ) be a measurable space,

and suppose there are measurable maps Ψ:Ω→ Λ and T̃ : Λ→ Λ such that Ψ ◦ T = T̃ ◦ Ψ. Prove that
(Λ, G ,P◦Ψ−1, T̃ ) is a probability measure-preserving system. Moreover, prove that if (Ω,F ,P,T) is
ergodic, then so is (Λ, G ,P◦Ψ−1, T̃ ).

(c) Use (b) to deduce the following statement: if ⟨Xn⟩ is ergodic, g:�� → � is measurable with
respect to the product σ-field, and Yn = g(Xn , Xn+1, . . .), then the process ⟨Yn⟩n≥0 is also ergodic.

14.16. Prove the general version of the Birkhoff ergodic theorem that does not require ergodicity.

14.17. Prove the more general version of Kingman’s subadditive ergodic theorem that does not require
ergodicity.

14.18. Let G denote �3 with a loop added at o. Show that simple random walk on G satisfies
0 < limn→∞ ∥pn+1(o, •) − pn(o, •)∥TV < 1 .

14.19. Let T be an infinite binary tree, where every vertex except the root has an address consisting of
a finite sequence of left and right turns. Let ⟨v j ⟩ be an enumeration of all vertices of T with |v j | ≥ 100
that have more left turns than right turns in their address. Construct a graph G from T and �4 by gluing
v j to the node ( j, 0, 0, 0) of �4 for every j ≥ 1. Show that simple random walk on G is Liouville, but if
all the tree edges in G leading right are assigned conductance 2 (while all other edges have conductance
1), then the resulting network (G, c) is not Liouville.

14.20. Consider a transitive lazy Markov chain on (𝖵, P) with an invariant graph metric on a graph G
of finite degree. Suppose that for some constant c > 0 and all r ≥ 1, the balls of radius r have at least
crd points in them. Show that for some c1, all x ∈ 𝖵, and all k ≥ 1, we have pk (o, x) ≤ c1k−d/2.

14.9 Additional Exercises

14.21. Given a transitive Markov chain, prove that


H(Xn)� is a concave sequence, that is, H(Xn) ≥�

H(Xn−1) + H(Xn+1)�/2 for all n > 0.

14.22. Consider an irreducible Markov chain, ⟨Xn⟩. Show that its tail σ-field is trivial iff ∀y

p(o, y) > 0 =⇒ lim
n→∞

pn−1(y, Xn)
pn(o, Xn) = 1 Po-a.s.

14.23. Consider a transitive Markov chain ⟨Xn⟩ with an invariant metric on a graph G of at most
polynomial growth. Suppose that Eo

�
log

�
1 + d(o, X1)�� < ∞. Show that H(X1) < ∞ and that h = 0.
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14.24. Let K be a finite subset of a denumerable group, Γ. Let ⟨Xn⟩ be a convolution random
walk on Γ. Define Rn(K) := |{γX j ; γ ∈ K , 0 ≤ j < n}|. Define the capacity of K to be
C(K) :=

∑
γ∈K Pγ[∀n ≥ 1 Xn /∈ K]. Extend Exercise 14.6 to show that Eo

�
Rn(K)/n� → C(K) as

n → ∞ and Rn(K)/n → C(K) a.s.

14.25. For a transitive Markov chain ⟨Xn⟩ on a countable set 𝖵 with H(X1) < ∞, show that the
following are equivalent:

(i) The Avez entropy vanishes: h = 0.
(ii) There exist finite sets Wn ⊂ 𝖵 with log |Wn | = o(n) and Po[Xn ∈ Wn]→ 1.

(iii) There exist finite sets Wn ⊂ 𝖵 with log |Wn | = o(n) and lim supn Po[Xn ∈ Wn] > 0.
(iv) There exist finite sets Wn ⊂ 𝖵 with log |Wn | = o(n) and lim supn Po[∃m ≥ n Xm ∈ Wn] > 0.

14.26. Fix o ∈ 𝖵. Given a transitive Markov chain ⟨X j ⟩ on 𝖵 endowed with an invariant graph metric
d, denote l∗ := lim inf d(o, Xn)/n and l∗ := lim sup d(o, Xn)/n. Recall from Theorem 14.10 that if
Eod(o, X1) < ∞, then l∗ = l∗ a.s.

(a) Show that l∗ and l∗ are Po-a.s. constant.
(b) Show that if Eod(o, X1) = ∞, then l∗ = ∞.
(c) Find a transitive chain where Eod(o, X1) = ∞ yet l∗ < ∞.
(d) Suppose that H(X1) < ∞. Show that h ≤ v l∗ always holds, strengthening Theorem 14.9(i).

(Hint: Use Theorem 14.10.) In particular, if l∗ < ∞ and v = 0, then h = 0.

14.27. Let Γ be a group with a finite symmetric set of generators, S. For any probability measure µ
on S, denote by h(µ) and l(µ) the Avez entropy and the speed of the µ-walk on Γ.

(a) Show that there exists a symmetric µ of maximal speed and a symmetric µ of maximal Avez
entropy.

(b) Give an example of a group Γ and a set of generators S where no measure µ on S simultaneously
maximizes h( • ) and l( • ).
14.28. Let P be a transition matrix on 𝖵.

(a) Suppose that for every x, y in 𝖵 there is a coupling of a chain ⟨Xn⟩ started at x and a chain
⟨Yn⟩ started at y, both with transition matrix P, such that P[∃m ∀n ≥ m Xn = Yn] = 1. Show that the
tail σ-field T is Po-trivial for every o ∈ 𝖵.

(b) Suppose that for every x, y in 𝖵 there is a coupling of a chain ⟨Xn⟩ started at x and a chain
⟨Yn⟩ started at y, both with transition matrix P, such that P[∃m, k ∀n ≥ m Xn = Yn+k ] = 1 (this is
known as a shift coupling). Show that the invariant σ-field  is Po-trivial for every o ∈ 𝖵.

14.29. For y, z ∈ 𝖵�, write y ∼ z if ∃k, n ∀m ≥ n ym = zm+k . Let A ⊆ 𝖵� be a Borel set. Show that
A ∈  iff A is a union of invariant equivalence classes (that is, y ∈ A, y ∼ z ⇒ z ∈ A). Similarly, show
that a Borel function f :𝖵� → � is an invariant function iff y

∼ z implies f (y) = f (z).
14.30. Let (𝖵1, P1) and (𝖵2, P2) be two Markov chains with respective tail σ-fields T 1 and T 2.

Consider the Cartesian product chain
�
𝖵1 × 𝖵2, (P1 + P2)/2�.

(a) Show that if (𝖵2, P2) is Liouville, then every bounded harmonic function u(x, y) for the product
chain is constant in the second coordinate. (Compare with Exercise 9.45.)

(b) Show that the tail σ-field of the product chain is equal to T 1 × T 2 mod 0. (Compare with
Exercise 9.7.)

14.31. Show that for every graph G, the lamplighter graph G⊙ has the Liouville property iff G is
recurrent. Thus, the transitivity assumption in Corollary 14.21 can be dropped.

14.32. Show that the multiplication operation (u, v) 7→ u ⊛ v on BH(𝖵, P) defined by (u ⊛ v)(x) :=
limn Ex

�
u(Xn)v(Xn)� makes BH(𝖵, P) into a commutative C∗-algebra whose Gelfand spectrum Ξ

satisfies Definition 14.26, except that it is not necessarily metrizable.



§9. Additional Exercises 511

14.33. (Uncountable Automorphism Groups and the Poisson Boundary) Let Γ be an uncountable
subgroup of Aut(𝖵, P), endowed with the weak topology described in Exercise 8.20. Observe that Γ
acts on 𝖵� via the diagonal action.

(a) Show that there exists a countable dense subgroup Γ∗ ⊂ Γ.
(b) Prove that for every γ ∈ Γ and f ∈ L1(𝖵�,B𝖵� ,Po), there is a sequence ⟨γ j ⟩ in Γ∗ such that

f (γ jx)→ f (γx) for Po-a.e. x ∈ 𝖵�.
(c) Let (Θ,BΘ, b) be the Γ∗-boundary of (𝖵, P) constructed in Theorem 14.31. Using (b), define

an action of Γ on Θ and verify that (Θ,BΘ, b) is also a Γ-boundary of (𝖵, P).
14.34. Show that the assumption that  is Γ-closed is crucial in Theorem 14.35.

14.35. Prove the following strong converse to Corollary 14.36: Let Γ be a transitive group of
automorphisms of (𝖵, P), and let  ⊂  be a Γ-closed σ-field. Fix o ∈ 𝖵. If  =  mod Po , then there
exists a sequence of finite  -measurable sets ⟨Wn⟩ in 𝖵 such that Po[Xn ∈ Wn]→ 1 and |Wn |1/n → 1
a.s. as n → ∞.

14.36. Here we develop a martingale method due to Furstenberg and use it to show that very general
random walks on free groups converge to an end. Let Γ be any countable group and K be a compact
Hausdorff space on which Γ acts via continuous maps. Let µ be a probability measure on Γ whose
support generates Γ as a group. Let ⟨Xn⟩ be the µ-walk on Γ. If 𝜈 is a probability measure on K , we
define µ ∗ 𝜈 to be the law of X1Y , where Y ∼ 𝜈.

(a) Show that there is a Borel probability measure 𝜈 on K with µ ∗ 𝜈 = 𝜈. We say that such a 𝜈 is
µ-stationary. Hint: Let 𝜈 be a weak limit point of (1/n)∑n

k=1 µ
∗k𝜈.

(b) Show that if 𝜈 is µ-stationary and A ⊆ K is Borel, then

(Xn𝜈)(A)� = 


𝜈(X−1
n A)� is a martingale

and a.s. converges.
(c) Show that if there is no Borel probability measure on K that is invariant under Γ, then ⟨Xn⟩ is

transient. Hint: Take A so that 𝜈(γ−1 A) ̸= 𝜈(A) for some γ ∈ Γ.
(d) Let �4 be the 4-regular tree, regarded as the usual Cayley graph of the free group � ∗� on two

letters. Recall from Section 14.4 that � ∗� acts on the boundary ∂�4 by (γ, ξ) 7→ lim{γξn ; n ≥ 1},
where ξ = (ξ1, ξ2, . . .). Show that there is no Borel probability measure on ∂�4 that is invariant under
the action of � ∗ �. Deduce that if the support of µ generates � ∗ �, then the µ-walk is transient.

(e) Prove that if µ generates�∗� as in (d), then every µ-stationary measure 𝜈 on ∂�4 is nonatomic.
(f) Show that if 𝜈 is a nonatomic measure on ∂�4 and the sequence ⟨yk ⟩ in �4 tends ξ ∈ ∂�4 as

k → ∞, then yk𝜈 converges weakly to the Dirac measure δξ .
(g) Prove that if µ generates � ∗ � as in (d), then the µ-walk on � ∗ � a.s. converges to a point in

∂�4.
(h) Prove that if µ generates � ∗ � as in (d) and 𝜈 is µ-stationary, then 𝜈 is the law of limn→∞ Xn

in ∂�4.

14.37. Let d ≥ 3. For simple random walk ⟨Xn⟩ in �d and r > 1, consider the events

Ar (m) :=
�
∀k < m ∥Xk ∥∞ < r and ∀ j > m ∥X j ∥∞ > r

�
,

and write Ar :=
∪

m≥1 Ar (m). Show that lim infn→∞ Po

�∪n2
r=n Ar

�
> 0.

14.38. Give a short alternative proof of Theorem 14.39 by using Proposition 14.42 and Exercise 14.37.

14.39. Let ⟨Xn⟩ be a transitive Markov chain starting at o with H(X1) < ∞. Define 𝜁n(x) :=
− log Po[τx ≤ n]. Show that Po-a.s. and in L1,

lim
n→∞
−n−1𝜁n(Xn) = h .

Hint: − log pn(x) ≥ 𝜁n(x) ≥ − log
�
𝜈n(x)(n + 1)�, where 𝜈n is the probability measure 𝜈n(x) :=

(n + 1)−1 ∑n
k=0 pk (x).
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15 Hausdorff
Dimension

How do we capture the intrinsic dimension of a geometric object (such as a curve, a
surface, or a body)? What if the intrinsic dimension seems not to be an integer? There are
various notions of dimension that can answer these questions; for many purposes, Hausdorff
dimension is the most important one. In Chapter 1, we saw that the Hausdorff dimension of
the boundary of a tree is merely the logarithm of the branching number of the tree. We also
saw how we can use trees to represent closed sets in Euclidean space and thereby capture
their Hausdorff dimension. In this chapter, we develop these ideas in greater depth and give
several applications. For example, we will use our work on Galton-Watson networks from
Section 5.9 to analyze random fractals, such as the zero-set of one-dimensional Brownian
motion.

15.1 Basics
Suppose that we have an open bounded subset of Euclidean space. One way we can infer

its dimension is via scaling: when we scale the subset by a homothety with factor r , its
volume changes by a factor rd , where d is the dimension. A disadvantage of this approach is
that it requires moving outside the object itself: it is not measured intrinsically.

Another approach is to cover the object by small sets, leaving the object itself unchanged.
If E is a bounded set in Euclidean space, let N(E, ϵ) be the number of closed balls of diameter
at most ϵ required to cover E. Then when E is d-dimensional, N(E, ϵ) ≈ C/ϵd. To get at
d, then, look at log N(E, ϵ)/ log (1/ϵ) and take some kind of limit as ϵ → 0. This gives the
upper and lower Minkowski dimensions:

dimM E := lim sup
ϵ→0

log N(E, ϵ)
log (1/ϵ) , (15.1)

dimM E := lim inf
ϵ→0

log N(E, ϵ)
log (1/ϵ) . (15.2)

The lower Minkowski dimension is often called simply the Minkowski dimension. Note that
we could use cubes instead of balls, or even b-adic cubes
[a1b−n, (a1 + 1)b−n]× [a2b−n, (a2 + 1)b−n]× · · · × [adb−n, (ad + 1)b−n] (ai ∈ �, n ∈ �) ,
and not change these dimensions. In the future, we will call n the order of a b-adic cube if
the sides of the cube have length b−n.
Since balls are defined in any metric space, these definitions (15.1) and (15.2) make sense

in any metric space E. Thus, they are intrinsic. It is clear that the Minkowski dimension of a
singleton is 0.
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Example 15.1. Let E be the standard middle-thirds Cantor set,

E :=
{∑

n≥1

xn3−n ; xn ∈ {0, 2}
}
.

To calculate the Minkowski dimensions of E, it is convenient to use triadic intervals, of
course. We have that N(E, 3−n) = 2n, so for ϵ = 3−n, we have

log N(E, ϵ)
log (1/ϵ) =

log 2
log 3

.

Thus, the upper and lower Minkowski dimensions are both log 2/log 3.

One problem with Minkowski dimension is that an unbounded set will have infinite
Minkowski dimension. But things are even worse than that:

Example 15.2. Let E := {1/n ; n ≥ 1}. Given ϵ ∈ (0, 1), let k be such that 1/k2 ≈ ϵ .
Then it takes about 1/

√
ϵ intervals of length ϵ to cover E ∩ [0, 1/k] and about 1/

√
ϵ more

to cover the k points in E ∩ [1/k, 1]. It can be shown that, indeed, N(E, ϵ) ≈ 2/
√
ϵ , so that

dimM E = 1/2.

This example shows that a bounded countable union of sets of Minkowski dimension 0
may have positive Minkowski dimension, even when the union consists entirely of isolated
points. For this reason, Minkowski dimensions are not entirely suitable for measuring the
dimension of a set.
So we consider yet another approach. In what dimension should we measure the size of E?

Note that a surface has infinite one-dimensional measure but zero three-dimensional measure.
How do we measure size in an arbitrary dimension? Define Hausdorff α-dimensional
(outer) measure by

Hα(E) := lim
ϵ→0

inf
{ ∞∑

i=1

(diam Ei)α ; E ⊆
∞∪
i=1

Ei, ∀i diam Ei < ϵ

}
;

here, the sets Ei are unrestricted except for their diameter. The limit in this definition exists
because the infimum is taken over smaller classes of sets as ϵ decreases. Note that, up to a
bounded factor, the restriction ofHd to Borel sets in �d is d-dimensional Lebesgue measure,
Ld.

▷ Exercise 15.1.
Show that for any E ⊆ �d, there exists a real number α0 such that α < α0 ⇒ Hα(E) = +∞
and α > α0 ⇒ Hα(E) = 0.

The number α0 of the preceding exercise is called the Hausdorff dimension of E, denoted
dimH E or simply dim E. We can also write

dim E = inf
α ; inf

{ ∞∑
i=1

(diam Ei)α ; E ⊆
∪
i

Ei

}
= 0


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since the only way the sum of (diam Ei)α can be small is when all diam Ei are small. Again,
these definitions make sense in any metric space (in some circumstances, you may need
to recall that the infimum of the empty set is +∞). In �d, we could restrict ourselves to
covers by open sets, spheres or b-adic cubes; this would change Hα by at most a bounded
factor, and so would leave the dimension unchanged. Also, dim E ≤ dimM E for any E: if
E ⊆ ∪N (E,ϵ )

i=1 Ei with diam Ei ≤ ϵ , then
N (E,ϵ )∑
i=1

(diam Ei)α ≤
N (E,ϵ )∑
i=1

ϵα = N(E, ϵ)ϵα .

Thus, if α > dimM E, we getHα(E) = 0. Indeed, Minkowski dimension is useful mostly as
an upper bound on Hausdorff dimension.

Example 15.3. Let E be the standard middle-thirds Cantor set again. For an upper bound on
its Hausdorff dimension, we use the Minkowski dimension, log 2/log 3. For a lower bound,
let µ be the Cantor-Lebesgue measure, that is, the law of

∑
n≥1 Xn3−n when Xn are i.i.d. with

P[Xn = 0] = P[Xn = 2] = 1/2. Let Ei be triadic intervals whose union covers E. If µ(Ei) ̸= 0
and Ei has diameter 3−n, we have

(diam Ei)log 2/log 3 = 2−n = µ(Ei) .
Therefore, ∑

i

(diam Ei)log 2/log 3 ≥
∑
i

µ(Ei) ≥ µ(E) = 1 .

(Except for wasteful covers, these inequalities are equalities.) This shows that dim E ≥
log 2/log 3. Therefore, the Hausdorff dimension is in fact equal to the Minkowski dimension
in this example.

Example 15.4. If E := {1/n ; n ≥ 1}, then dim E = 0: for any α, ϵ > 0, we may cover E by
the sets Ei := [1/i, 1/i + (ϵ/2i)1/α], showing thatHα(E) < ϵ .

Example 15.5. Let E be the Cantor middle-thirds set. The set E × E is called the planar
Cantor set. We have dim(E × E) = dimM(E × E) = log 4/log 3. To prove this, note that it
requires 4n triadic squares of order n to cover E × E, whence dimM(E × E) = log 4/log 3. On
the other hand, if µ is the Cantor-Lebesgue measure, then µ × µ is supported by E × E. If Ei

are triadic squares covering E × E, then, as in Example 15.3,∑
i

(diam Ei)log 4/log 3 ≥
∑
i

(µ × µ)(Ei) ≥ (µ × µ)(E × E) = 1 .

Hence dim(E × E) ≥ log 4/log 3.

▷ Exercise 15.2.
The Sierpinski carpet is the set

E :=

(∑

n

xn3−n,
∑
n

yn3−n
)

; (xn, yn) ∈ {0, 1, 2}2 \ {(1, 1)}
 .

That is, the unit square is divided into its nine triadic subsquares of order 1 and the interior of
the middle one is removed. This process is repeated on each of the remaining eight squares,
and so on. Show that dim E = dimM E = log 8/log 3.
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▷ Exercise 15.3.
The Sierpinski gasket is the set obtained by partitioning an equilateral triangle into four
congruent pieces and removing the interior of the middle one, then repeating this process
ad infinitum on the remaining pieces, as in Figures 15.1 and 15.2. Show that its Hausdorff
dimension is log 3/log 2.

Figure 15.1. The first three stages of the construction of the Sierpinski gasket.

Figure 15.2. The Sierpinski gasket, drawn by O. Schramm.

▷ Exercise 15.4.
Show that for any sets En, dim

(∪∞
n=1 En

)
= sup dim En.

▷ Exercise 15.5.
Show that if E1 ⊇ E2 ⊇ · · ·, then dim

∩
En ≤ lim dim En.

One can extend the notion of Hausdorff measures to other gauge functions h:�+ → �+ in
place of h(t) := tα. One requires merely that h be continuous and increasing and that h(0+) =
0. This allows for finer examination of the size of E in cases whenHdim E (E) ∈ {0,∞}.
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15.2 Coding by Trees

There are general ways to associate rooted trees to bounded sets in �d, and vice versa.
We start with the simplest case, closed sets in [0, 1]. We described this case in Section 1.10,
following Furstenberg (1970). Namely, consider the system of b-adic subintervals of [0, 1].
Given a tree T , suppose that we associate to each x ∈ Tn a b-adic interval Ix ⊆ [0, 1] of order
n in such a way that (1) |Ix ∩ Iy | ≤ 1 for |x | = |y |, x ̸= y, and (2) Ix is contained in Iz when
z is the parent of x. Then the tree T codes (in base b) the closed set E :=

∩
n≥0

∪
x∈Tn

Ix .
Each ray in T corresponds to a point in E, though this correspondence might not be injective.
Nevertheless, we can think of the boundary of T (the set of all rays of T) as representing E.

Figure 15.3. The Furstenberg coding of the Cantor middle-thirds set in base 3.

Figure 15.4. The Furstenberg coding of the Cantor middle-thirds set in base 2.

For example, the Cantor middle-thirds set for the base b = 3 is associated to the binary
tree, shown in Figure 15.3. Note that if, instead of always taking out the middle third in the
construction of the set, we took out the last third, we could still code it by the binary tree but
with different 3-adic intervals associated to the vertices of the tree. However, if we code in
base 2, we get a different tree, as in Figures 15.4 and 15.5.
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Figure 15.5. The tree of the Furstenberg coding of the Cantor middle-
thirds set in base 2. The tree has branching number 2log 2/log 3 = 1.55−.

If T codes E in base b, then we claim that

br T = bdim E , (15.3)
gr T = bdimM E , (15.4)
gr T = bdimM E . (15.5)

For note that a cover of E by b-adic intervals is essentially the same as a cutset of T . If the
interval Ix is associated to the vertex x ∈ T , then diam Ix = b−|x |. Thus,

dim E = inf
{
α ; inf

Π

∑
e∈Π

b−α|e| = 0
}
.

Comparing this with the formula (3.4) for the branching number gives (15.3).

▷ Exercise 15.6.
Deduce (15.4) and (15.5) in the same way.

Therefore, a tree that codes a set determines the dimension of the set, and the placement of
particular digits in the coding doesn’t influence the dimension. Recall from Section 1.10 that
there is a maximal tree T[b](E) that codes a given closed set, E. Its boundary differs from
the boundary of any tree T that codes E by at most countably many rays, whence the two
boundaries have the same Hausdorff dimension and the two trees have the same branching
number. Since the branching number of a tree is a kind of average number of children per
vertex, and since vertices of a tree that codes E correspond to b-adic intervals that intersect
E, we may say that if a given b-adic interval intersects E, then on “average,” the number of
b-adic subintervals intersecting E of order one greater than the given interval is bdim E .

Example 15.6. We may easily rederive the Hausdorff and Minkowski dimensions of the
Cantor middle-thirds set, E. Since E is coded by a binary tree, it has branching number and
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growth 2. From (15.3) and (15.4), it follows that the Hausdorff and Minkowski dimensions of
E are both log 2/log 3.

In the context of ergodic theory, important examples are given by closed subsets E ⊆ [0, 1]
that are invariant under the map s 7→ bs (mod 1), that is, bE ⊆ E (mod 1). This condition
of invariance is equivalent to the condition that T[b](E) be 0-subperiodic; indeed, this was
Furstenberg’s original motivation for studying such trees.

▷ Exercise 15.7.
Reinterpret Theorems 3.5 and 5.15 as theorems on random walks on b-adic intervals inter-
secting E and on random b-adic possible coverings of E.

There is a more general way than b-adic coding to relate trees to certain types of sets. Let
T be a tree with root o; suppose that to each vertex x ∈ 𝖵(T) there is associated a compact
nonempty set Ix ⊆ �d. Denote the interior of a set I by int I and the parent of x by ↼x.
Suppose that the following properties hold:

Ix = int Ix , (15.6)

x ̸= o =⇒ Ix ⊆ I↼x , (15.7)
↼
y = ↼x and y ̸= x =⇒ int Iy ∩ int Ix = ∅ , (15.8)

∀ξ ∈ ∂T lim
x∈ξ

diam Ix = 0 , (15.9)

C1 := inf
x ̸=o

diam Ix
diam I↼x

> 0 , (15.10)

C2 := inf
x

Ld(int Ix)
(diam Ix)d > 0 . (15.11)

For example, if the sets Ix are b-adic cubes of order |x |, this is just a multidimensional
version of the previous coding. For the Sierpinski gasket (Exercise 15.3), no b-adic coding is
natural, but equilateral triangles give natural sets Ix . Similarly, for the von Koch snowflake
(Figure 15.6), natural sets to use are again equilateral triangles (see Figure 15.7).

Figure 15.6. The first three stages of the construction of the von Koch snowflake.
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Figure 15.7. Each side of the von Koch snowflake is coded by a 4-ary tree, each vertex of which
is associated to an equilateral triangle. The children of a vertex have triangles on the base of the
parent triangle. The sets Ix for one side are shown for the root and the next two generations.

▷ Exercise 15.8.
Prove that under the conditions (15.6)–(15.11),

lim
n→∞

max
|x |=n

diam Ix = 0 .

We may associate the following set to T and I•:

IT :=
∪
ξ ∈∂T

∩
x∈ξ

Ix .

If T is locally finite (as it must be when C1 and C2 are positive), then we also have

IT =
∩
n≥1

∪
|x |=n

Ix . (15.12)

For example, IT[b](E) = E.

▷ Exercise 15.9.
Prove (15.12) (if T is locally finite).

The sets ⟨Ix ; x ∈ T⟩ are actually the only ones we need consider in determining dim IT or
even, up to a bounded factor,Hα(IT ):
Theorem 15.7. (Transference of Hausdorff Dimension and Measure) If (15.6)–(15.11)
hold, then

dim IT = inf
{
α ; inf

Π

∑
e(x)∈Π

(diam Ix)α = 0
}
. (15.13)

In fact, for α > 0, we have

Hα(IT ) ≤ lim inf
d(0,Π)→∞

∑
e(x)∈Π

(diam Ix)α ≤ C3Hα(IT ) , (15.14)

where

C3 :=
4d

C2Cd
1
.

To prove Theorem 15.7, we need a little geometric fact about Euclidean space:
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Lemma 15.8. Let E and Oi (1 ≤ i ≤ n) be subsets of �d such that Oi are open and disjoint,
Oi ∩ E ̸= ∅, diam Oi ≤ diam E, and Ld(Oi) ≥ C(diam E)d. Then n ≤ 4d/C.

Proof. Fix x0 ∈ E and let B be the closed ball centered at x0 with radius 2 · diam E. Then
Oi ⊆ B, whence

(4 diam E)d ≥ Ld(B) ≥
n∑
i=1

Ld(Oi) ≥ nC(diam E)d . ◀

▷ Exercise 15.10.
Prove the left-hand inequality of (15.14).

Proof of Theorem 15.7. For the right-hand inequality of (15.14), consider a cover by sets of
positive diameter

IT ⊆
∞∪
i=1

Ei .

Without loss of generality, we may assume that diam Ei < diam Io for each i. Thus, the set

Πi :=
�
e(x) ; diam Ix ≤ diam Ei < diam I↼x

	
is not empty. In fact, Πi is a cutset, so

IT ∩ Ei ⊆ IT ⊆
∪

e(x)∈Πi

Ix .

Also, for e(x) ∈ Πi , we have

Ld(int Ix) ≥ C2(diam Ix)d ≥ C2Cd
1 (diam I↼x )d > C2Cd

1 (diam Ei)d ,
whence by Lemma 15.8,

Π′i :=
�
e(x) ∈ Πi ; Ix ∩ Ei ̸= ∅

	
has at most C3 = 4d/(C2Cd

1 ) elements. Now

IT ⊆
∞∪
i=1

(
Ei ∩

∪
e(x)∈Π′i

Ix
)
⊆

∪
i

∪
e(x)∈Π′i

Ix ,

and the cutset Π :=
∪∞

i=1 Π′i satisfies∑
e(x)∈Π

(diam Ix)α ≤
∑

i, e(x)∈Π′i

(diam Ix)α ≤
∑

i, e(x)∈Π′i

(diam Ei)α ≤ C3
∑
i

(diam Ei)α . ◀

Example 15.9. For two-dimensional coding by b-adic squares, we have diam Ix =
√

2 b−|x |.
In this case, (15.13) says that

dim IT =
dim ∂T
log b

,

which is actually the same as (15.3), the one-dimensional coding formula. The random
fractal percolation set Qb(p) studied in Theorem 5.33 is coded by the cluster of the root under
Bernoulli(p) percolation on a b2-ary tree, provided that cluster is infinite (so that Qb(p) ̸= ∅).
Therefore, Theorem 15.7 and Corollary 5.10 give that dim Qb(p) = logb(pb2) = 2 + logb p
a.s. given that Qb(p) ̸= ∅.
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15.3 Galton-Watson Fractals

Example 15.9 showed how to compute the Hausdorff dimension of fractal percolation
in the plane, a simple process corresponding to Bernoulli percolation. In this section, we
combine the transference Theorem 15.7 with Falconer’s Theorem 5.35 on Galton-Watson
networks to determine the dimension of more general random fractals. Thus, suppose that
the sets Ix are randomly assigned to a Galton-Watson tree in such a way that the regularity
conditions

Ix = int Ix ,

x ̸= o =⇒ Ix ⊆ I↼x ,
↼
y = ↼x and y ̸= x =⇒ int Iy ∩ int Ix = ∅ ,

inf
x
Ld(int Ix)/(diam Ix)d > 0

are satisfied a.s. and the normalized diameters c(e(x)) := diam Ix/diam I0 are the capacities
of a Galton-Watson network with generating random variable L := (L, A1, . . . , AL), where
0 < Ai < 1 a.s. Because Galton-Watson trees can have leaves, we denote by T ′ the subtree
of T that consists of vertices with infinite lines of descent. (You might want to glance at the
examples following the proof of the theorem at this point.) The following result is due to
Falconer (1986) and Mauldin and Williams (1986).

Theorem 15.10. (Dimension of Galton-Watson Fractals) Almost surely on nonextinction,

dim IT ′ = min
{
α ; E

[ L∑
i=1

Aαi
]
≤ 1

}
.

Proof. Since Io ⊇
∪

|x |=1 Ix and ⟨int Ix ; |x | = 1⟩ are disjoint, Ld(Io) ≥ ∑
Ld(int Ix),

whence
(diam Io)d ≥ Ld(Io) ≥ C2

∑
(diam Ix)d = C2(diam Io)d

∑
|x |=1

Ad
x ,

and so E
[∑L

i=1 Ad
i

]
≤ 1/C2. By Lebesgue’s dominated convergence theorem, the function

α 7→ E
[∑L

1 Aαi
]
is continuous on [d,∞] and has limit 0 at ∞, so there is some α such

that E
[∑L

1 Aαi
]
≤ 1. Since α 7→ E

[∑L
1 Aαi

]
is continuous from the right on [0,∞) by the

monotone convergence theorem, it follows that the minimum written in the theorem statement
exists.
To prove that this minimum is the Hausdorff dimension of IT ′ , assume first that for some

ϵ > 0, we have ∀i ϵ ≤ Ai ≤ 1 − ϵ a.s. Then the last regularity conditions, (15.9) and (15.10),
are satisfied a.s.: ∀ξ ∈ ∂T ′ limx∈ξ diam Ix = 0, and

inf
x ̸=o

diam Ix
diam I↼x

= inf
x ̸=o

Ax ≥ ϵ .
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Hence Theorem 15.7 assures us that

dim IT ′ = inf
{
α ; inf

Π

∑
e(x)∈Π

(diam Ix)α = 0
}

= inf
{
α ; inf

Π

∑
e∈Π

c(e)α = 0
}
.

Now the capacities ⟨c(e)α⟩ come from a Galton-Watson network based on the random vector
L (α) := (L, Aα1 , . . . , AαL), whence Falconer’s Theorem 5.35 says that unless

∑L
1 Aαi = 1 a.s.,

inf
Π

∑
e∈Π

c(e)α = 0 a.s. if E
[ L∑

1

Aαi

]
≤ 1 ,

whereas

inf
Π

∑
e∈Π

c(e)α > 0 a.s. if E
[ L∑

1

Aαi

]
> 1 .

This gives the result, since there is at most one exceptional value of α where
∑L

1 Aαi = 1 a.s.
For the general case, note that

E
[ L∑

1

Aαi

]
≤ 1 =⇒ inf

Π

∑
c(e)α = 0 a.s. =⇒ Hα(IT ′) = 0 a.s.,

except possibly for one exceptional value of α that we may ignore. For the other direction,
consider the Galton-Watson subnetwork T(ϵ ) consisting of those branches whose ratios satisfy
ϵ ≤ Ai ≤ 1 − ϵ . Thus IT ′(ϵ ) ⊆ IT ′ . From the preceding, we have

E
[ L∑

1

Aαi 1ϵ ≤Ai ≤1−ϵ

]
> 1 =⇒ Hα(IT ′(ϵ ) ) > 0 a.s. on nonextinction of T(ϵ )

=⇒ Hα(IT ′) > 0 a.s. on nonextinction of T(ϵ ) .

Since P[T ′(ϵ ) ̸= ∅]→ P[T ′ ̸= ∅] as ϵ → 0 by Exercise 5.22 and

E
[ L∑

1

Aαi

]
= lim
ϵ→0

E
[ L∑

1

Aαi 1ϵ ≤Ai ≤1−ϵ

]

by the monotone convergence theorem, it follows that E
[∑

Aαi
]
> 1 ⇒ Hα(IT ′) > 0 a.s. on

T ′ ̸= ∅. ◀
Remark 15.11. By Falconer’s theorem, Hα(IT ′) = 0 a.s. unless

∑L
1 Aαi = 1 a.s., where

α := dim IT ′ , in which caseHα(IT ′) =
�
diam Io

�α a.s.

Example 15.12. Divide [0, 1] into three equal parts and keep each independently with
probability p. Repeat this with the remaining intervals ad infinitum. The Galton-Watson
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network comes from the random variable L = (L, A1, . . . , AL), where L is a Bin(3, p)-
random variable, so that E[sL] = (1 − p + ps)3, and Ai ≡ 1/3. Thus extinction is a.s. iff
p ≤ 1/3, whereas for p > 1/3, the probability of extinction q satisfies (1 − p + pq)3 = q and
a.s. on nonextinction,

dim IT ′ = min
{
α ; E

[ L∑
1

Aαi
]
≤ 1

}
= min

�
α ; (1/3)α3p ≤ 1

	
= 1 + log p/log 3 .

Example 15.13. Remove from [0, 1] a central portion leaving two intervals of random length
A1 = A2 ∈ (0, 1/2). Repeat on the remaining intervals ad infinitum. Here L ≡ 2. There is no
extinction and a.s. dim IT is the root of

1 = E[Aα1 + Aα2 ] = 2 E[Aα1 ] .
For example, if A1 is uniform on (0, 1/2), then

E[Aα1 ] = 2
∫ 1/2

0
tα dt =

1
2α(α + 1) ,

whence dim IT ≈ 0.457.
Example 15.14. Suppose M and N are random integers with M ≥ 2 and 0 ≤ N ≤ M2.
Divide the unit square into M2 equal squares and keep N of them (in some manner). Repeat
on the remaining squares ad infinitum. The probability of extinction of the associated
Galton-Watson network is a root of E[sN ] = s and a.s. on nonextinction,

dim IT ′ = min
�
α ; E[N/M2α] ≤ 1

	
.

By selecting the squares appropriately, one can have infinite connectivity of IT ′ .
Example 15.15. Here, we consider the zero set E of Brownian motion Bt on �. That is,
E := {t ; Bt = 0}. To find dim E, we may restrict to an interval [0, t0] where Bt0 = 0, such
as the largest t ≤ 2 with Bt = 0. Of course, t0 is random. By scale invariance of Bt and
of Hausdorff dimension and by the strong Markov property of Bt , the time t0 makes no
difference. So let’s condition on B1 = 0. This is known as Brownian bridge. Calculation of
finite-dimensional marginals shows Bt given B1 = 0 to have the same law as B0

t := Bt − tB1.
One way to construct E is as follows. From [0, 1], remove the interval (τ1, τ2), where
τ1 := max

�
t ≤ 1

2 ; B0
t = 0

	
and τ2 := min

�
t ≥ 1

2 ; B0
t = 0

	
. Independence and scaling shows

that E is obtained as the iteration of this process. That is, E = IT , where T is the binary tree
and A1 := τ1 and A2 := 1 − τ2 are the lengths of the surviving intervals. One can show that
the joint density of A1 and A2 is

P[A1 ∈ da1, A2 ∈ da2] =
1

2π
1√

a1a2(1 − a1 − a2)3
da1 da2 (a1, a2 ∈ [0, 1/2]) .

Straightforward calculus then shows that E[A1/2
1 + A1/2

2 ] = 1, so dim E = 1/2 a.s. This result
is due to Taylor (1955), but this method is due to Graf, Mauldin, and Williams (1988).

More examples of the use of Theorem 15.10 can be found in Mauldin and Williams (1986).
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15.4 Hölder Exponent

There is an intrinsic metric on the boundary of a tree; when we use it to compute
the Hausdorff dimension of the boundary, we find a simple relationship to the Hausdorff
dimension of a set coded by T with b-adic intervals. This ability to work purely on the tree
for much of the calculation has advantages and also suggests interesting extensions, which we
begin to study here.
For any tree T with root o, consider ξ, η ∈ ∂T . Define ξ ∧ η to be the vertex common to

both ξ and η that is farthest from o if ξ ̸= η and ξ ∧ η := ξ if ξ = η. Write |ξ | = ∞. Now use
these notations to define a metric on the boundary ∂T by d(ξ, η) := e−|ξ∧η | (ξ ̸= η). With this
metric, we can consider dim E for E ⊆ ∂T . To compute Hausdorff dimensions of subsets of
∂T , it suffices to consider covers by sets of the form

βx := {ξ ∈ ∂T ; x ∈ ξ} , (15.15)
since any subset of ∂T is contained in such a special set of the same diameter. (Namely,
if F ⊆ ∂T and x :=

∧
ξ ∈F ξ, in the obvious extension of the ∧ notation, then F ⊆ βx and

diam F = diam βx .)

▷ Exercise 15.11.
What is diam βx?

In the particular case E = ∂T , we have

dim ∂T = log br T (15.16)
as in Section 1.8. More generally, when E ⊆ ∂T is closed and T(E) denotes the set of vertices
that belong to some ray in E, then

dim E = log br T(E) .
By the transference Theorem 15.7, we obtain the following:

Corollary 15.16. If the sets Ix of Section 15.2 are b-adic cubes of order |x | in �d, then

dim IT = dim ∂T/log b . ◀

When this corollary is applied to a tree T that b-adically codes a set E, we obtain (15.3)
again by (15.16).
We now consider extensions of the ideas of Hausdorff dimension. Let T be an infinite

locally finite rooted tree and µ be a Borel probability measure on ∂T . A subset E ⊆ ∂T is a
carrier of µ if µ(E) = 1. Even if the support of µ is ∂T , there may still be “much smaller”
carriers of µ. That is, there may be sets E ⊆ ∂T with dim E < dim ∂T and µ(E) = 1. This
suggests defining the dimension of µ as

dim µ := min
�
dim E ; µ(E) = 1

	
. (15.17)

▷ Exercise 15.12.
Show that this minimum exists.
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▷ Exercise 15.13.
Let T be an infinite locally finite tree. Show that there is a one-to-one correspondence
between unit flows θ from o to ∂T and Borel probability measures µ on ∂T satisfying

θ(x) = µ(βx) .
Here and in the sequel, we write θ(x) for θ(↼x, x).
The dimension of a measure is most often computed not by using the definition but by

calculating pointwise information and then using the following theorem of Billingsley (1965).
For a ray ξ = ⟨ξ1, ξ2, . . .⟩ ∈ ∂T , define the Hölder exponent of µ at ξ to be

𝖧�̈�(µ)(ξ) := lim inf
n→∞

1
n

log
1

µ
�
βξn

� .
For example, if T is the m-ary tree, θ(x) := m−|x |, and µ is the probability measure

corresponding to the unit flow θ, then the Hölder exponent of µ is everywhere log m.

Theorem 15.17. (Dimension and Hölder Exponent) For every Borel probability measure
µ on the boundary of a tree,

dim µ = µ-ess sup𝖧�̈�(µ) .
Proof. Let d := µ-ess sup𝖧�̈�(µ). We first exhibit a carrier of µ whose dimension is at most
d. Then we show that every carrier of µ has dimension at least d. Let θ be the unit flow that
corresponds to µ as in Exercise 15.13.

Given k ∈ � and α > d, let

E(k, α) : =
{
ξ ∈ ∂T ; ∃n ≥ k (1/n) log

�
1/θ(ξn)� ≤ α}

=
�
ξ ∈ ∂T ; ∃n ≥ k e−nα ≤ θ(ξn)	 .

Then clearly
∩
α

∩
k E(k, α) is a carrier of µ. To show that it has Hausdorff dimension at

most d, it suffices, by Exercise 15.5, to show that dim
∩

k E(k, α) ≤ α. Clearly E(k, α) is
open, so is a countable union of disjoint sets of the form (15.15), call them βxi , with all
|xi | ≥ k and �

diam βxi
�α ≤ e−|xi |α ≤ µ(βxi ) .

Since ∑
i

�
diam βxi

�α ≤∑
i

µ(βxi ) ≤ 1

and the sets βxi also cover
∩

k E(k, α), it follows thatHα

(∩
k E(k, α)) ≤ 1. This implies our

desired inequality, dim
∩

k E(k, α) ≤ α.
For the other direction, suppose that F is a carrier of µ. For k ∈ � and α < d, let

F(k, α) :=
{
ξ ∈ F ; ∀n ≥ k (1/n) log

�
1/θ(ξn)� ≥ α} .

Then µ
�
F(k, α)� > 0 for sufficiently large k. Fix such a k. To show that dim F ≥ d, it suffices

to show that dim F(k, α) ≥ α. Indeed, reasoning similar to that in the preceding paragraph
shows thatHα

�
F(k, α)� ≥ µ

�
F(k, α)�, which completes the proof. ◀
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Example 15.18. For an example of the calculation of Hölder exponent, let T be an infinite
rooted tree without leaves (except possibly the root). Consider the harmonic measure of
simple nonbacktracking random walk on T , which is the random walk that starts at the
root and chooses randomly (uniformly) among the children of the present vertex as the next
vertex. The corresponding harmonic measure on ∂T is called visibility measure, denoted
𝖵𝖨𝖲T , and corresponds to the equally-splitting flow. Suppose now that T is a Galton-Watson
tree starting, as usual, with one particle and having L children, where L > 0 a.s. Identifying
measure and flow, we have that 𝖵𝖨𝖲T is a flow on the random tree T . Let GW denote the
distribution of Galton-Watson trees. The probability measure that corresponds to choosing a
Galton-Watson tree T at random followed by a ray of ∂T chosen according to 𝖵𝖨𝖲T will be
denoted 𝖵𝖨𝖲 ×GW. Formally, this is

(𝖵𝖨𝖲 ×GW)(F) :=
∫∫

1F (ξ,T) d𝖵𝖨𝖲T (ξ) dGW(T) .
Since

1
n

log
1

𝖵𝖨𝖲T (ξn) =
1
n

n−1∑
k=0

log
𝖵𝖨𝖲T (ξk)
𝖵𝖨𝖲T (ξk+1)

and the random variables𝖵𝖨𝖲T (ξk−1)/𝖵𝖨𝖲T (ξk) are𝖵𝖨𝖲×GW-i.i.d. with the same distribution
as L, the strong law of large numbers gives

𝖧�̈�(𝖵𝖨𝖲T )(ξ) = E[log L] for 𝖵𝖨𝖲 ×GW-a.e. (ξ,T) .
Thus dim𝖵𝖨𝖲T = E[ log L] for GW-a.e. tree T . Jensen’s inequality (or the arithmetic mean–
geometric mean inequality) shows that this dimension is less than log m, except in the
deterministic case L = m a.s. Recall that the Hausdorff dimension of the full boundary ∂T is
log m a.s. by Corollary 5.10.

15.5 Derived Trees
This section is based on some ideas of Furstenberg (1970). In the context of Euclidean

sets coded by trees, it is important to view trees as (rooted and) labeled, as in Section 5.1.
However, since our interest centers more on the trees themselves, we will not label the trees;
that is, we consider rooted trees equal if they are rooted isomorphic.
Most of the time, for the sake of compactness, we need to restrict our trees to have

uniformly bounded degree. Thus, fix an integer r and let T be the r-ary tree. We will consider
only subtrees of T rooted at the root of T and that have no leaves (other than possibly the
root). Recall that for a tree T and vertex v ∈ T , we denote by T v the subtree of T formed from
the descendants of v. We view T v as a rooted subtree of T with v identified with the root of
T. Given a unit flow θ on T and a vertex v ∈ T , the conditional flow through v is defined to
be the unit flow

θv(x) := θ(x)/θ(v) for x ≥ v
on T v when θ(v) ̸= 0. The class of subtrees of T is given the natural topology as in
Exercise 5.2. This class is compact. For a subtree T , let D(T) denote the closure of the set of
its descendant trees, {T v ; v ∈ T}. We call these trees the derived trees of T . For example,
D(T) = {T}.
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▷ Exercise 15.14.
Let T code the set {0} ∪ {1/n ; n ≥ 1} in base r . Show that T ∈ D(T).

▷ Exercise 15.15.
Show that if T∗ ∈ D(T), then D(T∗) ⊆ D(T).

Define

T vn := {x ∈ T v ; |x | ≤ |v | + n} ,
Mn(v) := |∂LT vn | =

�{x ∈ T v; |x | = |v | + n}� ,
dim sup ∂T := lim

n→∞
max
v∈T

1
n

log Mn(v) , (15.18)
dim inf ∂T := lim

n→∞
min
v∈T

1
n

log Mn(v) . (15.19)

▷ Exercise 15.16.
Show that these limits exist.

Clearly,

dim ∂T ≤ dimM ∂T = lim inf
n→∞

1
n

log Mn(o) ≤ dim sup ∂T . (15.20)

Also, if α < dim inf ∂T , then there is some n such that

min
v∈T

1
n

log Mn(v) > α ,

in other words, Mn(v) ≥ ⌈eαn⌉ for all v ∈ T . Thus, in the notation of Exercise 3.25, T [n]
contains a ⌈eαn⌉-ary subtree. Therefore dim ∂T [n] ≥ log⌈eαn⌉≥ αn, whence dim ∂T ≥ α.
Thus, we obtain

dim ∂T ≥ dim inf ∂T . (15.21)
Since for any T∗ ∈ D(T), v ∈ T∗, and n ≥ 0, there is some w ∈ T such that Twn = (T∗)vn, we
have dim inf ∂T ≤ dim inf ∂T∗ and dim sup ∂T∗ ≤ dim sup ∂T . Combining these inequalities
with (15.20) and (15.21) as applied to T∗, we arrive at the following:

Proposition 15.19. For any T∗ ∈ D(T), we have

dim inf ∂T ≤ dim ∂T∗ ≤ dim sup ∂T . ◀

▷ Exercise 15.17.
Show that if T is subperiodic, then dim ∂T = dim sup ∂T , whereas if T is superperiodic, then
dim ∂T = dim inf ∂T .
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Proposition 15.19 is sharp in a strong sense, as shown by the following theorem adapted
from Furstenberg (1970) (compare Theorem 5.1 of Furstenberg (2008)):

Theorem 15.20. If T is a tree of uniformly bounded degree, then there exist T∗ ∈ D(T) and
a unit flow θ∗ on T∗ such that

dim ∂T∗ = dim sup ∂T , (15.22)

∀x ∈ T∗ \ {o} 1
|x | log

1
θ∗(x) ≥ dim sup ∂T , (15.23)

and for θ∗-a.e. ξ ∈ ∂T∗,
𝖧�̈�(θ∗)(ξ) = dim sup ∂T . (15.24)

Similarly, there exist T∗∗ ∈ D(T) and a unit flow θ∗∗ on T∗∗ such that

dim ∂T∗∗ = dim inf ∂T (15.25)

and
∀x ∈ T∗∗ \ {o} 1

|x | log
1

θ∗∗(x) ≤ dim inf ∂T . (15.26)

Proof. We concentrate first on (15.23): the idea is to find T∗ as the support of θ∗ and to
find θ∗ as the limit of flows on finite trees. We claim that for any positive integer L and any
α < dim sup ∂T , there is some vertex v ∈ T and some unit flow θ on T vL (from v to ∂LT vL)
such that

∀x ∈ T vL \ {v}
1

|x | − |v | log
1
θ(x) ≥ α . (15.27)

Suppose for a contradiction that this is not the case for some L and α. By choice of α, there
are v and n so that Mn(v)1/n > eα. Since rL/n → 1 as n → ∞, we may choose v and n so
that n is a multiple of L and

Mn(v)1/n > eαrL/n . (15.28)
(Recall that r is the degree of the root of T.) Let θ be the flow on T vn such that

∀x ∈ ∂LT vn \ {v} θ(x) = 1/Mn(v) .

Then θ restricts to a flow on T vL , whence, by our assumption that (15.27) fails,

∃x1 ∈ T vL θ(x1) > e−(|x1 |−|v|)α .

By similar reasoning, define a finite sequence ⟨xk⟩ inductively as follows. Provided |xk |− |v | ≤
n−L, choose xk+1 ∈ T xk

L so that θxk (xk+1) > e−(|xk+1 |−|xk |)α. Let the last index thereby achieved
on ⟨xk⟩ be K . Then, using x0 := v, we have

θ(xK ) =
K−1∏
k=0

θxk (xk+1) > e−(|xK |−|v|)α ≥ e−nα >
rL

Mn(v) ,
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where in the last step we have used (15.28). On the other hand, since |v | + n − |xK | < L, we
have

θ(xK ) =

�
∂LT xK

|v|+n−|xK |
�

Mn(v) <
rL

Mn(v) .

As these two inequalities contradict each other, our claim is established.
For j ≥ 1, there is thus some unit flow θ j on some T v jj such that

∀x ∈ T v jj \ {v j}
1

|x | − |v j | log
1

θ j(x) ≥
(
1 − 1

j

)
dim sup ∂T . (15.29)

Identifying T v jj with a rooted subtree of T identifies θ j with a unit flow on T. By taking
a subsequence if necessary, we may assume that these flows θ j have an edgewise limit
θ∗. Those edges where θ∗j > 0 for infinitely many j form a tree T∗ ∈ D(T) such that
θ∗ is a unit flow on T∗. Because of (15.29), we obtain (15.23). By definition of Hölder
exponent, this means that 𝖧�̈�(θ∗) ≥ dim sup ∂T . On the other hand, Theorem 15.17 gives
𝖧�̈�(θ∗) ≤ dim sup ∂T∗ ≤ dim sup ∂T , whence (15.22) and (15.24) follow.

The proof of (15.26) is parallel to that of (15.23), and we omit it. To deduce (15.25), let

M∗∗
n :=

�{x ∈ T∗∗ ; |x | = n}�
and α := dim inf ∂T . By (15.26), we have

1 = θ∗∗(0) =
∑
|v|=n

θ∗∗(v) ≥
∑
|v|=n

e−αn = M∗∗
n e−αn ,

so that
1
n

log M∗∗
n ≤ α .

Therefore, dim ∂T∗∗ ≤ α. The other inequality follows from Proposition 15.19. (We deduce
that also dimM ∂T = α.) ◀

The first part of Theorem 15.20 allows us to give another proof of Furstenberg’s important
Theorem 3.8: If T is subperiodic, then every T∗ ∈ D(T) is isomorphic to a subtree of a
descendant subtree T v. In particular,

dim ∂T∗ ≤ dim ∂T .

On the other hand, if T∗ ∈ D(T) satisfies (15.22), then

dim ∂T ≥ dim ∂T∗ = dim sup ∂T ≥ dimM ∂T ≥ dim ∂T .

Therefore, dim ∂T = dimM ∂T , as desired.
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15.6 Notes

There is much more one can say about Hausdorff dimension. Some good books to consult are by
Edgar (1990), Falconer (1990), Mattila (1995), Pesin (1997), and Barreira (2008).

As noted by Virág (2000b), the essential branching number ess br T of a tree T , defined in (13.35), is
related to the Hausdorff dimension of harmonic measure µ for simple random walk on the tree by the
inequality

ess br T ≤ edim µ .

Strict inequality can hold.
See Furstenberg (2008) for a development of the ideas of Section 15.5 in the context of Euclidean

sets.
The proof we give of Theorem 15.20 is due to F. Ledrappier and Y. Peres, 1990, previously

unpublished.

15.7 Collected In-Text Exercises

15.1. Show that for any E ⊆ �d , there exists a real number α0 such that α < α0 ⇒ Hα(E) = +∞
and α > α0 ⇒ Hα(E) = 0.

15.2. The Sierpinski carpet is the set

E :=

(∑

n

xn3−n ,
∑
n

yn3−n
)

; (xn , yn) ∈ {0, 1, 2}2 \ {(1, 1)}
 .

That is, the unit square is divided into its nine triadic subsquares of order 1 and the interior of the
middle one is removed. This process is repeated on each of the remaining eight squares, and so on.
Show that dim E = dimM E = log 8/log 3.

15.3. The Sierpinski gasket is the set obtained by partitioning an equilateral triangle into four
congruent pieces and removing the interior of the middle one, then repeating this process ad infinitum
on the remaining pieces, as in Figures 15.1 and 15.2. Show that its Hausdorff dimension is log 3/log 2.

15.4. Show that for any sets En , dim
�∪∞

n=1 En

�
= sup dim En .

15.5. Show that if E1 ⊇ E2 ⊇ · · ·, then dim
∩

En ≤ lim dim En .

15.6. Deduce (15.4) and (15.5) in the same way as we deduced (15.3).

15.7. Reinterpret Theorems 3.5 and 5.15 as theorems on randomwalks on b-adic intervals intersecting
E and on random b-adic possible coverings of E.

15.8. Prove that under the conditions (15.6)–(15.11),

lim
n→∞

max
|x |=n

diam Ix = 0 .

15.9. Prove (15.12) (if T is locally finite).

15.10. Prove the left-hand inequality of (15.14).

15.11. What is diam βx of (15.15)?

15.12. Show that the minimum of (15.17) exists.
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15.13. Let T be an infinite locally finite tree. Show that there is a one-to-one correspondence between
unit flows θ from o to ∂T and Borel probability measures µ on ∂T satisfying

θ(x) = µ(βx ) .
15.14. Let T code the set {0} ∪ {1/n ; n ≥ 1} in base r . Show that T ∈ D(T).
15.15. Show that if T ∗ ∈ D(T), then D(T ∗) ⊆ D(T).
15.16. Show that the limits in (15.18) and (15.19) exist.

15.17. Show that if T is subperiodic, then dim ∂T = dim sup ∂T , whereas if T is superperiodic, then
dim ∂T = dim inf ∂T .

15.8 Additional Exercises
15.18. Let Ω ⊆ �2 be open and nonempty and f : Ω → � be Lipschitz. Show that the Hausdorff

dimension of the graph of f is 2.

15.19. Let E :=
�∑

n≥1 xn2−n ; xn ∈ {0, 1}, ∀n xn xn+1 = 0
	
. What is dim E?

15.20. Suppose that E ⊆ [0, 1] is closed and bE ⊆ E (mod 1). Show that dimH E = dimM E and
HdimH E (E) > 0.

15.21. Is there a subperiodic tree of exponential growth whose boundary has infinite Hausdorff
measure in its dimension?

15.22. Consider fractal percolation in the unit square with parameters b and p > b−2. Recall from
Example 15.9 that the fractal percolation set Qb(p) has Hausdorff dimension logb(pb2) a.s. on the event
that it is nonempty. Let Γ denote the union of all connected components of Qb(p) that have at least two
points.

(a) Show that dim Γ is a.s. constant on the event that Qb(p) is nonempty.
(b) Show that dimΓ < logb(pb−2) a.s. Hint: For the case b = 3, consider removing every square

at level k such that at level k + 1 only the central subsquare is retained.

15.23. Let m > 1. Show that for γ < 1,

max
{

dim IT ′ ; ∥L∥∞ < ∞,E[L] = m, E
[ L∑

1

Ai

]
= γ

}
=

(
1 − log γ

log m

)−1
< 1 ,

where the maximum is over all Galton-Watson fractals IT ′ based on random vectors (L, A1, . . . , AL ) as
in Section 15.3, whereas for m > γ > 1,

min
{

dim IT ′ ; ∥L∥∞ < ∞,E[L] = m, E
[ L∑

1

Ai

]
= γ

}
=

(
1 − log γ

log m

)−1
> 1 ,

with equality in each case iff ∀i Ai = γ/m a.s. What if γ = 1?

15.24. To create (the top side of) a random von Koch curve E, begin with the unit interval. Replace
the middle portion of random length ∈ (0, 1/3) by the other two sides of an equilateral triangle, as in
Figure 15.8. Repeat this process proportionally and independently on each of the remaining four pieces,
and so on. Of course, here, the associated Galton-Watson network has no extinction. Show that if the
length is uniform on (0, 1/3), then dim E ≈ 1.144 a.s.

Figure 15.8. Random side replacement.
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15.25. Create a random Cantor set E in [0, 1] by removing a middle interval between two points
chosen independently uniformly on [0, 1]. Repeat indefinitely proportionally and independently on the
remaining intervals. Show that dim E = (√17 − 3)/2 a.s.

15.26. Let T be a Galton-Watson tree with offspring random variable L having mean m > 1. Show
that the Hausdorff measure of ∂T in dimension log m is 0 a.s., except when L is constant.

15.27. Fix a positive integer d and an integer b ≥ 2. Consider d-dimensional b-adic codings of closed
sets E ⊆ [0, 1]d . For a subtree T of the bd-ary tree that contains the root, write QT for the closed
subset of [0, 1]d coded by the rays of T . For 0 ≤ p ≤ 1, write Qd,b(p) for the corresponding random
closed set QT when T is the component of the root for Bernoulli(p) percolation on the bd-ary tree.
Consider any closed subset Λ ⊆ [0, 1]d and any β > 0.

(a) Show that if dimH Λ < β, then Λ ∩Qd,b(b−β ) = ∅ a.s.
(b) Show that if dimH Λ > β, then Λ ∩Qd,b(b−β ) ̸= ∅ with positive probability.
(c) Show that if dimH Λ > β, then dimH

�
Λ ∩Qd,b(b−β )� ≤ dimH Λ − β a.s. and that the essential

supremum of the left-hand side is equal to the right-hand side.

15.28. Let 1 ≤ k < d be integers and γ > 0 be real. Let L be a linear transformation from �d onto
�k , and let Q = Qd,b(b−γ) be as in Exercise 15.27.

(a) Show that if d − γ > k, then the image L(Q) has positive k-dimensional Lebesgue measure a.s.
given that Q ̸= ∅.

(b) Show that if 0 < d − γ ≤ k, then dimH L(Q) = d − γ a.s. given that Q ̸= ∅.

15.29. (a) Suppose that µ is a probability measure on �d such that the measure of every b-adic cube
of order n is at most Cb−nα for some constants C and α. Show that there is a constant C′ such that the
µ-measure of every ball of radius r is at most C′rα .

(b) The Frostman exponent of a probability measure µ on �d is

Frost(µ) := sup
{
α ∈ � ; sup

x∈�d ,r>0
µ
�
Br (x)�/rα < ∞}

,

where Br (x) is the ball of radius r centered at x. Show that the Hausdorff dimension of every compact
set is the supremum of the Frostman exponents of the probability measures it supports.

15.30. Given a probability vector ⟨pi ; 1 ≤ i ≤ k⟩, the capacities of the Galton-Watson network
generated on a k-ary tree by the nonrandom vector (k, p1, p2, . . . , pk ) as in Section 5.9 define a unit
flow θ where the flow along every edge equals the capacity of that edge. The flow θ corresponds to a
probability measure µ on the boundary. Show that

dim µ =
∑
i

pi log
1
pi

.

15.31. Let p(•, •) be the transition probabilities of a finite-state irreducible Markov chain. Let π( • ) be
the stationary probability distribution. The directed graph G associated to this chain has for vertices the
states and for edges all (x, y) for which p(x, y) > 0. Let T be the directed cover of G (see Section 3.3).
Define the unit flow

θ
�⟨x1, . . . , xn+1⟩� := π(x1)

n∏
i=1

p(xi , xi+1) .

Let µ be the corresponding probability measure on ∂T . Show that

dim µ =
∑
x

π(x)
∑
y

p(x, y) log
1

p(x, y) .

15.32. Let pk > 0 (1 ≤ k ≤ r) satisfy
∑r

k=1 pk = 1. Let GW be the Galton-Watson measure on trees
with offspring distribution ⟨pk ⟩. Show that for GW-a.e. T , D(T) is equal to the set of all subtrees of the
r-ary tree T.
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15.33. Let T be the tree of Exercise 3.33 with N = 0 and α = 1/3. Show that dim inf ∂T =
1
3

log 3 + 2
3

log 3
2

and dim sup ∂T = log 2.

15.34. Let pk ≥ 0 (k ≥ 1) satisfy
∑∞

k=1 pk = 1. Let GW be the Galton-Watson measure on trees
with offspring distribution ⟨pk ⟩. Show that for GW-a.e. T , dim sup ∂T = log sup{k ; pk > 0} and
dim inf ∂T = log min{k ; pk > 0}. Here, we use the same definitions of dim sup and dim inf as in
(15.18) and (15.19), even though the degrees may not be bounded.

15.35. Is there a tree T of uniformly bounded degree such that br T > 1 and such that every derived
tree of T is amenable?

15.36. Let T code the Cantor middle-thirds set in base 2. Show that dim sup ∂T = (log 2)2/log 3.
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16 Capacity and
Stochastic Processes

One refinement of Hausdorff dimension is, of course, Hausdorff measure. Another is
capacity. The latter turns out to be more widely related to probability than the former. The
notion of capacity will lead to important reformulations of our theorems concerning random
walk and percolation on trees. As one consequence, we will be able to deduce a classical
relationship of Hausdorff dimension and capacity in Euclidean space. Since capacity also is
intimately related to Brownian motion, we will be able to solve problems about Brownian
motion by using our work on percolation on trees: capacity translates one domain to the
other.

16.1 Definitions

We call a function Ψ ≥ 0 on a rooted tree T such that x → y ⇒ Ψ(x) ≤ Ψ(y) a gauge. For a
gauge Ψ, extend Ψ to ∂T by Ψ(ξ) := limx∈ξ Ψ(x) and define the kernel K := ∂T×∂T → [0,∞]
by

K(ξ, η) := Ψ(ξ ∧ η) ,
where, as in Section 15.4, ξ ∧ η is the vertex common to both ξ and η that is farthest from o
if ξ ̸= η and ξ ∧ η := ξ if ξ = η.
A common gauge is Ψ(x) := 𝜆|x | or Ψ(x) := 𝜆|x |/(𝜆 − 1) for 𝜆 > 1. Using r(e(x)) :=

𝜆|x |−1(𝜆 − 1) or r(e(x)) := 𝜆|x |−1, we see that these gauges are special cases of the following
assignment of a gauge to conductances (and resistances):

Ψ(x) := Ψ(o) +
∑

o<u≤x
r(e(u)) . (16.1)

For another example, r ≡ 1 corresponds to Ψ(x) = Ψ(o)+ |x |, which gives the kernel K(ξ, η) =
Ψ(o) − log d(ξ, η) in terms of the distance on ∂T defined in Section 15.4. Furthermore, given
a gauge Ψ, we can implicitly define conductances by (16.1).
Write 𝖯𝗋𝗈𝖻(∂T) for the set of Borel probability measures on ∂T . Fix a kernel, K . Given

µ ∈ 𝖯𝗋𝗈𝖻(∂T), its potential is the function

Vµ(ξ) :=
∫
∂T

K(ξ, η) dµ(η)
and its energy is the number

E (µ) :=
∫

∂T×∂T

K d(µ × µ) =
∫
∂T

Vµ(ξ) dµ(ξ) .



§1. Definitions 535

The capacity of E ⊆ ∂T measures inversely how small the energy can be of a probability
measure on E, that is,

cap E :=
[
inf

�
E (µ) ; µ ∈ 𝖯𝗋𝗈𝖻(∂T), µ(∂T \ E) = 0

	]−1
.

When E = ∅, then we define cap E := 0. These definitions are made similarly for any
topological space X in place of ∂T and any Borel function K : X × X → [0,∞].
The concepts of potential, energy, and capacity come from physics. For example, if µ is a

distribution of electric charge in space and K(x, y) is one over the distance between x and y

(we ignore physical constants and units), then Vµ is the electric potential generated by µ (its
negative gradient is the electric field) and E (µ) is the electrostatic potential energy inherent
in this configuration. If a unit charge is placed on a perfect conductor, then it will distribute
itself to minimize its energy; the reciprocal of that energy is the capacitance of the conductor.
Recall from Exercise 15.13 that Borel probabilities µ on ∂T are in 1-1 correspondence

with unit flows θ on T via
θ(x) = µ

�{ξ ; x ∈ ξ}� .
Here, as in Chapter 15, we will abbreviate θ(e(x)) as θ(x). For convenience, set θ(o) := 1.
We may express Vµ and E (µ) in terms of θ as follows. Set

Φ(x) :=
{

Ψ(x) − Ψ(↼x) if x ̸= o
Ψ(o) if x = o.

(Recall that ↼x is the parent of x.) Thus, Φ(x) is the resistance of e(x) for x ̸= o when (16.1)
holds.

Proposition 16.1. (Lyons, 1990) With the preceding notation, we have

∀ξ ∈ ∂T Vµ(ξ) =
∑
x∈ξ

Φ(x)θ(x)

and
E (µ) =

∑
x∈T

Φ(x)θ(x)2.

Proof. Since Ψ(x) =
∑

u≤x Φ(u) and Ψ(ξ) =
∑

x∈ξ Φ(x), we have

Vµ(ξ) =
∫
∂T

K(ξ, η) dµ(η) =
∫
∂T

Ψ(ξ ∧ η) dµ(η) =
∫
∂T

∑
x≤ξ∧η

Φ(x) dµ(η)

=
∫
∂T

∑
x∈ξ

Φ(x)1[x∈η] dµ(η) =
∑
x∈ξ

Φ(x)
∫
∂T

1[x∈η] dµ(η) =
∑
x∈ξ

Φ(x)θ(x) .

Now integrate to get

E (µ) =
∫
∂T

Vµ dµ =
∫
∂T

∑
x∈ξ

Φ(x)θ(x) dµ(ξ) =
∑
x∈T

Φ(x)θ(x)µ�{ξ ; x ∈ ξ}� . ◀
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When conductances determine Ψ through (16.1) and the equation Ψ(o) := 0, we have
Φ(x) = r(e(x)) and thus E (µ) = E (θ), as we defined energy of flows in Section 2.4. In
particular, cap ∂T = C (o ↔ ∞); when this is positive, E (µ) is minimum when E (θ) is
minimum and, hence, E ( • ) has a unique minimum corresponding to unit current flow. If
i denotes unit current flow and µi the corresponding measure on ∂T , then µi gives the
distribution of current “outflow” on ∂T . Probabilistically, this is harmonic measure for the
random walk, that is, the “hitting” distribution on ∂T : by Proposition 2.12, given an edge
e(x), we have

µi
�{ξ ; x ∈ ξ}� = i(e(x))

= E[number of transitions from ↼x to x

− number of transitions from x to ↼x ]
= P

�
random walk enters and eventually stays in T x

�
.

To summarize:

Theorem 16.2. (Random Walk and Capacity) Given conductances on a tree T , the
associated random walk is transient iff the capacity of ∂T is positive in the associated gauge.
The unit flow corresponds to the harmonic measure on ∂T , which minimizes the energy.

In this context, Theorem 3.5 becomes

br T = inf
{
𝜆 > 1 ; cap ∂T = 0 in the gauge Ψ(u) = 𝜆|u |

}
.

Although br T has a similar definition via Hausdorff measures, it is capacity, not Hausdorff
measure, in the critical gauge that determines the type of critical random walk, 𝖱𝖶brT .

Write v(ξ) := limx∈ξ v(x). Then from Proposition 16.1, we have

Vµi (ξ) =
∑

o<u∈ξ
i(e(u))r(e(u)) =

∑
o<u∈ξ

�
v(↼u) − v(u)� = v(o) − v(ξ)

= E (i) − v(ξ) = E (µi) − v(ξ) = (cap ∂T)−1 − v(ξ) .

In particular, ∀ξ Vµi (ξ) ≤ (cap ∂T)−1. Since
∫

Vµi dµi = (cap ∂T)−1, it follows that Vµi (ξ) =
(cap ∂T)−1 for µi-a.e. ξ. One can show more, that Vµi (ξ) = (cap ∂T)−1, in other words,
v(ξ) = 0, except for a set of ξ of capacity 0 (Lyons, 1990). This further justifies thinking of
the electrical network T as “grounded at∞.”
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16.2 Percolation on Trees

Let px be survival probabilities for independent percolation, as in Section 5.3. Consider
the gauge

Ψ(x) := P[o↔ x]−1 =
∏

o<u≤x
p−1
u .

Note that
Ψ(o) = 1 .

If we define resistances by
r(e(u)) := Ψ(u) − Ψ(↼u) ,

then Ψ(x) is 1 plus the resistance between o and x. Thus, (5.12) holds. Because Ψ(o) = 1 but
i(o) does not enter in the sum defining E (i), we have

E (µi) = 1 + E (i) = 1 + C (o↔ ∞)−1 ,

whence
cap ∂T = E (µi)−1 =

C (o↔ ∞)
1 + C (o↔ ∞) .

We may therefore rewrite Theorem 5.24 as

cap ∂T ≤ P[o↔ ∂T] ≤ 2 cap ∂T . (16.2)

These inequalities are easily generalized to subsets of ∂T (Lyons, 1992):

Theorem 16.3. (Tree Percolation and Capacity) For Borel E ⊆ ∂T , we have

cap E ≤ P[o↔ E] ≤ 2 cap E.

Proof. If E is closed, let T(E) := {u ; ∃ξ ∈ E u ∈ ξ}. Then T(E) is a subtree of T with
∂T(E) = E. Hence the result follows from (16.2). The general case follows from the theory of
Choquet capacities, which we omit (see Lyons (1992)). ◀

▷ Exercise 16.1.
Show that if px ≡ p ∈ (0, 1) and T is spherically symmetric, then

cap ∂T =
(
1 + (1 − p)

∞∑
n=1

1
pn |Tn |

)−1

.

Thus, P[o↔ ∂T] > 0 iff
∑∞

n=1
1

pn |Tn | < ∞.

If we specialize to trees coding closed sets, as in Sections 1.10 and 15.2, and take pu ≡ p,
the result that P[o↔ ∂T] > 0 iff cap ∂T > 0 is due to Fan (1989, 1990).
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16.3 Euclidean Space
Like Hausdorff dimension in Euclidean space, capacity in Euclidean space is also related

to trees. We treat first the case of �1.
Consider a closed set E ⊆ [0, 1] and a kernel

K(x, y) := f
�|x − y |� ,

where f ≥ 0 and f is decreasing. Here, f is called the gauge function. We denote the
capacity of E with respect to this kernel by cap f (E).

▷ Exercise 16.2.
Suppose that f and g are two gauge functions such that f/c1 − c2 ≤ g ≤ c1 f + c2 for some
constants c1 and c2. Show that for all E, cap f (E) > 0 iff capg(E) > 0.

The gauge functions f (z) = z−α (α > 0) or f (z) = log+ 1/z are so frequently used that the
corresponding capacities have their own notation, capα and cap0, respectively. For any set E,
there is a critical α0 such that capα(E) > 0 for α < α0 and capα(E) = 0 for α > α0. In fact,
α0 = dim E. This result is due to Frostman (1935); we will deduce it from our work on trees.
We will also show the following result.
Theorem 16.4. Let E ⊆ [0, 1] be closed. If T codes E in base b, then critical homesick
random walk on T is transient iff capdim E (E) > 0. In particular, this does not depend on b.

This result is a slight generalization of one due to Benjamini and Peres (1992), who stated
this for simple random walk and cap0E. That case bears a curious relation to a result of
Kakutani (1944): cap0E > 0 iff Brownian motion in �2 hits E a.s.; see Lemma 16.10.
To prove Theorem 16.4, we will use the following important proposition that relates energy

on trees to energy in Euclidean space. It is due to Benjamini and Peres (1992), as extended
by Pemantle and Peres (1995b).
Proposition 16.5. (Energy and Capacity Transference in �) Let E ⊆ [0, 1] be closed
and T code E in base b. Let rn > 0. Give T the resistances r(e(u)) := r |u | for u ∈ 𝖵(T) and
suppose that f ≥ 0 is decreasing and satisfies

∀n f (b−n) =
∑

1≤k≤n
rk and f (0) =

∞∑
n=1

rn .

If 𝜈 ∈ 𝖯𝗋𝗈𝖻(E) and µ ∈ 𝖯𝗋𝗈𝖻(∂T) satisfy θ(u) = 𝜈(Iu) for u ∈ 𝖵(T), where θ is the flow
corresponding to µ and Iu is the b-ary interval corresponding to u, then

1
2E c(θ) ≤ E f (𝜈) ≤ 3b E c(θ) .

Hence, (T , c) is transient iff cap f (E) > 0.

Proof of Theorem 16.4. Critical random walk uses the resistances r(e(u)) = 𝜆|u |c , where 𝜆c =
br T = bdim E . Hence, set rn := bn dim E and choose any f as in Proposition 16.5. According to
the proposition, 𝖱𝖶𝜆c

is transient iff cap f E > 0. Since there are constants c1 and c2 such that
f (z)/c1−c2 ≤ zdim E ≤ c1 f (z)+c2 when dim E > 0 and f (z)/c1−c2 ≤ log+ 1/z ≤ c1 f (z)+c2
when dim E = 0, we have cap f E > 0 iff capdim E (E) > 0 by Exercise 16.2. ◀

Corollary 16.6. (Frostman, 1935) dim E = inf
�
α ; capα(E) = 0

	
.
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▷ Exercise 16.3.
Prove Corollary 16.6.

Although we have just shown that the base used for coding E does not affect transience of
critical random walk, the following question is open:

Question 16.7. Let E be the Cantor middle-thirds set, µb harmonic measure of simple
random walk on T[b](E), and 𝜈b the corresponding measure on E. Thus 𝜈3 is Cantor-Lebesgue
measure. Is 𝜈2 ⊥ 𝜈3?

Proof of Proposition 16.5. If t ≤ b−N , then f (t) ≥ f (b−N ), whence

f (t) ≥
∑
n≥1

rn1{b−n ≥t} ,

so

E f (𝜈) =
∫∫

f
�|x − y |� d𝜈(x) d𝜈(y) ≥

∫∫ ∑
n≥1

rn1{|x−y |≤b−n} d𝜈(x) d𝜈(y)

=
∑
n≥1

rn(𝜈 × 𝜈)�|x − y | ≤ b−n
	
.

Now �|x − y | ≤ b−n
	
⊇

bn−1∪
k=0

Ink × Ink , (16.3)

where In
k

:=
�
k
bn ,

k+1
bn

�
, and each point in the right-hand side lies in at most two of the terms in

the union, whence

E f (𝜈) ≥ 1
2
∑
n≥1

rn
∑
k

�
𝜈Ink

�2 =
1
2
∑
n≥1

rn
∑
|u |=n

θ(u)2 =
1
2

E c(θ) .

On the other hand, f (t) ≤ f (b−N ) when t ≥ b−N , in other words,

f (t) ≤
∑
n≥1

rn1{b−n+1>t} .

Therefore

E f (𝜈) =
∫∫

f
�|x − y |� d𝜈(x) d𝜈(y) ≤

∫∫ ∑
n≥1

rn1{|x−y |<b−n+1} d𝜈(x) d𝜈(y)

=
∑
n≥1

rn(𝜈 × 𝜈)�|x − y | < b−n+1	 .
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Now�|x − y | ≤ b−n
	
⊆

bn−1∪
k=0

(
Ink × (Ink ∪ Ink−1 ∪ Ink+1)

)
. (16.4)

(See Figure 16.1.) This gives the bound

(𝜈 × 𝜈)�|x − y | ≤ b−n
	
≤

bn−1∑
k=0

(𝜈Ink )(𝜈Ink + 𝜈Ink−1 + 𝜈Ink+1) .

Figure 16.1. Covering
by b-adic squares.

The cross terms are estimated by the following inequality:

AB ≤ A2 + B2

2
.

Thus

(𝜈 × 𝜈)�|x − y | ≤ b−n
	
≤

bn−1∑
k=0

(𝜈Ink )2 +
bn−1∑
k=0

(𝜈Ink )2 +
bn−1∑
k=0

(𝜈In
k−1)2 + (𝜈In

k+1)2
2

≤ 3
∑
|u |=n

(𝜈Iu)2 = 3
∑
|u |=n

θ(u)2 ,

whence by the arithmetic mean–quadratic mean inequality (or the Cauchy-Schwarz inequal-
ity),

E f (𝜈) ≤ 3
∑
n≥1

rn
∑

|u |=n−1

θ(u)2 =
∑
n≥1

rn
∑

|u |=n−1

( ∑
u→x

θ(x)
)2

≤ 3b
∑
n≥1

rn
∑

|u |=n−1

∑
u→x

θ(x)2 = 3b E c(θ) . ◀

The situation in higher-dimensional Euclidean space is very similar. Denote the Euclidean
distance between x and y by |x − y |. Consider a closed set E ⊆ [0, 1]d and a kernel
K(x, y) := f

�|x − y |�, where f ≥ 0 and f is decreasing. Again, f is called the gauge
function, and we denote the capacity of E with respect to f by cap f (E). To code E by a tree
T , we now use b-adic cubes in [0, 1]d. Again, the transference principle is due to Pemantle
and Peres (1995b).

Proposition 16.8. (Energy and Capacity Transference in �d) Let E ⊆ [0, 1]d be closed
and T code E in base b. Let rn > 0 satisfy

∑
rn = ∞. Give T the resistances r(e(u)) := r |u |

and suppose that f is decreasing and satisfies

∀n f (b−n) =
∑

1≤k≤n
rk and f (0) =

∞∑
n=1

rn .

If 𝜈 ∈ 𝖯𝗋𝗈𝖻(E) and µ ∈ 𝖯𝗋𝗈𝖻(∂T) satisfy θ(u) = 𝜈(Iu), where θ is the flow corresponding to µ
and Iu is the b-ary cube corresponding to u, then

2−dE c(θ) ≤ E f (𝜈) ≤ 3dbd(1+ℓ)E c(θ) ,
where ℓ := (1/2) logb d.
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▷ Exercise 16.4.
Prove Proposition 16.8.

16.4 Fractal Percolation and Brownian Intersections

In this section, we will consider a special case, known as fractal percolation, of the Galton-
Watson fractals defined in Example 15.14. We will see how the use of capacity can help
us understand intersection properties of Brownian motion traces in �d by transferring the
question to these much simpler fractal percolation sets. Moreover, the fractal percolation
sets will help analyze capacity. In Section 5.7, we studied connectivity properties of fractal
percolation sets in the plane. Here we consider them in greater generality, both in dimension
and in survival probability at each generation.
Given integers d, b ≥ 2 and numbers pn ∈ [0, 1] (n ≥ 1), consider the natural tiling of the

unit cube [0, 1]d by bd closed cubes of side 1/b. Let K1 be a random subcollection of these
cubes, where each cube has probability p1 of belonging to K1, and these events are mutually
independent. (Thus, the cardinality |K1 | of K1 is a binomial random variable.) In general, if
Kn is a collection of cubes of side b−n, tile each cube Q ∈ Kn by bd closed subcubes of side
b−n−1 (with disjoint interiors) and include each of these subcubes in Kn+1 with probability
pn+1 (independently). Finally, define

An := An,d,b(pn,Kn−1) :=
∪
Kn and Qd

�⟨pn⟩� := Qd,b

�⟨pn⟩� :=
∞∩
n=1

An .

In the construction of Qd

�⟨pn⟩�, the cardinalities |Kn | of Kn form a branching process in a
varying environment, where the offspring distribution at level n is Bin(bd, pn). When pn ≡ p,
the cardinalities form a Galton-Watson branching process. Alternatively, the successive
subdivisions into b-ary subcubes define a natural mapping from a bd-ary tree to the unit
cube; the construction of Qd

�⟨pn⟩� corresponds to performing independent percolation with
parameter pn at level n on this tree and considering the set of infinite open paths emanating
from the root. The process ⟨An ; n ≥ 1⟩ is called fractal percolation, whereas Qd

�⟨pn⟩� is
the limit set. When pn ≡ p, we write Qd(p) for Qd

�⟨pn⟩�.
▷ Exercise 16.5.

(a) Show that if pn ≤ b−d for all n, then Qd,b

�⟨pn⟩� = ∅ a.s.
(b) Characterize the sequences ⟨pn⟩ for which Qd

�⟨pn⟩� has positive volume with
positive probability.

The main result in this section, from Peres (1996), is that the Brownian trace is “intersection
equivalent” to the limit set of fractal percolation for an appropriate choice of parameters ⟨pn⟩.
We will obtain as easy corollaries facts about Brownian motion, for example, that two traces
in 3-space intersect but not three traces. Here, the trace of Brownian motion ⟨Bt⟩ is the set of
its values for t belonging to some given interval. This is a random set, by which we mean the
following.
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Definition 16.9. A random set A is a measurable function ω 7→ A(ω) on a measurable space
Ω whose values are sets; measurability means that for every closed Λ, the outcomes ω where
A(ω) ∩ Λ ̸= ∅ form an event (that is, a measurable subset of Ω). Two random (Borel) sets A
and B in �d are intersection equivalent in a set U if there exist constants C1,C2 such that for
every closed* set Λ ⊆ U, we have

C1 P[A ∩ Λ ̸= ∅] ≤ P[B ∩ Λ ̸= ∅] ≤ C2 P[A ∩ Λ ̸= ∅] , (16.5)
which we write as

P[A ∩ Λ ̸= ∅] ≍ P[B ∩ Λ ̸= ∅] .

We need a few basic facts about Brownian motion. For more information on Brownian
motion, see the book by Mörters and Peres (2010). Further references can also be found in
the notes at the end of this chapter. If gd is the d-dimensional radial potential function,

gd(r) :=
{

log+(r−1) if d = 2
r2−d if d ≥ 3,

then the kernel Gd(x, y) = cdgd
�|x − y |�, where cd > 0 is a constant given in Exercise 16.6,

is called the Green kernel for Brownian motion. This is the continuous analogue of the
Green function for Markov chains: As Exercise 16.6 shows, the expected one-dimensional
Lebesgue measure of the time that Brownian motion spends in a set turns out to be absolutely
continuous with respect to d-dimensional Lebesgue measure, and its density at y when started
at x is the Green kernel Gd(x, y). Actually, in two dimensions, (neighborhood) recurrence of
Brownian motion means that we need to kill it at some finite time. If we kill it at a random
time with an exponential distribution, then it remains a Markov process. It is not hard to
compare properties of the exponentially killed process to one that is killed at a fixed time:
see Exercise 16.13.

▷ Exercise 16.6.
Let pt (x, y) := (2πt)−d/2 exp

�
−|x − y |2/(2t)� be the Brownian transition density function,

and for d ≥ 3, define Gd(x, y) :=
∫ ∞

0 pt (x, y) dt for x, y ∈ �d .
(a) Show that Gd(x, y) = cdgd

�|x − y |� with a constant 0 < cd < ∞.
(b) Define FA(x) :=

∫
A Gd(x, z) dz for Borel sets A ⊆ �d. Show that FA(x) is the

expected time the Brownian motion started at x spends in A.
(c) Show that x 7→ Gd(0, x) is harmonic on�d \ {0}, in other words, has zero Laplacian

there. Equivalently, if B ⊂ �d \{0} is a ball, then the average value (with respect to Lebesgue
measure) of Gd(0, x) over x ∈ B is equal to the value at the center of the ball.

(d) Consider Brownian motion ⟨Bt⟩ in �2, killed at a random time with an exponential
distribution with parameter 1. In other words, let τ be an Exponential(1) random time,
independent of the Brownian motion. The expected occupation measure 𝜈x for Bt started at x
and killed at time τ is defined by 𝜈x(A) := E

∫ τ
0 1A(Bt ) dt for Borel sets A in �2. Show that

𝜈x(A) =
∫
A G∗2(x, y) dy, where G∗2(x, y) :=

∫ ∞
0 pt (x, y)e−t dt.

(e) Show that in two dimensions, G∗2(x, y) ∼ −(1/π) log |x − y | for |x − y | ↓ 0.

* Intersection equivalence of A and B implies that (16.5) holds for all Borel sets Λ by the Choquet capacitability
theorem (see Carleson (1967), p. 3, or Dellacherie and Meyer (1978), III.28).
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The following is a classical result relating the hitting probability of a set Λ by Brownian
motion to the capacity of Λ in the Green kernel. It is the key to our understanding in this
section of Brownian motion. A proof using the so-called Martin kernel and the second-
moment method was found by Benjamini, Pemantle, and Peres (1995); see Section 16.6. We
will write cap( • ; f ) := cap f ( • ) to make it easier to see the gauge function f , which will be
crucial in what follows and which will change many times.

Lemma 16.10. If ⟨Bt⟩ is Brownian motion (killed at an exponential time for d = 2), and the
initial distribution 𝜈 of B0 has a bounded density on �d, then

P𝜈[∃t ≥ 0 Bt ∈ Λ] ≍ cap(Λ; gd) (16.6)

for all Borel sets Λ ⊂ [0, 1]d.

A picture of Brownian motion in the plane is convincing that there are double points a.s.,
that is, points that are visited at least twice by the Brownian motion. What about in higher
dimensions? What about points of greater multiplicity? Which sets contain double points
with positive probability? Because of the independence of increments in Brownian motion,
it is intuitive that the questions have the same answers as asking whether two (or more)
independent Brownian motions intersect. We will later prove (partly) that these are indeed
equivalent. So let B and B′ be two independent Brownian motions, and write [B] for the
trace {Bt ; t ≥ 0}.

For which Λ is P
�
Λ ∩ [B] ∩ [B′] ̸= ∅� > 0 ?

Evans (1987) and Tongring (1988) gave a sufficient condition:

If cap(Λ; g2
d) > 0, then P

�
Λ ∩ [B] ∩ [B′] ̸= ∅� > 0 .

Later Fitzsimmons and Salisbury (1989) showed that cap(Λ; g2
d
) > 0 is also necessary.

Moreover, they showed that in dimension d = 2, if B(i) are independent Brownian motions,
then

cap(Λ; gk2 ) > 0 if and only if P
�
Λ ∩ [B(1)] ∩ · · · ∩ [B(k)] ̸= ∅� > 0 .

Chris Bishop (personal communication, 1994) then made the following conjecture in every
dimension:

P
�
cap(Λ ∩ [B]; f ) > 0

�
> 0 if and only if cap(Λ; f gd) > 0 (16.7)

whenever f is a nonnegative, decreasing function. Iteration of (16.7) implies the preceding
results on multiple intersections. We will establish all of this.
To do so, we will relate gauge functions used for kernels on Euclidean space to fractal

percolation in the following way. If f ≥ 0 is a decreasing function and pn ∈ [0, 1] satisfy

p1 · · · pn = min
�

f (b−n)−1, 1
	
, (16.8)

then the limit set of fractal percolation with retention probability pn at level n will be denoted
by Qd[ f ].



544 Chap. 16: Capacity and Stochastic Processes

Note that the numbers ⟨pn⟩ satisfying (16.8) for f = gd are
pn = b2−d if d ≥ 3,
p1 = 1/log b, pn = (n − 1)/n for n ≥ 2 if d = 2 and b ≥ 3,
p1 = 1, p2 = 1/(2 log 2), pn = (n − 1)/n for n ≥ 3 if d = 2 and b = 2.

Consider the canonical map Υ from the boundary ∂T of the bd-ary tree T onto [0, 1]d.
Let ω be the percolation on T that has probability pn of retaining an edge e when e joins
vertices at level n − 1 to vertices at level n. Write ∂oω for the set of open rays from the
root of T . Then the image of ∂oω under Υ has the same law as Qd

�⟨pn⟩�. Moreover, for
every closed Λ ⊆ [0, 1]d, the probability that Qd

�⟨pn⟩� ∩ Λ ̸= ∅ equals the probability that
Υ−1(Λ)∩ ∂oω ̸= ∅. This fact, along with the percolation result Theorem 16.3 and the transfer
result Proposition 16.5, are the ingredients behind the following theorem.
Theorem 16.11. (Peres, 1996) Let f ≥ 0 be a decreasing function. Then, for all closed sets
Λ ⊆ [0, 1]d,

cap(Λ; f ) ≍ P
�
Λ ∩Qd[ f ] ̸= ∅� . (16.9)

For f = gd in particular, Qd[gd] is intersection equivalent in [0, 1]d to the Brownian trace:
If B is Brownian motion with initial distribution 𝜈 that has a bounded density, stopped at an
exponential time when d = 2, and [B] := {Bt ; t ≥ 0}, then for all closed Λ ⊆ [0, 1]d,

P
�
Λ ∩Qd[gd] ̸= ∅� ≍ P

�
Λ ∩ [B] ̸= ∅� . (16.10)

Proof. Let ⟨pn⟩ be determined by (16.8). Let P̃ be the independent percolation on T with
retention probability pn for each edge joining level n − 1 to level n. Define the gauge Ψ on T
by Ψ(x) := max

�
f (b−|x |), 1	. By Theorem 16.3,

P
�
Qd[ f ] ∩ Λ ̸= ∅

�
= P̃

�
o↔ Υ−1(Λ)� ≍ cap

�
Υ
−1(Λ); Ψ

�
, (16.11)

where the constants in ≍ on the right-hand side are 1 and 2. On the other hand, Proposi-
tion 16.5 says that

cap
�
Υ
−1(Λ); Ψ

�
≍ cap(Λ; f ) . (16.12)

Combining (16.11) and (16.12) yields (16.9). From (16.9) and (16.6), we get (16.10). ◀
To apply the preceding theorem to intersections of several random sets, we use the following

two lemmas.
Lemma 16.12. Suppose that A1, . . . , Ak , F1, . . . , Fk are independent random closed* sets,
with Ai intersection equivalent to Fi for 1 ≤ i ≤ k. Then A1 ∩ A2 ∩ · · · ∩ Ak is intersection
equivalent to F1 ∩ F2 ∩ · · · ∩ Fk .

Proof. By induction, reduce to the case k = 2. It clearly suffices to show that A1 ∩ A2 is
intersection equivalent to F1 ∩ A2, and this is done by conditioning on A2:

P[A1 ∩ A2 ∩ Λ ̸= ∅] = E
�
P[A1 ∩ A2 ∩ Λ ̸= ∅ | A2]�

≍ E
�
P[F1 ∩ A2 ∩ Λ ̸= ∅ | A2]� = P[F1 ∩ A2 ∩ Λ ̸= ∅] . ◀

Lemma 16.13. For any 0 < p, q < 1, if Qd(p) and Q′
d
(q) are independent, then their

intersection Qd(p) ∩Q′
d
(q) has the same distribution as Qd(pq).

Proof. This is immediate from the construction of Qd(p). ◀

* In fact, Ai and Fi may be taken to be Borel by the Choquet capacitability theorem, as before.
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Now we can reap the corollaries. In what follows, Brownian paths will be started either
from arbitrary fixed points or from initial distributions that have bounded densities in the
unit cube [0, 1]d. The proof of the first corollary was first completed by Dvoretzky, Erdős,
Kakutani, and Taylor (1957), following earlier work of Dvoretzky, Erdös, and Kakutani
(1950). A proof using the renormalization group method was given by Aizenman (1985).
(In fact, the earlier authors phrased their results in terms of multiple points, but their proofs
show these results about intersections as well.) Compare the following to Corollary 10.25
and note the difference in four dimensions. The reason for the difference is analogous to the
difference between recurrence of two-dimensional random walk and neighborhood recurrence
of two-dimensional Brownian motion: although two four-dimensional Brownian motions do
get arbitrarily close to each other (see Jain and Taylor (1973), Remark 4.2), they do not meet,
whereas each time two random walks get close, then they will meet with positive probability.

Corollary 16.14. (Dvoretzky, Erdős, Kakutani, Taylor)
(i) For all d ≥ 4, two independent Brownian traces in �d are disjoint a.s., except, of

course, at their starting point if they are identical.
(ii) In �3, two independent Brownian traces intersect a.s., but three traces a.s. have no

points of mutual intersection (except, possibly, their starting point).
(iii) In �2, any finite number of independent Brownian traces have nonempty mutual

intersection almost surely.

Proof. (i) It suffices to prove the case d = 4, since for d ≥ 5, the first four coordinates
of Brownian motion in �d give Brownian motion in �4. Fix ϵ > 0. The distribution of
Bϵ has bounded density. By Theorem 16.11 and Lemma 16.12, the intersection of two
independent copies of {Bt ; t ≥ ϵ} is intersection equivalent in [0, 1]d to the intersection of
two independent copies of Q4,b(b−2); by Lemma 16.13, this latter intersection is intersection
equivalent to Q4,b(b−4). But Q4,b(b−4) is a.s. empty because critical branching processes die
out. Thus two independent copies of {Bt ; t ≥ ϵ} are a.s. disjoint in [0, 1]d. This argument
actually worked for fractal percolation in any cube of any size (not just the unit cube), whence
two independent copies of {Bt ; t ≥ ϵ} are a.s. disjoint. As ϵ is arbitrary, the claim follows.
(ii) Since {Bt ; t ≥ ϵ} is intersection equivalent to Q3,b(b−1) in the unit cube, the

intersection of three independent Brownian traces (from any time ϵ > 0 on) is intersection
equivalent in the cube to the intersection of three independent copies of Q3(b−1), which has
the same distribution as Q3(b−3). Again, a critical branching process is obtained, and hence
the triple intersection is a.s. empty.
On the other hand, the intersection of two independent copies of {Bt ; t ≥ ϵ} is intersection

equivalent to Q3,b(b−2) in the unit cube for any positive ϵ . Since Q3(b−2) is defined by a
supercritical branching process, we have p(ϵ,∞) > 0, where

p(u, v) := P
�{Bt ; u < t < v} ∩ {B′s ; u < s < v} ̸= ∅� .

Here, B′ is an independent copy of B. Suppose now first that the two Brownian motions
are started from the origin; we will show that p(1,∞) = 1. Note that p(ϵ,∞) ↑ p(0,∞) as
ϵ ↓ 0, hence p(0,∞) > 0. Furthermore, p(0, v) → p(0,∞) as v → ∞. On the other hand,
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by Brownian scaling,* p(0, v) is independent of v > 0 and p(u,∞) is independent of u > 0.
Therefore, p(0, v) = p(u,∞) = p(0,∞) > 0 for all u, v > 0, and

lim
v↓0

p(0, v) = P
[
0 = inf

{
v > 0 ; {Bt ; 0 < t < v} ∩ {B′s ; 0 < s < v} ̸= ∅}] > 0 .

This last positive probability, by Blumenthal’s zero-one law (see Durrett (2010), Section 8.2,
or Mörters and Peres (2010), Section 2.1), has to be 1, thus p(0, 1) = p(1,∞) = p(0,∞) = 1.
When the Brownian motions are started at other points, or from any initial distributions,

then at unit time, their joint distribution is absolutely continuous with respect to the joint
distribution of Brownian motions at unit time, started from the origin. For these latter
Brownian motions, we know already that p(1,∞) = 1, so we have this for the original motions
as well. ◀

▷ Exercise 16.7.
Prove part (iii) of the preceding Corollary.

We now show how Theorem 16.11 leads to a proof of (16.7).
Corollary 16.15. Let f and h be nonnegative decreasing functions. If a random closed set
A in [0, 1]d satisfies

P[A ∩ Λ ̸= ∅] ≍ cap(Λ; h) (16.13)
for all closed Λ ⊆ [0, 1]d, then

E
�
cap(A ∩ Λ; f )� ≍ cap(Λ; f h) (16.14)

for all closed Λ ⊆ [0, 1]d. In particular, for each such Λ,
P
�
cap(A ∩ Λ; f ) > 0

�
> 0 if and only if cap(Λ; f h) > 0 ,

and (16.7) follows by putting A := [B] and h := gd.
Proof. Enlarge the probability space on which A is defined to include two independent fractal
percolations, Qd[ f ] and Qd[h]. Because

P
�
A ∩ Λ ∩Qd[ f ] ̸= ∅� = E

[
P
�
A ∩ Λ ∩Qd[ f ] ̸= ∅ �

A
�]
,

and by Theorem 16.11,
P
�
A ∩ Λ ∩Qd[ f ] ̸= ∅�A� ≍ cap(A ∩ Λ; f ) ,

we have
E
�
cap(A ∩ Λ; f )� ≍ P

�
A ∩ Λ ∩Qd[ f ] ̸= ∅� . (16.15)

Conditioning on Qd[ f ] and then using (16.13) with Λ ∩Qd[ f ] in place of Λ gives
P
�
A ∩ Λ ∩Qd[ f ] ̸= ∅� ≍ E

�
cap(Λ ∩Qd[ f ]; h)� . (16.16)

Conditioning on Qd[ f ] and then applying Theorem 16.11 yields
E
�
cap(Λ ∩Qd[ f ]; h)� ≍ P

�
Λ ∩Qd[ f ] ∩Qd[h] ̸= ∅� . (16.17)

Note that Qd[ f ] ∩Qd[h] has the same distribution as Qd[ f h] if f , h ≥ 1; otherwise, this is
true of the functions f ∨ 1 and h ∨ 1. In either case, Theorem 16.11 implies that

P
�
Λ ∩Qd[ f ] ∩Qd[h] ̸= ∅� ≍ cap(Λ; f h) . (16.18)

Combining (16.15), (16.16), (16.17), and (16.18) proves (16.14). ◀

* That is, for a > 0, the distribution of t 7→ aBt/a2 is the same as that of t 7→ Bt .
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Remark 16.16. We have assumed in the statement of Corollary 16.15 that the function
A 7→ cap(A ∩ Λ; f ) is measurable. When f is continuous, this follows from the Fekete-
Szegő theorem to come later in Theorem 16.18(ii). In the notation there, cap(A ∩ Λ; f ) =
limn→∞ Dn(A ∩ Λ)−1, and it is not hard to see that A 7→ Dn(A ∩ Λ) is continuous. Without
any real loss of generality, one can assume that f is continuous, since we are interested in
capacity only up to a bounded factor. However, one can show measurability in general.

We finish this section by showing how the intersection of several independent copies of
Brownian motion is related to multiple points of a single Brownian motion.

Corollary 16.17. Consider Brownian motion in dimension d ≥ 2. Then almost surely
(i) if d ≥ 4, no double points exist, in other words, Brownian motion is injective;

(ii) if d = 3, double points exist, but triple points fail to exist;
(iii) if d = 2, points of multiplicity at least k exist for every finite k.

Proof. We prove (i) and the first part of (ii). The rest is plausible from Corollary 16.14, and a
full proof can be found in Mörters and Peres (2010), Theorem 9.22.
Let ⟨Bt ; t ≥ 0⟩ be a Brownian motion. To show part (i), it suffices to show that for any

rational α > 0, almost surely, there exist no times (t1, t2) with 0 ≤ t1 < α < t2 and Bt1 = Bt2 .
Fix such an α. The Brownian motions ⟨B(1)

t ; t > 0⟩ and ⟨B(2)
t ; 0 < t ≤ α⟩ given by

B(1)
t := Bα+t − Bα and B(2)

t := Bα−t − Bα

are independent and hence, by Corollary 16.14, a.s. they do not intersect. This proves the
statement.
To show existence of double points in d ≤ 3, we consider the independent Brownian

motions ⟨B(1)
t ; 0 < t ≤ 1⟩ and ⟨B(2)

t ; 0 < t ≤ 1⟩ given by

B(1)
t = B1+t − B1 and B(2)

t = B1−t − B1

to see that the two traces intersect with positive probability; in fact, this probability is one by
Blumenthal’s zero-one law. ◀

A remarkable extension of Corollary 16.17(c) was proved by Le Gall (1987) concerning
infinite multiplicity. Namely, for each totally disconnected compact set K ⊂ �, there is a.s.
some x ∈ �2 such that the time set A(x) := {t ≥ 0 ; Bt = x} has the same order type as K ,
that is, A(x) is homeomorphic to K via a monotonic increasing function.
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16.5 Generalized Diameters and Average Meeting Height on Trees

There are amusing alternative definitions of capacity that we present in some generality
and then specialize to trees. Suppose that X is a compact Hausdorff* space and K : X × X →
[0,∞] is continuous and symmetric. Let 𝖯𝗋𝗈𝖻(X) denote the set of Borel probability measures
on X . For µ ∈ 𝖯𝗋𝗈𝖻(X), set

Vµ(x) :=
∫
X

K(x, y) dµ(y) , E (µ) :=
∫
X×X

K d(µ × µ) ,
E (X) := inf

�
E (µ) ; µ ∈ 𝖯𝗋𝗈𝖻(X)	 , cap(X) := E (X)−1

as before, and define the Chebyshev constants

Mn(X) := max
x1,...,xn ∈X

min
x∈X

1
n

n∑
k=1

K(x, xk)

and the generalized diameters

Dn(X) := min
x1,...,xn ∈X

1�n
2
� ∑

1≤ j<k≤n
K(x j , xk) .

To see where generalized diameters get their name, consider the case n = 2 and K(x, y) =
1/d(x, y) for a metric space. When generalized diameters were first named, however, the
kernel was log

�
1/d(x, y)�. See p. 37 of Carleson (1967) for the classical case.

Theorem 16.18. Let X be compact and Hausdorff and K be continuous and symmetric.
(i) We have

E (X) = inf
�∥Vµ∥L∞(µ) ; µ ∈ 𝖯𝗋𝗈𝖻(X)	 .

If E (X) < ∞, then for some µ ∈ 𝖯𝗋𝗈𝖻(X), we have Vµ = E (X) µ-a.e.
(ii) (Fekete-Szegő Theorem) We have

Dn(X) ↑ E (X) = lim
n→∞

inf
�
Mn(X̂) ; X̂ ⊆ X is compact

	
.

If E (X) < ∞, then for some µ ∈ 𝖯𝗋𝗈𝖻(X), there is a compact set X̂ ⊆ X such that
Vµ↾ X̂ ≤ E (X) and µ(X̂) = 1; for any such µ and X̂ , we have Mn(X̂) ≤ E (X) for all n
and E (X) = limn→∞ Mn(X̂).

See the notes at the end of this chapter for a proof.
We are interested in the case that X is the boundary of a tree T and the kernel K(ξ, η) =

Ψ(ξ ∧ η) corresponds to conductances on T as in Section 16.1. In that case, there is a measure
µ, namely, harmonic measure for the network random walk on T , such that Vµ ≤ E (∂T)
everywhere (see the end of Section 16.1). Hence, by the Fekete-Szegő theorem,

E (∂T) = lim Dn(∂T) = lim Mn(∂T) ,
with Dn(∂T) ≤ E (∂T) and Mn(∂T) ≤ E (∂T). We will transfer this from the boundary to the
vertices of T to obtain the following theorem.

* We will have need only of metric spaces, but the proofs are no simpler than for Hausdorff spaces.
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Theorem 16.19. (Benjamini and Peres, 1992) If ∀ξ ∈ ∂T
∑

o ̸=x∈ξ r(e(x)) = ∞ and T is
locally finite, then the following are equivalent:

(i) R(o↔ ∞) < ∞ ;
(ii) ∃A < ∞ ∀n ≥ 1 ∃ distinct x1, . . . , xn ∈ T such that

(
n

2

)−1 ∑
1≤ j<k≤n

R(o↔ x j ∧ xk) ≤ A ;

(iii) ∃A < ∞ ∀n ≥ 1 ∀x1, . . . , xn ∈ T ∃u ∈ T ∀k u ̸≤ xk and

1
n

n∑
k=1

R(o↔ u ∧ xk) ≤ A .

Here, the effective resistance between vertices is the free effective resistance, which is just
the sum of the resistances of the edges between the vertices.
In the case of simple random walk, that is, c ≡ 1, we have R(o↔ x ∧ u) = |x ∧ u|. Thus,

the quantities in (ii) and (iii) are average meeting heights.
For example, consider simple random walk on the unary tree. This is recurrent, whence

the three conditions in Theorem 16.19 are false. Indeed, it is not hard to see that given n
distinct vertices, the average in (ii) is at least (n + 1)/2, whereas even for n = 1, there is no
bound on the quantity in (iii).

For a more interesting example, consider simple random walk on the binary tree, T . Now
the three conditions are true. To illustrate (ii), suppose that n = 2ℓ is a power of 2. Choose
x1, . . . , xn to be the ℓth level of T . Then the quantity in (ii) is approximately equal to 1. To
see that (iii) holds with A = 1, suppose that H := ⟨x1, . . . , xn⟩ is given. Choose a child u1
of the root of T such that Tu1 contains at most half of H . Then choose a child u2 of u1 such
that Tu2 contains at most half of H ∩ Tu1 . Continue in this way until we reach a vertex u j

with H ∩ Tu j = ∅. Let u := u j . Since u ∧ x = o for x ∈ H \ Tu1 , these vertices x contribute 0
to the left-hand side of (iii). Similarly, the vertices in H \ Tu2 contribute at most 1/4 to the
left-hand side of (iii), and so on.

Remark 16.20. The proof will show that the smallest possible A in (ii), as well as in (iii), is
R(o↔ ∞).
Proof of Theorem 16.19. Assume (i). Use K(ξ, η) := R(o↔ ξ ∧ η). Then Dn(∂T) ≤ E (∂T),
so ∃ξ1, . . . , ξn ∈ ∂T such that

(
n

2

)−1 ∑
j<k

R(o↔ ξ j ∧ ξk) ≤ E (∂T) .

From the hypothesis that ∀ξ ∈ ∂T R(o ↔ ξ) = ∞, the ξk are distinct. Hence there
exist distinct xk ∈ ξk such that x j ∧ xk = ξ j ∧ ξk , namely, pick xk ∈ ξk such that |xk | >
maxi ̸=j |ξi ∧ ξ j |. This gives (ii) with A = E (∂T).
For the remainder of the proof of the theorem, we will need new trees T∗ and T∗∗,

created by adding a ray to each leaf or vertex of T , respectively, with all new edges having
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conductance 1. Since ∂T∗ \ ∂T and ∂T∗∗ \ ∂T are countable and K(ξ, ξ) ≡ ∞, we have
E (∂T∗) = E (∂T∗∗) = E (∂T).
Assume (i) again. Given x1, . . . , xn ∈ T , let ξk ∈ ∂T∗ be such that xk ∈ ξk . Since, as we

noted before the statement of the theorem, Mn(∂T∗) ≤ E (∂T∗) = E (∂T), there exists η ∈ ∂T∗

such that
1
n

n∑
k=1

R(o↔ η ∧ ξk) ≤ E (∂T) .

Then ∀k η ̸= ξk , so ∃u ∈ η ∩ T such that ∀k u ∧ xk ≤ η ∧ ξk and u ̸≤ xk . This gives (iii).
Now assume (iii). Given ξ1, . . . , ξn ∈ ∂T∗, choose xk ∈ ξk∩T so that in case ξk ∈ ∂T∗\∂T ,

then xk ∈ T∗ \ T , whereas if not, then |xk | is so large that R(o ↔ xk) > nA. Let u be as
asserted in (iii). Then ∀k u ̸≥ xk . Choose η ∈ ∂T∗ so that u ∈ η. Then ∀k η ∧ ξk = u ∧ xk ,
so

1
n

n∑
k=1

R(o↔ η ∧ ξk) ≤ A .

Therefore E (∂T∗) ≤ A, so R(o↔ ∞; T) < ∞.
Finally, assume (ii). Given n, let x1, . . . , xn be as in (ii). Choose ξk ∈ ∂T∗∗ \ ∂T so that

xk ∈ ξk . Then ∀ j < k ξ j ∧ ξk = x j ∧ xk , whence

(
n

2

)−1 ∑
j<k

R(o↔ ξ j ∧ ξk) ≤ A .

Therefore E (∂T∗∗) ≤ A, so R(o↔ ∞; T) < ∞. ◀

16.6 Notes

For general background on Brownian motion, see Mörters and Peres (2010). Other nice references
on potential theory are Bass (1995), Port and Stone (1978), and Sznitman (1998).

As noted by Benjamini, Pemantle, and Peres (1995), capacity in the Martin kernel

Kd(x, y) := Gd(x, y)/Gd(0, y)

is better suited for studying Brownian hitting probabilities than the Green kernel Gd(x, y). (In two
dimensions, we use G∗2(x, y), but we will not indicate this by our notation. Also, Kd is not symmetric,
but we will use it only in a symmetric fashion, so it could be replaced by

�
Kd(x, y) + Kd(y, x)�/2.) The

reason is that whereas the Green kernel, and hence the corresponding capacity, are translation invariant,
the hitting probability of a set Λ by standard d-dimensional Brownian motion is not translation invariant
but is invariant under scaling for d ≥ 3. This scale invariance is shared by the Martin kernel Kd(x, y).
In particular, using the second-moment method, Benjamini, Pemantle, and Peres (1995) proved the
following result, where the constants (1/2 and 1) are the best possible. The case d = 2 is spelled out in
Mörters and Peres (2010).
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Theorem 16.21. Let Bt be Brownian motion started at 0 in �d for d ≥ 3, or in �2 but killed at an
exponential time, and let Kd be the corresponding Martin kernel. Then, for any closed set Λ in �d ,

1
2

cap(Λ; Kd) ≤ P[∃t ≥ 0 Bt ∈ Λ] ≤ cap(Λ; Kd) . (16.19)

If the Brownian motion is started according to the measure 𝜈, then (16.19) remains true with the Martin
kernel Kd(x, y) := Gd(x, y)/Gd(𝜈, y), where

Gd(𝜈, y) :=
∫

Gd(x, y) d𝜈(x) . (16.20)

See Exercise 16.10 for a discrete version. From Theorem 16.21, Lemma 16.10 is immediate:

Proof of Lemma 16.10. By Theorem 16.21, it is enough to show that the ratio of the Martin kernel to
the Green kernel is bounded above and below. By definition of the Martin kernel, it suffices to check
that the Greenian potential Gd(𝜈, y) defined in (16.20) is bounded. This is clearly the case when 𝜈 has a
bounded density. ◀

▷ Exercise 16.8.
Let [B] be the trace of Brownian motion started at 0 in�d for d ≥ 3, or in�2 but killed at an exponential
time. Let Λ ⊂ �d \ {0} be closed. Show that P

� |[B] ∩ Λ| ∈ {0, 2ℵ0 }� = 1.

The proof of Bishop’s conjecture (16.7) is published here for the first time (Corollary 16.15).
Now we prove Theorem 16.18.

Proof of Theorem 16.18. (i) Since E (µ) = ∥Vµ ∥L1(µ) ≤ ∥Vµ ∥L∞(µ), we have E (X) ≤ infµ ∥Vµ ∥L∞(µ).
On the other hand, suppose that E (X) < ∞ (since otherwise certainly E (X) ≥ infµ ∥Vµ ∥L∞(µ)). The
space 𝖯𝗋𝗈𝖻(X) is Hausdorff and compact under the weak* topology. The definition of Hausdorff is
equivalent to the diagonal ∆ :=

�(µ, µ) ∈ 𝖯𝗋𝗈𝖻(X)×𝖯𝗋𝗈𝖻(X)	 being closed in 𝖯𝗋𝗈𝖻(X)×𝖯𝗋𝗈𝖻(X). Since
∀t ∈ � K ∧ t ∈ C(X × X), we have

∆ ∩
{
(µ, 𝜈) ∈ 𝖯𝗋𝗈𝖻(X) × 𝖯𝗋𝗈𝖻(X) ;

∫
K ∧ t d(µ × 𝜈) ≤ E (X) + ϵ

}
is compact and nonempty for each ϵ > 0. Hence there is a measure µ with (µ, µ) in all these sets for
t < ∞ and ϵ > 0. This measure µ necessarily satisfies E (µ) = E (X).

We claim that Vµ ≥ E (X) µ-a.e.; this gives Vµ = E (X) µ-a.e., since E (X) = E (µ) =
∫

Vµ dµ.
Suppose there were a set F ⊆ X and δ > 0 such that µF > 0 and Vµ↾F ≤ E (X) − δ. Then move a
little of µ’s mass to F: Let 𝜈 := µ(• | F) be the normalized restriction of µ to F and η > 0. We have
E (𝜈) < ∞ and

E
�(1 − η)µ + η𝜈

�
= (1 − η)2E (µ) + η2E (𝜈) + 2(1 − η)η

∫
Vµ d𝜈

≤ (1 − η)2E (X) + η2E (𝜈) + 2(1 − η)η�E (X) − δ�
≤ E (X) − 2ηδ + O(η2) .

Hence E
�(1 − η)µ + η𝜈

�
< E (X) for sufficiently small η, a contradiction.

(ii) Regard Dn+1(X) as an average of averages over all n-subsets of {x1, . . . , xn+1}; each n-subset
average is ≥ Dn(X), whence so is Dn+1(X).
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Claim: Dn+1(X) ≤ Mn(X). Let Dn+1(X) = �
n+1

2

�−1 ∑
1≤ j<k≤n+1 K(x j , xk ). For each j, write this as

f j (x1, . . . , x j−1, x j+1, . . . , xn+1) + �
n+1

2

�−1 ∑
k ̸= j K(x j , xk ). Only the second term depends on x j , hence

x j is such that ∑
k ̸= j

K(x j , xk ) = min
x∈X

∑
k ̸= j

K(x, xk ) ≤ nMn(X) .

Therefore

Dn+1(X) =
1

n(n + 1)
n+1∑
j=1

∑
k ̸= j

K(x j , xk ) ≤ 1
n + 1

n+1∑
j=1

Mn(X) = Mn(X) .

Thus, for any compact X̂ ⊆ X , we have Dn+1(X) ≤ Dn+1(X̂) ≤ Mn(X̂), whence Dn+1(X) ≤
inf X̂ Mn(X̂).

Claim: inf X̂ Mn(X̂) ≤ E (X) and if Vµ ≤ E (X) on X̂ with µX̂ = 1, then Mn(X̂) ≤ E (X). We may
assume E (X) < ∞. From part (i), ∃µ ∈ 𝖯𝗋𝗈𝖻(X) Vµ = E (X) µ-a.e. Since Vµ is lower semicontinuous
by Fatou’s lemma, the set X̂0 where Vµ ≤ E (X) is compact and µX̂0 = 1. For any X̂ ⊆ X̂0 with µX̂ = 1
and any xk ∈ X̂ , we have

min
x∈X̂

1
n

n∑
1

K(x, xk ) ≤
∫
X̂

1
n

n∑
1

K(x, xk ) dµ(x) =
∫
X

1
n

n∑
1

K(x, xk ) dµ(x)

=
1
n

n∑
1

Vµ(xk ) ≤ E (X) ,

in other words, Mn(X̂) ≤ E (X).
Claim: E (X) ≤ lim Dn(X). Let Dn(X) = �

n
2

�−1 ∑
1≤ j<k≤n K(x j , xk ) and µn :=

∑n
j=1

1
n
δ(x j ). Let

µ be a weak* limit point of {µn}. Weak* convergence of µn j
to µ implies weak* convergence of

the squares µn j
× µn j

to µ × µ, since the linear span of C(X) ⊗ C(X) is dense in C(X × X) by the
Stone-Weierstrass theorem. We have for t ∈ �∫

K ∧ t d(µn × µn) ≤ n − 1
n

Dn(X) +
t
n
,

whence ∫
K ∧ t d(µ × µ) ≤ lim

n→∞
Dn(X) ,

and thus
E (µ) ≤ lim

n→∞
Dn(X) .

Putting together the claims, we see that

Dn+1(X) ≤ inf
X̂

Mn(X̂) ≤ E (X) ≤ lim
n→∞

Dn(X) ,

from which the theorem follows. ◀

Remark. We have also seen that when E (X) < ∞, a minimizing measure (called equilibrium measure)
on X can be obtained as a weak* limit point of the empirical measures of minimizing sets for Dn(X).
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16.7 Collected In-Text Exercises

16.1. Show that if px ≡ p ∈ (0, 1) and T is spherically symmetric, then

cap ∂T =
(
1 + (1 − p)

∞∑
n=1

1
pn |Tn |

)−1

.

Thus, P[o↔ ∂T] > 0 iff
∑∞

n=1
1

pn |Tn | < ∞.

16.2. Suppose that f and g are two gauge functions such that f/c1 − c2 ≤ g ≤ c1 f + c2 for some
constants c1 and c2. Show that for all E, cap f (E) > 0 iff capg(E) > 0.

16.3. Prove Corollary 16.6.

16.4. Prove Proposition 16.8.

16.5. (a) Show that if pn ≤ b−d for all n, then Qd,b

�⟨pn⟩� = ∅ a.s.
(b) Characterize the sequences ⟨pn⟩ for which Qd

�⟨pn⟩� has positive volume with positive
probability.

16.6. Let pt (x, y) := (2πt)−d/2 exp
�
−|x − y |2/(2t)� be the Brownian transition density function, and

for d ≥ 3, define Gd(x, y) :=
∫ ∞

0 pt (x, y) dt for x, y ∈ �d .
(a) Show that Gd(x, y) = cdgd

�|x − y |� with a constant 0 < cd < ∞.
(b) Define FA(x) :=

∫
A

Gd(x, z) dz for Borel sets A ⊆ �d . Show that FA(x) is the expected time
the Brownian motion started at x spends in A.

(c) Show that x 7→ Gd(0, x) is harmonic on �d \ {0}, in other words, has zero Laplacian there.
Equivalently, if B ⊂ �d \ {0} is a ball, then the average value (with respect to Lebesgue measure) of
Gd(0, x) over x ∈ B is equal to the value at the center of the ball.

(d) Consider Brownian motion ⟨Bt ⟩ in �2, killed at a random time with an exponential distribution
with parameter 1. In other words, let τ be an Exponential(1) random time, independent of the
Brownian motion. The expected occupation measure 𝜈x for Bt started at x and killed at time τ is
defined by 𝜈x (A) := E

∫ τ
0 1A(Bt ) dt for Borel sets A in �2. Show that 𝜈x (A) =

∫
A

G∗2(x, y) dy, where
G∗2(x, y) :=

∫ ∞
0 pt (x, y)e−t dt.

(e) Show that in two dimensions, G∗2(x, y) ∼ −(1/π) log |x − y | for |x − y | ↓ 0.

16.7. Prove part (iii) of Corollary 16.14.

16.8. Let [B] be the trace of Brownian motion started at 0 in �d for d ≥ 3, or in �2 but killed at an
exponential time. Let Λ ⊂ �d \ {0} be closed. Show that P

� |[B] ∩ Λ| ∈ {0, 2ℵ0 }� = 1.
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16.8 Additional Exercises
16.9. Consider a network on a tree T and a subset E ⊆ ∂T . Let µi be harmonic measure on ∂T .

Show that cap E ≥ cap(∂T) · µi (E), whence if µi (E) > 0, then P[o ↔ E] > 0 for the corresponding
percolation. Find T and E ⊆ ∂T so that µi (E) = 0 yet P[o↔ E] > 0 (so cap E > 0).

16.10. Use a method similar to the proof of Theorem 5.24 to prove the following theorem. Let
⟨Xn⟩ be a transient Markov chain on a countable state space with initial distribution π and transition
probabilities p(x, y). Define the Green function G (x, y) :=

∑∞
n=1 p(n)(x, y) and the Martin kernel

K(x, y) := G (x, y)/∑z π(z)G (z, y). Note that K may not be symmetric. Then with capacity defined
using the kernel K , we have for any set S of states,

1
2

cap(S) ≤ P[∃n ≥ 0 Xn ∈ S] ≤ cap(S) .

16.11. Prove (1.10) that for α > 0,

1
2

capαE ≤ 1
1 − b−α

capα log b∂T ≤ 3b capαE

when T codes the closed set E ⊆ [0, 1] in base b.

16.12. Show that if µ is a probability measure on �d satisfying µ(Br (x)) ≤ Crα for some constants
C and α and if β < α, then the energy of µ in the gauge z−β is finite. By using this and previous
exercises, give another proof of Corollary 16.6.

16.13. Let A ⊂ �d be a set contained in the d-dimensional ball of radius a centered at the origin.
Write B(s, t) for the trace of d-dimensional Brownian motion during the time interval (s, t). Let τ be an
exponential random variable with parameter 1 independent of B. Show that

e−1 P0
�
B(0, 1) ∩ A ̸= ∅

�
≤ P0

�
B(0, τ) ∩ A ̸= ∅

�
≤ C P0

�
B(0, 1) ∩ A ̸= ∅

�
for some constant C (depending on a and d). Hint: For the upper bound, first show the following
general lemma: Let f1, f2 be probability densities on [0,∞). Suppose that the likelihood ratio
ψ(r) := f2(r)/ f1(r) is increasing and h: [0,∞)→ [0,∞) is decreasing on [a,∞). Then∫ ∞

0 h(r) f2(r) dr∫ ∞
0 h(r) f1(r) dr

≤ ψ(a) +
∫ ∞
a

f2(r) dr∫ ∞
a

f1(r) dr
.

Second, use this by conditioning on |Bt j | for j = 1, 2 to get an upper bound on

P0
�
B(t2, t2 + s) ∩ A ̸= ∅

�
P0
�
B(t1, t1 + s) ∩ A ̸= ∅

�
for t1 ≤ t2 and s ≥ 0. Third, bound P0

�
B(0, τ)∩ A ̸= ∅

�
by summing over intersections in [ j/2, ( j +1)/2]

for j ∈ �.

16.14. Fitzsimmons and Salisbury (1989) showed that when d = 2, if B(i) are independent Brownian
motions, then cap

�
Λ; gk

d

�
> 0 if and only if P

�
Λ ∩ [B(1)] ∩ · · · ∩ [B(k)] ̸= ∅� > 0. Does this also hold

for d ≥ 3?

16.15. Let Λ ⊂ �d be a k-dimensional cube of side length a, where 1 ≤ k ≤ d. Find the capacity
cap(Λ; gd) up to constant factors depending on k and d only.
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16.16. Let [B] be the Brownian trace in dimension d defined in Theorem 16.11. Consider any closed
subset Λ ⊆ �d .

(a) Show that if d ≥ 3 and dimΛ > d − 2, then dim
�
Λ ∩ [B]� ≤ dimΛ + 2 − d a.s., and that the

essential supremum of the left-hand side is equal to the right-hand side.
(b) Show that if d = 2 and [B(1)], . . . , [B(k)] are independent Brownian traces for some k ≥ 1, then

dim
�
Λ ∩ [B(1)] ∩ · · · ∩ [B(k)]� = dim Λ a.s.
(c) Show that if d ≥ 3 and [B(1)], . . . , [B(k)] are independent Brownian traces for some k ∈�

1, dimΛ/(d − 2)�, then dim
�
Λ ∩ [B(1)] ∩ · · · ∩ [B(k)]� ≤ dimΛ − k(d − 2) a.s., and that the essential

supremum of the left-hand side is equal to the right-hand side.

16.17. Consider the following variant of the fractal percolation process, defined on all of �3. For each
n ∈ �, tile space by cubes of side length 3−n with sides parallel to the coordinate axes, each one being a
translation of the cube with center 0 = (0, 0, 0) by some vector in �3/3n . Generate a random collection
Kn of these cubes by always including the cube containing 0, and including each of the remaining
cubes independently with probability p. As before, define

Cn :=
∪
Kn and R(p) :=

∩
n∈�

Cn .

Show that for p = 1/3, the random set R(p) is intersection equivalent in all of �3 to the trace of
Brownian motion started at 0. Hint: Use Theorem 16.21.

16.18. Let A, B ⊂ [0, 1]d be two random closed sets that are intersection equivalent in [0, 1]d , with
α and β being the essential supremum of their Hausdorff dimensions. Prove that α = β.

16.19. Let [B] and [B′] be independent Brownian traces in dimension 3, as defined in Theorem 16.11.
Show that P

�[B] ∩ [B′] ∩ Λ ̸= ∅
�
≍ cap1(Λ) for all closed subsets Λ ⊆ [0, 1]3.

16.20. Remove the hypothesis from Theorem 16.19 that T be locally finite.

16.21. Give an example of a kernel on a space X such that E (X) < ∞ yet for all µ ∈ 𝖯𝗋𝗈𝖻(X), there is
some x ∈ X with Vµ(x) = ∞.

16.22. Suppose that X is a compact Hausdorff space and K : X × X → [0,∞] is continuous and
symmetric. Give 𝖯𝗋𝗈𝖻(X) the weak* topology. Show that µ 7→ E (µ) is lower semicontinuous.
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17 Random Walks
on Galton-Watson Trees

We have analyzed random walks on trees in Chapters 3 and 13; we have seen many
examples of interesting trees in several chapters, some of them random. Up to now, however,
we have not looked at random walks on random trees. That is, choose a tree at random in an
interesting way; then fix the tree and run a random walk on it. What happens?
We will be particularly interested in the case that the tree is chosen at random according

to Galton-Watson measure and the walk is simple random walk. Is it transient or recurrent?
If transient, how fast does it escape to infinity, and what is the Hausdorff dimension of its
harmonic measure on the boundary of the tree?
The setting now is a little more complicated than for random walks on graphs. It will turn

out to be crucial that our trees are rooted and that we move the root with the random walker.
The set of trees on which the walk will take place will be uncountable, so although the
starting rooted tree determines a countable set of possible rooted trees of the later trajectory
of the random walk, altogether the Markov chain takes place on an uncountable state space.
Thus we start by discussing Markov chains on general state spaces. In particular, we need to
understand the relationship of concepts from the theory of Markov chains to concepts from
ergodic theory.

We reiterate that all trees in this chapter are rooted.

17.1 Markov Chains and Ergodic Theory

We begin with a brief review of ergodic theory. A probability measure-preserving system
(X ,F, µ, S) is a probability measure space (X ,F, µ) together with a measurable map S
from X to itself such that for all A ∈ F , µ(S−1 A) = µ(A). Fix A ∈ F with µ(A) > 0.
We denote the induced measure on A by µA(C) := µ(C)/µ(A) for C ⊆ A. We also write
µ(C | A) for µA(C), since it is a conditional measure. A set A ∈ F is called S-invariant if
µ(A △ S−1 A) = 0. The σ-field of invariant sets is called the invariant σ-field. The system
is called ergodic if the invariant σ-field is trivial (that is, consists only of sets of measure 0
and 1). A sufficient condition for ergodicity is that the system be mixing, that is, that for all
A, B ∈ F , we have limn→∞ µ(A ∩ S−nB) = µ(A)µ(B). (To see that this is indeed sufficient,
just apply it to A = B in the invariant σ-field.) For a function f on X , we write S f for the
function f ◦ S. The ergodic theorem theorem states that for f ∈ L1(X , µ), the limit of the
averages

∑n−1
k=0 Sk f /n exists a.s. and equals the conditional expectation of f with respect to

the invariant σ-field; see Section 14.5. In particular, if the system is ergodic, then the limit
equals the expectation of f a.s.
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Now let X be a measurable state space and p be a transition kernel on X (that is, p(x, A)
is measurable in x for each measurable set A and is a probability measure for each fixed x).
The corresponding Markov chain satisfies P[Xn+1 ∈ A | Xn] = p(Xn, A). This gives the usual
operator P on bounded* measurable functions f , where

(P f )(x) :=
∫

X

f (y)p(x, dy) ,

and its adjoint P∗ on probability measures, where∫
X

f dP∗𝜈 :=
∫

X

P f d𝜈 .

Let µ be a p-stationary probability measure, that is, P∗µ = µ, and let  be the σ-field of
invariant sets, that is, those measurable sets A such that

p(x, A) = 1A(x) for µ-a.e. x .

The Markov chain is called ergodic if  is trivial.
We use these terms in more general situations as well. That is, if µ is a positive measure,

perhaps infinite, then we say that µ is p-stationary if, for all measurable f ≥ 0, we have∫
X

f dµ =
∫

X
P f dµ. Even if µ is not p-stationary, we define the invariant σ-field to consist

of those measurable sets A such that µ
�
x ; p(x, A) ̸= 1A(x)	 = 0 and we call the Markov

chain ergodic if every invariant A satisfies µ(A) = 0 or µ(Ac) = 0.
We have now used “invariant” and “ergodic” each in two apparently different senses and

will explain why they are actually equivalent (Proposition 17.2 and Corollary 17.3).
A bounded measurable function f is called harmonic if P f = f µ-a.s. Let (X ∞, p× µ) be

the space of (one-sided) sequences of states with the measure induced by choosing the initial
state according to µ and making transitions via p. That is, if ⟨Xn ; n ≥ 0⟩ is the Markov
chain on X with X0 ∼ µ, then p × µ is its law.

Lemma 17.1. Consider a Markov chain ⟨Xn ; n ≥ 0⟩ with transition kernel p and p-
stationary probability measure µ on a measurable state space X . If f is a bounded
measurable function on X , then the following are equivalent:

(i) f is harmonic;
(ii) f is -measurable;

(iii) f (X0) = f (X1) p × µ-a.s.

The idea is that when there is a finite stationary measure, then, as in the case of a Markov
chain with a denumerable number of states, there really aren’t any nontrivial bounded
harmonic functions.

▷ Exercise 17.1.
Show that Lemma 17.1 may not be true if µ is an infinite stationary measure.

* Everything we will say about bounded functions applies equally to nonnegative functions.
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Proof of Lemma 17.1. (i) ⇒ (ii): Let f be harmonic. Fix α ∈ �. Since P is a positive
operator (that is, it maps nonnegative functions to nonnegative functions),

P( f ∧ α) ≤ (P f ) ∧ α = f ∧ α .
Also ∫

P( f ∧ α) dµ =
∫

f ∧ α dP∗µ =
∫

f ∧ α dµ .

Combining these two equations yields that P( f ∧ α) = f ∧ α µ-a.s., in other words,
that f ∧ α is harmonic. Now consider a state x for which f (x) ≥ α and also where
( f ∧ α)(x) = �

P( f ∧ α)�(x). These two conditions imply that p
�
x, [ f ≥ α]� = 1. Since

each of these two conditions holds µ-a.s., we get that for µ-a.e. x ∈ [ f ≥ α], we have
p
�
x, [ f ≥ α]� = 1. Likewise, for µ-a.e. x ∈ [ f ≤ β], we have p

�
x, [ f ≤ β]� = 1 for

every β. Since [ f < α] = ∪
β<α[ f ≤ β], it follows that for µ-a.e. x ∈ [ f < α], we have

p
�
x, [ f < α]� = 1, whence [ f ≥ α] ∈ . Thus, f is -measurable.
(ii)⇒ (iii): For any interval I, we have p

�
x, [ f ∈ I]� = 1[ f ∈I ](x) µ-a.s. Thus, if f (X0) ∈ I,

then f (X1) ∈ I a.s.
(iii) ⇒ (i): This is immediate from the definition of harmonic. ◀
The shift map on X∞ is the map (x0, x1, . . .) 7→ (x1, x2, . . .). It preserves the measure

p × µ since µ is stationary. We now show that functions on X ∞ that are (a.s.) shift invariant
depend only on their first coordinate:

Proposition 17.2. Consider a Markov chain ⟨Xn ; n ≥ 0⟩ with transition kernel p and
p-stationary probability measure µ on a measurable state space X . A bounded measurable
function h on X ∞ is shift invariant iff there exists a bounded -measurable function f on
X such that h(X0, X1, . . .) = f (X0) p × µ-a.s. Indeed, f (x) can be determined from h by
starting the chain at x and defining f (x) := Ex

�
h(x, X1, . . .)�.

Proof. If h has the form given in terms of f , then the lemma shows that h is shift invariant.
Conversely, given h, define f as indicated. Then we have a.s.

f (X0) = E
�
E[h(X0, X1, . . .) | X0, X1] � X0

�
= E

�
E[h(X1, X2, . . .) | X0, X1] � X0

�
by shift invariance

= E[ f (X1) | X0] by the Markov property and the definition of f

= (P f )(X0) by definition of P .

That is, f is harmonic, so is -measurable. Now similar reasoning, together with the
martingale convergence theorem, gives a.s.

h(X0, X1, . . .) = lim
n→∞

E
�
h(X0, X1, . . .) � X0, . . . , Xn

�
= lim

n→∞
E
�
h(Xn, Xn+1, . . .) � X0, . . . , Xn

�
= lim

n→∞
f (Xn) = f (X0)

by the lemma. ◀
As an immediate corollary, we get a criterion for ergodicity:

Corollary 17.3. Consider a Markov chain with transition kernel p and p-stationary proba-
bility measure µ. We have that p × µ is ergodic for the shift iff  is trivial. ◀
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17.2 Stationary Measures on Trees
We now begin to apply the general theory of the preceding section to simple random walk

on random trees. We are interested in linear rate of escape, so the case of recurrent trees is
not germane. In particular, trees with one or two ends will receive minimal attention. Recall
that an end of a tree is an equivalence class of rays with arbitrary starting vertices, where two
rays are equivalent if their symmetric difference is finite.
We haven’t said yet what random trees we consider. The answer will be that the tree is

chosen according to some probability measure that gives us a Markov chain that is stationary
in an appropriate sense. Stationarity will greatly facilitate the analysis, but it won’t hold in the
most interesting case of Galton-Watson trees: after all, the root has a smaller degree (by 1) in
distribution than do other vertices. We’ll be able to fix this problem in a surprisingly easy way,
but in this section, we discuss the general theory that we’ll invoke once we do get stationarity.
To achieve a stationary Markov chain, we need to change our point of view from a random
walk on a fixed (though random) tree to a random walk on the space of isomorphism classes
of trees.
Actually, there is no good Borel space of unrooted trees. Think, for example, how one

would define a distance between two trees. Instead, it is necessary to consider rooted trees.
Then two rooted trees are close if they agree, up to isomorphism sending one root to the
other, in a large ball around their roots. This gives a topology, and the topology generates a
Borel σ-field. What one then does is walk on the space of rooted trees, changing the root to
the location of the walker and keeping the underlying unrooted tree the same. However, to
have a measure on rooted trees that is stationary with respect to this chain, we need to use
isomorphism classes of rooted trees.
The formalism is as follows. Let T be the space of rooted trees in Exercise 5.2. Call

two rooted trees (rooted) isomorphic if there is a bijection of their vertex sets preserving
adjacency and mapping one root to the other. Since the roots will be changing with the
walker, we will often write the root explicitly. Our notation for a rooted tree will be (T , x),
where x ∈ 𝖵(T) designates the root. For (T , o) ∈ T , let [T , o] denote the set of trees that are
isomorphic to (T , o). Let [T ] :=

�[T , o] ; (T , o) ∈ T
	
. Normally, we have a measure µ such

as GW on rooted trees T ; such a measure induces a measure [µ] on isomorphism classes of
rooted trees [T ] in the obvious way.
Consider the Markov chain that moves from a rooted tree (T , x) to the rooted tree (T , y) for

a uniform random neighbor y of x. For a fixed tree T , this chain is “isomorphic” to simple
random walk on T . Write the transition probabilities as

p
�(T , x), (T , y)� =

{
1/degT (x) if y ∼ x
0 otherwise.

As we said, to get stationarity, we are really interested in the Markov chain induced by this
chain on isomorphism classes of trees. Thus, define

p
�[T , x], [T ′, y]� :=

1
degT (x)

����z ∈ T ; z ∼ x, [T ′, y] = [T , z]	��� .
This gives the transition kernel

p𝖲𝖱𝖶

�[T , x], A
�

:=
∑

[T ′,y]∈A
p
�[T , x], [T ′, y]� .
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We will call a Borel measure µ on T stationary if the induced measure [µ] on [T ] is. Rather
than say that µ is p𝖲𝖱𝖶-stationary, we will say more simply that µ is 𝖲𝖱𝖶-stationary.

▷ Exercise 17.2.
Let G = (𝖵, 𝖤) be a finite connected graph. For x ∈ 𝖵, let Tx be the universal cover of G
based at x (see p. 82 of Section 3.3). Define

µ
�[T , o]� :=

1
2|𝖤|

∑�
deg x ; x ∈ 𝖵, [Tx , x] = [T , o]	 .

Show that µ is an 𝖲𝖱𝖶-stationary ergodic probability measure on [T ].

Let 𝖲𝖱𝖶 × µ (instead of p𝖲𝖱𝖶 × µ) denote the probability measure on paths in trees
given by choosing a tree according to µ and then conditionally independently running simple
random walk on the tree starting at its root.

Theorem 17.4. (Speed for Stationary Measures) If µ is an 𝖲𝖱𝖶-stationary probability
measure on the space of rooted trees T such that µ-a.e. tree is infinite, then the speed (rate of
escape) of simple random walk ⟨Xn⟩ satisfies

E
[

lim
n→∞

|Xn |
n

]
=
∑
k≥1

µ[degT o = k]
(
1 − 2

k

)
≥ 0 . (17.1)

The speed is positive a.s. iff µ-a.e. tree has at least three ends, in which case µ-a.e. tree has
uncountably many ends and branching number > 1. In case µ is ergodic, then the sum in
(17.1) is 𝖲𝖱𝖶 × µ-a.s. the speed.

Proof. Since the measure on rooted trees is stationary for simple random walk, the sequence
of degrees ⟨degT Xk⟩ is a stationary sequence. Thus, (17.1) follows from (13.4) and the
ergodic theorem.
Now the speed is of course 0 a.s. on all trees with at most two ends. In the opposite case,

we make use of the following construction. This is also where we begin the deeper, fruitful
interplay of discrete probability (on trees) with ergodic theory (on the space of trees).
For a tree T , write T♢ for the bi-infinitary part of T consisting of the vertices and edges of

T that belong to some bi-infinite simple path. This is the same as what remains of T after
iteratively pruning all its leaves. The bi-infinitary part of T is nonempty iff T has at least two
ends; we are now assuming that µ-a.e. tree has at least three ends. The parts of T that are
not in its bi-infinitary part are finite trees that we call shrubs. Since simple random walk on
a shrub is recurrent, simple random walk on T visits T♢ infinitely often and, in fact, takes
infinitely many steps on T♢. If we observe ⟨Xk⟩ only when it makes a transition along an edge
of T♢, then we see simple random walk on T♢ (by the strong Markov property). In particular,
if we begin simple random walk on T with the initial stationary probability measure µ, then
a.s. there exists k for which Xk ∈ T♢. By stationarity, it follows that X0 ∈ T♢ with positive
probability. Thus, the set of states A♢ :=

�[T , o] ; o ∈ T♢	 has positive probability. Likewise,
the event A ′

♢ :=
[[T , X0], [T , X1] ∈ A♢

]
satisfies (𝖲𝖱𝖶 × µ)(A ′

♢) > 0, so the sequence of
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elements of A♢ given by successive returns to A ′
♢ is shift-stationary by Exercise 2.30. Let

µ♢ be the law of [T , X0] when �[T , X0], [T , X1]� has the law (𝖲𝖱𝖶 × µ) conditioned on A ′
♢.

Then µ♢ is stationary for simple random walk on T♢, since that is what corresponds to a
return to A ′

♢.
Now µ♢[degT (o) ≥ 3] > 0, since otherwise the walk would be restricted to a copy of �.

Since degT (o) ≥ 2 µ♢-a.s., it follows from (17.1) that the µ♢-expected speed is positive,
whence the speed is positive with positive µ♢-probability. In fact, the speed is positive a.s.,
since if not, consider the set A of trees where the speed is 0. Then A is invariant under the
random walk, so if µ(A) > 0, then [µ] conditioned to A is also 𝖲𝖱𝖶-stationary, and applying
the result we just proved to this conditioned measure would give a contradiction.
Now let ⟨Yk⟩ be the random walk induced on T♢ and Zk be the number of steps that the

random walk on T takes between the kth step on T♢ and the (k + 1)th step on T♢. Since the
random walk returns to T♢ infinitely often a.s., its speed on T is

lim
k→∞

|Yk |∑
j<k Z j

.

To show that this is positive a.s., it remains to show that

lim
k→∞

1
k

∑
j<k

Z j < ∞ a.s., (17.2)

since the µ♢-speed on T♢ is lim |Yk |/k, which we have already shown is positive a.s. Now
⟨Z j⟩ is a stationary nonnegative sequence if we condition on A♢, so the limit in (17.2) equals
the mean of Z0 by the ergodic theorem. But Z0 is the time it takes for the random walk
to make a step along T♢, in other words, the time it takes to return to A ′

♢. This has finite
expectation by the Kac lemma (Exercise 2.30).
The fact that µ-a.e. tree has infinitely many ends is a consequence of the transience, and

the stronger fact that the branching number is > 1 follows from Proposition 13.3. The last
sentence is a consequence of the ergodic theorem. ◀
Where do we get 𝖲𝖱𝖶-stationary probability measures? In the next section, we will give

an explicit stationary measure that is relevant to Galton-Watson trees. For the rest of this
section, however, we describe a general way of finding such measures in the context of Cayley
graphs.
Sometimes, it is easier to find a measure that is stationary for delayed simple random walk,

rather than for simple random walk. Here, we define delayed simple random walk on a graph
with maximum degree at most D, abbreviated 𝖣𝖲𝖱𝖶, to have the transition probabilities

p(x, y) :=


1/D if x ∼ y,
1 − deg x/D if x = y,
0 otherwise.

(The choice of D will be left implicit but will be clear from context.) Thus, any uniform
measure on the vertices is an (infinite) stationary measure for delayed simple random walk on
a single infinite graph. But how do we find an invariant probability measure on the space of
rooted trees? Before we answer that question, we show how to pass from a 𝖣𝖲𝖱𝖶-stationary
measure to a 𝖲𝖱𝖶-stationary measure:
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Lemma 17.5. If µ is a 𝖣𝖲𝖱𝖶-stationary probability measure on T , then the degree-biased
measure µ′ is a 𝖲𝖱𝖶-stationary probability measure on T ; more precisely, µ′ is defined as
the measure µ′ ≪ µ with

dµ′

dµ
(T , o) := C−1 degT (o) ,

where C :=
∫

degT (o) dµ(T , o). If µ is ergodic, then so is µ′.

Proof. We are given that for all events A,

µ
�[T , X0] ∈ A

�
= µ

�[T , X1] ∈ A
�
.

If we write this out, it becomes∫
1A

�[T , X0]� dµ(T , X0) =
∫ ((

1 − degT X0

D

)
1A

�[T , X0]�
+

1
D
����x ∼ X0 ; [T , x] ∈ A

	���) dµ(T , X0) .

Canceling what can be obviously canceled, we get∫
(degT X0)1A

�[T , X0]� dµ(T , X0) =
∫ ����x ∼ X0 ; [T , x] ∈ A

	��� dµ(T , X0) .
This is the same as

µ′
�[T , X0] ∈ A

�
= µ′

�[T , X1] ∈ A
�
.

The ergodicity claim is immediate from the definitions. ◀

▷ Exercise 17.3.
Show that if µ is an ergodic 𝖣𝖲𝖱𝖶-stationary probability measure on the space of rooted
trees T such that µ-a.e. tree is infinite, then the rate of escape of simple random walk (not
delayed) is 𝖲𝖱𝖶 × µ-a.s.

lim
n→∞

|Xn |
n

= 1 − 2∫
degT (o) dµ(T , o) .

Now where do 𝖣𝖲𝖱𝖶-stationary probability measures on [T ] come from? One place is
from invariant probability measures on forests in Cayley graphs. Recall that an edge [x, y] is
present in a Cayley graph iff there is a generator s such that xs = y. Thus, for any γ in the
group, Γ, multiplication by γ on the left is an automorphism of G. Given a percolation on a
Cayley graph G = (𝖵, 𝖤), that is, a Borel probability measure P on the subsets of 𝖤, write
ω ⊆ 𝖤 for the random subset given by the percolation. The action of multiplication by γ
induces a map

γω :=
�[γx, γy] ; [x, y] ∈ ω	 .

Thus, γ acts on P; we call P translation-invariant or Γ-invariant if γ P= P for all γ ∈ 𝖵.
If S denotes the generating set for G, then clearly P is translation-invariant iff s P= P for
all s ∈ S. Call the percolation a random forest if each component is a tree. For example,
the uniform spanning forests 𝖥𝖴𝖲𝖥 and 𝖶𝖴𝖲𝖥 are translation-invariant random forests by
Exercise 10.2, as are the minimal spanning forests, 𝖥𝖬𝖲𝖥 and 𝖶𝖬𝖲𝖥, by Exercise 11.8.
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Example 17.6. Here’s a trivial example. Let G be the usual Cayley graph of �. Consider
the three possible spanning forests that have only trees with three vertices. If these three are
equally likely, then we get a translation-invariant random forest of G. The measure on the
component of 0 is easily seen to be 𝖣𝖲𝖱𝖶-stationary but not 𝖲𝖱𝖶-stationary.

Let µ denote the law of the component of the identity, o, of a translation-invariant random
forest P, rooted at o. Then µ is stationary for a random walk ⟨Xn⟩ starting at X0 = o iff
E[X1µ] = µ. The following is essentially due to Häggström (1997).

Theorem 17.7. (Invariance and Stationarity) If µ is the law of the component of the
identity in a translation-invariant random forest on a Cayley graph, then µ is stationary for
delayed simple random walk. In fact, µ is globally reversible (defined below).

Proof. Let ⟨Xk⟩ be 𝖣𝖲𝖱𝖶 on the component of the identity. Let Tx denote the component of
x, so µ(A) = P

�[To, o] ∈ A
�
. Global reversibility is the property that for all Borel A, B ⊆ [T ],

P
�[To, o] ∈ A, [TX1 , X1] ∈ B

�
= P

�[To, o] ∈ B, [TX1 , X1] ∈ A
�
.

We will show more generally (that is, beyond looking at just components) that for Borel
A, B ⊆ {0, 1}𝖤, we have

P[A, X1B] = P[B, X1 A] .
We may assume that S is closed under inverses, so that |S| is the degree of the Cayley graph.
Now we may write the event on the left above as a disjoint union

A ∩ X1B =
�
A ∩ B ∩ [X1 = o]� ∪∪

s∈S

�
A ∩ sB ∩ [X1 = s]� .

The first union is unchanged when we switch A and B, so it suffices to show that the
probability of the second union is unchanged under switching. Now

P
[∪
s∈S

�
A ∩ sB ∩ [X1 = s]�] =

∑
s∈S

P
�
A, sB, [o, s] ∈ ω�/ |S| .

By translation invariance of P, this equals∑
s∈S

P
[
s−1

(
A ∩ sB ∩

�[o, s] ∈ ω�)] / |S| =
∑
s∈S

P
�
s−1 A, B, [s−1, o] ∈ ω�/ |S|

=
∑
s∈S

P
�
B, sA, [o, s] ∈ ω�/ |S| ,

since inversion is a permutation of S. But this amounts to switching A and B, as desired. ◀

The following corollary generalizes results of Häggström (1997). (Part of this was proved
in Corollary 8.20.)
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Corollary 17.8. If µ is the component law of a translation-invariant random forest on a
Cayley graph, then simple random walk on the infinite trees with at least three ends has
positive speed a.s. Hence, these trees have br > 1. In particular, there are a.s. no trees with a
finite number, at least three, of ends.

Proof. We have seen that [µ] is 𝖣𝖲𝖱𝖶-stationary on [T ]. If A ⊆ [T ] denotes the set
of tree classes with at least three ends, then A is invariant under the random walk, so if
µ(A) > 0, then [µ] conditioned on A is also 𝖣𝖲𝖱𝖶-stationary. From Lemma 17.5, we also
get a 𝖲𝖱𝖶-stationary probability measure on A, to which we may apply Theorem 17.4. This
proves the claims for the component of o; but this passes to all the components, because if
some vertex has positive probability of belonging to a component with a given property, then
so does o by translation invariance. ◀

Since a tree with branching number > 1 also has exponential growth, it follows that if G is
a group of subexponential growth, then every tree in a translation-invariant random forest has
at most two ends a.s. Actually, this holds for all amenable groups:

Corollary 17.9. If G is an amenable group, then every tree in a translation-invariant random
spanning forest all of whose trees are infinite has at most two ends a.s.

Proof. By Exercise 10.6, the expected degree of every vertex in the forest is two. Therefore,
the speed of simple random walk is 0 a.s. by Exercise 17.3, whence the number of ends
cannot be at least three with positive probability. ◀

In fact, this result holds still more generally:

Theorem 17.10. If G is an amenable group, then every component in a translation-invariant
percolation has at most two ends a.s.

This is due to Burton and Keane (1989) in the case where G = �d. It was proved in
Exercise 7.24.

▷ Exercise 17.4.
Use Corollary 17.8 to prove that for a translation-invariant random forest on a Cayley graph,
there are a.s. no isolated ends in trees with an infinite number of ends. (An end is isolated if
there is a ray ⟨x0, x1, . . .⟩ in its equivalence class such that no other ray begins ⟨x0, x1⟩.)
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Figure 17.1. The apparent density of the conductance for p1 = p2 = 1/2.

17.3 Speed on Galton-Watson Trees

When we run random walks on Galton-Watson trees T , the asymptotic properties of the
walks reveal information about the structure of T beyond the growth rate and branching
number. This is the theme of the rest of the chapter. Assume that p0 = 0 and pk < 1 for all
k for the rest of this chapter, except when stated otherwise.
We know by Theorem 3.5 and Corollary 5.10 that simple random walk on a Galton-Watson

tree T is almost surely transient. Equivalently, by Theorem 2.3, the effective conductance
of T from the root to infinity is a.s. positive when each edge has unit conductance. The
effective conductance makes transience quantitative. Since T is random, what can we say
about the distribution of its effective conductance? Figure 17.1 shows the apparent density of
the effective conductance when an individual has one or two children with equal probability;
we will study this interesting graph further in Section 17.10.

Transience means only that the distance of a random walker from the root of T tends to
infinity a.s. Is the rate of escape positive? Can we calculate the rate? According to (13.4), it
would suffice to know the proportion of time the walk spends at vertices of degree k + 1 for
each k. As we demonstrate in Theorem 17.13, this proportion turns out to be simply pk , so
that the speed is a.s.

l :=
∞∑
k=1

pk
k − 1
k + 1

. (17.3)

In particular, the speed is positive.
Here’s something interesting about this formula: The function s 7→ (s−1)/(s+1) is strictly

concave, whence by Jensen’s inequality, l < (m − 1)/(m + 1). The latter is the speed on the
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regular tree of the same growth rate when m is an integer. Thus, the randomness inherent in
the tree slows down the simple random walk compared to a regular tree.
Our plan to prove (17.3) is to use Theorem 17.4 rather than (13.4) directly. That is, we

will identify a stationary ergodic measure for simple random walk on the space of trees that
is sufficiently similar to GW that results for it apply also to GW. To construct a stationary
Markov chain on the space of trees, we will use isomorphism classes of rooted trees, as
discussed in the preceding section. The family tree of a Galton-Watson process is rooted
at the initial individual. However, Galton-Watson trees are naturally labeled, and we will
need to refer to various vertices within them, which would be impossible if we were to use
only classes of isomorphic rooted trees. Thus, we will play it both ways: when we need
stationarity, we will use isomorphism classes, but otherwise not. To have it both ways, we
will use labeled trees and introduce a new σ-field, [F ], which contains only the events that
are invariant under rooted isomorphisms. Restricting to [F ] will give a stationary measure.
As we noted earlier, the root of a Galton-Watson tree is different from the other vertices,

since it has stochastically one fewer neighbor. To remedy this defect, consider augmented
Galton-Watson measure, AGW. This measure is defined just like GW, except that the
number of children of the root (only) has the law of Z1 + 1; that is, the root has k + 1
children with probability pk , and these children all have independent standard Galton-Watson
descendant trees.

Theorem 17.11. (AGW is 𝖲𝖱𝖶-Stationary) The Markov chain with transition kernel p𝖲𝖱𝖶

and initial distribution AGW is stationary on the isomorphism-invariant events [F ].
Proof. The measure AGW is stationary, since when the walk takes a step to a neighbor of
the root, it goes to a vertex with one neighbor (where it just came from) plus a GW-tree; and
the neighbor it came from also has attached another independent GW-tree. This is the same
as AGW. ◀
The proof we have just given is not really rigorous, though it is convincing. A rigorous

proof is not very enlightening, except for showing how to prove such things with proper
notation and technique. Such a proof may be found in Lyons, Pemantle, and Peres (1995b). It
also proves more: First, it is clear that the chain is locally reversible, which means that it is
reversible on every communicating class. This, however, does not imply (global) reversibility.
We will have no need for global reversibility, only for local reversibility (which is, indeed, a
consequence of global reversibility). See Theorem 17.7 and Exercise 17.16 for the definitions.
It now follows from Theorem 17.4 that simple random walk has positive speed with positive

AGW-probability; we want to establish the value of the speed, so we will show ergodicity.
In Proposition 7.3, we showed ergodicity for Bernoulli percolation without much difficulty.
However, showing ergodicity for measure-preserving systems is, in general, not an easy thing.
In the present context, one might hope that, since AGW is built on so much independence, it
would guarantee that 𝖲𝖱𝖶×AGW is ergodic. This is true (Theorem 4.6 of Aldous and Lyons
(2007) has a general principle), but it would take us longer to prove this general property than
it will to prove ergodicity in this particular case. Besides, we will obtain some interesting
facts about 𝖲𝖱𝖶 × AGW that will be crucial in later sections.
We will find it convenient to work with random walks indexed by � rather than by �.

We will denote such a bi-infinite path . . . , x−1, x0, x1, . . . by
↔x. Similarly, a path of vertices
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x0, x1, . . . in T will be denoted →x and a path . . . , x−1, x0 will be denoted ←x. We will regard a
ray as either a path →x or ←x that starts at the root and doesn’t backtrack. The path of simple
random walk has the property that a.s., it converges to a ray in the sense that there is a unique
ray with which it shares infinitely many vertices. If a path →x converges to a ray ξ in this sense,
then we will write x+∞ = ξ. Similarly for a limit x−∞ of a path ←x. The space of convergent
paths →x in T will be denoted

→
T ; likewise,

←
T denotes the convergent paths ←x and

↔
T denotes the

paths ↔x for which both →x and ←x converge and have distinct limits.
Define the path space (actually, path bundle over the space of trees)

𝖯𝖺𝗍𝗁𝗌𝖨𝗇𝖳𝗋𝖾𝖾𝗌 :=
�(↔x,T) ; ↔x ∈

↔
T
	
.

The rooted tree corresponding to (↔x,T) is (T , x0). Let S be the shift map:

(S↔x)n := xn+1 ,

S(↔x,T) := (S↔x,T).
Extend simple random walk to all integer times by letting ←x be an independent copy of →x. We
will reuse the notation 𝖲𝖱𝖶 ×AGW to denote the measure on 𝖯𝖺𝗍𝗁𝗌𝖨𝗇𝖳𝗋𝖾𝖾𝗌 associated to this
Markov chain, which is stationary when restricted to the isomorphism classes of (↔x,T). We
will extend [F ] to denote the events in 𝖯𝖺𝗍𝗁𝗌𝖨𝗇𝖳𝗋𝖾𝖾𝗌 that are invariant under isomorphisms.

▷ Exercise 17.5.
Show that this chain is indeed stationary.

When a random walk traverses an edge for the first and last time simultaneously, we say it
regenerates since it will now remain in a previously unexplored tree. Thus, we define the set
of regeneration points

𝖱𝖾𝗀𝖾𝗇 :=
�(↔x,T) ∈ 𝖯𝖺𝗍𝗁𝗌𝖨𝗇𝖳𝗋𝖾𝖾𝗌 ; ∀n < 0 xn ̸= x0, ∀n > 0 xn ̸= x−1

	
.

Note that 𝖱𝖾𝗀𝖾𝗇 ∈ [F ].
Proposition 17.12. (Infinitely Many Regeneration Points) For 𝖲𝖱𝖶 × AGW-a.e. (↔x,T),
there are infinitely many n ≥ 0 for which Sn(↔x,T) ∈ 𝖱𝖾𝗀𝖾𝗇.

Proof. Define the set of fresh points

𝖥𝗋𝖾𝗌𝗁 :=
�(↔x,T) ∈ 𝖯𝖺𝗍𝗁𝗌𝖨𝗇𝖳𝗋𝖾𝖾𝗌 ; ∀n < 0 xn ̸= x0

	
.

Note that by a.s. transience of simple random walk and the fact that independent simple
random walks on a transient tree a.s. converge to distinct ends (Exercise 2.49), there are
a.s. infinitely many n ≥ 0 such that Sn(↔x,T) ∈ 𝖥𝗋𝖾𝗌𝗁. Let Fn be the σ-field generated
by ⟨. . . , x−1, x0, . . . , xn⟩. (Since the tree is labeled, Fn tells us part of the tree but only a
small part.) Then by a.s. transience of GW trees, α := (𝖲𝖱𝖶 × AGW)(𝖱𝖾𝗀𝖾𝗇 | 𝖥𝗋𝖾𝗌𝗁) > 0
and, in fact, (𝖲𝖱𝖶 × AGW)(𝖱𝖾𝗀𝖾𝗇 | 𝖥𝗋𝖾𝗌𝗁, F−1) = α. Fix k0. Let R be the event that
there is at least one k ≥ k0 for which Sk(↔x,T) ∈ 𝖱𝖾𝗀𝖾𝗇. Then, for n ≥ k0, the conditional
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probability (𝖲𝖱𝖶×AGW)(R | Fn) is at least the conditional probability that the walk comes
to a fresh vertex after time n, which is 1, times the conditional probability that at the first
such time, the walk regenerates, which is a constant, α. On the other hand, R belongs to
the σ-field generated by

∪
n Fn, whence the martingale convergence theorem tells us that

(𝖲𝖱𝖶 × AGW)(R | Fn) → 1R a.s. Putting together these two facts about the limit, we
conclude that the limit must be 1. That is, R occurs a.s., which completes the proof since k0
was arbitrary. ◀

Given a rooted tree T and a vertex x in T , recall that the descendant tree of x, the subtree
T x rooted at x, denotes the subgraph of T formed from those edges and vertices that become
disconnected from the root of T when x is removed. The sequence of fresh trees [T \ T x−1 ]
seen at regeneration points (↔x,T) is clearly stationary but not i.i.d. However, the part of a
tree between regeneration points, together with the path taken through this part of the tree, is
independent of the rest of the tree and of the rest of the walk. We call this part a slab. To
define this notion precisely, we use the return time n𝖱𝖾𝗀𝖾𝗇, where

n𝖱𝖾𝗀𝖾𝗇(↔x,T) := inf
�
n > 0 ; Sn(↔x,T) ∈ 𝖱𝖾𝗀𝖾𝗇	 .

For (↔x,T) ∈ 𝖱𝖾𝗀𝖾𝗇, the associated slab (including the path taken through the slab) is

𝖲𝗅𝖺𝖻(↔x,T) :=
[�⟨x0, x1, . . . , xn−1⟩, T \ (T x−1 ∪ T xn )�] ,

where n := n𝖱𝖾𝗀𝖾𝗇(↔x,T) and [ • ] again indicates isomorphism class. Let S𝖱𝖾𝗀𝖾𝗇 := Sn𝖱𝖾𝗀𝖾𝗇

when (↔x,T) ∈ 𝖱𝖾𝗀𝖾𝗇. Then the random variables 𝖲𝗅𝖺𝖻
�
Sk
𝖱𝖾𝗀𝖾𝗇(↔x,T)

�
are i.i.d. Since the slabs

generate the whole tree and the walk through the tree (except for the location of the root), it is
easy to see that the system (𝖯𝖺𝗍𝗁𝗌𝖨𝗇𝖳𝗋𝖾𝖾𝗌, 𝖲𝖱𝖶 × AGW, S) is mixing on [F ], hence ergodic.

Theorem 17.13. The speed (rate of escape) of simple random walk is 𝖲𝖱𝖶 × AGW-a.s.

lim
n→∞

|xn |
n

= E
[ Z1 − 1

Z1 + 1

]
. (17.4)

This is immediate now.

▷ Exercise 17.6.
Show that the same formula (17.4) holds for the speed of simple random walk on GW-a.e.
tree.

This accomplishes our main goal for the speed. What about the case when p0 > 0? As
usual, let q be the probability of extinction of the Galton-Watson process. Let ¬𝖤𝗑𝗍 be the
event of nonextinction of an AGW tree and AGW¬𝖤𝗑𝗍 be AGW conditioned on ¬𝖤𝗑𝗍. Since
AGW is still stationary and ¬𝖤𝗑𝗍 is an invariant event for the Markov chain, AGW¬𝖤𝗑𝗍 is
𝖲𝖱𝖶-stationary. The AGW¬𝖤𝗑𝗍-distribution of the degree of the root is

AGW[deg x0 = k + 1 | ¬𝖤𝗑𝗍] =
AGW[¬𝖤𝗑𝗍 | deg x0 = k + 1]

AGW(¬𝖤𝗑𝗍) pk

= pk
1 − qk+1

1 − q2 .

(17.5)

▷ Exercise 17.7.
Prove this formula.
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The proof of Theorem 17.13 on speed is valid when one conditions on nonextinction in the
appropriate places. It gives the following formula:

lim
n→∞

|xn |
n

= E
[ Z1 − 1

Z1 + 1
���� ¬𝖤𝗑𝗍] =

∑
k≥0

k − 1
k + 1

pk
1 − qk+1

1 − q2 a.s.

For example, the speed when p1 = p2 = 1/2 is 1/6, whereas for the offspring distribution
of the same unconditional mean p0 = p3 = 1/2, the speed given nonextinction is only
(7 − 3

√
5 )/8 = 0.036+: the time spent at leaves is a serious drag.

17.4 Harmonic Measure: The Goal

We’ve now found the rate of escape of simple random walk on Galton-Watson trees. What
about its “direction” of escape? With “direction” interpreted as harmonic measure, this will
be studied in the rest of the chapter. That is, since the random walk on a Galton-Watson tree
T is transient, it converges to a ray of T a.s. The law of that ray is called harmonic measure,
denoted 𝖧𝖠𝖱𝖬(T), which we identify with a unit flow on T from its root to infinity.
Of course, if the offspring distribution is concentrated on a single integer, then the direction

is uniform. But we are assuming that this is not the case, that is, the tree is nondegenerate.
We still assume that p0 = 0 unless otherwise specified, since if we condition on nonextinction,
the random walk will always leave any finite descendant subtree, and therefore the harmonic
measure lives on the subtree of vertices with infinite lines of descent. (Recall also from
Proposition 5.28 that this subtree is still a Galton-Watson tree.) We will see that the random
irregularities that recur in a nondegenerate Galton-Watson tree T direct or confine the random
walk to an exponentially smaller subtree of T . One aspect of this, and the key tool in its
proof, is the dimension of harmonic measure. Now, since br T = m a.s., the boundary ∂T has
Hausdorff dimension log m a.s.

▷ Exercise 17.8.
Show that the Hausdorff dimension of harmonic measure is a.s. constant.

Our main goal now is prove that the Hausdorff dimension of harmonic measure is strictly
less than that of the full boundary:

Theorem 17.14. (Dimension Drop of Harmonic Measure) The Hausdorff dimension of
harmonic measure on the boundary of a nondegenerate Galton-Watson tree T is a.s. a
constant d < log m = dim(∂T), that is, there is a Borel subset of ∂T of full harmonic measure
and dimension d.

This result is established in a sharper form in Theorem 17.27.
With some further work, Theorem 17.14 will yield the following restriction on the range of

random walk.
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Theorem 17.15. (Confinement of Random Walk) Fix a nondegenerate offspring distri-
bution with mean m. Let d be as in Theorem 17.14. For any ϵ > 0 and for almost every
Galton-Watson tree T , there is a rooted subtree T(ϵ) of T having growth

lim
n→∞

|T(ϵ)n | 1
n = ed < m

such that with probability 1 − ϵ , the sample path of simple random walk on T is contained in
T(ϵ). (Here, |T(ϵ)n | is the cardinality of the nth level of T(ϵ).)
See Theorem 17.30 for a restatement and proof.
This corollary gives a partial explanation for the “low” speed of simple random walk on a

Galton-Watson tree: the walk is confined to a much smaller subtree.
The setting and results of Section 17.3 will be fundamental to our work here. Certain

Markov chains on the space of trees (inspired by Furstenberg (1970)) are discussed in
Section 17.5 and used in Section 17.6 to compute the dimension of the limit uniform measure,
extending a theorem of Hawkes (1981). A general condition for dimension drop is given
in Section 17.7 and applied to harmonic measure in Section 17.8, where Theorem 17.14
is proved; its application to Theorem 17.15 is given in Section 17.9. In Section 17.10, we
analyze the electrical conductance of a Galton-Watson tree using a functional equation for its
distribution. This yields a numerical scheme for approximating the dimension of harmonic
measure.

17.5 Flow Rules and Markov Chains on the Space of Trees

These chains are inspired by Furstenberg (1970). In the rest of this chapter, a flow on a tree
will mean a unit flow from its root to infinity. Given a flow θ on a tree T and a vertex x ∈ T
with θ(x) > 0, we write θx for the (conditional) flow on T x given by

θx(y) := θ(y)/θ(x) (y ∈ T x) .

The space of flows on trees can be given a natural topology just as T is given. We call a
Borel function Θ:T → {flows on trees} a (consistent) flow rule if Θ(T) is a flow on T such
that

x ∈ T , |x | = 1, Θ(T)(x) > 0 =⇒ Θ(T)x = Θ(T x) .
A consistent flow rule may also be thought of as a Borel function that assigns to a k-tuple
(T (1), . . . ,T (k)) of trees a k-tuple of nonnegative numbers adding to one representing the
probabilities of choosing the corresponding trees T (i) in

∨k
i=1 T (i), which is the tree formed by

joining the roots of T (i) by single edges to a new vertex, the new vertex being the root of the
new tree. It follows from the definition that for all x ∈ T , not only those at distance 1 from
the root, Θ(T)(x) > 0 ⇒ Θ(T)x = Θ(T x). We will usually write ΘT for Θ(T).
We will always assume without mention that our flow rules Θ are equivariant (as they will

be in our particular examples), which means that for any rooted isomorphism φ:T → φ(T),
we have φ(Θ(T)) = Θ(φ(T)). This is important to get events that are isomorphism invariant,
and so to apply ergodic theory.
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We have already encountered two flow rules: The principal object of interest in the rest of
this chapter, harmonic measure, comes from a flow rule, 𝖧𝖠𝖱𝖬. Another natural example
is harmonic measure, 𝖧𝖠𝖱𝖬𝜆, for homesick random walk 𝖱𝖶𝜆; this was studied by Lyons,
Pemantle, and Peres (1996a). Visibility measure, encountered in Section 15.4, gives a flow
rule, 𝖵𝖨𝖲. A final example, 𝖴𝖭𝖨𝖥, will be studied in Section 17.6. It is easily verified that all
these are flow rules.

Proposition 17.16. If Θ and Θ′ are two flow rules such that for GW-a.e. tree T and all
vertices |x | = 1, ΘT (x) + Θ′T (x) > 0, then GW(ΘT = Θ′T ) ∈ {0, 1}.

Proof. By the hypothesis, if ΘT = Θ′T and |x | = 1, then ΘT x = Θ′T x . Thus, the result follows
from Proposition 5.6. ◀
Given a flow rule Θ, there is an associated Markov chain on the space of trees given by the

transition probabilities
pΘ

�
T , {T x}� := ΘT (x)

for T ∈ T , x ∈ T , and |x | = 1. We say that a (possibly infinite) measure µ on the space of
trees is Θ-stationary if it is pΘ-stationary, or, in other words, for any Borel set A ⊆ [F ] of
trees,

µ(A) =
∫

pΘ(T , A) dµ(T) =
∫ ∑

|x |=1,
T x ∈A

ΘT (x) dµ(T) .

If we denote the vertices along a ray ξ by ξ0, ξ1, . . . , then the path of such a Markov chain
is a sequence ⟨T ξn ⟩∞n=0 for some tree T and some ray ξ ∈ ∂T . Clearly, we may identify the
space of such paths with the ray bundle

𝖱𝖺𝗒𝗌𝖨𝗇𝖳𝗋𝖾𝖾𝗌 :=
�(ξ,T) ; ξ ∈ ∂T

	
.

For the corresponding path measure on 𝖱𝖺𝗒𝗌𝖨𝗇𝖳𝗋𝖾𝖾𝗌, write Θ × µ for pΘ × µ. Likewise, we
say Θ-invariant for pΘ-invariant.
In this setting, Corollary 17.3 says that if µ is a Θ-invariant probability measure, then

Θ × µ is ergodic (for the shift map) iff every Θ-invariant (and isomorphism-invariant) set
of trees has µ-measure 0 or 1. Moreover, even without ergodicity, Proposition 17.2 says
that shift-invariant ([F ]-measurable) functions on 𝖱𝖺𝗒𝗌𝖨𝗇𝖳𝗋𝖾𝖾𝗌 correspond to Θ-invariant
functions; in particular, they depend (a.s.) only on their second coordinate.

We call two measures equivalent if they are mutually absolutely continuous.

Proposition 17.17. Let Θ be a flow rule such that for GW-a.e. tree T and for all |x | = 1,
ΘT (x) > 0. Then the Markov chain with transition kernel pΘ and initial distribution GW is
ergodic, though not necessarily stationary. Hence, if a Θ-stationary measure µ exists that is
absolutely continuous with respect to GW, then µ is equivalent to GWand the associated
stationary Markov chain is ergodic.

Proof. Let A be a Borel set of trees that is Θ-invariant. It follows from our assumption that
for GW-a.e. T ,

T ∈ A ⇐⇒ T x ∈ A for every |x | = 1 .

Thus, the first claim follows from Proposition 5.6.
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Now let µ ≪ GW be as in the second claim. If A is a Borel set of trees that is Θ-invariant,
then by what we have just shown, µ(A) = 0 or µ(Ac) = 0. That is, µ is ergodic. Finally, if A
is any set with µ(A) = 0, then by stationarity, A is Θ-invariant. The preceding paragraph then
shows that GW(A) ∈ {0, 1}. Since µ(Ac) ̸= 0, it follows that GW(A) = 0. This shows that
GW ≪ µ. ◀
We do not know whether the first hypothesis of Proposition 17.17 is necessary for the final

conclusion:

Question 17.18. If a flow rule has a stationary measure equivalent to GW, must the associ-
ated Markov chain be ergodic?

Given a Θ-stationary probability measure µ on the space of trees, we define the entropy of
the associated stationary Markov chain as

𝖤𝗇𝗍Θ(µ) : =
∫ ∑

|x |=1

pΘ(T ,T x) log
1

pΘ(T ,T x) dµ(T)

=
∫ ∑

|x |=1

ΘT (x) log
1

ΘT (x) dµ(T)

=
∫∫

log
1

ΘT (ξ1) dΘT (ξ) dµ(T)

=
∫

log
1

ΘT (ξ1) d(Θ × µ)(ξ,T) .
Write

gΘ(ξ,T) := log
1

ΘT (ξ1) ;

this function is [F ]-measurable by equivariance of Θ. Let S be the shift on 𝖱𝖺𝗒𝗌𝖨𝗇𝖳𝗋𝖾𝖾𝗌. The
ergodic theorem tells us that the Hölder exponent (Section 15.4) of ΘT is actually a limit a.s.:

𝖧�̈�(ΘT )(ξ) = lim
n→∞

1
n

log
1

ΘT (ξn) = lim
n→∞

1
n

n−1∑
k=0

log
ΘT (ξk)

ΘT (ξk+1)

= lim
n→∞

1
n

n−1∑
k=0

log
1

Θ(T)ξk (ξk+1) = lim
n→∞

1
n

n−1∑
k=0

SkgΘ(ξ,T)

exists Θ × µ-a.s., and it satisfies∫
𝖧�̈�(ΘT )(ξ) d(Θ × µ)(ξ,T) = 𝖤𝗇𝗍Θ(µ) .

If the Markov chain is ergodic, then

𝖧�̈�(ΘT )(ξ) = 𝖤𝗇𝗍Θ(µ) Θ × µ-a.s. (17.6)
This is our principal tool for calculating Hausdorff dimension. Note that even if the Markov
chain is not ergodic, the Hölder exponent 𝖧�̈�(ΘT )(ξ) is constant ΘT -a.s. for µ-a.e. T : since
(ξ,T) 7→ 𝖧�̈�(ΘT )(ξ) is a shift-invariant [F ]-measurable function, it depends only on T (a.s.)
(Proposition 17.2).
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17.6 The Hölder Exponent of Limit Uniform Measure

For the rest of the chapter, assume that m < ∞. By the Seneta-Heyde theorem of
Section 5.1, if Zn and Z ′n are two i.i.d. Galton-Watson processes without extinction, then
limn→∞ Zn/Z ′n exists a.s. Thus, if we fix two vertices x and y at the same level k in a
Galton-Watson tree T , then given T up to level k, we have that

lim
n→∞

|T x ∩ Tn |
|Ty ∩ Tn |

exists a.s., where Tn denotes the vertices of the nth generation of T . This allows us to define
(a.s.) a probability measure 𝖴𝖭𝖨𝖥T on the boundary of a Galton-Watson tree by

𝖴𝖭𝖨𝖥T (x) := lim
n→∞

|T x ∩ Tn |
Zn

.

(We are identifying the measure on the boundary with a unit flow on the tree.) We call this
measure limit uniform since, before the limit is taken, it corresponds to the flow from o
to Tn that is uniform on Tn. It is clear that 𝖴𝖭𝖨𝖥 is a flow rule. Figure 5.1 was drawn by
considering the uniform measure on generation 9 and inducing the masses on the preceding
generations. Figures 17.2 and 17.3 show this same tree drawn using the uniform measure on
generations 14 and 19, respectively.

Figure 17.2. Generations 0 to 14 of a typical Galton-Watson tree for f (s) = (s + s2)/2.

We may write limit uniform measure another way: Let cn be constants with cn+1/cn → m
such that

W̃ (T) := lim
n→∞

Zn/cn

exists and is finite and nonzero a.s.; these constants are provided by the Seneta-Heyde theorem.
Then we have

𝖴𝖭𝖨𝖥T (x) =
W̃ (T x)

m|x |W̃ (T) . (17.7)
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Figure 17.3. Generations 0 to 19 of a typical Galton-Watson tree for f (s) = (s + s2)/2.

Note that
W̃ (T) =

1
m

∑
|x |=1

W̃ (T x) . (17.8)

According to the Kesten-Stigum theorem, when E[Z1 log Z1] < ∞, we may take cn to be mn,
and so W may be used in place of W̃ in (17.7) and (17.8). A theorem of Athreya (1971) gives
that ∫

W̃ (T) dGW(T) < ∞ ⇐⇒ E[Z1 log Z1] < ∞ . (17.9)

As we mentioned in Section 17.4, dim(∂T) = log m a.s. Now Hawkes (1981) showed
that the Hölder exponent of 𝖴𝖭𝖨𝖥T is log m a.s. provided E[Z1(log Z1)2] < ∞. One could
anticipate Hawkes’s result that 𝖴𝖭𝖨𝖥T has full Hausdorff dimension, log m, since limit
uniform measure “spreads out” the most possible (at least under some moment condition on
Z1). Furthermore, one might guess that no other measure that comes from a consistent flow
rule can have full dimension. We will show that this is indeed true provided that the flow rule
has a finite stationary measure for the associated Markov chain that is absolutely continuous
with respect to GW. We will then show that such is the case for harmonic measure of simple
random walk. Incidentally, this method will allow us to give a simpler proof of Hawkes’s
theorem, as well as to extend its validity to the case where E[Z1 log Z1] < ∞. On the other
hand, Aı̈dékon (2011) showed that dim𝖴𝖭𝖨𝖥T = 0 when E[Z1 log Z1] = ∞.
In this section, we prove and extend the theorem of Hawkes (1981) on the Hölder exponent

of limit uniform measure and study further the associated Markov chain. We begin by
showing that a (possibly infinite) 𝖴𝖭𝖨𝖥-stationary measure on trees is W̃ ·GW; we will use
this only when the measure is finite.

Proposition 17.19. The Markov chain with transition kernel p𝖴𝖭𝖨𝖥 and initial distribution
W̃ ·GW is stationary and ergodic.
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Proof. We apply the definition of stationarity: for any Borel set A of trees, we have

∫
p𝖴𝖭𝖨𝖥(T , A) · W̃ (T) dGW(T) =

∫ ∑
|x |=1,
T x ∈A

W̃ (T x)
mW̃ (T) · W̃ (T) dGW(T)

=
∞∑
k=1

pk
1
m

∫
T (1)
· · ·

∫
T (k)

k∑
i=1

1A(T (i))W̃ (T (i))
k∏
j=1

dGW(T (j))

=
∞∑
k=1

pk
1
m

k∑
i=1

∫
T (1)
· · ·

∫
T (k)

1A(T (i))W̃ (T (i))
k∏
j=1

dGW(T (j))

=
∞∑
k=1

pk
1
m

k∑
i=1

∫
A

W̃ dGW =
∫
A

W̃ dGW

= (W̃ ·GW)(A) ,

as desired. Since W̃ > 0 GW-a.s., ergodicity is guaranteed by Proposition 17.17. ◀

▷ Exercise 17.9.
This chain is closely connected to the size-biased Galton-Watson trees of Section 12.1. Show
that in case E[Z1 log Z1] < ∞, the distribution of a 𝖴𝖭𝖨𝖥T -path is ĜW∗.

To calculate the Hölder exponent of limit uniform measure, we will use the following
lemma of ergodic theory:

Lemma 17.20. If S is a measure-preserving transformation on a probability space and g is
finite and measurable, then

∫(g − Sg)+ =
∫(g − Sg)−. Therefore, if g − Sg is bounded below

by an integrable function, then g − Sg is integrable with integral zero.

Proof. When g is integrable, this is immediate from the fact that
∫
g =

∫
Sg. Now if

a function f :� → � is an increasing contraction, then
�

f (x) − f (y)�+ ≤ (x − y)+ and�
f (x) − f (y)�− ≤ (x − y)− for x, y ∈ R. Such functions include Fn(x) := (x ∧ n) ∨ (−n) for

n ≥ 1. Note that Fn ◦ (Sg) = S(Fn ◦g). Therefore �Fn ◦g− S(Fn ◦g)�+ ≤ (g− Sg)+ and, since
Fn = Fn ◦ Fn+1,

�
Fn ◦ g − S(Fn ◦ g)�+ ≤ �

Fn+1 ◦ g − S(Fn+1 ◦ g)�+. Therefore, the monotone
convergence theorem gives us that limn→∞

∫ �
Fn ◦ g − S(Fn ◦ g)�+ =

∫ (g − Sg)+. The same
holds for the negative parts. Since Fn ◦ g is integrable, the identity holds for g. ◀

Theorem 17.21. (Full Dimension of Limit Uniform Measure) If E[Z1 log Z1] < ∞, then
the Hölder exponent at ξ of limit uniform measure 𝖴𝖭𝖨𝖥T is equal to log m for 𝖴𝖭𝖨𝖥T -a.e.
ray ξ ∈ ∂T and GW-a.e. tree T . In particular, dim𝖴𝖭𝖨𝖥T = log m for GW-a.e. T .

Proof. The hypothesis and Proposition 17.19 ensure that W ·GW is a stationary probability
distribution. Let S be the shift on the ray bundle 𝖱𝖺𝗒𝗌𝖨𝗇𝖳𝗋𝖾𝖾𝗌 with the invariant probability
measure 𝖴𝖭𝖨𝖥 × (W · GW). Define g(ξ,T) := log W (T) for a Galton-Watson tree T and
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ξ ∈ ∂T (so g does not depend on ξ). Then

(g − Sg)(ξ,T) = log W (T) − log W (T ξ1 ) = log
mW (T)
W (T ξ1 ) − log m

= log
1

𝖴𝖭𝖨𝖥T (ξ1) − log m .

In particular, g − Sg ≥ − log m, whence the lemma implies that g − Sg has integral zero.
Now, for 𝖴𝖭𝖨𝖥 × (W ·GW)-a.e. (ξ,T) (hence for 𝖴𝖭𝖨𝖥 ×GW-a.e. (ξ,T)), we have that

𝖧�̈�(𝖴𝖭𝖨𝖥T )(ξ) = 𝖤𝗇𝗍𝖴𝖭𝖨𝖥(W ·GW)
by ergodicity and (17.6). By definition and the preceding calculation, this in turn is

𝖤𝗇𝗍𝖴𝖭𝖨𝖥(W ·GW) =
∫∫

log
1

𝖴𝖭𝖨𝖥T (ξ1) d𝖴𝖭𝖨𝖥T (ξ)W (T) dGW(T)

= log m +
∫∫

(g − Sg) d𝖴𝖭𝖨𝖥T (ξ)W (T) dGW(T)
= log m. ◀

17.7 Dimension Drop for Other Flow Rules

Recall that our goal is to prove that harmonic measure has less than full dimension on
GW-a.e. tree. In this section, we give a general condition on flow rules for this dimension
drop to hold. Gibbs’s inequality will be the tool we use to compare the dimension of measures
arising from flow rules to the dimension of the whole boundary: the inequality states that

ai, bi ∈ [0, 1],
∑

ai =
∑

bi = 1 =⇒
∑

ai log
1
ai
≤
∑

ai log
1
bi
,

with equality iff ai ≡ bi .

▷ Exercise 17.10.
Prove Gibbs’s inequality.

Theorem 17.22. If Θ is a flow rule such that ΘT ̸= 𝖴𝖭𝖨𝖥T for GW-a.e. T and there is a
Θ-stationary probability measure µ absolutely continuous with respect to GW, then for µ-a.e.
T , we have 𝖧�̈�(ΘT ) < log m ΘT -a.s. and dim(ΘT ) < log m.

Proof. Recall that the Hölder exponent of ΘT is constant ΘT -a.s. for µ-a.e. T and equal to the
Hausdorff dimension of ΘT . Thus, it suffices to show that the invariant set of trees

A :=
�
T ; dim ΘT = log m

	
=
�
T ; 𝖧�̈�(ΘT ) = log m ΘT -a.s.

	
has µ-measure 0. Suppose that µ(A) > 0. Recall that µA denotes µ conditioned on A. Now,
since µ ≪ GW, the limit uniform measure 𝖴𝖭𝖨𝖥T is defined and satisfies (17.7) for µA-a.e.
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T . Let g(ξ,T) := log W̃ (T). As in the proof of Theorem 17.21, g − Sg ≥ − log m. Since the
entropy is the mean Hölder exponent, we have by Gibbs’s inequality and Lemma 17.20,

log m = 𝖤𝗇𝗍Θ(µA) =
∫ ∑

|x |=1

ΘT (x) log
1

ΘT (x) dµA(T)

<

∫ ∑
|x |=1

ΘT (x) log
1

𝖴𝖭𝖨𝖥T (x) dµA(T)

=
∫

log
1

𝖴𝖭𝖨𝖥T (ξ1) dΘT (ξ) dµA(T)

= log m +
∫
(g − Sg) dΘT (ξ) dµA(T)

= log m .

This contradiction shows that µ(A) = 0, as desired. ◀
To apply this theorem to harmonic measure, we need to find a stationary measure for the

harmonic flow rule with the preceding properties. A general condition for a flow rule to have
such a stationary measure is unknown. But it was conjectured by Lyons, Pemantle, and Peres
(1995b) that any flow rule other than limit uniform gives boundary measures of dimension
less than log m GW-a.s.:

Conjecture 17.23. If Θ ̸= 𝖴𝖭𝖨𝖥 is a flow rule, then dim(ΘT ) < log m for GW-a.e. T .

17.8 Harmonic-Stationary Measure

Consider the set of “last exit points”

𝖤𝗑𝗂𝗍 :=
�(↔x,T) ∈ 𝖯𝖺𝗍𝗁𝗌𝖨𝗇𝖳𝗋𝖾𝖾𝗌 ; x−1 ∈ x−∞ , ∀n > 0 xn ̸= x−1

	
.

This is precisely the event that the path has just exited, for the last time, a horoball centered at
x−∞; in other words, xn is further from x−∞ for n > 0 than is x−1. Since regeneration points
are exit points, it follows from Proposition 17.12 that the set 𝖤𝗑𝗂𝗍 has positive measure and
for a.e. (↔x,T), there is an n > 0 such that Sn(↔x,T) ∈ 𝖤𝗑𝗂𝗍. (This also follows directly merely
from the almost sure transience of simple random walk.) Inducing on this set will yield the
measure we need to apply Theorem 17.22.
We recall some more terminology from ergodic theory for this. Let (X ,F , µ, S) be a

probability measure-preserving system. Fix A ∈ F with µ(A) > 0. Define the return time
to A by nA(x) := inf{n ≥ 1 ; Snx ∈ A} for x ∈ A and, if nA(x) < ∞, the return map
SA(x) := SnA(x)(x). The Poincaré recurrence theorem (Petersen (1983), p. 34) states that
nA(x) < ∞ for a.e. x ∈ A. Thus, SA is defined µA-a.e.; (A,F ∩ A, µA, SA) is a probability
measure-preserving system (Petersen (1983), p. 39, or Exercise 2.30), called the induced
system. Given two measure-preserving systems, (X1,F1, µ1, S1) and (X2,F2, µ2, S2), the
second is called a factor of the first if there is a measurable map f : (X1,F1)→ (X2,F2) such
that µ2 = µ1 ◦ f −1 and f ◦ S1 = S2 ◦ f µ1-a.e.
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Theorem 17.24. There is a unique ergodic 𝖧𝖠𝖱𝖬-stationary probability measure µ𝖧𝖠𝖱𝖬
equivalent to GW.

Proof. Define π0(↔x,T) := x0. For (↔x,T) ∈ 𝖤𝗑𝗂𝗍, let x ′
k

:= π0
�
Sk
𝖤𝗑𝗂𝗍(↔x,T)

�
for k ≥ 0. The

key point is that ⟨x ′
k
⟩ is a sample from the ray generated by the Markov chain associated to

𝖧𝖠𝖱𝖬T\T x−1 . Note that the Markov property of this factor

(x ′

k
,T) ; k ≥ 0

�
of the system

induced on 𝖤𝗑𝗂𝗍 is a consequence of the fact that 𝖧𝖠𝖱𝖬 is a consistent flow rule.
Now, since AGW𝖤𝗑𝗂𝗍 ≪ AGW, we have that the (𝖲𝖱𝖶 × AGW)𝖤𝗑𝗂𝗍-law of T \ T x−1 is

absolutely continuous with respect to GW. From Proposition 17.17, it follows that the
(𝖲𝖱𝖶 × AGW)𝖤𝗑𝗂𝗍-law of T \ T x−1 is equivalent to GW. (This can also be seen directly:
for AGW-a.e. T , the 𝖲𝖱𝖶T -probability that (↔x,T) ∈ 𝖤𝗑𝗂𝗍 is positive, whence the (𝖲𝖱𝖶 ×
AGW)𝖤𝗑𝗂𝗍-law of T is equivalent to AGW. This gives that the (𝖲𝖱𝖶 × AGW)𝖤𝗑𝗂𝗍-law of
T \ T x−1 is equivalent to GW.)

Therefore, the preceding natural factor of the induced measure-preserving system�
𝖤𝗑𝗂𝗍, (𝖲𝖱𝖶 × AGW)𝖤𝗑𝗂𝗍, S𝖤𝗑𝗂𝗍�

obtained by mapping (↔x,T) 7→ 

t(k) \ t(k)x′k−1

�
k≥0, where t(k) := (T , x ′

k
) and x ′−1 := x−1, is a

𝖧𝖠𝖱𝖬-stationary Markov chain on trees with a stationary measure µ𝖧𝖠𝖱𝖬 equivalent to GW.
The fact that 𝖧𝖠𝖱𝖬 × µ𝖧𝖠𝖱𝖬 is ergodic follows from our general result on ergodicity,

Proposition 17.17. Ergodicity implies that µ𝖧𝖠𝖱𝖬 is the unique 𝖧𝖠𝖱𝖬-stationary measure
absolutely continuous with respect to GW. ◀
Since increases in distance from the root can be considered to come only at exit points, it

is natural that the speed is also the probability of being at an exit point:

Proposition 17.25. The measure of the exit set is the speed:

(𝖲𝖱𝖶 × AGW)(𝖤𝗑𝗂𝗍) = E
�(Z1 − 1)/(Z1 + 1)� .

▷ Exercise 17.11.
Prove Proposition 17.25.

Given disjoint trees T1,T2, define [[T1 •−T2]] to be the tree rooted at root(T1) formed by
joining root(T1) and root(T2) by an edge. Define T∆ := [[∆ •−T]], where ∆ is a single vertex
not in T , to be thought of as representing the past. Let γ(T) be the probability that simple
random walk started at ∆ never returns to ∆:

γ(T) := 𝖲𝖱𝖶T∆ [∀n > 0 xn ̸= ∆] .
This is also equal to 𝖲𝖱𝖶[[T•−∆]][∀n > 0 xn ̸= ∆]. Let C (T) denote the effective conductance
of T from its root to infinity when each edge has unit conductance. Clearly,

γ(T) =
C (T)

1 + C (T) = C (T∆) .

The notation γ is intended to remind us of the word “conductance.”
The next proposition is intuitively obvious but crucial.
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Proposition 17.26. For GW-a.e. T , we have 𝖧𝖠𝖱𝖬T ̸= 𝖴𝖭𝖨𝖥T .

Proof. In view of the zero-one law, Proposition 17.16, we need merely show that we do not
have 𝖧𝖠𝖱𝖬T = 𝖴𝖭𝖨𝖥T a.s. Now, for any tree T and any x ∈ T with |x | = 1, we have

𝖧𝖠𝖱𝖬T (x) =
γ(T x)∑
|y |=1 γ(Ty) ,

whereas

𝖴𝖭𝖨𝖥T (x) =
W̃ (T x)∑
y=1 W̃ (Ty) .

Therefore, if 𝖧𝖠𝖱𝖬T = 𝖴𝖭𝖨𝖥T , the vector⟨
γ(T x)
W̃ (T x)

⟩
|x |=1

(17.10)

is a multiple of the constant vector 1. For Galton-Watson trees, the components of this vector
are i.i.d. with the same law as that of γ(T)/W̃ (T). The only way (17.10) can be a (random)
multiple of 1, then, is for γ(T)/W̃ (T) to be a constant GW-a.s. But γ < 1 and, since Z1 is not
constant, W̃ is obviously unbounded, so this is impossible. ◀

Taking stock of our preceding results, we obtain our main theorem:

Theorem 17.27. The dimension of harmonic measure is GW-a.s. less than log m. The
Hölder exponent exists a.s. and is constant.

Proof. The hypotheses of Theorem 17.22 are shown to hold in Theorem 17.24 and Proposi-
tion 17.26. The constancy of the Hölder exponent follows from (17.6). ◀

No moment assumptions (other than m < ∞) were used in this proof.

Question 17.28. We saw in Section 15.4 that the dimension of visibility measure is a.s.
E[log Z1]. In the direction of comparison opposite to that of Theorem 17.27, is this a lower
bound for dim𝖧𝖠𝖱𝖬T ? This question, due to Ledrappier (personal communication, 1994),
was posed in Lyons, Pemantle, and Peres (1995b, 1997). A visual comparison of harmonic
measure, uniform measure (these two calculated based on generation 19, not the actual limit),
and visibility measure appears in Figure 17.4.

Question 17.29. For 0 ≤ 𝜆 < m, is the dimension of harmonic measure for 𝖱𝖶𝜆 on a
Galton-Watson tree T monotonic increasing in the parameter 𝜆? Is it strictly increasing? This
was asked by Lyons, Pemantle, and Peres (1997).

▷ Exercise 17.12.
Suppose that p0 > 0. Show that given nonextinction, the dimension of harmonic measure is
a.s. less than log m.
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Figure 17.4. Generations 0 to 19 of a typical Galton-Watson tree for f (s) = (s + s2)/2 displayed
according to harmonic, uniform, and visibility measure, respectively. This means that if Θ is the flow
rule, then the vertex x is centered in an interval of length ΘT (x), where the total width of the figure is 1.
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17.9 Confinement of Simple Random Walk

We now demonstrate how the drop in dimension of harmonic measure, proved in the
preceding section, implies the confinement of simple random walk to a much smaller subtree.
Given a tree T and positive integer n, recall that Tn denotes the set of the vertices of T at

distance n from the root and |Tn | is the cardinality of Tn. Write PT for the probability measure
associated to simple random walk ⟨Xn⟩ on T starting at the root.

Theorem 17.30. For GW-almost all trees T and for every ϵ ∈ (0, 1), there is a subtree
T(ϵ) ⊆ T such that

PT
�
Xn ∈ T(ϵ) for all n ≥ 0

�
≥ 1 − ϵ (17.11)

and
1
n

log |T(ϵ)n | → d , (17.12)
where d < log m is the dimension of 𝖧𝖠𝖱𝖬T . Furthermore, any subtree T(ϵ) satisfying
(17.11) must have growth

lim inf
1
n

log |T(ϵ)n | ≥ d . (17.13)
Proof. Let nk := 1 + max{n ; |xn | = k} be the kth exit epoch and D(x, k) be the set of
descendants y of x with |y | ≤ |x | + k. We will use three sample path properties of simple
random walk on a fixed tree, T :

Speed: l := lim
n→∞

|Xn |
n

> 0 PT -a.s. (17.14)

Hölder exponent: lim
k→∞

1
k

log
1

𝖧𝖠𝖱𝖬T (Xnk
) = d PT -a.s. (17.15)

Neighborhood size: ∀δ > 0 lim sup
n→∞

log
�
D(Xn, δ|Xn |)�

|Xn | ≤ δ log m PT -a.s. (17.16)

We have already shown (17.14) and (17.15). In fact, the limit in (17.16) exists and equals the
right-hand side for GW-a.e. T , but this won’t be needed.
To see that (17.16) holds for GW-a.e. tree, recall from the proof of Proposition 17.12 that

the fresh points are the vertices visited for the first time in a bi-infinite random walk:

𝖥𝗋𝖾𝗌𝗁 :=
�(↔x,T) ∈ 𝖯𝖺𝗍𝗁𝗌𝖨𝗇𝖳𝗋𝖾𝖾𝗌 ; ∀n < 0 xn ̸= x0

	
.

Denote by yk the kth fresh point visited by simple random walk. Then the statement that
(17.16) holds for GW-a.e. T can be written as

∀δ > 0 lim sup
k→∞

|yk |−1 log
�
D(yk , δ|yk |)� ≤ δ log m 𝖲𝖱𝖶 ×GW-a.s. ,

and since |yk |/k has a positive a.s. limit, this is equivalent to

∀δ∗ > 0 lim sup
k

k−1 log |D(yk , δ∗k)| ≤ δ∗ log m 𝖲𝖱𝖶 ×GW-a.s. (17.17)
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Now the random variables |D(yk , δ∗k)| are identically distributed, though not independent.
Indeed, the descendant subtree of yk has the law of GW. Since the expected number of
descendants of yk at generation |yk | + j is m j for every j, we have by Markov’s inequality
that for every δ′ > 0,

(𝖲𝖱𝖶 ×GW)� |D(yk , δ∗k)| ≥ mδ′k
�
≤ m−δ

′k
δ∗k∑
j=0

m j .

If δ′ > δ∗, then the right-hand side decays exponentially in k. The Borel-Cantelli lemma thus
yields (17.17), hence (17.16).
Now that we have (17.14)–(17.16), we are ready to prove (17.11)–(17.13). Fix T satisfying

(17.14)–(17.16). Then (17.15) alone implies (17.13) (Exercise 17.13).
Applying Egorov’s theorem to the two almost sure asymptotics (17.14) and (17.15), we

see that for each ϵ > 0, there is a set of paths Aϵ with PT (Aϵ ) > 1 − ϵ and such that the
convergence in (17.14) and (17.15) is uniform on Aϵ . Thus, we can choose ⟨δn⟩ decreasing
to 0 such that on Aϵ , for all k and all n,

𝖧𝖠𝖱𝖬T (xnk
) > e−k(d+δk ) and

����� |xn |
nl
− 1

����� < δn . (17.18)

Now, since δn is eventually less than any fixed δ, (17.16) implies that

lim sup
n→∞

|xn |−1 log
�
D(xn, 3δ|xn | |xn |)� = 0 a.s.,

so applying Egorov’s theorem once more and replacing Aϵ by a subset thereof (which we
continue to denote Aϵ ), we may assume that there exists a sequence ⟨ηn⟩ decreasing to 0 such
that �

D(xn, 3δ|xn | |xn |)� ≤ e|xn |ηn for all n (17.19)
on Aϵ .

Define F(ϵ )
0 to consist of all vertices v ∈ T such that either δ|v| ≥ 1/3 or both

𝖧𝖠𝖱𝖬T (v) ≥ e−|v|(d+δ|v |) and
�
D(v, 3δ|v| |v |)� ≤ e|v|η|v | . (17.20)

Finally, let
F(ϵ ) :=

∪
v∈F (ϵ )

0

D(v, 3δ|v| |v |)

and denote by T(ϵ) the component of the root in the subforest of T induced by F(ϵ ). Since the
number of vertices v ∈ Tn satisfying 𝖧𝖠𝖱𝖬T (v) ≥ e−|v|(d+δ|v |) is at most en(d+δn ), the bounds
(17.20) yield for sufficiently large n that

|T(ϵ)n | ≤
∑
v∈F (ϵ )

0 ,

n−3δ|v | |v|≤|v|≤n

|D(v, 3δ|v| |v |)| ≤
n∑

k=1

ek(d+δk )ekηk = en(d+αn) ,
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where limn→∞ αn = 0. Hence

lim sup
1
n

log |T(ϵ)n | ≤ d .

In combination with the lower bound (17.13), this gives (17.12).
It remains to establish that the walk stays inside F(ϵ ) forever on the event Aϵ , since that will

imply that the walk is confined to T(ϵ) on this event. The points visited at exit epochs nk are
in F(ϵ )

0 by the first part of (17.18) and (17.19). Fix a path ⟨x j⟩ in Aϵ and a time n, and suppose
that the last exit epoch before n is nk , that is, nk ≤ n < nk+1. Denote by N := nk+1 − 1 the
time preceding the next exit epoch, and observe that xN = xnk

. If δn ≥ 1/3, then xn is in F(ϵ )
0

since δ|xn | ≥ δn, so consider the case that δn < 1/3. By the second part of (17.18), we have
|xn |
nl

< 1 + δn and
|xN |
nl
≥ |xN |

N l
> 1 − δN ≥ 1 − δn .

Dividing these inequalities, we find that

|xn | < 1 + δn
1 − δn

|xN | ≤ (1 + 3δn)|xN | .
It follows that xn is in D

�
xnk

, 3δ|xnk | |xnk
|�. Since xnk

∈ F(ϵ )
0 , we arrive at our desired

conclusion that xn ∈ F(ϵ ). ◀

▷ Exercise 17.13.
Prove (17.13).

17.10 Numerical Calculations
Our primary aim in this section is to compute the dimension of harmonic measure, d,

numerically. Recall the notation γ(T) and C (T) of Section 17.8. Note that∑
|x |=1

γ(T x) = C (T) =
γ(T)

1 − γ(T) ,

whence for |x | = 1,

𝖧𝖠𝖱𝖬T (x) =
γ(T x)∑
|y |=1 γ(Ty) = γ(T x)�1 − γ(T)�/γ(T) . (17.21)

Thus, we have

d = 𝖤𝗇𝗍𝖧𝖠𝖱𝖬(µ𝖧𝖠𝖱𝖬) =
∫

log
1

𝖧𝖠𝖱𝖬T (ξ1) d𝖧𝖠𝖱𝖬 × µ𝖧𝖠𝖱𝖬(ξ,T)

=
∫

log
γ(T)

γ(T ξ1 )�1 − γ(T)� d𝖧𝖠𝖱𝖬 × µ𝖧𝖠𝖱𝖬(ξ,T)

=
∫

log
1

1 − γ(T) dµ𝖧𝖠𝖱𝖬(T) =
∫

log
�
1 + C (T)� dµ𝖧𝖠𝖱𝖬(T)

by stationarity and Lemma 17.20, provided we show that the final integral here is finite; see
Exercise 17.14.
To compute such an integral, we use the following expression for the Radon-Nikodým

derivative of the 𝖧𝖠𝖱𝖬-stationary Galton-Watson measure µ𝖧𝖠𝖱𝖬 with respect to GW.
Denote by R(T) the effective resistance of T from its root to infinity.



584 Chap. 17: Random Walks on Galton-Watson Trees

Proposition 17.31. The Radon-Nikodým derivative of µ𝖧𝖠𝖱𝖬 with respect to GW is

dµ𝖧𝖠𝖱𝖬
dGW

(T) =
1
l

∫
1

1 + R(T) + R(T ′) dGW(T ′) . (17.22)

Proof. Since the 𝖲𝖱𝖶 × AGW-law of T \ T x−1 is GW, we have, for every event A,

GW(A) = (𝖲𝖱𝖶 × AGW)[T \ T x−1 ∈ A]

and
µ𝖧𝖠𝖱𝖬(A) = (𝖲𝖱𝖶 × AGW)[T \ T x−1 ∈ A | 𝖤𝗑𝗂𝗍] .

Thus, using Proposition 17.25, we have

dµ𝖧𝖠𝖱𝖬
dGW

(t) =
(𝖲𝖱𝖶 × AGW)[T \ T x−1 = t | 𝖤𝗑𝗂𝗍]

(𝖲𝖱𝖶 × AGW)[T \ T x−1 = t]
=

1
l
(𝖲𝖱𝖶 × AGW)[𝖤𝗑𝗂𝗍 | T \ T x−1 = t] .

Of course, the event that T \ T x−1 = t has probability 0; we should consider events An := [t]n,
the set of rooted trees whose first n levels agree with those of t, and then take n → ∞. However,
we will continue to calculate more informally. Note that on 𝖤𝗑𝗂𝗍, we have x−1 = (x−∞)1.
Thus,

dµ𝖧𝖠𝖱𝖬
dGW

(t) =
1
l
(𝖲𝖱𝖶 × AGW)�→x ⊂ t and x−∞ /∈ ∂t

�
T \ T x−1 = t

�
. (17.23)

Recall that under 𝖲𝖱𝖶T ,
←x and →x are independent simple random walks starting at root(T).

For a measure µ on trees, let [[T1 •−µ]] denote the law of [[T1 •−T2]] when T2 has the law of µ;
and similarly for other notation. For example, the (𝖲𝖱𝖶×AGW | T \T x−1 = t)-law of T x−1 is
GW, whence the (𝖲𝖱𝖶×AGW | T \T x−1 = t)-law of T is [[t •−GW]]. Since the conditioning
in (17.23) forces x−1 /∈ t, we have

dµ𝖧𝖠𝖱𝖬
dGW

(t) =
1
l
γ(t)

∫
𝖧𝖠𝖱𝖬[[T ′•−t]](∂T ′) dGW(T ′)

=
γ(t)
l

∫
C (T ′)

γ(t) + C (T ′) dGW(T ′)

=
1
l

∫
1

γ(t)−1 + C (T ′)−1 dGW(T ′)

=
1
l

∫
1

1 + R(t) + R(T ′) dGW(T ′) . ◀

▷ Exercise 17.14.
Show that

∫
log

�
1 + C (T)� dµ𝖧𝖠𝖱𝖬 < ∞.
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Of course, it follows that

l =
∫∫

1
1 + R(T) + R(T ′) dGW(T) dGW(T ′) ;

the right-hand side may be thought of as the [[GW •−GW]]-expected effective conductance
from −∞ to +∞, where the boundary of one of the GW trees is −∞ and the boundary of the
other is +∞.
The next computational step is to find the GW-law of R(T), or, equivalently, of γ(T).

Since

γ(T) =
C (T)

1 + C (T) =
∑

|x |=1 γ(T x)
1 +

∑
|x |=1 γ(T x) , (17.24)

we have, for s ∈ (0, 1),

γ(T) ≤ s ⇐⇒
∑
|x |=1

γ(T x) ≤ s
1 − s

.

Since γ(T x) are i.i.d. under GW with the same law as γ, the GW-c.d.f. Fγ of γ satisfies

F(s) =

∑

k pkF∗k
( s

1 − s

)
if s ∈ (0, 1),

0 if s ≤ 0,
1 if s ≥ 1.

(17.25)

Theorem 17.32. The functional equation (17.25) has a unique solution, Fγ. Define the
operator on c.d.f.’s

K : F 7→
∑
k

pkF∗k
( s

1 − s

) �
s ∈ (0, 1)� .

For any initial c.d.f. F with F(0) = 0 and F(1) = 1, we have weak convergence under iteration
to Fγ:

lim
n→∞

K n(F) = Fγ .

For a proof, see Lyons, Pemantle, and Peres (1997).
Theorem 17.32 provides a method of calculating Fγ. It is not known that Fγ has a density,

but calculations support a conjecture that it does. In the case that the offspring distribution
is bounded and always at least 2, Perlin (2001) proved this conjecture and, in fact, that the
effective conductance has a bounded density. Some graphs of the apparent GW-density of
γ(T) for certain progeny distributions appear in Figures 17.5–17.7. They were calculated by
iterating a discrete version of the operator K many times.
These density graphs reflect the stochastic self-similarity of the Galton-Watson trees.

Consider, for example, Figure 17.5. Roughly speaking, the peaks represent the number of
generations with no branching. For example, note that the full binary tree has conductance 1,
whence its γ value is 1/2. Thus, the tree with one child of the root followed by the full binary
tree has conductance 1/2 and γ value 1/3. The wide peak at the right of Figure 17.5 is thus
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Figure 17.5. The apparent GW-density of γ(T) for f (s) = (s + s2)/2.

due entirely to those trees that begin with two children of the root. The peak to its left, roughly
lying over 0.29, is due, at first approximation, to an unspecified number of generations without
branching, while the nth peak to the left of it is due to n generations without branching (and
an unspecified continuation). Of course, the next level of approximation deals with further
resolution of the peaks; for example, the central peak over 0.29 is actually the sum of two
nearby peaks.
Numerical calculations (still for the case p1 = p2 = 1/2) give the mean of γ(T) to be about

0.297, the mean of C (T) to be about 0.44, and the mean of R(T) to be about 2.76. This last
can be compared with the mean energy of the equally-splitting flow 𝖵𝖨𝖲T , which is exactly 3:

▷ Exercise 17.15.
Show that the mean energy of 𝖵𝖨𝖲T is

�
1 − E[1/Z1]�−1 − 1.

In terms of Fγ, we have

d = −
∫

log
�
1 − γ(T)� dµ𝖧𝖠𝖱𝖬(T) = −1

l

∫ 1

s=0

∫ 1

t=0

log (1 − s)
s−1 + t−1 − 1

dFγ(t) dFγ(s) .

In the case p1 = p2 = 1/2, it turns out that the dimension of harmonic measure is about
0.38, in other words, about log 1.47, which should be compared with the dimensions of
visibility measure, log

√
2, and of limit uniform measure, log 1.5. We can also calculate that

the mean number of children of the vertices visited by a 𝖧𝖠𝖱𝖬T path, which is the same as
the µ𝖧𝖠𝖱𝖬-mean degree of the root, is about 1.58. This is about halfway between the average
seen by the entire walk (and by simple forward walk), namely, exactly 1.5, and the average
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Figure 17.6. The apparent GW-density of γ(T) for f (s) = (s2 + s3)/2.
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Figure 17.7. The apparent GW-density of γ(T) for f (s) = (s + s2 + s3)/3.

seen by a 𝖴𝖭𝖨𝖥T path, 5/3. This last calculation comes from Exercise 17.9 that a 𝖴𝖭𝖨𝖥T -path
has the law of ĜW∗; from Section 12.1, we know that this implies that the number of children
of a vertex on a 𝖴𝖭𝖨𝖥T -path has the law of the size-biased variable Ẑ1.
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17.11 Notes

Our development of the theory of Markov chains on general state spaces is based on Kifer (1986),
pp. 19–22; for another approach, see Rosenblatt (1971), especially pp. 96–97. Good references for
ergodic theory include Petersen (1983) and Walters (1982).

Theorem 17.7 also holds when “Cayley graph” is replaced by “transitive unimodular graph” and
“translation-invariant” is replaced by “automorphism-invariant.” The proof uses the subject of Chapter 8,
the mass-transport principle. In fact, Lemma 17.5 and Theorem 17.7 are special cases of unimodular
random rooted graphs, as described briefly in Section 8.9; see Aldous and Lyons (2007) for details,
where there is also a simpler proof of Theorem 17.4 under the assumption of global reversibility, which
is equivalent to unimodularity of an associated probability measure (see Theorems 4.9 and 6.2 there).

In Section 17.3, we gave a short proof that simple random walk on infinite Galton-Watson trees is a.s.
transient. This result was first proved by Grimmett and Kesten (1983), Lemma 2. See also Exercises
5.44, 17.15, and 17.34. For another proof that is direct and short, see Collevecchio (2006).

Sections 17.3–17.10 are based on Lyons, Pemantle, and Peres (1995b, 1996a). Unless otherwise
attributed, all results here on Galton-Watson trees are from those papers, especially the former.

Since random walk on a random spherically symmetric tree is essentially the same as a special case
of random walk in a random environment (RWRE) on the nonnegative integers, we may compare the
slowing of speed on Galton-Watson trees to the fact that randomness also slows down random walk for
the general RWRE on the integers (Solomon, 1975).

In Proposition 17.17, µ can be an infinite stationary measure. The fact that W̃ ·GW is 𝖴𝖭𝖨𝖥-stationary
(Proposition 17.19) was also observed by Hawkes (1981), p. 378. Related ideas occur in Joffe and
Waugh (1982).

An analogue to Theorem 17.30 for critical Galton-Watson trees conditioned to survive for many
generations is given by Curien and Le Gall (2016). A notable aspect in that case is that the dimension
drop is the same for all offspring distributions with finite variance. This universality ultimately arises
from a universal scaling limit of the reduced subtrees of critical Galton-Watson trees, as shown by
Fleischmann and Siegmund-Schultze (1977). This, in turn, is a consequence of the result of Zubkov
(1975) given in Exercise 12.21.

Proposition 17.31 has not appeared in print before, though it was alluded to in Lyons, Pemantle, and
Peres (1995b).

Theorems 17.13, 17.14, and 17.15 are applied by Berestycki, Lubetzky, Peres, and Sly (2015) to
determine the mixing time of random walk on a random graph started at a typical vertex.

Homesick random walks 𝖱𝖶𝜆 on Galton-Watson trees have been studied as well but are more difficult
to study than simple random walks because no explicit stationary measure is known. Nevertheless,
Lyons, Pemantle, and Peres (1996a) showed that the speed is a positive constant a.s. when 1 < 𝜆 < m.
See also Exercise 17.37 for the case 𝜆 < 1. The critical case 𝜆 = m has been studied by Peres and
Zeitouni (2008), who found a stationary measure. Ben Arous, Hu, Olla, and Zeitouni (2013) proved that
the derivative (in 𝜆) of the speed at 𝜆 = m is equal to −(m2 − m)/�2E[L2] − 2m

�
provided that p0 = 0

and E[sL ] < ∞ for some s > 1. A stationary measure that is somewhat explicit was found for all 𝜆 in
the positive-speed regime by Aı̈dékon (2014).

Other works about random walks on Galton-Watson trees include Kesten (1986), Aldous (1991), Piau
(1996), Chen (1997), Piau (1998), Pemantle and Stacey (2001), Dembo, Gantert, Peres, and Zeitouni
(2002), Piau (2002), Dembo, Gantert, and Zeitouni (2004), Dai (2005), Collevecchio (2006), Chen and
Zhang (2007), Aı̈dékon (2008), Croydon and Kumagai (2008), Croydon (2008), Aı̈dékon (2010), Faraud
(2011), Faraud, Hu, and Shi (2012), Ben Arous, Fribergh, Gantert, and Hammond (2012), and Gantert,
Müller, Popov, and Vachkovskaia (2012). However, the following questions from Lyons, Pemantle, and
Peres (1996a, 1997) remain open:
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Question 17.33. Is the speed of 𝖱𝖶𝜆 on Galton-Watson trees monotonic decreasing in the parameter 𝜆
when p0 = 0?

Ben Arous, Fribergh, and Sidoravicius (2014) and Aı̈dékon (2013) have made some progress on this
question.

Question 17.34. Is the speed of 𝖱𝖶𝜆 a real-analytic function of 𝜆 ∈ (0,m) for Galton-Watson trees T?

Other uses of some of the ideas in Section 17.5 appear in Furstenberg and Weiss (2003), who show
“tree-analogues” of theorems of van der Waerden and Szemerédi on arithmetic progressions.

It was shown in Theorem 17.13 that the speed of simple random walk on a Galton-Watson tree
with mean m is strictly smaller than the speed of simple random walk on a deterministic tree where
each vertex has m children (m ∈ �). Since we have also shown that simple random walk is essentially
confined to a smaller subtree of growth ed , it is natural to ask whether its speed is, in fact, smaller than
(ed − 1)/(ed + 1). This is true and was shown by Virág (2000b).

For a treatment of classical harmonic measure, see Garnett and Marshall (2005).

17.12 Collected In-Text Exercises
17.1. Show that Lemma 17.1 may not be true if µ is an infinite stationary measure.

17.2. Let G = (𝖵, 𝖤) be a finite connected graph. For x ∈ 𝖵, let Tx be the universal cover of G based
at x (see p. 82 of Section 3.3). Define

µ
�[T , o]� :=

1
2|𝖤|

∑�
deg x ; x ∈ 𝖵, [Tx , x] = [T , o]	 .

Show that µ is an 𝖲𝖱𝖶-stationary ergodic probability measure on [T ].
17.3. Show that if µ is an ergodic 𝖣𝖲𝖱𝖶-stationary probability measure on the space of rooted

trees T such that µ-a.e. tree is infinite, then the rate of escape of simple random walk (not delayed) is
𝖲𝖱𝖶 × µ-a.s.

lim
n→∞

|Xn |
n

= 1 − 2∫
degT (o) dµ(T , o) .

17.4. Use Corollary 17.8 to prove that for a translation-invariant random forest on a Cayley graph,
there are a.s. no isolated ends in trees with an infinite number of ends. (An end is isolated if there is a
ray ⟨x0, x1, . . .⟩ in its equivalence class such that no other ray begins ⟨x0, x1⟩.)

17.5. Show that the Markov chain 𝖲𝖱𝖶 × AGW is stationary.

17.6. Show that the same formula (17.4) holds for the speed of simple random walk on GW-a.e. tree.

17.7. Prove (17.5).

17.8. Show that the Hausdorff dimension of harmonic measure is a.s. constant.

17.9. The Markov chain of Proposition 17.19 is closely connected to the size-biased Galton-Watson
trees of Section 12.1. Show that in case E[Z1 log Z1] < ∞, the distribution of a 𝖴𝖭𝖨𝖥T -path is ĜW∗.

17.10. Prove Gibbs’s inequality.

17.11. Prove Proposition 17.25.

17.12. Suppose that p0 > 0. Show that given nonextinction, the dimension of harmonic measure is
a.s. less than log m.
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17.13. Prove (17.13).

17.14. Show that
∫

log
�
1 + C (T)� dµ𝖧𝖠𝖱𝖬 < ∞.

17.15. Show that the mean energy of 𝖵𝖨𝖲T is
�
1 − E[1/Z1]�−1 − 1.

17.13 Additional Exercises
17.16. Since simple random walk on a graph is a reversible Markov chain, the Markov chain on
[T ] induced by simple random walk is locally reversible in being reversible on each communicating
class of states. However, a stationary measure µ is not necessarily globally reversible, that is, it is not
necessarily the case that for Borel sets A, B ⊆ [T ],∫

A

p
�[T , o], B

�
dµ(T , o) =

∫
B

p
�[T , o], A

�
dµ(T , o) .

Give such an example, that is, a stationary measure that is not globally reversible. On the other hand,
prove that every globally reversible µ is stationary.

17.17. Show that if µ is a probability measure on rooted trees that is stationary for simple random
walk, then

∫
A♢ degT (o)/degT♢ (o) dµ(T , o) < ∞. See the proof of Theorem 17.4 for the notation.

17.18. Deduce from Corollary 17.9 the following: if G is an amenable group, then every tree in a
translation-invariant random forest has at most two ends a.s.

17.19. For a rooted tree (T , o), define T∆ to be the tree obtained by adding an edge from o to a new
vertex ∆ and rooting at ∆. This new vertex ∆ is thought of as representing the past. Let γ(T) be the
probability that simple random walk started at ∆ never returns to ∆:

γ(T) := 𝖲𝖱𝖶T∆ [∀n > 0 Xn ̸= ∆] .

Let C (T) denote the effective conductance of T from its root to infinity when each edge has unit
conductance. The series law gives us that

γ(T) =
C (T)

1 + C (T) = C (T∆) .

The notation γ is intended to remind us of the word “conductance.” Compare the remark following
Corollary 5.25. For (↔x,T) ∈ 𝖯𝖺𝗍𝗁𝗌𝖨𝗇𝖳𝗋𝖾𝖾𝗌, write N(↔x,T) := |{n ; xn = x0}| for the number of visits to
the root of T . For k ∈ �, let Dk (↔x,T) := { j ∈ � ; deg x j = k + 1}.

(a) Show that

lim
n→∞

1
2n + 1

�
Dk (↔x,T) ∩ [−n, n]� = pk 𝖲𝖱𝖶 × AGW-a.s.

This means that the proportion of time that simple random walk spends at vertices of degree k + 1 is pk .
(b) For i ≥ 0, let γi be i.i.d. random variables with the distribution of the GW-law of γ(T). Let

Γk := E
[ k + 1
γ0 + · · · + γk

]
.
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Show that ∫
N(↔x ,T) d𝖲𝖱𝖶 × AGW

�(↔x,T) � deg x0 = k + 1
�

= 2Γk − 1

and that Γk is decreasing in k. What is limk→∞ Γk?
(c) The result in (a) says that there is no biasing of visits to a vertex according to its degree, just as

Theorem 17.11 says. Yet the result in (b) indicates that there is indeed a biasing. How can these results
be compatible?

(d) What is ∫
N(↔x,T) d𝖲𝖱𝖶 × AGW

�(↔x,T) � deg x0 = k + 1, 𝖥𝗋𝖾𝗌𝗁
�

?

17.20. Show that a labeled tree chosen according to a nondegenerate GW measure a.s. has no graph
automorphisms other than the identity map.

17.21. Show that the hypothesis of Proposition 17.16 is needed. You may want to use two flow rules
that both follow a 2-ray when it exists (see Exercise 17.22) but do different things otherwise.

17.22. Give an example as follows of a flow rule Θ with a Θ-stationary measure that is absolutely
continuous with respect to GW but whose associated Markov chain is not ergodic. Call a ray ξ ∈ ∂T
an n-ray if every vertex in the ray has exactly n children, and write T ∈ An if ∂T contains an n-ray.
Since the root must have n children if there is an n-ray, the sets An are pairwise disjoint. Consider
the Galton-Watson process with p3 := p4 := 1/2. Show that GW(An) > 0 for n = 3, 4. Define ΘT to
choose equally among all children of the root on (A3 ∪ A4)c and to choose equally among all children
of the root belonging to an n-ray when T ∈ An . Show that GWAn is Θ-stationary for both n = 3, 4,
whence the Θ-stationary measure (GWA3 + GWA4 )/2 gives a nonergodic Markov chain.

17.23. Let T be the Fibonacci tree of Exercise 13.28. Show that the dimension of harmonic measure
for 𝖱𝖶𝜆 on T is

1 +
√
𝜆 + 1

2 +
√
𝜆 + 1

log (1 +
√
𝜆 + 1 ) −

√
𝜆 + 1

(2 +
√
𝜆 + 1 ) log

√
𝜆 + 1 .

17.24. Identify the binary tree with the set of all finite sequences of 0s and 1s. Let the conductance
of an edge be x + 1 when its vertex farthest from the root ends in x, where x ∈ {0, 1}. Calculate the
dimension of harmonic measure of the corresponding random walk.

The following sequence of exercises, 17.25–17.33, treats the ideas of Furstenberg (1970) that
inspired those of Section 17.5. We adopt the setting and notation of Section 15.5. In particular, fix an
integer r and let T be the r-ary tree.

17.25. Let U be the space of unit flows on T. Give U a natural compact topology.

17.26. A Markov chain on U is called canonical if it has transition probabilities p(θ, θx ) = θ(x)
for |x | = 1. Any Borel probability measure µ on U can be used as an initial distribution to define a
canonical Markov chain on U , denoted 𝖬𝖺𝗋𝗄𝗈𝗏(µ). Regard 𝖬𝖺𝗋𝗄𝗈𝗏(µ) as a Borel probability measure
on path space U ∞ (which has the product topology). Show that the set of canonical Markov chains on
U is weak∗-compact and convex.

17.27. Let S be the left shift on U ∞. For a probability measure µ on U , let 𝖲𝗍𝖺𝗍(µ) be the set of
weak∗-limit points of

1
N

N−1∑
n=0

Sn𝖬𝖺𝗋𝗄𝗈𝗏(µ) .

Show that 𝖲𝗍𝖺𝗍(µ) is nonempty and consists of stationary canonical Markov chains.
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17.28. Let f be a continuous function on U ∞, µ be a probability measure on U , and 𝜈 ∈ 𝖲𝗍𝖺𝗍(µ).
Show that

∫
f d𝜈 is a limit point of the numbers

1
N

N−1∑
n=0

∫ ∑
|x |=n

θ(x)
∫

f (θx , θx1 , θx2 , . . .) dθx (x1, x2, . . .) dµ(θ) ,

where we identify U with the set of Borel probability measures on ∂T.

17.29. For any probability measure µ on U , define its entropy as 𝖤𝗇𝗍(µ) :=
∫

F(θ) dµ(θ), where

F(θ) :=
∑
|x |=1

θ(x) log
1
θ(x) .

Define this also to be the entropy of the associated Markov chain 𝖬𝖺𝗋𝗄𝗈𝗏(µ). Show that 𝖤𝗇𝗍(µ) =∫
H d𝖬𝖺𝗋𝗄𝗈𝗏(µ), where

H(θ, θx1 , θx2 , . . .) := log
1

θ(x1) .

Show that if 𝜈 ∈ 𝖲𝗍𝖺𝗍(µ), then
∫

H d𝜈 is a limit point of the numbers

1
N

N−1∑
n=0

∫ ∑
|x |=n

θ(x) log
1
θ(x) dµ(θ) .

17.30. Suppose that the initial distribution is concentrated at a single unit flow θ0, so that µ = δθ0 .
Show that if, for all x with θ(x) ̸= 0, we have

α ≤ 1
|x | log

1
θ0(x) ≤ β ,

then for all 𝜈 ∈ 𝖲𝗍𝖺𝗍(µ), we have α ≤ 𝖤𝗇𝗍(𝜈) ≤ β.

17.31. Show that if 𝜈 is a stationary canonical Markov chain with initial distribution µ, then its entropy
is

𝖤𝗇𝗍(𝜈) = lim
N→∞

∫
1
N

∑
|x |=N

θ(x) log
1
θ(x) dµ(θ) .

17.32. Show that if 𝜈 is a stationary canonical Markov chain, then

lim
n→∞

1
n

log
1

θ(xn)

exists for almost every trajectory ⟨θx1 , θx2 , . . .⟩ and has expectation 𝖤𝗇𝗍(𝜈). If the Markov chain is
ergodic, then this limit is 𝖤𝗇𝗍(𝜈) a.s.

17.33. Show that if T is a tree of uniformly bounded degree, then there is a stationary canonical
Markov chain 𝜈 such that for almost every trajectory ⟨θ, θx1 , θx2 , . . .⟩, the flow θ is carried by a derived
tree of T and

lim
n→∞

1
n

log
1

θ(xn) = 𝖤𝗇𝗍(𝜈) = dim sup ∂T .
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Show similarly that there is a stationary canonical Markov chain ρ such that for almost every trajectory
⟨θ, θx1 , θx2 , . . .⟩, the flow θ is carried by a derived tree of T and

lim
n→∞

1
n

log
1

θ(xn) = 𝖤𝗇𝗍(ρ) ≤ dim inf ∂T .

17.34. Let T be a Galton-Watson tree without extinction. Suppose that E[L2] < ∞. Consider the
flow θ on T of strength W (T) given by θ(e(x)) := W (T x )/m|x |, in other words, the flow corresponding
to the measure W (T)𝖴𝖭𝖨𝖥T . Show that E[W 2] = 1 + Var(L)/(m − 1). Show that if 𝜆 < m, then
for the conductances c(e) := 𝜆−|e |, we have E

�
E c (θ)� = 𝜆E[W 2]/(m − 𝜆). Show that for these same

conductances, the expected effective conductance from the root to infinity is at least (m − 𝜆)/(𝜆E[W 2]).
Use that E

�
E c (θ)� < ∞ to give another proof that for every Galton-Watson tree of mean m > 1 (without

restriction on E[L2]), 𝖱𝖶𝜆 is transient a.s. given nonextinction for all 𝜆 < m.

17.35. Let µ be an 𝖲𝖱𝖶-stationary probability measure on the space of rooted trees T such that µ-a.e.
tree has at least three ends. Show that harmonic measure of simple random walk has positive Hausdorff
dimension µ-a.s. This gives another proof that µ-a.e. tree has branching number > 1.

17.36. Consider simple random walk on Galton-Watson trees, T . Define loop-erased simple random
walk as the limit x∞ of a simple random walk path →x . Show that the (expected) probability that the path
of a loop-erased simple random walk from the root of T does not intersect the path of an independent
(not loop-erased) simple random walk from the root of T is the speed E

�(Z1 − 1)/(Z1 + 1)�. Hence, by
Proposition 10.20, the chance that the root of T does not belong to the same tree as a uniformly chosen
neighbor in the wired uniform spanning forest on T is the speed E

�(Z1 − 1)/(Z1 + 1)�.
17.37. Suppose that p0 > 0. Let T be a Galton-Watson tree conditioned on nonextinction. Show that

the speed of 𝖱𝖶𝜆 is zero if 0 ≤ 𝜆 ≤ f ′(q).
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Comments on Exercises

Chapter 1

1.1. To show that every cover by open sets has a finite subcover, it suffices to consider covers
{Bx ; x ∈ W} by sets of the form in (1.3). Consider the vertices in T that are connected to the
root by a path that does not include any x ∈ W . These vertices form a subtree of T that, by
definition, contains no ray.

Chapter 2

2.1. (e) Use part (b).
(f) A proof of the well-known uniqueness of the stationary distribution is given in Exercise 2.43.

2.8. By symmetry, all vertices at a given distance from o have the same voltage. Therefore, they
can be identified without changing any voltages (or currents). This yields the graph � with
multiple edges and loops. We may remove the loops. We see that the parallel edges between
n − 1 and n are equivalent to a single edge whose conductance is Cn . These new edges are in
series.

2.10. The complete bipartite graph K4,4.

2.13. Use that the minimum occurs iff F is harmonic at each x ̸∈ A ∪ Z . Or, let i be the unit current
flow from A to Z and use the Cauchy-Schwarz inequality:∑

e∈𝖤1/2

dF(e)2c(e)R(A↔ Z) =
∑
e∈𝖤1/2

dF(e)2c(e)
∑
e∈𝖤1/2

i(e)2r(e)

≥
( ∑
e∈𝖤1/2

i(e)dF(e)
)2

=
(∑

x∈𝖵
d∗i(x)F(x)

)2

=
(∑
x∈A

d∗i(x)F(x)
)2

= 1 .

See Griffeath and Liggett (1982), Theorem 2.1 for essentially the same statement. The minimum
is the same even if we allow all F with F ≥ 1 on A and F ≤ 0 on Z .

2.14. Since {χe ; e ∈ 𝖤1/2} form an orthogonal basis of ℓ2
−(𝖤, r) and the norms of θn are bounded, it

follows that θn tend weakly to θ. Hence the norm of θ is at most lim infn E (θn). Furthermore,
as d∗θn(x) is the inner product of θn with the star at x, it converges to d∗θ.

2.15. (This is due to T. Lyons (1983).) Let U1,U2 be independent uniform [0, 1] random variables.
Take a path in W f that stays fairly close to the points

�
n,U1n,U2 f (n)� (n ≥ 1).

2.21. Let the successive intervals in�\S have lengths successive powers of 2, whereas the successive
intervals of S have lengths successive powers of 5. For more detailed analysis, see Benjamini,
Pemantle, and Peres (1996), Proposition 4.1.
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2.22. (This is due to Solomon (1975).) Use the Chung-Fuchs theorem when this expectation equals
0. The similar RWRE on� is a.s. recurrent when E

�
log A0 − log (1 − A0)� ≤ 0. See Lyons and

Pemantle (1992) for an extension to trees.

2.24. (a) Use the fact that



f (Xn)� is a submartingale.

2.26. Use Exercise 2.1.

2.28. This is called the Riesz decomposition. The decomposition also exists and is unique if instead
of f ≥ 0, we require G | f | < ∞; but we still have f ≥ 0.

2.29. The original proof is by Starr (1966). This presentation of it is taken from Norris, Peres, and
Zhai (2015).

2.30. (a) The events [Xk ∈ A and ∀ j > k X j /∈ A] are disjoint for k ≥ 0 and all have the same
probability.
(b) We may assume that our stationary sequence is bi-infinite. Shifting the sequence to the left
preserves the probability measure on sequences. Write Y := Xτ+

A
. We want to show that for

measurable B ⊆ A, we have P[Y ∈ B | X0 ∈ A] = µA(B). Write σ−A := sup{n ≤ −1 ; Xn ∈ A}.
A proof similar to that in (a) shows that P[σ−A < ∞ | X0 ∈ A] = 1. Now P[Y ∈ B, X0 ∈ A] =∑

n≥1 P[X0 ∈ A, τ+
A = n, Xn ∈ B]. By shifting the nth set here by n to the left, we obtain

P[Y ∈ B, X0 ∈ A] = ∑
n≥1 P[σ−A = −n, X0 ∈ B], which equals P[X0 ∈ B]. This gives (b).

The same method shows that shifting the entire sequence ⟨Xn⟩ to the left by τ+
A preserves the

measure given that X0 ∈ A.
(c) We give two proofs of the Kac lemma, but the second proof assumes that ⟨Xn⟩ is ergodic.
First, write σA := sup{n ≤ 0 ; Xn ∈ A}. We have E[τ+

A; X0 ∈ A] = ∑
k≥0 P[X0 ∈ A, τ+

A > k].
If we shift the kth set in this sum to the left by k, then we obtain the set where σA = −k,
whence E[τ+

A; X0 ∈ A] =
∑

k≥0 P[σA = −k] = 1.
Second, consider the asymptotic frequency that Xn ∈ A. By the ergodic theorem, this equals
P[X0 ∈ A] = µ(A) a.s. Let τkA be the time between the kth visit to A and the succeeding visit to
A. Decomposing the trajectory by visits to A, we see that the asymptotic frequency of visits to
A is also the reciprocal of the asymptotic average of τkA. Since the random variables ⟨τkA⟩ are
stationary when conditioned on X0 ∈ A by the first part of our proof, the ergodic theorem again
yields that the asymptotic average of τkA equals E[τ+

A | X0 ∈ A] a.s. Equating these asymptotics
gives the Kac lemma.

2.31. Express the equations for ic by Exercise 2.2. Cramer’s rule gives that ic is a rational function
of c.

2.32. The corresponding conductances are ch(x, y) := c(x, y)h(x)h(y).
2.33. (a) Let L be the diameter of G. Consider the random walk every L steps to see whether it has

retired. Compare to a geometric random variable.

2.36. Decompose the random walk run for infinite time and starting at x into the excursions between
visits to x. On each excursion, use (2.4) to calculate the probability that A is visited given that
A ∪ Z is visited. See Berger, Gantert, and Peres (2003) for details.
See Exercise 2.68 for an exact value of the left-hand side.

2.37. Solution 1. Let u be the first vertex among {x, y} that is visited by a random walk starting from
a. Before being absorbed on Z , the walk is as likely to make cycles at u in one direction as in
the other by reversibility. This leaves at most one net traversal of the edge between x and y.
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Solution 2. Let, say, v(x) ≥ v(y). Let Π :=
�[u, w] ; v(u) ≥ v(x), v(w) ≤ v(x)	. Then Π is a

cutset separating a from Z , whence
∑

[u,w]∈Π i(u, w) = 1 since Π \ {e ; i(e) = 0} is a minimal
cutset (see Section 3.1). Since i(u, w) ≥ 0 for all [u, w] ∈ Π, and since [x, y] ∈ Π, it follows
that i(x, y) ≤ 1.

2.38. Use Proposition 2.2.

2.39. Consider two networks that differ only by the conductance on (x, y). Couple the two corre-
sponding random walks so that one crosses from x to y at least as many times as the other; one
walk may wait for the other to return to x, for example. This extends to nonreversible chains.

2.41. Use the stationary distribution from Exercise 2.1.

2.42. This is due to Aldous and Fill (2002), Proposition 2.3, but is classical for τ = τ+
a .

2.43. This is well known. One proof of (a) and (b) is to apply the martingale convergence theorem to

f (Xn)�, where f is harmonic. For (c), apply (b) to the reversed chain.

2.45. (This is due to Kemeny and Snell (1960), Theorem 4.4.10.) Use Exercise 2.42(b) with
τ := inf{n ≥ N ; Xn = x}. Then let N → ∞.

2.46. Assume that Ea[τ+
a] < ∞ and use the ideas of Exercise 2.42 to show that there is a stationary

probability measure.

2.48. (The first part is due to Kemeny and Snell (1960), Theorem 4.4.10. This proof of constancy is
due to Doyle in 1983; see Doyle (2009). The second part is due to Broder and Karlin (1989).)
Show that f is harmonic by using Exercise 2.42(b). For the second part, use Exercise 2.45
(noting that f (x) = ∑

z π(z) f (z)). The common value of f is called the Kemeny constant of
the Markov chain; a formula for it follows from Exercise 2.45.

2.49. Use Fubini’s theorem. It suffices that
∑

e∈ξ r(e) = ∞ for every ray ξ.

2.50. (b) From part (a), we have

Pz [τA < τ+
z ]µ(x) = π(x)

∑
P

∏
e∈P

c(e)/ ∏
w∈P

π(w) = π(x)𝜈(x)/π(z) ,

where the sum is over paths P from z to x that visit z and x just once and do not visit A \ {x}.
2.54. This is known as Parrondo’s paradox, as it combines games that are not winning into a winning

game. See Parrondo (1996) and Harmer and Abbott (1999). For additional analysis, see Pyke
(2003) and Ethier and Lee (2009). For other aspects of turning fair games into unfair ones, see
Durrett, Kesten, and Lawler (1991).

2.55. (More such exercises can be found in Doyle and Snell (1984).) (a) 29/63, 29/35, 17/20.

2.59. Fix o ∈ 𝖵 and let ix be the unit current flow from x to o. Use R(u ↔ x) = ∥iu − ix ∥2
r ,

(2.21), or Exercise 2.62(g). This is equivalent to saying that the effective resistance metric
(see Exercise 2.67) has 1-negative type, that is,

∑
x ,y∈𝖵 R(x ↔ y)αxαy ≤ 0 whenever∑

x∈𝖵 αx = 0: see Schoenberg (1937, 1938). In this latter form, the result is due to Jorgensen
and Pearse (2008) (see Theorem 5.1). Moreover, equality holds in this inequality iff all αx = 0,
as equality is equivalent to

∑
x αx ix = 0; one then says that this metric has strict negative type.

Metric spaces of negative type include Euclidean spaces; this fact is useful in statistics (Székely
and Rizzo (2005a, 2005b, 2005b), Bakirov, Rizzo, and Székely (2006), Székely, Rizzo, and
Bakirov (2007), Lyons (2013a)) and in theoretical computer science (Deza and Laurent (1997),
Naor (2010)). By Corollary 2.21, we have that the commute-time metric has negative type.
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This, in fact, holds for Markov chains that are not necessarily reversible: see Doyle and Steiner
(2008) and Theorem 15 in Boley, Ranjan, and Zhang (2011).

2.60. Use superposition and E (i) = (i, dv) = (d∗i, v) = ( f , v).
2.62. (a) Use superposition of currents.

(g) Consider how ∆G acts on ℓ2(𝖵) = � ⊕ �⊥, where we identify �with the constant vectors.

2.63. (This is noted by Coppersmith, Doyle, Raghavan, and Snir (1993). See also Ponzio (1998).)
Use Exercise 2.62.

2.65. (This is due to Foster (1948).) Compute a trace. Such a proof is first due to Flanders (1974).
For other short proofs and an extension to nonreversible Markov chains, see Exercise 2.124 and
Exercise 4.29.

2.66. With general conductances, we have r(e)ie(e) ≥ r(e′)ie(e′).
2.67. There are several solutions. One involves superposition of unit currents, one from u to x and

one from x to w. One can also use Exercise 2.68 (which explains the left-hand side minus the
right-hand side) or Corollary 2.21.

2.68. There are many interesting proofs. For one, use Exercise 2.62. For another solution, see Tetali
(1991), who discovered this formula.
See Exercise 2.36 for an upper bound.

2.69. (a) Use superposition, Exercise 2.57. Also, use Exercise 2.68 to see that effective resistances
determine voltages. In the notation of Exercise 2.62, we have ∆G f = ∆G′ f on W .
(b) Use (a).
(c) Use Exercise 2.67 or part (d).
(d) Let G′′ be G′ with a loop at each x of conductance π(x)pW (x, x). Then the escape
probability from each x to each y is the same in G as in G′′, as is the sum of the conductances
around x, whence we deduce equality of effective resistances. But the loops do not affect the
effective resistances, whence the result. We remark that the network walk on G′′ is the walk on
G after inducing on W : see Exercises 2.30 and 6.66.
(e) Use (d). Alternatively, show that the voltages are the same on both copies of 𝖵(G′)
by showing that the current outflows on N via the new edges equal those to z in G. A
remarkable use of this transformation is in Caputo, Liggett, and Richthammer (2010). It is also
called the star-mesh transformation. It is due to Campbell (1911); the original star-triangle
transformation is due to Kennelly (1899).

2.70. Use that ∂i/∂r(e) is a flow with strength 0.

2.71. (a) The probability that the random walk leaves Gn before visiting a or z tends to 0 as n → ∞.
We may couple random walks Xk on Gn and Yk on G as follows. Start at X0 := Y0 := x.
Define Yk as the usual network random walk on G, stopped when it reaches {a, z}. Define
τ := inf{k ; Yk /∈ Gn}. For k < τ, let Xk := Yk , whereas for k ≥ τ, continue the random walk
Xk independently on Gn , stopped at {a, z}. Thus, vn(x) is the probability that Xk reaches a,
whereas v(x) is the probability that Yk reaches a. For large n, it is likely that τ = ∞, on which
event either both random walks reach a or neither does.
(b) In fact, in → i in norm.
(e) Use the coupling in (a) or use Exercise 2.24.
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2.73. Let ⟨Gn⟩ be an exhaustion by finite induced subnetworks. Note that the star spaces of GW
n

increase to⋆ and the cycle spaces of Gn increase to ♢. It follows from Exercises 2.72 and
2.71 that the projections of χe onto⋆ and the orthocomplement of ♢ agree for each e.

2.74. Use Exercise 2.13 and the fact that the minimum of linear functions is concave.

2.75. Use Exercise 2.13.

2.77. Use Exercises 2.70 and 2.75.

2.78. The expression given by Thomson’s principle can also be regarded as an extremal width. This
identity is due to Duffin (1962). Given ℓ, find F with |dF | ≤ ℓ and use Dirichlet’s principle.
The minimum is the same even if we allow all ℓ with the distance between any point of A and
any point of Z to be at least 1.

2.80. This is due to Abrams and Kenyon (2015).

2.81. If G is recurrent, this is obvious. If G is transient and the conclusion does not hold, then let
h(x) := Px [∀n Xn ∈ H], so h(x) > 0 for all x ∈ 𝖵(H) and h is harmonic on H . Apply the
Doob transform, Exercise 2.32, to get new conductances on H that correspond to the random
walk conditioned to stay in H. This new walk is transient, yet the new conductances are less
than the old ones, which contradicts Rayleigh’s monotonicity principle.

2.82. See the beginning of the proof of Theorem 3.1.

2.83. The tree of Example 1.2 will do. The following analysis is due to Tom Kalvari (personal
communication, 2014). Order the cutsets according to their cardinality. For each n, let
An :=

∪n
k=1 Πk . Every infinite path from the root intersects An at least n times, hence for

each vertex at level n − 1 in the tree, there exists an edge of An above it in the tree. Therefore,
|An | ≥ 2n−1, whence |Πn | ≥ 2n−1/n.
Alternatively, use Exercise 2.84.

2.84. (This is due to Yoram Gat, personal communication, 1997.) Write A := {Πn ; n ≥ 1} and
S(A) :=

∑
n |Πn |−1. We may clearly assume that each Πn is minimal. Suppose that there is

some edge e /∈ ∪
n Πn . Now there is some Πk that does not separate the root from e. Let

Π′k be the cutset obtained from Πk by replacing all the descendants of e in Πk by e. Then
|Π′k | ≤ |Πk |. Let A′ := {Πn ; n ̸= k} ∪ {Π′k }. Then A′ is also a sequence of disjoint cutsets
and S(A′) ≥ S(A).
If we order the edges of T in any fashion that makes |e| increasing and apply the above procedure
recursively to all edges not in the current collection of cutsets, we obtain a sequence Ai of
collections of disjoint cutsets with S(Ai ) increasing in i. Let A∞ := lim inf Ai . Then A∞ is also
a sequence of disjoint cutsets, and S(A∞) ≥ S(A). Furthermore, each edge of T appears in
some element of A∞.
Call two cutsets comparable if one separates the root from the other. Suppose that there are
two cutsets of A∞ that are not comparable, Πn and Πm . Then we may create two new cutsets,
Π′n and Π′m, that are comparable and whose union contains the same edges as Πn ∪ Πm.
Since |Π′n | + |Π′m | = |Πn | + |Πm | and min

�|Π′n |, |Π′m |	 ≤ min
�|Πn |, |Πm |	, it follows that

|Π′n |−1 + |Π′m |−1 ≥ |Πn |−1 + |Πm |−1. By replacing Πn and Πm in A∞ by Π′n and Π′m and
repeating this procedure as long as there are at least two cutsets in the collection that are not
comparable, we obtain in the limit a collection A′∞ of disjoint pairwise comparable cutsets
containing each edge of T and such that S(A′∞) ≥ S(A). But the only collection of disjoint
pairwise comparable cutsets containing each edge of T is A′∞ = {Tn ; n ≥ 1}.

2.85. This is due to Itai Benjamini (personal communication, 1996).
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(a) Given cutsets, consider the new network where the edges of the cutsets are divided in two
by an extra vertex for each edge, each half getting half the resistance.
(b) Reverse time.
(c) Note that An are disjoint.

2.86. (This improvement of Lemma 13.5 of BLPS (2001) is due to Yiping (Kenneth) Hu, personal
communication, 2016.) Use the Nash-Williams criterion.

2.89. (a) Cycles at a are equally likely to be traversed in either direction. Thus, cycles contribute
nothing to E[Se − S−e].

2.91. By Proposition 2.12, v(Xn) = PXn [∃k ≥ n Xk = a]. Now the intersection of the events
[∃k ≥ n Xk = a] is the event that a is visited infinitely often, which has probability 0. Since
these events are also decreasing, their limiting probability is 0. That is, E

�
v(Xn)� → 0.

On the other hand,


v(Xn)� is a nonnegative supermartingale, whence it converges a.s. and

E
�
lim v(Xn)� = lim E

�
v(Xn)� = 0.

2.92. The probability that a random walk started at a returns to a after 2d(a, x) or more steps is at
least

Pa[τx < ∞]Px [τa < ∞] = Pa[τx < ∞]G (x, a)
G (a, a) = Pa[τx < ∞]π(a)G (a, x)

π(x)G (a, a)
≥ Pa[τx < ∞]2 π(a)

π(x)G (a, a) .

2.93. Use Exercise 2.13.

2.94. Suppose that (G, c) is recurrent. By Exercise 2.93, we may choose an increasing sequence rn of
radii, starting with r0 = 0, and functions fn :𝖵(G)→ � such that fn(x) = n when d(o, x) ≤ rn ,
fn(x) = n + 1 when d(o, x) ≥ rn+1, and

∑
n

∑
e∈𝖤 dfn(e)2c(e) < ∞. Now put f (x) := fn(x)

when rn ≤ d(o, x) < rn+1.
Conversely, suppose a function f satisfies the conditions. Without loss of generality, we may
suppose also that f (o) = 0 and

∑
e∈𝖤 df (e)2c(e) < 1. Then given ϵ > 0, define F(x) := 1 −

min{ϵ f (x), 1}. This new function F has finite support, F(o) = 1, and
∑

e∈𝖤 dF(e)2c(e) < ϵ2.

2.96. Use Exercise 2.74.

2.97. Use Exercise 2.75.

2.98. (This is due to Benjamini, Gurel-Gurevich, and Lyons (2007).) Consider the random walk
conditioned to return to o.

2.99. Use Proposition 2.1 and estimate Ln := Gzn (0, 0) = 4R(0 ↔ zn) ∼ (2/π) log n. To do this,
note that in �2, we have p2k (0, 0) ∼ 1/(πk). Also, the chance of reaching zn before n2−ϵ steps
is extremely small. Thus, Ln ≥ (1− ϵ)∑n2−ϵ

0 1/(πk) for large n. To get an upper bound, define
L′n := maxx Gzn (x, 0) and use the fact that the chance for a random walk starting at x not to
reach zn before n2+ϵ steps is extremely small and that no matter where within distance n the
random walk is at that time, the expected number of visits to 0 after that time is at most L′n .
Thus, Ln ≤ L′n and L′n ≤

∑n2+ϵ

0 1/(πk) + ϵL′n for large n.

2.100. (a) Use complex exponentials to evaluate the integral.
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(b) According to Glasser and Zucker (1977), Borwein and Zucker (1992), and Zucker (2011),
for d = 3, ∑

n

pn(0, 0) =
√

3 − 1
32π3

�
Γ(1/24)Γ(11/24)�2 = 1.516386+ .

2.101. This method of proving transience of �3 is due to Levin and Peres (2010).

2.106. (This is due to Tom Hutchcroft, personal communication, 2015.) Consider three independent
copies of the random walk. The triple is simple random walk on a graph that contains a
graph that is roughly isometric to �3, and so is transient by Pólya’s theorem. The bound
can be sharpened to πΓ(3/4)−4 degG (y)3 = 1.39+ degG (y)3 by using Rayleigh’s monotonicity
principle.
This argument works as long as G is a network that contains an infinite simple path with
conductances bounded away from 0.
Theorem 6.31 gives pn(y, y) ≤ 6 degG (y)/√n + 1, which also gives the result. For the slightly
sharper bound pn(y, y) ≤ 4 degG (y)/√n + 1, see, for example, Lyons (2005), Remark 3.
It is well known that for every Markov chain that is not positive recurrent, limn→∞ pn(x, y) = 0
for every pair of states x, y. For a proof, see, for example, Billingsley (1995), Theorem 8.7,
Thorisson (2000), Theorem 2.3.2, or Grimmett and Stirzaker (2001), Theorem 6.4.17.

2.108. (This is due to Tetali (1991).) Use Proposition 2.20 and Exercise 2.68.

2.109. (b) Suppose that HA f = 0. Apply (a) to conclude that for all z ∈ A, we have

f (z)
(∑
x∈A

µ+
z (x)H(x, z) + Ez [τ+

A]
)

= Ez [τ+
A]

∑
y∈A

f (y) .

Deduce that all values of f have the same sign, whence f = 0.
If the chain is aperiodic and finite, then the matrix H of hitting times determines the chain: see
Theorem 4.4.12 of Kemeny and Snell (1960). For more on the inverse of H , see Neumann and
Sze (2011).

2.110. Decompose a path of length k that starts at x and visits y into the part to the last visit of y
and the rest (which may be empty). Reverse the first part and append the result of moving
the second part to x via a fixed automorphism. The 1-skeleton of the truncated tetrahedron
is an example of a transitive graph for which there are two vertices x and y such that no
automorphism interchanges x and y.

2.112. The first identity (2.28) follows from a path-reversal argument. For the second, (2.29), use
Exercise 2.108. This proof was given by Coppersmith, Tetali, and Winkler (1993), who
discovered the result. The first equality of (2.29) does not follow from an easy path-reversal
argument: consider, for example, the path ⟨x, y, x, y, z, x⟩, where τy ,z ,x = 6, but for the
reversed path, τz ,y ,x = 4.

2.113. (This is due to Coppersmith, Tetali, and Winkler (1993), with a somewhat different approach to
(d).) For (a), consider Pπ [τx ,y > k].

2.114. A tricky bijective proof was given by Tanushev and Arratia (1997). A simpler proof proceeds
by showing the equality with “≤ k” in place of “= k.” Decompose a path of length k into a
cycle at x that completes the tour plus a path that does not return to x; reverse the cycle.
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2.115. Run the chain from x until it first visits a and then z. This will also be the first visit to z from x,
unless τz < τa . In the latter case, the path from x to a to z involves an extra commute between
z and a beyond time τz . Taking expectations yields

Ex [τa] + Ea[τz ] = Ex [τz ] + Px [τz < τa]�Ez [τa] + Ea[τz ]�
This yields the formula. In the reversible case, the cycle identity (2.29) yields

Ex [τa] + Ea[τz ] − Ex [τz ] = Ea[τx ] + Ez [τa] − Ez [τx ] .

Adding these two quantities gives a sum of two commute times minus a third. Let γ denote the
sum of all edge conductances, summed over all oriented edges. Then, by the commute-time
formula of Corollary 2.21, the denominator in (2.30) is γR(a ↔ z), and the numerator is
(γ/2)[R(x ↔ a) + R(a ↔ z) −R(z ↔ x)].

2.117. Use Proposition 2.20. The result extends to trees with loops, where Ay (z) also counts one half
the number of loops separated from y.

2.118. This was conjectured by Jim Propp.
Solution 1, due to Y. Peres. The second statement is the same as saying that Ex [(1 + s)τy ] has
integer coefficients in s. Writing τy as a sum of hitting times over the path from x to y shows
that it suffices to consider x and y neighbors. Of course, we may also assume y is a leaf. In
fact, we may consider the return time Ey [(1 + s)τ+

y ] = Ex [(1 + s)1+τy ]. The return time to y is 1
+ a sum of a random number G of excursion lengths from x in the tree minus y, the random
number G having a geometric distribution with parameter 1/d, where d is the degree of x.
Note that, since P[G = k] = (1 − 1/d)k/d for k ≥ 0, we have E[(1 + s)G ] = ∑(d − 1)k sk . In
the tree where y was deleted, each excursion is to one of the d − 1 neighbors of x other than y,
each with probability 1/(d − 1). Furthermore, the excursion lengths above are return times to x
in a smaller tree. Putting all this together gives the result.
Solution 2, due later to Yiping (Kenneth) Hu, personal communication, 2016. Let Gy (x, z) :=
Ex

∑τy
k=1 1[Xk=z]. That Gy (x, z) ∈ � can be proved by the same method of solution as of

Exercise 2.117. Show that Ex

��τy
k

��
= Ex

∑
z1 , . . .,zk distinct

∑
1≤n1<···<nk ≤τy

∏k
i=1 1[Xni =zi ] =∑

z1 , . . .,zk distinct
∏k

i=1 Gy (zi−1, zi ), where z0 := x.

2.119. Use the fact that the expected number of visits to x by time n is at most Po[τx ≤ n]G (x, x).
2.122. Part (h) is due to Doyle and Steiner (2008), from which this proof is extracted. See also

Gaudillière and Landim (2014) for a similar result and extensions to the study of transience and
recurrence for nonreversible chains. Part (i) is due to Gaudillière and Landim (2014), Lemma
2.5, and Balázs and Folly (2014), Corollary 3.11.
(c) Note that

�
L + L̂

�
/2 = I − P. Alternatively, show directly that

(L f , f )π = 1
2

∑
x ,y

π(x)p(x, y)� f (x) − f (y)�2
.

(d) Use Exercise 2.120.
(g) Write f = h + ψ and g = h − ψ.
(i) Note that the min-max cannot increase if it is required that f = g = φ.
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2.123. Rewrite Exercise 2.122(d) as a matrix equation for matrices indexed by states other than z,
namely, Lz Hz = Dz , where Lz (x, y) := L(x, y), Hz (x, y) := Px [τy < τz ], and Dz is the
diagonal matrix whose (x, x)-entry is r(x, z)/π(x). This gives D−1

z Lz = H−1
z . Since the

diagonal of Lz is 1, this determines Dz and hence Lz . Using three different choices of z, this
allows us to determine L and therefore P. (If there are only two states, the result is trivial.)

2.124. This is due to Tetali (1994b).

2.125. For the original proofs, see Aldous and Fill (2002), Corollary 9.23, and Tetali (1994a), Corollary
2.3.
(a) Use Exercise 2.124 and Exercise 2.122(i).
(b) Use Exercise 2.123.

2.126. Use Propositions 2.1 and 2.2.

2.128. (This formula is due to Coppersmith, Doyle, Raghavan, and Snir (1993).) Use Exercises 2.126
and 2.65.

2.129. (This is due to Thomas Sauerwald, personal communication, 2007.) Let the distance be n, and
let Πk be the edges with one endpoint at distance k from a and the other at distance k + 1
from a, where 0 ≤ k < n. Write Ak :=

∑
e∈Πk

c(e). Corollary 2.21 and (2.13) give that the
commute time is

2R(a ↔ z)
∑
e∈𝖤1/2

c(e) ≥ 2
n−1∑
k=0

A−1
k

n−1∑
k=0

Ak ≥ 2n2

by the Cauchy-Schwarz inequality.

2.130. (This is due to Aleliunas, Karp, Lipton, Lovász, and Rackoff (1979). An improvement for
regular graphs was given by Kahn, Linial, Nisan, and Saks (1989). See Exercise 2.132 for a
further improvement.) Take a spanning tree T of G and consider a cycle in G that covers each
edge of T twice. For each edge of T , consider the commute time between the endpoints of that
edge. Summing these commute times is an upper bound for the expected cover time. This
bound can be improved by a factor of what is called the edge toughness of G; though not the
definition, the edge toughness equals the maximum of p/q over all (p, q) such that there exist
p spanning trees that use each edge no more than q times. This improvement follows from
a theorem of Tutte (1961) and Nash-Williams (1961) by replacing each edge with q parallel
edges. Another improvement is in Exercise 2.131.

2.132. (These results are due to Coppersmith, Feige, and Shearer (1996).) Use Foster’s theorem,
Exercise 2.65.

2.133. (a) The voltage is constant on the vertices with fixed coordinate sum.
(b) Consider the graph used in (a) where we identify certain vertices. The expected hitting time
from k to 0 in this graph is the same as the expected hitting time from a vertex of distance k
from 0 in the hypercube. When k = 1, the expected hitting time can also be computed by using
the fact that the expected return time equals 2n .

2.135. Let K be the linear span of Z(w) for w ∈ W . Let G/W be the network obtained from G
by identifying W to a single vertex. Let ZW be the associated canonical Gaussian field.
Then it suffices to show that ZW (x) = P⊥K Z(x) in light of Proposition 2.24(a). We show
this in the form dZW (e) = P⊥K dZ(e). Now dZ(e) = P⋆(H )X(e) and dZW (e) = PL X(e),
where L is the linear span of

∑
e−=x X(e)/r(e) for x /∈ W . Thus, it suffices to show that



Comments on Exercises 603

⋆(H ) = L ⊕ K . The only part of this that is not immediate is the orthogonality; to prove
that, write Z(w) =

∑
e∈ψ dZ(e) for a path ψ joining o to w.

The result may also be proved by using densities: see Ding, Lee, and Peres (2012), Lemma
2.15.

2.136. The orthogonal projection that gives ∇Z produces a standard normal random vector in ⋆,
which is not concentrated on any subspace of smaller dimension.

2.137. (a) This is a deterministic result.
(c) Use Proposition 2.24. This also follows from Exercise 2.62 and the standard result relating
the covariance of Gaussians to their density

�
note that ∥dZ∥2

c = (Z ,∆G Z)�.
2.138. Add a new vertex and an edge from every vertex to that new vertex. Then apply Exercise 2.137.

Chapter 3

3.1. The random path ⟨Yn⟩ visits x at most once.

3.3. Let Z := {e+ ; e ∈ Π}, and let G be the subtree of T induced by those vertices that Π separates
from∞. Then the restriction of θ to G is a flow from o to Z , whence the result is a consequence
of Lemma 2.8.

3.4. Consider spherically symmetric trees.

3.9. (a) Let β > inf an/n and let m be such that am/m < β. Write a0 := 0. For any n, write
n = qm + r with 0 ≤ r ≤ m − 1; then we have

an = aqm+r ≤ am + · · · + am + ar = qam + ar ,

whence an

n
≤ qam + ar

qm + r
<

am

m
+

ar

n
< β +

ar

n
,

and so
lim sup
n→∞

an

n
≤ β .

(b) Modify the proof so that if an infinite ar appears, then it is replaced by am+r instead.
(c) Observe that



log |Tn |� is subadditive.

3.10. Modify the proof of Theorem 3.9. A closer look at the proof shows that Fekete’s lemma
(Exercise 3.9) was not, in fact, needed.

3.13. Suppose that wx is broken arbitrarily as the concatenation of two words w1 and w2. Let xi be
the product of the generators in wi (i = 1, 2). Then x = x1 x2. If for some i, we had wxi ̸= wi ,
then we could substitute the word wxi for wi and find another word w whose product was x
yet would be either shorter than wx or come earlier lexicographically than wx . Either of these
circumstances would contradict the definition of wx as minimal, whence wi = wxi for both i.
This fact for i = 1 shows that T is a tree; for i = 2, it shows that T is subperiodic.

3.14. Replace each vertex x by two vertices x′ and x′′ together with an edge from x′ to x′′ of capacity
c(x). All edges that led into x now lead into x′, whereas all edges that led out of x now lead
out of x′′. Apply the max-flow min-cut theorem for directed networks (with edge capacities).

3.16. Use Exercise 3.14(a) for part (a). For part (b), let ⟨Hn⟩ be an exhaustion of H by finite graphs
and bn be the maximum number of pairwise disjoint paths from a to the complement of Hn .
Then ⟨bn⟩ is decreasing and so eventually constant. Now apply part (a).
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3.17. Use Menger’s theorem. Introduce a source a connected to A and a sink z connected to Z . The
same proofs show that there is a matching that covers A if (1) the degree of every vertex in A is
at least the degree of every vertex in Z , or if (2) |A| ≤ |Z | and the rest of the problem statement
(b) holds.

3.19. A minimal cutset is the same as a cut, as defined in Exercise 2.61.

3.21. (This is Proposition 13 of Hoffman, Holroyd, and Peres (2006).) Find a flow θ ≤ q. Consider
θ′ of Proposition 3.2. Show that E (θ′) < ∞.

3.22. This is due to Y. Peres.

3.23. Let G be the subtree of T induced by those vertices that Π separates from∞. If G were infinite,
then we could find a path o = x0, x1, x2, . . . of vertices in G such that each xi+1 is a child of xi

by choosing xi+1 to be a child of xi with an infinite number of descendants in G. This would
produce a path from o to∞ that did not intersect Π, which contradicts our assumption. Hence
G is finite. Let Π′ be the set of edges joining a vertex of G to a vertex of T \ G that has an
infinite number of descendants.

3.24. If T is transient, then the voltage function, normalized to take the value 1 at the root o and
vanish at infinity, works as F. Conversely, given F, use the max-flow min-cut theorem to find a
nonzero flow θ from the root with θ(e) ≤ dF(e)c(e) for all e. Thus

∑
e∈ξ θ(e)/c(e) ≤ F(o) for

every path ξ from o. For each path ξ connecting o to x, multiply this inequality by θ
�
e(x)� and

sum over x ∈ Tn . This implies that θ has finite energy.

3.27. This an immediate consequence of the max-flowmin-cut theorem. In the form of Exercise 15.29,
it is due to Frostman (1935).

3.28. Let x ∈ T with |x | > k. Let u be the ancestor of x which has |u| = |x | − k. Then the embedding
of Tu into T embeds T x into Tw for some w ∈ Tk .

3.30. Consider the directed graph on 0, 1, . . . , k with edges ⟨i, j⟩ for i ≤ j ≤ i + 1.

3.31. This is part of Theorem 5.1 of Lyons (1990).

3.32. This seems to be new. Let β be an irrational number. Write {x} for the fractional part of a real
number x. For real x, y and k ∈ �, set fk (x, y) :=

�
1[0,1/2] ({x + k β}) , 1[0,1/2] ({y + k β})�

and let Fn(x, y) be the sequence ⟨ fk (x, y) ; 0 ≤ k < n⟩. Let T be the tree of all finite
sequences of the form Fn(x, y) for x, y ∈ � and n ∈ �, together with the null sequence,
which is the root of T . Join Fn(x, y) to Fn+1(x, y) by an edge. Then |Tn | = 4n2. (A sequence
⟨1[0,1/2] ({x + k β}) ; 0 ≤ k < n⟩ changes as x increases from 0 to 1 exactly when one of the
points {x+ k β} passes 1/2 or 1, so each of these n points contributes to two changes.) Let L2 be
Lebesgue measure on [0, 1]2, and for vertices w ∈ T , set θ(w) := L2{(x, y) ; F|w|(x, y) = w}.
Now choose β not well approximable by rationals – for example, set β :=

√
5. Then θ is

approximately uniform on Tn: Given w ∈ Tn , we want to show that the set of (x, y) for which
Fn(x, y) = w has measure at most c/n2. This set is a product of two intervals. In fact, all 2n
intervals determined by {k β} and {k β + 1/2} for 0 ≤ k < n are of length at most 3/n: see the
argument at the bottom of p. 125 of Kuipers and Niederreiter (1974). Therefore θ has finite
energy for unit conductances. That is, simple random walk is transient.

3.33. Given (x1, . . . , xn) and (y1, . . . , ym) that correspond to vertices in T , the sequence obtained
by concatenating them with N zeros in between also corresponds to a vertex in T . Thus
T is N-superperiodic and br T = gr T . To rule out (N − 1)-superperiodicity, use rational
approximations to α. If α > 1/2 or α = 1/2, then gr T = 2 by the SLLN or the ballot theorem
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respectively. If α < 1/2, then Cramér’s theorem on large deviations, or Stirling’s formula,
imply that log gr T is the entropy of α.

3.34. Use Exercise 3.33.

3.35. Product trees were introduced by Lyons (1992) for studying random labeling of trees.
(c) T(S) · T(� \ S) is a binary tree.

3.38. The Cayley graph of � with respect to the generators {1, n} is a skew cylinder, that is, the strip
� × [0, n] with each (x, n) identified with (x + 1, 0). Similarly, the Cayley graphs of � with
respect to {1, n, n2} approximate the usual Cayley graph of �3.

3.39. This is due to Lyons (1995).

Chapter 4

4.1. For the random walk version, this is proved in Sections 6.5 and 7.3 of Lawler (1991). Use the
“craps principle” (Pitman (1993), p. 210). First prove equality for the distribution of the first
step.

4.3. Use also Rayleigh’s monotonicity principle.

4.6. (This is also due to Feder and Mihail (1992).) We follow the proof of Theorem 4.6. We induct
on the number of edges of G. Given A and B as specified, there is an edge e on which A

depends (and so B ignores) such that A is positively correlated with the event e ∈ T (since A

is negatively correlated with those edges that A ignores). Thus, P[A | e ∈ T] ≥ P[A | e /∈ T].
Now

P[A | B] = P[e ∈ T | B]P[A | B, e ∈ T] + P[e /∈ T | B]P[A | B, e /∈ T] . (18.1)

The induction hypothesis implies that (18.1) is at most

P[e ∈ T | B]P[A | e ∈ T] + P[e /∈ T | B]P[A | e /∈ T] . (18.2)

By Theorem 4.6, we have that P[e ∈ T | B] ≤ P[e ∈ T], and we have chosen e so that
P[A | e ∈ T] ≥ P[A | e /∈ T]. Therefore, (18.2) is at most

P[e ∈ T]P[A | e ∈ T] + P[e /∈ T]P[A | e /∈ T] = P[A ] .

For the second part, note that every increasing random variable X has the form X = c+
∑

i ai1Ai

for some constant c, positive ai , and increasing events Ai .

4.7. (Compare Theorem 3.2 in Thomassen (1990).) The number of components of T when restricted
to the subgraph induced by 𝖵n is at most |∂𝖤𝖵n |. A tree with k vertices has k − 1 edges. The
statement on expectation follows from the bounded convergence theorem.

4.10. You need to use H(1, 1) to find Y (e, f ) = 1/2 − 1/π for e the edge from (0, 0) to (1, 0) and f
the edge from (0, 0) to (0, 1). From this, the values of Y (e, g) for the other edges g incident to
the origin follow. Use the transfer current theorem directly to find P[degT (0, 0) = 4]. Other
probabilities can be computed by Exercise 4.41 or by computing P[degT (0, 0) ≥ 3] and using
the fact that the expected degree is 2 (Exercise 4.7). See Burton and Pemantle (1993), p. 1346,
for some of the details.



606 Comments on Exercises

It is not needed for the solution to this problem, but here are some values of H . Such a table

4 80 − 736
3 π

−49 +
160
π

12 − 472
15 π

−1 +
48
5 π

704
105 π

3 17 − 48
π

−8 +
92
3 π

1 +
8

3 π
92

15 π
−1 +

48
5 π

2 4 − 8
π

−1 +
8
π

16
3 π

1 +
8

3 π
12 − 472

15 π

1 1
4
π

−1 +
8
π

−8 +
92
3 π

−49 +
160
π

0 0 1 4 − 8
π

17 − 48
π

80 − 736
3 π

(x1, x2) 0 1 2 3 4

was first constructed by McCrea and Whipple (1940). It is used for studying harmonic measure
in that paper, as well as in Spitzer (1976), Section 15. See those references for proofs that

lim
|x1 |+|x2 |→∞

[
H(x1, x2) − 2

π
log

√
|x1 |2 + |x2 |2

]
=

2γ + log 8
π

,

where γ is Euler’s constant. In fact, the convergence is quite rapid. See Kozma and Schreiber
(2004) for more precise estimates and higher dimensions. See also Uchiyama (1998) for walks
with unbounded jumps and Kazami and Uchiyama (2008) for walks on other Euclidean lattices.
Using the preceding table, we can calculate the transfer currents, which we give in two tables.
We show Y (e, f ) for e the edge from (0, 0) to (1, 0) and f varying. The first table is for the
horizontal edges f , labeled with the left-hand endpoint of f :

4 −129
2

+
608
3 π

95
2
− 746

5 π
−37

2
+

872
15 π

7
2
− 1154

105 π
0

3 −25
2

+
118
3 π

17
2
− 80

3 π
−5

2
+

118
15 π

0 −7
2

+
1154
105 π

2 −5
2

+
8
π

3
2
− 14

3 π
0

5
2
− 118

15 π
37
2
− 872

15 π

1 −1
2

+
2
π

0 −3
2

+
14
3 π

−17
2

+
80
3 π

−95
2

+
746
5 π

0
1
2

1
2
− 2
π

5
2
− 8
π

25
2
− 118

3 π
129
2
− 608

3 π

(x1, x2) 0 1 2 3 4
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The second table is for the vertical edges f , labeled with the lower endpoint of f :

4 −138 +
6503
15 π

79 − 1241
5 π

−25 +
1649
21 π

4 − 1321
105 π

3 −26 +
245
3 π

13 − 613
15 π

−3 +
47
5 π

1
2
− 167

105 π

2 −5 +
47
3 π

2 − 19
3 π

−1
2

+
23

15 π
−3 +

47
5 π

1 −1 +
3
π

1
2
− 5

3 π
2 − 19

3 π
13 − 613

15 π

0 −1
2

+
1
π

−1 +
3
π

−5 +
47
3 π

−26 +
245
3 π

(x1, x2) 1 2 3 4

Symmetries of the plane give some other values from these.

4.11. (From Propp and Wilson (1998).) Let T be a tree rooted at some vertex x. Choose any directed
path x = u0, u1, . . . , ul = x from x back to x that visits every vertex. For 1 ≤ i < l, let Pi be the
path u0, u1, . . . , ui followed by the path in T from ui to x. In the trajectory Pl−1,Pl−2, . . . ,P1,
the last time any vertex u ̸= x is visited, it is followed by its parent in T . Therefore, if the chain
on spanning trees begins at any spanning tree, following this trajectory (which has positive
probability of happening) will lead to T .

4.13. We have

p̂
�
T , B(T , e)� =

π
�
B(T , e)�
π(T) p

�
B(T , e),T� =

Ψ
�
B(T , e)�
Ψ(T) p(g) = p(e) .

4.14. A solution using the Aldous/Broder algorithm was noted by Broder (1989).

4.15. This is due to Aldous (1990).

4.16. (This exercise was motivated by Kozdron, Richards, and Stroock (2013).) Cramer’s theorem
tells us that ∆G [a]−1(x, x) = det∆G [a, x]/deg∆G [a] in the notation of Exercise 2.62. Here,
∆G [a, x] means deleting the rows and columns indexed by both a and x. By Exercise 2.62,
this equals va(x, x) = R(a ↔ x;G). Kirchhoff’s effective resistance formula then gives that
if (x, a) is an edge of t, P[(x, a) ∈ TG ] = c(x, a) det∆G [a, x]/deg∆G [a]. Now contract the
edge (x, a) and repeat for another edge of t connected to x or a. Multiply all the successive
quotients, which telescope to give

Ξ(t)
Ξ(G) = P[TG = t] =

Ξ(t)
det ∆G [a] .

4.18. (This is due to Aldous (1990).) Use Exercise 4.15 and torus grids (or square grids).

4.19. There are too many spanning trees.

4.20. This is due to Edmonds (1971); see Corollary 50.7(c) of Schrijver (2003).
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4.21. (These results are due to Asadpour, Goemans, M
‘
adry, Oveis Gharan, and Saberi (2010) and

depend very little on properties of spanning trees. See Singh and Vishnoi (2014) for an
extension and related issues.) Use Lagrange multipliers for (a). Deduce (b) from (a).

4.23. This is due to Kirchhoff (1847).

4.25. (The first part is from Propp and Wilson (1998).) We sum over the number of transitions out of
x that are needed. We may find this by popping cycles at x. The number of such is the number
of visits to x starting at x before visiting r. This is π(x)�Ex [τr ] + Er [τx ]�, as can be seen by
considering the frequency of appropriate events in a bi-infinite path of the Markov chain. This
also follows from Exercise 2.42 by using the stopping time equal to the first visit to x after
the first visit to r. The number of visits to x starting at x before visiting r is

∑
n≥0 Pn

r (x, x),
whence the trace formula follows from writing the matrix inverse as an infinite series; this
formula is due to Marchal (2000). In the reversible case, we can also use the formulas in
Section 2.2 to get ∑

x a state

∑
e−=x

c(e)R(x ↔ r) ,

which is the same as what is to be shown.

4.26. Use the craps principle as in the solution to Exercise 4.1.

4.27. This is due to Meir and Moon (1970).

4.29. This is due to Foster (1948).

4.30. Add a (new) edge e from a to z of unit conductance. Then spanning trees of G∪ {e} containing
e are in 1-1 correspondence preserving Ξ( • ) with spanning trees of G/{a, z}. Thus, the
right-hand side of (4.21) is (1 − P[e ∈ T])/P[e ∈ T] in G ∪ {e}. Now apply Kirchhoff’s
effective resistance formula.

4.33. Use Exercise 4.21.

4.34. (This is due to R. Lyons.) For (a), let X be the set of subsets A of vertices of G such that
both A and 𝖵 \ A induce connected subgraphs. Identify each A ∈ X with the subnetwork it
induces. On X , put the measure µ(A) := Ξ(A)Ξ(Ac)/�2Ξ(G)�. Map a vertex x in G to the
function on X given by A 7→ 1A(x). Use Exercise 4.30(a) to verify that this is an isometry into
ℓ1(X , µ). Now use this embedding to deduce (b). A metric space that satisfies property (b)
is called hypermetric; Kelly (1970) noted that this property is a consequence of the existence
of an embedding into some L1 space as indicators, which is always the case when there is
some embedding into L1 (see, for example, Naor (2010)). He also noted that the hypermetric
property implies the negative type property of Exercise 2.59.

4.36. (Part (b) is due to Morris (2003).) If there is an edge joining a to z, use Kirchhoff’s effective
resistance formula. If there is no edge joining a to z, add one and let its conductance tend to 0.

4.37. Use Wilson’s algorithm with a given rung in place to calculate the chance that the next rung
(in one direction) is at a given location. Alternatively, use the transfer current theorem. This
problem was originally analyzed by Häggström (1994), who used the theory of subshifts of
finite type.

4.39. Use the fact that i − i′ −
�
i( f ) − i′( f )�χ f is a flow between the endpoints of f .

4.41. For the first part, compare coefficients of monomials in xi . The second part is Corollary 4.4 in
Burton and Pemantle (1993).
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4.42. Calculate the chance that all the edges incident to a given vertex are present.

4.45. In the case where all we are equal, this is a special case of what is proved by Feder and
Mihail (1992). In general, use the same proof as that of Exercise 4.6. An earlier and more
straightforward proof of this special case is given by Joag-Dev and Proschan (1983), paragraph
3.1(c). The general case follows from this special case via the implication ULC ⇒ CNA+ of
Theorem 2.7 in Pemantle (2000).

4.46. (a) Let U ∼ Unif[0, 1] and Xi := min
�
r ; U ≤ µi

�(−∞, r]�	.
(b) Use the result of Exercise 4.45.

4.48. (a) This is Theorem 14.3 of BLPS (2001).
(b) Suppose that y = x + (1, 0). If E[L] < ∞, then we may choose N so that

∑
n≥N P[L ≥ n] <

1/8 and M so that the T-distance between (0, N) and (0,−N) is at most M with probability less
than 1/4. Then with positive probability, all the following occur simultaneously: the T-distance
between (i, N) and (i + 1, N) is less than N + |i | for all i, the T-distance between (i,−N) and
(i + 1,−N) is less than N + |i | for all i, the T-distance between (M, N) and (M,−N) is at most
M, and the T-distance between (−M, N) and (−M,−N) is at most M. In this case, there is a
path in T that winds around the origin, whence T is not a tree.
The actual rate of decay of the probabilities for the uniform spanning tree is P[L ≥ n] ≍ 1/n3/5.
This follows from combining Theorem 1.1 of Lawler (2014) with Barlow and Masson (2010);
see also Corollary 3.15 of Barlow (2016).

4.49. See Exercise 2.100(a).

4.50. (This particular question was asked in the comic strip xkcd, http://xkcd.com/356/, “Nerd
Sniping.” The strip’s author first saw it on a Google Labs Aptitude Test.) The effective
resistance between the origin and (m, n) equals H(m, n)/2.

4.51. Compare this exact result to Proposition 2.15.

4.52. When x = (±n,±n), this follows from Proposition 4.7 and (4.19). For other x ̸= 0, use the fact
that x 7→ R(0↔ x) is harmonic and thus R(0↔ x) = Ex

�
R(0↔ Zτ )�, where ⟨Zk ⟩ is simple

random walk on �2 and τ is the first time the random walk visits a diagonal. To estimate the
hitting distribution on the diagonals, note that if Zk = (Xk ,Yk ), then X2k + Y2k and X2k − Y2k
are independent simple random walks on � observed at even times, so it suffices to understand
the distribution of one of these walks at the time that the other hits 0 for the first time. One can
use the reflection principle to estimate the first hitting time of 0.
Compare to the result in Exercise 2.99.

4.53. This is due to Spitzer (1962); see also Section 15 of Spitzer (1976).
(a) Note that for a starting point y outside the square, µy is an average of µz for z on the
square. For points z and w at odd starting distance, use independent horizontal lazy simple
random walks until they have even distance, where lazy simple random walk has transition
probabilities p(k, k) = 1/2 and p(k, k ± 1) = 1/4. For another proof of existence of harmonic
measure from infinity, see Theorems 10.56 and 10.36.
(b) Apply Exercise 2.111 to a torus graph (�/n�)2, and let n → ∞ in combination with part
(a) here.
(c)–(e) Use the calculations in the answer to Exercise 4.10. All matrices that need to be inverted

http://xkcd.com/356/
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here have the form 
0 1 4x
1 0 1

4x 1 0

 .
Chapter 5

5.1. Various theorems will work. The monotone convergence theorem works even when m = ∞.

5.2. Compare Neveu (1986).

5.3. (Compare Neveu (1986).) Let Ω be the probability space on which the random variables L(n)
i

are defined. Then GW is the law of the random variable T : Ω→ T defined by

T :=
�⟨i1, . . . , in⟩ ; n ≥ 0, i j ∈ �+ (1 ≤ j ≤ n), i j+1 ≤ L j+1

I (i1 , . . ., i j ) (1 ≤ j ≤ n − 1)	 ,
where I(i1, . . . , i j ) is the index appropriate to the individual ⟨i1, . . . , i j ⟩. Actually, any injection
I from the set of finite sequences to �+ will do, rather than the one implicit in the definition of
a Galton-Watson process, that is, (5.1). For example, if ⟨Pn⟩ denotes the sequence of prime
numbers, then we may use I(i1, . . . , i j ) :=

∏ j

l=1 Pil .

5.4. We will soon see (Corollary 5.10) that also br T = m a.s. given nonextinction.

5.5. Show that for each n, the event that the diameter of K(x) is at least n is measurable.

5.6. One way is to let ⟨Gn⟩ be an exhaustion of G by finite subgraphs containing x. If

Pp[∃ infinite-diameter cluster] > 0 ,

then for some n, we have Pp[∃u ∈ Gn u ↔ ∞] > 0. This latter event is independent of the
event that all the edges of Gn are present. The intersection of these two events is contained in
the event that x ↔ ∞.

5.7. Let p ≥ pc(G) and p′ ∈ [0, 1]. Given ωp , the law of ωpp′ is precisely that of percolation on
ωp with survival parameter p′. Therefore, we want to show that if p′ < pc(G)/p, that is, if
pp′ < pc(G), then ωpp′ a.s. has no infinite components, whereas if pp′ > pc(G), then ωpp′ a.s.
has an infinite component. But this follows from the definition of pc(G).

5.14. For (c), let h(x) := θ(e(x))2 −
∑

↼
y =x θ(e(y))2 ≥ 0. By (b), we have θ(e(x)) =

∑
z≥x h(z).

5.15. We have
Gd(s) = 1 − (1 − s)d+1pd+1 − (d + 1)(1 − s)dpd(1 − p + ps) .

Since Gd(0) > 0 and Gd(1) = 1, there is a fixed point of Gd in (0, 1) if Gd(s) < s for some
s ∈ (0, 1). Consider

g(s) := 1 − (1 − s)d+1 − (d + 1)(1 − s)d s

obtained from Gd(s) by taking p→ 1. Since g′(0) = 0, there is certainly some s ∈ (0, 1) with
g(s) < s. Hence the same is true for Gd when p is sufficiently close to 1.

5.19. (Parts (a)–(c) are due to Curien and Le Gall (2011), Lemma 5.5.) For (b), use the optional
stopping theorem, considering inf

�
k ≥ 0 ; A(ξk ) < 4

	
. For (c), use Proposition 5.36 to get a

contradiction if the result does not hold. More information about the finite paths with labels at
least 4 is in Curien and Peres (2011).
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5.20. Generate the labels at the same time as you generate the tree. That is, the root is labeled i with
probability 1/k; then there are j children of the root with probability e−cc j/ j! and they are
labeled by a subset of [1, k] \ {i} with probability

�
k−1
j

�−1 each, and so on.
For a more formal proof using induction, let B be the random labeling of T . Let t be a k-vertex
rooted tree with a labeling b. Suppose the root of t has j children, with corresponding subtrees
of sizes k1, . . . , k j . Thus

∑ j

i=1 ki = k − 1. The probability that the root labels match in B and
b is 1/k, and given that, the chance that the set of labels assigned to each of the j subtrees

matches in B and b is j!
∏ j

i=1 ki !
(k − 1)! ; the factor of j! is due to the possibility of permuting the

children of the root. Thus the probability that (T , B) coincides with (t, b) equals

P
�
Z1(T) = j

� 1
k

j!
∏ j

i=1 ki !
(k − 1)!

j∏
i=1

e−cki cki−1

ki !
,

and this indeed equals e−ckck−1/k!, since P
�
Z1(T) = j

�
= e−cc j/ j!.

5.21. This type of percolation is known as the Erdős-Rényi random graph. For (a), use a labeling
similar to that used for trees in Section 5.1. For (b) and (c), consider a random total ordering of
the vertices of Kn . It induces a relative ordering of the vertices of C(o), which in turn induces
a labeling. For (c), calculate the exact value of the left-hand side before the limit is taken.

5.22. Let fn and f be the corresponding p.g.f.’s. Then fn(s)→ f (s) for each s ∈ [0, 1].
5.29. (a) By symmetry, we have on the event A that

E
[

L(n+1)
i∑Zn

j=1 L(n+1)
j +

∑Z ′n
j=1 L′(n+1)

j

����� Fn

]
= E

[
L′(n+1)

i∑Zn

j=1 L′(n+1)
j +

∑Z ′n
j=1 L(n+1)

j

����� Fn

]
=

1
Zn + Z′n

.

(b) By part (a), we have

E[Yn+1 | Fn] =
Zn

Zn + Z′n
P[A | Fn] + Yn P[¬A | Fn]

= E
[ Zn

Zn + Z′n
1A

���� Fn

]
+ E

�
Yn1¬A

�
Fn

�
= E[Yn1A + Yn1¬A | Fn] = Yn .

Since 0 ≤ Yn ≤ 1, the martingale converges to Y ∈ [0, 1].
(c) Assume that 1 < m < ∞. We have

E[Y | Z0, Z′0] = Y0 = Z0/(Z0 + Z′0) . (18.3)
Now ⟨Z′k+n⟩n≥0 is also a Galton-Watson process, so

Y (k) := lim
n

Zn

Zn + Z′
k+n

exists a.s. too with
E[Y (k) | Z0, Z′k ] = Z0/(Z0 + Z′k )
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by (18.3). We have

P[Y = 1, Zn ̸→ 0, Z′n ̸→ 0] = P
[ Z′n

Zn

→ 0, Zn ̸→ 0, Z ′n ̸→ 0
]

= P
[ Z′n+k

Zn

→ 0, Zn ̸→ 0, Z′n ̸→ 0
]

= P[Y (k) = 1, Zn ̸→ 0, Z ′n ̸→ 0]
≤ E

�
Y (k)1[Z ′

k
>0]

�
= E

[ Z0

Z0 + Z′
k

1[Z ′
k
>0]

]
→ 0 as k → ∞,

where the second equality is due to the fact that, by the weak law of large numbers and
Proposition 5.1, Z′n+k/Z′n

P→ mk . Hence P[Y = 1, Zn ̸→ 0, Z′n ̸→ 0] = 0. By symmetry,
P[Y = 0, Zn ̸→ 0, Z′n ̸→ 0] = 0 too.

5.31. Take cn := Z′n for almost any particular realization of ⟨Z′n⟩ with Z′n ̸→ 0. Part (iii) of the
Seneta-Heyde theorem, the fact that cn+1/cn → m, follows from Zn+1/Zn

P→ m. That is, if
Zn/cn → V a.s., 0 < V < ∞ a.s. on nonextinction, then

Zn+1

Zn

· cn
cn+1

→ V
V

= 1 (18.4)

a.s. on nonextinction. Since Zn+1/Zn

P→ m, it follows that cn/cn+1 → 1/m.

5.32. This follows either from (18.4) in the solution to Exercise 5.31 or from the Seneta-Heyde
theorem.

5.35. There are various ways to prove these; see Pitman (1998) for some of them and the history.
For (a), one way to proceed is to replace the tree in stages as follows: replace the initial
individuals by their progeny; then replace each of these in turn by their progeny; and so on.
Each replacement decreases the total by a copy of L − 1. For (b), given L j with Sn = −k, show
that among the n cyclic permutations of ⟨L j ; j ≤ n⟩, there are exactly k for which the first
time the sum is −k is n (that is, for which the event in (a) occurs). You might want to do this
first for k = 1.

5.36. The distribution in part (a) is known as the Borel distribution.

5.37. (This is due to David Wilson, personal communication, 2009.) Write g := g∞ in the notation of
Exercise 5.33. Then g(s) = seg(s)−1, whence log s = log g(s)+ 1− g(s) and ds/s = (1/g− 1)dg.
Therefore,

∫ 1
0 [g(s)/s]ds =

∫ 1
0 g[1/g − 1]dg = 1/2. A similar method, but with generating

functions of two variables, shows that P
� |X | ≥ k

�
= 1/(k + 1) for every k ≥ 1 (David Wilson,

personal communication, 2010).

5.39. We have br T(p) = (1 − p)/(pc(T) − p) a.s.

5.41. We have 1 − θn(p) =
�
1 − pθn(p)�n .

5.42. Define X(µ) as in (5.8). The bilinear form (µ1, µ2) 7→ E
�
X(µ1)X(µ2)� gives the seminorm

E ( • )1/2, whence the seminorm satisfies the parallelogram law, which is the desired identity.

5.43. Use Exercise 5.42.
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5.44. Use Theorem 5.15. This result is due originally to Grimmett and Kesten (1983), Lemma 2,
whose proof was very long. See also Exercises 17.15 and 17.34. For a beautiful proof that is
direct and short, see Collevecchio (2006).

5.45. (a) Use Exercise 2.75. See Exercise 17.34 for a lower bound on the expected effective
conductance.
(b) This is due to Chen (1997).

5.50. Consider oriented paths starting at the origin. For a lower bound on pc(d), use the first-moment
method. For an upper bound, use paths with exponential intersection tails. This result is due to
Kesten and published by Cox and Durrett (1983), who gave sharper asymptotics.

5.52. Part (a) is used by Bateman and Katz (2008).

5.53. C (o↔ ∂T(n))/�1 + C (o↔ ∂T(n))� = 2/(n + 2) while P1/2[o↔ ∂T(n)] ∼ 4/n, so the inequal-
ities with “2” in them are better for large n. To see this asymptotic, let pn := P1/2[o↔ ∂T(n)].
We have pn+1 = pn − p2

n/4. For ϵ > 0 and t1, t2, N chosen appropriately, show that
an := (4 − ϵ)/(n − t1) and bn := (4 + ϵ)/(n − t2) satisfy aN = bN = pN and an+1 < an − a2

n/4,
bn+1 > bn − b2

n/4 for n > N . Deduce that an < pn < bn for n > N . Theorem 12.7 determines
this kind of asymptotic more generally for critical Galton-Watson processes.

5.54. C (o↔ ∂T)/�1 + C (o↔ ∂T)� = (2p − 1)/p and Pp[o↔ ∂T] = (2p − 1)/p2.

5.55. For related results, see Adams and Lyons (1991).

5.57. See Pemantle and Peres (1996).

5.58. This is due to Lyons (1992).

5.60. Parts (a) and (b) are due to Lyons (1992), and parts (c) and (d) are due to Marchal (1998).

5.62. Use Exercise 5.61 with n := 1 and Proposition 5.28(ii).

5.64. These are due to Pakes and Dekking (1991).

5.65. This follows from the facts that Bn,d,1(s) < s for s > 0 small enough, that the functions
Bn,d,p(s) converge uniformly to Bn,d,1(s) as p→ 1, and that Bn,d,p(0) > 0 for p > 0.

5.66. This is due to Balogh, Peres, and Pete (2006).

5.68. A similar statement is as follows. Let B ⊆ �� be an increasing set in the sense that if ⟨an⟩ ∈ B
and bn ≥ an for all n, then ⟨bn⟩ ∈ B. Define the associated target percolation ω on T to
consist of those sites x for which there is some ⟨an⟩ ∈ B such that if the path in T from o to x
is x0 = o, x1, . . . , xk = x, then A(xi ) = ai for 0 ≤ i ≤ k. For example, if A(x) is uniform on
[0, 1] and B = [1 − p, 1]�, then ω is the component of the root for Bernoulli(p) percolation.
Claim: if each ray in T has probability 0 of belonging to ω, then the number of rays in ω is a.s.
0 or 2ℵ0 . This is Lemma 4.1(i) of Pemantle and Peres (1995a), who give more information on
target percolation.

5.69. (This is part of Theorem 2.2(ii) of Pemantle and Peres (1995a).) Use Exercise 5.68.

5.70. This and Exercise 5.71 are due to Chayes, Chayes, and Durrett (1988) and Dekking and Meester
(1990), whereas our outlines are based on Chayes (1995a).

5.71. (a) Let γ be a left-to-right crossing of [0, 1] × [0, 2] consisting of retained level k squares. If
γ intersects A, then of course A had to be retained, and this has probability pm . Considering
the last square in γ that touches LA ∪ LA′ (see Figure 5.6) shows that if γ is disjoint from
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A ∪ A′, then either γ connects LA to RA within [0, 1] × [1, 2], or γ connects LA′ to RA′ within
[0, 1] × [0, 1].

5.72. (a) Set ha(t) := (t − a)+. For one direction, just note that ha is a nonnegative increasing convex
function. For the other, given h, let g give a line of support of h at the point

�
EY ,Eh(Y )�. Then

Eh(Y ) = g(EY ) = Eg(Y ) ≤ Eg+(Y ) ≤ Eg+(X) ≤ Eh(X).
5.73. (a) Condition on Xi and Yi for i < n.

(b) Show that n 7→ E
�
h
�∑n

i=1 Xi

��
is an increasing convex function when h is. See Ross (1996),

p. 444 for details.

5.74. (a) Use Exercise 5.73.
(b) Use (a) and Exercise 5.72. See Ross (1996), p. 446.

Chapter 6

6.1. In fact, for every finite connected subset K of �b+1, we have |∂𝖤K | = (b − 1)|K | + 2.

6.2. Modify the first part of the proof of Theorem 6.1. Alternatively, increase D.

6.6. Let the transition probabilities be p(x, y). Then the arithmetic mean–quadratic mean inequality
gives us

∥P f ∥2
π =

∑
x∈𝖵

π(x)(P f )(x)2 =
∑
x∈𝖵

π(x)
[∑
y∈𝖵

p(x, y) f (y)
]2

≤
∑
x∈𝖵

π(x)
∑
y∈𝖵

p(x, y) f (y)2 =
∑
y∈𝖵

f (y)2
∑
x∈𝖵

π(x)p(x, y)

=
∑
y∈𝖵

f (y)2π(y) = ∥ f ∥2
π .

6.7. The first equality depends only on the fact that P is self-adjoint. We will omit the subscripts π.
Suppose that |(P f , f )| ≤ C( f , f ) for all f . Then, for all f , g, we have

|(P f , g)| =
����� (P( f + g), f + g) − (P( f − g), f − g)

4

�����
≤ C

�( f + g, f + g) + ( f − g, f − g)�/4 = C
�( f , f ) + (g, g)�/2 .

Put g = P f ∥ f ∥/∥P f ∥ to get ∥P f ∥ ≤ C∥ f ∥. This shows that ∥P∥ = sup
� |(P f , f )|/( f , f ) ;

f ∈ D00 \ {0}	. This gives the first identity.

6.9. Use the fact that Φ𝖤(�b+1) = (b − 1)/(b + 1) to get an upper bound on ρ(�b+1). To get a lower
bound, calculate ∥P f ∥ for f :=

∑N
n=1 b−n/21Sn , where N is arbitrary and Sn is the sphere of

radius n.

6.10. In the case of Cayley graphs, this is known as Grigorchuk’s criterion for amenability.

6.13. Let x be such that f∗(x) ̸= 0, where f∗ is an eigenfunction with eigenvalue ±𝜆∗. The constants
ai in the proof of Theorem 6.13 equal f i (y)/∥ f i ∥2

π .

6.16. Q(S,𝖵) = π(S) = Q̂(S,𝖵), so Q(S, Sc) = Q(S,𝖵) −Q(S, S) = Q̂(S, Sc).
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6.17. The relation between the profiles is clear, since Q̃(x, y) := π(x)p̃(x, y) = π(x)p(x, y)/2 for
x ̸= y. The identity π(x)p2n(x, x) = ∥Pn1x ∥π implies that p2n(x, x) is decreasing. Finally,
write p̃2n(x, x) ≥∑n

k=0
�2n

2k

�
2−2np2k (x, x) ≥ p2n(x, x)/2.

6.19. To prove this, do not condition that a vertex belongs to an infinite cluster. Instead, grow the
cluster from x and continue to explore even if the cluster turns out finite. Disjoint large balls
will be encountered infinitely often and will have a certain probability of containing only a long
path. These events are independent and so one will occur a.s. For more details of this kind of
proof, see the proof of Lemma 7.23.

6.25. For finite networks and the corresponding definition of expansion constant (see Exercise 6.49),
the situation is quite different; see Chung and Tetali (1998).

6.27. (This was the original proof of Theorem 6.2 in BLPS (1999b).) Let θ be an antisymmetric
function on 𝖤 with |θ(e)| ≤ c(e) for all edges e and d∗θ(x) = Φ𝖤(G)D(x) for all vertices x. We
may assume that θ is acyclic, that is, that there is no cycle of oriented edges on each of which
θ > 0. (Otherwise, we modify θ by subtracting appropriate cycles.) Let K ⊂ 𝖵 be finite and
nonempty. Suppose for a contradiction that |∂𝖤K |c/|K |D = Φ𝖤(G). The proof of Theorem 6.1
shows that for all e ∈ ∂𝖤K , we have θ(e) = c(e) if e is oriented to point out of K ; in particular,
θ(e) > 0. Let (x1, x0) ∈ ∂𝖤K with x1 ∈ K and x0 /∈ K , and let γ be an automorphism of G that
carries x0 to x1. Write x2 for the image of x1 and γK for the image of K . Since we also have
|∂𝖤γK |c/|γK |D = Φ𝖤(G) and (x2, x1) ∈ ∂𝖤γK , it follows that θ(x2, x1) > 0. We may similarly
find x3 such that θ(x3, x2) > 0 and so on, until we arrive at some xk that equals some previous
x j or is outside K . Both lead to a contradiction, the former contradicting the acyclicity of θ
and the latter the fact that on all edges leading out of K , we have θ > 0.

6.28. (This is due to R. Lyons.) Use the method of solution of Exercise 6.27.

6.30. This is due to R. Lyons.

6.33. Consider cosets.

6.34. (This was the original proof of Theorem 6.4 in BLPS (1999b).) Let θ be an antisymmetric
function on 𝖤 with 𝖿 𝗅𝗈𝗐+(θ, x) ≤ 1 and d∗θ(x) = Φ𝖵(G) for all vertices x. Let K ⊂ 𝖵 be
finite and nonempty. Suppose for a contradiction that |∂𝖵K |/|K | = Φ𝖵(G). The proof of
Theorem 6.3 shows that for all x ∈ ∂𝖵K , we have 𝖿 𝗅𝗈𝗐+(θ, x) = 1 and 𝖿 𝗅𝗈𝗐+(−θ, v) = Φ𝖵(G)+1;
in particular, there is some e leading to x with θ(e) ≥ 1/d and some e leading away from x
with θ(e) ≥ (Φ𝖵(G) + 1)/d ≥ 1/d, where d is the degree in G. Since G is transitive, the same
is true for all x ∈ 𝖵. Therefore, we may find either a cycle or a bi-infinite path with all edges
e having the property that θ(e) ≥ 1/d. We may then subtract 1/d from these edges, yielding
another function θ′ that satisfies 𝖿 𝗅𝗈𝗐+(θ′, v) ≤ 1 and d∗θ′(x) = Φ𝖵(G) for all vertices x. But
then 𝖿 𝗅𝗈𝗐+(θ′, x) < 1 for some x, a contradiction.

6.35. This is due to R. Lyons.

6.38. This is Exercise 6.17 1
2 in Gromov (1999). Consider the graph Gk formed by adding all edges

[x, y] with distG (x, y) ≤ k.

6.39. (This is due to Y. Peres.) Identify the binary tree with the set of all finite sequences of 0s and
1s. Let T be the subtree of the binary tree that contains all rays ξ with the property that for
every k ≥ 100, every path in ξ of length k2 contains a subpath of 0s of length k. In other
words, T contains the vertex corresponding to (x1, . . . , xn) iff for every k ≥ 100 and j ≥ 1 with
k2 + j ≤ n, there exists j′ ≥ j with k + j′ ≤ k2 + j such that xi = 0 for all i ∈ [1 + j′, k + j′].

6.40. (a) Use Cauchy-Schwarz.
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(b) The spectral theorem guarantees the existence of a square root of P; see Section 13.9 for a
review of the spectral theorem. Alternatively, use Exercise 13.16(e).
(c) Adjoin to the usual graph on � a binary tree at y0 := 0 and a loop at each positive integer.
Let yn := ⌊

√
n⌋. Then pn(y0, y0) ≍ n−3/2 and pn(y0, yn) ≍ 1/n.

6.45. Only part (b).

6.46. (Prasad Tetali suggested that Theorem 6.1 might be used for this purpose, by analogy with
the proof in Alon (1986).) Let θ be an antisymmetric function on 𝖤 such that |θ | ≤ c and
d∗θ = Φ𝖤(G)π. Then, for all f ∈ D00, we have ( f , f )π =

�
f 2, π

�
= Φ𝖤(G)−1� f 2, d∗θ

�
=

Φ𝖤(G)−1�d( f 2), θ� ≤ Φ𝖤(G)−1 ∑
e∈𝖤1/2

c(e)� f (e+)2 − f (e−)2�.
6.47. This bound for 𝜆2 is due to Nilli (1991) (a pseudonym for Noga Alon). It is a refinement of the

Alon-Boppana bound proved in Alon (1986). See also Section 3 of Murty (2003) for details.
A similar proof shows that if G contains s vertices so that the distance between each pair is
at least 2k, then the s largest eigenvalues all satisfy the same bound. A further improvement
of Nilli (2004) is that under this same distance condition, the s largest eigenvalues are all at
least 2

√
b cos(π/k). This bound is better for k ≥ 7 and d ≥ 4. Here, one uses s functions f j

corresponding to s vertices a j at pairwise distance at least 2k, where

f j (x) :=
{
αi+i0 if dist(x, a j ) = i ∈ [0, k − i0]
0 otherwise,

αi := b−i/2 sin(πi/k) ,
and i0 is the largest i < k such that αi < αi+1. Each function f j satisfies (A f j , f j ) ≥
2
√

b cos(π/k) ∥ f j ∥2, as does every linear combination of them. The key algebraic fact that
enables this inequality is that αi−1 + bαi+1 = 2

√
b cos(π/k) αi .

6.49. This is due to Chung and Tetali (1998).

6.50. Use the Cauchy-Schwarz inequality and Proposition 6.6:

Px [Xn ∈ A] =
�
1{x}, Pn1A

�
π
/π(x) ≤ √

π(x) ∥Pn1A∥π/π(x)
≤ ∥P∥nπ

√|A|π/π(x) = ρ(G)n√|A|π/π(x) .

A similar result is Proposition 4.2 of Babai (1991).

6.51. (This confirms a conjecture of Jan Swart (personal communication, 2008), who used it in Swart
(2009).) Consider (Pn1A, 1A)π .

6.52. Recall from Proposition 2.1 and Exercise 2.1 that v(x) = G (o, x)/π(x) = G (x, o)/π(o). There-
fore ∑

x∈𝖵
π(x)v(x)2 =

∑
x∈𝖵

G (o, x)G (x, o)/π(o) .

Now
G (o, x)G (x, o) =

∑
m,n

pm(o, x)pn(x, o) ,

whence ∑
x∈𝖵

G (o, x)G (x, o) =
∑
k

(k + 1)pk (o, o) .

Since pk (o, o) ≤ ρk , this sum is finite.
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6.53. (This is due to Benjamini, Nachmias, and Peres (2011). When A is a singleton, {x}, it is an
easy consequence of (6.13) and the usual formulas for G (x, x).) Define

τ := inf{n ≥ 0 ; Xn ∈ A} and τ+ := inf{n > 0 ; Xn ∈ A} .

Let
f (x) := Px [τ < ∞] .

This is the voltage function from A to ∞. By Exercise 6.52, we have f ∈ ℓ2(𝖵, π). Observe
that f ≡ 1 on A. For all x ∈ 𝖵,

(P f )(x) = Px

�
τ+ < ∞

�
.

In particular, P f = f on 𝖵\A. Thus
�(I−P) f

�(x) = Px

�
τ+ = ∞

�
for x ∈ A and

�(I−P) f
�(x) = 0

for x ∈ 𝖵 \ A. Therefore�
f , (I − P) f

�
π

=
∑
x∈A

π(x)Px

�
τ+ = ∞

�
= π(A)PπA

�
τ+ = ∞

�
.

On the other hand, clearly �
f , f

�
π
≥
∑
x∈A

π(x) f (x)2 = π(A) .

The claim follows by combining the last two displays with Exercise 6.7.

6.54. Use the fact that ∥A∥ =
√∥A∗A∥.

6.55. (This appears as Lemma 4.2 in Virág (2000a).) We may apply Exercise 6.50 to bound
P
� |Xn | ≤ 2αn

�
for α < − log ρ(G)/log b.

6.56. (This example is due to Omer Angel, Tom Hutchcroft, Asaf Nachmias, and Gourab Ray,
personal communication, 2014.) Let the vertices be �. Join n to n + 1 by 2n edges for n ≥ 0
and n to 2n by one edge for n ≥ 2.

6.57. Put z := 1/b in (6.23). An extension is given by Guillotin-Plantard (2005).

6.58. We follow the hint. Differentiation k times shows that the kth coefficient is
∑

n≥0
�
n
k

�
an zn−k0 .

This gives that

f (R + ϵ) =
∑
k≥0

∑
n≥0

(
n
k

)
an zn−k0 (R + ϵ − z0)k =

∑
n≥0

an(z0 + R + ϵ − z0)n

by the binomial theorem. For more details and applications, see Theorem IV.6 and elsewhere
in Flajolet and Sedgewick (2009).

6.61. (This is due to Lyons and Peres (2015a).) For (c), consider concatenating a long cycle that
starts with e and ends with −e with a short cycle that does not.

6.62. (a) From a nonbacktracking cycle one can build cycles of various lengths by inserting pure
backtracking cycles. The number of pure backtracking cycles of a given length equals the
number of cycles of that length on �b+1. In order not to count any result more than once, the
steps inserted must not use the last step before the insertion point of the nonbacktracking cycle,
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which leads to counting cycles on the b-ary tree T , rather than on �b+1, for all insertion points
other than the first.
(b) Sum over excursions from the root. The choice of sign in solving the resulting quadratic
equation is dictated by the requirement that H(0) = 1.
(c) Summing over the crossings of a fixed edge incident to the root gives

H0(z) =
∑
n≥0

z2nH(z)2n+1 .

Use the quadratic equation that H satisfies to simplify the algebra.

6.64. (a) bB−1θ(x, y) =
∑

u∼x θ(u, x) − bθ(y, x).
(b) Cθ(x, y) =

∑
u∼x θ(u, x) +

∑
z∼y θ(y, z) − dθ(y, x).

(c) Show that (Cθ, ψ) = (ψ,Cθ). Consideration of the matrix C seems to be new.
(d)–(h) Similar results can be found in Kotani and Sunada (2000) and for nonregular graphs in
Angel, Friedman, and Hoory (2015). A complete description of the Jordan form of B in the
regular case was obtained by Lubetzky and Peres (2015). For (h) with G infinite, use the fact
that κ ∈ σ(B) iff κ̄ is an eigenvalue of B∗ or κ is an approximate eigenvalue of B (that is, for all
ϵ > 0, there exists θ ∈ ℓ2(𝖤) such that ∥Bθ − κθ∥ < ϵ ∥θ∥).
(i) Nonbacktracking random walk is aperiodic, since otherwise B/b would have an eigenvalue
that is a nonreal root of unity, contradicting (h). Each real eigenvalue of B is smaller in absolute
value than the corresponding eigenvalue of A by (h). By Exercise 6.47, the second-largest
eigenvalue of A is larger than

√
b, which equals the absolute value of each nonreal eigenvalue

of B other than b. The fact that nonbacktracking random walk mixes faster is due to Alon,
Benjamini, Lubetzky, and Sodin (2007).

6.65. Use Exercise 2.30.

6.66. (This fact appears in unpublished notes of David Aldous, 1999, and in Ancona, Lyons, and
Peres (1999), where it is stated in a different form as Lemma 3.1.) Let gA be the spectral gap
of the induced chain and g be the original spectral gap. Write πA for the induced stationary
probability measure on A and PA for the induced transition operator. Choose ϕ: A→ �with
(ϕ, 1)πA

= 0 and gA =
�(I − PA)ϕ, ϕ�πA

/∥ϕ∥2
πA

. Let ψ:𝖵→ � be the harmonic extension of ϕ.
Show that PAϕ is the restriction of Pψ to A, that

�(I − PA)ϕ, ϕ�πA
=
�(I − P)ψ, ψ�

π
/π(A), and

that ∥ϕ∥2
πA
≤ ∥ψ − (ψ, 1)π ∥2

π/π(A). We remark that a similar proof shows the same inequality
for the gaps of the network Laplacians (Exercise 2.62), which are the gaps for continuous-time
random walk. A special case of this (in view of Exercise 2.69) is Proposition 2.1 of Caputo,
Liggett, and Richthammer (2010).

6.68. This is from Häggström, Jonasson, and Lyons (2002).

6.69. (This is due to Y. Peres and published in Häggström, Jonasson, and Lyons (2002).) The
amenable case is trivial, so assume that G is nonamenable. According to the reasoning of the
first paragraph of the proof of Theorem 6.19 and (6.37), we have

|(K̂)′ |
|E((K̂)′)| +

|K |
|E∗(K)| ≤

|(K̂)′ |
|E((K̂)′)| +

|K̂ |
|E∗(K̂)| ≤ 1 +

1
|E((K̂)′)| . (18.5)

Write
κn :=

|∂𝖤Kn |
|Kn | − Φ𝖤

′(G)
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and
𝜆n :=

|∂𝖤Ln |
|Ln | − Φ𝖤

′(G†) .

Also write d := dG , d† := dG† , Φ := Φ𝖤
′(G), and Φ† := Φ𝖤

′(G†). We may rewrite (18.5) as

2
d† − |∂𝖤Ln |/|Ln | +

2
d + |∂𝖤Kn |/|Kn | ≤ 1 +

1
|E(Ln)| ,

or, again, as

2
d† − Φ† − 𝜆n

+
2

d + Φ + κn
≤ 1 +

1
|E(Ln)| =

2
d† − Φ†

+
2

d + Φ
+

1
|E(Ln)| ,

whence
2𝜆n

(d† − Φ†)(d† − Φ† − 𝜆n) +
2κn

(d + Φ)(d + Φ + κn) ≤
1

|E(Ln)| .

Therefore

2𝜆n ≤
(d† − Φ†)(d† − Φ† − 𝜆n)
(d + Φ)(d + Φ + κn) (2κn) +

(d† − Φ†)(d† − Φ† − 𝜆n)
|E(Ln)|

≤
( d† − Φ†

d + Φ

)2
2κn +

(d† − Φ†)2
|E(Ln)| .

Similarly, we have

2κn+1 ≤
( d − Φ

d† + Φ†
)2

2𝜆n +
(d − Φ)2
|E(Kn+1)| .

Putting these together, we obtain

2κn+1 ≤ a(2κn) + bn ,

where
a :=

( (d − Φ)(d† − Φ†)
(d + Φ)(d† + Φ†)

)2

and
bn :=

( (d − Φ)(d† − Φ†)
d† + Φ†

)2 1
|E(Ln)| +

(d − Φ)2

|E(Kn+1)| .

Therefore

2κn ≤ 2κ0an−1 +
n−2∑
j=0

a jbn− j .

Since a < 1 and bn → 0, we obtain κn → 0. Hence 𝜆n → 0 too.

6.70. (a) Fix o ∈ 𝖵(G). Let the flow along e be π−1 times the area of the triangle defined by the
endpoints of e† and o.
(b) Choose the embedding so that the angles of the faces at a vertex of G† with degree
m are 2π/m. The lower bound this gives is the infimum of a(F) over faces F, where
a(F) := n − 2 −

∑n
i=1 2/di when F is a face of n sides whose vertices have degrees di .

6.73. The function t 7→ −t log t is concave. Consider a random permutation of the distribution of X .
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6.74. Let A ⊂ {0, . . . , n − 1}d with |A| < nd/2. Let m be such that |Pm(A)| is maximal over all
projections, and let

F = {a ∈ Pm(A) ; |P−1
m (a)| = n} .

Notice that for any a ̸∈ F, there is at least one edge in ∂𝖤A, and for different as we get disjoint
edges, so that |∂𝖤A| ≥ |Pm(A) \ F |. By Theorem 6.22, we get

|A|d−1 ≤
d∏
j=1

|Pj (A)| ≤ |Pm(A)|d ,

and so |Pm(A)| ≥ |A|/|A|1/d ≥ 21/d |A|/n ≥ 21/d |F |, which together yield

|∂𝖤A| ≥ |Pm(A) \ F | ≥ (1 − 2−1/d)|Pm(A)| ≥ (1 − 2−1/d)|A| d−1
d .

6.76. Follow the proof of Theorem 6.31, but apply Jensen’s inequality instead of Lemma 6.39.

6.77. Considering P j instead of P reduces to the case j = 1. In this case, (6.51) is replaced by

ES

�
π(S′) � U < 1

2

�
≥ π(S)

(
1 +

2η
1 − ηΦS

)
.

The rest of the proof is identical; see Morris and Peres (2005).

6.78. For every v ∈ [−r, r], we have

Pv
[
max
j≤r2

|X j | ≤ 2r and |Xr2 | ≤ r
]
≥ e−c

for some constant c. Repeatedly using the Markov property at times that are multiples of r2, we
deduce that

Pv
[
max
j≤2n

|X j | ≤ 2r
]
≥ e−c ⌈n/r

2⌉ .

Adding the requirement that each lamp in [−2r, 2r] is turned off at the last visit to it, and that
the lamplighter returns to the origin, we infer that pn(o, o) ≥ exp(−cn/r2 − c1r). Optimizing
this lower bound suggests taking r = n1/3. See Pittet and Saloff-Coste (1999).

6.79. (a) Subdivide edges the original network where the voltage would equal v(z)/2, identify the
vertices where the voltage is v(z)/2 to a new vertex b, and apply Lemma 6.43 either to a, b or
to b, z. This result is very similar to Benjamini and Kozma (2005).
(b) Note that ψ ≥ 1.

6.80. These results are due to Benjamini and Schramm (2004). There, they refer to Benjamini and
Schramm (2001b) for an example of a tree with balls having cardinality in [rd/c, crd], yet
containing arbitrarily large finite subsets with only one boundary vertex. That reference has a
minor error; to fix it, ∆ on p. 10 there should be assumed to equal the diameter. The hypothesis
for the principal result can be weakened to |B(x, r)| ≤ abr and limR→∞ |B(x, R)|/|B(x, R−r)| ≥
br/a.

6.82. (This is due to McGuinness (1989).) The following simple construction was found by Benjamini
and Schramm (1997). Let B(ℓ) denote the union of two binary trees of height ℓ, glued at the
leaves. Start with an infinite binary tree T , and for each k ≥ 1, replace every edge e at level k
of T by a copy of B(3k ), gluing each of the two roots of B(3k ) to one endpoint of e.
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6.83. Use the method of proof of Theorem 3.10. In light of Theorem 8.32, a.s. every infinite open
cluster is transient. This stronger result is due to Benjamini, Lyons, and Schramm (1999).

6.86. Use Proposition 6.51.

6.87. Conjecture 7.13 says that a proper two-dimensional isoperimetric inequality implies pc (G) <
1. Itai Benjamini (personal communication) has conjectured that the stronger conclusion
|An | ≤ eCn for some C < ∞ also holds under this assumption. This exercise shows that these
conjectures are not true with the weakened assumption of anchored isoperimetry.

6.88. Suppose that the distribution 𝜈 of L does not have an exponential tail. Then, for every c > 0
and every ϵ > 0, we have P

�∑n
i=1 Li ≥ cn

�
≥ P[L1 ≥ cn] ≥ e−ϵn for infinitely many ns, where

⟨Li⟩ are i.i.d. with law 𝜈. Let G be a binary tree with the root o as the basepoint. Pick a
collection of 2n pairwise disjoint paths from level n to level 2n. Then

P
[
along at least one of these 2n paths

n∑
i=1

Li ≥ cn
]
≥ 1 − (1 − e−ϵn)2n

≥ 1 − exp(−e−ϵn2n)→ 1 .

With probability very close to 1 (depending on n), there is a path from level n to 2n along
which

∑n
i=1 Li ≥ cn. Take such a path and extend it to the root, o. Let S be the set of vertices

in the extended path from the root o to level 2n. Then
|∂𝖤S|∑

e∈E (S) Le

≤ 2n + 1
cn

≈ 2
c
.

Since c can be arbitrarily large, Φ∗𝖤(G𝜈) = 0 a.s.

Chapter 7

7.1. Divide A into two pieces depending on the value of ω(e).
7.3. Prove this by induction, removing one leaf of K ∩ T .

7.7. Let µω2 and 𝜈ω2 be the conditional distributions of ω1 and ω3 given ω2. Then let (ω1, ω2, ω3)
have the law where (ω1, ω3) has conditional law µω2 × 𝜈ω2 given ω2. See Exercise 18.20 of
Billingsley (1995) for a general construction from specified conditional distributions. One can
also make a similar construction for finite A and then use Kolmogorov’s existence theorem.

7.8. The transitive case is due to Lyons (1995).

7.9. (a) Given ϵ > 0, let R be large enough that the balls of radius R satisfy P[BR(x)∩ω ̸= ∅] > 1−ϵ
for every vertex x. Given any finite F ⊂ 𝖵, every infinite component K of G \ F contains a ball
of radius R and therefore intersects ω with probability more than 1 − ϵ . Since ϵ is arbitrary, the
probability that K ∩ ω ̸= ∅ is actually 1. Since this holds for all finite F, the result follows.

7.10. Solution 1. This follows from (6.13) and the proof of Proposition 6.6.
Solution 2. A direct proof goes as follows. Let us first suppose that Po[Xk = o] is strictly
positive for all large k. Note that for any k and n, we have

Po[Xn = o] ≥ Po[Xk = o]Po[Xn−k = o] .
Thus, by Fekete’s lemma (Exercise 3.9), we have ρ(G) = limn→∞ Po[Xn = o]1/n as well as
Po[Xn = o] ≤ ρ(G)n for all n.
On the other hand, if Po[Xk = o] = 0 for odd k, it is still true that Po[Xk = o] is strictly positive
for all even k, whence limn→∞ Po[X2n = o]1/2n exists and equals ρ(G).
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7.11. Suppose that a large square is initially occupied. Then the chance is close to 1 that it will grow
to occupy everything.

7.14. This was used by Lyons and Schramm (1999).

7.15. Use Exercise 6.5.

7.17. (This solution was shown to us by Jacob Magnusson, personal communication, 2012.) Use the
standard coupling ωp := {e ; U(e) < p} and show that 1[x↔y](ωp) is continuous from the left.

7.18. (These generators were introduced by Revelle (2001).) It is the same as the graph of Example 7.2
would be if the trees in that example were chosen both to be 3-regular.

7.20. Let A := {y ↔ ∞} and B := {x ↔ y}.

7.21. This is due to Angel and Szegedy (2016).

7.24. (This is noted in BLPS (1999b).) Use Lemma 7.7.

7.25. This is due to Lyons, Pichot, and Vassout (2008). Compare the result to Theorem 6.5.
Solution 1. Use Exercise 7.23 and 1Λ(o) ≤ degF o − 2.
Solution 2. Here is a direct proof. It is not hard to see that it suffices to establish the case
where every tree of F is infinite a.s. Let K ⊂ 𝖵 be finite and write K := K ∪ ∂𝖵K . Let Y be the
subgraph of G spanned by those edges of F that are incident to some vertex of K . This is a
forest with no isolated vertices, whence∑

x∈K
degF x ≤

∑
x∈K

degY x − |𝖵(Y ) \ K | = 2 |𝖤(Y )| − |𝖵(Y ) \ K |

< 2 |𝖵(Y )| − |𝖵(Y ) \ K | = 2 |K | + |𝖵(Y ) \ K | ≤ 2 |K | + |∂𝖵K | .

Take the expectation and divide by |K | to get the result.

7.30. Modify the proof of Theorem 6.47.

7.31. It is not known whether the hypothesis holds for every Cayley graph of at least quadratic growth.
Prove that pbond

c (G) < 1 as in the proof of Theorem 7.16.

7.32. See Grimmett (1999), pp. 18–19.

7.33. These solutions were shown to us by Jacob Magnusson (personal communication, 2011). Let
C∞(p) denote the union of the infinite clusters formed by the edges with labels at most p.
(a) We have C∞(p) =

∩
q>p C∞(q) since G is locally finite.

(b) (This is due to van den Berg and Keane (1984).) Let Kp := C∞(p) \∪q<p C∞(q). Consider
the event that K(x) is the component of x in Kp .
(c) (This is due to Schonmann (1999b).) Use Theorem 7.21 to show that a.s. Kp = ∅ in the
solution to (b).

7.36. This is Corollary 4.1 of Häggström, Peres, and Schonmann (1999).

7.37. This fact is folklore, published for the first time by Peres and Steif (1998).
Solution 1. Use Proposition 5.27.
Solution 2. If there is an infinite cluster with positive probability, then by Kolmogorov’s
zero-one law, there is an infinite cluster a.s. Let A be the set of vertices x of T for which
ω ∩ T x contains an infinite cluster a.s. Then A is a subtree of T and clearly cannot have a
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finite boundary. Furthermore, since A is countable, for a.e. ω, each x ∈ A has the property that
ω ∩ T x contains an infinite cluster. Also, a.s. for all x ∈ A, ω ∩ T x ̸= T x ∩ A. Therefore, a.e.
ω has the property

∀x ∈ A ω ∩ T x contains an infinite cluster different from T x ∩ A . (18.6)

For any ω with this property, for all x ∈ A, there is some y ∈ T x ∩ A \ω. Therefore, such an ω
contains infinitely many infinite clusters. Since a.e. ω does have property (18.6), it follows that
ω contains infinitely many infinite clusters a.s.

7.39. (This is from Kesten (1982).) Let an,ℓ denote the number of n-vertex site animals K such
that |∂𝖵K | = ℓ. Note that for such an animal, ℓ ≤ (d − 1)|K | = (d − 1)n provided n ≥ 2. Let
p := 1/d and consider Bernoulli(p) site percolation on G. Writing the fact that 1 is at least the
probability that the cluster of o is finite, we obtain

1 ≥
∑
n,ℓ

an,ℓ pn(1 − p)ℓ ≥
∑
n≥2

anpn(1 − p)(d−1)n .

Therefore lim supn→∞ a1/n
n ≤ 1/[p(1− p)d−1]. Putting in the chosen value of p gives the result.

7.40. (This is from Häggström, Jonasson, and Lyons (2002).) Let bn,ℓ denote the number of n-edge
bond animals (𝖵′, 𝖤′) such that |∂𝖤𝖵′| = ℓ. Note that for such a subgraph,

ℓ ≤ d |𝖵′| − 2n ≤ d(n + 1) − 2n = (d − 2)n + d . (18.7)

Let p := 1/(d − 1) and consider Bernoulli(p) bond percolation on G. Writing the fact that 1 is
at least the probability that the cluster of o is finite and using (18.7), we obtain

1 ≥
∑
n,ℓ

bn,ℓ pn(1 − p)ℓ ≥
∑
n

bnpn(1 − p)(d−2)n+d .

Therefore lim supn→∞ b1/n
n ≤ 1/[p(1 − p)d−2]. Putting in the chosen value of p gives the result.

7.41. Since the graph has bounded degree, it contains a bi-infinite geodesic passing through o iff it
contains geodesics of length 2k for each k with o in the middle. By transitivity, it suffices to
find a geodesic of length 2k anywhere. But this is trivial.

7.42. (This is from Babson and Benjamini (1999).) We give the solution for bond percolation. Let d
be the degree of vertices and 2k be an upper bound for the length of cycles in a set spanning all
cycles. If K(o) is finite, then ∂𝖤K(o) is a cutset separating o from ∞. Let Π ⊆ ∂𝖤K(o) be a
minimal cutset. All edges in Π are closed, which is an event of probability (1 − p)|Π|. We claim
that the number of minimal cutsets separating o from ∞ and with n edges is at most CnDn

for some constants C and D that do not depend on n, which implies that pc(G) < 1 as in the
proof of Theorem 7.16 (or use Exercise 7.31). Fix any bi-infinite geodesic ⟨xi⟩i∈� with x0 = o
(see Exercise 7.41). Let Π be any minimal cutset separating o from ∞ with n edges. Since
Π separates o from ∞, there are some j, l ≥ 0 such that [x− j−1, x− j ], [xl , xl+1] ∈ Π. Since Π
is connected in Ĝk and ⟨xi⟩ is a geodesic, it follows that j + l < nk. By Exercise 7.39, the
number of connected subgraphs of Ĝk that have n vertices and that include the edge [xl , xl+1]
is at most cDn , where c is some constant and D is the degree of Ĝk . Since there are no more
than nk choices for l, the bound we want follows with C := ck.

7.43. Follow the method of proof of Theorem 7.32 or of Theorem 7.49.
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7.47. Compare to a Galton-Watson process: Fix a root of �b+1. Let (x, n) have progeny (y, n + k)
when y is a child of x in �b+1 and k ≥ 0 is minimal such that all the following edges are open:�(x, n), (x, n + 1)�, �(x, n + 1), (x, n + 2)�, . . . , �(x, n + k − 1), (x, n + k)�, �(x, n + k), (y, n + k)�.

7.48. Calculate the expected number of nodes connected to the root by an open path of length 2 from
the root in the graph pbond

c (�b+1 □ �) with an edge e adjacent to the root removed (maximized
over the choice of e).

7.49. This is due to Benjamini and Schramm (1996b).

7.52. See Theorem 1.4 of Balogh, Peres, and Pete (2006) for details.

7.53. The first formula of (7.26) translates to the statement π(d, 1) = 1/d, while the second formula
follows from Exercise 5.66. The formulae of (7.26) were first given in Chalupa, Reich, and
Leath (1979), which was the first paper to introduce bootstrap percolation into the statistical
physics literature.

7.54. The first inequality follows immediately from viewing T as a subgraph of �d+1. To prove the
positivity of the critical probability b(�d+1, k), consider the probability that a simple path of
length n starting from a fixed vertex x does not intersect any vacant (k − 1)-fort of the initial
Bernoulli(p) configuration of occupied vertices. Using Exercise 5.65, show that this probability
is bounded above by some O(z(p)n), where z(p)→ 0 as p→ 0. But there is a fixed exponential
bound on the number of simple paths of length n, so we can deduce that for p small enough,
every infinite simple path started at x eventually intersects a vacant (k − 1)-fort a.s., hence
infinite occupied clusters are impossible.
The main idea of this proof came from Howard (2000). That paper, together with Fontes,
Schonmann, and Sidoravicius (2002), used bootstrap percolation to understand the Glauber
dynamics of the Ising model at zero temperature.

7.56. Let R(x,Tξ ) be the event [the vertex x of Tξ is in an infinite vacant 1-fort], and set r(Tξ ) :=
Pp

�
R(o,Tξ )�. This is not an almost sure constant, so let us take expectation over all Galton-

Watson trees: r := E
�
r(Tξ )�. With a recursion as in Theorem 5.29, one can write the equation

r = 1
2 (1 − p)(2r − r2 + 4r3 − 3r4). So we need to determine the infimum of those p for which

there is no solution r ∈ (0, 1]; that infimum will be p(Tξ , 2). Setting f (r) = 2 − r + 4r2 − 3r3,
an examination of f ′(r) gives that max

�
f (r) ; r ∈ [0, 1]	 = f

�(4 + √7 )/9� = 2.2347. . . . So
there is no solution r > 0 iff 2/(1 − p) > 2.2347. . . , which gives p(Tξ , 2) = 0.10504 . . . < 1/9.

Chapter 8

8.3. Fix u, w ∈ 𝖵. Let f (x, y) be the indicator that y ∈ Γu,xw.

8.4. Use Exercise 8.3. Caution: this does not extend to general locally compact groups. For
example, given a, b ∈ �with a ̸= 0, define the map Ta,b : x 7→ ax + b for x ∈ �. The collection
of all such maps Ta,b forms a nonunimodular group under composition acting on �, but it has
the unimodular transitive subgroup � (where a = 1).

8.8. A quantitative strengthening is that the weights µ′j for Γ′ are sums of the weights µi for Γ as
follows: µ′j =

∑
oi ∈Γ′o′

j
µi .

8.9. Use the same proof as of Theorem 8.16 but only put mass on vertices in ω.

8.10. (This is from BLPS (1999b).) Note that if K is a finite tree, then αK < 2.

8.12. If there were two faces with an infinite number of sides, then a ball that intersects both of
them would contain a finite number of vertices whose removal would leave more than one
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infinite component. If there were only one face with an infinite number of sides, then let xn

(n ∈ �) be the vertices on that face in order. Quasi-transitivity would imply that there is a
maximum distance M of any vertex to A := {xn ; n ∈ �}. Since the graph has one end, for
all large n, there is a path (y1, . . . , yp) from x−n to xn that avoids the M-neighborhood of
x0. For 1 ≤ i ≤ p, choose t(i) ∈ � so that the distance between xt (i) and yi is at most M.
For some i < p, we have t(i) < 0 and t(i + 1) > 0; choose such an i and denote r(n) := −t(i)
and s(n) := t(i + 1). Then the distance between x−r (n) and xs(n) is at most 2M + 1. If
supn r(n)s(n) = ∞, then there would be points (either x−r (n) or xs(n)) the removal of whose
(2M + 1)-neighborhood would leave an arbitrarily large finite component (one containing x0)
by planarity. This would contradict the quasi-transitivity. Hence all paths from x−n to xn

intersect some fixed neighborhood of x0. But this contradicts having just one end.

8.13. By the mass-transport principle, we have

E
�{x ∈ 𝖵 ; o ∈ γx L}� =

∑
x∈𝖵

P[o ∈ γx L] =
∑
x∈𝖵

P[x ∈ γoL] = E|γoL | = |L | .

8.14. This is due to BLPS (1999b). See also Häggström (2013).

8.16. There are many ways of proving this. One way is as follows: Suppose one could pick an end at
random in an invariant way. Send mass 1 from each vertex to its unique neighbor closer to the
end.

8.17. Define the convex hull of Ξ to be the set of vertices of the tree that lie on a bi-infinite simple
path that converges, in both directions, to an end in Ξ. Apply Exercise 8.15 to the convex hull
of Ξ when the hull is nonempty, and apply Exercise 8.16 otherwise.

8.19. For any x, consider the elements of S(x) that fix x1, . . . , xn .

8.22. The proof that Haar measure exists on compact groups using parts (a) and (b) is due to Maak
(1935).

8.25. Extend the ideas of the solution to Exercise 8.17.

8.26. It is enough to prove (8.4) for bounded f .

8.27. It is unknown whether inf Φ𝖵(G) = 0 without the degree constraint.

8.29. This is adapted from BLPS (1999b).

8.30. This is due to Salvatori (1992).

8.31. (This result is from BLPS (1999b).) By Exercise 8.30, we know that Γ is unimodular, but this
will also follow from our proof. We imitate the idea at the beginning of Section 6.1, where it is
explained why bounded Ponzi schemes don’t work on Euclidean lattices. It suffices to prove
the result when

lim
n→∞

|Γoi ∩ Kn |
|Kn | =: 𝜈oi

exists for each i. Set 𝜈x := 0 for x /∈ {o1, . . . , oL}. By Remark 8.13, it suffices to show that
(8.13) holds when f is an indicator that does not transport mass more than distance M . But it
is clear that total mass is preserved within Kn up to the mass that starts or ends within distance
M of the boundary of Kn . More precisely, the total over vertices in Kn of mass sent minus
mass received is in absolute value at most the number of vertices within distance M of the
boundary of Kn . Hence the average mass change per vertex in Kn tends to 0 as n → ∞. Since
the mass change is the same for all vertices in a given orbit, this shows that (8.13) holds.
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8.32. Use Exercise 8.28 or 8.22.

8.34. Use (c) to prove (b). For (c), transport mass f
�|V (x)|� to s if s is the seed of V (x). For

(d), calculate the conditional expectation directly as
∑

x P[x ∈ V (o) | o ∈ S] and obtain a
telescoping sum; use Harris’s inequality for the unconditional expectation. It is not clear
whether (c) holds in the setting of (d).

8.35. This was noted by Häggström (private communication, 1997). The same sharpening was shown
another way in BLPS (1999b) by using Theorem 6.2.

8.38. This is from BLPS (1999b).

8.39. These are due to R. Lyons.

8.40. Consider the clusters of Bernoulli(p) percolation on T . Assign the same label to all the
vertices in a given cluster, where that label is chosen independently for different clusters and is
equally likely to be 0 or 1. This measure has the stronger property of a trivial tail σ-field (see
Section 10.4 for the definition).

8.43. (a) If not, then there is some p > pc(G □ �) such that p < pc(G □ Pn) for all n. Let
η = ⟨ηk ; k ≥ 1⟩ be an invariant percolation on G □ � with the properties that ηk ⊂ ηk+1 and
all components of ηk are isomorphic to G □ P2k for all k. Bernoulli(p) percolation ωp on
G □� intersected with ηk has only finite components a.s. The infinite components of ωp are
unions of the finite components of ωp ∩ ηk . Use the method of proof of Theorem 8.21 to get a
contradiction.
(b) (This establishes a special case of Conjecture 7.45.) Show that pc(G □ �) ≤ pc(G □ Cn) ≤
pc(G □ Pn).

8.45. (This is a special case of Example 9.6 of Aldous and Lyons (2007).) Verify (8.13) for
probabilities equal to the reciprocal of the degrees.

8.46. (This is a special case of Example 9.6 of Aldous and Lyons (2007).) Verify (8.13) for the
following probability measure: Let o be a vertex of G. Let Z := 1 + deg o/2 +

∑
f ∼o 1/deg f ,

where f denotes a face of G and deg f denotes its degree in G†. Choose ô equal to o with
probability 1/Z , equal to ve with probability 1/(2Z) for each e ∼ o, and equal to f with
probability 1/(Z deg f ) for each f ∼ o.

8.49. More general versions are in BLPS (1999b) and Levitt (1995). Take Bernoulli(ϵ) site percolation
and send mass 1 from each vertex to a random ω-neighbor that is closer in ω to an open vertex,
if any. Then the expected mass sent is 1 − ϵ , so the expected degree in ω is at least 2 − 2ϵ . Or
take the free minimal spanning forest of ω and use Proposition 8.18.

8.50. (This is from BLPS (1999b).) Combine Lemma 8.35 with Theorem 8.19. See also Corol-
lary 8.20.

8.51. (This is from BLPS (1999b).) Let �3 := �/3� be the group of order 3, and let T be the
3-regular tree with a distinguished end, ξ. On T , let every vertex be connected to precisely one
of its offspring (as measured from ξ), each with probability 1/2. Then every component is a
ray. Let ω1 be the preimage of this configuration under the coordinate projection T × �3 → T .
For every vertex x in T that has distance 5 from the root of the ray containing x, add to ω1
two edges at random in the �3 direction to connect the three preimages of x in T × �3. The
resulting configuration is a stationary spanning forest with three ends per tree and expected
degree (1/2)1 + (1/2)2 + 2−(5+1)�(2/3)1 + (1/3)2�.



Comments on Exercises 627

8.52. (This is from BLPS (1999b).) Use the notation of the solution to Exercise 8.51. For every
vertex x that is a root of a ray in T , add to ω1 two edges at random in the �3 direction to connect
the three preimages of x, and for every edge e in a ray in T that has distance 5 from the root of
the ray, delete two of its preimages at random.

8.53. This result is essentially due to Epstein and Hjorth (2009) in a different setting (and with a
different proof). We begin with a deterministic result: if H is a graph, ξ is an end of H , and K
is a subset of 𝖵(H) such that no sequence from K converges to ξ, then there is a “canonical”
way to associate to ξ and K a finite set A = A(K , ξ) ⊂ 𝖵(H) that separates K from ξ, where
the meaning of “canonical” will become clear when we apply this to a random situation. To
prove this, let n be the smallest integer such that there is a set of cardinality n that separates K
from ξ. There are only finitely many sets of cardinality n that separate K from ξ and whose
maximal distance to K is minimal; let A be their union.
Now suppose for a contradiction that we could pick some ends Ξ as described in the exercise
statement. Consider a forest F as in Lemma 8.35. By Corollary 8.20, at least some trees in F
have pc < 1. Thus, we may choose p ∈ (0, 1) so that Bernoulli(p) percolation on F leaves a
subgraph η with infinite clusters with positive probability. Clearly a.s. not all infinite clusters
of η have subsets that converge to an end in Ξ. To each infinite cluster K of η that belongs
to a component of ω with an end ξ ∈ Ξ, but such that no subset of K converges to ξ, we
associate the set A(K , ξ) as earlier. Let each vertex in K send mass 1/|A(K , ξ)| to each point
in A(K , ξ). This is an invariant mass transport that sends out mass at most 1 from each point,
but some points receive infinite mass with positive probability. Thus, we arrive at our desired
contradiction.

8.54. Compare Proposition 7.1 of Häggström, Peres, and Schonmann (1999).

8.55. (This is Theorem 1.5 of Häggström, Peres, and Schonmann (1999).) Use Exercise 8.54 and
Theorem 7.21.

8.56. (c) Let e1(x) be a random uniform edge incident to x, independent for different x. Now let
Z′(x) := maxe∼x , e ̸=e1(x) −W (e)W �

e1(x)�.
If max is replaced by sum, then part (c) is open.
It had been asked by Lyons and Schramm in 1997 whether invariant processes that can be
monotonically coupled can also be monotonically coupled in an invariant way. The construction
here with sum was proposed as a counterexample by Lalley in 1998, whereas the solution with
max was given by Peres in 1998. The answer to the question of Lyons and Schramm was finally
provided by Mester (2013); it is no.

8.57. Fix (H, a). For every x such that
�
K(x), x

�
is rooted isomorphic to (H, a), let x send total mass

1 split equally among the vertices of K(x).

Chapter 9

9.1. Find θ ⊥⋆ such that χe = ieW + θ.

9.2. It suffices to do the case H =
∪

Hn . Let K1 := H1 and define Kn for n > 1 by Hn = Hn−1 ⊕ Kn .
Then

H =
∞⊕
n=1

Kn :=
{∑

un ; un ∈ Kn ,
∑

∥un∥2 < ∞
}
.

This makes the result obvious.
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9.3. Follow the proof of Proposition 9.1, but use the stars more than the cycles.

9.5. Let e := ⟨a, z⟩. The free effective resistance in G′ between a and z equals r(e)ieF (e)
/�
1 − ieF (e)

�
when ieF is the free current in G.

9.6. (a) If x ∈ 𝖵, then ∇1{x} is the star at x.
(d) Use Exercise 2.93.
(g) Show that (∇ f , ix )r = (∇g, ix )r , and then show that g(x) = (∇g, ix )r when g has finite
support. (This is an example where (df , ix ) might not equal ( f , d∗ix ).)
(h) Use part (g) or the open mapping theorem.

9.7. (This is due to Thomassen (1989).) Fix vertices ai ∈ 𝖵i . Use Theorem 9.7 with

Wn :=
�(x1, x2) ; |x1 − a1 | ∨ |x2 − a2 | = n

	
.

9.8. The set of g ≥ | f | in D0 is closed and convex. Use Exercise 9.6(h).

9.10. Let θ be a unit flow of finite energy from a vertex o to ∞. Since θ has finite energy, there is
some finite K ⊂ 𝖵(G) such that the energy of θ on the edges with some endpoint not in K is
less than 1/m. That is, the effective resistance from K to infinity is less than 1/m.

9.12. (This is due to Abrams and Kenyon (2015).) In fact, the number of such tilings with prescribed
“combinatorics” also depends only on k. Use Exercise 2.80.

9.14. If f is bounded and harmonic, let ⟨Xn⟩ be the random walk whose increments are i.i.d. with
distribution µ. Then lim f (Xn) exists and belongs to the exchangeable σ-field.

9.15. This proof is due to Raugi (2004).

9.16. To say that µ is symmetric means that µ(g) = µ(g−1) for all g ∈ Γ. Examine the solution of
Exercise 9.15 closely.

9.17. (a) P⋆n

�
θ↾𝖤(GW

n )
�

= in .
(b) Take θ to be a limit point of ⟨in⟩.

9.18. Use Exercise 2.60.

9.19. div∇ = I − P; use Exercises 9.6(g–h) and 9.18.

9.20. Use Exercise 9.19.

9.21. Let f1 := (− f ) ∨ 0 and f2 := f ∨ 0. Apply Exercise 9.6(f) to f1 and f2 and use Exercise 9.20.

9.23. After following the hint, we get that u is harmonic. That u is constant then follows from
Corollary 9.6. One can avoid Corollary 9.6 as follows: For any a, if u is harmonic, then u ∧ a
is superharmonic. But we just proved that this means u ∧ a is harmonic. Since this holds for all
a, u is constant.

9.24. Let the function values be certain probabilities.

9.25. The wired effective resistance is 2(bn − 1)/�bn−1(b2 − 1)� if the branching number is b and the
distance between the vertices is n.

9.31. Use Theorem 2.17. For the example in the second part, make G recurrent by giving it infinitely
many cut-edges.



Comments on Exercises 629

9.33. The space BD is called the Dirichlet algebra. The maximal ideal space of BD is called the
Royden compactification of the network.

9.34. (a) Use Exercise 2.64.
(b) Use Exercise 2.64 and Proposition 2.12. Alternatively, use the fact that the subspace onto
which we are projecting is effectively one-dimensional.

9.35. Another proof uses Exercise 9.24 (and Exercise 10.16).

9.36. Use Exercise 9.6(e).

9.37. By Exercise 9.6(e–f), it suffices to prove this for f ∈ D0. Therefore, it suffices to prove it for
f ∈ D00. Let g := (I − P) f . By (6.17), we have ∥df ∥2

c − ∥dP f ∥2
c = 2∥g∥2

π − (g, (I − P)g)π ≥ 0,
since ∥I − P∥π ≤ 2.

9.39. This result shows that restricted to ⋆, the map θ 7→ F is the inverse of the map of Exer-
cise 9.6(h).

9.41. Write the current as the appropriate orthogonal projection of a path from a to z and move the
projection to the other side of the inner product.

9.42. Imitate the proof of Exercise 2.13 and use Exercise 9.41.

9.44. Since {χe ; e ∈ 𝖤1/2} is a basis for ℓ2
−(𝖤, r) and P∇HD = P⊥♢ − P⋆, the linear span of {ieF − ieW}

is dense in ∇HD. (This also shows that the bounded Dirichlet functions are dense in D.
Furthermore, in combination with Exercise 2.43, it gives another proof of Corollary 9.6.)

9.45. An extension for infinite graphs H all of whose bounded harmonic functions are constant is
that every bounded harmonic function on G □ H has the property that it does not depend on the
second coordinate.

9.46. Define the random walk
Yn :=

{
Xn if n ≤ τ𝖵\W
Xτ𝖵\W otherwise.

It follows from a slight extension of the ideas leading to (9.9) that for f ∈ D harmonic at all
vertices in W , the sequence



f (Yn)� is an L2-martingale, whence f (X0) = E

�
limn→∞ f (Yn)�.

This is 0 if f is supported on W .

9.47. (This is an extension of Lemma 3.1 of Georgakopoulos (2010), where Hn are paths.) Follow
the proof of Theorem 9.7. Choose f and e0 as there. Let Pi be paths emanating from the
endpoints of e0 along which f is monotonic, increasing from the endpoint where f is larger
and decreasing from the other endpoint.

9.49. Consider linearly independent elements of D/D̃0. This has an important refinement for Cayley
graphs: see Section 10.8.

9.53. Put weights on the usual graph of �.

9.54. If e ∈ 𝖤 with v(e−) < β < v(e+) and we subdivide e by a vertex x, giving the two resulting
edges resistances

r(e−, x) = r(e) β − v(e−)
v(e+) − v(e−)

and
r(x, e+) = r(e) v(e+) − β

v(e+) − v(e−) ,
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and if the corresponding random walk on the graph with e subdivided is observed only when
vertices of G are visited and, further, consecutive visits to the same vertex are replaced by a
single visit, then we see the original random walk on G, and v(x), the probability of never
visiting o, is β.
For each k = 2, 3, . . . in turn, subdivide each edge e where v(e−) < 1 − 1/k < v(e+) as just
described with a new vertex x having v(x) = 1 − 1/k. Let G′ be the network that includes all
these vertices. Let Πk be the set of all vertices x ∈ G′ with v(x) = 1 − 1/k, and let τk be the
first time the random walk on G′ visits Πk . This stopping time is finite, since v(Xn)→ 1 by
Exercise 2.91. The limit distribution of J(Xn) on the circle is the same for G as for G′ and is
the limit of J(Xτk ) since J(Xn) converges a.s.
Let G′k be the subnetwork of G′ determined by all vertices x with v(x) ≤ 1 − 1/k. Because
all vertices of Πk are at the same potential in G′, identifying them to a single vertex will not
change the current flow in G′k . Thus, the current flow along an edge e in G′k incident to a vertex
in Πk is proportional to the chance that e is the edge taken when Πk is first visited. This means
that the chance that J(Xτk ) is an arc J(x) is exactly the length of J(x) if x ∈ Πk . Hence the
limit distribution of J(Xτk ) is Lebesgue measure.

Chapter 10

10.3. Let F be a finite set of edges, and compare the result on F in Wilson’s algorithm on Gn to
the result on F in Wilson’s algorithm on GW

n , where we root at an endpoint of F and start
successive random walks at the endpoints of F.

10.4. Let A ⊂ 𝖤 be a minimal set whose removal leaves at least two transient components. Show that
there is a finite subset B of endpoints of the edges of A such that 𝖥𝖲𝖥[∃x, y ∈ B x ↔ y] = 1 >
𝖶𝖲𝖥[∃x, y ∈ B x ↔ y]. Here, x ↔ y means that x and y are in the same component (tree).
One can also use Exercise 9.24 with Proposition 10.14, or, alternatively, one can derive a new
proof of Exercise 9.24 by using this exercise and Proposition 10.14.

10.5. This is due to Häggström (1998). The same holds if we assume merely that
∑

n r(en) = ∞ for
any path ⟨en⟩ of edges in G.

10.6. (b) Use the bounded convergence theorem.

10.9. Use Corollary 10.5.

10.10. Use Exercise 10.4 or 10.5.

10.11. (This is due to Medolla and Soardi (1995).) Use Corollary 10.9.

10.13. The free uniform spanning forest has one tree a.s., since this joining edge is present in every
finite approximation. But the wired uniform spanning forest has two a.s.; use Proposition 10.1.

10.14. Orthogonality of {Gx} is obvious. Completeness of {Gx} follows from the density of
trigonometric polynomials in L2(�d). This proves the identity for F ∈ L2(�d). Furthermore,
density of trigonometric polynomials in C(�d) shows that f determines F uniquely (given
F ∈ L1(�d), if f = 0, then

∫
�d

F(α)p(α) dα = 0 for all trigonometric polynomials p, whence
for all continuous p, so F = 0). Therefore, if f ∈ ℓ2(�d), then F ∈ L2(�d), so the identity also
holds when F /∈ L2(�d).

10.16. The assumption that c( • ) is bounded can be replaced by the assumption that
∑

n r(en) = ∞ for
any path ⟨en⟩ of edges in T .

10.17. Join � and �3 by an edge.
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10.20. This is from BLPS (2001), Proposition 14.1.

10.21. The equation that replaces (10.41) still shows that it is expressed via a von Neumann dimension.
The Hilbertable Γ-space involved does not change with the change in conductances, even
though ♢⊥ does change.

10.23. Show that pc is a solution of 3 = 4p2 + 2p3.

10.26. Use Proposition 6.9. In Section 14.1, we will see that the limiting speed does exist a.s. and is
constant, and that when it is 0, all bounded harmonic functions are constant. This strengthens
the result of this exercise in light of Exercise 9.44.

10.27. This extends to planar transitive graphs.

10.29. Random fields converge weakly if their finite-dimensional distributions converge. The infinite
sums are defined by choosing any linear ordering of 𝖤1/2. The variances of the differences of
the fields at x and y are the free and wired effective resistances between x and y. Note that
if jointly normal random variables Y with mean 0 have covariance matrix M, then there are
independent standard normal random variables 𝜁 such that Y =

√
M𝜁 . Using the notions of

Gaussian Hilbert spaces (see Janson (1997)), one can give a different definition of the free and
wired canonical Gaussian fields without limits.

10.31. To show that the tail σ-field is trivial, use Exercise 2.135. The covariances can be expressed
via the Green function.

10.33. Use Exercise 9.45.

10.37. Use Exercise 8.47 or (10.3) on the dual graph, together with symmetry.

10.40. This analogue of Theorem 4.8 is due to Robin Pemantle after seeing Theorem 4.8.

10.41. Before Theorem 10.18 was proved, Pemantle (1991) had proved this. This property is called
strong Følner independence and is stronger than tail triviality. To prove it, let ⟨Gn⟩ be an
induced exhaustion of G with edge set 𝖤n . Given n, let K ⊂ 𝖤 \ 𝖤n . Let A be an elementary
cylinder event of the form [D ⊆ T] for some set of edges D ⊆ 𝖤n , and let B be a cylinder event
in F (K) with positive probability. By Rayleigh monotonicity, we have, for all sufficiently large
m ≥ n,

µW
n (A ) ≤ µF

m(A | B) ≤ µF
n(A ) .

Therefore µW
n (A ) ≤ 𝖥𝖲𝖥(A | B) ≤ µF

n(A ), and so the same is true of any B ∈ F (K) of
positive probability (not just cylinders B). The hypothesis that 𝖥𝖲𝖥 = 𝖶𝖲𝖥 now gives the
result.

10.43. This is due to Le Gall and Rosen (1991).

10.45. This is due to BLPS (2001), Remark 9.5.

10.46. We do not know whether it is true if only one of the graphs is assumed to be transitive, but this
seems likely.

10.47. Define G0 to be two copies of �3 joined by an edge. Let G1 := G0□�. Let G2 be G1 connected
to a copy of �4 by an edge.
(a) (This is due to BLPS (2001), Remark 9.8.) Use G := G1.
(b) Use G := G2.

10.50. A theorem of Gromov (1981a) and Trofimov (1984) says that all quasi-transitive graphs of at
most polynomial growth satisfy the hypothesis with d an integer.
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10.51. By Proposition 10.14 and Exercise 9.7, we have that 𝖥𝖲𝖥 = 𝖶𝖲𝖥. Since G is nonamenable, we
also know that each tree has one end. Therefore, there are finitely many points in each tree that
are closest to ξ; the components can be distinguished by the degrees of these points.

10.52. This is due to BLPS (2001), Remark 9.9.

Chapter 11

11.2. The left-hand side divided by the right-hand side turns out to be 109872/109561. An outline
of the calculation is given by Lyons, Peres, and Schramm (2006).

11.5. If the endpoints of e are x and y, then W is the vertex set of the component of x or the
component of y in the set of edges lower than e.

11.7. Use Exercise 11.5.

11.12. Each spanning tree has all but two edges of G. Condition on the values of these two missing
edges to calculate the chance that they are the missing edges. It turns out that there are three
trees with probability 4/45, six with probability 7/72, and two with probability 3/40. There
are three edge conductances equal to 27, two equal to 32, and one equal to 35.

11.13. There are four trees of probability 1/15 and twelve of probability 11/180.

11.15. Show that pc is a solution of 3 = 4p2 + 2p3.

11.16. (This is due to Thom (2016).) Suppose that U(e) = p. Then e /∈ 𝖥𝖬𝖲𝖥 iff there is some simple
cycle containing e all of whose other labels are < p. For each such simple cycle of length n,
the probability that all its other labels are < p is pn−1. Let d be the degree of G. The number
of simple cycles of length n through o is at most (ρd)n , whence

E
[∑
e∼o

1{e∈𝖥𝖬𝖲𝖥}

]
≥
∫ 1

0

(
d −

∑
n≥1

(ρd)npn−1
)+

dp .

Evaluating this integral yields the desired bound, which in turn is at least (1 − log 2)(1/ρ − 1).
If G has no loops, then the same argument, but with the sum starting at n = 2, yields the lower
bound 1/ρ − log (1 + 1/ρ), which is ≥ (1 − log 2)/ρ.

11.17. Whether a group as in part (a) exists was asked by Lyons, Peres, and Schramm (2006). To show
that the answer is yes, use Exercise 7.25, Proposition 11.7, Corollary 7.40, and the fact that
there are nonamenable groups that are not of uniformly exponential growth (see Section 3.4).
Part (b) is due to Thom (2016); use Exercise 11.16 and take a power of a generating set.

11.18. The answer is 22 + 24(log 2)2 − 48 log 2 = 0.26−. One can calculate the entire distribution of
the degree from this since the expected degree equals 2.

11.19. The chance is ∫ 1

0

1 − x2

1 − x2 + x3 dx = 0.72301+ .

This is just slightly less than the chance for the uniform spanning tree.

11.20. Use Exercise 11.8.

11.21. Use Exercise 11.7. In contrast to the𝖶𝖴𝖲𝖥, the number of trees in the𝖶𝖬𝖲𝖥 is not always an
a.s. constant: see Example 6.2 of Lyons, Peres, and Schramm (2006).
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11.22. It is a tail random variable.

11.25. This is due to Lyons, Peres, and Schramm (2006).

11.26. This is due to Lyons, Peres, and Schramm (2006).

11.28. Use Exercise 8.47.

Chapter 12

12.4. For any 𝜆 > 0, we have P[X̂n < 𝜆] = E[Xn ; Xn < 𝜆]/E[Xn] ≤ 𝜆P[Xn > 0]/E[Xn]→ 0.

12.7. Use Laplace transforms.

12.9. It is not necessary to assume that A has finite mean.

12.10. We have E[Ai ]→ 0, whence E
�∑n

i=1 Ai/n
�
→ 0, which implies the first result. The second

result follows similarly, since E
�∑Ai

j=1 |Ci, j |� ≤ E[Ai ].
12.11. (This is due independently to J. Geiger and G. Alsmeyer, personal communications, 2000.) We

need to show that for any x, we have P[A > x | A ≥ B] ≤ P[A > x | A ≥ C]. Let F be the
c.d.f. of A. For any fixed x, we have

P[A > x | A ≥ B] =
P[A > x, A ≥ B]

P[A ≥ B] =

∫
y>x

P[B ≤ y] dF(y)∫
y∈� P[B ≤ y] dF(y)

=
(
1 +

∫
y≤x P[B ≤ y] dF(y)∫
y>x

P[B ≤ y] dF(y)
)−1

≤
(
1 +

∫
y≤x P[C ≤ y] P[B≤x]

P[C≤x] dF(y)∫
y>x

P[C ≤ y] P[B≤x]
P[C≤x] dF(y)

)−1

=
(
1 +

∫
y≤x P[C ≤ y] dF(y)∫
y>x

P[C ≤ y] dF(y)
)−1

= P[A > x | A ≥ C] .

To show that the hypothesis holds for geometric random variables, we must show that for all
k ≥ 1, the function p 7→ (1 − pk+1)/(1 − pk ) is increasing in p. But this is clear from writing it
as (1 − pk+1)/(1 − pk ) = 1 + 1/

∑k
i=1 p−i .

12.12. (See Arratia and Goldstein (2010).) Apply the definition.

12.16. To deduce the Cauchy-Schwarz inequality, apply the arithmetic mean–quadratic mean inequality
to the probability measure (Y 2/E[Y 2])P and the random variable X/Y .

12.19. See the proof of Theorem 12.7.

12.20. See the proof of Theorem 12.7.

12.21. (This is due to Zubkov (1975).) In the notation of the proof of Theorem 12.7, show that
i P[X ′n−i > 0]→ 1 as i → ∞. See Geiger (1999) for details.

12.23. (a) By l’Hôpital’s rule, Exercise 5.1, and Exercise 12.22, we have

lim
s↑1

δ(s) = lim
s↑1

f (s) − s
(1 − s)�1 − f (s)� = lim

s↑1

f ′(s) − 1
f (s) − 1 − f ′(s)(1 − s)

= lim
s↑1

f ′′(s)
2 f ′(s) − f ′′(s)(1 − s) = σ2/2 .
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(b) We have �
1 − f (n)(s)�−1 − (1 − s)−1 =

n−1∑
k=0

δ
�

f (k)(s)� .
Since f (k)(sn)→ 1 uniformly in n as k → ∞, it follows that

�
1 − f (n)(sn)�−1 − (1 − sn)−1

n
→ σ2/2

as n → ∞. Applying the hypothesis that n(1 − sn)→ α gives the result.

12.24. (i) Take sn := 0 in Exercise 12.23 to get n
�
1 − f (n)(0)�→ 2/σ2.

(ii) By the continuity theorem for Laplace transform (Feller (1971), p. 431), it suffices to show
that the Laplace transform of the law of Zn/n conditional on Zn > 0 converges to the Laplace
transform of the exponential law with mean σ2/2, that is, to x 7→ (1 + xσ2/2)−1. Now the
Laplace transform at x of the law of Zn/n conditional on Zn > 0 is

E
�
e−xZn/n

�
Zn > 0

�
= E

�
e−xZn/n1[Zn>0]

�
/P[Zn > 0] =

E
�
e−xZn/n

�
− E

�
e−xZn/n1[Zn=0]

�
1 − f (n)(0)

=
f (n)(e−x/n) − f (n)(0)

1 − f (n)(0) = 1 −
n
�
1 − f (n)(e−x/n)�
n
�
1 − f (n)(0)� .

Application of Exercise 12.23 with sn := e−x/n , together with part (i), gives the result.

Chapter 13

13.1. The expected time to exit a unary tree, once entered, is infinite; see Exercise 2.46. Alternatively,
use an argument similar to that which led to (13.5) but this time with T covering an infinite
graph, only finitely many of whose vertices have degree larger than 2.

13.2. See Proposition 4.2 and the solution of Exercise 4.3 in Levin, Peres, and Wilmer (2009).

13.4. Suppose that Pt f = 𝜆t f and max | f | = | f (x)| = 1. Then

|𝜆t | =
����∑

y

pt (x, y) f (y)���� =
����∑

y

�
pt (x, y) − π(y)� f (y)���� ≤∑

y

|pt (x, y − π(y)| = 2δ(t) .

Therefore
tmix(ϵ)

( 1
|𝜆| − 1

)
≥ tmix(ϵ) log

( 1
|𝜆|

)
≥ log

( 1
2ϵ

)
.

13.5. By transitivity, D̂x

2
:=

∑
y π(y)d2(x, y) does not depend on x, so averaging over x shows

that D̂x

2
= D̂2 for every x. For any three vertices x, y, z, the triangle inequality implies that

d2(x, z) ≤ 2 d2(x, y) + 2 d2(y, z). Averaging over y gives d2(x, z) ≤ 4 D̂2.

13.6. We claim that simple random walk on the hypercube satisfies

Ed(Zt , Z0) ≥ t
2

∀t ≤ k
4
.
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Indeed, at each step at time t ≤ k/4, we have probability at least 3
4 to increase the distance by 1

and probability at most 1
4 of decreasing it by 1, so

Ed(Zt , Z0) ≥ 3
4

t − 1
4

t =
t
2
.

It now follows from Jensen’s inequality that Ed2(Zt , Z0) > t2/4 for t ≤ k/4, implying that the
hypercubes do not have uniform Markov type 2.

13.7. Given ϵ > 0, write an orthogonal decomposition ψ = ψF + χ where ψF is finitely supported
and ∥ χ∥ ≤ ϵ . Then ⟨PiψF , ψF ⟩→ 0 by Exercise 2.106, so lim supi⟨Pi χ, 2ψF + χ⟩ ≤ 2ϵ by
Cauchy-Schwarz. Adding these yields lim supi⟨Piψ, ψ⟩ ≤ 2ϵ .

An alternative proof uses the spectral theorem. Since ∥P∥ ≤ 1, we may write P =
∫ 1
−1 𝜆 dE(𝜆),

where E( • ) is the spectral resolution of P. Since 𝖵 is infinite, ±1 are not eigenvalues of P.
Therefore ⟨Piψ, ψ⟩ =

∫
(−1,1) 𝜆

i d


E(𝜆)ψ, ψ�→ 0 as i → ∞.

13.9. A flow in G′ gives a flow in G, while distances in G′ are no smaller than in G.

13.10. Use the Nash-Williams criterion.

13.12. For the second one, use Stirling’s formula.

13.13. For the upper bound, given a cut Π in T , construct a cut in T [k] by taking the closest ancestor in
T [k] to each vertex in Π. For the lower bound, map flows in T to flows in T [k].

13.14. See Benjamini and Peres (1994b). These bounds were sharpened by Benassi (1996).

13.15. The tree T satisfies log (gr T) = dimP(∂T) = log 2. If the ni increase sufficiently fast, then
br T = 1, as in the 1–3 tree.

13.16. (Part (b) is due to Oded Schramm, personal communication, 2007, while parts (c)–(f) are
due to Mark Braverman, personal communication, 2009.) Part (b) can be modified to be a
transitive simple graph by replacing each vertex i by a set of 2N vertices labeled from (i, 1)
to (i, 2N ); connect all (i, j) to all (i ± 1, k) and also (i, j) to (m, j) when the distance from
i to m is at least

√
N (mod N). In (b), the expected distance is close to 2 for moderately

large times but close to 1 for very large times. If one wants a transitive network with large
diameter, one can take a Cartesian product of this network with itself many times. For (c), use
reversibility and stationarity. For (d), walk m − k steps from Xk to a new X ′m−k and use the
triangle inequality d(X0, Xn) ≤ d(X0, X ′m−k ) + d(X ′m−k , Xn). For (e), subdivide and re-weight
the edges of the original network. For (f), use the proof of (d), not the result, for the chain
Y . The same results hold for random walk on an infinite transitive network started at any
vertex. Likewise, suppose G is a quasi-transitive network with orbit representatives o1, . . . , oL .
Consider the quotient Markov chain on the set {oi}. If this chain is reversible with stationary
probability distribution 𝜈i and P[X0 = oi ] = 𝜈i , then the same results hold. In particular, if G is
a unimodular quasi-transitive network started at a π-biased normalized root, then the results
hold by Exercise 8.33.

13.17. This follows from Theorem 13.1 by subtracting the conditional expectations given the past at
every stage (the elementary Doob decomposition).

13.18. (a) This refinement of the principle of Cauchy condensation is due to Dvoretzky (1949).
Choose bn to be increasing and tending to infinity such that

∑
n bnan/n < ∞. Define

m1 := 1 and then recursively mk+1 := mk + ⌈mk/bmk
⌉. Define nk ∈ [mk ,mk+1) so that

ank
= min

�
an ; n ∈ [mk ,mk+1)	.
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(b) A special case appeared in Dvoretzky (1949). The general result is essentially due to
Davenport, Erdős, and LeVeque (1963); see also Lyons (1988). Prove it first along the
subsequence nk given by (a), then for all n by imitating the proof of Theorem 13.1.

13.19. These are due to Lyons (1988).
(a) Define n1 := 1 and then recursively nk+1 as the smallest n > nk so that an/n < (n − nk )/n2

k .
(b) Prove it first along the subsequence nk given by (a), then for all n by imitating the proof of
Theorem 13.1.

13.21. For (b), note that ⟨Sn∧τ ⟩ is also a supermartingale, where τ := inf{k ; Sk ≥ L}.

13.22. We do the case where G is simple; for other G, consider the directed line graph of G. For
positive integers L, let N(L) be the number of paths in G of length L. Then log b(G) =
limL→∞ log N(L)/L. Let A denote the directed adjacency matrix of G. Consider the Markov
chain with transition probabilities p(x, y) := A(x, y)/d(x). Our hypothesis on G guarantees that
a stationary measure is σ(x) := d(x)/D, where D :=

∑
x d(x). Write n := |𝖵|. The entropy of

this chain is, by convexity of the function t 7→ t log t,∑
x

[d(x)/D] log d(x) =
∑
x

[d(x)/D] log[d(x)/D] + log D ≥ nz log z + log D = log (D/n) ,

where z := (1/n)∑x d(x)/D = 1/n. The method of proof of (13.6) now shows the result.

13.23. This transition matrix is called the Shannon-Parry measure. We do the case where G is
simple; if not, consider the directed line graph of G. Let 𝜆 be the Perron eigenvalue of the
directed adjacency matrix A of G with left eigenvector L and right eigenvector R. Define
π(x) := L(x)R(x), where we assume R is normalized so that this is a probability vector. Define
the transition probabilities p(x, y) :=

�
𝜆R(x)�−1 A(x, y)R(y).

13.24. It is
�
3α(α + 1) + (1 − α)√16α + 9α2

�/�
2(2 + α)� a.s.

13.25. Let du denote the number of children of a vertex u in a tree. Use the SLLN for bounded
martingale differences (Theorem 13.1) to compare the speed to

lim inf
n→∞

1
n

∑
k≤n

dXk
− 1

dXk
+ 1

.

Show that the frequency of visits to vertices with at least two children is at least 1/N by
using the SLLN for L2-martingale differences applied to the times between successive visits to
vertices with at least two children. Note that if x has only one child, then x has a descendant
at distance less than N with at least two children and also an ancestor with the same property
(unless x is too close to the root).
An alternative solution goes as follows. Let v(u) be the ancestor of u closest to u in the set
{v ; dv > 2} ∪ {o} (we allow v(u) = u) , and let w(u) be the descendant of u of degree > 2
chosen such that L(u) = |w(u)| − |u| > 0 is minimal. Write k(u) = |u| − |v(u)| ≥ 0, so that
k(u) + L(u) < N always. Check that

Yt := |Xt | − �t + k(Xt )L(Xt )�/(3N)

is a submartingale with bounded increments by considering separately the cases where (1)
d(Xt ) > 2 or Xt is the root and (2) the remaining cases. Apply Exercise 13.17 to finish.
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13.26. This is due to Lyons, Pemantle, and Peres (1997), Example 2.1.

13.27. See Example 2.2 of Lyons, Pemantle, and Peres (1997).

13.28. See Example 2.3 of Lyons, Pemantle, and Peres (1997). For more general calculations of speed
on directed covers, see Takacs (1997, 1998).

13.29. It is (3√2 + 1)/17 = 0.31−.

13.31. (Compare Barlow and Perkins (1989).) Use Theorem 13.4 and summation by parts in estimating
P
� |Xn | ≥

√
d + ϵ ·

√
n log n

�
.

Barlow and Perkins (1989) also show that there is a tree that is a subgraph of �2 on which
simple random walk satisfies lim supn→∞

|Xn |√
n log n

> 0 a.s. In contrast, simple random walk on

all of �d satisfies lim supn→∞
|Xn |√

n log log n
< ∞ a.s. by the law of iterated logarithm.

13.32. Compare Pittet and Saloff-Coste (2001).

13.34. Let t := tmix(1/4). By Lemma 13.10, we may write pt (x, y) = 1
4
π(y) + 3

4
Q(x, y) for some

transition matrix Q. Construct τ as t times a geometric random variable of parameter 1/4.

13.37. (This is due to Naor, Peres, Schramm, and Sheffield (2006).) Adapt the proof from the case of
trees, Theorem 13.14.

13.38. Show first that the expected number of vertices visited by simple random walk on �3
n by time

n3 is of order n3.

13.39. The actual asymptotic for the nonreturn probability is π/log k, due to Dvoretzky and Erdös
(1951); see Lemma 20.1 of Révész (2005).

13.40. Let ⟨An⟩ be Følner sets in G. By censoring moves of the simple random walk on G from An to
Ac
n , we obtain a reversible Markov chain on An , to which we can apply the definition of Markov

type 2. Fixing t and letting n → ∞ yields the desired inequality, since the simple random walk
on G, started at a uniformly chosen point in An , stays in An for t steps with probability that
tends to 1 as n → ∞. A regular tree shows that the amenability assumption is needed.

13.41. This result is due to Linial, Magen, and Naor (2002). It is open whether one can replace √g by
g: this question was asked by Linial, London, and Rabinovich (1995).

13.42. (This is Lemma 2 of Jolissaint and Valette (2014).) Define a bipartite graph on two copies of 𝖵
and use Kőnig’s theorem (Exercise 3.17(a)).

13.43. (This can be improved by a factor of 2 to log
�|𝖵|/2�/log (k − 1); see Jolissaint and Valette

(2014).) Our proof is an example of the probabilistic method, where instead of constructing a
permutation explicitly, we find it by looking at random permutations. However, we have to be a
little more careful than simply using the uniform measure on permutations. Write n := |𝖵|.
First, as noted before, the ball of radius r about x has at most

�
k(k − 1)r − 2�/(k − 2) vertices,

which is <
√

n/2 when r ≤ r0 := log (n/2)/�2 log (k − 1)�. Therefore, if σ is a uniform random
permutation of 𝖵, then P

�
d(x, σ(x)) ≤ r0

�
< 1/

√
2n. Let B :=

�
x ; d(x, σ(x)) ≤ r0

	
. We have

E
� |B| � < √n/2.

We would be done if B were empty with positive probability, but this estimate is not enough to
prove that such happens. We do know that |B| < √n/2 with positive probability. Thus, we take
one more step. Namely, choose a random injective mapping τ: B → 𝖵, where τ is independent
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of σ given B. Define

τ′(x) :=

τ(x) if x ∈ B,
τ−1(x) if x ∈ τ(B),
x otherwise.

Consider τ′ ◦σ. Now P
�
d(x, τ′ ◦σ(x)) ≤ r0

�
x ∈ B

�
< 1/

√
2n. Likewise, P

�
d(x, τ′ ◦σ(x)) ≤

r0
�

x ∈ τ(B)� < 1/
√

2n. Finally, P
�
d(x, τ′ ◦ σ(x)) ≤ r0

�
x /∈ B ∪ τ(B)� = 0. Therefore,

P
�
d(x, τ′ ◦ σ(x)) ≤ r0

�
< 1/n, whence E

[����x ; d(x, τ′ ◦ σ(x)) ≤ r0
	���] < 1. Thus there exists

some permutation τ′ ◦ σ such that d(x, τ′ ◦ σ(x)) > r0 for all x.

13.44. We have written (13.37) so that instead of sums, we compare averages. But canceling common
factors shows that we must prove the following inequality:

𝜆1(G, c)
4

∑
x∈𝖵

�
f (x) − f (σ(x))�2 ≤ ∑

e∈𝖤1/2

c(e) ∥ f (e+) − f (e−)∥2 .

Now by translating f , we may assume that∑
x∈𝖵

f (x) = 0 . (18.8)

Define the unitary operator U on ℓ2(𝖵,H ) by U( f ) := f ◦ σ. If I denotes the identity map,
then the triangle inequality gives us that ∥I −U∥ ≤ 2, whence∑

x∈𝖵

�
f (x) − f (σ(x))�2 ≤ 4

∑
x∈𝖵

∥ f (x)∥2 .

To complete the proof, it suffices to show that

𝜆1(G, c)
∑
x∈𝖵

∥ f (x)∥2 ≤
∑
e∈𝖤1/2

c(e) ∥ f (e+) − f (e−)∥2 .

By considering the coordinates with respect to an orthonormal basis of H , we see that it
suffices to prove this inequality when H = �. In that case, our assumption (18.8) is that f ⊥ 1
and the inequality to be proved amounts to

𝜆1(G, c) ∥ f ∥2 ≤
�
∆G f , f

�
.

This is a consequence of the spectral theorem (as in Exercise 6.14).

13.45. Average (13.37) over all permutations.

13.46. The maximal displacement is at least log
�|𝖵|/2�/�2 log (k − 1)� when G has maximum degree

k ≥ 3.

13.49. The eigenvectors of the graph Laplacian for the Cayley graph of an abelian group are the
characters of the group. For the 2n-cycle, the planar embedding as a regular polygon gives an
upper bound for the distortion.

13.51. Note that Exercise 13.50 does not apply.

13.52. Let ϕi be embeddings of Gi . Consider embeddings of the product graph that have the form
(x1, x2) 7→ �

aϕ1(x1), ϕ2(x2)� for some a.

13.54. Think about simulating large conductances via multiple edges.

13.55. Start with an example of unbounded degree by adding multiple edges between vertices of a
tree, where the endpoints of the new edges are at the same distance from the root.
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Chapter 14

14.2. Use Exercise 2.49 or 10.16.

14.4. The difference

H(X ,Y | F ) − H(X | F ) = E
[∑
x ,y

P[X = x,Y = y | F ] · log
P[X = x,Y = y | F ]

P[X = x | F ]
]

is an expected Kullback-Leibler divergence.

14.5. (b) If b < d, then simple random walk on the Cartesian product �b+1 □ �d+1 has volume
growth v = log d, speed l = (b + d − 2)/(b + d + 2), and entropy

h =
(b − 1) log b + (d − 1) log d

b + d + 2
.

To see the latter, condition on the number of steps taken in each coordinate.

14.6. Count states when they are visited for the last time: Eo[Rn] = ∑n−1
k=0 Po

�
∀ j ∈ [k, n − 1] X j ̸=

Xk

�
. Now use transitivity. Almost sure convergence of Rn/n follows from the subadditive

ergodic theorem. The limit is a.s. constant by Lemma 14.11. Compare with Exercise 2.119.

14.7. By irreducibility, limn u(Xn) = c almost surely-Px . Apply Ex and recall that u(Xn) is a
bounded martingale.

14.8. (i) ⇒ (ii): If f1 ∈ L∞(M1,F1,Q1) is simple (takes finitely many values), the existence of f2
with f2 ◦ Φ = f1 a.e. is immediate from (a). Every measurable f1 is an a.e. limit of simple
functions.

14.9. Use (a) to deduce (b) and (c).
When Γ is uncountable, the same holds in (c): see Exercise 14.33.

14.10. Write In := 1An . Given A ∈ F , find integers n(k) such that In(k) → 1A in L1(Ω,F ,P).
Passing to a subsequence if necessary, we may assume that In(k) → 1A a.s.-P. Thus, A differs
from

∩
j≥1

∪
k≥ j An(k) by a set of P-measure 0.

14.11. Consider the analogous problem on a finite tree and take a limit. Alternatively, consider the
events Aj of the form

�
b(X0, X1, . . .) j = b(z) j �.

14.12. For A ∈  , the Markov property yields∫
A

1[Xn=y ,Xn+m=z] dPx= pn(x, y)pm(y, z)Qz (A) =
∫
A

pn(x, y)pm(y, z) · dQz

dQx

dPx .

It follows that the integrand on the right-hand side is a version of the conditional expectation
Ex [1[Xn=y ,Xn+m=z] |  ]. The rightmost equality in (14.22) folows from (14.21) and the chain
rule

dQz

dQx

=
dQy

dQx

· dQz

dQy

.

14.13. This result is due to Sava (2010a).
(a) Extend ξ to a bi-infinite path and observe that the chain ⟨Xn⟩ induced on this path is a
biased simple random walk.
(c) Let ξn denote the vertex of �3 which is n steps from o toward ξ, and let Wn consist of the
singleton

�(ψ, ξn)	, where ψ(x) = 0 if x is separated from o by ξn and ψ(x) = Ψ∞(x) otherwise.
Then P(0,o)

�
∃m ≥ n Xm ∈Wn

�
≥ 1/2.
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14.15. (a) Use Kolmogorov’s zero-one law.

14.16. Use the same proof, but note that Ā is I -measurable. Also, replace all expectations by
expectations conditional on I .

14.17. Use the same proof, but note that β is I -measurable. Also, replace all expectations by
expectations conditional on I .

14.18. Show that limn Po

�∥X2n∥1 is even
�
> 1/2.

14.19. Use Exercise 14.28 and transience of �3 to show that G is Liouville. In the perturbed network
(G, c), the walk started from the root of T has positive probability to eventually stay in �4 and
positive probability to never reach �4.

14.20. It is not hard to reduce to the aperiodic case. Let P̂ denote the reversed chain. We may assume
irreducibility for the symmetrized chain (P+ P̂)/2. By considering some power P j , we may also
reduce to the case where c := min

�
p(x, y)+ p̂(x, y) ; x ∼ y

	
> 0. Transitivity and Exercise 6.16

show that |∂𝖤S|P = |∂𝖤S|P̂ for all finite S ⊂ 𝖵. Since |∂𝖤S|P + |∂𝖤S|P̂ ≥ c|∂𝖤S|/2, it follows
that |∂𝖤S|P ≥ c|∂𝖤S|/4. Now the result follows from Lemma 10.46 and Corollary 6.32(i).

14.22. (This is Theorem 4.1 of Kaimanovich and Vershik (1983).) Note that Po[X1 = y | Xn = z] =
p(o, y)pn−1(y, z)/pn(o, z).

14.23. Let p( • ) be the law of X1, and let 𝜈(x) = cϵ (1 + r)−1−ϵ for x ∈ Sr , where cϵ is a normalizing
constant. Use the inequality DKL(p(•) ∥ 𝜈) ≥ 0 to show that H(X1) = 0. In addition,
∞ > Ex

�
log

�
1 + d(x, X1)�� = ∫ ∞

0 Px

�
log

�
1 + d(x, X1)� ≥ s

�
ds =

∫ ∞
0 Px

�
d(x, X1) ≥ es − 1

�
ds,

whence for every ϵ > 0, we have
∑

k≥0 EoPXk

�
d(Xk , Xk+1) ≥ eϵ k

�
< ∞. By the Borel-Cantelli

lemma, it follows that a.s., d(Xk , Xk+1) < eϵ k for all large k, whence a.s., for all large n, we
have d(o, Xn) ≤ ceϵn for some c = c(ϵ). Now use Theorem 14.10(ii) and polynomial growth
to deduce that h ≤ dϵ , where d is a bound on the degree of growth.
In fact, h = 0 as long as H(X1) < ∞ and, moreover, the Markov chain is Liouville without even
assuming H(X1) < ∞; see Theorem 14.49.

14.24. (This is due to Kesten, Spitzer, and Whitman; see Spitzer (1964) and Whitman (1964).)
Eo

�
Rn(K)� =

∑n−1
k=0

∑
γ∈K Po

�
∀ j ∈ [k, n − 1] γX j /∈ K Xk

�
.

14.25. (Parts (i)–(iii) are due to Kaimanovich (2000).) Use Theorem 14.10(ii). For (ii) and (iii), see
the more general statements in Corollary 14.36 and Exercise 14.35; for (iv), compare with
Proposition 14.42.

14.26. (a) Use Lemma 14.11.
(b) Let c be large. Show that d(Xn , Xn+1) > cn infinitely often a.s.
(c) Discretize a Cauchy random walk, for example, by taking 𝖵 = � and letting (Xn , n) be the
location of the first visit to the line y = n by simple random walk in �2.
(d) Given ϵ > 0, let r < (h − ϵ)/(v + ϵ) and An :=

�
x ∈ 𝖵 ; pn(o, x) ≤ exp

�
n(ϵ − h)�	. Then,

for large k,

Po

�
∃n ≥ k |Xn | ≤ rn

�
≤ Po

�
∃n ≥ k Xn /∈ An

�
+
∑
n≥k

Po

�
Xn ∈ An ∩ B(o, rn)�

≤ Po

�
∃n ≥ k Xn /∈ An

�
+
∑
n≥k

ern(v+ϵ )e−n(h−ϵ ) ,

which tends to 0 as k → ∞.
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14.27. (b) Write �n for the free group on n letters. Let Γ1 := �k ≀ �2, a generalized lamplighter group
where the “lamps” take k values, with a symmetric set S1 of k + 3 generators (four from �2 and
k − 1 from the cyclic group). Then S1 supports a measure with Avez entropy of order log k, yet
any symmetric measure µ1 on S1 has l(µ1) ≤ 5/6, as can be seen by bounding E

�
d(o, X2)�/2.

Let Γ := Γ1 × �100 with generating set S = S1 ∪ S2, where S2 consists of the 200 generators of
�100. If k is large enough, then symmetric measures on S maximizing h will be supported on
S1, whereas measures maximizing l will be supported on S2.

14.28. (a) Let f be a tail function. The coupling implies that Eo

�
f (X0, X1, . . .) � X1, . . . , Xn

�
does

not depend on X1, . . . , Xn . Now use the Lévy zero-one law.
(b) For invariant f , the shift coupling implies that Eo

�
f (X0, X1, . . .) � X1, . . . , Xn

�
does not

depend on X1, . . . , Xn .
Both parts have converses with couplings that are not necessarily Markovian. For more on
coupling and shift coupling, see Thorisson (2000).

14.30. For (b), see Lindvall and Rogers (1996), pp. 869–870.

14.31. Let G be recurrent. It suffices to show that for any two configurations (ψ, x) and (φ, y) in G⊙ ,
two lazy simple random walks started from (ψ, x) and (φ, y), respectively, can be coupled to
eventually coincide. First couple the marker locations, and then the lamps, using recurrence
and laziness. Appeal to Exercise 14.28.

14.32. Note that C(Ξ) is isomorphic to L∞(Θ, 𝜈o). If Ξ is metrizable, then L∞(Θ, 𝜈o) is separable.

14.33. (a) Choose an element in each basic open set of Γ and take the group these elements generate.
(b) First verify this with L1 convergence, when f is an indicator of a cylinder event. Then
extend to all f ∈ L1, and finally obtain a.e. convergence by passing to a subsequence.
(c) Let ⟨In⟩ be the invariant indicators that define the boundary map b in Theorem 14.31. Given
γ ∈ Γ, there is a set Ωγ ⊆ 𝖵� such that Po(Ωγ) = 1 and such that for every k ≥ 1, there is a
sequence ⟨γ j ⟩ such that Ik ◦ γ j (x)→ Ik ◦ γ(x) for all x ∈ Ωγ . Therefore, if x, y ∈ Ωγ satisfy
Ik (x) = Ik (y) for all k, then also Ik (γx) = Ik (γy) for all k. Thus we may define the action of
γ ∈ Γ on b(Ωγ) by γ

�
b(x)� := b(γx).

14.35. (This is due to Kaimanovich (2000).) Given k ≥ 1, defineWn(k) :=
�
x ∈ 𝖵 ; p

n(o, x) ≥ e−n/k
	
.

By (14.26), for n ≥ N(k), we have Po

�
Xn ∈ Wn(k)� > 1 − 1/k. Write kn := max

�
k ≤

n ; N(k) ≤ n
	
and observe that kn → ∞ as n → ∞. Therefore, choosing Wn := Wn(kn), we

obtain that |Wn | ≤ en/kn .

14.36. (This is due to Furstenberg (1973), Section 9. Part (g) was first proved by Cartwright and
Soardi (1989).) For (c), γ can be taken in the support of µ, since the set of γ that leaves a
measure invariant is a group. A group satisfies the condition in (c) for some K iff the group is
nonamenable; see Paterson (1988). Part (d) can be proved via the solution of Exercise 8.16. For
part (e), observe that if 𝜈 was atomic, the finite set of its largest atoms would be � ∗�-invariant,
so the technique of Exercise 8.16 can be used to rule this out. For part (g), suppose that the
convergence in (b) holds, and a subsequence Xnk

→ ξ ∈ ∂�4 as k → ∞. Then use (b) and (e)
to conclude that ξ is the same for all subsequences. The assumption in (d) about the support of
µ can be relaxed: it suffices that this support generates a non-abelian subgroup of � ∗ �.

14.37. Verify that P(Ar ) ≥ cd/r and P(Ar ∩ Ar+ j ) ≤ Cd/(r j) for some constants cd ,Cd > 0. Then
use the second-moment method. See James and Peres (1996) for details.
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14.38. For ϵ > 0, define Wn := Wn, ϵ (Ψ∞) to be the set of (ψ, x) such that n ≤ ∥x∥∞ ≤ n2 and

ψ(z) =
{ Ψ∞(z) if ∥z∥∞ < ∥x∥∞

0 if ∥z∥∞ > ∥x∥∞.

By Exercise 14.37, lim supn→∞ P0
�
∃m ≥ n Xm ∈ Wn

�
> 0; since |Wn |1/n → 1, Proposi-

tion 14.42 implies that σ(Ψ∞) coincides with the tail T mod P0.

14.39. (This is due to Benjamini and Peres (1994b), proof of Proposition 6.2.) The subadditive
ergodic theorem ensures existence of the limit a.s. and in L1. Use L1-convergence to deduce
convergence of the expectations. Use the hint and (6.39).

Chapter 15

15.1. Show that if α1 < α2 andHα2 (E) > 0, thenHα1 (E) = +∞. (In fact, α0 ≤ d.)

15.5. Since
∩

En ⊆ Em , we have dim
∩

En ≤ dim Em for each m.

15.11. It is usually, but not always, e−|x |.

15.12. Take En ⊆ ∂T with dim En decreasing to the infimum. Set E :=
∩

En .

15.16. Use Exercise 3.9 on subadditivity. We get that dim sup ∂T = infn maxv
1
n

log Mn(v) and
dim inf ∂T = supn minv

1
n

log Mn(v).
15.17. Use Furstenberg’s theorem (Theorem 3.8) and Theorem 3.9.

15.19. The Fibonacci tree codes E in base 2.

15.21. Use Exercises 3.30 and 3.35.

15.22. This is due to Broman, Camia, Joosten, and Meester (2013).

15.23. Let α be the minimum appearing in Theorem 15.10. If γ < 1, then α < 1, and so two
applications of Hölder’s inequality yield

1 = E
[ L∑

1

Aαi

]
= E

[ L∑
1

Aαi 11−α
]
≤ E

[( L∑
1

Ai

)α ( L∑
1

1
)1−α]

≤ *,E
[ L∑

1

Ai

]+-
α

E[L]1−α = γαm1−α .

If γ > 1, then α > 1 and the inequalities are reversed. Of course, if γ = 1, then α = 1 always.

15.25. This is due to Mauldin and Williams (1986).

15.26. (The statement of this exercise was proved in increasing generality by Hawkes (1981), Graf
(1987), and Falconer (1987), Lemma 4.4(b).) Use Theorem 5.35.

15.27. These are essentially due to Hawkes (1981) and Lyons (1990), and are stated explicitly in these
forms by Peres (1996).

15.28. (This is due to Peres (1996).) Use Exercise 15.27. For (a), consider inverse images under L of
points, while for (b), consider inverse images of random sets Qk ,b(b−β ) with β < d − γ.
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15.29. This is due to Frostman (1935).
(a) Take the largest b-adic cube containing the center of the ball. A bounded number of b-adic
cubes of the same size cover the ball.
(b) Use the result of Exercise 3.27.

15.30. Use the law of large numbers.

15.31. Use the law of large numbers for Markov chains.

15.35. Spherically symmetric examples exist. So do subperiodic examples.

Chapter 16

16.1. Use convexity of the energy (from, say, (2.16)) to deduce that energy is minimized by the
spherically symmetric flow.

16.4. The only significant change is the replacement of (16.3) and (16.4). For the former, note that
diagonals of cubes are longer than sides when d > 1. For the latter, notice that if |x − y | ≤ b−n

and x is in a certain b-adic cube, then y must be in either the same b-adic cube or a neighboring
one. See Pemantle and Peres (1995b), Theorem 3.1, for the details; they are missing the 2−d
factor.

16.6. (e) From the explicit form of the transition density, we get

G∗2(x, y) =
∫ ∞

0

1
2πt

exp
{
− |x − y |2

2t
− t

}
dt .

Thus,

G∗2(x, y) =
1

2π

∫ ∞

0

e−t

t

∫ ∞

|x−y |2/(2t )
e−s ds dt =

1
2π

∫ ∞

0
e−s

∫ ∞

|x−y |2/(2s)

e−t

t
dt ds .

For an upper bound, we use that∫ ∞

|x−y |2/(2s)

e−t

t
dt ≤

{
log 2s

|x−y |2 + 1 if |x − y |2 ≤ 2s
1 if |x − y |2 > 2s.

For |x − y | ≤ 1, this gives, with γ̃ :=
∫ ∞

1 e−s log s ds < ∞, an upper bound of

G∗2(x, y) ≤
1

2π
�
1 + log 2 + γ̃ − 2 log |x − y |�,

which is asymptotically equal to − 1
π

log |x − y |. For a lower bound, we use that e−t ≥ 1 − t for
t ∈ [0, 1], whence ∫ ∞

|x−y |2/(2s)

e−t

t
dt ≥ log

2s
|x − y |2 − 1,

and thus with 0 < γ := −
∫ ∞

0 e−s log s ds denoting Euler’s constant,

G∗2(x, y) ≥
1

2π
�
−1 + log 2 − γ − 2 log |x − y |�,

and again this is asymptotically equal to − 1
π

log |x − y |.
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16.7. The intersection of m independent Brownian traces, stopped at independent exponential times,
is intersection equivalent in the cube to the random set Q2,2 (pm

n ), where pn = n/(n + 1) for
n ≥ 1. It is easy to see that for any m, percolation on a binary tree with edge probabilities
pe = pm

|e | survives with positive probability. Hence the m-wise intersection is nonempty with
positive probability. We get the almost sure result the same way as in part (ii).

16.8. Follow the method of proof of Proposition 5.27.

16.10. This is due to Benjamini, Pemantle, and Peres (1995). One can also deduce Theorem 5.24
from this result: It suffices to show (5.21). Consider the Markov chain on ∂LT that moves from
left to right in a planar embedding of T by simply hopping from one leaf to the next that is
connected to the root. This turns out to give a kernel that differs slightly along the diagonal
from the one in (5.21). Details are in Benjamini, Pemantle, and Peres (1995), which also has
more applications.

16.12. Bound the potential of µ at each point x by integrating over B2−n (x) \ B2−n−1 (x), n ≥ 1.

16.13. For the lower bound, just use the probability that τ ≥ 1. For the upper bound, we follow the
hint. Clearly

∫ a

0 h(r) f2(r) dr ≤ ψ(a) ∫ a

0 h(r) f1(r) dr . Write Ta =
∫ ∞
a

f1(r) dr . We have∫ ∞

a

h(r) f2(r) dr = Ta

∫ ∞

a

h(r)ψ(r) f1(r)
Ta

dr

≤ Ta

∫ ∞

a

h(r) f1(r)
Ta

dr
∫ ∞

a

ψ(r) f1(r)
Ta

dr

=
1

Ta

∫ ∞

a

h(r) f1(r) dr
∫ ∞

a

f2(r) dr

by Chebyshev’s inequality. Combining these two inequalities proves the lemma. Now apply the
lemma with f j the density of Bt j and

h(r) :=
∫
|y |=r

Py

�
B(0, s) ∩ A ̸= ∅

�
dσr (y) ,

where σr is the normalized surface area measure on the sphere
�|y | = r

	
in �d . This gives an

upper bound of

P0
�
B(t2, t2 + s) ∩ A ̸= ∅

�
P0
�
B(t1, t1 + s) ∩ A ̸= ∅

� ≤ f2(a)
f1(a) +

1
P0
� |Bt1 | > a

� ≤ e|a |
2/(2t1) +

1
P0
� |Bt1 | > a

� .
Finally, let H(I) := P0

�
B(I) ∩ A ̸= ∅

�
, where I is an interval. Then H satisfies

H(t, t + 1
2
) ≤ Ca,dH(1

2
, 1) for t ≥ 1

2
,

where Ca,d = e|a |2 + 1/P0
�|B1/2 | > a

�
. Hence,

P0
�
B(0, τ) ∩ A ̸= ∅

�
= EH(0, τ) ≤ H(0, 1) +

∞∑
j=2

e− j/2H
( j

2
,

j + 1
2

)

≤ Ca,d

∞∑
j=0

e− j/2H(0, 1) =
Ca,d

1 − e−1/2 P0
�
B(0, 1) ∩ A ̸= ∅

�
.

16.16. This is due to Hawkes (1970/71), but a proof that uses Exercise 15.27 and Theorem 16.11 is
due to Peres (1996).

16.21. Let X := {0, 1} and K(x, y) := ∞1{x ̸=y}.
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Chapter 17

17.4. (This generalizes Häggström (1997). It was proved in a more elementary fashion in Proposi-
tion 8.33.) If there are at least three isolated ends in some tree, then replace this tree by the
tree spanned by the isolated ends. The new tree has a denumerable number of ends and still
gives a translation-invariant random forest, so contradicts Corollary 17.8. If there is exactly
one isolated end, go from it to the first vertex encountered of degree ≥ 3 and choose two rays
independently by visibility measure from there; if there are exactly two isolated ends, choose
one of them at random and then do the same as when there is only one isolated end. In either
case, we obtain a translation-invariant random forest with a tree containing exactly three ends,
again contradicting Corollary 17.8.

17.5. Use (local) reversibility of simple random walk.

17.6. To prove this intuitively clear fact, note that the AGW-law of T \ T x−1 is GW, since x−1 is
uniformly chosen from the neighbors of the root of T . Let A be the event that the walk remains
in T \ T x−1 :

A : =
{(↔x,T) ∈ 𝖯𝖺𝗍𝗁𝗌𝖨𝗇𝖳𝗋𝖾𝖾𝗌 ; ∀n > 0 xn ∈ T \ T x−1

}
=
{(↔x,T) ∈ 𝖯𝖺𝗍𝗁𝗌𝖨𝗇𝖳𝗋𝖾𝖾𝗌 ; →x ⊂ T \ T x−1

}
and Bk be the event that the walk returns to the root of T exactly k times:

Bk :=
{(↔x,T) ∈ 𝖯𝖺𝗍𝗁𝗌𝖨𝗇𝖳𝗋𝖾𝖾𝗌 ;

�{i ≥ 1 ; xi = x0}� = k
}
.

Then the (𝖲𝖱𝖶 × AGW | A, Bk )-law of (→x,T \ T x−1 ) is equal to the (𝖲𝖱𝖶 ×GW | Bk )-law of
(→x,T), whence the (𝖲𝖱𝖶 × AGW | A)-law of (→x,T \ T x−1 ) is equivalent to the (𝖲𝖱𝖶 ×GW)-
law of (→x,T). By Theorem 17.13, this implies that the speed of the latter is almost surely
E
�(Z1 − 1)/(Z1 + 1)�.

17.7. For the numerator, calculate the probability of extinction by calculating the probability that each
child of the root has only finitely many descendants; whereas for the denominator, calculate the
probability of extinction by regarding AGW as the result of joining two GW trees by an edge,
so that extinction occurs when each of the two GW trees is finite.

17.8. Use Proposition 5.6.

17.10. Use concavity of log or see (6.39).

17.11. Use the Kac lemma, Exercise 2.30. Recall that the system (𝖯𝖺𝗍𝗁𝗌𝖨𝗇𝖳𝗋𝖾𝖾𝗌, 𝖲𝖱𝖶 × AGW, S) was
proved to be ergodic in Section 17.3.

17.12. Given nonextinction, the subtree of a Galton-Watson tree consisting of those individuals with
an infinite line of descent has the law of another Galton-Watson process still with mean m
(Proposition 5.28). Theorem 17.27 applies to this subtree, while harmonic measure on the
whole tree is equal to harmonic measure on the subtree.

17.14. From Proposition 17.31, µ𝖧𝖠𝖱𝖬 ≤ l−1GW. Therefore, wiring the first generation gives that
this integral is at most l−1 ∑

k pk log (k + 1).
17.15. (This is Lyons, Pemantle, and Peres (1995b), Lemma 9.1.) For a flow θ on T , define

E n(θ) :=
∑

1≤|x |≤n
θ(x)2 ,
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so that its energy for unit conductances is E (θ) = limn→∞ E n(θ). Consider the sequence of
numbers an :=

∫
E n(𝖵𝖨𝖲T ) dGW(T). We have a0 = 0 and

an+1 =
∫ {∑

|x |=1

1
Z2

1

�
1 + E n(𝖵𝖨𝖲T x )�} dGW(T) .

Conditioning on Z1 gives

an+1 =
∑
k≥1

pk

1
k2

k∑
i=1

∫ �
1 + E n(𝖵𝖨𝖲T (i) )� dGW(T (i))

=
∑
k≥1

pk

1
k2 k(1 + an) = E[1/Z1](1 + an) .

Therefore, by the monotone convergence theorem,∫
E (𝖵𝖨𝖲T ) dGW(T) = lim

n→∞
an =

∞∑
k=1

E[1/Z1]k =
E[1/Z1]

1 − E[1/Z1] .

17.16. Consider spherically symmetric trees.

17.17. Consider the proof of Theorem 17.4 and the number of returns to T♢ until the walk moves
along T♢.

17.19. These observations are due to Lyons and Peres.
(a) This is an immediate consequence of the ergodic theorem.
(b) In each direction of time, the number of visits to the root is a geometric random variable.
To establish that Γk decreases with k, first prove the elementary inequality

ai > 0 (1 ≤ i ≤ k + 1) =⇒ 1
k + 1

k+1∑
i=1

k∑
j ̸=i a j

≥ k + 1∑k+1
i=1 ai

.

We have limk→∞ Γk = 1/
∫
γ dGW.

(c) Let

Nk (↔x,T) := lim
n→∞

∑
j∈Dk (↔x ,T ), | j |≤n N(S j ↔x,T)�

Dk (↔x,T) ∩ [−n, n]�
when the limit exists; this is the average number of visits to vertices of degree k + 1. By
the ergodic theorem and part (b), Nk (↔x,T) = Γk 𝖲𝖱𝖶 × AGW-a.s. Let D′k (↔x,T) := { j ∈
� ; deg x j = k + 1, S j (↔x,T) ∈ 𝖥𝗋𝖾𝗌𝗁}. Then

Nk (↔x,T) = lim
n→∞

∑
j∈D′

k
(↔x ,T ), | j |≤n N(S j ↔x,T)2�

D′
k
(↔x,T) ∩ [−n, n]�

when the limit exists. Thus, Nk measures the second moment of the number of visits to fresh
vertices, not the first, which indeed does not depend on k (see part (d)). The fact that this
decreases with k is consistent with the idea that the variance of the number of visits to a fresh
vertex of degree k + 1 decreases in k, since a larger degree gives behavior closer to the mean.
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(d) It is 1/
∫
γ dGW. We give two proofs.

First proof. Let this number be ak . Then the proportion of time spent at vertices of degree
k + 1 is proportional to ak pk , since the chance of being at a vertex of degree k + 1 given that
the walk is at a fresh vertex is pk . Since, however, we know that this proportion is simply pk , it
follows that ak does not depend on k. Since it doesn’t depend on k, we can simply calculate
the expected number of visits to a fresh vertex. This expected number is the long-term ratio
of time to number of fresh points, which we can partition into blocks between regeneration
points. All visits to a fresh point occur within such a block. Thus, we want the ratio of
fresh-point frequency to regeneration frequency. This is the ratio of probability of being at a
fresh point to probability of being at a regeneration point, which is the same as the reciprocal
of the probability of being at a regeneration point given being at a fresh point. And this is
1/
∫
γ dGW.

Second proof. A fresh epoch is an epoch of last visit for the reversed process. For 𝖲𝖱𝖶×AGW,
if xn ̸= x0 for n > 0, then the descendant tree T x1 has an escape probability γ̂ with the
size-biased distribution of the GW-law of γ(T). By reversibility, then, so does the tree T x−1

when (↔x,T) ∈ 𝖥𝗋𝖾𝗌𝗁. Assume now that (↔x,T) ∈ 𝖥𝗋𝖾𝗌𝗁 and deg x0 = k + 1. Let y1, . . . , yk be
the neighbors of x0 other than x−1. Then γ(T yi ) are i.i.d. with the distribution of the GW-law
of γ(T) and γ̂, γ(T y1 ), . . . , γ(T yk ) are independent. Hence the expected number of visits to x0
is E

�(k + 1)/�γ̂ + γ(T y1 ) + · · · + γ(T yk )��. Now use Exercise 12.15.

17.23. See Lyons, Pemantle, and Peres (1997).

17.24. It is (1 − √2 ) log (√2 − 1) + (√2 − 2) log (2 − √2 ).
17.32. This exercise is relevant to the proof of Lemma 6 in Furstenberg (1970), which is incorrect.

If the definition of dimension of a measure as given in Section 15.4 is used instead of
Furstenberg’s definition, thus implicitly revising his Lemma 6, then the present exercise
together with Billingsley’s Theorem 15.17 give a proof of this revision.

17.34. A similar calculation for 𝖵𝖨𝖲T was made by Lyons, Pemantle, and Peres (1995b), Lemma 9.1,
but it does not work for all 𝜆 < m; see Exercise 17.15. See also Pemantle and Peres (1995b),
Lemma 2.2, for a related statement. See Exercise 5.45 for an upper bound on the expected
effective conductance.

17.36. S−1(𝖤𝗑𝗂𝗍) has the same measure as 𝖤𝗑𝗂𝗍 and for (↔x ,T) ∈ S−1(𝖤𝗑𝗂𝗍), the ray x−∞ is a path of a
loop-erased simple random walk while →x is a disjoint path of simple random walk.

17.37. (This is due to Lyons, Pemantle, and Peres (1996a), who also show that the speed is a positive
constant a.s. when f ′(q) < 𝜆 < m.) Use Proposition 5.28 and show that the expected time
spent in finite descendant trees between moves on the bi-infinitary part of the tree is infinite.
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l’Honneur de Henri Cartan, pages 43–72. Astérisque, 32–33. Soc. Math. France, Paris. Tenu le 17–20
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Basel. MR: 2434246

Barsky, D.J., Grimmett, G.R., and Newman, C.M.
(1991) Percolation in half-spaces: Equality of critical densities and continuity of the percolation probability.

Probab. Theory Related Fields, 90(1), 111–148. MR: 92m:60086
Bartholdi, L.

(1999) Counting paths in graphs. Enseign. Math. (2), 45(1–2), 83–131. MR: 1703364
(2003) A Wilson group of non-uniformly exponential growth. C. R. Math. Acad. Sci. Paris, 336(7), 549–554.

MR: 1981466

Bartholdi, L., Kaimanovich, V.A., and Nekrashevych, V.V.
(2010) On amenability of automata groups. Duke Math. J., 154(3), 575–598. MR: 2730578

http://dx.doi.org/10.1145/103418.103440
http://www.ams.org/mathscinet-getitem?mr=MR1447704
http://www.ams.org/mathscinet-getitem?mr=MR99g:05119
http://dx.doi.org/10.1016/S1359-0278(97)00024-2
http://www.ams.org/mathscinet-getitem?mr=2298886
http://www.ams.org/mathscinet-getitem?mr=2298886
http://www.arxiv.org/abs/1405.7660
http://www.arxiv.org/abs/1405.7660
http://www.ams.org/mathscinet-getitem?mr=MR1159828
http://www.ams.org/mathscinet-getitem?mr=1269841
http://www.ams.org/mathscinet-getitem?mr=2888224
http://www.ams.org/mathscinet-getitem?mr=2546747
http://www.ams.org/mathscinet-getitem?mr=MR2248323
http://www.ams.org/mathscinet-getitem?mr=2683633
http://www.ams.org/mathscinet-getitem?mr=MR997432
http://www.ams.org/mathscinet-getitem?mr=2434246
http://www.ams.org/mathscinet-getitem?mr=MR92m:60086
http://www.ams.org/mathscinet-getitem?mr=1703364
http://www.ams.org/mathscinet-getitem?mr=MR1981466
http://www.ams.org/mathscinet-getitem?mr=2730578


652 Bibliography

Bartholdi, L. and Virág, B.
(2005) Amenability via random walks. Duke Math. J., 130(1), 39–56. MR: 2176547

Bass, R.F.
(1995) Probabilistic Techniques in Analysis. Probability and Its Applications. Springer-Verlag, New York. MR:

96e:60001

Bateman, M. and Katz, N.H.
(2008) Kakeya sets in Cantor directions. Math. Res. Lett., 15(1), 73–81. MR: 2367175

Beardon, A.F. and Stephenson, K.
(1990) The uniformization theorem for circle packings. Indiana Univ. Math. J., 39(4), 1383–1425. MR:

1087197

Bekka, M.E.B. and Valette, A.
(1997) Group cohomology, harmonic functions and the first L2-Betti number. Potential Anal., 6(4), 313–326.

MR: 98e:20056

Ben Arous, G., Fribergh, A., Gantert, N., and Hammond, A.
(2012) Biased random walks on Galton-Watson trees with leaves. Ann. Probab., 40(1), 280–338. MR: 2917774

Ben Arous, G., Fribergh, A., and Sidoravicius, V.
(2014) Lyons-Pemantle-Peres monotonicity problem for high biases. Comm. Pure Appl. Math., 67(4), 519–530.

MR: 3168120

Ben Arous, G., Hu, Y., Olla, S., and Zeitouni, O.
(2013) Einstein relation for biased random walk on Galton-Watson trees. Ann. Inst. Henri Poincaré Probab.

Stat., 49(3), 698–721. MR: 3112431
Benassi, A.
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(1989) La propriété (T ) de Kazhdan pour les groupes localement compacts (avec un appendice de Marc Burger).
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(1981) Une théorie combinatoire des séries formelles. Adv. in Math., 42(1), 1–82. MR: 633783
Kahn, J.

(2003) Inequality of two critical probabilities for percolation. Electron. Comm. Probab., 8, 184–187 (electronic).
MR: 2042 758

Kahn, J., Kim, J.H., Lovász, L., and Vu, V.H.
(2000) The cover time, the blanket time, and the Matthews bound. In 41st Annual Symposium on Foundations

of Computer Science (Redondo Beach, CA, 2000), pages 467–475. IEEE Comput. Soc. Press, Los
Alamitos, CA. MR: 1931843

Kahn, J.D., Linial, N., Nisan, N., and Saks, M.E.
(1989) On the cover time of random walks on graphs. J. Theoret. Probab., 2(1), 121–128. MR: 981769

Kaimanovich, V.A.
(1985) An entropy criterion of maximality for the boundary of random walks on discrete groups. Dokl. Akad.

Nauk SSSR, 280(5), 1051–1054. MR: 780288
(1990) Boundary and entropy of random walks in random environment. In Grigelionis, B., Sazonov, V.V.,
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galvanischer Ströme geführt wird. Ann. Phys. Chem., 72(12), 497–508. http://dx.doi.org/10.
1002/andp.18471481202.

Kleiner, B.
(2010) A new proof of Gromov’s theorem on groups of polynomial growth. J. Amer. Math. Soc., 23(3), 815–829.

MR: 2629989

http://www.ams.org/mathscinet-getitem?mr=0115196
http://www.ams.org/mathscinet-getitem?mr=MR0047944
http://www.ams.org/mathscinet-getitem?mr=MR1473567
http://www.ams.org/mathscinet-getitem?mr=99m:52026
http://www.ams.org/mathscinet-getitem?mr=2002g:82019
http://www.ams.org/mathscinet-getitem?mr=1 757 962
http://www.ams.org/mathscinet-getitem?mr=MR1872739
http://www.ams.org/mathscinet-getitem?mr=MR2415464
http://www.ams.org/mathscinet-getitem?mr=2001a:05123
http://www.ams.org/mathscinet-getitem?mr=2001a:05123
http://www.ams.org/mathscinet-getitem?mr=3369907
http://www.ams.org/mathscinet-getitem?mr=MR22:2911
http://www.ams.org/mathscinet-getitem?mr=MR22:253
http://www.ams.org/mathscinet-getitem?mr=0214137
http://www.ams.org/mathscinet-getitem?mr=82c:60179
http://www.ams.org/mathscinet-getitem?mr=84i:60145
http://www.ams.org/mathscinet-getitem?mr=88b:60232
http://www.ams.org/mathscinet-getitem?mr=34:6868
http://www.ams.org/mathscinet-getitem?mr=33:6707
http://www.ams.org/mathscinet-getitem?mr=1743726
http://www.ams.org/mathscinet-getitem?mr=89c:58069
http://www.ams.org/mathscinet-getitem?mr=0254907
http://www.ams.org/mathscinet-getitem?mr=0254907
http://dx.doi.org/10.1002/andp.18471481202
http://dx.doi.org/10.1002/andp.18471481202
http://www.ams.org/mathscinet-getitem?mr=2629989


Bibliography 671

Kolmogorov, A.
(1938) On the solution of a problem in biology. Izv. NII Matem. Mekh. Tomskogo Univ., 2, 7–12.

Kolmogorov, A.N. and Barzdin’, Y.M.
(1967) On the realization of nets in 3-dimensional space. Probl. Cybernet, 19, 261–268. In Russian. See also

Selected Works of A.N. Kolmogorov, Vol. III, pp. 194–202 (and a remark on p. 245), Kluwer Academic,
1993. http://dx.doi.org/10.1007/978-94-017-2973-4 11.

Korevaar, N.J. and Schoen, R.M.
(1997) Global existence theorems for harmonic maps to non-locally compact spaces. Comm. Anal. Geom., 5(2),

333–387. MR: 1483983
Kotani, M. and Sunada, T.

(2000) Zeta functions of finite graphs. J. Math. Sci. Univ. Tokyo, 7(1), 7–25. MR: 1749978
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Kesten. MR: 1703 124

http://www.ams.org/mathscinet-getitem?mr=0030584
http://www.ams.org/mathscinet-getitem?mr=630645
http://www.ams.org/mathscinet-getitem?mr=48:7379
http://www.ams.org/mathscinet-getitem?mr=97a:60002
http://www.ams.org/mathscinet-getitem?mr=0049396
http://www.ams.org/mathscinet-getitem?mr=MR90g:00004
http://www.ams.org/mathscinet-getitem?mr=88k:00002
http://www.ams.org/mathscinet-getitem?mr=92k:46001
http://www.ams.org/mathscinet-getitem?mr=0175815
http://www.ams.org/mathscinet-getitem?mr=3420510
http://www.ams.org/mathscinet-getitem?mr=MR1377559
http://www.ams.org/mathscinet-getitem?mr=MR93h:60113
http://www.arxiv.org/abs/1012.2757
http://www.ams.org/mathscinet-getitem?mr=2600904
http://www.ams.org/mathscinet-getitem?mr=2600904
http://www.ams.org/mathscinet-getitem?mr=1463727
http://www.ams.org/mathscinet-getitem?mr=MR81d:22006
http://www.ams.org/mathscinet-getitem?mr=1503370
http://www.ams.org/mathscinet-getitem?mr=1501980
http://www.ams.org/mathscinet-getitem?mr=MR1143417
http://www.ams.org/mathscinet-getitem?mr=1 703 124


682 Bibliography

(1999b) Stability of infinite clusters in supercritical percolation. Probab. Theory Related Fields, 113(2), 287–300.
MR: 1676831

(2001) Multiplicity of phase transitions and mean-field criticality on highly non-amenable graphs. Comm. Math.
Phys., 219(2), 271–322. MR: 2002h:82036

Schramm, O.
(2000) Scaling limits of loop-erased random walks and uniform spanning trees. Israel J. Math., 118, 221–288.

MR: 1776 084

Schrijver, A.
(2003) Combinatorial Optimization. Polyhedra and Efficiency. Vol. B. Vol. 24 of Algorithms and Combinatorics.

Springer-Verlag, Berlin. Matroids, trees, stable sets, Chapters 39–69. MR: 1956925
Seneta, E.

(1968) On recent theorems concerning the supercritical Galton-Watson process. Ann. Math. Statist., 39,
2098–2102. MR: 38:2847

(1970) On the supercritical Galton-Watson process with immigration. Math. Biosci., 7, 9–14. MR: 42:5348
Sheffield, S.

(2007) Gaussian free fields for mathematicians. Probab. Theory Related Fields, 139(3–4), 521–541. MR:
2322706

Shepp, L.A.
(1972) Covering the circle with random arcs. Israel J. Math., 11, 328–345. MR: 45:4468

Shields, P.C.
(1987) The ergodic and entropy theorems revisited. IEEE Trans. Inform. Theory, 33(2), 263–266. MR: 880168

Shrock, R. and Wu, F.Y.
(2000) Spanning trees on graphs and lattices in d dimensions. J. Phys. A, 33(21), 3881–3902. MR: 2001b:05111

Singh, M. and Vishnoi, N.K.
(2014) Entropy, optimization and counting. In Proceedings of the 46th Annual ACM Symposium on Theory of

Computing, STOC ’14, pages 50–59. ACM, New York. http://dx.doi.org/10.1145/2591796.
2591803.

Slade, G.
(2011) The self-avoiding walk: A brief survey. In Surveys in Stochastic Processes, EMS Ser. Congr. Rep., pages

181–199. Eur. Math. Soc., Zürich. MR: 2883859
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E[X ; A] . . . . . . . . . . . . . . . . . . expectation of X on A, xiv
Ld . . . . . . . . . . . . . . . . . . . . . . d-dimensional Lebesgue measure, 513
⟨· · ·⟩ . . . . . . . . . . . . . . . . . . . . . sequence, xiv
≍ . . . . . . . . . . . . . . . . . . . . . . . . equal up to bounded factors, 178, 542
↾ . . . . . . . . . . . . . . . . . . . . . . . . restriction, xiv
| • | . . . . . . . . . . . . . . . . . . . . . . . cardinality, xiv

G/e . . . . . . . . . . . . . . . . . . . . . . contraction of e in G, 2, 36, 106
G\e . . . . . . . . . . . . . . . . . . . . . . deletion of e in G, 106
deg x . . . . . . . . . . . . . . . . . . . . . degree of x, 20
𝖤(G) . . . . . . . . . . . . . . . . . . . . . edge set of G, 1
G1 □G2 . . . . . . . . . . . . . . . . . . Cartesian product graph, 1, 225
𝖤1/2 . . . . . . . . . . . . . . . . . . . . . . one oriented edge for each unoriented edge, 32
𝖵(G) . . . . . . . . . . . . . . . . . . . . . vertex set of G, 1
GW . . . . . . . . . . . . . . . . . . . . . . G with its boundary wired, 26
dist(x, y) . . . . . . . . . . . . . . . . . . graph distance between x and y, 2
d(x, y) . . . . . . . . . . . . . . . . . . . graph distance between x and y, 2
e+ . . . . . . . . . . . . . . . . . . . . . . . head of e, 2
e− . . . . . . . . . . . . . . . . . . . . . . . tail of e, 2
⟨x, y⟩ . . . . . . . . . . . . . . . . . . . . . oriented edge with endpoints x and y, 1
−e . . . . . . . . . . . . . . . . . . . . . . . reverse of e, 2
[x, y] . . . . . . . . . . . . . . . . . . . . . unoriented edge with endpoints x and y, 1
x ∼ y . . . . . . . . . . . . . . . . . . . . . x and y are adjacent, 1
G/K . . . . . . . . . . . . . . . . . . . . . G with K identified, 2
∂𝖤K . . . . . . . . . . . . . . . . . . . . . . edge boundary of K , 111, 175
∂𝖵K . . . . . . . . . . . . . . . . . . . . . outer vertex boundary of K , 178
∂in
𝖵K . . . . . . . . . . . . . . . . . . . . . inner vertex boundary of K , 205

G↾K . . . . . . . . . . . . . . . . . . . . . network G induces on K , 2
G† . . . . . . . . . . . . . . . . . . . . . . . dual graph, 288
e† . . . . . . . . . . . . . . . . . . . . . . . . dual edge, 288
ω× . . . . . . . . . . . . . . . . . . . . . . . dual configuration, 288

�b+1 . . . . . . . . . . . . . . . . . . . . . regular tree of degree b + 1, 87
∂T . . . . . . . . . . . . . . . . . . . . . . . boundary at infinity (rays) of T , 12
∂LT . . . . . . . . . . . . . . . . . . . . . . leaves of T , 141
brT . . . . . . . . . . . . . . . . . . . . . . branching number of T , 4
grT . . . . . . . . . . . . . . . . . . . . . . exponential growth rate of T , 3
grT . . . . . . . . . . . . . . . . . . . . . . lower exponential growth rate of T , 3
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grT . . . . . . . . . . . . . . . . . . . . . . upper exponential growth rate of T , 3
Tn . . . . . . . . . . . . . . . . . . . . . . . level n of the tree T , 3
T x . . . . . . . . . . . . . . . . . . . . . . . descendant subtree of x, 82
ξ ∧ η . . . . . . . . . . . . . . . . . . . . . common vertex farthest from the root, 524
e(x) . . . . . . . . . . . . . . . . . . . . . . edge joining x to its parent, 4
x < y . . . . . . . . . . . . . . . . . . . . . x is between the root and y and x ̸= y, 82
x ∧ y . . . . . . . . . . . . . . . . . . . . . common ancestor farthest from the root, 141
x ≤ y . . . . . . . . . . . . . . . . . . . . x is between the root and y, 82
x → y . . . . . . . . . . . . . . . . . . . . y is a child of x, 82
↼
x . . . . . . . . . . . . . . . . . . . . . . . . parent of x, 142
|x | . . . . . . . . . . . . . . . . . . . . . . . distance between x and the root, 12
[[T1 •−T2]] . . . . . . . . . . . . . . . . . join of two trees rooted at the root of T1, 578
T[b](E) . . . . . . . . . . . . . . . . . . . b-adic coding tree of E , 15

(G, c, D) . . . . . . . . . . . . . . . . . graph G with edge weights c and vertex weights D, 175
( f , g)h . . . . . . . . . . . . . . . . . . . inner product with respect to h, 33
Ceff . . . . . . . . . . . . . . . . . . . . . . effective conductance, 25
P⋆ . . . . . . . . . . . . . . . . . . . . . . . orthogonal projection onto ⋆, 34
Reff . . . . . . . . . . . . . . . . . . . . . . effective resistance, 25
Y(e, e′) . . . . . . . . . . . . . . . . . . . transfer current along e′ from e, 35
BH . . . . . . . . . . . . . . . . . . . . . . . space of bounded harmonic functions, 475
χe . . . . . . . . . . . . . . . . . . . . . . . unit flow along e, 33
♢ . . . . . . . . . . . . . . . . . . . . . . . . cycle space, 34
D . . . . . . . . . . . . . . . . . . . . . . . . space of Dirichlet functions, 313
D0 . . . . . . . . . . . . . . . . . . . . . . . Dirichlet closure of functions with finite support, 314
∆G . . . . . . . . . . . . . . . . . . . . . . network Laplacian, 64, 465
D( f ) . . . . . . . . . . . . . . . . . . . . . Dirichlet energy of f , 313
D00 . . . . . . . . . . . . . . . . . . . . . . functions with finite support, 181
C (a ↔ Z;G) . . . . . . . . . . . . . . effective conductance in G between a and Z , 25
R(a ↔ Z;G) . . . . . . . . . . . . . . effective resistance in G between a and Z, 25
ℓ2
−(𝖤) . . . . . . . . . . . . . . . . . . . . . antisymmetric square-summable functions on 𝖤, 32

HD . . . . . . . . . . . . . . . . . . . . . . space of harmonic Dirichlet functions, 314
⋆ . . . . . . . . . . . . . . . . . . . . . . . . star space, 34
Φ∗𝖤(G), Φ∗𝖵(G) . . . . . . . . . . . . . anchored expansion constants, 214
E (θ) . . . . . . . . . . . . . . . . . . . . . . energy of θ, 33
Φ𝖤(G) . . . . . . . . . . . . . . . . . . . . expansion (isoperimetric) constant of G, 175
∇ f . . . . . . . . . . . . . . . . . . . . . . . gradient of f , 184, 313
ψ(G, t) . . . . . . . . . . . . . . . . . . . isoperimetric profile, 211
π(x) . . . . . . . . . . . . . . . . . . . . . . sum of conductances at x, stationary measure, 18
∥ f ∥h . . . . . . . . . . . . . . . . . . . . . norm with respect to h, 33
c(e) . . . . . . . . . . . . . . . . . . . . . . conductance of e, 19
d . . . . . . . . . . . . . . . . . . . . . . . . coboundary operator, 32
d∗ . . . . . . . . . . . . . . . . . . . . . . . boundary operator, 32
i(e) . . . . . . . . . . . . . . . . . . . . . . current through e, 23
v(x) . . . . . . . . . . . . . . . . . . . . . . voltage at x, 23
|K |D . . . . . . . . . . . . . . . . . . . . . D-weight of K , 175

b . . . . . . . . . . . . . . . . . . . . . . . . boundary map, 481
Γ ∗ Γ′ . . . . . . . . . . . . . . . . . . . . . free product of groups, 87
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G⊙ . . . . . . . . . . . . . . . . . . . . . . . lamplighter graph or group over G, 478
⟨S | R⟩ . . . . . . . . . . . . . . . . . . . . group with generators S and relators R, 87
v . . . . . . . . . . . . . . . . . . . . . . . . volume growth exponent, 472

DKL(p ∥ q) . . . . . . . . . . . . . . . . Kullback-Leibler divergence; relative entropy, 202
𝖧�̈� (µ) . . . . . . . . . . . . . . . . . . . . Hölder exponent of µ, 525
𝖥𝖬𝖲𝖥 . . . . . . . . . . . . . . . . . . . . . free minimal spanning forest, 391
F . . . . . . . . . . . . . . . . . . . . . . . . random spanning forest, 340
𝖥𝖲𝖥 . . . . . . . . . . . . . . . . . . . . . . free uniform spanning forest, 340
𝖥𝖴𝖲𝖥 . . . . . . . . . . . . . . . . . . . . . free uniform spanning forest, 340
𝖬𝖲𝖳 . . . . . . . . . . . . . . . . . . . . . minimal spanning tree, 389
𝖶𝖬𝖲𝖥 . . . . . . . . . . . . . . . . . . . . wired minimal spanning forest, 392
𝖶𝖲𝖥 . . . . . . . . . . . . . . . . . . . . . wired uniform spanning forest, 341
𝖶𝖴𝖲𝖥 . . . . . . . . . . . . . . . . . . . . wired uniform spanning forest, 341

𝖫𝖤(P) . . . . . . . . . . . . . . . . . . . . loop erasure of P, 97
P[a → Z] . . . . . . . . . . . . . . . . . probability of hitting Z before returning to a, 24
h . . . . . . . . . . . . . . . . . . . . . . . . Avez asymptotic entropy, 470
G (x, y) . . . . . . . . . . . . . . . . . . . expected number of visits to y from x, 22
 . . . . . . . . . . . . . . . . . . . . . . . . invariant σ-field, 474
T . . . . . . . . . . . . . . . . . . . . . . . . tail σ-field, 468
ρ(G) . . . . . . . . . . . . . . . . . . . . . spectral radius, 183
l . . . . . . . . . . . . . . . . . . . . . . . . . asymptotic speed of random walk, 472
τx . . . . . . . . . . . . . . . . . . . . . . . first hitting time of x, 22
τ+
x . . . . . . . . . . . . . . . . . . . . . . . first hitting time of x after 0, 22

𝖱𝖶𝜆 . . . . . . . . . . . . . . . . . . . . . . homesick random walk biased by 𝜆, 80
Px . . . . . . . . . . . . . . . . . . . . . . . law of random walk started at x, 22

L . . . . . . . . . . . . . . . . . . . . . . . . offspring random variable, 132
W . . . . . . . . . . . . . . . . . . . . . . . limit of martingale Zn/m

n , 9
Zn . . . . . . . . . . . . . . . . . . . . . . . size of nth generation, 9
L . . . . . . . . . . . . . . . . . . . . . . . offspring network random variable, 162
L̂ . . . . . . . . . . . . . . . . . . . . . . . . size-biased random variable, 411
q . . . . . . . . . . . . . . . . . . . . . . . . 1 − q, 154
f (s) . . . . . . . . . . . . . . . . . . . . . . offspring p.g.f., 132
m . . . . . . . . . . . . . . . . . . . . . . . . mean number of offspring, 8
pk . . . . . . . . . . . . . . . . . . . . . . . probability of k children in a branching process, 8
q . . . . . . . . . . . . . . . . . . . . . . . . probability of extinction, 132

I (x) . . . . . . . . . . . . . . . . . . . . . . invasion basin of x, 251
Pp . . . . . . . . . . . . . . . . . . . . . . . Bernoulli(p) percolation, 138
ô . . . . . . . . . . . . . . . . . . . . . . . . normalized random root in a quasi-transitive unimodular graph, 280
µ(G) . . . . . . . . . . . . . . . . . . . . . connective constant, 245
ωp . . . . . . . . . . . . . . . . . . . . . . . open subgraph at level p, 138
G[p] . . . . . . . . . . . . . . . . . . . . . open subgraph at level p, 388
pc(G) . . . . . . . . . . . . . . . . . . . . critical probability of G, 138
pu(G) . . . . . . . . . . . . . . . . . . . . critical probability for uniqueness, 250, 399
θ(p) . . . . . . . . . . . . . . . . . . . . . . probability that a vertex belongs to an infinite cluster, 234
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References to definitions have page numbers in roman font, whereas others (such as to theorems,
examples, exercises) are in slant font. Of course, some results appear on the same page as the definition.

action of a group, 354
acyclic, 77
adapted conductances, 142
adjacency matrix, 186

directed, 83
adjacent, 1
affine group, 264
almost

everywhere uniqueness, 395
has a property, 249
treeable, 406

amalgamation, 235
amenable, 111, 175, 178

abelian, 178
finite percolation, 293, 308
invariant mean, 178
percolation clusters, 214, 270, 564
planar transience, 385
plane duals, 226
rough isometry, 178
spanning forest, 343, 395, 564, 590
spanning tree, 112
subexponential growth, 178
subgroup, 226
unimodular, 282, 305

ancestor, 141
animal, 271
antisymmetric, 32
arithmetic progressions, 589
automorphism

of a graph, 2, 233
of a Markov chain, 469
of a network, 2, 30, 342

average squared distance, 434
Azuma’s inequality, 424, 463

ball, 185
Betti number, 347, 381
biased random walk, see homesick random walk
bipartite, 92, 305

biregular, 305
Borel distribution, 612
boundary, 111, 178

Γ-boundary, 483
at infinity, 12
compactification, 482
compactification Γ-boundary, 483
inner, 205, 226, 295, 368
lamplighters, 491
map, 481
maximal, 484
of a Markov chain, 481
Poisson boundary, 483

free groups, 492
of trees, 484

boundary operator, 32
bounded geometry, 54
bounded-differences inequality, 457
branching number, 4, 80

essential, 459
Galton-Watson trees, 139
homesick random walk, 80, 459
of a graph, 450
of a network, 459
percolation, 143
subperiodic tree, 84
superperiodic tree, 86

Brownian motion
bridge, 523
capacity, 543
exponentially killed, 554
harmonic functions, 53
Hausdorff dimension, 523
intersections, 545
Riemannian manifolds, 53
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canonical Gaussian field, 50, 120
distances, 73
effective resistance, 51
free, 385
linear independence, 73
pinned, 73
pinned, with mass, 73
random walk, 73, 385
spanning trees, 127
tightness, 385
wired, 385

canonical Markov chain, 591
Cantelli’s inequality, 170
capacity

boundary of a tree, 14
Brownian motion, 543
Frostman’s theorem, 538, 554
of a set, 535
of an edge, 74
percolation, 537
random walk, 536
random walk exits, 510
transference, 538, 540

carrier, 524
Catalan numbers, 259
Catalan’s constant, 119
Cayley diagram, 235
Cayley graph, 86

2-point homogeneous, 90
left and right, 94

Cayley’s formula, 102, 119, 126, 128, 169
Chebyshev constants, 548
Chebyshev polynomials, 430
Chebyshev’s inequality, 160
Cheeger’s inequality, 222, see also expansion;

isoperimetric
cluster, 137
coboundaries, 381
coboundary operator, 32
cocycles, 380
cogrowth, 187, 228
color

cycle, 98
of an edge, 98

commute time, 48, 71, 72
distance, 72, 596
identity, 48

complete graph, 102
conductance, 23, 227, see also expansion

percolation on trees, 150, 171
conductivity, 53
conformal invariance, 120, 406
connected, 2

k-connected, 296
number of subgraphs, 271

connective constant, 245
contraction, 2, 106, 107
converge

to a ray, 62, 567
weakly, 340

convex hull, 625
convolution, 469

random walk, 469
cost, 348
coupling

monotone, 286, 344
shift, 510
Strassen’s theorem, 344
trivial invariant σ-field, 510
trivial tail σ-field, 510

cover, 12
cover time, 49

bounds, 49, 72
covering map, 187, 216

percolation, 216
weak, 215

covering network, 216
critical probability of Bernoulli percolation, 138
current, 23, 314

as edge crossings, 25
as function of conductances, 60
changed conductance, 128
contraction, 107
contraction and deletion, 127, 128
free, 310, 311
limit, 310
minimal, 310
plane duals, 312
total, 25
unique, 314, 314–318, 320, 325, 330, 332, 337,

338, 349
wired, 310, 311, 337

cut, 64, 392
cut-vertex, 125
cutset, 12, 36, 37, 74, 75
cycle, 2, 34

cycle space, 34
orthogonal decomposition, 34, 66, 314

pop, 98
simple, 257

cylinder, 238, 340
elementary, 340

data processing inequality, 231
dead ends, 90
degree, 1, 2
delayed simple random walk, 561
deletion tolerant, 238

weakly, 287
density, 300
depends on a set

event, 109, 238
random variable, 110

derived tree, 526
diameter, 433
Diestel-Leader graph, 237
dimension of a measure, 524
dimension reduction, 444, 458
directed, 1
directed cover, 82
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Dirichlet
algebra, 629
energy, 313
form, 447
function, 313

along random walks, 318
harmonic, 314, see also current, unique

principle, 36, 66, 68
problem, 20

discrete Gaussian field, 50
discrete group of automorphisms, 278, 304
distance, 2

of random walk, 462
distortion, 440, 445
divergence, 184, 335
dominating set of vertices, 306
Doob’s h-transform, 60

edge, 1
edge boundary, 175
edge graph, 197, see also line graph
edge simple, 2
edge transitive, 72
edge-reinforced random walk, 56
effective conductance, 25, 27

concavity, 66
free, 337
plane duals, 312
transience, 27
wired, 337

effective resistance, 25, 27
along a random walk, 602
concavity, 66
derivative, 65
determines conductances, 65
free, 311, 336
in boxes, 42
in the plane, 41
metric, 64, 65
plane duals, 312
rough embedding, 69
wired, 311, 336

electrical network, see also current; voltage; conduc-
tance; resistance; effective conductance; effective
resistance
inner product, 33
Kirchhoff’s cycle law, 24, 34
Kirchhoff’s node law, 23, 32, 34
Ohm’s law, 23, 32
parallel law, 28
Rayleigh’s monotonicity principle, 35
series law, 27
star-clique transformation, 65
star-mesh transformation, 597
star-triangle law, 30
Thomson’s principle, 34

encounter point, 240

end, 236, 242, 364, 559
convergent, 242
number of ends, 242, 270

free product, 242
product graph, 242
rough isometry, 242

topology, 291, 564
endpoint, 1, 2
energy

convexity, 67
of a measure, 140, 534

semicontinuity, 555
of an antisymmetric function, 33
transience, 38

entropy, 201, 469, 572, 592
asymptotic, 470
Avez, 470
conditional, 202, 469

monotonicity, 469
Gibbs’s inequality, 202, 576
Han’s inequality, 203
inequality for convolution walks, 506
Markov chain, 427, 463
relation to spectral radius, 470
Shannon’s inequalities, 202
Shearer’s inequality, 204
submodular, 203

equally-splitting flow, 526
equivalent measures, 571
equivariant, 378, 483, 570

Hilbert compression exponent, 459
Erdős-Rényi random graph, 611
ergodic, 238, 354, 494, 556

Markov chain, 557
theorem, 495

escape, 27
evolving sets, 207
exhaustion, 26, 339
expander, 193, 268, 442
expansion, see also isoperimetric

anchored, 214
constant, 214
counting, 219
Galton-Watson, 220
percolation, 214, 295
percolation clusters, 216
speed, 223
subdivision, 218, 232

Cayley graphs, 205
constant, 175, 178, 191, 227
duality, 176, 179
plane graph, 198
profile, 206
regular tree, 175
spectral gap, 192
spectral radius, 183
subdivision, 218
transitive graphs, 177, 180, 225, 226, 372

exponential distribution characterization, 418
exponential tail, 218
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extended path, 391
extinction, 132
extremal length, 66, 68

Følner sequence, 179
face, 197, 311
factor, 577
Fekete’s lemma, 84
Fekete-Szegő theorem, 548
Fibonacci tree, 83, 464
FKG inequality, 160
flow, 3, 23, 32, 38, 75, 570

admissible, 74, 75
conservation, 32
on trees, 79–80
random path, 40, 77
rule, 570
total, 32
unit, 32, 38

forest, 2, 339
fort, 263
Foster’s theorem, 65, 71, 126
Fourier transform, 113

Parseval’s identity, 362
Riemann-Lebesgue lemma, 351

Fréchet embedding, 458
Fréchet space, 378
fractal percolation, 158, 531, 541

left-to-right crossing, 159, 172, 173
free abelian group, 87
free group, 87
free product, 87
free spanning forest, 11, 340

compared to minimal, 405
compared to the wired, 343–349, 354, 374, 382
distance between trees, 375
expected degree, 347, 386
infinite trees, 342
invariance, 342
number of ends, 366, 374, 382
number of trees, 374, 375
planar duality, 350
trivial tail, 353

fresh points, 567
Frostman exponent, 93, 532
furcation, 240, 274
fuzz, 43, 256

Galton-Watson, 8, 132
d-ary subtrees, 156, 157
anchored expansion, 220
as random trees, 136
augmented, 566
branching number, 139
conditioned to survive, 417, 422
confinement of random walk, 569
critical, 134
decomposition, 154
effective conductance, 170, 565, 585

explosion, 132
extinction criterion, 133, 168
extinction probability, 133, 168, 416, 417, 422
fractals, 521
Grey’s theorem, 168
growth rate, 137
harmonic measure, 569
homesick random walk, 151, 588
immigration, 413, 414, 416
inherited property, 135
Kesten-Stigum theorem, 135, 410, 422
Kolmogorov’s estimate, 417, 422
loop-erased random walk, 593
martingale, 134, 135
most recent common ancestor, 422
multitype, 171
network, 162
Otter-Dwass formula, 169
p.g.f. given survival, 171
percolation, 139
Poisson, 169
Poisson and uniform, 167
Q-process, 420
random walk coding, 169
regular subtrees, 172
Seneta-Heyde theorem, 135
simple random walk, 170, 588
speed, 568
subcritical, 134
supercritical, 134
total size, 169
varying environment, 422
wired spanning forest, 593
Yaglom’s limit law, 417, 420, 422
zero-one law, 135

gauge, 534, 538, 540
gauge function, 515
Gaussian free field, see canonical Gaussian field
Gaussian network, 50
generalized diameters, 548
generated, 86
geodesic, 271

hyperbolic, 46
subtree, 90, 451

girth, 465
go to ∞, 40
gradient, 51, 184, 313
grandparent, 236

graph, 236
graph, 1

finite, 31
planar, 196, 311
plane, 196, 311
plane dual, 197, 311
properly embedded, 196, 311
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Green
function, 25
�2, 606
Euclidean lattices, 606

function (series), 63
function as voltage, 25
inner product, 335
kernel for Brownian motion, 542

Grey’s theorem, 168
growth rate, 3, 81, 89

Cayley graphs, 89
exponential, 89
groups and random walk, 89, 94
lower, 3, 81
polynomial, 249, 265, 503, 509
subexponential, 89
upper, 3, 81, 185
volume growth exponent, 472

Haar measure, 279, 293, 304
Hall’s theorem, 92
harmonic crystal, 50
harmonic function, 20, 53, 332, 474, 557

bounded, 332, 557, see also Liouville property
existence principle, 20, 60
maximum principle, 20
recurrent networks, 61
space-time, 477, 502
uniqueness principle, 20

harmonic measure, 62, 69, 481, 536, 569
from infinity, 63, 130, 376
Galton-Watson, 569
plane network, 324

Hausdorff dimension, 12, 513
Brownian zeroes, 523
Cantor middle-thirds set, 514
Fibonacci tree, 591
Frostman’s theorem, 538, 554
Galton-Watson fractals, 521
Hölder exponent, 525
intersection-equivalent sets, 555
planar Cantor set, 514
random Cantor set, 532
random von Koch curve, 531
Sierpinski carpet, 514
Sierpinski gasket, 515
speed, 589
transference, 519
von Koch snowflake, 518

Hausdorff measure, 513
head, 2
higher, 388
Hilbertable Γ-space, 378
hitting time

an integer, 71
identity, 48
matrix invertibility, 69
resistance, 69
trees, 70

Hodge decomposition, 330
Hoeffding’s inequality, 424, 457, 463
Hölder exponent, 525
homesick random walk, 81

branching number, 80, 459
critical, 93
Galton-Watson trees, 151, 588
groups, 89, 94
speed, 90, 464
wired spanning forest, 387

homomorphism
of graphs, 2
of networks, 2

hyperbolic space
nonamenable, 374
tessellations, 175, 195, 197
transience, 47
unique currents, 325

hypercube, 72
distortion, 440

hypermetric, 608

identifying vertices, 2
ignores an edge, event, 109
incident, 1
increasing

event, 109, 160
random variable, 110, 160

increasing convex order, 173
indistinguishable infinite clusters, 302
induced measure, 556
induced subnetwork, 2
induced system, 577
inherited property of trees, 135
insertion tolerant, 238

weakly, 286
intersection equivalent, 542
intersections of random walk, 356
invariant
σ-field, 238, 474, 556
event, 239, 354
function, 475
set, 557
under a transformation, 556

invasion
basin, 251, 394
basin of infinity, 400
of infinite clusters, 251, 270
tree, 394

isomorphism
of a graph, 2
of a network, 2
rooted, 305, 559

isoperimetric, see also expansion
anchored two-dimensional, 232
constant, 175, 178
inequality in �d , 200
profile and transience, 211
strong inequality, 176
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Jacobi’s determinant identity, 126

Kőnig’s theorem, 92
Kac lemma, 60
Kazhdan, 266
Kemeny constant, 596
kernel, 534
Kesten-Stigum theorem, 135, 410, 422
Kullback-Leibler divergence, 202

label, 388
ladder graph, 106, 127, 130, 409
lamplighter graph, 478, 479
lamplighter group, 88

bit, 88
configuration, 88
Liouville, 479
marker, 88

Laplacian
of a graph, 113
of a network, 64, 465

Laplacian random walk, 103
large deviations, 217, 424, 453

Hoeffding-Azuma, 424, 457, 463
lazy, 192, 433, 474

simple random walk, 462
leaf, 12
level, 3, 81
lexicographically minimal spanning tree, 89
likelihood, 50
limit set, 158, 541
limit uniform measure, 573
line graph, 256
Liouville property, 332, 474, 509

lamplighters, 479
locally finite, 1, 26, 136
lonely, 398
Loomis-Whitney inequality, 200, 204, 223
loop, 2
loop erasure, 97, 375

Galton-Watson, 593
intersection with random walk, 355

lower, 388

Markov chain tree theorem, 116
Markov type 2, 437, 465

uniform, 437
Martin kernel, 550, 554
martingale increments, 424, 462
mass-transport principle

countable groups, 274
general form, 276
Haar measure, 279
quasi-transitive unimodular, 279, 281
transitive graphs, 276

matching, 225
perfect, 92, 305

matrix-tree theorem, 119, 120
max-flow min-cut theorem, 74–77, 92

maximal inequality of Starr, 60
maximum likelihood estimate, 50
McDiarmid’s inequality, 457
mean

invariant, 178
of a branching process, 133
on a group, 178

mean first passage time, 48, see also hitting time
Menger’s theorem, 92
micro-set, see derived tree
minimal spanning forest

clusters at pu, 399
compared to uniform, 405
cut criteria, 392
expected degree, 408, 409
free, 243, 391
free pc, 409
free and wired compared, 395
free is almost connected, 402
number of ends, 397, 398, 399, 409
number of trees, 399, 404, 406, 409
on �2, 403
plane dual graphs, 403
trivial tail, 396
wired, 392
wired pc, 400

minimal spanning tree, 389
edge correlations, 389
stochastic domination, 389

Minkowski dimension, 512
mixing, 354, 556

k-mixing, 386
order, 386

mixing time, 432, 433, 457, 461
average squared distance, 436
diameter, 433
spectral gap, 190

multigraph, 2, 26
multiple, 2
mutual information, 202

Nash-Williams criterion, 37, 67
lack of converse, 67

negative association, 110
uniform measure, 129

negative type, 596, 608
neighborhood, 291
neighbors, 1
net, 47
network, 2, 175
nonamenable, 176

regular subtrees in, 180
nonbacktracking, 186
nondegenerate, 569
norm, matrix, 83
normalized root, 280

occur disjointly, events, 123
order of a cube, 512
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oriented percolation, 170
Otter-Dwass formula, 169

Pólya’s theorem, 37, 40, 68
Pólya’s urn, 68
packing dimension, 460
Paley-Zygmund inequality, 146, 170, 357
parallel, 2
parent, 84
Parrondo’s paradox, 63, 596
path, 1, 2

augmentable, 76
percolation, 7, 273

pc < 1, 246–250, 270, 271
pc < pu, 257–262, 267, 271
pc > 0, 245
pu < 1, 255–256, 268
pu = 1, 255
amenable, 293, 308
Bernoulli, 122, 137, 213
BK inequality, 123
bond, 137, 273
bootstrap, 262
branching number, 143
cost, 267
covering map, 216
critical, 282, 286

on trees, 151
ergodic, 238
expected cluster size, 264
finite clusters, 284, 306
general, 137
independent, 141
invariant, 238, 283, 562

ends, 307
forest, 284, 285, 306
random walk stationarity, 563
subforest, 242
threshold for finite clusters, 283, 284, 306

Kazhdan groups, 266
model, 131
number of infinite clusters, 243

amenable, 240, 243, 270
at pc, 282, 286
at pu, 268, 287, 400
constant, 240

on �2, 248, 270
on Galton-Watson trees, 139
on half-spaces, 234
planar graphs, 287–290
probability of infinite cluster, 270
properties of infinite clusters, 291
quasi-independent, 144
site, 213, 273
site and bond compared, 244, 245, 256, 268, 270
speed, 214
transience, 213
trees and conductance, 150, 171

periodic, 82
tree of polynomial growth, 93

Perron
eigenvalue, 83
eigenvector, 83

Pinsker’s model, 194
Poisson representation, 483
Ponzi scheme, 174
positive associations, 160

Gaussian random variables, 55
potential, 24, 534
potential kernel, 119
presentation

finite, 88
of a group, 87

probability generating function (p.g.f.), 132
probability measure-preserving system, 494, 556
product

Cartesian, 1, 87, 225, 316
eigenvalues, 443

direct, 87
tensor, 16

product tree, 94

quasi-transitive, 234
action, 234
density of orbits, 305
tree, 269

quotient graph, see covering map

radial potential, 542
Ramanujan, 222
random forest, 562
random network potentials, 50
random set, 542
random walk
µ-walk, 469
continuous time, 463
return time, 465

random walk in a random environment, 56, 588
range of random walk, 71, 474, 510
rank of a group, 87
rate function, 453
ray, 4, 364

n-ray, 591
reciprocity law, 35
recursions on trees, 166, 171
reduced cohomology, 381
regeneration, 567
regular, 1
relative entropy, 202
relator, 87
resistance, 23
resolution of the identity, 456
return

map, 577
time, 577

reversed Markov chain, 22, 117
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reversible, 18
globally, 563, 590
locally, 590
results on path reversals, 22

Riesz decomposition, 595
root, 96
rooted, 2
rough, 44

embedding, 44
embedding and effective resistance, 69
embeddings and transience, 44
equivalence, 44
isometry, 45

Cayley graphs, 87
nonamenable Cayley graphs, 264
number of ends, 242

Royden compactification, 629
Royden decomposition, 314

Schreier graph, 94
second eigenvalue of a finite graph, 227
self-avoiding path, tree of, 83
semitransitive, 265
Seneta-Heyde theorem, 135
separates, 36, 37, 137, 315
Shannon-Parry measure, 636
shrub, 560
Sierpinski carpet, 514
Sierpinski gasket, 515
simple, 2
simple graph, 2
simple random walk, 19

on �2, 120, 129
site-furcation, 240
size-biased

distribution, 411, 416, 421
Galton-Watson, 411
random variable, 411, 418

slab, 568
SLE, 120
slowly varying, 54
spanning arborescence, 95
spanning tree, 9, 89, 95, see also minimal spanning

tree
Aldous/Broder algorithm, 118
degree distribution, 112
enumeration, 120
geodesic, 90, 452
Hamiltonian path, 118
Kirchhoff, 105, 125, 126
matrix-tree theorem, 119, 120
negative association, 129
negative correlation, 106, 108, 109
on diagonals, 115, 386
pair distances, 126
weight, 96

spanning tree polytope, 125

spectral gap, 191, 192, 432, 433, 457, 461
diameter, 434
expansion, 192
mixing time, 190

spectral radius, 183, 258
expansion, 183
matrix, 83
product graphs, 258
product networks, 271
relation to entropy, 470
speed, 185
tree, 185, 187, 259

spectral theorem, 456
speed, 89, 472

Galton-Watson, 568
growth, 464
Hausdorff dimension, 589
homesick random walk, 464
liminf, 427
on covers, 426
spectral radius, 185
stationary random walk, 560, 563

spherically symmetric, 3, 30, 82, 86
Cayley graphs, 89
transience, 86

square tiling, 330
stabilizer, 276
standard coupling

Bernoulli percolation, 138
merging infinite clusters, 250

star, 34
star space, 34

cuts, 64
orthogonal decomposition, 34, 66, 314

stationary, 494
µ-stationary, 511
p-stationary, 557
σ-field, 474

stochastic domination, 129, 244, 343, 344, 418
Strassen’s theorem, 344

stochastically more variable, 173
strength, 32, 75
stretched edges, see subdivision
strong Følner independence, 631
strong law of large numbers (SLLN), 423, 462, 463
strongly Rayleigh, 122
subadditive, 84
subadditive ergodic theorem, 497
subdivision, 218

random
graph, 218, 232
tree, 171

subgraph, 1
subharmonic, 59
submodular, 177

entropy, 203
subperiodic, 82
superharmonic, 59, 318
superperiodic, 86, 94
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superposition principle, 20

tail, 2, see also tail σ-field
tail σ-field, 239, 352, 468

function, 468
nontrivial on trees, 468
triviality, 474, see also Liouville property

target percolation, 613
total variation distance, 431
trace, 326, 541
transfer current

matrix, 35, 130, 386, 606
theorem, 108, 119, 128, 349

transfer impedance matrix, 52
transience of nonamenable convolution walks, 511
transition operator, 60, 182
transitive

graph, 233
Markov chain, 355, 469
network, 177, 346
not 2-point homogeneous, 600
not Cayley, 236, 236–237, 276, 303

transitive representation, 235
amenable, 269

translation, 86
tree, 2

bi-infinitary part, 560
descendant, 136
height, 136
reduced, 153
rooted labeled, 136
truncation, 136

tree-indexed random walk, 143–145, 171, 172, 453
triangle group, i, 195, 307, 321, 330, 386, 409
trifurcation, 240
trigonometric polynomial, 351
trunk, 397
type

of a random walk, 40, 68
of plane duals, 336
of random walk on wedges, 41

uncorrelated, 423
undirected, 1
uniform spanning forest, see free or wired spanning

forest
uniform spanning tree, see spanning tree

unimodular, 277, 279
amenable, 282, 305
compact group, 305
discrete group, 278
Haar measure, 279
rooted graph, 300
subgroup, 278, 282

unitary representation, 266
universal cover, 82, 93, 426–427, 463
unoriented, 1
upwardly closed event, 109

Varopoulos-Carne bound, 429
vertex, 1
vertex simple, 2
vertex-reinforced random walk, 56
visibility measure, 526
visible graph, 98
voltage, 23

along a random walk, 68
monotone, 61, 78
on �2, 113
on �d , 352, 386

von Neumann algebra, 378
von Neumann dimension, 378
Voronoi cell, 306

weighted uniform spanning tree, 96
Wilson’s method, 97

efficiency, 125
rooted at infinity, 341

wired spanning forest, 341
bounded harmonic functions, 387
compared to the free, 343–349, 354, 374, 382
expected degree, 346
homesick random walk, 387
infinite trees, 342
invariance, 342
number of ends, 364–375, 382
number of trees, 356, 355–363
on recurrent networks, 342
on spherically symmetric trees, 387
planar duality, 350
recurrent trees, 364
rough isometry, 387
trivial tail, 353

wreath product, 88
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Ich bin dein Baum
by Friedrich Rückert

Ich bin dein Baum: o Gärtner, dessen Treue
Mich hält in Liebespfleg’ und süßer Zucht,
Komm, daß ich in den Schoß dir dankbar streue
Die reife dir allein gewachs’ne Frucht.

Ich bin dein Gärtner, o du Baum der Treue!
Auf and’res Glück fühl’ ich nicht Eifersucht:
Die holden Äste find’ ich stets aufs neue
Geschmückt mit Frucht, wo ich gepflückt die Frucht.

I am your tree: O gardener, whose fidelity
Keeps me in loving care and sweet nurture,
Come, that in your lap I may gratefully strew
The ripened fruit, grown only for you.

I am your gardener, O you faithful tree!
I am not envious of any other happiness:
Your graceful boughs I find all newly
Adorned with fruit, even where I have plucked the fruit.

Transl. by Jonathan C. Lee and Russell D. Lyons
Set to music by Robert Schumann
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