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PREVIEW 

Mathematical models of physical systems are key elements in the design and analysis 
of control systems. The dynamic behavior is generally described by ordinary differen­
tial equations. We will consider a wide range of systems, including mechanical, 
hydraulic, and electrical. Since most physical systems are nonlinear, we will discuss lin­
earization approximations, which allow us to use Laplace transform methods. We will 
then proceed to obtain the input-output relationship for components and subsystems 
in the form of transfer functions. The transfer function blocks can be organized into 
block diagrams or signal-flow graphs to graphically depict the interconnections. Block 
diagrams (and signal-flow graphs) are very convenient and natural tools for designing 
and analyzing complicated control systems. We conclude the chapter by developing 
transfer function models for the various components of the Sequential Design 
Example: Disk Drive Read System. 

DESIRED OUTCOMES 

Upon completion of Chapter 2, students should: 

U Recognize that differential equations can describe the dynamic behavior of physical 
systems. 

U Be able to utilize linearization approximations through the use of Taylor series 
expansions. 

• Understand the application of Laplace transforms and their role in obtaining transfer 
functions. 

• Be aware of block diagrams (and signal-flow graphs) and their role in analyzing 
control systems. 

3 Understand the important role of modeling in the control system design process. 

49 
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2.1 INTRODUCTION 

To understand and control complex systems, one must obtain quantitative 
mathematical models of these systems. It is necessary therefore to analyze the rela­
tionships between the system variables and to obtain a mathematical model. 
Because the systems under consideration are dynamic in nature, the descriptive 
equations are usually differential equations. Furthermore, if these equations can be 
linearized, then the Laplace transform can be used to simplify the method of solu­
tion. In practice, the complexity of systems and our ignorance of all the relevant 
factors necessitate the introduction of assumptions concerning the system opera­
tion. Therefore we will often find it useful to consider the physical system, express 
any necessary assumptions, and linearize the system. Then, by using the physical 
laws describing the linear equivalent system, we can obtain a set of linear differen­
tial equations. Finally, using mathematical tools, such as the Laplace transform, we 
obtain a solution describing the operation of the system. In summary, the approach 
to dynamic system modeling can be listed as follows: 

1. Define the system and its components. 

2. Formulate the mathematical model and fundamental necessary assumptions based on 
basic principles. 

3. Obtain the differential equations representing the mathematical model. 

4. Solve the equations for the desired output variables. 

5. Examine the solutions and the assumptions. 

6. If necessary, reanalyze or redesign the system. 

2.2 DIFFERENTIAL EQUATIONS OF PHYSICAL SYSTEMS 

The differential equations describing the dynamic performance of a physical system 
are obtained by utilizing the physical laws of the process [1-3].This approach applies 
equally well to mechanical [1], electrical [3], fluid, and thermodynamic systems [4]. 
Consider the torsional spring-mass system in Figure 2.1 with applied torque Ta{t). 
Assume the torsional spring element is massless. Suppose we want to measure the 
torque Ts(t) transmitted to the mass m. Since the spring is massless, the sum of the 
torques acting on the spring itself must be zero, or 

Ut) - Ts{t) = 0, 

which implies that Ts{t) = Ta(t). We see immediately that the external torque Ta(t) 
applied at the end of the spring is transmitted through the torsional spring. Because 
of this, we refer to the torque as a through-variable. In a similar manner, the angular 
rate difference associated with the torsional spring element is 

<a{t) = tos(t) - a>a{t). 
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Thus, the angular rate difference is measured across the torsional spring element and is 
referred to as an across-variable. These same types of arguments can be made for most 
common physical variables (such as force, current, volume, flow rate, etc.). A more 
complete discussion on through- and across-variables can be found in [26,27]. A sum­
mary of the through- and across-variables of dynamic systems is given in Table 2.1 [5]. 
Information concerning the International System (SI) of units associated with the var­
ious variables discussed in this section can be found at the MCS website/ For example, 
variables that measure temperature are degrees Kelvin in SI units, and variables that 
measure length are meters. Important conversions between SI and English units are 
also given at the MCS website. A summary of the describing equations for lumped, 

Table 2.1 Summary of Through- and Across-Variables for Physical Systems 

System 
Electrical 

Mechanical 
translational 

Mechanical 
rotational 

Fluid 

Thermal 

Variable 
Through 
Element 
Current, i 

Force, F 

Torque, T 

Fluid 
volumetric rate 
of flow, Q 

Heat flow 
rate, q 

Integrated 
Through-
Variable 
Charge, q 

Translational 
momentum, P 

Angular 
momentum, h 

Volume, V 

Heat energy, 
H 

Variable 
Across 
Element 
Voltage 
difference, v2i 

Velocity 
difference, v2 \ 

Angular velocity 
difference, «21 

Pressure 
difference, P2\ 

Temperature 
difference, ^2| 

Integrated 
Across-
Variable 
Flux linkage, A2i 

Displacement 
difference, y2\ 

Angular 
displacement 
difference, 82\ 

Pressure 
momentum, y2i 

The companion website is found at www.pcarsonhighcred.com/dorf. 

http://www.pcarsonhighcred.com/dorf
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linear, dynamic elements is given in Table 2.2 [5]. The equations in Table 2.2 are ideal­
ized descriptions and only approximate the actual conditions (for example, when a 
linear, lumped approximation is used for a distributed element) . 

Table 2.2 Summary of Governing Differential Equations for Ideal Elements 

Type of 
Element 

Physical 
Element 

Governing 
Equation 

Energy £ or 
Power SP Symbol 

( Electrical inductance 

Inductive storage < 

Translational spring 

Rotational spring 

Fluid inertia 

Electrical capacitance 

Translational mass 

Capacitive storage ^ Rotational mass 

Fluid capacitance 

< Thermal capacitance 

( Electrical resistance 

Translational damper 

Energy dissipators < Rotational damper 

Fluid resistance 

Thermal resistance 

_ di 

«21 = 
J. dF_ 
k dt 

1 dT 
<»2\ = 

k dt 

dQ 

i = C 

F = M 

T = J 

Q = Cf 

dt 

dv2i 
dt 

dv2 

dt 

da)2 

dt 

dP2i 

dt 

rdV2 

i = ±va 

F = bv '21 

T = bco 21 

Q = ¥/-

d = J** 

E = i-Li2 

2 

E~ 2 k 

= - — E = III 
2 k 

E = -21<? 

y 2 i 

E = -Mv2
2 

2 

E = -CfP^ 

E = C<52 

R n 

9» = bv2i
2 

9» = ba)21
2 

9 = ip» 
9 = ^ ¾ 

i \\C 
v2 o—*— o vi 

' -sH^Hl-v2 constant 

to, = 
constant 

9"2 9", -
constant 

R i 
v2 o—/V\A/—*-° v\ 

v2 

T—K> 1 I OG>I 
G>2 —>b 

Rf Q 
P2 o-AAA/ > ° f | 

Rt q 
°T2 o-^VVV > o3"i 
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Nomenclature 

3 Through-variable: F = force, T = torque, i = current, Q = fluid volumetric flow 
rate, q = heat flow rate. 

CI Across-variable: v = translational velocity, a> = angular velocity, v = voltage, 
P = pressure, 9" = temperature. 

• Inductive storage: L = inductance, \/k - reciprocal translational or rotational 
stiffness, I = fluid inertance. 

• Capacitive storage: C = capacitance, M - mass, J = moment of inertia, C/ = fluid 
capacitance, C, = thermal capacitance. 

3 Energy dissipators: R = resistance, b = viscous friction, Rf = fluid resistance, 
R, = thermal resistance. 

The symbol v is used for both voltage in electrical circuits and velocity in trans­
lational mechanical systems and is distinguished within the context of each differen­
tial equation. For mechanical systems, one uses Newton's laws; for electrical systems, 
Kirchhoff s voltage laws. For example, the simple spring-mass-damper mechanical 
system shown in Figure 2.2(a) is described by Newton's second law of motion. (This 
system could represent, for example, an automobile shock absorber.) The free-body 
diagram of the mass M is shown in Figure 2.2(b). In this spring-mass-damper exam­
ple, we model the wall friction as a viscous damper, that is, the friction force is 
linearly proportional to the velocity of the mass. In reality the friction force may be­
have in a more complicated fashion. For example, the wall friction may behave as a 
Coulomb damper. Coulomb friction, also known as dry friction, is a nonlinear func­
tion of the mass velocity and possesses a discontinuity around zero velocity. For a 
well-lubricated, sliding surface, the viscous friction is appropriate and will be used 
here and in subsequent spring-mass-damper examples. Summing the forces acting 
on M and utilizing Newton's second law yields 

M-~- + b ^ - + ky(t) = r(t% 
dt* dt 

(2.1) 

where k is the spring constant of the ideal spring and b is the friction constant. Equa­
tion (2.1) is a second-order linear constant-coefficient differential equation. 

FIGURE 2.2 
(a) Spring-mass-
damper system. 
(b) Free-body 
diagram. 

Wall 
friction, b 

\ 

5 
Mass 
M 

1 

_ i 

/ • ( / ) 

Force 

in) 
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FIGURE 2.3 
RLC circuit. 

v(t) 

Alternatively, one may describe the electrical RLC circuit of Figure 2.3 by utiliz­
ing Kirchhoff s current law. Then we obtain the following integrodifferential equation: 

t<0 
R 

+ C 
dv(t) 

dt + ilv (t) dt = r(t). (2.2) 

The solution of the differential equation describing the process may be ob­
tained by classical methods such as the use of integrating factors and the method of 
undetermined coefficients [1]. For example, when the mass is initially displaced a 
distance v(0) = y0 and released, the dynamic response of the system can be repre­
sented by an equation of the form 

v(0 = K^-"* s i n ^ ? + 0j). (2.3) 

A similar solution is obtained for the voltage of the RLC circuit when the circuit 
is subjected to a constant current r(t) = I. Then the voltage is 

v(t) = K2e-^ cos(/32r + S2). (2.4) 

A voltage curve typical of an RLC circuit is shown in Figure 2.4. 
To reveal further the close similarity between the differential equations for the 

mechanical and electrical systems, we shall rewrite Equation (2.1) in terms of velocity: 

v(t) = 
dy(t) 

dt 
Then we have 

dv(t) fl 

M — — + bv(t) + k I v(t) dt = r(t). 
dt Jo 

(2.5) 

FIGURE 2.4 
Typical voltage 
response for an 
RLC circuit. 

• Time 
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One immediately notes the equivalence of Equations (2.5) and (2.2) where veloc­
ity v(t) and voltage v(t) are equivalent variables, usually called analogous variables, 
and the systems are analogous systems. Therefore the solution for velocity is similar to 
Equation (2.4), and the response for an underdamped system is shown in Figure 2.4. 
The concept of analogous systems is a very useful and powerful technique for system 
modeling. The voltage-velocity analogy, often called the force-current analogy, is a 
natural one because it relates the analogous through- and across-variables of the elec­
trical and mechanical systems. Another analogy that relates the velocity and current 
variables is often used and is called the force-voltage analogy [21,23]. 

Analogous systems with similar solutions exist for electrical, mechanical, ther­
mal, and fluid systems. The existence of analogous systems and solutions provides 
the analyst with the ability to extend the solution of one system to all analogous sys­
tems with the same describing differential equations. Therefore what one learns 
about the analysis and design of electrical systems is immediately extended to an 
understanding of fluid, thermal, and mechanical systems. 

2.3 LINEAR APPROXIMATIONS OF PHYSICAL SYSTEMS 

A great majority of physical systems are linear within some range of the variables. 
In general, systems ultimately become nonlinear as the variables are increased with­
out limit. For example, the spring-mass-damper system of Figure 2.2 is linear and 
described by Equation (2.1) as long as the mass is subjected to small deflections y(t). 
However, if y(t) were continually increased, eventually the spring would be overex­
tended and break. Therefore the question of linearity and the range of applicability 
must be considered for each system. 

A system is defined as linear in terms of the system excitation and response. 
In the case of the electrical network, the excitation is the input current r(t) and the 
response is the voltage v(t). In general, a necessary condition for a linear system 
can be determined in terms of an excitation x(t) and a response y(t). When the 
system at rest is subjected to an excitation Xi(t), it provides a response yi(t). Fur­
thermore, when the system is subjected to an excitation x2(t), it provides a corre­
sponding response y2(t). For a linear system, it is necessary that the excitation 
Xi(t) + x2(t) result in a response yx(t) + yz(i). This is usually called the principle 
of superposition. 

Furthermore, the magnitude scale factor must be preserved in a linear system. 
Again, consider a system with an input x{t) that results in an output y(t). Then the 
response of a linear system to a constant multiple /3 of an input x must be equal to 
the response to the input multiplied by the same constant so that the output is equal 
to f3y. This is called the property of homogeneity. 

A linear system satisfies the properties of superposition and homogeneity. 

A system characterized by the relation y = x2 is not linear, because the super­
position property is not satisfied. A system represented by the relation y = mx + b 
is not linear, because it does not satisfy the homogeneity property. However, this 
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second system may be considered linear about an operating point JC0, )¾ for small 
changes Ax and Ay. When x = XQ + Ax and y = y0 + Ay, we have 

y = mx + b 

or 
y0 + Ay = mx0 + m Ax + b. 

Therefore, Ay = m Ax, which satisfies the necessary conditions. 
The linearity of many mechanical and electrical elements can be assumed over a 

reasonably large range of the variables [7]. This is not usually the case for thermal and 
fluid elements, which are more frequently nonlinear in character. Fortunately, how­
ever, one can often linearize nonlinear elements assuming small-signal conditions. This 
is the normal approach used to obtain a linear equivalent circuit for electronic circuits 
and transistors. Consider a general element with an excitation (through-) variable x(t) 
and a response (across-) variable y(t). Several examples of dynamic system variables 
are given in Table 2.1. The relationship of the two variables is written as 

y(t) = g(*(0). (2.6) 
where g(x(t)) indicates y(t) is a function of x(t).The normal operating point is desig­
nated by x0. Because the curve (function) is continuous over the range of interest, a 
Taylor series expansion about the operating point may be utilized [7]. Then we have 

(x - x0)
2 

„ + •••• (2.7) 

The slope at the operating point, 

dx 

is a good approximation to the curve over a small range of (x - x0), the deviation from 
the operating point. Then, as a reasonable approximation, Equation (2.7) becomes 

(x - x0) = y0 + m(x - xQ), (2.8) 
x=x0 

where m is the slope at the operating point. Finally, Equation (2.8) can be rewritten 
as the linear equation 

(y - y0) = m(x - x0) 

or 
Ay = m Ax. (2.9) 

Consider the case of a mass,M, sitting on a nonlinear spring, as shown in Figure 2.5(a). 
The normal operating point is the equilibrium position that occurs when the spring force 
balances the gravitational force Mg, where g is the gravitational constant. Thus, we obtain 
/0 = Mg, as shown. For the nonlinear spring with / = y2, the equilibrium position is 
y0 = (Mg)1/2. The linear model for small deviation is 

A/ = m Ay, 

dg 
y = g(x) = g(x0) + — 

x=x0 

(* - XQ) d2g 

1! dx2 

y = g(*o) + - -
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FIGURE 2.5 
(a) A mass sitting 
on a nonlinear 
spring. (b)TTie 
spring force 
versus y. 

a, 

(a) 

*• ) ' 

where 

m dy 

as shown in Figure 2.5(b). Thus, m = 2yG. A linear approximation is as accurate as 
the assumption of small signals is applicable to the specific problem. 

If the dependent variable y depends upon several excitation variables, 
A,, x2, • • •, x„, then the functional relationship is written as 

y = g(xi, x2,..., xn). (2.10) 

The Taylor series expansion about the operating point x1(), x2(),..., xlt is useful for a 
linear approximation to the nonlinear function. When the higher-order terms are 
neglected, the linear approximation is written as 

dg 
y = g(xh, x v — • x>u) + ^ - (*, - *t()) + 

dg_ 
(5x9 

( x 2 - x 2 „ ) (2.11) 
.1-=.(,, 

H + 
dx„ 

\Xn Xn ) , 

where x0 is the operating point. Example 2.1 will clearly illustrate the utility of this 
method. 

EXAMPLE 2.1 Pendulum oscillator model 

Consider the pendulum oscillator shown in Figure 2.6(a). The torque on the mass is 

T = MgL sin 9, (2.12) 

where g is the gravity constant. The equilibrium condition for the mass is 60 = 0°. 
The nonlinear relation between T and 6 is shown graphically in Figure 2.6(b).The 
first derivative evaluated at equilibrium provides the linear approximation, 
which is 

T - r0 = MgL 
dsin6 

M 
(9 - d0). 
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FIGURE 2.6 
Pendulum 
oscillator. 

Mass M 

(a) 

where 7̂  = 0. Then, we have 

(b) 

T = MgL(cos O°)(0 - 0°) 

= MgL6. (2.13) 

This approximation is reasonably accurate for — ir/4 < Q < ir/4. For example, the 
response of the linear model for the swing through ±30° is within 5% of the actual 
nonlinear pendulum response. • 

2.4 THE LAPLACE TRANSFORM 

The ability to obtain linear approximations of physical systems allows the analyst to 
consider the use of the Laplace transformation.The Laplace transform method sub­
stitutes relatively easily solved algebraic equations for the more difficult differential 
equations [1,3].The time-response solution is obtained by the following operations: 

1. Obtain the linearized differential equations. 
2. Obtain the Laplace transformation of the differential equations. 
3. Solve the resulting algebraic equation for the transform of the variable of interest. 

The Laplace transform exists for linear differential equations for which the trans­
formation integral converges.Therefore, for f(t) to be transformable, it is sufficient that 

I \f{t)\e**tu < oo, 

for some real, positive o-5 [1]. The 0~ indicates that the integral should include any 
discontinuity, such as a delta function at t — 0. If the magnitude of f(t) is 
\f(t) | < Meal for all positive t, the integral will converge for a^ > a. The region of 
convergence is therefore given by oo > <r( > a, and crj is known as the abscissa of 
absolute convergence. Signals that are physically realizable always have a Laplace 
transform. The Laplace transformation for a function of time,/(i), is 

(2.14) 

The inverse Laplace transform is written as 

(2.15) 
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The transformation integrals have been employed to derive tables of Laplace trans­
forms that are used for the great majority of problems. A table of important Laplace 
transform pairs is given in Table 2.3, and a more complete list of Laplace transform 
pairs can be found at the MCS website. 

Table 2.3 Important Laplace Transform Pairs 

m F(s) 

Step function, u(t) 

sin cot 

COS bit 

t" 

dkf(t) 

dtk 

I f(t)dt 

Impulse function 8(t) 

e sin cut 

e "' cos bit 

-[(a - a)2 + bi2]V2e-al sin(bit + cf>). 

— +or*~l-<j> = tan 

s + a 
bi 

S2 + bi2 

s 

S2 + bi2 

nl 

skF{s) - 5*_ ,/(0") - sk-2f'(Q-) 

- . . . - / ^ - ^ ( 0 - ) 

s 
1 

(s 

(s 

+ 
s 

+ 
s 

1 s j 

bi 

a)2
 + 

+ a 
af + 
+ a 

j 

-oo 

bi2 

bi" 

2 a. , .2 (s + af + bi 

Vl-£2 

1 

^ = e _ f a , n ' sin binVl - £2t, £ < 1 

1 

a1 + to" bi\/a2 + bi' 
e atsm(bit - ¢), 

_i bi 
<j> = tan l — 

—a 

1 . * e"{V sin(<«>„Vl - eft + <f>), 
V l - C2 

<f> = cos_1£, £ < 1 

a 1 

a1 + b/ (o 

(a - a)2 + to2 

a2 + co2 

1/2 
e~al %m.{bit + <f>). 

— t o n 1 (f) = tan t a n - 1 — 
a — a —a 

S + 2£b)nS + bin 

1 

s[(s + a)2 + bi2] 

S(S + 2£b)nS + bin) 

s + a 

s[(s + a)2 + bi2] 
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Alternatively, the Laplace variable s can be considered to be the differential 
operator so that 

' = J, (2.16) 

Then we also have the integral operator 

dt. (2.17) 
1 

s 

The inverse Laplace transformation is usually obtained by using the Heaviside 
partial fraction expansion. This approach is particularly useful for systems analysis 
and design because the effect of each characteristic root or eigenvalue can be clear­
ly observed. 

To illustrate the usefulness of the Laplace transformation and the steps involved 
in the system analysis, reconsider the spring-mass-damper system described by 
Equation (2.1), which is 

d2y M . dy 
dt2 dt 

M - TT + b^ + ky = r{t). (2.18) 

We wish to obtain the response, y, as a function of time. The Laplace transform of 
Equation (2.18) is 

M(S2Y(S) - sy(Q~) - y ( 0 " ) J + b(sY(s) - y(0~)) + kY(s) = R(s). (2.19) 

When 

we have 

dy 
r(t) ~ 0, and v(0 ) = v0, and — 

dt 
= 0, 

l=Q-

Ms2Y(s) - Msy{) + bsY(s) - by0 + kY(s) = 0. (2.20) 

Solving for Y(s), we obtain 
(Ms + b)y0 p(s) 

Y(s) = = = ——. (2.21) w Ms2 + bs + k q{s) v 

The denominator polynomial q(s), when set equal to zero, is called the characteristic 
equation because the roots of this equation determine the character of the time 
response. The roots of this characteristic equation are also called the poles of the sys­
tem. The roots of the numerator polynomial p(s) are called the zeros of the system; 
for example, s — —b/M is a zero of Equation (2.21). Poles and zeros are critical fre­
quencies. At the poles, the function Y(s) becomes infinite, whereas at the zeros, the 
function becomes zero. The complex frequency s-plane plot of the poles and zeros 
graphically portrays the character of the natural transient response of the system. 

For a specific case, consider the system when k/M = 2 and b/M = 3. Then 
Equation (2.21) becomes 

y ( 5 ) = (, + 1)(, + 2)- ( Z 2 2 ) 
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FIGURE 2.7 
An s-plane pole and 
zero plot. 

O 
-3 

X = pole 
O = zero 

y« 

- X -
-2 

- X -
-1 

The poles and zeros of Y(s) are shown on the .s-plane in Figure 2.7. 
Expanding Equation (2.22) in a partial fraction expansion, we obtain 

Y{s) = + s + 1 5 + 2' 
(2.23) 

where k\ and k2 are the coefficients of the expansion. The coefficients kt are called 
residues and are evaluated by multiplying through by the denominator factor of 
Equation (2.22) corresponding to kt and setting s equal to the root. Evaluating k± 
when y0 = 1, we have 

fc = 
(s - si)p(s) 

9(0 
(2.24) 

S = Sj 

(s + l)(s + 3) 

(s + l)(s + 2) S l = - i 

and k2 = — 1. Alternatively, the residues of Y(s) at the respective poles may be eval­
uated graphically on the .s-plane plot, since Equation (2.24) may be written as 

* i = 
s + 3 
s + 2 S = Si=— 1 

(2.25) 

st + 3 
5X + 2 

= 2. 
*,=-! 

The graphical representation of Equation (2.25) is shown in Figure 2.8. The graphi­
cal method of evaluating the residues is particularly valuable when the order of the 
characteristic equation is high and several poles are complex conjugate pairs. 

FIGURE 2.8 
Graphical 
evaluation of the 
residues. 

- O 

./<w 

A, + 3 

-x-
-2 

X— 

(.v, + 2) 
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FIGURE 2.9 
An s-plane plot of 
the poles and zeros 
of Y{s). 

Chapter 2 Mathematical Models of Systems 

The inverse Laplace transform of Equation (2.22) is then 

y(t) = 2T1 

5 + 1 
+ £-1 - 1 

5 + 2 
(2.26) 

Using Table 2.3, we find that 

y(0 = 2e~' - le~21. (2.27) 

Finally, it is usually desired to determine the steady-state or final value of the re­
sponse of y(t). For example, the final or steady-state rest position of the spring-mass-
damper system may be calculated. The final value theorem states that 

lim y(t) 
t—*oo 

lim sY(s), 
s->0 

(2.28) 

where a simple pole of Y(s) at the origin is permitted, but poles on the imaginary 
axis and in the right half-plane and repeated poles at the origin are excluded. There­
fore, for the specific case of the spring-mass-damper, we find that 

lim y(t) = lim sY(s) 0. (2.29) 

Hence the final position for the mass is the normal equilibrium position y - 0. 
Reconsider the spring-mass-damper system. The equation for Y(s) may be writ­

ten as 
(s + b/M)yQ (s + 2£con)y0 

Y(s) = , 
sz + (b/M)s + k/M sl + 2£o)ns + cof, 

(2.30) 

where £ is the dimensionless damping ratio, and <on is the natural frequency of the 
system. The roots of the characteristic equation are 

sh s2 = -£(on ± w „ V r - l , (2.31) 

where, in this case, con = vk/M and £ - b/(2vkM). When £ > 1, the roots are 
real and the system is overdamped; when £ < 1, the roots are complex and the sys­
tem is underdamped. When £ = 1, the roots are repeated and real, and the condi­
tion is called critical damping. 

When £ < 1, the response is underdamped, and 

sh2 = -£con ± /o)„Vl - t2. (2.32) 

The s-plane plot of the poles and zeros of Y(s) is shown in Figure 2.9, where 
0 = cos-1 £. As £ varies with con constant, the complex conjugate roots follow a circular 

)<» 
5' ¥:• ty,Vi - ? M 

0=COS ' ^ - U 

l N
Na>„ 

— o - £ 
- # * > » 

s2 X- - A ^ 7 ? 
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FIGURE 2.10 
The locus of roots 
as £ varies with <an 
constant. 

£ = 0 Ja> 

£ increasing / / \ . 

<r=i y 
0 

locus, as shown in Figure 2.10. The transient response is increasingly oscillatory as the 
roots approach the imaginary axis when £ approaches zero. 

The inverse Laplace transform can be evaluated using the graphical residue 
evaluation. The partial fraction expansion of Equation (2.30) is 

Y(s) = * i 
+ —. 

5 - SX S — S 2 

(2.33) 

Since s2 is the complex conjugate of sh the residue k2 is the complex conjugate of kx 

so that we obtain 

s - Si s - si 

where the asterisk indicates the conjugate relation. The residue k\ is evaluated from 
Figure 2.11 as 

* i 

70(5! + 2£(on) ^ yQMxe
}B 

sy — s[ M2e ;V/r (2.34) 

where Mx is the magnitude of S\ + 2£<o„, and M2 is the magnitude of ^ - s*. (A re­
view of complex numbers can be found on the MCS website.) In this case, we obtain 

* i 
yo(<one

ie) yo 
2(onVl - C2eM2 2 V l - ^V(7r/2_e) ' 

(2.35) 

FIGURE 2.11 
Evaluation of the 

s\ + l&n 
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FIGURE 2.12 
Response of the 
spring-mass-
damper system. 

• Time 

Underdamped case 

where 6 = cos l £. Therefore, 

ko = 
yo 

2V1 - (' 

Finally, letting p = V l - £2, we find that 

:eJ(ir/2-0) (2.36) 

y{t) = k^1' + k2e^ 

yo 

2V1 - i1 
(eiifi-TTi2)e-c^ej^,fit + e/(V2-0)e-we-M,/3r\ 

yo 
:e-fw'''sin(ft>nVl - £2f + 6). r = v~„ . . , - • - , . (2.37) 

v i w 2 

The solution, Equation (2.37), can also be obtained using item 11 of Table 2.3. The tran­
sient responses of the overdamped (£ > 1) and underdamped (£ < 1) cases are 
shown in Figure 2.12. The transient response that occurs when t, < 1 exhibits an oscil­
lation in which the amplitude decreases with time, and it is called a damped oscillation. 

The relationship between the s-plane location of the poles and zeros and the 
form of the transient response can be interpreted from the s-plane pole-zero 
plots. For example, as seen in Equation (2.37), adjusting the value of £G>„ varies 
the e~^J envelope, hence the response y(t) shown in Figure 2.12. The larger the 
value of £,oin, the faster the damping of the response, y(t). In Figure 2.9, we see 
that the location of the complex pole ^ is given by s^ = —£o)n + j(o„ Vi - c2. 
So, making £a)n larger moves the pole further to the left in the 5-plane. Thus, the 
connection between the location of the pole in the 5-plane and the step response 
is apparent—moving the pole ^ farther in the left half-plane leads to a faster 
damping of the transient step response. Of course, most control systems will 
have more than one complex pair of poles, so the transient response will be the 
result of the contributions of all the poles. In fact, the magnitude of the response 
of each pole, represented by the residue, can be visualized by examining the 
graphical residues on the s-plane. We will discuss the connection between the 
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pole and zero locations and the transient and steady-state response more in sub­
sequent chapters. We will find that the Laplace transformation and the s-plane 
approach are very useful techniques for system analysis and design where em­
phasis is placed on the transient and steady-state performance. In fact, because 
the study of control systems is concerned primarily with the transient and 
steady-state performance of dynamic systems, we have real cause to appreciate 
the value of the Laplace transform techniques. 

2.5 THE TRANSFER FUNCTION OF LINEAR SYSTEMS 

The transfer function of a linear system is defined as the ratio of the Laplace transform 
of the output variable to the Laplace transform of the input variable, with all initial 
conditions assumed to be zero. The transfer function of a system (or element) repre­
sents the relationship describing the dynamics of the system under consideration. 

A transfer function may be defined only for a linear, stationary (constant para­
meter) system. A nonstationary system, often called a time-varying system, has one 
or more time-varying parameters, and the Laplace transformation may not be uti­
lized. Furthermore, a transfer function is an input-output description of the behav­
ior of a system. Thus, the transfer function description does not include any 
information concerning the internal structure of the system and its behavior. 

The transfer function of the spring-mass-damper system is obtained from the 
original Equation (2.19), rewritten with zero initial conditions as follows: 

Ms2Y(s) + bsY(s) + kY(s) = R(s). (2.38) 

Then the transfer function is 

Output Y(s) 1 n-Q. 
— = G(s) = n, . = = . (2.39) 
Input v ' R(s) Ms2 + bs + k 

The transfer function of the RC network shown in Figure 2.13 is obtained by 
writing the Kirchhoff voltage equation, yielding 

V,{s) = ( R + ^ W ) , (2.40) 

expressed in terms of transform variables. We shall frequently refer to variables and 
their transforms interchangeably. The transform variable will be distinguishable by 
the use of an uppercase letter or the argument (s). 

The output voltage is 

V2(s) = Hs)[jA> (2.41) 

R 

-wv 
FIGURE 2.13 
An RC network. 

-o + 
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Therefore, solving Equation (2.40) for I(s) and substituting in Equation (2.41), we have 

(1/CsMs) 
VM = R + l/Cs • 

Then the transfer function is obtained as the ratio V2(s)/Vi (s), which is 

_ Vi(s) _ 1 1 1/r 
G(s) ~VLW~ RCS + l " 77TT " 7TT/? (2'42) 

where T = i?C, the time constant of the network. The single pole of G(s) is 
s = — 1/T. Equation (2.42) could be immediately obtained if one observes that the 
circuit is a voltage divider, where 

-=-^- = ^-^- (2 43^ 

v,(s) z,{s) + z2(sy
 K • } 

and Zx(s) = R,Z2 = l/Cs. 
A multiloop electrical circuit or an analogous multiple-mass mechanical sys­

tem results in a set of simultaneous equations in the Laplace variable. It is usually 
more convenient to solve the simultaneous equations by using matrices and deter­
minants [1, 3,15]. An introduction to matrices and determinants can be found on 
the MCS website. 

Let us consider the long-term behavior of a system and determine the response 
to certain inputs that remain after the transients fade away. Consider the dynamic 
system represented by the differential equation 

dny dn~ly dn~lr dn~2r ^ AA^ 
-? + ^ 1 ^ + *" + ™ = ^ 1 ^ + P"~2^ +-+P^ <2'44) 

where y(t) is the response, and r(t) is the input or forcing function. If the initial con­
ditions are all zero, then the transfer function is the coefficient of R(s) in 

P(s) D, , p^s"-1 + pn-2s
n-2 + ••• + p0 ——R(s) = ; 

q(s) s» + q^s"-1 + ••• + q0 
Y(s) = G(s)R(s) = 2%R(5) = yn~i: , ^ , , _ ™R(s). (2.45) 

The output response consists of a natural response (determined by the initial 
conditions) plus a forced response determined by the input. We now have 

q(s) q(s) 

where q(s) = 0 is the characteristic equation. If the input has the rational form 

n(s) 

d(s) 

then 

y(s) = '^ + E<fl^l yl{s) + y M + Y3is)< (2.46) 
q(s) q(s) d(s) 
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where Yi(s) is the partial fraction expansion of the natural response, Y2(s) is the par­
tial fraction expansion of the terms involving factors of q(s), and Y3(s) is the partial 
fraction expansion of terms involving factors of d(s). 

Taking the inverse Laplace transform yields 

y(t) = yi(t) + yz(t) + y3(0-

The transient response consists of y\(t) + ^(O, and the steady-state response is ^(f). 

EXAMPLE 2.2 Solution of a differential equation 

Consider a system represented by the differential equation 

d2y dy 
-g H- 4-£ + 3y = 2K0, dt 

dy 
where the initial conditions are y(0) = 1 , - (0) = 0, and r(t) = 1, t ^ 0. 

dt 

The Laplace transform yields 

[s2Y(s) - sy(0)] + 4[sY(s) - y(0)] + 3Y(s) = 2R(s). 

Since R(s) = \/s and y(0) = 1, we obtain 
Y(s) 

s + 4 
+ s2 + 4s + 3 s(s2 + 4s + 3)' 

where q(s) = s2 + 4s + 3 = (s + l)(s + 3) = Qis the characteristic equation, and 
d(s) = s. Then the partial fraction expansion yields 

Y(s) = 
3/2 -1/2 

+ s + 1 s + 3 

Hence, the response is 

y(t) = 

and the steady-state response is 

- 1 1/3 
+ s + 1 s + 3 

2/3 
+ -^-= Yt(s) + Y2(s) + Y3(s). 

-e~l - -e~3t 

_2 2 
+ -le~' + ie"3 ' 

3 

2 

>onse is 

lim y\ 
t—x» 

0 = 
2 

= 3 " 

EXAMPLE 2.3 Transfer function of an op-amp circuit 

The operational amplifier (op-amp) belongs to an important class of analog inte­
grated circuits commonly used as building blocks in the implementation of control 
systems and in many other important applications. Op-amps are active elements 
(that is, they have external power sources) with a high gain when operating in their 
linear regions. A model of an ideal op-amp is shown in Figure 2.14. 
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FIGURE 2.14 
The ideal op-amp. 

Inverting 
input node + N o n i n v e r t i n g 

i'i input node + 
lh 

il = ? 

f, = 0 

-o Output node 

The operating conditions for the ideal op-amp are (1) i\ = 0 and i2 = 0, thus 
implying that the input impedance is infinite, and (2) v2 — Vi = 0 (or Vi = ?^).The 
input-output relationship for an ideal op-amp is 

vQ = K(v2 - v^ = -K(vi - V2% 

where the gain K approaches infinity. In our analysis, we will assume that the l inear 
op-amps are operat ing with high gain and under idealized conditions. 

Consider the inverting amplifier shown in Figure 2.15. U n d e r ideal conditions, 
we have i^ = 0, so that writing the node equat ion at v\ yields 

Vl ~ ^in Vi v0 

R^ R, 
= 0. 

Since v2 = V\ (under ideal condit ions) and v2 — 0 (see Figure 2.15 and compare it 
with Figure 2.14), it follows that V\ = 0. Therefore, 

and rearranging terms, we obtain 

R* 

vo_ 
^in 

^ 2 

R{ 

We see that when R2 = Rlf the ideal op-amp circuit inverts the sign of the input, 
that is, v0 = -vm when R2 = R\. m 

EXAMPLE 2.4 TVansfer function of a system 

Consider the mechanical system shown in Figure 2.16 and its electrical circuit analog 
shown in Figure 2.17. The electrical circuit analog is a force-current analog as out­
lined in Table 2.1. The velocities vi(t) and v2(t) of the mechanical system are directly 

R-, 

FIGURE 2.15 
An inverting amplifier 
operating with ideal 
conditions. 

«. 

o V W ' 
+ T 
VW 

i\ 

'l 

v2 

= 0 

V V V 

1^ -f 
vo 
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FIGURE 2.16 
Two-mass 
mechanical system. 
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FIGURE 2.17 Current , 

Two-node electric '( ') v 

circuit analog 

C, = Mi, C2 = /W2, 

L = 1/fcfti = 1/6,, 

fl2 = 1/fe2. 

-WV-" 

« , < C," 

analogous to the node voltages i>j(/) and i>2(0 of the electrical circuit. The simultane­
ous equations, assuming that the initial conditions are zero, are 

and 

M^s) + (bx + Wis) - byV2(s) = R(s), 

Ws) 
M2sV2(s) + fc,(l£(s) - Vy{s)) + k-^- = 0. 

(2.47) 

(2.48) 

These equations are obtained using the force equations for the mechanical system 
of Figure 2.16. Rearranging Equations (2.47) and (2.48), we obtain 

(-bJVfa) + \M2s + b} +-)V2(s) = Q, 

or, in matrix form, 

'Mxs + by + b2 

M2s + bx+ -
k 
s 

rmi 
V2(s) 

= 

-R(s)~\ 

0 

(2.49) 
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Assuming that the velocity of Mi is the output variable, we solve for \\(s) by matrix 
inversion or Cramer's rule to obtain [1,3] 

(M2s + Z>! + k/s)R(s) 

(Mis + bx + b2)(M2s + Z>x + k/s) - bx' 
M(s) = , , , , , , \ w w , , , , , , TT- (2-5°) 

Then the transfer function of the mechanical (or electrical) system is 

Vx{s) (M2s + ^ + k/s) 
G(s) = 

R(s) (Mts + bx + b2)(M2s + bt + k/s) - b? 

(M2s
2 + b{s + A:) 

(M^ + ^ + b2)(M2s
z + b^s + k) - b?s 

If the transfer function in terms of the position X\(i) is desired, then we have 

Ms) V^s) G(s) 

(2.51) 

R(s) sR(s) (2.52) 

As an example, let us obtain the transfer function of an important electrical 
control component, the DC motor [8]. A DC motor is used to move loads and is 
called an actuator. 

An actuator is a device that provides the motive power to the process. 

EXAMPLE 2.5 Transfer function of the DC motor 

The DC motor is a power actuator device that delivers energy to a load, as shown in 
Figure 2.18(a); a sketch of a DC motor is shown in Figure 2.18(b). The DC motor 
converts direct current (DC) electrical energy into rotational mechanical energy. A 
major fraction of the torque generated in the rotor (armature) of the motor is 
available to drive an external load. Because of features such as high torque, speed 
controllability over a wide range, portability, well-behaved speed-torque charac­
teristics, and adaptability to various types of control methods, DC motors are widely 
used in numerous control applications, including robotic manipulators, tape trans­
port mechanisms, disk drives, machine tools, and servovalve actuators. 

The transfer function of the DC motor will be developed for a linear approxi­
mation to an actual motor, and second-order effects, such as hysteresis and the volt­
age drop across the brushes, will be neglected. The input voltage may be applied to 
the field or armature terminals. The air-gap flux 4> of the motor is proportional to 
the field current, provided the field is unsaturated, so that 

<f> = Kfif. (2.53) 

The torque developed by the motor is assumed to be related linearly to </> and the 
armature current as follows: 

Tm = KtfUt) = KiKfif(tMt). (2.54) 
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Armature 

FIGURE 2.18 
A DC motor 
(a) electrical 
diagram and 
(b) sketch. 
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It is clear from Equation (2.54) that, to have a linear system, one current must be 
maintained constant while the other current becomes the input current. First, we 
shall consider the field current controlled motor, which provides a substantial power 
amplification. Then we have, in Laplace transform notation, 

Tm(s) = (K,KfIa)If(s) = Kmlf(s), (2.55) 

where ia = /„ is a constant armature current, and Km is defined as the motor con­
stant. The field current is related to the field voltage as 

Vf(s) = (Rf + Lfs)If(s). (2.56) 

The motor torque Tm(s) is equal to the torque delivered to the load. This relation 
may be expressed as 

TJs) = TL(s) + Us), (2.57) 

where T/(s) is the load torque and Td(s) is the disturbance torque, which is often 
negligible. However, the disturbance torque often must be considered in systems 
subjected to external forces such as antenna wind-gust forces. The load torque for 
rotating inertia, as shown in Figure 2.18, is written as 

TL(s) = Js2B(s) + bsd(s). 

Rearranging Equations (2.55)-(2.57), we have 

TL(s) = TJs) - Td(s), 

TJs) = KJj{s\ 

Vf{s) 
If(s) = 

Rf + Lfs' 

(2.58) 

(2.59) 

(2.60) 

(2.61) 
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FIGURE 2.19 
Block diagram 
model of field- \ 
controlled DC 
motor. 
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Therefore, the transfer function of the motor-load combination, with Td(s) = 0, is 

6{s) Km KJ(JLf) 

Vf(s) s(Js + b){Lfs + Rf) s(s + b/J)(s + Rf/Lf)' 
(2.62) 

The block diagram model of the field-controlled DC motor is shown in Figure 2.19. 
Alternatively, the transfer function may be written in terms of the time constants of the 
motor as 

Vf(s) 
= G(s) = 

Kml{bRf) 

s{rfs + 1)(TLS + 1)' 
(2.63) 

where Tf = Lf/Rf and TL — J/b. Typically, one finds that TL > Tf and often the 
field time constant may be neglected. 

The armature-controlled DC motor uses the armature current ia as the control 
variable. The stator field can be established by a field coil and current or a permanent 
magnet. When a constant field current is established in a field coil, the motor torque is 

Tm(s) = (K.Kfl^Us) = KJa(s). (2.64) 

When a permanent magnet is used, we have 

Tm(s) = KmIa(s), 

where Km is a function of the permeability of the magnetic material. 
The armature current is related to the input voltage applied to the armature by 

Va(s) = (Ra + Las)Ia(s) + Vh(s), (2.65) 

where Vh(s) is the back electromotive-force voltage proportional to the motor 
speed. Therefore, we have 

Vb(s) = Kha>(s), (2.66) 

where (o(s) - s6(s) is the transform of the angular speed and the armature current is 

Va(s) - K,Ms) 
Ra + Las 

Equations (2.58) and (2.59) represent the load torque, so that 

TL(s) = Js20{s) + bs0(s) = Tm(s) - Td(s). 

(2.67) 

(2.68) 
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FIGURE 2.20 
Armature-controlled 
DC motor. 
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The relations for the armature-controlled DC motor are shown schematically in 
Figure 2.20. Using Equations (2.64), (2.67), and (2.68) or the block diagram, and let­
ting Td(s) = 0, we solve to obtain the transfer function 

G(s) = 
0(S) _ Kjn 

Va(s) s[(Ra + Las)(Js + b) + KbKm] 

_ ^jn 

s(s2 + 2£<Dns + col) 
(2.69) 

However, for many DC motors, the time constant of the armature, ra = La/Ra, is 
negligible; therefore, 

G(s) = 
K, e(s) 

Va(s) s[Ra(Js + b) + KbKm) 

Km/(Rab + KbKm) 

S{TXS + 1) 
(2.70) 

where the equivalent time constant T\ = RaJ/{Rab + Kf,Km). 
Note that Km is equal to Kb. This equality may be shown by considering the 

steady-state motor operation and the power balance when the rotor resistance is 
neglected. The power input to the rotor is (Kb(o)ia, and the power delivered to the 
shaft is Tw. In the steady-state condition, the power input is equal to the power de­
livered to the shaft so that (Kbco)ia = Tco; since T = Kmia (Equation 2.64), we find 
that Kb = Km. 

Electric motors are used for moving loads when a rapid response is not re­
quired and for relatively low power requirements. Typical constants for a fractional 
horsepower motor are provided in Table 2.4. Actuators that operate as a result of 
hydraulic pressure are used for large loads. Figure 2.21 shows the usual ranges of 
use for electromechanical drives as contrasted to electrohydraulic drives. Typical 
applications are also shown on the figure. • 

Table 2.4 Typical Constants for a Fractional Horsepower DC Motor 

Motor constant K,n 50 X 10"3 N • m/A 
Rotor inertia Jm 1 X 10"3 N • m • s2/rad 
Field time constant Tf 1 ms 
Rotor time constant T 100 ms 
Maximum output power % hp, 187 W 
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FIGURE 2.21 
Range of control 
response time and 
power to load for 
electromechanical 
and electrohy-
draulic devices. 
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EXAMPLE 2.6 Transfer function of a hydraulic actuator 

A useful actuator for the linear positioning of a mass is the hydraulic actuator 
shown in Table 2.5, item 9 [9,10]. The hydraulic actuator is capable of providing a 
large power amplification. It will be assumed that the hydraulic fluid is available 
from a constant pressure source and that the compressibility of the fluid is negligi­
ble. A downward input displacement x moves the control valve; thus, fluid passes 
into the upper part of the cylinder, and the piston is forced downward. A small, low-
power displacement of x{t) causes a larger, high-power displacement,y(t). The volu­
metric fluid flow rate Q is related to the input displacement x(t) and the differential 
pressure across the piston as Q = g(x, P). Using the Taylor series linearization as in 
Equation (2.11), we have 

f i r l x-
Bg_ 

dP vfb °H 

P = kxx - kFP, (2.71) 

where g = g(x, P) and (x0, /¾) is the operating point. The force developed by the 
actuator piston is equal to the area of the piston, A, multiplied by the pressure, P. 
This force is applied to the mass, so we have 

d2y dy 
AP = Af-4 + b-r. 

dt2 dt 
(2.72) 
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Thus, substituting Equation (2.71) into Equation (2.72), we obtain 

A , d2y dy 
- ( M -Q) = M-[Z + b { . (2.73) 

Furthermore, the volumetric fluid flow is related to the piston movement as 

dy 
Q = A-%. (2.74) 

Then, substituting Equation (2.74) into Equation (2.73) and rearranging, we have 

Akx d2y + (h + A2\dy n i c , 
——x = M—r- + \ b + —• —. (2.75) 
kP dt2 \ kpjdt v ' 

Therefore, using the Laplace transformation, we have the transfer function 

Y(s) K 

where 

X(s) s(Ms + BY 

Akx A2 

K = —^ and B = b + —. 
kP k 

(2.76) 

p 

Note that the transfer function of the hydraulic actuator is similar to that of the elec­
tric motor. For an actuator operating at high pressure levels and requiring a rapid 
response of the load, we must account for the effect of the compressibility of the 
fluid [4,5]. 

Symbols, units, and conversion factors associated with many of the variables in 
Table 2.5 are located at the MCS website. The symbols and units for each variable can be 
found in tables with corresponding conversions between SI and English units. • 

The transfer function concept and approach is very important because it pro­
vides the analyst and designer with a useful mathematical model of the system ele­
ments. We shall find the transfer function to be a continually valuable aid in the 
attempt to model dynamic systems. The approach is particularly useful because the 
5-plane poles and zeros of the transfer function represent the transient response of 
the system. The transfer functions of several dynamic elements are given in Table 2.5. 

In many situations in engineering, the transmission of rotary motion from one 
shaft to another is a fundamental requirement. For example, the output power of an 
automobile engine is transferred to the driving wheels by means of the gearbox and 
differential. The gearbox allows the driver to select different gear ratios depending 
on the traffic situation, whereas the differential has a fixed ratio. The speed of the 
engine in this case is not constant, since it is under the control of the driver. Anoth­
er example is a set of gears that transfer the power at the shaft of an electric motor 
to the shaft of a rotating antenna. Examples of mechanical converters are gears, 
chain drives, and belt drives. A commonly used electric converter is the electric 
transformer. An example of a device that converts rotational motion to linear mo­
tion is the rack-and-pinion gear shown in Table 2.5, item 17. 
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Table 2.5 Transfer Functions of Dynamic Elements and Networks 

Element or System G(g) 

1. Integrating circuit, filter 

C 

+ 

R 
•If 

* o + 

V-ts) Vi(') 

1 

RCs 

2. Differentiating circuit 

+ — ) ^ 

V,(s) 

o 

-o + 
V,(s) 

Vi(s) 
= -RCs 

3. Differentiating circuit 

o—» 9r 
V',(s) 

o 

+ 
IMs) 

l/2(5) = R2(RiCs + 1) 

V,(*) * , 

4. Integrating filter 

C, 

rHr 
|-VW-|(-n 

V,(s) 
+ 

V?(s) 

y2(5) (/JiC,* + i)( /? 2Q* + l ) 

W RiC2s 
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Table 2.5 Continued 

Element or System G(s) 

5. DC motor, field-controlled, rotational actuator 

6. DC motor, armature-controlled, rotational actuator 

Vf{s) s(Js + b){Lfs + Rf) 

m _ K* 
Va(s) s[(Ra + Las)(Js + b) + KhK,„] 

7. AC motor, two-phase control field, rotational actuator 
+ o 

V,(.u ^04=G3 
Reference 

field 

8. Rotary Amplifier (Amplidyne) 
>—Wv o + 

9. Hydraulic 

Return •*-

Return •*-

actt 

n 

* 

TV 

ator 
• c(ft. Control valve 
t displacement 

Piston 

• 

V 
M, h 
L oad 

i 

K„ 9{») ._ 
Vc(s) S{TS + 1) 

T = J/(b - m) 

in = slope of linearized torque-speed 
curve (normally negative) 

K/(W 
VC(S) (STC +1 ) ( - ,+ 1) 

for the unloaded case, ld ~ 0, rc 
0.05 s < TC < 0.5 s 

T , M 

Yls) K 

X(s) s(Ms + 

Akx 

"0 

g = g(x,P) 

A = are a of 

*) 

•-K) 
k - - i 

V 
= flow 

jiston (continued) 
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Table 2.5 Continued 

Element or System G(s) 

10. Gear train, rotational transformer 

Gear I 

Gear 2 

11. Potentiometer, voltage control 

+ o-

Vx(s) Rf* ° + 

R2 V->(.v) 

12. Potentiometer, error detector bridge 

0-, 

voltage 

13. Tachometer, velocity sensor 

Shaft 

C * 
0U), o>(.?) 

14. DC amplifier 

Gear ratio = « = — 

V 2 ( J ) = R2 m R2 

Vi(s) R R^ + R2 

R2 _ e 
R #«ax 

V2(s) = /:, ,(0,(5)-02(5)) 

V2(s) = Merror(^) 

* . -
^Battery 

" m a x 

V2(s) = *,«(*) = #,s0(.y) 

iv, = constant 

V\{S) ST + 1 

RQ - output resistance 

CQ = output capacitance 

T = RaC„,T « IS 

and is often negligible for 
controller amplifier 

(continued) 
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Table 2.5 Continued 
Element or System G(s) 

15. Accelerometer, acceleration sensor 

Frame 

*o(0 = y{t) - xm{t), 
X0(s) -s* 

Xin(s) s2 + (b/M)s + k/M 

For low-frequency oscillations, where 

ai < &J„, 

X0{j(o) or 

Xia(j<o) k/M 

16. Thermal heating system 

Fluid ill 

Fluid 
out 

° Heater 

17. Rack and pinion 

^ 1 , — where 
q(s) C,s + (QS + \/R,Y 

2T = % ~ % = temperature difference 
due to thermal process 

C, = thermal capacitance 

Q = fluid flow rate = constant 

S = specific heat of water 

R, = thermal resistance of insulation 

q(s) = transform of rate of heat flow of 
heating element 

x = rd 
converts radial motion 
to linear motion 

2.6 BLOCK DIAGRAM MODELS 

The dynamic systems that comprise automatic control systems are represented math­
ematically by a set of simultaneous differential equations. As we have noted in the 
previous sections, the Laplace transformation reduces the problem to the solution of a 
set of linear algebraic equations. Since control systems are concerned with the control of 
specific variables, the controlled variables must relate to the controlling variables. This 
relationship is typically represented by the transfer function of the subsystem relating 
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FIGURE 2.22 
Block diagram of a 
DC motor. 

Vf(s). G(s) = 
s(Js + b)(Lfs + Rf) 

Output 
• 0U) 

FIGURE 2.23 
General block 
representation of 
two-input, two-
output system. 

FIGURE 2.24 
Block diagram of 
interconnected 
system. 

the input and output variables. Therefore, one can correctly assume that the transfer 
function is an important relation for control engineering. 

The importance of this cause-and-effect relationship is evidenced by the facility 
to represent the relationship of system variables by diagrammatic means. The block 
diagram representation of the system relationships is prevalent in control system en­
gineering. Block diagrams consist of unidirectional, operational blocks that represent 
the transfer function of the variables of interest. A block diagram of a field-con­
trolled DC motor and load is shown in Figure 2.22. The relationship between the dis­
placement 8(s) and the input voltage Vf(s) is clearly portrayed by the block diagram. 

To represent a system with several variables under control, an interconnection 
of blocks is utilized. For example, the system shown in Figure 2.23 has two input 
variables and two output variables [6]. Using transfer function relations, we can 
write the simultaneous equations for the output variables as 

Yi(s) = Gn(s)R1(s) + Gl2(s)R2(s), (2.77) 
and 

Y2(s) = GhWRAs) + G22(s)R2(s), (2.78) 

where G^s) is the transfer function relating the ith output variable to theyth input vari­
able. The block diagram representing this set of equations is shown in Figure 2.24. In 
general, for J inputs and I outputs, we write the simultaneous equation in matrix form as 

or simply 

RA\) 

Yi(s) 
Y2(s) 

Ji(s). 

Gn(s) 

Gn(s) ••• Gv(s) 

G21(s) ••• G2J(s) 

_Gn(s) ••• Gjj(s)_ 

Y = GR. 

— • n — • K,(.Y) 

R^s) 
R2(s) 

_Rj(s)_ 

(2.79) 

(2.80) 

R,(s) YM.s) 
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Here the Y and R matrices are column matrices containing the I output and the J input 
variables, respectively, and G is an I by J transfer function matrix. The matrix representa­
tion of the interrelationship of many variables is particularly valuable for complex multi-
variable control systems. An introduction to matrix algebra is provided on the MCS 
website for those unfamiliar with matrix algebra or who would find a review helpful [21]. 

The block diagram representation of a given system often can be reduced to a 
simplified block diagram with fewer blocks than the original diagram. Since the 
transfer functions represent linear systems, the multiplication is commutative. Thus, 
in Table 2.6, item 1, we have 

X3(s) = G2{s)X2{s) = Gl{s)G2{s)Xx{s). 

Table 2.6 Block Diagram Transformations 
Transformation Original Diagram Equivalent Diagram 
1. Combining blocks in cascade x. 

2. Moving a summing point 
behind a block 

G,(s) G2(s) 

X, + 

X, * l 

or 

* i 

* i 

n.n~ 
l T [ 0 2 

G2Gl 

G 

* 3 

X* 

__/^__l 

x% 

3. Moving a pickoff point 
ahead of a block i " » I » G 

X, I 1 
««—— G +—I 

X, 

4. Moving a pickoff point 
behind a block xt r~ 

I » G 

X, 

* l 

* l 

G 

1 
G 

X2 

5. Moving a summing point 
ahead of a block 

X-y 

x, + * i 

6. Eliminating a feedback loop x, + 
~\ fc 
t> * 
f 

G 

H <— 

X-, 

l + GH 

X-y 
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FIGURE 2.25 
Negative feedback 
control system. 

/?(.v) O 
Ea(s) 

Controller 

Gc(s) 
Z{s) 

Actuator 

Ga(s) 
Uis) 

Process 

G(s) 

B(s) 

Sensor 

H{s) 

•+> n.s) 

When two blocks are connected in cascade, as in Table 2.6, item 1, we assume that 

X3(s) = G2(s)G1(s)X1(s) 

holds true. This assumes that when the first block is connected to the second block, 
the effect of loading of the first block is negligible. Loading and interaction between 
interconnected components or systems may occur. If the loading of interconnected 
devices does occur, the engineer must account for this change in the transfer func­
tion and use the corrected transfer function in subsequent calculations. 

Block diagram transformations and reduction techniques are derived by consid­
ering the algebra of the diagram variables. For example, consider the block diagram 
shown in Figure 2.25. This negative feedback control system is described by the 
equation for the actuating signal, which is 

Ea(s) = R(s) - B(s) = R(s) - H(s)Y(s). 

Because the output is related to the actuating signal by G(s), we have 

Y(s) = G(s)U(s) = G(s)Ga(s)Z(s) = G(s)Ga(s)Gc(s)Ea(s); 

thus, 

Y(s) = G(s)Ga(s)Gc(s)[R(s) - H(s)Y(s)]. 

Combining the Y(s) terms, we obtain 

Y(s)[l + G(s)Ga(s)Gc(s)H(s)] = G(s)Ga(s)Gc(s)R(s). 

Therefore, the transfer function relating the output Y(s) to the input R(s) is 

G(s)Ga(s)Gc(s) Y(s) = 

R(s) 1 + G(s)Ga(s)Gc(s)H(s)' 

(2.81) 

(2.82) 

(2.83) 

(2.84) 

(2.85) 

This closed-loop transfer function is particularly important because it represents 
many of the existing practical control systems. 

The reduction of the block diagram shown in Figure 2.25 to a single block rep­
resentation is one example of several useful techniques. These diagram transforma­
tions are given in Table 2.6. All the transformations in Table 2.6 can be derived by 
simple algebraic manipulation of the equations representing the blocks. System 
analysis by the method of block diagram reduction affords a better understanding of 
the contribution of each component element than possible by the manipulation of 
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FIGURE 2.26 
Multiple-loop 
feedback control 
system. 

R(s) • Q • • Y(s) 

equations. The utility of the block diagram transformations will be illustrated by an 
example using block diagram reduction. 

EXAMPLE 2.7 Block diagram reduction 

The block diagram of a multiple-loop feedback control system is shown in Figure 2.26. 
It is interesting to note that the feedback signal Hi(s)Y(s) is a positive feedback sig­
nal, and the loop G3(s)G4(s)Hi(s) is a positive feedback loop. The block diagram 
reduction procedure is based on the use of Table 2.6, transformation 6, which elim­
inates feedback loops. Therefore the other transformations are used to transform 
the diagram to a form ready for eliminating feedback loops. First, to eliminate the 
loop G3G4//1, we move H2 behind block G4 by using transformation 4, and obtain 
Figure 2.27(a). Eliminating the loop G3G4//1 by using transformation 6, we obtain 
Figure 2.27(b). Then, eliminating the inner loop containing H2/G4, we obtain Figure 
2.27(c). Finally, by reducing the loop containing H3, we obtain the closed-loop sys­
tem transfer function as shown in Figure 2.27(d). It is worthwhile to examine the 
form of the numerator and denominator of this closed-loop transfer function. We 
note that the numerator is composed of the cascade transfer function of the feed­
forward elements connecting the input R(s) and the output Y(s).The denominator is 
composed of 1 minus the sum of each loop transfer function. The loop G3G4H1 has a 
plus sign in the sum to be subtracted because it is a positive feedback loop, whereas 
the loops G1G2G3G4H3 and G2G$H2 are negative feedback loops. To illustrate this 
point, the denominator can be rewritten as 

q(s) = 1 - i+G&H! - G2G3H2 - G&G&Hi). (2.86) 

This form of the numerator and denominator is quite close to the general form for 
multiple-loop feedback systems, as we shall find in the following section. • 

The block diagram representation of feedback control systems is a valuable 
and widely used approach. The block diagram provides the analyst with a graphi­
cal representation of the interrelationships of controlled and input variables. Fur­
thermore, the designer can readily visualize the possibilities for adding blocks to 
the existing system block diagram to alter and improve the system performance. 
The transition from the block diagram method to a method utilizing a line path 
representation instead of a block representation is readily accomplished and is 
presented in the following section. 
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\r V —* Gx 
+A 

[ 

G2 

H2 

G4 -v 
* 3 <— 

G3 • 

• Hx <— 

G4 

i 

(a) 

*• n.v) 

»• Y(s) 

(b) 

R - > 0 - ^ G 
FIGURE 2.27 
Block diagram 
reduction of the 
system of Figure 
2.26. 

G2G,G4 

1— GTIGHH\ +G2G3//2 

H, 

Y(s) 
R(s) G\<h<hP* 

\— GJIG^HI^-G2GTIH2'^'G^G2G2IG4HTI 

Y{s) 

(c) (d) 

2.7 SIGNAL-FLOW GRAPH MODELS 

Block diagrams are adequate for the representation of the interrelationships of con­
trolled and input variables. However, for a system with reasonably complex interre­
lationships, the block diagram reduction procedure is cumbersome and often quite 
difficult to complete. An alternative method for determining the relationship be­
tween system variables has been developed by Mason and is based on a representa­
tion of the system by line segments [4,25]. The advantage of the line path method, 
called the signal-flow graph method, is the availability of a flow graph gain formula, 
which provides the relation between system variables without requiring any reduc­
tion procedure or manipulation of the flow graph. 

The transition from a block diagram representation to a directed line segment 
representation is easy to accomplish by reconsidering the systems of the previous 
section. A signal-flow graph is a diagram consisting of nodes that are connected by 
several directed branches and is a graphical representation of a set of linear rela­
tions. Signal-flow graphs are particularly useful for feedback control systems be­
cause feedback theory is primarily concerned with the flow and processing of signals 
in systems. The basic element of a signal-flow graph is a unidirectional path segment 
called a branch, which relates the dependency of an input and an output variable in 
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FIGURE 2.28 
Signal-flow graph 
of the DC motor. 

FIGURE 2.29 
Signal-flow graph 
of interconnected 
system. 

VfMQ-

R,(s) 

Rils) 

G(s) 
— • — 

Gu{s) 

G22(s) 

-O <*s) 

YAs) 

y-.ro 

a manner equivalent to a block of a block diagram. Therefore, the branch relating 
the output 6{s) of a DC motor to the field voltage Vf{s) is similar to the block dia­
gram of Figure 2.22 and is shown in Figure 2.28. The input and output points or junc­
tions are called nodes. Similarly, the signal-flow graph representing Equations (2.77) 
and (2.78), as well as Figure 2.24, is shown in Figure 2.29. The relation between each 
variable is written next to the directional arrow. All branches leaving a node will 
pass the nodal signal to the output node of each branch (unidirectionally).The sum­
mation of all signals entering a node is equal to the node variable. A path is a branch 
or a continuous sequence of branches that can be traversed from one signal (node) 
to another signal (node). A loop is a closed path that originates and terminates on 
the same node, with no node being met twice along the path. Two loops are said to 
be nontouching if they do not have a common node. Two touching loops share one 
or more common nodes. Therefore, considering Figure 2.29 again, we obtain 

Yx(s) = GuWR^s) + G12(s)R2(s), (2.87) 
and 

Y2(s) = G2l(s)R1(s) + G22(s)R2(s). (2.88) 

The flow graph is simply a pictorial method of writing a system of algebraic 
equations that indicates the interdependencies of the variables. As another example, 
consider the following set of simultaneous algebraic equations: 

a i i*i + #12*2 + r\ — x\ (2.89) 

«21*1 + «22*2 + r2 = x2. (2.90) 

The two input variables are r\ and r2, and the output variables are X\ and x2. A sig­
nal-flow graph representing Equations (2.89) and (2.90) is shown in Figure 2.30. 
Equations (2.89) and (2.90) may be rewritten as 

*i(l - «n) + *2(-«i2> = rh (2.91) 
and 

*i(-«2i) + x2(l - «22) = r2. (2.92) 

The simultaneous solution of Equations (2.91) and (2.92) using Cramer's rule re­
sults in the solutions 

Xi = 
(1 - 022)'! + «12?2 

(1 - «ll)(l ~ «22) ~ «12-21 

1 ~ «22 , «12 / 0 ^ , 

— £ — r , + T , 2 , (2.93) 

http://y-.ro


86 Chapter 2 Mathematical Models of Systems 

FIGURE 2.30 
Signal-flow graph 
of two algebraic 
equations. 

*.o 

«:0 

and 

* 2 = 
(1 - au)r2 + a2lri 

(1 - fln)(l - fl22) - «i2«2i 
- ^ - r 2 + —rh (2.94) 

The denominator of the solution is the determinant A of the set of equations 
and is rewritten as 

A = (1 - fln)(l - fl22) - «12«21 = 1 ~ «11 - «22 + «11«22 - «12«21- (2-95) 

In this case, the denominator is equal to 1 minus each self-loop an, a22, and fli2«2i> 
plus the product of the two nontouching loops a\\ and a22. The loops #22 a nd «21 «12 
are touching, as are an and fl2i«i2-

The numerator for X\ with the input r\ is 1 times 1 — a22, which is the value of A 
excluding terms that touch the path 1 from r\ to x\. Therefore the numerator from r2 

to Xi is simply a12 because the path through a\2 touches all the loops. The numerator 
for x2 is symmetrical to that of X\, 

In general, the linear dependence 7̂ - between the independent variable xt 

(often called the input variable) and a dependent variable Xj is given by Mason's 
signal-flow gain formula [11,12], 

2^* -/;* 
T = (2.96) 

Pijk = gain of kth path from variable xt to variable Xj, 

A = determinant of the graph, 

Aijk = cofactor of the path Pijk, 

and the summation is taken over all possible k paths from xt to Xj. The path gain or 
transmittance P^ is defined as the product of the gains of the branches of the path, 
traversed in the direction of the arrows with no node encountered more than once. 
The cofactor A^ is the determinant with the loops touching the kth path removed. 
The determinant A is 

A = 1 - 2 L « + 
«=1 n,m 

nontouching 

£j LnLffj ^j L-'n'-'m'-'p ' (2.97) 
n, m, p 

nontouching 

where Lq equals the value of the qth. loop transmittance. Therefore the rule for eval­
uating A in terms of loops Ll5 L2, L3 , . . . , LN is 
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A = 1 — (sum of all different loop gains) 
+ (sum of the gain products of all combinations of two nontouching loops) 
— (sum of the gain products of all combinations of three nontouching loops) 

The gain formula is often used to relate the output variable Y(s) to the input 
variable R(s) and is given in somewhat simplified form as 

r = 
-jtfk-/ (2.98) 

where T(s) = Y(s)/R(s). 
Several examples will illustrate the utility and ease of this method. Although the 

gain Equation (2.96) appears to be formidable, one must remember that it repre­
sents a summation process, not a complicated solution process. 

EXAMPLE 2.8 Transfer function of an interacting system 

A two-path signal-flow graph is shown in Figure 2.31(a) and the corresponding block di­
agram is shown in Figure 2.31(b). An example of a control system with multiple signal 
paths is a multilegged robot. The paths connecting the input R(s) and output Y(s) are 

Pi = GXG2G3G^ (path 1) and P2 = G5G6G7GS (path 2). 

«(.v) 

(a) 

FIGURE 2.31 
Two-path 
interacting system, 
(a) Signal-flow 
graph, (b) Block 
diagram. 

Ris) • 

— • 

— • 

G,(s) 

G5(5) 

H6(s) 

G3{s) 

H3(s) 

G7(s) 

H7(s) 

—• 

—• 

(b) 
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There are four self-loops: 

Lx = G2H2, L2 = H3G3, L3 = G6H6, and L4 = G7H7. 

Loops Lx and L2 do not touch L3 and L4. Therefore, the determinant is 

A = 1 - {Lx + L2 + L3 + L4) + (LXL3 + L ^ + L2L3 + L2L4). (2.99) 

The cofactor of the determinant along path 1 is evaluated by removing the loops 
that touch path 1 from A. Hence, we have 

Lx = L2 = 0 and A! = 1 - (L3 + L4). 

Similarly, the cofactor for path 2 is 

A2 - 1 - (L t + L2). 

Therefore, the transfer function of the system is 

Y(s) AAj + />2A2 

W)=T(S) = A (2.100) 

G!G2G3G4(1 - L3 - L4) + G5G6G7G8(1 - L t - L2) 

1 — Li\ — L>2 — *->$ — Li\ + L,\L,3 "t" LI\LI\ + L,2L,3 + L,2L^ 

A similar analysis can be accomplished using block diagram reduction techniques. 
The block diagram shown in Figure 2.31(b) has four inner feedback loops within the 
overall block diagram. The block diagram reduction is simplified by first reducing 
the four inner feedback loops and then placing the resulting systems in series. Along 
the top path, the transfer function is 

Yx{s) = Gx{s) (hi*) 
1 - G2(s)H2(s) 

G3(s) 

1 - G3(s)H3(s) 
G4(s)R(s) 

G!(5)G2(5)G3(5)G4(5) 

(1 - G2(s)H2(s))(l - G3(s)H3(s))_ 

Similarly across the bottom path, the transfer function is 

R(s). 

Y2(s) = G5(s) 
G6(s) 

1 - G6(s)H6(s) 

G7(5) 

1 - GJ(S)HJ(S) 
Gs(s)R(s) 

G5(S)G6(s)G7(s)G*(s) 

(1 - G6(s)H6(s))(l - G7(s)H7(s)) 

The total transfer function is then given by 

G1(S)G2(s)G3(S)G4(s) 

R(s). 

Y(s) = y,(5) + Y2(s) = 
(1 - G2(s)H2(s))(l - G3(s)H3(s)) 

+ 
G5(s)G6(s)G7(s)G8(s) 

(1 - G6(s)H6(s))(l - G7(s)H7(s)) 
R(s). 
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EXAMPLE 2.9 Armature-controlled motor 

The block diagram of the armature-controlled DC motor is shown in Figure 2.20. 
This diagram was obtained from Equations (2.64)-(2.68). The signal-flow diagram 
can be obtained either from Equations (2.64)-(2.68) or from the block diagram and 
is shown in Figure 2.32. Using Mason's signal-flow gain formula, let us obtain the 
transfer function for 6(s)/Va(s) with Td(s) - 0. The forward path is P\(s), which 
touches the one loop, Li(s), where 

P I ( J ) - - j G ^ G ^ ) and L}(s) =-KhG1(s)G2(s). 

Therefore, the transfer function is 

Pl(s) (l/s)G,(s)G2(s) 
T(s) = 

K„ 

1 - Us) 1 + KhGl(s)G2(s) s[(Ra + Las)(Js + b) + KbKm\ 

which is exactly the same as that derived earlier (Equation 2.69). • 

The signal-flow graph gain formula provides a reasonably straightforward ap­
proach for the evaluation of complicated systems. To compare the method with 
block diagram reduction, which is really not much more difficult, let us reconsider 
the complex system of Example 2.7. 

EXAMPLE 2.10 Transfer function of a multiple-loop system 

A multiple-loop feedback system is shown in Figure 2.26 in block diagram form. 
There is no need to redraw the diagram in signal-flow graph form, and so we shall 
proceed as usual by using Mason's signal-flow gain formula, Equation (2.98). There 
is one forward path P : = G1G2G2G4. The feedback loops are 

Lx = -G2G3H2, L2 = G2G4Hl, and L3 = -GfoG&fy. (2.101) 

All the loops have common nodes and therefore are all touching. Furthermore, the 
path Pj touches all the loops, so Aj = 1. Thus, the closed-loop transfer function is 

Y(s) 
T(s) = 

Pi A 1^1 
R(s) 1 L\ — L2 — LT, 

G]G2G-3)Gil 

1 + G2G^H2 — G2G4H1 + 0^02^3(.74./73 
(2.102) 

FIGURE 2.32 
The signal-flow 
graph of the 
armature-controlled 
DC motor. 

W O O »<*> 
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FIGURE 2.33 
Multiple-loop 
system. 

R(s)Q 

-H, 

EXAMPLE 2.11 Transfer function of a complex system 

Finally, we shall consider a reasonably complex system that would be difficult to re­
duce by block diagram techniques. A system with several feedback loops and feed­
forward paths is shown in Figure 2.33. The forward paths are 

P\ = G1G2G3G4G5G6, P2 — G1G2G7G6, and /¾ = G1G2G3G4G8. 

The feedback loops are 

L\ = — G2G3G4G5H2, L2 = —Gsp^Hi, L3 = -G 8 / i i , L4 = -G-jH2G2, 
L5 = —G4H4, L6 = -GiG2G^G4G$G^H?„ L7 = —GiGiGqG^H^,, and 
Lg = —GiGiG^G^G^H^. 

Loop L5 does not touch loop L4 or loop L7, and loop L3 does not touch loop L4; but 
all other loops touch. Therefore, the determinant is 

A = 1 - (Li + L2 + L3 + L4 + L5 + L6 + L-, + L8) + (L5L7 + L5L4 + L3L4). 
(2.103) 

The cofactors are 

Ax = A3 = 1 and 

Finally, the transfer function is 

Y(s) 

A2 = 1 - L, = 1 + GAHA • 4 J 7 4 . 

T(s) = 
Pr + P2A2 + P2 

R(s) 
(2.104) 

Signal-flow graphs and Mason's signal-flow gain formula may be used prof­
itably for the analysis of feedback control systems, electronic amplifier circuits, sta­
tistical systems, and mechanical systems, among many other examples. 

2.8 DESIGN EXAMPLES 

In this section, we present six illustrative design examples. The first example describes 
modeling of a photovoltaic generator in a manner amenable to feedback control to 
achieve maximum power delivery as the sunlight varies over time. Using feedback 
control to improve the efficiency of producing electricity using solar energy in areas 
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of abundant sunlight is a valuable contribution to green engineering (discussed in 
Chapter 1). In the second example, we present a detailed look at modeling of the fluid 
level in a reservoir. The modeling is presented in a very detailed mariner to emphasize the 
effort required to obtain a linear model in the form of a transfer function. The design 
process depicted in Figure 1.17 is highlighted in this example. The remaining four exam­
ples include an electric traction motor model development, a look at a mechanical ac-
celerometer aboard a rocket sled, an overview of a laboratory robot and the associated 
hardware specifications, and the design of a low-pass filter. 

EXAMPLE 2.12 Photovoltaic generators 

Photovoltaic cells were developed at Bell Laboratories in 1954. Solar cells are one 
example of photovoltaic cells and convert solar light to electricity. Other types of 
photovoltaic cells can detect radiation and measure light intensity. The use of solar 
cells to produce energy supports the principles of green engineering by minimizing 
pollution. Solar panels minimize the depletion of natural resources and are effective 
in areas where sunlight is abundant. Photovoltaic generators are systems that pro­
vide electricity using an assortment of photovoltaic modules comprised of intercon­
nected solar cells. Photovoltaic generators can be used to recharge batteries, they 
can be directly connected to an electrical grid, or they can drive electric motors 
without a battery [34-42]. 

The power output of a solar cell varies with available solar light, temperature, 
and external loads. To increase the overall efficiency of the photovoltaic generator, 
feedback control strategies can be employed to seek to maximize the power output. 
This is known as maximum power point tracking (MPPT) [34-36]. There are certain 
values of current and voltage associated with the solar cells corresponding to the 
maximum power output. The MPPT uses closed-loop feedback control to seek the 
optimal point to allow the power converter circuit to extract the maximum power 
from the photovoltaic generator system. We will discuss the control design in later 
chapters, but here we focus on the modeling of the system. 

The solar cell can be modeled as an equivalent circuit shown in Figure 2.34 
composed of a current generator, IPH, a light sensitive diode, a resistance series, Rs, 
and a shunt resistance, RP [34,36-38]. 

The output voltage, VPV, is given by 

Vpv = — In 
IPH ~ hv + MIQ 

MIn MRshv, (2.105) 

where the photovoltaic generator is comprised of M parallel strings with N series 
cells per string, IQ is the reverse saturation current of the diode, IPH represents the 
insolation level, and A is a known constant that depends on the cell material [34-36]. 

FIGURE 2.34 
Equivalent circuit 
of the photovoltaic 
generator. 
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FIGURE 2.35 
Voltage versus 
current and power 
versus current 
for an example 
photovoltaic 
generator at a 
specific insolation 
level. 
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The insolation level is a measure of the amount of incident solar radiation on the 
solar cells. 

Suppose that we have a single silicon solar panel (M = 1) with 10 series cells 
(N = 10) and the parameters given by 1/A = 0.05 V, Rs = 0.025 ft, IPH = 3 A, 
and IQ = 0.001 A. The voltage versus current relationship in Equation (2.105) and 
the power versus voltage are shown in Figure 2.35 for one particular insolation level 
where IPH = 3 A. In Figure 2.35, we see that when dP/dIPV = 0 we are at the max­
imum power level with an associated VPV = Vmp and IPV = Impi the values of volt­
age and current at the maximum power, respectively. As the sunlight varies, the 
insolation level, IPH, varies resulting in different power curves. 

The goal of the power point tracking is to seek the voltage and current condition 
that maximizes the power output as conditions vary. This is accomplished by varying 
the reference voltage as a function of the insolation level. The reference voltage is the 
voltage at the maximum power point as shown in Figure 2.36. The feedback control 
system should track the reference voltage in a rapid and accurate fashion. 

Figure 2.37 illustrates a simplified block diagram of the controlled system. The 
main components are a power circuit (e.g., a phase control IC and a thyristor 
bridge), photovoltaic generator, and current transducer. The plant including the 
power circuit, photovoltaic generator, and current transducer is modeled as a sec­
ond-order transfer function given by 

G(s) = . K , (2.106) 
s(s + p) 

where K and p depend on the photovoltaic generator and associated electronics 
[35]. The controller, Gc(s), in Figure 2.37 is designed such that as the insolation lev­
els varies (that is, as IPH varies), the voltage output will approach the reference 
input voltage, Vref, which has been set to the voltage associated with the maximum 
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FIGURE 2.36 Maximum power point for varying values of lPH specifies Vre{. 
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FIGURE 2.37 Block diagram of feedback control system for maximum power transfer with 
parameters K and p. 

power point resulting in maximum power transfer. If, for example, the controller is 
the proportional plus integral controller 

Gc(s) = KP + ^-, 

the closed-loop transfer function is 

K(KPs + Kj) 
(2.107) 

5J + psz + KKpS + KK{ 

We can select the controller gains in Equation (2.107) to place the poles of T(s) 
in the desired locations (see Chapters 4 and 5) to meet the desired performance 
specifications. 
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EXAMPLE 2.13 Fluid flow modeling 

A fluid flow system is shown in Figure 2.38. The reservoir (or tank) contains water 
that evacuates through an output port. Water is fed to the reservoir through a pipe 
controlled by an input valve. The variables of interest are the fluid velocity V (m/s), 
fluid height in the reservoir H (m), and pressure p (N/m2). The pressure is defined 
as the force per unit area exerted by the fluid on a surface immersed (and at rest 
with respect to) the fluid. Fluid pressure acts normal to the surface. For further read­
ing on fluid flow modeling, see [28-30], 

The elements of the control system design process emphasized in this example 
are shown in Figure 2.39. The strategy is to establish the system configuration and 
then obtain the appropriate mathematical models describing the fluid flow reservoir 
from an input-output perspective. 

The general equations of motion and energy describing fluid flow are quite 
complicated. The governing equations are coupled nonlinear partial differential 
equations. We must make some selective assumptions that reduce the complexity of 
the mathematical model. Although the control engineer is not required to be a fluid 
dynamicist, and a deep understanding of fluid dynamics is not necessarily acquired 
during the control system design process, it makes good engineering sense to gain at 
least a rudimentary understanding of the important simplifying assumptions. For a 
more complete discussion of fluid motion, see [31-33]. 

To obtain a realistic, yet tractable, mathematical model for the fluid flow reser­
voir, we first make several key assumptions. We assume that the water in the tank is in­
compressible and that the flow is inviscid, irrotational and steady. An incompressible 
fluid has a constant density p (kg/m3). In fact, all fluids are compressible to some ex­
tent. The compressibility factor, k, is a measure of the compressibility of a fluid. A 
smaller value of k indicates less compressibility. Air (which is a compressible fluid) has 
a compressibility factor of k.Ail = 0.98 m2/N, while water has a compressibility factor 
o f ^H2O = 4.9 x 10-10 m2/N = 50 x 10~6 atnT1. In other words, a given volume of 
water decreases by 50 one-millionths of the original volume for each atmosphere 
(atm) increase in pressure. Thus the assumption that the water is incompressible is 
valid for our application. 

FIGURE 2.38 
The fluid flow 
reservoir 
configuration. 

Input 
valve 
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Topics emphasized in this example 

Establish the control goals 

Identify the variables to be controlled 

Write the specifications 

See Figure 2.38 for 
4 water tank with input and 

output ports. 

SeeEqs.(2.111)and(2.112)for 
the nonlinear model. 

SeeEqs.(2.117)and(2.119)for 
the linear models. 

Describe a controller and select key 
parameters to be adjusted 

Optimize the parameters and 
analyze the performance 

:x^ i 
If the performance does not meet the If the performance meets the specifications, 
specifications, then iterate the configuration. then finalize the design. 

FIGURE 2.39 Elements of the control system design process emphasized in the fluid flow 
reservoir example. 

Consider a fluid in motion. Suppose that initially the flow velocities are differ­
ent for adjacent layers of fluid. Then an exchange of molecules between the two lay­
ers tends to equalize the velocities in the layers. This is internal friction, and the 
exchange of momentum is known as viscosity. Solids are more viscous than fluids, 
and fluids are more viscous than gases. A measure of viscosity is the coefficient of 
viscosity /x (N s/m2). A larger coefficient of viscosity implies higher viscosity. The co­
efficient of viscosity (under standard conditions, 20°C) for air is 

^tair = 0.178 x 10-4 N s/m2, 

and for water we have 

/JLH2O = 1.054 X 10-3 N s/m2. 

So water is about 60 times more viscous than air. Viscosity depends primarily on tem­
perature, not pressure. For comparison, water at 0°C is about 2 times more viscous 
than water at 20°C. With fluids of low viscosity, such as air and water, the effects of 
friction are important only in the boundary layer, a thin layer adjacent to the wall of 

v 
Establish the system configuration 

V 

Obtain a model of the process, the 
actuator, and the sensor 

v 
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the reservoir and output pipe. We can neglect viscosity in our model development. 
We say our fluid is inviscid. 

If each fluid element at each point in the flow has no net angular velocity about 
that point, the flow is termed irrotational. Imagine a small paddle wheel immersed 
in the fluid (say in the output port). If the paddle wheel translates without rotating, 
the flow is irrotational. We will assume the water in the tank is irrotational. For an 
inviscid fluid, an initially irrotational flow remains irrotational. 

The water flow in the tank and output port can be either steady or unsteady. The 
flow is steady if the velocity at each point is constant in time. This does not neces­
sarily imply that the velocity is the same at every point but rather that at any given 
point the velocity does not change with time. Steady-state conditions can be 
achieved at low fluid speeds. We will assume steady flow conditions. If the output 
port area is too large, then the flow through the reservoir may not be slow enough to 
establish the steady-state condition that we are assuming exists and our model will 
not accurately predict the fluid flow motion. 

To obtain a mathematical model of the flow within the reservoir, we employ 
basic principles of science and engineering, such as the principle of conservation of 
mass. The mass of water in the tank at any given time is 

m = PAXH, (2.108) 

where Ax is the area of the tank, p is the water density, and H is the height of the 
water in the reservoir. The constants for the reservoir system are given in Table 2.7. 

In the following formulas, a subscript 1 denotes quantities at the input, and a 
subscript 2 refers to quantities at the output. Taking the time derivative of m in 
Equation (2.108) yields 

m = pA^H, 

where we have used the fact that our fluid is incompressible (that is, p = 0) and that 
the area of the tank, Ah does not change with time. The change in mass in the reser­
voir is equal to the mass that enters the tank minus the mass that leaves the tank, or 

m = pAxH = Qi- pA2v2, (2.109) 

where £?i is the steady-state input mass flow rate, v2 is the exit velocity, and A2 is the 
output port area. The exit velocity, v2, is a function of the water height. From 
Bernoulli's equation [39] we have 

-pvf+ A + pgH = -pv2
2+ P2, 

where Vi is the water velocity at the mouth of the reservoir, and Pi and P2 are the at­
mospheric pressures at the input and output, respectively. But Px and P2 are equal to 

Table 2.7 Water Tank Physical Constants 

P g A1 A2 H* Q* 
(kg/m3) (m/s2) [m2] [m2] (m) (kg/s) 

1000 9.8 TT/4 IT/400 1 34.77 
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atmospheric pressure, and A2 is sufficiently small (A2 = Ai/100), so the water flows 
out slowly and the velocity vx is negligible. Thus Bernoulli's equation reduces to 

v2 = VlgH. (2.110) 

Substituting Equation (2.110) into Equation (2.109) and solving for H yields 

H = - t^ VH + -\-Qh (2.111) 

pAx 

Using Equation (2.110), we obtain the exit mass flow rate 

Qi = P^2V2 = (pV2^42)V/7. (2.112) 

To keep the equations manageable, define 

A2V2g 

1 
ft,:-

Then, it follows that 

PA{ 

k3 := PV2gA2. 

H = h VH + k2Qh 

Q2 = k3VH. (2.113) 

Equation (2.113) represents our model of the water tank system, where the input is 
Q\ and the output is Q2. Equation (2.113) is a nonlinear, first-order, ordinary differ­
ential equation model. The nonlinearity comes from the H1^2 term. The model in 
Equation (2.113) has the functional form 

where 

/ ( / / , Qx) = k,VH + k2Qx and h(H, Qx) = fc3V//. 

A set of linearized equations describing the height of the water in the reservoir 
is obtained using Taylor series expansions about an equilibrium flow condition. 
When the tank system is in equilibrium, we have H = 0. We can define Q* and H* 
as the equilibrium input mass flow rate and water level, respectively. The relation­
ship between Q* and H* is given by 

Q* = —±\/H* = p\/2gA2Vm. (2.114) 
k2 

This condition occurs when just enough water enters the tank in A\ to make up for 
the amount leaving through A 2. We can write the water level and input mass flow 
rate as 

/ / = //* + A//, (2.115) 

Qx = Q* + AQlf 
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where AH and AQi are small deviations from the equilibrium (steady-state) values. 
The Taylor series expansion about the equilibrium conditions is given by 

H=f(HtQ{)=f{H\Q*) + ^ (H - H*) (2.116) 
<?.=<?* 

where 

and 

+ 

dH // = //* 
0.=0-

// = H (Gi - e*) + 

dikiVn + k2Q{) 
dH //=w* 

0i=0* 

1 kx 

2 tf* 

_#1 
dQi 

dfaVH + k2Qx) 
/ /=H» 
Qi=Q* dQi 

= k? 

Using Equation (2.114), we have 

H* = Q* 

so that 

dH / / = / / • 

<?.=o* 

P v 2gA2 

A2
2 gp 

' Ax Q* 

It follows from Equation (2.115) that 

H = AH, 

since H* is constant. Also, the term / ( / / * , Q*) is identically zero, by definition of 
the equilibrium condition. Neglecting the higher order terms in the Taylor series ex­
pansion yields 

AH = -
A2

2 gp 
AH + 

1 

PA 
•AQi. (2.117) 

Equation (2.117) is a linear model describing the deviation in water level AH from 
the steady-state due to a deviation from the nominal input mass flow rate A ^ . 

Similarly, for the output variable Q2 we have 

Qi = Q*2 + AQ2 = h(H,Q1) (2.118) 

h(H*,Q*) + ^ AH + — -
01=0- ^ 1 

AQi, 
// = //* X 

where AQ2 is a small deviation in the output mass flow rate and 

dh 
dH //=//* 

a=0* 
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and 
dh 

3(2i 
= 0. 

Therefore, the linearized equation for the output variable Q2 is 

A<22 = ^ ^ A / / - (2 1 1 9) 

For control system design and analysis, it is convenient to obtain the input-output 
relationship in the form of a transfer function. The tool to accomplish this is the 
Laplace transform, discussed in Section 2.4. Taking the time-derivative of Equation 
(2.119) and substituting into Equation (2.117) yields the input-output relationship 

A/S . A22 8P Kri A2
2gp A ^ 

A G 2 + ^ ^ A ( ? 2 = ^ A G l -

If we define 

then we have 

0 : = ^ ^ , (2.120) 

AQ2 + flAQ2 = OAQi. (2.121) 

Taking the Laplace transform (with zero initial conditions) yields the transfer 
function 

AQ2(s)/AQl(s) = - £ - . (2.122) 
s + 12 

Equation (2.122) describes the relationship between the change in the output mass 
flow rate AQ2{s) due to a change in the input mass flow rate AQx(s). We can also 
obtain a transfer function relationship between the change in the input mass flow 
rate and the change in the water level in the tank, AH(s). Taking the Laplace trans­
form (with zero initial conditions) of Eq. (2.117) yields 

AHisyAQds) = j ^ . (2.123) 

Given the linear time-invariant model of the water tank system in Equation (2.121), 
we can obtain solutions for step and sinusoidal inputs. Remember that our input 
AQi(s) is actually a change in the input mass flow rate from the steady-state value Q*. 

Consider the step input 

AQiCs) = q0/s, 

where q0 is the magnitude of the step input, and the initial condition is AQ2{0) = 0. 
Then we can use the transfer function form given in Eq. (2.122) to obtain 

AQ2(S) = Krnry 
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The partial fraction expansion yields 

^ 2 W s + ft s 
Taking the inverse Laplace transform yields 

at AQ2(0 = -q0e-w + q, 

Note that ft > 0 (see Equation (2.120)), so the term e nt approaches zero as t ap­
proaches co. Therefore, the steady-state output due to the step input of magnitude 
?0 is 

We see that in the steady state, the deviation of the output mass flow rate from the 
equilibrium value is equal to the deviation of the input mass flow rate from the equi­
librium value. By examining the variable ft in Equation (2.120), we find that the 
larger the output port opening A2, the faster the system reaches steady state. In 
other words, as ft gets larger, the exponential term e~nt vanishes more quickly, and 
steady state is reached faster. 

Similarly for the water level we have 

AffW = ̂ f - i - - i 
w ft \ s + ft s 

Taking the inverse Laplace transform yields 

AH(0 = ^ ( e - ° - - 1). 

The steady-state change in water level due to the step input of magnitude q0 is 

q0ki 

Consider the sinusoidal input 

which has Laplace transform 

A * . - fl. 

AQi(0 = qQ sin ojt, 

S + ft) 

Suppose the system has zero initial conditions, that is, AQ2(0) = 0. Then from Equa­
tion (2.122) we have 

, , <70ft)ft 
AQ2(s) = (S + ft)(s2 + ft)2) 

Expanding in a partial fraction expansion and taking the inverse Laplace trans­
form yields 

( e~nt sin(fttf - <f>) \ 
A£?2(0 = q0&<»\ „ 2 ^ 2 + /r>2 ^ 2x1/2 ' 

\ f t z + or ft)(ftz + (a1)1'1 J 
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where </> = tan (<w/ft). So, as t —> oo, we have 

AQ2(0 ^ / ! a sm(<ot - ¢). 
V f i 2 + w2 

The maximum change in output flow rate is 

lA^Olmax = - 7 = = 5 . (2.124) 
V f i 2 + a)2 

The above analytic analysis of the linear system model to step and sinusoidal 
inputs is a valuable way to gain insight into the system response to test signals. An­
alytic analysis is limited, however, in the sense that a more complete representa­
tion can be obtained with carefully constructed numerical investigations using 
computer simulations of both the linear and nonlinear mathematical models. A 
computer simulation uses a model and the actual conditions of the system being 
modeled, as well as actual input commands to which the system will be subjected. 

Various levels of simulation fidelity (that is, accuracy) are available to the con­
trol engineer. In the early stages of the design process, highly interactive design soft­
ware packages are effective. At this stage, computer speed is not as important as the 
time it takes to obtain an initial valid solution and to iterate and fine tune that solu­
tion. Good graphics output capability is crucial. The analysis simulations are gener­
ally low fidelity in the sense that many of the simplifications (such as linearization) 
made in the design process are retained in the simulation. 

As the design matures usually it is necessary to conduct numerical experiments 
in a more realistic simulation environment. At this point in the design process, the 
computer processing speed becomes more important, since long simulation times 
necessarily reduce the number of computer experiments that can be obtained and 
correspondingly raise costs. Usually these high-fidelity simulations are programmed 
in FORTRAN, C, C++, Matlab, Lab VIEW or similar languages. 

Assuming that a model and the simulation are reliably accurate, computer sim­
ulation has the following advantages [13]: 

1. System performance can be observed under all conceivable conditions. 

2. Results of field-system performance can be extrapolated with a simulation model for 
prediction purposes. 

3. Decisions concerning future systems presently in a conceptual stage can be examined. 

4. Trials of systems under test can be accomplished in a much-reduced period of time. 

5. Simulation results can be obtained at lower cost than real experimentation. 

6. Study of hypothetical situations can be achieved even when the hypothetical situation 
would be unrealizable at present. 

7. Computer modeling and simulation is often the only feasible or safe technique to 
analyze and evaluate a system. 

The nonlinear model describing the water level flow rate is as follows (using the 
constants given in Table 2.7): 

H = -0.0443 V / 7 + 1.2732 X 10" 3 Q b (2.125) 

Q2 = 34.77Vtf. 
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FIGURE 2.40 
The tank water level 
time history ob­
tained by integrat­
ing the nonlinear 
equations of motion 
in Equation (2.125) 
with H(0) = 0.5 m 
and Q1{f) = 
Q* = 34.77 kg/s. 
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With //(0) = 0.5 m and Q\{t) = 34.77 kg/s, we can numerically integrate the non­
linear model given by Equation (2.125) to obtain the time history of H(t) and £^(0-
The response of the system is shown in Figure 2.40. As expected from Equation 
(2.114), the system steady-state water level is H* = 1 m when Q* = 34.77 kg/m3. 

It takes about 250 seconds to reach steady-state. Suppose that the system is at 
steady state and we want to evaluate the response to a step change in the input mass 
flow rate. Consider 

AQi(0 = 1 kg/s. 

Then we can use the transfer function model to obtain the unit step response. The 
step response is shown in Figure 2.41 for both the linear and nonlinear models. 
Using the linear model, we find that the steady-state change in water level is 
AH = 5.75 cm. Using the nonlinear model, we find that the steady-state change in 
water level is AH = 5.84 cm. So we see a small difference in the results obtained 
from the linear model and the more accurate nonlinear model. 

As the final step, we consider the system response to a sinusoidal change in the 
input flow rate. Let 

AQiO?) = 2 ^ 2, s + or 

where &> = 0.05 rad/s and qa = 1. The total water input flow rate is 

Qx(t) = Q* + AQx(t), 

where Q* = 34.77 kg/s. The output flow rate is shown in Figure 2.42. 
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FIGURE 2.41 
The response 
showing the linear 
versus nonlinear 
response to a step 
input. 
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FIGURE 2.42 
The output flow rate 
response to a 
sinusoidal variation 
in the input flow. 
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The response of the water level is shown in Figure 2.43. The water level is sinu­
soidal, with an average value of Hav = H* = 1 m. As shown in Equation (2.124), 
the output flow rate is sinusoidal in the steady-state, with 

|A£2(0lmax = Vn 2 + to2 = 0.4 kg/s. 
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FIGURE 2.43 
The water level 
response to a 
sinusoidal variation 
in the input flow. 
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Thus in the steady-state (see Figure 2.42) we expect that the output flow rate will os­
cillate at a frequency of at — 0.05 rad/s, with a maximum value of 

Qo =Q* + |AQ2(0lmax = 35.18 kg/s. • 

EXAMPLE 2.14 Electric traction motor control 

A majority of modern trains and local transit vehicles utilize electric traction mo­
tors. The electric motor drive for a railway vehicle is shown in block diagram form in 
Figure 2.44(a), incorporating the necessary control of the velocity of the vehicle. The 
goal of the design is to obtain a system model and the closed-loop transfer function 
of the system, a)(s)/a)d(s), select appropriate resistors Rh R2, R$, and RA, and then 
predict the system response. 

The first step is to describe the transfer function of each block. We propose the 
use of a tachometer to generate a voltage proportional to velocity and to connect 
that voltage, vu to one input of a difference amplifier, as shown in Figure 2.44(b). 
The power amplifier is nonlinear and can be approximately represented by 
v2 = 2e2vx = g(vi), an exponential function with a normal operating point, 
vw = 1.5 V. Using the technique in Section 2.3, we then obtain a linear model: 

Ai>> = 
dgM 

dvi 
Avy = 2[3 exp(3w10)] A^ = 2(270) A^ = 540 A^. (2.126) 

«10 

Then, discarding the delta notation and using the Laplace transform, we find that 

V2(s) = StoV^s). 
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FIGURE 2.44 
Speed control of an 
electric traction 
motor. 
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Also, for the differential amplifier, we have 

1 + R2/Rx R2 
Vl = 1 + R3/R4^ ~ R~t

V>-
(2.127) 

We wish to obtain an input control that sets o)d(t) = vin, where the units of o)d 

are rad/s and the units of vin are volts. Then, when vm = 10 V, the steady-state speed 
is ft> = 10 rad/s. We note that vt = Kt(i)d in steady state, and we expect, in balance, 
the steady-state output to be 

1 + Ri/Ri Riv (2.128) 
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Table 2.8 Parameters of a Large DC Motor 
Km = 10 / = 2 
Ra = 1 b = 0.5 
La = \ Kb = 0.1 

When the system is in balance, Vi = 0, and when K( = 0.1, we have 

1 + * 2 / * l _ *2 - = i 

l + i?3/i?4 *1 ' ' 

This relation can be achieved when 

R2(Ri = 10 and R3/R4 = 10. 

The parameters of the motor and load are given in Table 2.8. The overall system is 
shown in Figure 2.44(b). Reducing the block diagram in Figure 2.44(c) or the signal-
flow graph in Figure 2.44(d) yields the transfer function 

<o(s) 540Gi(s)G2(s) 540GxG2 

cod(s) 1 + O . I G ^ + 540GxG2 1 + 5 4 0 . ^ ^ 

5400 5400 

(s + 1)(25 + 0.5) + 5401 Is1 + 2.5s + 5401.5 

2700 

s2 + 1.255 + 2700.75' 
(2.129) 

Since the characteristic equation is second order, we note that <on = 52 and 
£ = 0.012, and we expect the response of the system to be highly oscillatory (under-
damped). • 

EXAMPLE 2.15 Mechanical accelerometer 

A mechanical accelerometer is used to measure the acceleration of a rocket test 
sled, as shown in Figure 2.45. The test sled maneuvers above a guide rail a small dis­
tance 5. The accelerometer provides a measurement of the acceleration a{t) of the 
sled, since the position y of the mass M, with respect to the accelerometer case, is 
proportional to the acceleration of the case (and the sled). The goal is to design an 
accelerometer with an appropriate dynamic responsiveness. We wish to design an 
accelerometer with an acceptable time for the desired measurement characteristic, 
y{t) = qa{t), to be attained (q is a constant). 

The sum of the forces acting on the mass is 

dy_ 

dt "J '" df 
-b± -ky = M-t(y + x) 

or 
/2„ J„ Al dly dy t ^r d2x 

dt2 dt * df 
M-~r + b-r + ky = -M—ir. (2.130) 
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FIGURE 2.45 (a) This rocket-propelled sled set a world land speed record for a railed vehicle at 
6,453 mph (U.S. Air Force photo by 2nd Lt. Heather Newcomb). (b) A schematic of an accelerometer 
mounted on the rocket sled. 

Since 

is the engine force, we have 

cfx 
dt2 W 5 -y = F(t), 

My + by + ky = -jfF(t), 

or 

.. , b . k HO 
V i V H V = . 7 M 7 AT M, 

(2.131) 
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We select the coefficients where b/M = 3, k/M = 2, F{t)/Ms = Q{t), and we 
consider the initial conditions y(0) = - 1 and y(0) = 2. We then obtain the Laplace 
transform equation, when the force, and thus Q(t), is a step function, as follows: 

(s2Y(s) - sy(0) - y(0)) + 3(sY(s) - y(0)) + 2Y{s) = ~Q(s). (2.132) 

Since Q(s) = P/s, where P is the magnitude of the step function, we obtain 

(s2Y(s) + s - 2) + 3(sY(s) + 1) + 2Y(s) = - - , 

or 

(s2 + 35 + 2)Y(s) = 
~(s2 + s + P) 

Thus the output transform is 

Y{s) = 
-(s2 + s + P) -(s2 + s + P) 

s(s2 + 3s + 2) s(s + l)(s + 2)' 

Expanding in partial fraction form yields 

W S 5 + 1 + s + 2 

We then have 

* i 

- ( 5 2 + 5 + P) 

Similarly, k2= +P and /c3 = 

(5 + 1)(5 + 2) 

-P - 2 
. Thus, 

s=0 

P_ 

2* 

(2.133) 

(2.134) 

(2.135) 

(2.136) 

FIGURE 2.46 
Accelerometer 
response. 
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-P P -P - 2 
Y(s) = -^- + 7 + ^7 zr. (2.137) 

w 2s s + 1 2(5 + 2) v ' 
Therefore, the output measurement is 

At) = \l-P + -Pe"* - (P + 2)e~2% t > 0. 

A plot of y{t) is shown in Figure 2.46 for P — 3. We can see that y(t) is propor­
tional to the magnitude of the force after 5 seconds. Thus in steady state, after 5 sec­
onds, the response y{i) is proportional to the acceleration, as desired. If this period is 
excessively long, we must increase the spring constant, k, and the friction, b, while 
reducing the mass, M. If we are able to select the components so that b/M = 12 and 
k/M = 32, the accelerometer will attain the proportional response in 1 second. (It is 
left to the reader to show this.) • 

EXAMPLE 2.16 Design of a laboratory robot 

In this example, we endeavor to show the physical design of a laboratory device and 
demonstrate its complex design. We will also exhibit the many components com­
monly used in a control system. 

A robot for laboratory use is shown in Figure 2.47. A laboratory robot's work 
volume must allow the robot to reach the entire bench area and access existing ana­
lytical instruments. There must also be sufficient area for a stockroom of supplies for 
unattended operation. 

The laboratory robot can be involved in three types of tasks during an ana­
lytical experiment. The first is sample introduction, wherein the robot is trained 
to accept a number of different sample trays, racks, and containers and to intro­
duce them into the system. The second set of tasks involves the robot transport­
ing the samples between individual dedicated automated stations for chemical 
preparation and instrumental analysis. Samples must be scheduled and moved 
between these stations as necessary to complete the analysis. In the third set of 
tasks for the robot, flexible automation provides new capability to the analytical 
laboratory. The robot must be programmed to emulate the human operator or 
work with various devices. All of these types of operations are required for an 
effective laboratory robot. 

The ORCA laboratory robot is an anthropomorphic arm, mounted on a rail, de­
signed as the optimum configuration for the analytical laboratory [14]. The rail can 
be located at the front or back of a workbench, or placed in the middle of a table 
when access to both sides of the rail is required. Simple software commands permit 
moving the arm from one side of the rail to the other while maintaining the wrist po­
sition (to transfer open containers) or locking the wrist angle (to transfer objects in 
virtually any orientation). The rectilinear geometry, in contrast to the cylindrical 
geometry used by many robots, permits more accessories to be placed within the 
robot workspace and provides an excellent match to the laboratory bench. Move­
ment of all joints is coordinated through software, which simplifies the use of the 
robot by representing the robot positions and movements in the more familiar 
Cartesian coordinate space. 
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FIGURE 2.47 
Laboratory robot 
used for sample 
preparation. The 
robot manipulates 
small objects, such 
as test tubes, and 
probes in and out 
of tight places at 
relatively high 
speeds [15]. (Photo 
courtesy of 
Beckman Coulter, 
Inc.) 

Table 2.9 ORCA Robot Arm Hardware Specifications 

Arm 
Articulated, 
Rail-Mounted Teach Pendant 

Joy Stick with 
Emergency Stop 

Degrees of 
freedom 

Reach 
Height 

Rail 

Weight 
Precision 

Finger travel 
(gripper) 

Gripper rotation 

6 

±54 cm 
78 cm 

1 and 2 m 

8.0 kg 
±0.25 mm 

40 mm 

±77 revolutions 

Cycle lime 

Maximum speed 
Dwell time 

Payloacl 

Vertical deflection 
Cross-sectional 
work envelope 

4 s (move 1 inch up, 12 inch 
across, 1 inch down, and back) 

75 cm/s 
50 ms typical (for moves 

within a motion) 
0.5 kg continuous, 2.5 kg 
transient (with restrictions) 

<1.5 mm at continuous payload 
l m 2 

The physical and performance specifications of the ORCA system are shown in 
Table 2.9. The design for the ORCA laboratory robot progressed to the selection of 
the component parts required to obtain the total system. The exploded view of the 
robot is shown in Figure 2.48. This device uses six DC motors, gears, belt drives, and 
a rail and carriage. The specifications are challenging and require the designer to 
model the system components and their interconnections accurately. • 
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Honeycomb platform 

FIGURE 2.48 Exploded view of the ORCA robot showing the components [15]. (Courtesy of 
Beckman Coulter, Inc.) 

EXAMPLE 2,17 Design of a low-pass filter 

Our goal is to design a first-order low-pass filter that passes signals at a frequency 
below 106.1 Hz and attenuates signals with a frequency above 106.1 Hz. In addition, 
the DC gain should be 1/2. 

A ladder network with one energy storage element, as shown in Figure 2.49(a), 
will act as a first-order low-pass network. Note that the DC gain will be equal to l/2 

(open-circuit the capacitor).The current and voltage equations are 

h = (Vi - Vi)G, 

h = 05 - v3)G, 

V2 = (/, - I2)R, 

Vj, = I2Z, 
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v , Q •• 

R 
•AAAr o W V -

I lis) > I2(s) 
VAs) V?<R C 

+ 

(a) 

L, = -GR = - 1 

L, = - G / ? = - 1 

(b) 

FIGURE 2.49 
(a) Ladder network, 
(b) its signal-flow 
graph, and (c) its 
block diagram. 

VAs) O— 

(c) 

V^s) 

where G = 1/R, Z(s) = l/Cs, and ^(s) = Ix (we omit the (5)). The signal-flow 
graph constructed for the four equations is shown in Figure 2.49(b), and the corre­
sponding block diagram is shown in Figure 2.49(c). The three loops are 
Lt = -GR = - 1 , L2 = -GR = - 1 , and L3 = -GZ. All loops touch the forward 
path. Loops Li and L3 are nontouching. Therefore, the transfer function is 

T(s) = 
GZ 

1 - (Lj + L2 + L3) + LrL3 

1 = 1/&RC) 
3RCs + 2 s + 2/(3RC)' 

3 + 2GZ 

If one prefers to utilize block diagram reduction techniques, one can start at the out­
put with 

V3(s) = ZI2(s). 

But the block diagram shows that 
I2(s) = G(V2(s) - V3(s)). 

Therefore, 
V2(s) = ZGV2(s) - ZGV3(s) 
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so 

V2(s) = ^2¼^). 

We will use this relationship between V3(s) and Vz(s) in the subsequent develop­
ment. Continuing with the block diagram reduction, we have 

V3(s) = -ZGV3(s) + ZGR{h{s) - I2(s)), 

but from the block diagram, we see that 

h = GiV.is) - V2(s)), I2 = - | A 

Therefore, 

V3(s) = -ZGV3(s) + ZG2R(V{{s) - V2{s)) - GRV3(s). 

Substituting for V2(s) yields 

(GR)(GZ) 
Vs^ ~ 1 + 2GR + GZ + (GR)(GZ)Vi^' 

But we know that GR = 1; hence, we obtain 

Note that the DC gain is l/2, as expected. The pole is desired at p = 27r(106.1) = 
666.7 = 2000/3. Therefore, we require RC = 0.001. Select R = 1 k(l and 
C = 1 fiF. Hence, we achieve the filter 

333.3 
T(s) = 

(s + 666.7)' 

2.9 THE SIMULATION OF SYSTEMS USING CONTROL DESIGN SOFTWARE 

Application of the many classical and modern control system design and analysis 
tools is based on mathematical models. Most popular control design software pack­
ages can be used with systems given in the form of transfer function descriptions. In 
this book, we will focus on m-file scripts containing commands and functions to an­
alyze and design control systems. Various commercial control system packages 
are available for student use. The m-files described here are compatible with the 
MATLABf Control System Toolbox and the LabVIEW MathScript RT Module.* 

'See Appendix A for an introduction to MATLAB. 
*See Appendix B for an introduction to LabVIEW MathScipt RT Module. 
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We begin this section by analyzing a typical spring-mass-damper mathematical 
model of a mechanical system. Using an m-file script, we will develop an interac­
tive analysis capability to analyze the effects of natural frequency and damping 
on the unforced response of the mass displacement. This analysis will use the fact 
that we have an analytic solution that describes the unforced time response of the 
mass displacement. 

Later, we will discuss transfer functions and block diagrams. In particular, we 
are interested in manipulating polynomials, computing poles and zeros of transfer 
functions, computing closed-loop transfer functions, computing block diagram re­
ductions, and computing the response of a system to a unit step input. The section 
concludes with the electric traction motor control design of Example 2.14. 

The functions covered in this section are roots, poly, conv, polyval, tf, pzmap, 
pole, zero, series, parallel, feedback, minreal, and step. 

Spring-Mass-Damper System. A spring-mass-damper mechanical system is 
shown in Figure 2.2. The motion of the mass, denoted by y(t), is described by the dif­
ferential equation 

My{t) + by{t) + ky{t) = r(t). 

The unforced dynamic response y{t) of the spring-mass-damper mechanical 
system is 

y(t) = J^L_e-^' sin^Vl - £2t + Q\ 

where o)n - vk/M, £ = b/(2vkM), and 6 = cos-1 £. The initial displacement is 
y(0). The transient system response is underdamped when £ < 1, overdamped 
when £ > 1, and critically damped when £ = 1. We can visualize the unforced time 
response of the mass displacement following an initial displacement of y(0). Consider 
the underdamped case: 

• y(0) = 0.15 m, a>n = V 2 — , £ = -^= ( ̂ r = 2,-£-= 1 ). 7 ' sec' 2V2 \M M J 

The commands to generate the plot of the unforced response are shown in Figure 2.50. 
In the setup, the variables y(0), w„, f, and £ are input at the command level. Then the 
script unforced.m is executed to generate the desired plots. This creates an interac­
tive analysis capability to analyze the effects of natural frequency and damping on 
the unforced response of the mass displacement. One can investigate the effects of 
the natural frequency and the damping on the time response by simply entering new 
values of <an and £ at the command prompt and running the script unforced.m again. 
The time-response plot is shown in Figure 2.51. Notice that the script automatically 
labels the plot with the values of the damping coefficient and natural frequency. This 
avoids confusion when making many interactive simulations. Using scripts is an im­
portant aspect of developing an effective interactive design and analysis capability. 

For the spring-mass-damper problem, the unforced solution to the differential 
equation was readily available. In general, when simulating closed-loop feedback 
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FIGURE 2.50 
Script to analyze 
the spring-mass-
damper. 

»y0=0.15; 
»wn=sqrt(2); < 
»zeta=1/(2*sqrt(2)); 
»t=[0:0.1:10]; 
»unforced 

unforced.m 

%Compute Unforced Response to an Initial Condition 
% 
c=(yO/sqrt(1-zetaA2)); ««-
y=c*exp(-zeta*wn*t) .*sin(wn*sqrt(1 -zetaA2)*t+acos(zeta)); 
% 
bu=c*exp(-zeta*wn*t);bl=-bu; -* 
% 
plot(t)y,t,bu,'--',t,bl,'",)1 grid 
xlabel(Time (s)'), ylabel('y(t) (m)') 
legend(['\omega_n=',num2str(wn),' \zeta=',num2str(zeta)]) 

y(0)/Vl - p 

e &"' envelope 

FIGURE 2.51 
Spring-mass-
damper unforced 
response. 
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control systems subject to a variety of inputs and initial conditions, it is difficult to 
obtain the solution analytically. In these cases, we can compute the solutions numer­
ically and to display the solution graphically. 

Most systems considered in this book can be described by transfer functions. 
Since the transfer function is a ratio of polynomials, we begin by investigating how to 
manipulate polynomials, remembering that working with transfer functions means 
that both a numerator polynomial and a denominator polynomial must be specified. 
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FIGURE 2.52 
Entering the 
polynomial 
p(p) = s3 + 3s2 + 4 
and calculating its 
roots. 

»p=[1 3 0 4];-* 

»r=roots(p) 

r = 
-3.3553 
0.1777+ 1.0773i 
0.1777- 1.0773i 

»p=poly(r) M— 
P = 

Reassemble polynomial from roots. 

1.0000 3.0000 0.0000 4.0000 

Polynomials are represented by row vectors containing the polynomial coeffi­
cients in order of descending degree. For example, the polynomial 

p(s) = s3 + 3s2 + 4 

is entered as shown in Figure 2.52. Notice that even though the coefficient of the s 
term is zero, it is included in the input definition of p(s). 

If p is a row vector containing the coefficients of p(s) in descending degree, then 
roots(p) is a column vector containing the roots of the polynomial. Conversely, if r is 
a column vector containing the roots of the polynomial, then poly(r) is a row vector 
with the polynomial coefficients in descending degree. We can compute the roots of 
the polynomial p(s) = s3, + 3s2 + 4 with the roots function as shown in Figure 2.52. 
In this figure, we show how to reassemble the polynomial with the poly function. 

Multiplication of polynomials is accomplished with the conv function. Suppose 
we want to expand the polynomial 

n(s) = (3s2 + 2s + l)(s + 4). 

The associated commands using the conv function are shown in Figure 2.53. Thus, 
the expanded polynomial is 

n(s) = 3s3 + Us2 + 9s + 4. 

FIGURE 2.53 
Using conv and 
polyval to multiply 
and evaluate the 
polynomials 
(3s* + 2s + 1) 
(s + 4). 

»p=[3 2 1];q=[14]; 
»n=conv(p,q) 
n= 

1 1 A O /I -• 

»value=polyval(n,-5) 
vali IP — ^ 

-66 

Multiply p and q. 

n(s) = 3s3 + 14;r2 + 9s + 4 

Evaluate n(s) at s = — 5. 
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FIGURE 2.54 
(a) The tf function. 
(b) Using the tf 
function to create 
transfer function 
objects and adding 
them using t h e " + " 
operator. 

I 

i 

Transfer function 
object 

_ num 
G(s) = "ST 

I I 
sys = tf(num,den) 

» num1=[10];den1=[1 2 5]; 
» sys1=tf(num1,den1) 

Transfer function: 

10 
4 

sA2 + 2 s + 5 
GAs) 

» num2=[1];den2=[1 1]; 
» sys2=tf(num2,den2) 

Transfer function: 

1 

s + 1 

»sys=sys1+sys2 

Transfer function: 

sA2 + 12s+15 

sA3 + 3 sA2 + 7 s + 5 

G2(s) 

Giis) + G2(s) 

(a) (b) 

The function polyval is used to evaluate the value of a polynomial at the given 
value of the variable. The polynomial n(s) has the value n(—5) = -66, as shown in 
Figure 2.53. 

Linear, time-invariant system models can be treated as objects, allowing one to 
manipulate the system models as single entities. In the case of transfer functions, one 
creates the system models using the tf function; for state variable models one em­
ploys the ss function (see Chapter 3). The use of tf is illustrated in Figure 2.54(a). 
For example, if one has the two system models 

G,(s) = 10 and G2(s) = 
1 

s2 + 2s + 5 s + V 

one can add them using the "+" operator to obtain 

s2 + 12s + 15 
G(s) = G,(s) ~ G2(s) = 

s3 + 3s2 + 7s + 5 

The corresponding commands are shown in Figure 2.54(b) where sysl represents 
Gi(s) and sys2 represents G^Cs). Computing the poles and zeros associated with a 
transfer function is accomplished by operating on the system model object with the 
pole and zero functions, respectively, as illustrated in Figure 2.55. 

In the next example, we will obtain a plot of the pole-zero locations in the com­
plex plane. This will be accomplished using the pzmap function, shown in Figure 2.56. 
On the pole-zero map, zeros are denoted by an "o" and poles are denoted by an "X". 
If the pzmap function is invoked without left-hand arguments, the plot is generated 
automatically. 
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FIGURE 2.55 
(a) The pole and 
zero functions. 
(b) Using the pole 
and zero functions 
to compute the 
pole and zero 
locations of a linear 
system. 

Poles 

p=pole(sys) 

z=zero(sys) 

Transfer 
function 
object 

Zeros 

(a) 

»sys=tf([1 101J1 2 1]) 

Transfer function: 

s + 10 

sA2 + 2 s + 1 

P= 

•1 -
•1 

sys 

» z=zero(sys) 

z= 

-10 
The system zeros 

(b) 

FIGURE 2.56 
The pzmap 
function. 

P: pole locations in column vector 
Z: zero locations in column vector 

G(s) = 1 ^ = ^ 

[P,Z]=pzmap(sys) 

EXAMPLE 2.18 Transfer functions 

Consider the transfer functions 

G(s) = 
6s2 + 1 

53 + 3s2 + 3s + 1 
and H(s) = 

(s + 1)(5 + 2) 
(s + 2/)(5 - 2i)(s + 3)' 

Using an m-file script, we can compute the poles and zeros of G(s), the characteris­
tic equation of H(s), and divide G(s) by H(s). We can also obtain a plot of the 
pole-zero map of G(s)IH(s) in the complex plane. 

The pole-zero map of the transfer function G(s)IH(s) is shown in Figure 2.57, 
and the associated commands are shown in Figure 2.58. The pole-zero map shows 
clearly the five zero locations, but it appears that there are only two poles. This 



FIGURE 2.57 
Pole-zero map for 
G(s)/H(s). 
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Pole-Zero Map 

119 

FIGURE 2.58 
Transfer function 
example for G{s) 
and H(s). 

»numg=[6 0 1]; deng=[1 3 3 1];sysg=tf(numg,deng); 
»z=zero(sysg) 

Z- -4-
0 + 0.4082i 
0 - 0.4082J 

»p=pole(sysg) 

P = 

Compute poles and 
zeros of G(s) 

-1.0000 
-1.0000 + O.OOOOi 
-1.0000- O.OOOOi 

»n1=[1 1]; n2=[1 2]; d1=[1 2*i]; d2=[1 -2*i]; d3=[1 3]; 
»numh=conv(n1,n2); denh=conv(d1 ,conv(d2,d3)); 
»sysh=tf(numh,denh) 

Transfer function: 

sA2 + 3 s + 2 

' 

Expand H(s) 

sA3 + 3sA2 + 4s + 12 

»sys=sysg/sysh -*— 

Transfer function: 

fi{s) 

G(s) 
H(s) = sys 

6 sA5 +18 sM + 25 sA3 + 75 sA2 + 4 s +12 
sA5 + 6 sM + 14 sA3 + 16 sA2 + 9 s + 2 

»pzmap(sys) ^ Pole-zero map 

cannot be the case, since we know that for physical systems the number of poles 
must be greater than or equal to the number of zeros. Using the roots function, we 
can ascertain that there are in fact four poles at s = —1. Hence, multiple poles or 
multiple zeros at the same location cannot be discerned on the pole-zero map. • 
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FIGURE 2.59 
Open-loop control fUs) 
system (without 
feedback). 

Controller 
C,(s) tt.v) 

Block Diagram Models. Suppose we have developed mathematical models in the 
form of transfer functions for a process, represented by G(s), and a controller, repre­
sented by Gc(s), and possibly many other system components such as sensors and ac­
tuators. Our objective is to interconnect these components to form a control system. 

A simple open-loop control system can be obtained by interconnecting a 
process and a controller in series as illustrated in Figure 2.59. We can compute the 
transfer function from R(s) to Y(s), as follows. 

EXAMPLE 2.19 Series connection 

Let the process represented by the transfer function G(s) be 

G(s) = —?-r, v 500^2 

and let the controller represented by the transfer function Gc(s) be 

s + 1 
Gc(s) = 5 + 2' 

We can use the series function to cascade two transfer functions G\(s) and G2(s), as 
shown in Figure 2.60. 

The transfer function Gc(s)G(s) is computed using the series function as shown 
in Figure 2.61 .The resulting transfer function is 

Gc(s)G(s) = 
5 + 1 

500^3 + 1000^2 ~ SyS' 

where sys is the transfer function name in the m-file script. 

** Y(s) 

(a) 

FIGURE 2.60 
(a) Block diagram. 
(b) The series 
function. 

7Y ^ ^ ) 

i L 

[si 

1 
/s]= 

G,(*) = sysl 

:series(sy 

G2(s) = sys2 

I I 
s1 ,sys2) 

(b) 
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/Us) G,(i) 
s+ 1 
s + 2 

U(s) 
G(s) = 

500 «z Yis) 

(a) 

FIGURE 2.61 
Application of the 
series function. 

»numg=[1]; deng=[500 0 0]; sysg=tf(numg,deng); 
»numh=[1 1]; denh=[1 2]; sysh=tf(numh,denh); 
»sys=series(sysg,sysh); 
» s y s 

Transfer function: 

s + 1 
500 sA3 +1000 sA2 

Gc(s)G(s) 

(b) 

Uis 

System 1 
C,(5) 

System 2 
G2(s) 

(a) 

- • Y(s) 

FIGURE 2.62 
(a) Block diagram. 
(b) The parallel 
function. 

T(s) = W)=sys 

t , 
1 

[sys ]=P 

G]Cs) = sysl 

arallel(sy 

G2(s) = sys2 

1 1 
s1,sys2) 

(b) 

R(s) ^ O W 

FIGURE 2.63 A 
basic control 
system with unity 
feedback. 

Controller U(.s) 

Gc(s) 
Process 

G(s) 
• • Y(.\ 

Block diagrams quite often have transfer functions in parallel. In such cases, the 
function parallel can be quite useful. The parallel function is described in Figure 2.62. 

We can introduce a feedback signal into the control system by closing the loop 
with unity feedback, as shown in Figure 2.63. The signal Ea(s) is an error signal; the 
signal R(s) is a reference input. In this control system, the controller is in the for­
ward path, and the closed-loop transfer function is 

T(s) = 
Gc(s)G(s) 

1 =F Gc(s)G(s)' 
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R(s) 
System 1 
Gc(s)G(s) 

(a) 

• • Y(s) 

FIGURE 2.64 
(a) Block diagram. 
(b) The feedback 
function with unity 
feedback. 

T(s) = Ks)=sys Gc{s)G{s) = sysl +1 - positive feedback 
— 1 - negative feedback (default) 

i r 
[sys]=feedback(sys1 ,[1],sign) 

(b) 

R(s) • Q ». System 1 
G(s) 

System 2 
His) 

-*- Y(s) 

(a) 

FIGURE 2.65 
(a) Block diagram. 
(b) The feedback 
function. 

r ( * ) = i | = s y s 

i i 

G(s) = sysl 

i \ 
[sysj=feedback(sy 

H(s) = sys2 

. 1 
s1,sys2 

+1 - pos. feedback 
- 1 - neg. feedback 

(default) 

i 
.sign) 

(b) 

We can utilize the feedback function to aid in the block diagram reduction 
process to compute closed-loop transfer functions for single- and multiple-loop 
control systems. 

It is often the case that the closed-loop control system has unity feedback, as il­
lustrated in Figure 2.63. We can use the feedback function to compute the closed-
loop transfer function by setting H(s) = 1. The use of the feedback function for 
unity feedback is depicted in Figure 2.64. 

The feedback function is shown in Figure 2.65 with the associated system con­
figuration, which includes H(s) in the feedback path. If the input "sign" is omitted, 
then negative feedback is assumed. 
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/?(.*) Gc(s) 
s+ 1 
s + 2 

V{s) 
G(s) = 500 s2 •*> Y(s) 

(a) 

FIGURE 2.66 
(a) Block diagram. 
(b) Application of 
the feedback 
function. 

»numg=[1]; deng=[500 0 0]; sys1=tf(numg,deng); 
»numc=[1 1]; denc=[1 2]; sys2=tf(numc,denc); 
»sys3=series(sys1 ,sys2); 
»sys=feedback(sys3,[1 ]) 

Transfer function: 

s + 1 
5O0sA3 + 1000sA2 + s + 1 4 

Y(s) ._ Gc(s)G(s) 
R(s) I + Gc(s)G(s) 

(b) 

FIGURE 2.67 
A basic control 
system with the 
controller in the 
feedback loop. 

/?(.v) 
^ £«(*) Process 

G(s) 

Controller « « — 

• Y(s) 

EXAMPLE 2.20 The feedback function with unity feedback 

Let the process, G(s), and the controller, Gc(s), be as in Figure 2.66(a). To apply the 
feedback function, we first use the series function to compute Gc(s)G(s), followed 
by the feedback function to close the loop. The command sequence is shown in 
Figure 2.66(b). The closed-loop transfer function, as shown in Figure 2.66(b), is 

T(s) 
s + 1 Gc(s)G(s) 

1 + Gc(s)G(s) 500s3 + 1000^2 + .? + 1 sys. 

Another basic feedback control configuration is shown in Figure 2.67. In this case, 
the controller is located in the feedback path. The closed-loop transfer function is 

m = G(s) 

1 =F G(s)H(s)' 

EXAMPLE 2.21 The feedback function 

Let the process, G(s), and the controller, H(s), be as in Figure 2.68(a). To compute 
the closed-loop transfer function with the controller in the feedback loop, we use 
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Ris) • 
+ - . Ea{s) o G(s) = 

500 s2 

H{s) = 
s + I 
s + 2 

(a) 

- • Y(s) 

FIGURE 2.68 
Application of the 
feedback function: 
(a) block diagram, 
(b) m-file script. 

»numg=[1]; deng=[500 0 0]; sys1=tf(numg,deng); 
»numh=[1 1];denh=[1 2]; sys2=tf(numh,denh); 
»sys=feedback(sys1 ,sys2); 
» s y s 

Transfer function: 

s + 2 
500 s*3 + 1000 sA2 + s + 1 * 

Y(s) Gis) 
R(s) 1 + G(s)H(s) 

(b) 

the feedback function. The command sequence is shown in Figure 2.68(b). The 
closed-loop transfer function is 

T(s) = 
s + 2 

500s3 + 1000^2 + 5 + 1 = sys. 

The functions series, parallel, and feedback can be used as aids in block dia­
gram manipulations for multiple-loop block diagrams. 

EXAMPLE 2.22 Multiloop reduction 

A multiloop feedback system is shown in Figure 2.26. Our objective is to compute 
the closed-loop transfer function 

when 

and 

T{s) = 
Y(s) 
R(s) 

G1(s) = 

G3(s) = 

1 
s + 10' 

s2 + 1 
52 + 45 + 4' 

G2(s) = 1 
5 + V 

5 + 1 
G4(s) = 5 + 6' 

H^s) = 
5 + 1 
5 + 2' 

H2(s) = 2, and //3(5) = 1. 
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FIGURE 2.69 
Multiple-loop block 
reduction. 

»ng1=[1]; dg1=[1 10]; sysg1=tf(ng1,dg1); 
»ng2=[1]; dg2=[1 1]; sysg2=tf(ng2,dg2); 
»ng3=[1 0 1]; dg3=[1 4 4]; sysg3=tf(ng3,dg3); 
»ng4={1 1]; dg4=[1 6]; sysg4=tf(ng4,dg4); 
»nh1=[1 1];dh1=[1 2]; sysh1=tf(nh1,dh1); 
»nh2=[2]; dh2=[1]; sysh2=tf(nh2,dh2); 
»nh3=[1]; dh3=[1]; sysh3=tf(nh3,dh3); 
» s y s 1 =sysh2/sysg4; 
»sys2=series(sysg3,sysg4); 
»sys3=feedback(sys2,sysh1 ,+1); 
»sys4=series(sysg2,sys3); 
»sys5=feedback(sys4,sys1); 
»sys6=series(sysg1 ,sys5); 
»sys=feedback(sys6,sysh3); 

Transfer function: 

sA5 + 4 sM + 6 sA3 + 6 sA2 + 5 s + 2 
12 s ^ + 205 sA5 + 1066 sM + 2517 sA3 + 3128 sA2 + 2196 s + 712 

Step 1 

Step 2 

Step 3 

Step 4 

Step 5 

For this example, a five-step procedure is followed: 

Q Step 1. Input the system transfer functions. 

• Step 2. Move H2 behind G4. 

~) Step 3. Eliminate the G3G^Hi loop. 

0 Step 4. Eliminate the loop containing H2. 

• Step 5. Eliminate the remaining loop and calculate T(s). 

The five steps are utilized in Figure 2.69, and the corresponding block diagram 
reduction is shown in Figure 2.27. The result of executing the commands is 

sys = 
s5 + AsA + 6s3 + 6s2 + 5s + 2 

12s6 + 205s5 + 106654 + 2517s3 + 3128s2 + 2196s + 712' 

We must be careful in calling this the closed-loop transfer function. The transfer 
function is defined as the input-output relationship after pole-zero cancellations. 
If we compute the poles and zeros of T(s), we find that the numerator and denom­
inator polynomials have (s + 1) as a common factor. This must be canceled before 
we can claim we have the closed-loop transfer function. To assist us in the 
pole-zero cancellation, we will use the minreal function. The minreal function, 
shown in Figure 2.70, removes common pole-zero factors of a transfer function. 
The final step in the block reduction process is to cancel out the common factors, as 
shown in Figure 2.71. After the application of the minreal function, we find that the 
order of the denominator polynomial has been reduced from six to five, implying 
one pole-zero cancellation. • 
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FIGURE 2.70 
The minreal 
function. 

No common factors 

T(s) = sys 

sys=r Tiinr< 

Possible common factors 

G(s) ~ sysl 

3al(sys1) 

FIGURE 2.71 
Application of the 
minreal function. 

Cancel common factors. 

»num=[1 4 6 6 5 21; den=[12 205 1066 2517 3128 2196 712]; 
»sys1 =tf(num,den); 
»sys=minreal(sys1); M 

Transfer function: 

0.08333 sM + 0.25 sA3 + 0.25 sA2 + 0.25 s + 0.1667 
sA5 + 16.08 sM + 72.75 sA3 + 137 sA2 + 123.7 s + 59.33 

EXAMPLE 2.23 Electric traction motor control 

Finally, let us reconsider the electric traction motor system from Example 2.14. The 
block diagram is shown in Figure 2.44(c). The objective is to compute the closed-loop 
transfer function and investigate the response of <o(s) to a commanded Q)d(s). The 
first step, as shown in Figure 2.72, is to compute the closed-loop transfer function 
a)(s)/(od(s) = T(s). The closed-loop characteristic equation is second order with 
(on = 52 and £ = 0.012. Since the damping is low, we expect the response to be high­
ly oscillatory. We can investigate the response <o(t) to a reference input, <od(t), by uti­
lizing the step function. The step function, shown in Figure 2.73, calculates the unit 
step response of a linear system. The step function is very important, since control 
system performance specifications are often given in terms of the unit step response. 

FIGURE 2.72 
Electric traction 
motor block 
reduction. 

»num1=["IO]; den1=[1 1]; sys1=tf(num1,den1); 
»num2=[1]; den2=[2 0.5]; sys2=tf{num2,den2); 
»num3=[540]; den3=[1]; sys3=tf(num3,den3); 
»num4-[0.1]; den4-[1]; sys4-tf(num4,den4); 
»svs5=series(svs1 ,svs2); 
»sys6=feedback{sys5,sys4); " 

»sys7=series(sys3,sys6); 
»sys=feedback(sys7,[1]) M 1 

Transfer function: 

Eliminate 
inner loop 

Compute closed-loop 
transfer function 

5400 
2 sA2 + 2.5 s + 5402 ' 

w(s) 

<od(s) 
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«(/) 
Step System 
input | G(s) 

(a) 

>•</) 
Output 

•> t 

FIGURE 2.73 
The step function. 

y(t) = output response at t 
T = simulation time 

G(s) = sys 

t = T: user-supplied time vector 
or 
t = Tflna,: simulation final time 

(optional) 

][ 
[y,T]=step(sys,t) 

(b) 

0 

Jlf f i i Hizi 
0 0.5 1.0 1.5 2.0 

Time (s) 

(a) 

2.5 3.0 

% This script computes the step 
% response of the traction motor 
% wheel velocity 
% 
num=[5400]; den=[2 2.5 5402]; sys=rf(num,den); 
t=[0:0.005:3]; 
[y,t]=step(sys,t); 
plot(t,y),grid 
xlabel(Time (s)') 
ylabel('Wheel velocity1) 

(b) 

FIGURE 2.74 (a) Traction motor wheel velocity step response, (b) m-file script. 

If the only objective is to plot the output,y(t), we can use the step function with­
out left-hand arguments and obtain the plot automatically with axis labels. If we 
need y{f) for any purpose other than plotting, we must use the step function with 
left-hand arguments, followed by the plot function to plot y(t). We define t as a row 
vector containing the times at which we wish the value of the output variable y(t). 
We can also select t — /gnai, which results in a step response from t — 0 to t — ffmai 
and the number of intermediate points are selected automatically. 

The step response of the electric traction motor is shown in Figure 2.74. As 
expected, the wheel velocity response, given by y(t), is highly oscillatory. Note 
that the output is y(t) s o)(t). m 
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2.10 SEQUENTIAL DESIGN EXAMPLE: DISK DRIVE READ SYSTEM 

"~f In Section 1.10, we developed an initial goal for the disk drive system: to position the 
— 4 reader head accurately at the desired track and to move from one track to another 

within 10 ms, if possible. We need to identify the plant, the sensor, and the controller. 
We will obtain a model of the plant G(s) and the sensor. The disk drive reader uses 
a permanent magnet DC motor to rotate the reader arm (see Figure 1.29). The DC 
motor is called a voice coil motor in the disk drive industry. The read head is mount­
ed on a slider device, which is connected to the arm as shown in Figure 2.75. A flex­
ure (spring metal) is used to enable the head to float above the disk at a gap of less 
than 100 nm.The thin-film head reads the magnetic flux and provides a signal to an 
amplifier. The error signal of Figure 2.76(a) is provided by reading the error from a 
prerecorded index track. Assuming an accurate read head, the sensor has a transfer 
function H(s) = 1, as shown in Figure 2.76(b). The model of the permanent magnet 
DC motor and a linear amplifier is shown in Figure 2.76(b). As a good approxima­
tion, we use the model of the armature-controlled DC motor as shown earlier in 

FIGURE 2.75 
Head mount for 
reader, showing 
flexure. 

Motor 

Flexure 

Head 

Desired . „ 
head ^ 

position - i 

~s, urror 
J * 
. 

Control device 

Amplifier 

Input 
voltage 

Actuator and read arm 

DC motor and arm 

Sensor 
r> A l J • I 1 J* 1 

(a) 

Actual 
head 

position 

FIGURE 2.76 
Block diagram 
model of disk drive 
read system. 

IHs) • o E(s) 
Amplifier 

K„ 
V(s) 

Motor and arm G(s) 

0(s)' K. 
s(Js+b)(Ls+R) 

Sensor 

H{s) = 1 

- • ns) 

(b) 
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Table 2.10 Typical Parameters for Disk Drive Reader 

Parameter Symbol Typical Value 
Inertia of arm and 
read head 

Friction 
Amplifier 
Armature resistance 
Motor constant 
Armature inductance 

J 
b 
Ka 

R 
Km 
L 

1 N m s2/rad 
20 N m s/rad 
10-1000 
i n 
5Nm/A 
lmH 

Figure 2.20 with Kb = 0. The model shown in Figure 2.76(b) assumes that the flex­
ure is entirely rigid and does not significantly flex. In Chapter 4, we will consider the 
model when the flexure cannot be assumed to be completely rigid. 

Typical parameters for the disk drive system are given in Table 2.10.Thus, we have 

G(s) = 
K„ 

We can also write 

G(s) = 

s(Js + b)(Ls + R) 

5000 
s(s + 20)(5 + 1000)' 

Km/(bR) 
S(TLS + 1)(TS + 1)' 

(2.138) 

(2.139) 

where TL = J/b = 50 ms and T = L/R = 1 ms. Since T <*C TL, we often neglect T. 
Then, we would have 

G(s) 
0.25 KJ(bR) 

S(TLS + 1) 5(0.055 + 1)' 

or 

G(s) = 
s(s + 20) 

The block diagram of the closed-loop system is shown in Figure 2.77. Using the 
block diagram transformation of Table 2.6, we have 

Y(s) KaG(s) 
R(s) 1 + KaG(s)' 

(2.140) 

FIGURE 2.77 
Block diagram of 
closed-loop 
system. 

/?(.*) HQ • ^ , 

J * *« G(s) • Yis) 
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FIGURE 2.78 
The system 
response of the 
system shown in 
Figure 2.77 for 

R(s) = — . 

0.12 

0.1 

0.08 

0.06 

0.04 

0.02 

0 

/' i 
—, /__+ 1 , 

i / i 
I / : i 

/j __. [ 

/ i 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 
Time (s) 

Using the approximate second-order model for G(s), we obtain 

When Ka = 40, we have 

5Kn Y(s) 
R(s) s1 + 20s + 5Ka 

Y(s) 
200 

s2 + 20s + 200 
R(s). 

0.1 
We obtain the step response for R(s) — — rad, as shown in Figure 2.78. 

2.11 SUMMARY 

In this chapter, we have been concerned with quantitative mathematical models of con­
trol components and systems. The differential equations describing the dynamic perfor­
mance of physical systems were utilized to construct a mathematical model. The 
physical systems under consideration included mechanical, electrical, fluid, and thermo­
dynamic systems. A linear approximation using a Taylor series expansion about the op­
erating point was utilized to obtain a small-signal linear approximation for nonlinear 
control components. Then, with the approximation of a linear system, one may utilize 
the Laplace transformation and its related input-output relationship given by the trans­
fer function. The transfer function approach to linear systems allows the analyst to 
determine the response of the system to various input signals in terms of the location 
of the poles and zeros of the transfer function. Using transfer function notations, block dia­
gram models of systems of interconnected components were developed. The block 
relationships were obtained. Additionally, an alternative use of transfer function models 
in signal-flow graph form was investigated. Mason's signal-flow gain formula was inves­
tigated and was found to be useful for obtaining the relationship between system variables 
in a complex feedback system. The advantage of the signal-flow graph method was the 
availability of Mason's signal-flow gain formula, which provides the relationship 
between system variables without requiring any reduction or manipulation of the flow 
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graph. Thus, in Chapter 2, we have obtained a useful mathematical model for feedback 
control systems by developing the concept of a transfer function of a linear system and 
the relationship among system variables using block diagram and signal-flow graph 
models. We considered the utility of the computer simulation of linear and nonlinear 
systems to determine the response of a system for several conditions of the system pa­
rameters and the environment. Finally, we continued the development of the Disk Drive 
Read System by obtaining a model in transfer function form of the motor and arm. 

CHECK 

In this section, we provide three sets of problems to test your knowledge: True or False, Multiple 
Choice, and Word Match. To obtain direct feedback, check your answers with the answer key 
provided at the conclusion of the end-of-chapter problems. Use the block diagram in Figure 2.79 
as specified in the various problem statements. 

w 

R{s) o w 
) * 

Controller 

Gc(s) 
+ 

V* 
• Y(s) 

N{s) 

FIGURE 2.79 Block diagram for the Skills Check. 

In the following TVue or False and Multiple Choice problems, circle the correct answer. 

1. Very few physical systems are linear within some range of the variables. True or False 

2. The s-plane plot of the poles and zeros graphically portrays the character 
True or False 

True or False 

True or False 

True or False 

of the natural response of a system. 
3. The roots of the characteristic equation are the zeros of the closed-loop 

system. 

4. A linear system satisfies the properties of superposition and homogeneity. 

5. The transfer function is the ratio of the Laplace transform of the output 
variable to the Laplace transform of the input variable, with all initial 
conditions equal to zero. 

6. Consider the system in Figure 2.79 where 

Gc(*) = 10, H(s) = l, and G(s) = s + ** 
s* + 60.y + 500 

If the input R(s) is a unit step input, Td(s) = 0, and N(s) = 0, the final value of the out­
put Y(s) is: 
a. yss = limy(t) = 100 

f-»CO 

b. yss = lira y(t) = 1 
t—*oo 

c. yss = lim y(t) = 50 
f~»0O 

d. None of the above 
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7. Consider the system in Figure 2.79 with 

Gc(s) = 20, H{s) = 1, and G(s) = 
s + 4 

52 - 125 - 65 
When all initial conditions are zero, the input R(s) is an impulse, the disturbance 
Td(s) ~ 0, and the noise N(s) = 0, the output y(t) is 

a. y(t) = 10e~5' + 10e~3' 

b. y(t) = e'* + 10e~' 

c. y(t) = 10e~3' - 10e_5r 

d. y(t) = 20e-8' + 5e~15' 

8. Consider a system represented by the block diagram in Figure 2.80. 

R(s) 

FIGURE 2.80 Block diagram with an internal loop. 

The closed-loop transfer function T(s) = Y(s)/R(s) is 

s2 

s2 

+ 55s + 50 
10 

+ 555 + 10 

10 

b. T(s) = 

c. T(s) = , 
v 52 + 505 + 55 

d. None of the above 

Consider the block diagram in Figure 2.79 for Problems 9 through 11 where 

5 Gc(s) = 4, H(s) = 1, and G{s) = 

9. The closed-loop transfer function T(s) = Y(s)/R(s) is: 

TV ^ 5 0 

a. T(s) = 

b. T(s) = 

c. T(s) = 

d. T(s) = 

s2 + 10s + 5' 

s2 

s2 

s2 

s2 

+ 5s + 50 
20 

+ 105 + 25 

50 
+ 55 + 56 

20 
+ 105 - 15 
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10. The closed-loop unit step response is: 

a. y{t) = i r + 
20 20 _, 5' _ t2e-5t 

25 25 

b. y{t) = 1 + 20re~5' 

°~5t - 4te~5t , s 20 20 
- 3 M = 2 5 - 2 5 e 

d. y(t) = 1 - 2e~5' - Ate'5' 

11. The final value of y(t) is: 

a. y„ = lim y(t) = 0.8 
r-*oo 

b. yw = lim y(f) = 1.0 
f-»oo 

c. y„ = Kmy(t) = 2.0 
/->oo 

d. yss = lim y(t) = 1.25 
/—»00 

12. Consider the differential equation 

y + 2y + y = u 

where y(0) = y(0) = 0 and u(t) is a unit step. The poles of this system are: 

a. s-i = - 1 , ¾ = - 1 

b. 5! = 1/, 52 = - 1 ; 

C S-i = - 1 , 5 2 = —2 

d. None of the above 

13. A cart of mass m = 1000 kg is attached to a truck using a spring of stiffness 
k = 20,000 N/m and a damper of constant 6 = 200 Ns/m, as shown in Figure 2.81. 
The truck moves at a constant acceleration of a = 0.7 m/s2. 

FIGURE 2.81 Truck pulling a cart of mass m. 

The transfer function between the speed of the truck and the speed of the cart is: 

50 
a. T(s) = 

b. T(s) -

c. T(s) = 

552 + s + 100 
20 + s 

^ + 105 + 25 
100 + 5 

5s2 + s + 100 
d. None of the above 



134 Chapter 2 Mathematical Models of Systems 

14. Consider the closed-loop system in Figure 2.79 with 

1000 
Gc(s) = 15, H(s) = 1, and G(s) = 

s3 + 50s2 + 45005 + 1000' 

Compute the closed-loop transfer function and the closed-loop zeros and poles. 

15000 
a. T(s) = - ,5! = -3.70,52 3 = -23.15 ± 61.59/ 

53 + 5052 + 45005 + 16000 ' ' 
. ^, N 15000 „„„ n,nn 

b. 7/(5) = — , Si = -3.70,5, = -86.29 
5052 + 45005 + 16000 

1 
c. T(5) = -r 5 ,5X = -3.70,52 , = -23.2 ± 63.2/ 

' 53 + 5052 + 45005 + 16000 
d. 7/(5) = 1_292 s = _3 > 7 0 s = -23.2, s3 = -63.2 

53 + 5052 + 45005 + 16000 

15. Consider the feedback system in Figure 2.79 with 
K(s + 0.3) 1 

Gc(s) = — -, H{s) = 2s, and G(s) = (5 - 2)(52 + 10s + 45)' 

Assuming R(s) = 0 and N(s) = 0, the closed-loop transfer function from the distur­
bance 7/rf(5) to the output Y(s) is: 

a. 

b. 

d. 

Y(s) 

Td(s) 

Y(s) 

Td(s) 

Y(s) 

Td(s) 

Y(s) 

1 

53 + 8^ + ( 2 ^ + 25)5 + (0.6K - 90) 

100 

53 + 852 + (2K + 25)5 + (0.6K - 90) 

1 

852 + (2K + 25)5 + (0.6K - 90) 

K(s + 0.3) 

Td(s) s4 + 853 + {2K + 25)52 + {0.6K - 90)5 

In the following Word Match problems, match the term with the definition by writing the 
correct letter in the space provided. 

a. Actuator An oscillation in which the amplitude decreases with 
time. 

b. Block diagrams A system that satisfies the properties of superposition 

and homogeneity. 

c Characteristic The case where damping is on the boundary between 
equation underdamped and overdamped. 

d. Critical damping A transformation of a function f(t) from the time 
domain into the complex frequency domain 
yielding F(s). 

e. Damped oscillation The device that provides the motive power to the 
process. 

f. Damping ratio A measure of damping. A dimensionless number 
for the second-order characteristic equation. 

g. DC motor The relation formed by equating to zero the 
denominator of a transfer function. 
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h. Laplace transform 

i. Linear 
approximation 

j . Linear system 

k. Mason loop rule 

1. Mathematical 
models 

m. Signal-flow graph 

n. Simulation 

o. Transfer function 

Unidirectional, operational blocks that represent the 
transfer functions of the elements of the system. 

A rule that enables the user to obtain a transfer 
function by tracing paths and loops within a system. 

An electric actuator that uses an input voltage as 
a control variable. 

The ratio of the Laplace transform of the output 
variable to the Laplace transform of the input variable. 

Descriptions of the behavior of a system using 
mathematics. 

A model of a system that is used to investigate the 
behavior of a system by utilizing actual input signals. 

A diagram that consists of nodes connected by several 
directed branches and that is a graphical representation 
of a set of linear relations. 

An approximate model that results in a linear relationship 
between the output and the input of the device. 

EXERCISES 

Exercises are straightforward applications of the concepts 
of the chapter. 
E2.1 A unity, negative feedback system has a nonlinear 

function y = /(e) = e2, as shown in Figure E2.1. For an 
input r in the range of 0 to 4, calculate and plot the open-
loop and closed-loop output versus input and show that 
the feedback system results in a more linear relationship. 

Close switch for closed loop 

FIGURE E2.1 Open and closed loop. 

E2.2 A thermistor has a response to temperature repre­
sented by 

R = / ^ - 0 1 - ^ 

where R0 = 10,000 ft, R = resistance, and T = tem­
perature in degrees Celsius. Find the linear model for 
the thermistor operating at T = 20°C and for a small 
range of variation of temperature. 
Answer: AR = -135AF 

E2.3 The force versus displacement for a spring is shown 
in Figure E2.3 for the spring-mass-damper system of 
Figure 2.1. Graphically find the spring constant for the 
equilibrium point of y = 0.5 cm and a range of opera­
tion of ±1.5 cm. 

H—I—h 

Springf 
compresses 

Spring 
breaks 

I fc Displacement 
"™' (em) 

FIGURE E2.3 Spring behavior. 

E2.4 A laser printer uses a laser beam to print copy 
rapidly for a computer. The laser is positioned by a 
control input r(t), so that we have 

7 ( 5 ) -
4(s + 50) 

s2 + 30s + 200 
R(s). 

The input r(t) represents the desired position of the 
laser beam. 

(a) If r(t) is a unit step input, find the output y(t). 
(b) What is the final value of y{t)l 

Answer: (a) y{t) = 1 + 0.6<T20' - 1.6<T10', (b) yss = 1 

E2.5 A noninverting amplifier uses an op-amp as shown 
in Figure E2.5. Assume an ideal op-amp model and 
determine v0/vm. 

Answer: — - 1 + — 
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«2 
^ W v -

+ 0-

TT 

R(s) 
+ r~\ 

_ . i 

Gito — • 

WW 

G2W 

(a) 

Hs) 

FIGURE E2.5 A noninverting amplifier using an op-amp. 

E2.6 A nonlinear device is represented by the function 

y = /{X) = e*, 

where the operating point for the input x is x0 = 1. 
Determine a linear approximation valid near the oper­
ating point. 

Answer: y = ex 

E2.7 A lamp's intensity stays constant when monitored by 
an optotransistor-controlled feedback loop. When the 
voltage drops, the lamp's output also drops, and opto-
transistor Q\ draws less current. As a result, a power 
transistor conducts more heavily and charges a capaci­
tor more rapidly [24]. The capacitor voltage controls 
the lamp voltage directly. A block diagram of the sys­
tem is shown in Figure E2.7. Find the closed-loop trans­
fer function, I(s)!R(s) where I{s) is the lamp intensity, 
and R(s) is the command or desired level of light. 

E2.8 A control engineer, N. Minorsky, designed an innov­
ative ship steering system in the 1930s for the U.S. 
Navy. The system is represented by the block diagram 
shown in Figure E2.8, where Y(s) is the ship's course, 
/?(.?) is the desired course, and A(s) is the rudder angle 
[16]. Find the transfer function Y(s)IR(s). 

A 
Iris 

Filter 

N 

\ 
Opaque tube 

fb) 

FIGURE E2.7 Lamp controller. 

Answer: 
R(S) 

KG,(*)G2(s)/j 

1 + G1(s)H?,(s) + <h(*yGffMiW + //*(*)] + KCh(s)GAs)/s 

E2.9 A four-wheel antilock automobile braking system 
uses electronic feedback to control automatically the 
brake force on each wheel [15]. A block diagram 
model of a brake control system is shown in Figure E2.9, 
where iy(s) and FR(s) are the braking force of the 
front and rear wheels, respectively, and R{s) is the 
desired automobile response on an icy road. Find 
Ff(s)/R(s). 

R(s)• ky4 

H2{s) 

G?iW 

ffjW 

//,(•') 

A 

«-

G2(s) -*• I 
s Y(s) 

FIGURE E2.8 Ship steering system. 
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R(s\ • 

H2(s) 

G,(s) 

H2(s) 

G2(.t) 

G3(s) 

*• FAx) 

*• Fsis) 

FIGURE E2.9 Brake control system. 

E2.10 One of the most potentially beneficial applications 
of an automotive control system is the active control of 
the suspension system. One feedback control system 
uses a shock absorber consisting of a cylinder filled 
with a compressible fluid that provides both spring and 
damping forces [17].The cylinder has a plunger activat­
ed by a gear motor, a displacement-measuring sensor, 
and a piston. Spring force is generated by piston dis­
placement, which compresses the fluid. During piston 
displacement, the pressure unbalance across the piston 
is used to control damping. The plunger varies the in­
ternal volume of the cylinder. This feedback system is 
shown in Figure E2.10. Develop a linear model for this 
device using a block diagram model. 

E2.ll A spring exhibits a force-versus-displacement 
characteristic as shown in Figure E2.ll. For small de­
viations from the operating point x0, find the spring 
constant when x0 is (a) -1.4; (b) 0; (c) 3.5. 

E2.12 Off-road vehicles experience many disturbance 
inputs as they traverse over rough roads. An active 
suspension system can be controlled by a sensor that 
looks "ahead" at the road conditions. An example of a 
simple suspension system that can accommodate the 
bumps is shown in Figure E2.12. Find the appropriate 

Plunger 

Damping 
orifice 

Piston rod Piston travel 

FIGURE E2.10 Shock absorber. 

FIGURE E2.11 Spring characteristic. 

gain Kx so that the vehicle does not bounce when the 
desired deflection is R{s) = 0 and the disturbance is 
Us). 

Answer: K^K^ = 1 

Bump disturbance 

Preview of disturbance 

< • 

* i 

Desired «»> J 
deflection + S 

s 
J 
. _ 

K2 

1 'j( 

+ .. 

T<~> 

r; 

dynamics 

G(.v) 
m 

Bounce of 

auto or 

horizontal 

FIGURE E2.12 Active suspension system. 
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E2.13 Consider the feedback system in Figure E2.13. Com­

pute the transfer functions Y(s)/Td(s) and Y(s)/N(s). 

E2.14 Find the transfer function 

Yj(s) 

R2(s) 

for the multivariate system in Figure E2.14. 

E2.15 Obtain the differential equations for the circuit in 
Figure E2.15 in terms of ^ and i2. 

E2.16 The position control system for a spacecraft plat­
form is governed by the following equations: 

d2p dp 
—f + 2-p + 4p = B 
dt2 dt 

Vi=r- p 

- = 0 6 * 

V2 = lV\. 

The variables involved are as follows: 

r(t) = desired platform position 

p{t) = actual platform position 

V\{l) = amplifier input voltage 

v2(t) = amplifier output voltage 

0(/) = motor shaft position 

Sketch a signal-flow diagram or a block diagram of 
the system, identifying the component parts and de­
termine the system transfer function P(s)/R(s). 

W 

FIGURE E2.13 Feedback system with measurement noise, A/(s), and plant 
disturbances, Td(s). 

Ms) 

«.(*) 

R2(s) 

Gfr) 
+ r~\ 

G4{s) 

+v 
G7(s) 

-iF— 
k 

G%(s) 

G5{s) 

H2(s) 

G2(s) 

G9{s) 

i k 

+x~ 
+ 1 k 

Hl(5) 

Gjlis) 

Gb{s) 

" • W 

• Ki(.V) 

FIGURE E2.14 Multivariate system. 
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«(f)© 

FIGURE E2.15 Electric circuit. 

E2.17 A spring develops a force /represented by the rela­
tion 

/ = kx2, 

where x is the displacement of the spring. Determine 
a linear model for the spring when x0 = j -

E2.18 The output y and input x of a device are related by 

y = x + 1.4x3. 

(a) Find the values of the output for steady-state op­
eration at the two operating points x0 = 1 and x0 = 2. 
(b) Obtain a linearized model for both operating 
points and compare them. 

E2.19 The transfer function of a system is 

Y(s) _ 15(.f + 1) 

R(s) ~ s2 + 9s + 14' 

Determine y{t) when r(t) is a unit step input. 

Answer: y(t) = 1.07 + l i e - * - 2.57e-7', t s 0 

E2.20 Determine the transfer function VQ(s)/V{s) of the op­
erational amplifier circuit shown in Figure E2.20. Assume 
an ideal operational amplifier. Determine the transfer 
function when /?, = R2 = 100 kfl, Cx = 10 jttF, and 
C2 = 5 fiF. 

C, 

i^l' 

-1(-

•t * o + 

-o — 

E2.21 A high-precision positioning slide is shown in Figure 
E2.21. Determine the transfer function Xp(s)/Xm(s) 
when the drive shaft friction is bd = 0.7, the drive shaft 
spring constant is kd = 2, mc = 1, and the sliding 
friction is bs = 0.8. 

Sliding 
friction, b. 

FIGURE E2.21 Precision slide. 

E2.22 The rotational velocity &> of the satellite shown in 
Figure E2.22 is adjusted by changing the length of the 
beam L. The transfer function between <x)(s) and the 
incremental change in beam length AL(s) is 

w(s) 2{s + 4) 

AZ-(.v) (s + 5)(s + 1)2 

The beam length change is AL(i) = 1/s. Determine 
the response of the rotation co(t). 

Answer: «(r) = 1.6 + 0.025e~5' - 1.625«-' - 1.5te-' 

FIGURE E2.20 Op-amp circuit. 

Rotation 

FIGURE E2.22 Satellite with adjustable rotational velocity. 

E2.23 Determine the closed-loop transfer function T(s) = 
Y(s)/R(s) for the system of Figure E2.23. 

Nidal
Rectangle



140 Chapter 2 Mathematical Models of Systems 

/?(.v) O — • • 

FIGURE E2.23 Control system with three feedback loops. 

E2.24 The block diagram of a system is shown in 
Figure E2.24. Determine the transfer function 
T(s) = Y(s)/R(s). 

E2.26 Determine the transfer function X2(s)/F(s) for the 
system shown in Figure E2.26. Both masses slide on a 
frictionless surface, and k = 1 N/m. 

X2(s) 1 

R(s) 
10 

s+ 1 

•O 

• • Y(s) 

FIGURE E2.24 Multiloop feedback system. 

E2.25 An amplifier may have a region of deadband as 
shown in Figure E2.25. Use an approximation that 
uses a cubic equation y = ax3 in the approximately 
linear region. Select a and determine a linear approxi­
mation for the amplifier when the operating point is 
JC = 0.6. 

Answer: 
F(s) s2(s2 + 2) 

/•*(/) MA/W-

FIGURE E2.26 Two connected masses on a frictionless 
surface. 

E2.27 Find the transfer function Y(s)/Td(s) for the sys­
tem shown in Figure E2.27. 

Answer: 
G^s) Y(s) 

Td(s) 1 + G,(s)G2(s)H(s) 

TAs) 

> * C,(s) 

H(s) 

- & * 
G2{s) 

FIGURE E2.27 System with disturbance. 

Yis) 

FIGURE E2.25 
An amplifier with a 
deadband region. 
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E2.28 Determine the transfer function \&(s)/V(s) for the 
op-amp circuit shown in Figure E2.28 [1]. Let /?j = 
167 kfl, R2 = 240 kH, R3 = 1 kH, RA = 100 kH, and 
C = 1 /iF. Assume an ideal op-amp. 

E2.29 A system is shown in Fig. E2.29(a). 

(a) Determine G(s) and H(s) of the block diagram 
shown in Figure E2.29(b) that are equivalent to 
those of the block diagram of Figure E2.29(a). 

(b) Determine Y(s)/R(s) for Figure E2.29(b). 

E2.30 A system is shown in Figure E2.30. 

(a) Find the closed-loop transfer function Y(s)/R(s) 
10 

when G(s) = - : . 
s2 + 2s + 10 

(b) Determine Y(s) when the input R(s) is a unit step. 
(c) Compute y(t). 

FIGURE E2.28 
Op-amp circuit. 

_L 

3r 
o—*—WV—"• 
+ R, 

-o + 

± _n 

1 -k> s+ 10 

(a) 

/?(*) 

FIGURE E2.30 Unity feedback control system. 

• ns) 

R(s) • n.v) 

(b) 

FIGURE E2.29 Block diagram equivalence. 

PROBLEMS 

E2.31 Determine the partial fraction expansion for V(s) 
and compute the inverse Laplace transform. The 
transfer function V(s) is given by: 

V(s) 
400 

s2 + Ss + 400 

Problems require an extension of the concepts of the chap­
ter to new situations. 

P2.1 An electric circuit is shown in Figure P2.1. Obtain a 
set of simultaneous integrodifferential equations rep­
resenting the network. 

P2.2 A dynamic vibration absorber is shown in Figure 
P2.2. This system is representative of many situations 
involving the vibration of machines containing unbal­
anced components. The parameters M2 and kl2 may 
be chosen so that the main mass Mi does not vibrate 
in the steady state when F(t) = a sin(a>0f)- Obtain the 
differential equations describing the system. 

*0© 

FIGURE P2.1 Electric circuit. 
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.J 

Force < ; * ! 
m •• > 

L 
J" 

AT, | v 

ftf2 T>'2<'> 

.<') 

FIGURE P2.2 Vibration absorber. 

P2.3 A coupled spring-mass system is shown in Figure 
P2.3. The masses and springs are assumed to be equal. 
Obtain the differential equations describing the system. 

Force 
ru) 

k 

v,(r) 

I 

-»• I ' I I O 

-*• A',(0 

M WWWH u 
k nzn 

Hi 

FIGURE P2.3 Two-mass system. 

P2.4 A nonlinear amplifier can be described by the fol­
lowing characteristic: 

"o(') = J 4 
I 4 «m < 0' 

Tlie amplifier will be operated over a range of ±0.5 
volts around the operating point for vin. Describe the 
amplifier by a linear approximation (a) when the op­
erating point is sjj,, = 0 and (b) when the operating 
point is win = 1 volt. Obtain a sketch of the nonlinear 
function and the approximation for each case. 

P2.5 Fluid flowing through an orifice can be represented 
by the nonlinear equation 

Q = K(P, - A)"2 , 

where the variables are shown in Figure P2.5 and K is 
a constant [2]. (a) Determine a linear approximation 

for the fluid-flow equation, (b) What happens to the 
approximation obtained in part (a) if the operating 
point is Pi - P2 = 0? 

P2.6 Using the Laplace transformation, obtain the current 
I2(s) of Problem P2.1. Assume that all the initial cur­
rents are zero, the initial voltage across capacitor C\ is 
zero, v{t) is zero, and the initial voltage across C2 is 10 
volts. 

P2.7 Obtain the transfer function of the differentiating 
circuit shown in Figure P2.7. 

1 

VAs) 
+ 

V2[s) 

FIGURE P2.7 A differentiating circuit. 

P2.8 A bridged-T network is often used in AC control 
systems as a filter network [8]. The circuit of one 
bridged-T network is shown in Figure P2.8. Show that 
the transfer function of the network is 

V&) 1 + IR^Cs + RiRjpV 

Kn(i') 1 + (2«, + R2)Cs + i ? , i? 2 cV 

Sketch the pole-zero diagram when Rx = 0.5,¾ = 1, 
and C = 0.5. 

wv 

FIGURE P2.8 Bridged-T network. 

P2.9 Determine the transfer function Xi(s)/F(s) for the 
coupled spring-mass system of Problem P2.3. Sketch 
the s-plane pole-zero diagram for low damping when 
M = l,b/k = l,and 

4 2-
0.1. 

FIGURE P2.5 Flow through an orifice. 
P2.10 Determine the transfer function Yi{s)jF(s) for the 

vibration absorber system of Problem P2.2. Determine 
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the necessary parameters M2 and &12 so that the mass 
Ml does not vibrate in the steady state when 
F(t) — a sin(&)o t). 

P2.ll For electromechanical systems that require large 
power amplification, rotary amplifiers are often used 

[8,19]. An amplidyne is a power amplifying rotary am­
plifier. An amplidyne and a servomotor are shown in 
Figure P2.ll. Obtain the transfer function 9(s)/Vc(s), 
and draw the block diagram of the system. Assume 
vd = k2iq and vq = k{ic. 

Control 
field 

l r / 

Am 

41 

plidyne 

\ 2 
P 

** 

\ 

f-
( 

Motor 1 
V 

it = Constant 

Load y, b 

FIGURE P2.11 Amplidyne and armature-controlled motor. 

P2.12 For the open-loop control system described by the 
block diagram shown in Figure P2.12, determine the 
value of K such that y(t) -* 1 as t —» oo when r(r) is a 
unit step input. Assume zero initial conditions. 

Controller 

A: 

Process 

1 
s+20 Ms) • K • - — - • YU) 

FIGURE P2.12 Open-loop control system. 

P2.13 An electromechanical open-loop control system is 
shown in Figure P2.13. The generator, driven at a con­
stant speed, provides the field voltage for the motor. The 
motor has an inertia Jm and bearing friction />„,. Obtain 

the transfer function BL{s)fVf{s) and draw a block dia­
gram of the system. The generator voltage »„ can be as­
sumed to be proportional to the field current if. 

P2.14 A rotating load is connected to a field-controlled 
DC electric motor through a gear system. The motor is 
assumed to be linear. A test results in the output load 
reaching a speed of 1 rad/s within 0.5 s when a constant 
80 V is applied to the motor terminals. The output 
steady-state speed is 2.4 rad/s. Determine the transfer 
function 0{s)/Vf(s) of the motor, in rad/V. The induc­
tance of the field may be assumed to be negligible (see 
Figure 2.18). Also, note that the application of 80 V to 
the motor terminals is a step input of 80 V in magnitude. 

P2.15 Consider the spring-mass system depicted in Figure 
P2.15. Determine a differential equation to describe 
the motion of the mass m. Obtain the system response 
x(t) with the initial conditions A(0) = Xg and i(0) = 0. 

+ o-vV\A-| 

Generator 

Motor 

0 1 „ • Ni 
Gear ratio n = —— 

No 

FIGURE P2.13 Motor and generator. 
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k, spring constant 

FIGURE P2.15 Suspended spring-mass system. 

Obtain the relationship 7[3(s) between X^(s) and 
X3(s) by using Mason's signal-flow gain formula. 
Compare the work necessary to obtain 7^0) by ma­
trix methods to that using Mason's signal-flow gain 
formula. 

P2.18 An LC ladder network is shown in Figure P2.18. 
One may write the equations describing the network 
as follows: 

h = (Vi ~ Vu)Yh Va = (J, - /0)Z2, 
I, = K - v2)y3, v2 = /az4 . 

Construct a flow graph from the equations and deter­
mine the transfer function K(s)/Vi(.r). 

P2.16 Obtain a signal-flow graph to represent the follow­
ing set of algebraic equations where x\ and x2 are to 
be considered the dependent variables and 6 and 11 
are the inputs: 

h 

Xi + 1.5¾ = 6, 2JC, 4A-, 11. 

Determine the value of each dependent variable by 
using the gain formula. After solving for JCJ by Mason's 
signal-flow gain formula, verify the solution by using 
Cramers rule. 

P2.17 A mechanical system is shown in Figure P2.17, 
which is subjected to a known displacement x$(t) with 
respect to the reference, (a) Determine the two inde­
pendent equations of motion, (b) Obtain the equations 
of motion in terms of the Laplace transform, assuming 
that the initial conditions are zero, (c) Sketch a signal-
flow graph representing the system of equations, (d) 

,r~ 

,r" 

i i *4 < 

A/, 

f. 
M3 

i r 

Friction 

* i 

6, 

ZJ J 

1 
r 

L 
J T Y Y V 

Y, 1 

V L 0 

VAs) Z2 

FIGURE P2.18 LC ladder network. 

P2.19 A voltage follower (buffer amplifier) is shown in 
Figure P2.19. Show that T = vQ/vin = 1. Assume an 
ideal op-amp. 

+ 0-

FIGURE P2.17 Mechanical system. 

FIGURE P2.19 A buffer amplifier. 

P2.20 The source follower amplifier provides lower out­
put impedance and essentially unity gain. The circuit 
diagram is shown in Figure P2.20(a), and the small-sig­
nal model is shown in Figure P2.20(b).This circuit uses 
an FET and provides a gain of approximately unity. 
Assume that R2 » R] for biasing purposes and that 
Rg » R2. (a) Solve for the amplifier gain, (b) Solve 
for the gain when gm = 2000 (t£l and Rs = 10 kil 
where Rs = Ry + R2. (c) Sketch a block diagram that 
represents the circuit equations. 

P2.21 A hydraulic servomechanism with mechanical 
feedback is shown in Figure P2.21 [18]. The power pis­
ton has an area equal to A. When the valve is moved a 
small amount Az, the oil will flow through to the cylin­
der at a rate p • Az, where p is the port coefficient. The 
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(a) 

'in G vgs 

-> • •« 

(P*"."* 

>*a >xi 

"it Q 

input oil pressure is assumed to be constant. From the 

geometry, we find that Az = &—-—(x - y) - —y. 
h h 

(a) Determine the closed-loop signal-flow graph or 
block diagram for this mechanical system, (b) Obtain 
the closed-loop transfer function Y{s)/X(s). 

P2.22 Figure P2.22 shows two pendulums suspended 
from frictionless pivots and connected at their mid­
points by a spring [1]. Assume that each pendulum can 
be represented by a mass Mat the end of a massless 
bar of length L. Also assume that the displacement is 
small and linear approximations can be used for sin 8 
and cos 8. The spring located in the middle of the bars 
is unstretched when fy = 82. The input force is repre­
sented by /(r), which influences the left-hand bar only, 
(a) Obtain the equations of motion, and sketch a 
block diagram for them, (b) Determine the transfer 
function T(s) = 8i(s)/F(s). (c) Sketch the location of 
the poles and zeros of T(s) on the s-plane. 

(b) 

FIGURE P2.20 The source follower or common drain 
amplifier using an FET. 

Power 
cylinder 

Input 
pressure 

02 

n/WWW 

FIGURE P2.22 The bars are each of length L and the 
spring is located at L/2. 

P2.23 The small-signal circuit equivalent to a common-
emitter transistor amplifier is shown in Figure P2.23. 
The transistor amplifier includes a feedback resistor 
Rf. Determine the input-output ratio vcJv-m. 

->WSr 

r W V - o - * - ^ v V v — 1 
*(* - v) 

*.© vbf ,,«,,© ®A 

'c 
-4 6 -

I Output, v 

FIGURE P2.21 Hydraulic servomechanism. 

FIGURE P2.23 CE amplifier. 

P2.24 A two-transistor series voltage feedback amplifier 
is shown in Figure P2.24(a). This AC equivalent circuit 
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neglects the bias resistors and the shunt capacitors. A 
block diagram representing the circuit is shown in 
Figure P2.24(b).This block diagram neglects the effect 
of hn., which is usually an accurate approximation, and 
assumes that R2 + RL » R\- (a) Determine the volt­
age gain vjvin. (b) Determine the current gain ia/lbi-
(c) Determine the input impedance V\Jib\. 

P2.25 H. S. Black is noted for developing a negative feed­
back amplifier in 1927. Often overlooked is the fact 
that three years earlier he had invented a circuit de­

sign technique known as feedforward correction [19], 
Recent experiments have shown that this technique 
offers the potential for yielding excellent amplifier 
stabilization. Black's amplifier is shown in Figure 
P2.25(a) in the form recorded in 1924. The block dia­
gram is shown in Figure P2.25(b). Determine the 
transfer function between the output Y(s) and the 
input R(s) and between the output and the distur­
bance Td(s). G(s) is used to denote the amplifier rep­
resented by fi in Figure P2.25(a). 

'ft i R 

+ 
M "ir 

R, 

(a; (bl 

FIGURE P2.24 Feedback amplifier. 

FIGURE P2.25 H S 
Black's amplifier. 

H^\P-J 

(a) 

A'(v) • 

1 
G(s) 

ns) 

G(s) 
J . 

(h) 

P2.26 A robot includes significant flexibility in the arm 
members with a heavy load in the gripper [6, 20]. A 
two-mass model of the robot is shown in Figure. P2.26. 
Find the transfer function Y(s)IF(s). 

P2.27 Magnetic levitation trains provide a high-speed, 
very low friction alternative to steel wheels on steel 
rails. The train floats on an air gap as shown in Figure 
P2.27 [25]. The levitation force FL is controlled by the 
coil current i in the levitation coils and may be ap­
proximated by 

Pit)' 

VWWVWA 
k 

FIGURE P2.26 The spring-mass-damper model of a 
robot arm. 

V 
where z is the air gap. This force is opposed by the 
downward force F = mg. Determine the linearized 
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relationship between the air gap z and the controlling 
current near the equilibrium condition. 

FIGURE P2.27 Cutaway view of train. 

P2.28 A multiple-loop model of an urban ecological sys­
tem might include the following variables: number of 
people in the city (P), modernization (M), migration 
into the city (C), sanitation facilities (S), number of 
diseases (D), bacteria/area (B), and amount of 
garbage/area (G), where the symbol for the variable is 
given in parentheses. The following causal loops are 
hypothesized: 

1. P^G^B^D-^P 
2. P-*M^C-^P 
3. P-*-M—S-*D-*P 
4. P^>M-*S^B-*D^>P 

Sketch a signal-flow graph for these causal relation­
ships, using appropriate gain symbols. Indicate whether 
you believe each gain transmission is positive or nega­
tive. For example, the causal link S to B is negative be­
cause improved sanitation facilities lead to reduced 
bacteria/area. Which of the four loops are positive feed­
back loops and which are negative feedback loops? 

P2.29 We desire to balance a rolling ball on a tilting beam 
as shown in Figure P2.29. We will assume the motor 

Torque motor 

input current i controls the torque with negligible fric­
tion. Assume the beam may be balanced near the hor­
izontal (<f> = 0); therefore, we have a small deviation 
of <f>. Find the transfer function X(s)/I(s). and draw a 
block diagram illustrating the transfer function show­
ing ¢(5), X(s), and T(s). 

P2.30 The measurement or sensor element in a feedback 
system is important to the accuracy of the system [6]. 
The dynamic response of the sensor is important. 
Most sensor elements possess a transfer function 

T.S + 1 

Suppose that a position-sensing photo detector has 
T = 4,us and 0.999 < k < 1.001. Obtain the step re­
sponse of the system, and find the k resulting in the 
fastest response—that is, the fastest time to reach 98% 
of the final value. 

P2.31 An interacting control system with two inputs and 
two outputs is shown in Figure P2.31. Solve for 
Yt(s)/Ri(s) and Y2(s)/R1(s) when R2 = 0. 

KM Yds) 

FIGURE P2.29 Tilting beam and ball. 

ffji*) . v i—: i i :—i r,(.v) 

FIGURE P2.31 Interacting System. 

P2.32 A system consists of two electric motors that are 
coupled by a continuous flexible belt. The belt also 
passes over a swinging arm that is instrumented to 
allow measurement of the belt speed and tension. The 
basic control problem is to regulate the belt speed and 
tension by varying the motor torques. 

An example of a practical system similar to that 
shown occurs in textile fiber manufacturing processes 
when yarn is wound from one spool to another at high 
speed. Between the two spools, the yarn is processed 
in a way that may require the yarn speed and tension 
to be controlled within defined limits. A model of the 
system is shown in Figure P2.32. Find J5(s)/i?j{5), De­
termine a relationship for the system that will make K 
independent of jRj. 

Nidal
Rectangle
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-H2(s) 

FIGURE P2.32 
A model of the 
coupled motor 
drives. 

Speed 
control 
input 

R2(S) O 
Tension 
control 
input 

Speed 

r2[s) 
Tension 

-HM 

FIGURE P2.33 Idle speed control system. 

P233 Find the transfer function for Y(s)/R(s) for the idle-
speed control system for a fuel-injected engine as 
shown in Figure P2.33. 

P2.34 The suspension system for one wheel of an old-
fashioned pickup truck is illustrated in Figure P2.34. 
The mass of the vehicle is m% and the mass of the wheel 
is m2-The suspension spring has a spring constant k^ and 
the tire has a spring constant k2. The damping con­
stant of the shock absorber is b. Obtain the transfer 
function Y\(s)j'X(s), which represents the vehicle re­
sponse to bumps in the road. 

P2.35 A feedback control system has the structure shown 
in Figure P2.35. Determine the closed-loop transfer 
function Y(s)/R(s) (a) by block diagram manipulation 
and (b) by using a signal-flow graph and Mason's sig­
nal-flow gain formula, (c) Select the gains /C, and K2 

FIGURE P2.34 Pickup truck suspension. 

so that the closed-loop response to a step input is crit­
ically damped with two equal roots at s = -10. (d) 
Plot the critically damped response for a unit step 
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tf(.v) ' 
s + 1 

1' 

K2 

1 
s YU) 

FIGURE P2.35 Multiloop feedback system. 

input. What is the time required for the step response 
to reach 90% of its final value? 

P2.36 A system is represented by Figure P2.36. (a) Deter­
mine the partial fraction expansion and y{t) for a ramp 
input, /(f) = t, t > 0. (b) Obtain a plot of y(t) for part 
(a), and find y(t) for l = 1.0 s. (c) Determine the im­
pulse response of the system v(/) for ( 2 0. (d) Obtain 
a plot of y(t) for part (c) and find y(i) for ( = 1.0 s. 

RU) • 
24 

s* + 9s2 + 26s + 24 
•* n.v) 

FIGURE P2.36 A third-order system. 

P237 A two-mass system is shown in Figure P2.37 with an 
input force u(t). When m | = m2 = l a n d ^ i = K2 = 1, 
find the set of differential equations describing the 
system. 

P238 A winding oscillator consists of two steel spheres 
on each end of a long slender rod, as shown in 
Figure P2.38. The rod is hung on a thin wire that can 
be twisted many revolutions without breaking. The 
device will be wound up 4000 degrees. How long will 
it take until the motion decays to a swing of only 10 
degrees? Assume that the thin wire has a rotational 
spring constant of 2 X 10~4Nm/rad and that the 

<• *•« K±l 
X 

FIGURE P2.37 Two-mass system. 

Q-

-0.5 m-

4 
FIGURE P2.38 Winding oscillator. 

viscous friction coefficient for the sphere in air is 
2 X 10~4 N m s/rad. The sphere has a mass of 1 kg. 

P2.39 For the circuit of Figure P2.39, determine the trans­
form of the output voltage V0(s). Assume that the cir­
cuit is in steady state when t < 0. Assume that the 
switch moves instantaneously from contact 1 to con­
tact 2 at t = 0. 

P2.40 A damping device is used to reduce the undesired 
vibrations of machines. A viscous fluid, such as a 
heavy oil, is placed between the wheels, as shown in 

FIGURE P2.39 
Model of an 
electronic circuit. 

1~^^77Q 

2H 
/ Y Y Y \ 
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Shaft / 

% 

. Outer wheel 

. Inner wheel 
./,,0, 

Fluid, b 

FIGURE P2.40 Cutaway view of damping device. 

Figure P2.40. When vibration becomes excessive, the 
relative motion of the two wheels creates damping. 
When the device is rotating without vibration, there is 
no relative motion and no damping occurs. Find B^s) 
and 02(s). Assume that the shaft has a spring constant 
K and that b is the damping constant of the fluid. The 
load torque is T. 

P2.41 The lateral control of a rocket with a gimbaled en­
gine is shown in Figure P2.41. The lateral deviation 
from the desired trajectory is h and the forward rock­
et speed is V. The control torque of the engine is £. 
and the disturbance torque is Ttf. Derive the describ­
ing equations of a linear model of the system, and 
draw the block diagram with the appropriate transfer 
functions. 

Desired 
trajectory 

Aclua] 
trajectory 

Engine 

FIGURE P2.41 Rocket with gimbaled engine. 

P2.42 In many applications, such as reading product 
codes in supermarkets and in printing and manufac­
turing, an optical scanner is utilized to read codes, as 

shown in Figure P2.42. As the mirror rotates, a friction 
force is developed that is proportional to its angular 
speed. The friction constant is equal to 0.06 N s/rad, 
and the moment of inertia is equal to 0.1 kg m2. The 
output variable is the velocity cu(r). (a) Obtain the dif­
ferential equation for the motor, (b) Find the response 
of the system when the input motor torque is a unit 
step and the initial velocity at J = 0 is equal to 0.7. 

Mirror 

Bar code 

Reflected light 

Microcomputer 

FIGURE P2.42 Optical scanner. 

P2.43 An ideal set of gears is shown in Table 2.5, item 10. 
Neglect the inertia and friction of the gears and as­
sume that the work done by one gear is equal to that 
of the other. Derive the relationships given in item 10 
of Table 2.5. Also, determine the relationship between 
the torques Tm and TL. 

P2.44 An ideal set of gears is connected to a solid cylin­
der load as shown in Figure P2.44. The inertia of the 
motor shaft and gear G2 is Jm. Determine (a) the iner­
tia of the load JL and (b) the torque T at the motor 
shaft. Assume the friction at the load is bL and the fric­
tion at the motor shaft is bm. Also assume the density 
of the load disk is p and the gear ratio is n. Hint: The 
torque at the motorshaft is given by T = T\ + Tm. 

FIGURE P2.44 Motor, gears, and load. 

P2.45 To exploit the strength advantage of robot manipu­
lators and the intellectual advantage of humans, a class 
of manipulators called extenders has been examined 
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[22]. The extender is defined as an active manipulator 
worn by a human to augment the human's strength. The 
human provides an input U(s), as shown in Figure 
P2.45. The endpoint of the extender is P(s). Determine 
the output P(s) for both U(s) and F(s) in the form 

P(s) = T^Uis) + T2(s)F(s). 

Human 

w •v. r 
H(s) 

i 

Load 

1 

, 

• 

£(*) 

J I 
J 

Pis) 

' • 

G(s) 

r 
K. -V 

,+ 

B . Performance , , 
filter f 

| B(s) 

>r 
Gc{s) 

j i 

GiW *— K(s) 

stability 

L *-n 
V t 

controller 

i + 

P2.47 The water level h{t) in a tank is controlled by an 
open-loop system, as shown in Figure P2.47. A DC 
motor controlled by an armature current ;'„ turns a 
shaft, opening a valve. The inductance of the DC 
motor is negligible, that is, La = 0. Also, the rota­
tional friction of the motor shaft and valve is negli­
gible, that is, b = 0. The height of the water in the 
tank is 

h(t) J [1.60(f) ~ h(t)]dt. 

FIGURE P2.45 Model of extender. 

P2.46 A load added to a truck results in a force F on the 
support spring, and the tire flexes as shown in Figure 
P2.46(a).The model for the tire movement is shown in 
Figure P2.46(b). Determine the transfer function 
X,(s)/F(s). 

the motor constant is K,„ = 10, and the inertia of the 
motor shaft and valve is J - 6 X KT3 kgm2. Deter­
mine (a) the differential equation for h(t) and v(t) and 
(b) the transfer function H(s)IV(s). 

P2.48 The circuit shown in Figure P2.48 is called a lead-
lag filter. 

(a) Find the transfer function V2(s)/\{(s). Assume an 
ideal op-amp. 
Determine V2(s)/V^s) when l?j = 100Hl, 
R2 = 200 k£l, Q = 1 /JLF, and C2 = 0.1 fiF. 
Determine the partial fraction expansion for 

P2.49 A closed-loop control system is shown in Figure 
P2.49. 

(a) Determine the transfer function 

T{s) = Y(s)/R(s). 

(b) Determine the poles and zeros of T(s). 
(c) Use a unit step input, .SKY) = 1/s, and obtain the 

partial fraction expansion for Y(s) and the value 
of the residues. 

(b) 

(c) 

FIGURE P2.46 
Truck support 
model. 

Force of material 
placed in truck bed 

Truck vehicle mass 

*i r Shock absorber 

la) (h) 

Nidal
Rectangle
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Amplifier 

FIGURE P2.47 
Open-loop control 
system for the 
water level of a 
tank. 

Valve 

)l—i r^Mh 
- A A A r 

ViM 

FIGURE P2.48 Lead-lag filter. 

tf(.v) ' 
6205 

s(s-+ 13*+ 1281) 

V2(s) 

•*• Y(s) 

(e) Predict the final value of y(t) for the unit step 
input. 

R(s) 
14,000 

,!3+ 4 5 ^ + 31005 + 500) •*• i'(-v) 

FIGURE P2.50 Third-order feedback system. 

P2.51 Consider the two-mass system in Figure P2.51. 
Find the set of differential equations describing the 
system. 

FIGURE P2.49 Unity feedback control system. 

(d) Plot y(t) and discuss the effect of the real and 
complex poles of T(s). Do the complex poles or 
the real poles dominate the response? 

P2.50 A closed-loop control system is shown in Figure 
P2.50. 

(a) Determine the transfer function T(s) = Y(s)/R(s). 
(b) Determine the poles and zeros of T(s). 
(c) Use a unit step input, R(s) = l/s, and obtain the 

partial fraction expansion for Y(s) and the value 
of the residues. 

(d) Plot y(() and discuss the effect of the real and 
complex poles of T(s). Do the complex poles or FIGURE P2.51 Two-mass system with two springs and 
the real poles dominate the response? one damper. 

Nidal
Rectangle

Nidal
Rectangle
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A D V A N C E D P R O B L E M S 

AP2.1 An armature-controlled DC motor is driving a load. 
The input voltage is 5 V. The speed at ( = 2 seconds is 
30 rad/s, and the steady speed is 70 rad/s when t—*oo. 
Determine the transfer function <o(s)/V(s). 

AP2.2 A system has a block diagram as shown in Figure 
AP2.2. Determine the transfer function 

T(s) = g(f) 

It is desired to decouple Y(s) from R\(s) by obtaining 
T(s) = 0. Select C 5 ( J ) in terms of the other Gj(s) to 
achieve decoupling. 

Hi(s) 

R,(s) K_}~*" G'W G,W 

C5(.v) 

J V GeC) 

• / ,(.0 

. ,+ 
«-.(.0 • ô GiW 

sy*) 4 

• • K,(.0 

FIGURE AP2.2 Interacting control system. 

AP2.3 Consider the feedback control system in Figure 
AP2.3. Define the tracking error as 

E(t) = R(s) - Y(s). 

(a) Determine a suitable H(s) such that the tracking 
error is zero for any input R(s) in the absence of a 
disturbance input (that is, when Tlt(s) = 0). (b) Using 
H{s) determined in part (a), determine the response 
Y(s) for a disturbance T,j(s) when the input R(s) = 0. 
(c) Is it possible to obtain Y(s) = 0 for an arbitrary 
disturbance T^(s) when G,i(s) ¥> 0? Explain your 
answer. 

AP2.4 Consider a thermal heating system given by 

g ( ' ) _ 1 
q(s) C,s + (QS + l/R.Y 

where the output 3"(.?) is the temperature difference 
due to the thermal process, the input q(s) is the rate of 

A'(.v) • Gc(s) 

I 
GdU) 

L 
- » o -

H(s) 

G(0 *- n-o 

FIGURE AP2.3 Feedback system with a disturbance 
input. 

heat flow of the heating element. The system parame­
ters are C„ £?, S, and Rr The thermal heating system is 
illustrated in Table 2.5. (a) Determine the response of 
the system to a unit step q(s) = 1/s. (b) As t—*oo. 
what value does the step response determined in part 
(a) approach? This is known as the steady-state re­
sponse, (c) Describe how you would select the system 
parameters C„ Q, 5, and R, to increase the speed of 
response of the system to a step input. 

AP2.5 For the three-cart system illustrated in Figure 
AP2.5, obtain the equations of motion.The system has 
three inputs «j, 1¾. and u3 and three outputs JC-,, JC2-
and v3. Obtain three second-order ordinary differen­
tial equations with constant coefficients. If possible, 
write the equations of motion in matrix form. 

:l ". 
. VvW-

h 

M, 

( ) ( ) 

• *i 

• 

VvVA 

h 

M2 

O O 

>-.v. 

' - * • 

*3 

V\AAA 

h 

M3 

( ) ( ) 

• .V, 

FIGURE AP2.5 Three-cart system with three inputs and 
three outputs. 

AP2.6 Consider the hanging crane structure in Figure 
AP2.6. Write the equations of motion describing the 
motion of the cart and the payload. The mass of the 
cart is M, the mass of the payload is m, the massless 
rigid connector has length L, and the friction is mod­
eled as Ft, = —b'x where x is the distance traveled by 
the cart. 

AP2.7 Consider the unity feedback system described in the 
block diagram in Figure AP2.7. Compute analytically 
the response of the system to an impulse disturbance. 
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FIGURE AP2.6 
(a) Hanging crane 
supporting the 
Space Shuttle 
Atlantis (Image 
Credit: NASA/Jack 
Pfaller) and 
(b) schematic 
representation 
of the hanging 
crane structure. (a) (b) 

FIGURE AP2.7 
Unity feedback 
control system with 
controller 
Gc(s) - K. 

, EM 
Controller 

K 
+ 

+( 

Td(s) 

o 
Plant 

1 

s + 20 
•+• Y(s) 

Determine a relationship between the gain K and 
the minimum time it takes the impulse disturbance 
response of the system to reach y(r) < 0.1. Assume 
that K > 0. For what value of K does the disturbance 
response first reach at y{t) = 0.1 at r = 0.05? 

AP2.8 Consider the cable reel control system given in 
Figure AP2.8. Find the value of A and K such that the 
percent overshoot is P.O. £ 10% and a desired ve­
locity of 50 m/s in the steady state is achieved. Com­
pute the closed-loop response v(f) analytically and 
confirm that the steady-state response and P. O. meet 
the specifications. 

AP2.9 Consider the inverting operational amplifier in 
Figure AP2.9. Find the transfer function VJ,s){Vls), 
Show that the transfer function can be expressed as 

G(s) 
V,(s) 

= K, + — + K&, 

where the gains KP, Kh and KD are functions of 
Cj, C2, JRI, and R2, This circuit is a proportional-inte­
gral-derivative (PID) controller (more on PID con­
trollers in Chapter 7). 

Desired 
, velocity + 

/?(,)= - ^ K 

FIGURE AP2.8 
Cable reel control 
system. 

• > » 
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Amplifier 

K 
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1 
0.25i + 1 

Torque 
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Actual cable 
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• V{s) 
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FIGURE AP2.9 An inverting operational amplifier circuit 
representing a PID controller. 

DESIGN PROBLEMS 

CDP2.1 We want to accurately position a table for a ma­
chine as shown in Figure CDP2.1. A traction-drive 
motor with a capstan roller possesses several desirable 
characteristics compared to the more popular ball 
screw. The traction drive exhibits low friction and no 
backlash. However, it is susceptible to disturbances. De­
velop a model of the traction drive shown in Figure 
CDP2.1(a) for the parameters given in Table CDP2.1. 
The drive uses a DC armature-controlled motor with a 
capstan roller attached to the shaft.The drive bar moves 
the linear slide-table. The slide uses an air bearing, so its 
friction is negligible. We are considering the open-loop 
model, Figure CDP2.1(b), and its transfer function in 
this problem. Feedback will be introduced later. 

Traction drive motor 
and capstan roller 

Linear slide 

(a) 

V„(-v) • G(s) X(s) 

(b) 

FIGURE CDP2.1 (a) Traction drive, capstan roller, and 
linear slide, (b) The block diagram model. 

DP2.1 A control system is shown in Figure DP2.1. The 
transfer functions G2(s) and H2(s) are fixed. Deter­
mine the transfer functions G{(s) and //](.?) so that 

Table CDP2.1 Typical Parameters 
for the Armature-Controlled DC Motor 
and the Capstan and Slide 

Ms 

M,, 

•'m 

r 

bm 

Kn 

K„ 
Rm 
L'm 

Mass of slide 
Mass of drive bar 
Inertia of 
roller, shaft, motor 
and tachometer 

Roller radius 
Motor damping 
Torque constant 
Back emf constant 
Motor resistance 
Motor inductance 

5.693 kg 
6.96 kg 
10.91 • lfT3 kg m2 

31.75-10 -½ 
0.268 N ms/rad 
0.8379 N m/amp 
0.838 Vs/rad 
1.36 Q, 
3.6 mH 

the closed-loop transfer function Y(s)!R($) is exactly 
equal to 1. 

DP2.2 The television beam circuit of a television is repre­
sented by the model in Figure DP2.2. Select the un­
known conductance G so that the voltage v is 24 V. 
Each conductance is given in Siemens (S). 

DP2.3 An input r(t) = t, t a 0, is applied to a black box 
with a transfer function G(s). The resulting output 
response, when the initial conditions are zero, is 

y(0 = e - ' - ^ - 2 ' - ^ + | / , / ^ 0 . 

Determine G(s) for this system. 

DP2.4 An operational amplifier circuit that can serve as 
a filter circuit is shown in Figure DP2.4. Determine 
the transfer function of the circuit, assuming an ideal 
op-amp. Find vt)(t) when the input is Uj(f) = At, 
t > 0 . 
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W.v) 

FIGURE DP2.1 
Selection of transfer 
functions. 

ff. 

-*• Y(s) 

Reference 

J T 

<t>M. ©20A f: 

FIGURE DP2.2 Television beam circuit. 

DP2.5 Consider the clock shown in Figure DP2.5. The 
pendulum rod of length L supports a pendulum disk. 
Assume that the pendulum rod is a massless rigid thin 
rod and the pendulum disc has mass m. Design the 
length of the pendulum, L, so that the period of mo­
tion is 2 seconds. Note that with a period of 2 seconds 
each "tick" and each "tock" of the clock represents 1 
second, as desired. Assume small angles, <p, in the 

"1 

« 1 

R2 

C 

a 

b 

A / W 

v> 
"< 

-o + 

FIGURE DP2.4 Operational amplifier circuit. 

analysis so that sin <p w (p. Can you explain why most 
grandfather clocks are about 1.5 m or taller? 

FIGURE DP2.5 
(a) Typical clock 
(photo courtesy 
of SuperStock) 
and (b) schematic 
representation 
of the pendulum. 

Pendulum rod 

Pendulum disk .̂ 
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JM COMPUTER PROBLEMS 

CP2.1 Consider the two polynomials 

/?(X = .2 s1 + 7s + 10 

and 

q(s) = s + 2. 

Compute the following 

(a) p(s)q(s) 

(b) poles and zeros of G(s) = 
Pis) 

(C) /7(-1) 

CP2.2 Consider the feedback system depicted in Figure 
CP2.2. 

(a) Compute the closed-loop transfer function using 
the series and feedback functions. 

(b) Obtain the closed-loop system unit step response 
with the step function, and verify that final value 
of the output is 2/5. 

A'f v i • 

Controller 

,v+ 1 

Plant 

s + 2 
j + 3 m 

FIGURE CP2.2 A negative feedback control system. 

CP2.3 Consider the differential equation 

y + 4y + 3y = u, 

where y(0) = y(0) = 0 and u(t) is a unit step. Deter­
mine the solution y(t) analytically and verify by co-
plotting the analytic solution and the step response 
obtained with the step function. 

CP2.4 Consider the mechanical system depicted in 
Figure CP2.4.The input is given by/(i). and the output 
is y(t). Determine the transfer function from f(t) to 
y(t) and, using an m-file, plot the system response to a 

Forcing 
function 

Spring 
<* constant 

.I' 
Mass 

in 

Friction 
constant 

b 

J, 
Mass 

displacement 
y(?) 

FIGURE CP2.4 
system. 

A mechanical spring-mass-damper 

unit step input. Let in = 10, k = 1, and b = 0.5. Show 
that the peak amplitude of the output is about 1.8. 

CP2.5 A satellite single-axis attitude control system can 
be represented by the block diagram in Figure CP2.5. 
The variables k, a, and b are controller parameters, 
and J is the spacecraft moment of inertia. Suppose the 
nominal moment of inertia is J = 10.8E8 (slug ft2), 
and the controller parameters are k = 10.8E8, a = 1, 
and 6 = 8. 

(a) Develop an m-file script to compute the closed-
loop transfer function T(s) = 0(s)/0,i(s). 

(b) Compute and plot the step response to a 10° step 
input. 

(c) The exact moment of inertia is generally unknown 
and may change slowly with time. Compare the 
step response performance of the spacecraft when 
/ i s reduced by 20% and 50%. Use the controller 
parameters k = 10.8E8, a = 1, and b = 8 and a 
10° step input. Discuss your results. 

CP2.6 Consider the block diagram in Figure CP2.6. 
(a) Use an m-file to reduce the block diagram in 

Figure CP2.6, and compute the closed-loop trans­
fer function. 

0dU) 
Desired • 
attitude 

"> , 
• 

Controller 

k(s + a) 
s + b 

Spacecraft 

1 
J*2 

0(1) 

altitude 

FIGURE CP2.5 A spacecraft single-axis attitude control block diagram. 
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Ris) • 
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s2 + 2 

4s+ 2 
s2 + 2s + 1 

s2 + 2 
,93 + 14 

\r 
+ • 

s2 

50 

*• ¥(s) 

FIGURE CP2.6 A multiple-loop feedback control system block diagram. 

(b) Generate a pole-zero map of the closed-loop 
transfer function in graphical form using the 
pzmap function. 

(c) Determine explicitly the poles and zeros of the 
closed-loop transfer function using the pole and 
zero functions and correlate the results with the 
pole-zero map in part (b). 

CP2.7 For the simple pendulum shown in Figure CP2.7, 
the nonlinear equation of motion is given by 

0(0 + ™ sin 6 0, 

where L = 0.5 m, m = 1 kg, and g = 9.8 m/s~. When 
the nonlinear equation is linearized about the equi­
librium point 6 = 0, we obtain the linear time-invariant 
model, 

0 + j6 0. 

Create an m-file to plot both the nonlinear and the lin­
ear response of the simple pendulum when the initial 
angle of the pendulum is 0(0) = 30° and explain any 
differences. 

CP2.8 A system has a transfer function 

X(s) (20/z)(s + z) 

B{s) ~ s2 + 3s + 20" 

Plot the response of the system when R(s) is a unit 
step for the parameter z = 5,10, and 15. 

CP2.9 Consider the feedback control system in Figure 
CP2.9, where 

G(s) = ^ ^ and H(s) 
s + 2 s+ 1 

(a) Using an m-file, determine the closed-loop trans­
fer function. 

(b) Obtain the pole-zero map using the pzmap func­
tion. Where are the closed-loop system poles and 
zeros? 

(c) Are there any pole-zero cancellations? If so, use 
the minreal function to cancel common poles and 
zeros in the closed-loop transfer function. 

(d) Why is it important to cancel common poles and 
zeros in the transfer function? 

^ ^ ^ ^ . ^ ^ ^ 
lite) • G(s) 

H(s) 4 

•*• Y(s) 

FIGURE CP2.7 Simple pendulum. 

FIGURE CP2.9 Control system with nonunity feedback. 

CP2.10 Consider the block diagram in Figure CP2.10. 
Create an m-file to complete the following tasks: 

(a) Compute the step response of the closed-loop 
system (that is, R(s) = Vs and 7",,(i) = 0) and 
plot the steady-state value of the output Y(s) as a 
function of the controller gain 0 < K s 10. 

(b) Compute the disturbance step response of the 
closed-loop system (that is, R(s) = 0 and 
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Td(s) — lis) and co-plot the steady-state value of 
the output Y (s) as a function of the controller gain 
0 < K < 10 on the same plot as in (a) above. 

(c) Determine the value of K such that the steady-
state value of the output is equal for both the 
input response and the disturbance response. 

FIGURE CP2.10 
Block diagram of 
a unity feedback 
system with a 
reference input R[s) 
and a disturbance 
input Td(s). 

' ' » 

R(s) *> Y(s) 

m ANSWERS TO SKILLS CHECK 

True or False: (1) False; (2) True; (3) False; (4) True; 
(5) True 

Multiple Choice: (6) b; (7) a; (8) b; (9) b; (10) c; 
(11) a; (12) a; (13) c; (14) a; (15) a 

Word Match (in order, top to bottom): e, j , d, h, a, f, 
c, b, k, g, o, 1, n, m, i 

TERMS AND CONCEPTS 

Across-Variable A variable determined by measuring the 
difference of the values at the two ends of an element. 

Actuator The device that causes the process to provide 
the output. The device that provides the motive power 
to the process. 

Analogous variables Variables associated with electrical, 
mechanical, thermal, and fluid systems possessing 
similar solutions providing the analyst with the ability 
to extend the solution of one system to all analogous 
systems with the same describing differential equations. 

Assumptions Statements that reflect situations and con­
ditions that are taken for granted and without proof. 
In control systems, assumptions are often employed to 
simplify the physical dynamical models of systems 
under consideration to make the control design 
problem more tractable. 

Block diagrams Unidirectional, operational blocks that 
represent the transfer functions of the elements of the 
system. 

Branch A unidirectional path segment in a signal-flow 
graph that relates the dependency of an input and an 
output variable. 

Characteristic equation The relation formed by equating 
to zero the denominator of a transfer function. 

Closed-loop transfer function A ratio of the output signal 
to the input signal for an interconnection of systems 
when all the feedback or feedfoward loops have been 

closed or otherwise accounted for. Generally obtained 
by block diagram or signal-flow graph reduction. 

Coulomb damper A type of mechanical damper where the 
model of the friction force is a nonlinear function of 
the mass velocity and possesses a discontinuity around 
zero velocity. Also know as dry friction. 

Critical damping The case where damping is on the 
boundary between underdamped and overdamped. 

Damped oscillation An oscillation in which the ampli­
tude decreases with time. 

Damping ratio A measure of damping. A dimensionless 
number for the second-order characteristic equation. 

DC motor An electric actuator that uses an input voltage 
as a control variable. 

Differential equation An equation including differentials 
of a function. 

Error signal The difference between the desired out­
put R{s) and the actual output Y(s); therefore 
E{s) = R(s) - Y(s). 

Final value The value that the output achieves after all 
the transient constituents of the response have faded. 
Also referred to as the steady-state value. 

Final value theorem The theorem that states that 
lim y(t) = lim .sY(.y), where Y(s) is the Laplace 

transform of y(t). 
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Homogeneity The property of a linear system in which 
the system response, y(t), to an input «(0 leads to the 
response /3y(f) when the input is (3u(t). 

Inverse Laplace transform A transformation of a function 
F(s) from the complex frequency domain into the 
time domain yielding f(t). 

Laplace transform A transformation of a function /(t) 
from the time domain into the complex frequency 
domain yielding F(s). 

Linear approximation An approximate model that re­
sults in a linear relationship between the output and 
the input of the device. 

Linear system A system that satisfies the properties of 
superposition and homogeneity. 

Linearized Made linear or placed in a linear form. Taylor 
series approximations are commonly employed to 
obtain linear models of physical systems. 

Loop A closed path that originates and terminates on the 
same node of a signal-flow graph with no node being 
met twice along the path. 

Mason loop rule A rule that enables the user to obtain 
a transfer function by tracing paths and loops with­
in a system. 

Mathematical models Descriptions of the behavior of a 
system using mathematics. 

Natural frequency The frequency of natural oscillation 
that would occur for two complex poles if the damp­
ing were equal to zero. 

Necessary condition A condition or statement that must 
be satisfied to achieve a desired effect or result. For ex­
ample, for a linear system it is necessary that the input 
m(t) + M2(0 results in the response y^t) + frit), 
where the input u^(t) results in the response y^t) and 
the input 112(() results in the response yi(t). 

Node The input and output points or junctions in a 
signal-flow graph. 

Nontouching Two loops in a signal-flow graph that do not 
have a common node. 

Overdamped The case where the damping ratio is £ > 1. 

Path A branch or a continuous sequence of branches 
that can be traversed from one signal (node) to 
another signal (node) in a signal-flow graph. 

Poles The roots of the denominator polynomial (i.e., 
the roots of the characteristic equation) of the trans­
fer function. 

Positive feedback loop Feedback loop wherein the output 
signal is fed back so that it adds to the input signal. 

Principle of superposition The law that states that if two 
inputs are scaled and summed and routed through a 
linear, time-invariant system, then the output will be 
identical to the sum of outputs due to the individual 
scaled inputs when routed through the same system. 

Reference input The input to a control system often 
representing the desired output, denoted by R(s). 

Residues The constants k\ associated with the partial 
fraction expansion of the output Y(s), when the out­
put is written in a residue-pole format. 

Signal-flow graph A diagram that consists of nodes con­
nected by several directed branches and that is a 
graphical representation of a set of linear relations. 

Simulation A model of a system that is used to investigate 
the behavior of a system by utilizing actual input signals. 

Steady state The value that the output achieves after all 
the transient constituents of the response have faded. 
Also referred to as the final value. 

5-plane The complex plane where, given the complex 
number s = s + jw, the x-axis (or horizontal axis) is 
the s-axis, and the y-axis (or vertical axis) is the ;w-axis. 

Taylor series A power series defined by g(x) = 

^ :—(x — x0)
m. For m < 00, the series is an 

approximation which is used to linearize functions 
and system models. 

Through-variable A variable that has the same value at 
both ends of an element. 

Time constant The time interval necessary for a system to 
change from one state to another by a specified per­
centage. For a first order system, the time constant is 
the time it takes the output to manifest a 63.2% 
change due to a step input. 

Transfer function The ratio of the Laplace transform of 
the output variable to the Laplace transform of the 
input variable. 

Underdamped The case where the damping ratio is f < 1. 

Unity feedback A feedback control system wherein the 
gain of the feedback loop is one. 

Viscous damper A type of mechanical damper where the 
model of the friction force is linearly proportional to 
the velocity of the mass. 

Zeros The roots of the numerator polynomial of the 
transfer function. 




