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Abstract 

Elementary particles can be represented as localized concentrations of energy, which act as 

Higgs energy spheres S. The sphere radius specifies its energy, and hence its coupling to the sca-

lar Higgs field. Massless photon energy spheres are defined by the Planck equation E = hν. Mas-

sive particle energy spheres are defined by the fine structure electrostatic energy equation and 

the fine structure inertial mass equation, which are derived from the fine structure constant 

α~1/137. Higgs particle generation occurs in two steps: (1) an electrostatic-energy sphere is cre-

ated; (2) it adiabatically expands radially by a factor of 137 and transforms into a Compton-sized 

inertial-mass sphere, which represents a Higgs unit energy quantum. Four Higgs energy channels 

(electron, boson, fermion and gauge boson) accurately reproduce lepton, constituent-quark, had-

ron, and average-gauge-boson masses. 
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1. Higgs energy spheres S as coupling constants to the Higgs energy field 

 

An elementary particle is in essence a stable or metastable localized concentration of energy, 

which is related to its inertial mass by the Einstein equation 2.E mc  The scalar Higgs field of 

the vacuum state serves as the energy source for the generation of elementary particle masses. 

The particles themselves can be represented as Higgs energy spheres S, which couple to the 

Higgs field. The energy E of a Higgs sphere S is determined by its radius r, so that the size of the 

sphere specifies the strength of the particle coupling to the Higgs field. 

 There are two classes of Higgs energy spheres: photon spheres γ ,rS  which are associated 

with massless photons; and alpha spheres α ,rS  which are associated with massive particles, and 

which involve the fine structure constant 2α / 1/137.e c   The occurrence of the factor 137 is 

the signature for Higgs mass generation. 

 

2. Higgs photon energy spheres 

 

The energy of a photon is given by the Planck energy equation  

fm/ / 197.33 MeV-fm / , (1)E h hc c r r      

where fm fm / 2πr   is the sphere radius in fermis (10–13 cm). This equation defines the Higgs 

photon energy sphere 
fm

γ ,rS  whose radius rfm determines the energy E. Photon energy spheres 

apply for all photon energies. The volume of the sphere is 34
3 π ,V r  so the energy density in 

the sphere is 43
4( )( / ) ,D c r   which varies as 1/r4. The energy in an electric field E


 varies as 

1/r2, so that 2E .D 


 The time-averaged expectation value of the S E H 
  

 Poynting Vector 

electromagnetic transport density is 21
2S E ,

 
 so that the D and S


 electromagnetic energy 

densities have the same geometric dependence on r. Hence the Higgs photon sphere 
fm

γ
rS  has 

electromagnetic properties that are suitable for an energy coupling constant to the Higgs Field. 
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3. Higgs alpha-energy spheres and alpha-mass spheres 

 

The equation for the dimensionless fine structure constant alpha is [1] 

2α / 1/137.036000. (2)e c   

The constant α is one of the most precisely determined quantities in physics, both experimentally 

and theoretically. It plays a dominant role in atomic physics, quantum electrodynamics, and con-

densed matter physics. It also serves as a scaling factor in particle physics, as displayed in the 

well-known radial array 

Thomson Compton Compton Bohr137 , 137 . (3)r r r r     

The Thomson radius, also denoted as the classical electron radius, is 2 2/ ,Th er e m c  where me is 

the electron mass. The Compton radius is /C er m c   The Bohr radius is 2 2
o / .ea m e   The sig-

nificance of this radial array is that it establishes a relationship between the constant α and parti-

cle radii and masses (the electron mass). 

 To obtain an r-dependent fine structure equation, αr(r), we re-write Eq. (2) in the form 

2( )
( ) 1 137, . (4)

( )r

e r
r

c r
  


 

which applies for all values of r. The 2( / )e r  numerator is an electrostatic energy term ,eeE  

whose value is determined by the fine-structure electrostatic-energy equation 

2
fm fm/ /137 197.33 MeV /137 1.4400 MeV / . (5)eeE e r c r r r     

The electrostatic energy is contained within a sphere of radius r, so that Eq. (5) defines the Higgs 

alph- energy sphere 
fm

,ee
rS  which applies for any value of fm.r In particular, if fmr is the Thomson 

radius Th 2.818 fm,r   the calculated 
Th

ee
rS  energy is ecE  = 0.511 MeV, the electron energy. 

 To obtain a fine-structure mass equation )( Cm r , we first set the radius rfm in Eq. (5) 

equal to the electron Compton radius  C er m c  , so that 

2

)
( )

( 1 137. (6)
( )

C
C

C

r

e r
r

c r
  


 

Then we replace the factor Cr  in the denominator with the equivalent value / ,em c  which gives 

the r-dependent, m-dependent fine-structure equation 
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2

2
)

( / )
( 1 137. (7)

( )
C

Cm
e

e r
r

m c
    

Finally, we rearrange Eq. (8) so as to form the electron fine-structure inertial-mass equation 

2 2 2
Th/ ( /137) / . (8)e

C

im
eE e r e r m c    

Eq. (8) defines the Higgs alpha mass sphere ,
C

eim
rS  which acts as the Higgs coupling constant 

that determines the electron mass me. 

 

4. The Higgs two-step adiabatic alpha-sphere mass generation process 

 

 The most distinctive feature of Higgs energy-sphere mass generation is its two-step adia-

batic transformation of electrostatic energy into particle unit mass quanta, where the significance 

of the factor 137 in the mass generation process becomes apparent. Higgs two-step mass genera-

tion occurs as an adiabatic transformation of a Higgs alpha-energy sphere 
fm

ee
rS  into a Higgs al-

pha-mass sphere 
C

im
rS  (Eqs. 5 and 8). The electrostatic radius fmr  determines the energy that is 

extracted from the Higgs field, and the Compton radius Cr  determines the size of the inertial 

mass that is created by the adiabatic energy transformation. This two-step generation process oc-

curs in the creation of four generic classes of particle masses: the electron mass me = 0.511 MeV; 

the boson unit mass mb = 70 MeV; the fermion unit mass mf = 105 MeV; the gauge boson unit 

mass mgb = 42.86 GeV. The electron mass me assumes the role of the Higgs ground state energy, 

and α-leaps in energy create the mb, mf and mgb unit energy quanta for the higher-mass particles. 

Multiples of each of these three unit energy quanta are formed, and they accurately reproduce the 

energies of the pseudoscalar mesons, the leptons, the six inertial-mass fermion quarks, the pro-

ton, the lowest-state vector mesons, and the gauge bosons. These masses are created in coupled 

particle-antiparticle energy channels that together fulfill the particle conservation rules. 

 

5. The electron two-step energy channel 
 

Higgs energy spheres that represent the two-step electron generation process have radii Thomsonr  

and Comptonr  that are obtained from Eq. (3), and are displayed in Eq. (8). This equation can be re-

written in terms of the alpha-spheres 
Th

ee
rS  and 

C

eim
rS as the α-transformation equation 
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Thomson Compton
. (9)eimee

r rS S   

This equation denotes the two-step process in which 0.511 MeV of electrostatic energy is ex-

tracted from the Higgs field in the form of an energy sphere of radius Th 2.818 fm,r   and is then 

adiabatically expanded into an me inertial-mass sphere of radius 386 fm.Cr   This is an increase 

in volume of 3 6137 2.6 10 ,   with a corresponding decrease in energy density D. A parallel 

equation occurs for the creation of a positron mass .em  The 1.022 MeVe em m   pair serves as 

the ground state for a second two-step Higgs excitation process that creates the π mesons. 

 

6. The Compton spectroscopy of the electron inertial-mass sphere 
C

eimα
rS  

 

 The electron appears in Eqs. (8) and (9) as a Compton-sized energy sphere of inertial 

mass me. The Compton size is confirmed by the spectroscopic features of the electron—mainly 

its spin angular momentum J and magnetic moment µ—which imply that the mass me is unique-

ly in the form of a relativistically spinning sphere (RSS), whose properties have been well-

documented [2-3]. An RSS is a spinning solid sphere whose non-spinning rest mass is mo, and 

whose equator is moving at (or infinitesimally below) the limiting velocity v .c  Its calculated 

spinning mass and moment-of-inertia are 3
2 osm m  and 21

2 ,sI m r  which apply for any radius ri 

and mass mi of the RSS. If we now set ms = me and / ,C er r m c    then the calculated spin is 

1
2 .J    A massless point charge e placed on the equator acts as a current loop, and has a calcu-

lated magnetic moment 2 .ee m c    Thus the electron gyromagnetic ratio is correctly repro-

duced. The quantities J and µ transform correctly under Lorentz transformations if, and only if, 

the RSS is spinning at the full relativistic limit. These results seem to be mandate a Compton-

sized RSS. They apply not only to the electron, but also to spin 1/2 inertial-mass quarks, as 

demonstrated in the calculation of hyperon magnetic moments [4-5]. 
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7. The boson two-step energy channel and the boson unit mass mb 
 

About 200 elementary particle states that have been observed experimentally [1], of which 157 

have well-determined masses and lifetimes [6]. Most of these particles are strongly-interacting 

hadrons that are formed as combinations of quark states. Three are weakly-interacting leptons—

the electron, muon and tauon. There are 19 quark and particle "ground states" (together with their 

antiparticle states) that are the lowest-mass and stablest particle entities, and which furnish the 

most information as to their generation process. These are the states we focus on in the present 

studies. 

 The lowest-mass stable particle is the electron e, which is produced from the Higgs field 

in matching ( , ) 1.022 MeVe e    pairs. The next observed state is the 0, )   pion doublet, 

which has an average energy of 137.27 MeV. The energy region between the electron pair and 

the pion is a void in which no particle states exist. The factor-of-137 ratio between these two en-

ergies indicates that the pion mass is created by an "α-leap" up from the electron pair mass. But 

the electron is a spin J = 1/2 lepton and the pion is a spin J = 0 hadron. The pion has a quark sub-

structure, and the electron does not. Their masses should be unrelated. The one property they 

have in common is their energy, so the α-leap from the electron to the pion is an energy α-leap. 

 The electron is produced in the two-step Higgs generation process shown in Eqs. (8) and 

(9), in which the Thomson radius Higgs energy sphere 
Th

ec
rS  is transformed into the Compton ra-

dius Higgs inertial mass sphere .
C

eim
rS  In order to increase the energy of this two-step process by 

a factor of 137, we extend the radius scaling of Eq. (3) to include the radius rboson, so that 

boson Thomson Thomson Compton Compton Bohr137 , 137 , 137 . (10)r r r r r r       

The two-step Higgs generation of the boson mass quantum mb is defined by the equation  

2 2 2
Thomson boson/ ( /137) / 70 MeV, (11)bim

bE e r e r m c     

which is the boson counterpart of Eq. (8), and which is half the energy of a pion. The two-step 

boson alpha-sphere equation is  

boson Thomson
, (12)bimee

r rS S   

which in the boson counterpart of Eq. (9), and which represents the adiabatic α-transformation of 

a 0.2 fm Higgs electrostatic-energy sphere 
b

ee

rS into a 2.8 fm Higgs inertial-mass sphere
Th

.bim

rS  
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 The pion has balanced particle-antiparticle symmetry: it is its own antiparticle. It contains 

both a particle and an antiparticle substate. We denote the pion symbolically as ,b bm m   where 

the mass quanta b bm m  are bound together hadronically. Pion production takes place in match-

ing Higgs boson α-leap energy channels from the electron ground state, so that we have 

( 0) : / 70.025 MeV, (13 )e bboson J m m a     

( 0) : / 70.025 MeV, (13 )e bboson J m m b     

Empirically, the Higgs particle energies are calculated most accurately if the boson α-leap energy 

is added to the ( , )e e  ground-state energy, so that the calculated pion mass is 141.07 MeV, 

which is 2.8% higher than the experimental 137.27 MeV average mass of the 0, )   pion pair. 

This mass difference is attributed to the hadronic binding energy (HBE) between the bm  and bm  

pion substates. 

 The boson energy channel contains the π, η,η 'and K  pseudoscalar mesons. The K me-

sons are not particle-antiparticle symmetric, and they carry the strangeness quantum number 

S 1.   The π, η and η'  mesons are particle-antiparticle symmetric, and they are non-strange 

(S= 0). An important feature of the π, η and η'  pseudoscalar mesons is their very accurate 1::4::7 

mass ratio. This means that the boson excitation b bm m  acts as a unit mass, wherein the matching 

α-leaps in Eqs. (13a) and (13b) are repeated so as to create the higher-energy η and η'  mesons. 

This mass ratio carries over to their particle and antiparticle substates, which are represented as 

the Higgs energy spheres 
Th

α ,bim
rS  

Th

4α
/4 ,bim

rS  and 
Th

7α
/7 .bim

rS  These three energy spheres form the pseudo-

scalar meson inertial-mass quark states 
' '/2 , /2  and /2 ,q q qm m m m m m

        respectively. 

The energy intervals between these quark masses are each equal to the excitation quantum 

3 210 MeVb bX m   (before the HBE correction is applied). The calculated and experimental 

mass values for the π, η,η 'and K  mesons are displayed in Table 7.1. 

 The spin J = 0 non-strange π, η and η'  mesons in Table 7.1 contain 2, 8 and 14 bm  and 

bm  total unit masses, respectively. The spin J = 0 strange K mesons each contain a total of 7 

 and b bm m  unit masses, which is an odd number. From this it follows that the spin of the bm  unit 

mass is J = 0, so that bm  is a boson constituent quark, as its name suggests. 
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 The accuracy of this b bm m   unit mass addition process, with its 1::4::7 mass ratio, is 

illustrated graphically in Fig. 1, where the ,  and '    masses are plotted on a 137 MeV energy 

grid (which implicitly incorporates the ~2% HBE). The average accuracy of the experimental 

mass fits to this 137 MeV grid is 0.12%, which attests not only to the energy linearity of these 

three states, but also to their absolute values. 

 

 The α quantization of the ,  and '    masses is also manifested in their mean lifetimes, 

which are displayed in Fig. 2. This is a plot of lifetimes i relative to the reference 
  lifetime, 

using a logarithmic lifetime grid spaced by factors of 137. The linear (in powers of 137) o , ,  '    

lifetime ratios in Fig. 2 echo the linear o , , '    mass ratios in Fig. 1. The significance of these 

factor-of-137 spacings is that the decaying Higgs energy spheres reflect their quantized two-step 

-leap unit-energy build-up. 

Table 7.1. The , , '  and K    pseudoscalar meson energies in units of 

0.511 MeV,em  70.025 MeVbm   and 3 210.075 MeVb bX m   
 
Energy state       π †               η                     η'                    K†† 

Energy excitation          2( )e bm     2 ( )e b bm X     2 ( 2 )e b bm X     ( 2 )e b bm X   

Calc. energy (MeV)     141.07         561.2                  981.4              490.7 
Exp. energy (MeV)   137.27         547.9                  957.8              495.6 
Calc. accuracy               2.8% †††      2.4%†††               2.5%†††          –1.0% 
 
†ave. 0,   energy;   ††ave. 0K , K  energy;   †††HBE corr. needed. 



9 
 

8. The fermion two-step energy channel and the fermion unit mass mf 
 

The boson two-step energy channel features the spin J = 0 unit energy quantum 70 MeV.bm   If 

mb is conceptually set into motion as a Compton-sized relativistically-spinning sphere (RSS), its 

energy is increased by a factor of 3/2, and its calculated spin is 1
2 .J    It thus becomes the half-

integer-spin fermion energy quantum 105 MeV.fm   This suggests that fm  serves as the unit 

energy unit for a fermion two-step energy channel which is the counterpart of the boson energy 

channel discussed in Sec. 7. Confirmation of this suggestion is provided the existence of the 105 

Mev µ meson, the muon, which is the lowest-energy fermion above the electron, and which, as 

we will demonstrate, reflects the unit mass fm  that generates the basic quark and particle fermi-

on ground states. Unlike the boson mass unit mb, which appears in hadronically bound b bm m  par-

ticle-antiparticle energy units, the fermion mass unit fm  appears in separate two-step particle 

and antiparticle energy channels that are not hadronically bound, and which can be studied sepa-

rately, so that the energy quantization is more apparent. 

 The two-step Higgs generation of the mass quantum fm  is defined by the equation 

2 2 22
3 Thomson fermion/ ( ) /137 / 105 MeV, (14)fim

fE e r e r m c      

where fermion boson(2 / 3) ,r r  and is represented by the energy alpha-sphere 
2 Th3

.fim

rS  The excitation 

fm  occurs as an α-leap from the electron ground state, so that we have 

( 1/ 2) : 3 / 2 105.0375 MeV. (15)e ffermion J m m     

The unit energy quantum fm  has spin angular momentum J = 1/2 as a conserved quantity, and 

the higher-energy states that it generates are odd multiples of fm , so that the excitation units 

which add to the fm  ground state must be even multiples of fm . The basic fermion excitation 

unit is 2 210 MeV,f fX m   which matches the energy of the boson energy excitation unit 

3 210 MeVb bX m  that appears in the , , ',K    boson channel of Table 7.1. 

 An important difference between the boson and fermion energy excitation channels con-

sidered here is that the energy levels in the boson channel are for just one type of particle, the 

pseudoscalar mesons, but the energy levels in the fermion channel are an interleaved mixture of 

leptons, quarks, and hadrons, and include two connected excitation sequences: a fundamental 
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fX  excitation-doubling sequence, which is displayed in Table 8.1; and a secondary quark and 

vector meson mass-tripling sequence, which is displayed in Table 8.2. 

 

 The excitation sequence in Table 8.1 shows an initial α-leap in energy of ,e f e fm m m  

followed by an excitation-doubling sequence ( 2 ), 0,1,2,4,8f fn X m n   that creates five Higgs 

fermion energy levels, which are successively filled as follows: the µ lepton; the (u.d) up and 

down proton-neutron quarks, which are assigned equal masses; the strange quark s; the proton-

neutron (p,n) average mass; the  lepton. The three particle levels in this excitation ladder—the µ 

muon, (p,n) nucleon, and  tauon—have a very accurate 1::9::17 energy ratio, which echoes the 

accurate 1::4::7 energy ratio of the , , '    mesons in Table 7.1. It should be pointed out that the 

proton and tau lepton mass values, which are accurately reproduced in Table 7.1, are character-

ized in current Standard Model articles and books as having "no explanation". 

 The s(528) strange quark of Table 8.1 acts as a secondary unit mass: it generates the 

Table 8.1.  Fermion quark and particle excitation-doubling energies in units of 

0.511 MeV,em  105.0375 MeVfm   and 2 210.075 MeVf fX m   

Energy state       µ            u,d              s               p,n                  
Energy excitation             e fm       e f fm X     2e f fm X     4e f fm X     8e f fm X   

Calc. energy (MeV)     105.55       315.6            525.7             945.9              1786.1 
Exp. energy (MeV)   105.66       313.0†           509.7††          938.9†††          1776.8 
Calc. accuracy               0.10%       0.8%             3.1%††††        0.7%               0.5% 
 
 †ave. p,n energy  3;  ††ϕ meson energy  2;  †††ave. p,n energy;  ††††HBE corr. needed. 

Table 8.2.  Fermion (s,b,c)quark mass-tripled energies in units of em and .fm Also, vector meson  

ground states that have decreasing hadronic binding energies (HBE) which vanish above 6 GeV. 
 
 Quark state      5 525.7 MeVe fs m m      

    15 1576.1 MeVe fsss c m m     

    45 4727.2 MeVe fccc b m m     

Vector meson state      ss             1= J/ψ Scc             cBbc               1Sbb    

Calc. energy (MeV)      1051.4             3152.2                 6303.3                 9454.4 
Exper. energy (MeV)      1019.5             3096.9                 6274.5                 9460.3 
Calc. accuracy                   3.1%†              1.8%†                  0.46%                –0.06% 
 
 †HBE correction needed. 
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c(1576) and b(4727) charm and bottom quark inertial masses by successive s c b   mass 

triplings, as displayed in Table 8.2. These quarks pair together to form the vector meson ground 

states 1s 1s, J/  andss cc bb      and mixed-quark excitation cBbc   shown in Table 8.2. 

The discrepancies shown between their calculated and experimental mass values reflect the HBE 

hadronic binding energy that should be applied to the quark-antiquark pair, which is 3.1% for the 

ϕ at 1 GeV, and then decreases monotonically for the 1sJ/  and cB  at increasing energies and 

vanishes at 9 GeV 1sbb   and above, as expected from asymptotic freedom. 

 

9. The gauge boson two-step energy channel and the gauge boson unit mass mgb 

 

The systematics of the Higgs energy levels in the boson energy channel of Sec. 7 establishes the 

facts that an α-leap in energy occurs from the electron mass me to the boson mass mb, and that 

the mass mb then functions as a unit energy quantum for creating the higher-energy states in that 

channel. These result are extended by the systematics of the energy levels in the fermion energy 

channel of Sec. 8, where it is shown that the higher-energy levels in that channel, which are cre-

ated as multiples of the fermion mass mf, are successively occupied by different types of particle 

states—leptons, quarks, and hadrons—interleaved together. These results are reinforced when 

we move on the highest-energy particle states—the W and Z gauge bosons and top quark t, as we 

now demonstrate. 

 The hadron particle states below 12 GeV are reproduced by the u,d,s,c,b quark states of 

the Standard Model, so the Higgs masses shown in this energy regime, including the inertial-

mass (constituent-quark) values for the quarks, fit into a common Higgs two-step mass genera-

tion formalism. However, the high-energy W and Z gauge boson and top quark t states, which 

are above 80 GeV, have no obvious connection to the low-energy regime. The well-investigated 

energy region from 12 to 80 GeV is devoid of observed particles, which creates a separation be-

tween these energy regimes, but which also provides a valuable clue: if these energy regimes 

have the same Higgs formalism, it involves an α-leap that crosses the 68 GeV particle void. 

 The key to the Higgs energy structure of these high-mass states is the experimental dis-

covery of a mass relationship between the 0(W , Z )  gauge boson pair and the top quark t: [7] 

± o WZW Z
2  (0.87% accuracy), (16)tm m m m    
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where 
WZ

m  denotes the average energy of the 0(W , Z )  pair. The accuracy of this mass/energy 

equation suggests that it is not accidental. It ties together the energies of these two types of parti-

cle states, which is the one property they have in common. Due to their theoretical importance, a 

great deal of time and effort has gone into obtaining precise W, Z and t mass values. The current-

ly-posted values for these states are [1] 

oW 80.385 GeV; 91.1876 GeV; 173.07 GeV, (17)Z t     

which gives the average gauge boson energy 

WZ
( ) / 2 85.79 GeV. (18)W Zm m m    

The ground state for the α-leap up to the high-energy regime can be ascertained by analyzing the 

experiments in which these particles are created. The 0W ,  and Z t  are produced by p–p  colli-

sions at the Tevatron and LHC. At these TeV energies, a proton is flattened relativistically, and 

the uud  proton quarks are essentially independent, so the collisions are between individual pq  

and pq  quarks, where p ( , )q u d  collectively represents the u and d proton inertial-mass quarks. 

(The small u-d mass difference averages out in the collisions, so that 
p p /3qm m  is an exact rela-

tionship.) Once in every 1010 scattering events, a head-on p pq q  collision occurs where the quark 

pair absorbs enough collision energy to create gauge bosons and top quarks. If we reproduce this 

event as an energy α-leap, the factor-of-137 increase in p pq q  energy should coincide with the 

appearance of a particle energy at the calculated α-leap energy, which is 

p p( ) ( ) 3 85.72 GeV. (19)q qm m m m       

No direct particle state appears at this energy, but it closely matches the average gauge boson 

energy of 85.79 GeV shown in Eq. (18). This is agreement to within 0.08%. Hence we have ex-

perimentally verified the α-leap energy equation 

p p WZ
( ) 3  (0.08% accuracy). (20)m m m    

Using Eq. (16), we can extend this result upwards in energy so as to include the top quark mass, 

which has the calculated α-leap mass 

± 0 pWZW
2 / 3 171.44 GeV. (21)4

Ztm m m m m      

The measured top quark mass is =173.07 GeVtm , which matches Eq.(21) to 0.95%. Thus we 

have experimentally linked the gauge boson average inertial mass and the top quark inertial mass 



13 
 

to the proton quark average inertial mass via the energy -leap shown in Eq. (19). These equa-

tions suggest that it is actually the average WZ  energy that is related to the top quark t energy, 

so that the mechanism which splits the W and Z energies is a separate adiabatic process. 

 The W gauge boson, like the π boson, has balanced particle-antiparticle symmetry. It is 

denoted as W ,gb gbm m  where gbm  is the gauge boson unit mass quantum. W production occurs 

in matching Higgs α-leap energy channels from proton quark ground states, so that we have 

,( 1 / 2) : / 3 / 43.18 GeV, (22 )u d f gbgauge boson J m m m a       

,( 1 / 2) : / 3 / 43.18 GeV. (22 )u d f gbgauge boson J m m m b       

The gbm  quark substate, like the 70 MeVbm   quark substate, is not observed singly. In addi-

tion to the calculated energy value for the gbm  mass shown in Eqs. (22), we also have the value 

p 3 42.86 GeV, (23)gbm m    

which is obtained from Eq. (19), and the experimental value 

( ) / 4 42.89 GeV, (24)gb W Zm m m    

which is obtained from Eq. (18). These three slightly different ways of deducing the gbm  inertial 

mass agree to within 0.75%. 

 In order to preserve spin, charge and other quantum numbers, the top quark t must be 

produced in a matching t t  pair, which is a Higgs higher-energy excitation of the gb gbm m  unit 

mass pair generated in Eqs. (22a) and (22b). The calculated and experimental mass values for 

this t t  excitation are displayed in Table 9.1. As can be seen, the gauge boson excitation se-

quence in Table 9.1 mirrors the first two energy levels of the boson excitation sequence in Table 

7.1. At these high energies, the hadronic binding energy HBE is negligible, so the accuracy of 

the energy calculations is very precise. 

 Two characteristic features of the Higgs two-step mass generation process are (1) an en-

ergy α-leap that creates a unit mass m, and (2) a multiplication of the mass m to create higher-

mass levels. Experimentally, this is what occurs in the gauge boson energy channel for the 

oW , andZ t  high-energy states, so they represent a continuation of the lower-energy Higgs two-

step processes for the boson and fermion energy-channel extraction of energy from the scalar 

Higgs field in the generation of quark and particle masses. 
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10. Global logarithmic plots of α-quantized ground-state particle masses and lifetimes 

 

 The fermion mass states contained Tables 8.1, 8.2 and 9.1 are displayed graphically in 

Fig. 3, using a logarithmic mass scale that is in units of 105 MeVfm   for masses below 12 

GeV, and 42.86 GeVgbm   for masses above 12 GeV. These masses, together with the boson 

masses of Table 7.1, represent the basic lepton, fermion-quark, and hadron ground states. The 

unit masses 70 MeVbm   and 105 MeVfm   are produced by -leaps from the electron, which 

in turn is produced by an -leap from the 
Th

ee
rS  Higgs energy sphere. The high-energy gauge 

boson and top quark masses are produced by -leaps from the proton and antiproton quarks in 

TeV p p  collisions. The masses displayed in Figs. 1 and 3 are anchored on the electron mass 

em , and they have calculated absolute mass values that are at an accuracy level of about 1%. 

Table 9.1. The WZ gauge boson and T t t  quark pair energies 

in units of 43.18 GeVgbm   and 3 129.54 GeVgb gbX m   
 

Energy state        WZ                   T 

Energy excitation             2( )gbm          2( )gb gbm X  

Calc. energy (GeV)         86.36                345.44 
Exp. energy (GeV)       85.79                346.14† 
Calc. accuracy                  0.7%                  0.2% 
 
†top quark t energy  2 
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 The observed mass α-quantization of quark and particle states that is displayed in Fig. 3 

is reflected in the lifetime α-quantization of 37 metastable hadrons with lifetimes  > 10–21 sec 

that is displayed in Fig. 4. These long-lived particles represent the ground states of the leptons 

and the various hadron quark configurations. Their lifetimes are plotted using the same -spaced 

logarithmic lifetime grid and same π reference lifetime as in Fig. 2. The lifetimes occur in 

groups that are each dominated by a single quark flavor—s, b, c. The slow unpaired-quark elec-

troweak decays in a group are separated from the fast paired-quark decays by a factor of ~α4, 

with no intervening lifetimes. These lifetimes demonstrate the extent to which quantizations in 

factors of 1α 137   have permeated the systematics of the metastable ground-state particle 

lifetimes and masses. [8] 
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11. Higgs energy streams from the electron to the 1S  vector meson and the top quark t 

 
 We conclude with two examples that illustrate the accuracy of the fine structure electro-

static energy and inertial-mass equationss, together with their Higgs energy sphere representa-

tions and α-leaps, in calculating electron-based particle energies. Fig. 3 contains an excitation 

stream of particle energies that starts with the 105 MeV muon and leads up to the b quark and the 

observed 1S bb   vector meson ground state. Fig. 3 also contains a similar excitation stream 

that starts with the muon, involves a factor-of-137 Tevatron-LHC -leap, and leads up to the top 

quark t. The muon itself is reached by a (3 2 )  -leap from the electron. Thus we can start with 

the electron energy and arrive at both the 1S  and top quark energies without using any freely-

adjustable parameters. The energy stream equation for the 1S  upsilon mass/energy is 

1S

135
(3 2 ) (5) (3) (3) (2) 9453.4 MeV. (25)e em m m    


 

The experimental upsilon mass is [1] 

 
1S exper.

9460.3 MeV. (26)m   

This is agreement to an accuracy level of 0.07%. The diagram for the energy stream of Eq. (25) 

is displayed in Fig. 5. 
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 The energy stream equation for the top quark mass is 

top 2

18
(3 2 ) (9) (1 3) (1 ) (4) 172.73 GeV. (27)e em m m    


 

The experimental top quark mass is [1] 

 top exper.
173.07 GeV. (28)m   

This is agreement to an accuracy level of 0.20%. The diagram for the energy stream of Eq. (27) 

is displayed in Fig. 6. 

 
 
 There are two significant conclusions that can be drawn from Eqs. (25-28): (1) The con-

stant α used here is the renormalized value 1 137,   and not the running QCD coupling con-

stant 2( )s q  [9] that increases in value to 2( ) 1/128s q   at W

2 2 .q m  (2) These very accurate 

parameter-free equations would not be possible without the inclusion of the factor α in Eq. (25) 

and the factor α2 in Eq. (27). 

 If we look beyond the field of elementary particles, then the fact that stored electromag-

netic energy expands by a radial factor of 137 when it is converted into particle inertial mass 

(Eqs. 9 and 12) may be important. On an astronomical scale, the creation of matter may bring 

with it an expansive thrust that has the attributes of dark energy. The task is to ascertain if the 

production of the Higgs particle masses, which represent the visible matter that is 4% of the mass 

in the universe, has contributed significantly to the radially outward motion of the dark energy, 

which is 76% of the mass in the universe. 
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