
anyt
[entry]anyt/global/

176

Chapter 13

Planar graphs and testing for planarity
By Sariel Har-Peled, April 8, 2018¬ Version: 0.1

This is an early draft of a new chapter. Read at your own peril.
At an archaeological site I saw fragments of
precious vessels, well cleaned and groomed and
oiled and spoiled. And beside it I saw a heap of
discarded dust which wasn’t even good for
thorns and thistles to grow on.
I asked: What is this gray dust which has been
pushed around and sifted and tortured and then
thrown away?
I answered in my heart: This dust is people like
us, who during their lifetime lived separated
from copper and gold and marble stones and all
other precious things - and they remained so in
death. We are this heap of dust, our bodies, our
souls, all the words in our mouths, all hopes.

At an archaeological site, Yehuda AmichaiIn this chapter, we introduce planar graphs and review some standard results about them. We also
present an algorithm for testing if a graph is planar.

13.1. Definitions and some basic results

13.1.1. Background – What is a curve?
The notion of a curve drawn in the plane is quite natural, but it turns out to be surprisingly challenging
to define formally. Indeed, the natural definition of a curve is a continuous one to one mapping from
[0, 1] to a set in the plane (i.e., the curve), but this definition also includes space filling curves, which
are definitely do not capture our intuitive definition of a curve. Specifically, the Peano (or Hilbert)
space-filling curve is a continuous(!) mapping from [0, 1] to the unit square. See Figure 13.1.

To avoid this pitfall, a closed Jordan curve is a closed curve, that does not self intersect, that
can be continuously deformed into a circle. Similarly, a (regular) Jordan curve (or arc) is a curve that
can be continuously deformed into a segment­ in the plane. More formally, a closed Jordan curve is
a homeomorphism f from a circle to a set in the plane. A mapping f is a homeomorphism, if it is
continuous and it has a continuous inverse function. As such, space filling curves are not Jordan curves,
as one can find points that are arbitrarily close to each other in the image, that are far away from each
other in the original range.

This leads to the following famous theorem, which is intuitively obvious, but proving it turns out to
be challenging (see bibliographical notes for more details).

Theorem 13.1.1 (Jordan curve theorem). A closed Jordan curve J partition the plane into two
open connected components – the interior and the exterior. Any curve connecting a point in the interior,
to a point in the exterior must intersect J.

¬This work is licensed under the Creative Commons Attribution-Noncommercial 3.0 License. To view a copy of this
license, visit http://creativecommons.org/licenses/by-nc/3.0/ or send a letter to Creative Commons, 171 Second
Street, Suite 300, San Francisco, California, 94105, USA.

­A segment is the portion of a straight line connecting two points on it.

177

http://creativecommons.org/licenses/by-nc/3.0/

Figure 13.1: An inductive definition of Hilbert’s space filling curve. The figure is taken from Wikipedia.

13.1.2. Planar graphs – a review
Notations. In the following, component refers to a connected component of a graph. A graph H is
a subgraph of a given graph G = (V, E), denoted by H ⊆ G, if V(H) ⊆ V, and E(H) ⊆ E . For a set of
vertices U ⊆ V(G), its induced subgraph of G is the graph GU = (U, EU), formed by keeping only the
edges of G with both their endpoints in U. Formally, we have EU =

{
uv ∈ E(G) | u, v ∈ U

}
.

For a subgraph H ⊆ G, we denote by G \ H the induced subgraph of G over V \ V(H).
We abuse notations with impunity and without shame. For a vertex v ∈ V(G), we denote by G − v

the graph resulting from removing v and the edges adjacent to it. Similarly, for a set X and an element
x, we use X − x as a shortcut for X \ {x}, and similarly X + x = X ∪ {x}.

We provide a short introduction to planar graphs, and state some standard properties without proof
(see bibliographical notes for relevant references).

A graph G = (V, E) is planar if it can be drawn in the plane, such that every vertex is a point,
and an edge is a Jordan curve connecting the corresponding points. Furthermore, the curves that
corresponds to two different edges intersect only in their common endpoint (if they have one). Given a
planar graph, we do not necessarily have this embedding of the graph (i.e., an explicit description of
the curve forming each edge, and the location of each vertex). Instead, a (symbolic) representation of
an embedding, would describe the faces, edges and vertices and their relationships. See Section 13.1.3
below for details.

Lemma 13.1.2 (Euler’s formula). In a connected planar graph with n vertices, m edges, and f faces,
we have n − m + f = 2.

Remark. Here, we usually deal with simple graphs that do not have self loops or parallel edges.
However, Euler’s formula holds even if one allows self-loops, and parallel edges.

A planar graph is maximal if no edge can be added to it without violating its planarity or simplicity
(i.e., we are not allowing parallel edges or self-loops). In such a maximal planar graph every face has
exactly three boundary edges (i.e., the graph is triangulated).

Definition 13.1.3. A maximal planar graph is a triangulation. In any embedding of a triangulation, all
its faces, including the outer face, are triangles (i.e., the boundary of a face is a cycle with three edges).

Lemma 13.1.4. Given a (simple) planar graph G = (V, E), one can add edges to it so that it becomes
a triangulation (i.e., all its faces are triangles).

Proof: If G is not connected, then add edges to it between different connected components till it becomes
connected. Clearly, this can not violate planarity.

Next, fix an embedding of G. Consider a face f of G that is not a triangle. By connectivity, the
face f has only a single boundary cycle C (assume it is the outer boundary), and C has more than
three edges. Let C = 〈u1, . . . , uk〉 be the vertices encountered when following C in counterclockwise

178

direction (vertices might appear several times in this cyclical sequence). If u1 , u3, then connect them
by an edge (they cannot be adjacent in C since k ≥ 4). Otherwise u1 = u3. If u2 = u4 then the edge
u1u2 = u2u3 = u3u4, which is impossible as a boundary cycle can use an edge at most twice. As such
u2 , u4. This implies that one can add the edge u2u4 to the graph.

We repeat this process till all faces of G are triangles, and it is thus a triangulation. �

Lemma 13.1.5. A simple planar graph G with n vertices has at most 3n − 6 edges and at most 2n − 4
faces. A triangulation has exactly 3n − 6 edges and 2n − 4 faces.

Proof: We add edges to G till it becomes a triangulation, see Lemma 13.1.4. Now, every face is a
triangle, and as such the number of edges incident to faces is 3 f , where f is the number of faces of G.
Similarly, every edge is incident to 2 faces, and as such the number of edges incident to faces is 2m, where
m = |E(G)|. We conclude that 2m = 3 f , and furthermore, Euler’s formula states that f −m+n = 2 (recall,
that we also count the outer face of the planar graph as a face). This implies that (2/3)m − m + n = 2,
which implies that m = 3n − 6, and this is the maximum number of edges that any planar graph with n
vertices might have. This also implies that in this case f = (2/3)m = 2n − 4. �

Lemma 13.1.6 (Planar graphs are degenerate). Every planar graph G is 5-degenerate – that is,
it has a vertex of degree at most 5. Furthermore, this is a hereditary property that holds for any subgraph
of G.

Furthermore, if G is a triangulation and it has more than three vertices, then there is a vertex of
degree at most 5 in G that is not on the outer face of G.

Proof: Consider a planar graph G with n vertices and m faces. Clearly, by Lemma 13.1.5,
∑

v∈V(G) deg(v) =
2m ≤ 6n − 12, which implies that there is a vertex v of degree ≤ 5 in G.

The second part requires slightly more work. The number of vertices n > 3, and as such, each one
of the three vertices r, g, b of the outer face is of degree at least three. As such, for V ′ = V(G) \ {r, g, b} ,
we have α =

∑
v∈V deg(v) = 2m − deg(r) − deg(g) − deg(b) ≤ 2(3n − 6) − 9 = 6n − 21. As such, the average

degree of vertices in V ′ is α/(n − 3) ≤ (6n − 21)/(n − 3) < 6, which implies that there must be at least
one vertex in V ′ of degree at most 5. �

Remark 13.1.7. A nice application of Lemma 13.1.6 is showing that a planar graph can be colored using
6 colors. Indeed, let v be the vertex of degree at most 5 in G. Color recursively G − v using 6 colors,
and extend it to a coloring of G be assigning v a color that is not used (out of the six available colors)
among its (at most five) neighbors. This results in a valid coloring of G.

Showing that planar graphs are five colorable requires some additional work. The celebrated four
color theorem states that planar graphs can be colored using four colors – the only known proofs
requires computers to check hundreds of special cases.

Every face can be the outer face. Consider a planar graph G with an embedding G of it in the
plane. We can always turn any face of the embedding to be the outer face – one way to see that is via
inversions. Indeed, consider a face f in G, and draw a circle #, so that it is fully contained in f . Let
r be the radius of #, and let p be its center. Consider the mapping f (q) = r

‖q−p‖ (q − p) + p. This is
an inversion that maps the outside of # to its interior, and vice versa. Applied to G, it results in an
“inverted” drawing, having f as the outer face. See Figure 13.2.

179

p

Figure 13.2: inversion of a planar graph drawing making an arbitrary face the outer face.

13.1.3. Representing an embedding of a planar graph
An (implicit) representation of a planar graph embedding, in addition to the regular information of
vertices and edges, also lists the faces of the embedding. For each face, there is a list of its boundary
cycles (with a special flag designating the outer cycle). For each edge uv, there is a pointer to its (at
most two) adjacent faces.

A standard such representation is the doubly connected edge list (DCEL).
Every edge uv is associated with two directed edges u→ v and v → u (called
half-edges), that are twins. Here, one can think about a planar graph as
a road map – with the convention of driving on the left. A vertex is a cross-
ing, and an edge is a two lane road connecting two crossings (i.e., a lane is a
half-edge). In particular, the outer boundary component of a face is a cycle
of half-edges, oriented such that the cycle goes in counterclockwise direction
as we traverse it. Similarly, an inner boundary cycle is oriented in a clockwise
direction. An half-edge is as such adjacent to a single face, which lies to its “left”. As such, an half-edge
belong naturally to one boundary cycle that is a part of. In particular, every half-edge stores pointers
to (i) its twin, (ii) its adjacent face, (iii) next half-edge in the cycle it is on, and (iv) previous half-edge
in the cycle.

For a vertex, there is a cyclic clockwise sorted list of half-edges that leave it. This list can be
represented implicitly, as it is enough for a vertex to store a pointer to a single one half-edge that leaves
it, and it is then easy, using the above pointers, to extract this cyclic list.

Figure 13.3: A planar graph, and a straight-line embedding of this graph.

180

u

v
f

G

u

f

H

u f u f
v

Figure 13.4: Illustration of Lemma 13.1.8

13.1.4. A straight line drawing of a planar graph
Two embeddings of a planar graph are homeomorphic, or simply equivalent, if one can continuously
deform one into the other. It is not hard to check that two embeddings of a planar graph are home-
omorphic if (i) the same face is marked as the outer face, (ii) they have the same incidence structure
between vertices, edges and faces, (iii) specifically, the order of edges around each vertex is the same
in both embeddings, and (iv) the order of edges (and vertices) around each face is the same. That is,
their DCEL description is the same. A straight-line embedding is a drawing of a planar graph where
the edges are segments. And a straight-line embedding is in general position if no two segments are
colinear. A straight-line embedding is depicted in Figure 13.3.

Lemma 13.1.8. Let G be a given (simple) planar graph with an embedding G. Then, there is an
equivalent straight-line embedding of G in general position.

Proof: We might as well assume G is a triangulation, by Lemma 13.1.4. The proof is by induction. For
n = |V(G)| = 3 the claim is obvious as the graph is a triangle.

Otherwise, consider a vertex v of G that is not on the outer face of G. Consider removing v and all
its adjacent edges in the given embedding of G (i.e., its an embedding of G − v). The removal of the
vertex v created a hole – a face f with k edges. The face f is without holes, and furthermore, there is
no edge that appears twice on its boundary, because this would imply that v has two parallel edges to
some vertex on the boundary of f . See Figure 13.4.

Next, we pick an arbitrary vertex u on f , and connect it to all the other vertices of f not adjacent to
it, and let e1, . . . , et be these added diagonals (all drawn inside f). Let H be the resulting triangulated
graph, together with the constructed embedding. The graph H has n− 1 vertices, and by induction, the
current embedding can be realized by an equivalent straight line embedding (in general position). The
face f is now a simple polygon.

In this embedding, create a copy of u and reassign e1, . . . , et from u to the “new” vertex v (these
diagonals are now segments). Next, move v slightly into the interior of f , so that the segments e1, . . . , et
have the same ordering around v as around u, and they do not intersect the boundary of f in their
interior (here, implicitly, we are using the general position assumption to argue that such a movement is
possible). In addition, connect v to u by a segment, and perturb v if needed to ensure the embedding is
in general position. Clearly, the resulting straight-line embedding is equivalent to the given embedding
of G. �

181

a

b

c

α

β

γ

b

c

d

β

γ

δ

b

c

d

β

γ

δ

b

c

d

β

γ

δ

J

Figure 13.5: Illustration of why K3,3 is not planar.

13.1.5. Characterizing planarity by forbidden subdivisions
We remind the reader that Kn denotes the complete graph (i.e., clique) over n vertices. The graph Kn,m
denotes the bipartite clique with n vertices on one side, and m vertices on the other side, and edges
connecting all possible pairs of edges that are on the two different sides.

Lemma 13.1.9. The bipartite clique K3,3 and the clique K5 are not planar graphs.

Proof: The graph K5 is a graph with n = 5 vertices and m =
(5
2
)
= 10 edges. By Lemma 13.1.5,

10 = m ≤ 3n − 6 = 9, which is impossible.
We provide two proofs that K3,3 is not planar. To this end, let the two sets of the vertices of K3,3

be X = {b, c, d} and Y = { β, γ, δ}. The set of edges of the graph are E = {xy | x ∈ X, y ∈ Y }. Consider
a (fictional) planar embedding of K3,3, and consider the cycle C = 〈b, β, c, γ, d, δ〉 (in this order) – by
planarity this is indeed a cycle. The edge cδ connects two antipodal vertices of C, and assume that cδ
is contained in the interior of C (if it goes through the exterior of C, one can apply inversion, to make
it an interior edge). The edge bγ ∈ E must be in the exterior of C, as otherwise it would cross cδ, see
Figure 13.5. But then, the cycle J = 〈b, δ, c, γ〉 contains d in its interior, and β is outside C. By the
Jordan curve theorem (T13.1.1) the embedding of the edge dβ to intersect J, which implies that the
drawing is not planar.

The second proof relies on extending Lemma 13.1.5 to bipartite graphs. In a planar graph the
boundary of a face is a cycle. In K3,3 such a cycle alternates between vertices of X and vertices of Y ,
which implies that it must be of either length four or six. So consider a planar graph with n vertices
and m edges, where all the faces have exactly four edges (as usual, if there faces with more edges on the
boundary, we insert a new edge to split the face into smaller faces, which with at least four edges on
their boundaries. Let f be the number of faces in this graph. We have that 2m = 4 f and f −m + n = 2
by Euler’s formula. As such, we have m/2 −m + n = 2 =⇒ m = 2n − 4. As such, we conclude that for a
bipartite planar graph, we have that m ≤ 2n − 4. Getting back to K3,3, we have that n = 6 and m = 9,
but 9 = m ≤ 2n − 4 = 8, which is impossible. �

We state, without proof, the following beautiful characterization of planar graphs. A subdivision
of a graph is formed by subdividing its edges into paths of one or more edges. A graph H contains
a subdivision of G, if there is a subgraph of Q ⊆ H, that is a subdivision of H – formally, Q is
isomorphic to some subdivision of G. Here, two graphs G1 and G2 are isomorphic if up to renaming
of vertices, they are the same graph.

Theorem 13.1.10 (Kuratowski’s theorem). A graph G is planar if and only if it does not contain
K3,3 and K5 as a subdivision.

The proof of Kuratowski’s theorem is similar in spirit to the argument used in the planarity testing
algorithm presented in Section 13.2. A closely related and equivalent result is Wagner’s theorem,

182

H H H H

(A) (B) (C) (D)

Figure 13.6: (A) The graph G and its subgraph H. (B) All the H-fragments that are edges. (C) A
bigger fragment. (D) The other big fragment.

which states that a graph is planar if and only if it does not contain K3,3 and K5 as a minor. A graph
H is a minor of G if there is a sequence of edge deletions, vertex deletions, and edge contractions that
transform G to H.

13.2. Planarity testing

13.2.1. Fragments and conflicts
For a graph J ⊆ G, its cut in G is the set of edges cut(J) =

{
uv ∈ E(G) | u ∈ V(J) and v ∈ V \ V(J)

}
.

For a set of edges E′, and a graph H, we denote by H ∪ E′ the graph formed by adding the edges of E′

to the graph G. Formally, we have H ∪ E′ =
(
V(H) ∪ V(E′), E(H) ∪ E′

)
.

Definition 13.2.1. For a graph H ⊆ G, an H-fragment X of G is either
(A) An edge e ∈ E

(
GV(H)

)
\ E(H) (i.e., an edge of G missing in H with both endpoints in V(H)).

(B) A subgraph X of G, formed by taking a connected component C of G \ H, together with its cut.
Formally, X = C ∪ cut(C).

For an H-fragment X, its interface is the set of vertices ∂X = V(X) ∩ V(H).
See Figure 13.6 for examples of fragments.

Lemma 13.2.2. Let C be a cycle in G, X a C-fragment of G, and let x, y, z ∈ C be three distinct vertices
that are also in ∂X. Then, there exists a vertex u ∈ V(X), and paths πux, πuy, πuz that connects u to these
three interface vertices, respectively, and furthermore, these paths are interior disjoint.

Proof: Let T any spanning tree of X, and consider the shortest path σy between x and y in T, and the
shortest path σz between x and z in T. These two paths share a prefix, and then they diverge, and
never meet again. The vertex of divergence is u, and the desired paths are the respective portion from
the interface vertices to u. �

Lemma 13.2.3. Let C be a cycle in a planar graph G. Given two C-fragments
X and Y , such that there are four vertices v1, v2, v3, v4 in cyclic order along C,
such that v1, v3 ∈ ∂X and v2, v4 ∈ ∂Y . Then, X and Y are conflicting – in any
planar drawing of G these two fragments are on different sides of C (i.e., one of
the fragments would be inside the close Jordan curve formed by the cycle C, and
the other fragment would be outside this cycle).

Similarly, X and Y conflict if there are three boundary vertices v1, v2, v3 on C,
such that v1, v2, v3 ∈ ∂X, ∂Y .

v1

v2
v4

u

π′ π

v3

Figure 13.7

183

C

v1

v2

v3

X

Y

Figure 13.8

Proof: Assume, for the sake of contradiction, that this is false, and there is a drawing of C ∪ X ∪ Y
having both fragments inside the cycle C (the case that they are both outside is handled in a similar
fashion).

But then, we can at add an additional vertex u outside C, connect it to v1, v2, v3, v4 by edges outside
C, and extract two paths π ⊆ X and π′ ⊆ Y , where π connects v1 to v3, and π′ connects v2 to v4, and
these two paths do not intersect, see Figure 13.7. This is a planar drawing of a subdivision of K5, which
contradicts Kuratowski’s Theorem (T13.1.10).

The other case follows by a similar argument, if one could draw the two fragments in the same side
of C, with both having three common interface vertices v1, v2, v3, then one can draw K3,3. Indeed, by
extracting two center vertices in the respective fragment (using Lemma 13.2.2), connecting these center
vertices to v1, v2, v3, and now adding an external vertex outside C and connecting it to v1, v2, v3 by edges
outside C, we get the desired drawing. See Figure 13.8. A contradiction.

Observation 13.2.4. In the settings of Lemma 13.2.3, the C-fragments X and Y can not be in the same
face of a planar drawing, if ∂X and ∂Y share three vertices.

13.2.2. Algorithm
13.2.2.1. Bridges and 2-connected graphs

Definition 13.2.5. A bridge is an edge in a graph whose removal disconnect the graph. Similarly, a cut
vertex is a vertex whose removal increases the number of connected components in the graph.

A graph G is k-connected if the smallest set of vertices whose removal disconnects G is of size at
least k.

If a planar graph G has a bridge e, we can embed the two connected components of G\e independently,
and then combine them to get an embedding for G. Similarly, if the planar graph has a vertex v whose
removal disconnects it, then embed every v-fragment of G separately, make sure that v is on the outer
face in each of the embeddings, and then glue all the copies of v together to get the desired embedding.

13.2.2.2. Description of the algorithm

Initial checks. The algorithm scans the graph and removes parallel edges and self loops if they exist.
Next, the algorithm count the number of edges m in the graph, if m > 3n − 6, then by Lemma 13.1.5,
the graph is not planar, and the algorithm stops.

Next, it computes the bridges and cut vertices in the given graph using DFS in linear time. It
removes the bridges, computes the embedding for each component separately as described below, and

184

then glue them back together for an embedding of the whole graph, and this takes linear time. It handles
the cut vertices in a similar fashion.

Embedding a component. Since the algorithm broke the graph at cut vertices, one can assume the
given graph is 2-connected. The above suggests a natural algorithm for a planarity testing – start with
a cycle G0 in the given graph G. In the ith iteration, find a path that connects two vertices of Gi−1, and
its internal vertices are fully contained in a Gi−1-fragment. (Observe, that any fragment has at least two
interface vertices, since there are no bridges.) Add this path to the graph Gi−1 to form Gi, and repeat
till all of G is laid out, or until the algorithm get stuck.

u

v

Figure 13.9

The problem, of course, is how to choose which face in the current
embedding should contain the new added path. Potentially, a path (or
a fragment) can be placed in many faces, see Figure 13.9. To this end,
let Gi−1 denote the computed embedding of Gi−1 in the start of the ith
iteration.

For a Gi−1-fragment H, let F(i,H) be the set of faces that contain (on
their boundary) all the interface vertices of H (i.e., the vertices of ∂H);
that is,

F(i,H) =
{

f ∈ faces
(
Gi−1

) ��� ∂H ⊆ V(f)
}
.

If there is a fragment H such that n(i,H) = |F(i,H)| is zero (i.e., no face contains all the interface
boundaries of H), then the algorithm had failed® and the graph G is not planar.

Similarly, if n(i,H) = 1 for some fragment H, then we have a single face f of Gi−1 that may contain
this fragment, we compute a path πi (in H) between two interface vertices of H, add π to Gi−1 to form
Gi, and add π to Gi−1 to form Gi by splitting f into two new faces.

The interesting case is when n(i,H) > 1 for all the Gi−1-fragments. Surprisingly, in this case, Yogi
Berra was right¯ – pick an arbitrary fragment, and an arbitrary face that might contain it, and perform
the same path embedding described above. We repeat this till G is fully embedded, or till failure.

13.2.2.3. Correctness

Lemma 13.2.6. The above algorithm computes a planar embedding for a graph. If it fails, then the
graph is not planar.

Proof: The proof is by induction, arguing that for any partial embedding G j computed, there is an
extension of it so that it embeds the whole graph (if the given graph is planar). The claim is obvious
for G0, as any cycle in a planar graph has to be drawn as a cycle in any embedding. So, assume this is
true for Gi−1.

For a Gi−1-fragment H, if n(i,H) = |F(i,H)| = 1, then there is only one face of Gi−1 that might contain
H in the extension, and the algorithm adds a path in H to Gi−1, to get Gi preserving feasibility of the
planar embedding of the whole graph.

So, consider the case that, for all Gi−1-fragment H, we have n(i,H) > 1. The algorithm had embedded
a path π that belongs to some Gi−1-fragment H in a face f of Gi−1, and assume that this was a mistake,
and the algorithm should have embedded H (and thus π) in a face f ′ of Gi−1, and let G be an embedding

®Not us! We can never fail.
¯When you come to a fork in the road, take it.

185

f

f ′

H

Q

f

f ′

Q

H

f

f ′

H

Q

J

Figure 13.10: illustration of the proof of Lemma 13.2.6.

of the whole graph under this choice. The idea is to modify G into an embedding of G, where π is inside
f .

To this end, let B = V(f) ∩ V(f ′) be the set of vertices that appear in both faces, and observe that
∂H ⊆ B. We take all the fragments whose interface vertices are contained in B, and we flip them in the
embedding G between f and f ′, let G′ be the resulting embedding. See Figure 13.10.

If this slight of hand succeeded, then we are done, as we found a feasible embedding of the graph that
is in agreement with the choices the algorithm made so far. However, potentially, this failed because
some Gi−1-fragment Q that is embeded in f ′, say, in G, had conflicted with another fragment J that is
already in f and did not change its face. See Figure 13.10.

f ′

Q

J

x
v

u

y

Figure 13.11

It must be that ∂J * B, as otherwise J would have happily flipped and would
not have collided with Q. Let u be an arbitrary vertex in ∂J \ B. Trace the
cycle boundary of f clockwise (resp. counterclockwise) till encountering a vertex
x (resp. y) of ∂Q. These two vertices must exist (since the interface of a fragment
always have at least two vertices). Let Z be the set of vertices of the boundary
of f between x and y (including x and y). If Z contain all the vertices of ∂J
then there is no collision between Q and J. As such, there must be an additional
vertex, say v ∈ ∂J \ Z , see Figure 13.11.

The key observation is that there is no other face g of Gi−1 (in addition to f),
such that ∂J ⊆ V(g). Assume, for the sake of contradiction that there is such a face g. First, observe
g , f ′, since u < B ⊆ V(g) and u ∈ ∂J.

x
v

u
z

yσ
f ′

f

We claim that this implies a planar drawing of K5. Indeed, starting with the
embedding Gi−1, connect u to v by a path σ that in fully contained in the mystical
face g. Similarly connect x and y through f ′. The edges xu, uy, yv and vx can be
drawn inside f by tracing them along the boundary of f . Finally, add a surprise
vertex z in the interior of f , and connect it to the vertices x, y, u, v inside f in the
natural way. This results in the desired drawing of K5, which is impossible.

As such, n(i, J) = 1. But then, the algorithm would have used this fragment at
this iteration, and not H. A contradiction to the choice of H. We conclude that the flipping succeeded,
and the resulting embedding G′ is a valid embedding of G that agrees with the choice of the algorithm
in the ith iteration, implying the algorithm can not get stuck, unless the graph is not planar. �

13.2.2.4. Efficient implementation

Clearly the above planarity algorithm has polynomial running time. Getting quadratic running time
requires some care.

186

During the execution the algorithm, the faces of the embedding Gi are all simple – every face has a
single boundary component, which is a cycle. Every vertex keeps a list of the fragments attached to it,
and every fragment keeps a list of its interface vertices. Furthermore, every fragment X keeps a count
α(X) of the number of faces that it might be drawn in (i.e., it is a variable holding the value of n(i, X)).

Given a face f , one can mark all the vertices of V(f) (as a preprocessing step). Then, given a
fragment X one can decide, in O(|∂X |) time, if ∂X ⊆ V(f). Furthermore, the total number of fragments,
in any point in time, is at most O(n), since every fragment contains at least one edge that belongs only
to this fragment, where n = |V(G)| (here, we use |E(G)| = O(n)).

In the ith iteration, when the algorithm adds the path πi, it splits a face f into two faces f 1, f 2.
This splits the fragment X i that contains πi into two or more new fragments. For such a new fragment
Y ⊆ X i we temporarily set α(Y) = α(X i).

Next, scan the current set of fragments (including the new fragments). For each fragment X, check
whether it could be embedded in f , and let β(X, f) = 1 if so, and zero otherwise. If β(X, f) = 1
then check if X can be embedded in f 1 and f 2. Computing this information for all fragments takes
O

(∑
X |∂X |

)
= O(n) time, since every interface vertex can be uniquely charged to an edge that is not yet

embedded, and there are O(n) such edges. Now, set α(X) ← α(X) − β(X, f) + β(X, f 1) + β(X, f 2). This
updates α(·) for all fragments. If during the execution any of these fragment counts become zero, the
algorithm stops, and outputs that the graph is not planar.

Now, in the beginning of each iteration, the algorithm scans the list of fragments looking for a
fragment with face count of one. If such a fragment is found it is embedded, otherwise the algorithm
picks an arbitrary fragment to embed.

Clearly, the total amount of work done in each iteration is O(n), as desired.

Lemma 13.2.7. Given a graph G with n vertices, the above algorithm check, in O(n2) time, if it is a
planar graph, and if so it outputs a planar embedding of G.

It is clear that this algorithm is not that efficient, and one should be able to do planarity embedding
faster. And indeed, linear time algorithms for this problem are known. Intuitively, one can do the
embedding in a more systematic fashion, keeping the invariant that the embedded part is a tight cluster
in the graph, such that the paths added as the algorithm progresses are on the outside of the parts
that were already embedded. Nailing the details down and getting a linear time algorithm proved to be
surprisingly challenging, and the technical details are quite subtle. We state one such (relatively recent)
result [bm-ocesp-04] without proof – the algorithm is relatively simple.

Theorem 13.2.8. Given a graph G with n vertices, an algorithm can check if it is a planar graph in
O(n) time, and if so it outputs a planar embedding of G.

13.3. Bibliographical notes
A good book on graphs containing the basic results on planar graphs is the classical text by Bondy and
Murty [bm-gta-76], which was at some point available online for free (legally) on the web. There is
also a more updated version of this book [bm-gt-11]. Another good textbook is by West [w-igt-01].

Jordan curve theorem. The Jordan curve theorem has a long history – it was first observed that it
is not obvious, and a Bolzano was the first to state that it requires a formal proof. Jordan provided a
proof in his book (1887), but it was somewhat sketchy – and it was claimed to be incorrect by Veblen
who provided a more elaborate formal proof (however, the original proof by Jordan is believed to be

187

correct). Many proofs of the theorems were provided later on. A nice short proof is provided by Maehara
[m-jctbf-84] – the proof is not completely elementary, and uses Brouwer’s fixed point theorem, and
that identity mapping on a curve can be extended to a disk. A nice discussion of the Jordan curve
theorem is provided by Wikipedia.

Other criterions for planarity. The Hanani-Tutte theorem states that a graph is planar if and only
if there is a drawing of a graph in the plane such that every pair of edges intersect an even number of
times. This leads to an algebraic approach to testing planarity, that is less efficient than the approach
shown here. A good survey is provided by Schaefer [s-htrr-13].

A rant against planar graphs. While planar graphs are quite common and have many beautiful
properties, they are fragile – add a single edge to a planar graph and it may no longer be planar. There
are good reasons for this – constant degree expanders are far from being planar graphs. In particular, a
union of three random perfect matchings over n vertices (i.e., perfect matchings in the complete graph)
form a graph that is a constant degree expanders with good probability. It is not hard to show that such
an expander requires Ω(n2) edge crossings when drawn in the plane. On the other hand, the union of the
first two matchings form a collection of cycles, which is definitely a planar graph. That is – injecting n
edges into this graph, completely ruins its planarity. Furthermore, many problems are computationally
harder on expanders than on planar graphs.

It is thus natural to look to other criterions (than planarity) if one wants a robust family of graphs
(that can withstand a moderate number of insertions/deletions/edit operations), which is computation-
ally tractable. One such family is low-density graphs, which are related to representation of graphs as
intersection graph of geometric objects (it includes planar graphs by the circle packing theorem), see
[hq-aaldg-15-arxiv].

Other relevant chapters:
(A) The crossing lemma – how many crossings must a drawing of a non-planar graph have in described

in the book [h-gaa-11].
(B) The grid embedding chapter, available here°, present results on how to draw a planar graph as a

straight line embedding on a small grid.
(C) The circle packing theorem chapter, which shows that planar graphs can be represented as the

intersection graph of disks, is available here±.
(D) The chapter on the planar separator theorem and its variants is available from here².

13.4. Exercises

13.5. From previous lectures

°http://sarielhp.org/book/chapters/planar_embed_grid.pdf.
±http://sarielhp.org/book/chapters/planar_circle_packing.pdf.
²http://sarielhp.org/book/chapters/planar_separator.pdf.

188

http://sarielhp.org/book/chapters/planar_embed_grid.pdf
http://sarielhp.org/book/chapters/planar_circle_packing.pdf
http://sarielhp.org/book/chapters/planar_separator.pdf
http://sarielhp.org/book/chapters/planar_embed_grid.pdf
http://sarielhp.org/book/chapters/planar_circle_packing.pdf
http://sarielhp.org/book/chapters/planar_separator.pdf

	Planar graphs and testing for planarity
	Definitions and some basic results
	Background – What is a curve?
	Planar graphs – a review
	Representing an embedding of a planar graph
	A straight line drawing of a planar graph
	Characterizing planarity by forbidden subdivisions

	Planarity testing
	Fragments and conflicts
	Algorithm

	Bibliographical notes
	Exercises
	From previous lectures

