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These notes are meant to provide an outline of our course (math 535, Spring 2016)
and to supplement our primary text: A First Course in Complex Analysis by Beck,
Marchesi, Pixton, Sabalka.

http://math.sfsu.edu/beck/papers/complex.pdf

Please read the copyright restrictions given on p.2 of the pdf.
We begin with properties of the real numbers that are normally studied in a first

course in advanced calculus or real analysis, such as Foundations of Analysis (math
310).

1. Analysis Basics

Completeness of the Reals. Every non-empty subset of the reals that is bounded
above has a least upper bound (its sup); every non-empty subset of the reals that is
bounded below has a greatest lower bound (its inf).

If x is the sup of S, and if ε > 0, there is y ∈ S with x− ε < y ≤ x. If x is the inf
of S, and if ε > 0, there is y ∈ S with x ≤ y < x+ ε.

Date: Spring Term, 2016.
These notes were begun in May 1996 and have been revised and extended periodically in the

interim.
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Monotone Convergence. Let an define a real sequence. If an ≤ an+1 for all n (if
an is increasing), and if an is bounded ahove, then an → A as n → ∞, where A is
the sup of the set of all an. If an ≥ an+1 for all n (if an is decreasing), and if an is
bounded below, then an → A as n→∞, where A is the inf of the set of all an.

We need you to recall the length or norm of a point or vector. If a, b ∈ R, then

|(a, b)| =
√
a2 + b2

In complex analysis, we use the word modulus for this number. The modulus of (a, b)
is its distance from (0, 0), and the geometric distance between points p, q is |p − q|.
You are supposed to know the Triangle Inequality:

|p+ q| ≤ |p|+ |q| for all p, q ∈ R2

Given w ∈ R2 and r > 0, we define D(w; r) to be the set of points z ∈ R2 such
that |z − w| < r. The set D(w; r) is called the open disk centered at w of radius r.
It is easy to see that D(w; r) is the interior of the circle centered at w of radius r.
Open disks will serve as the natural domain for many facts in our course.

Here is a fact about partial derivatives from Calculus III.

Proposition 1. Let (a, b) ∈ R2, let r > 0, and define D = D((a, b); r). Suppose that
u : D → R has first partial derivatives at every point in the disk. Let (c, d) ∈ D.
Then there are real numbers a1, b1 such that a1 is between a and c, and b1 is between
b and d, and

u(c, d)− u(a, b) =
∂u

∂x
(a1, b) · (c− a) +

∂u

∂y
(c, b1) · (d− b)

Proof. Write

u(c, d)− u(a, b) = u(c, d)− u(c, b) + u(c, b)− u(a, b)

Since ∂u/∂y exists, the Mean Value Theorem can be applied to u(c, d) − u(c, b) to
find b1 between b and d such that

u(c, d)− u(c, b) =
∂u

∂y
(c, b1) · (d− b)

Similarly, the Mean Value Theorem can be applied to u(c, b) − u(a, b) to find a1
between a and c such that

u(c, b)− u(a, b) =
∂u

∂x
(a1, b) · (c− a)

�

We will write the conclusion of Proposition 1 as a statement about ∆u in terms
of ∆x and ∆y:

(1) ∆u =
∂u

∂x
·∆x+

∂u

∂y
·∆y

We have to remember all the actual conditions given in Proposition 1, but we will
find that equation (1) provides a very useful shorthand.



NOTES ON COMPLEX ANALYSIS 3

2. The Complex Plane

Definition and Arithmetic
One of the simplest and most useful ways to define the complex numbers is to

declare them to be the points in the plane R2. We write C for the set of complex
numbers, and we are saying that C = R2. For a complex number (x, y), we call x
the real part and y the imaginary part. We write

x = Re(x, y) and y = Im(x, y)

Two complex numbers are equal if and only if their real parts are equal and their
imaginary parts are equal.

We will regard the real numbers to be a subset of the complex numbers, identifying
the real number x with the point (x, 0). We do not define comparision of complex
numbers in general, and so when we write an inequality such as x > 0, we are
implying that x is a real number. Similarly, an inequality such as r ≤ 2 would
indicate that r is real, as well.

Here is the how addition and multiplication are defined:

(a, b) + (c, d) = (a+ c, b+ d)

(a, b) · (c, d) = (a · c− b · d, a · d+ b · c)
You should notice that (x, 0)+(y, 0) = (x+y, 0) and (x, 0)·(y, 0) = (xy, 0), according
with our identification of real numbers with points on the x-axis. Also notice that

(c, 0) · (a, b) = (ca, cb) = c · (a, b)
so that complex multiplication by the real number c is the same as scalar multipli-
cation in R2.

The operations just defined make C into a field – that means that the addition
and multiplication are associative and commutative, that multiplication distributes
over addition, that there is an additive identity element, that there is a multiplicative
identity element, that every element has an additive inverse, and that every non-zero
element has a multiplicative inverse. The additive identity is, of course, 0 = (0, 0),
and the multiplicative identity is 1 = (1, 0). Here are the multiplicative inverses: let
(a, b) 6= (0, 0), so that a2 + b2 6= 0 as real numbers, and compute that

(a, b) ·
(

a

a2 + b2
, − b

a2 + b2

)
= (1, 0)

Define i = (0, 1), and notice that

i2 = (0, 1) · (0, 1) = (−1, 0) = −1

This equation identifies i as the expected imaginary number, although we hope you
don’t think that the point (0, 1) is imaginary!

We can interpret (a, b) ∈ C in several ways. Notice that

(a, b) = (a, 0) + b · (0, 1) = a+ b · i
The expression a+ b · i gives a very common representation of complex numbers; this
representation is called the rectangular representation. Recall that a is the real part
and b is the imaginary part of a + b · i. Because multiplication is commutative, it
doesn’t matter whether a+ b · i is written a+ i · b; each is used.
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We are also interested in a polar representation. For a non-zero complex number
z, we consider polar coordinates (r, θ), where

r > 0 and z = r · cos(θ) + i · r · sin(θ)

If we write the rectangular representation, z = x+ i · y, then

x2 + y2 = r2 · cos2(θ) + r2 · sin2(θ) = r2

and since r > 0, we see that r =
√
x2 + y2, the previously mentioned modulus of z,

denoted |z|.
Because of the periodicity of cosine and sine, there are many possible angles θ

that can be used in the polar representation. We call θ an argument of z; the other
possible arguments are the numbers θ + 2 · π · k, where k is an integer.1 The set of
all arguments of z is denoted Arg(z).

It will be convenient to avoid polar representations of the complex number 0;
although it has modulus 0, but its set of arguments would be the entire set of real
angles – allowing that case would be an inconvenience.

Later, we will see that

(2) cos(θ) + i · sin(θ) = exp(i · θ)
(often written ei·θ) We will give a formal construction of the exponential later. For
now, we assume familiarity with the real exponential function ex (for x ∈ R), and
we will follow custom and use ei·θ for (2). Notice that

cos(0) + i · sin(0) = 1 + i · 0 = 1

which agrees with exp(i ·0) = exp(0) = 1. Second, the angle addition formulas show,
for all α, β ∈ R, that

(3)
[

cos(α) + i · sin(α)
]
·
[

cos(β) + i · sin(β)
]

= cos(α + β) + i · sin(α + β)

and this tells us that

exp(i · α) · exp(i · β) = exp(i · (α + β))

which looks like a familiar identity for the exponential function. For now, we will let
the formula (2) define exp(i · θ).

Thus, polar representation of z 6= 0 has the form

z = |z| · exp(i · θ) where θ ∈ Arg(z)

This makes it clear that |z| = 1 if and only if z = exp(i · θ) for some θ.

Proposition 2. Let z, w ∈ C. Then |z · w| = |z| · |w|.

Proof. The equation is obvious if z = 0 or if w = 0. Otherwise, write the polar
representation of each:

z = |z| · exp(i · α) and w = |w| · exp(i · β)

so that
z · w = |z| · |w| · exp(i · (α + β))

We have |z| · |w| > 0, and so it is the modulus of z · w. �

1It goes without saying that we measure angles in radians.
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DeMoivre’s Theorem shows how to find n-th roots. In the following, n
√
r is the

ordinary real n-th root: the unique positive real number whose n-th power is r.

DeMoivre’s Theorem. Let z be a non-zero complex number, and let θ ∈ Arg(z).
Let n be a positive integer. Then there are exactly n complex numbers w with wn = z.
Each such w has the form

w = n
√
|z| · exp((θ + 2π · k)/n) where k = 0, 1, . . . , n− 1

Conjugates
The complex conjugate2 of the complex number x+ i · y, where x, y ∈ R, is

x+ i · y = x− i · y which is to say (x, y) = (x,−y)

In other words, Rez = Rez and Imz = −Imz.
There is an important geometric interpretation to the conjugate: it maps the point

(x, y) to its reflection across the x-axis.
What does this look like in the polar representation? We need to remember that

cos(−θ) = cos(θ) and sin(−θ) = − sin(θ) for all θ ∈ R

Thus, if r > 0 and θ ∈ R, then

r · exp(i · θ) = r · cos(θ) + i · r · sin(θ) = r · cos(θ)− i · r · sin(θ)

= r · cos(−θ) + i · r · sin(−θ) = r · exp(−i · θ)

An important corollary: the complex conjugate of exp(i · α) is its multiplicative
inverse exp(−i · α).

Here are the properties of the conjugate. We will leave the proof to you or to
class. Proposition 3(a,d) are best done using the rectangular representation, Propo-
sition 3(b,c), the polar.

Proposition 3. Let z, w ∈ C. Then

(a) z + w = z + w
(b) z · w = z · w
(c) z · z = |z|2
(d) z = z if and only if z ∈ R

Topology
We have already defined the open disk D(w; r):

D(w; r) =
{
z ∈ C

∣∣ |z − w| < r
}

A subset A of the complex numbers is bounded if it is contained in some open disk.
If we wish, we can always assume that 0 is the center of disk. Indeed, suppose that
A ⊆ D(w; r) for some w ∈ C and r > 0. If a ∈ A, then the Triangle Inequality shows
that

|a| = |a− w + w| ≤ |a− w|+ |w| < r + |w|
and so A ⊆ D(0; r + |w|).

2The word conjugate is used in several contexts in mathematics. For our course, it will always
refer to the complex conjugate, and so we will usually leave off the word complex.
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A set V ⊆ C is open in C if for every z ∈ V , there is r > 0 with D(z; r) ⊆ V . We
will see that open sets are the natural domain of the functions we will study in the
course. Here are the basic properties of open sets.

Proposition 4. The set C and the empty set φ are open in C. Every open disk is
open in C. If U, V are open subsets of C, then so is U ∩ V . If U1, U2, . . . are open
subsets of C, then so is their union

⋃∞
j=1 Uj.

Proof. We will prove only that open disks are open and leave the other arguments
to you or to class. Let w ∈ D(z; r). Then |w − z| < r, define s = r − |w − z| so
that s > 0. We claim that D(w; s) ⊆ D(z; r). Indeed, let u ∈ D(w; s) and use the
Triangle Inequality:

|u− z| = |u− w + w − z| ≤ |u− w|+ |w − z| < s+ |w − z| = r

This proves that u ∈ D(z; r). �

It will often be convenient to work with the complement of an open set. The set
C ⊆ C is closed in C if the set C \C is open. To repeat: C is closed if, for all z ∈ C
with z /∈ C, there is r > 0 such that D(z; r) ∩ C = φ. Here is a direct analog of
Proposition 4.

Proposition 5. The set φ and the set C are closed in C. If C,E are closed subsets of
C, then so is C∪E. If C1, C2, . . . are closed subsets of C, then so is their intersection⋂∞
j=1Cj.

We will sometimes want to include the circular boundary of a disk. For z ∈ C and
r > 0, define

D(z; r) =
{
w ∈ C

∣∣ |w − z| ≤ r
}

Thus, D(z; r) ⊂ D(z; r) with D(z; r) \D(z; r) being the circle of points w ∈ C such
that |w − z| = r. The set D(z; r) is called a closed disk ; it is a closed set.

We turn to properties of sequences. Let an ∈ C for n = 0, 1, 2, . . .; then we call
an a complex sequence. A sequence is bounded if its set of values is bounded. The
following fact generalizes the Bolzano-Weierstrass Theorem in the reals.

Proposition 6. Let an be a bounded complex sequence. Then there is c ∈ C such
that for all ε > 0, there are infinitely many positive integers n such that |an− c| < ε.

A corollary we will need later:

Proposition 7. Let Cn be non-empty, closed subsets of C, for n = 1, 2, . . ., and
suppose that Cn+1 ⊆ Cn for each n. Suppose that C1 is bounded. Then there is a
complex number in the intersection of all the Cn.

Proof. Each Cn is non-empty: choose cn ∈ Cn for each n. We have Cn ⊆ C1 for
every n, and the set C1 is bounded; this shows that cn is a bounded sequence. By
Proposition 6 there is a complex number c such that |cn − c| < ε for infinitely many
n, for each ε.

We claim that c is in all the Cn. If not, let c /∈ Ck. Since Ck is closed, there is
δ > 0 such that D(c; δ)∩Ck = φ. There are infinitely many n such that cn ∈ D(c; δ),
and so there is such an n ≥ k. We have cn ∈ Cn ⊆ Ck, and so cn ∈ Ck ∩D(c; δ), a
contradiction. �
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3. Limits and Continuity

The definitions are exactly as in the real case, given that the complex modulus
replaces the real absolute value. Let A ⊆ C. Then a ∈ C is a limit point3 of A if for
all δ > 0, the set D(a; δ) ∩ A has at least two elements. It follows that D(a; δ) ∩ A
has infinitely many elements.

Here is the function limit. Let A ⊆ C and let f : A → C. Let a be a limit point
of A, and let L ∈ C. Then

lim
z→a

f(z) = L

means this: for all ε > 0 there is δ > 0 such that if b ∈ A and 0 < |b− a| < δ, then
|f(b)− L| < ε.

We get the expected uniqueness of the limit,4 if it exists, and we get the limit
algebra over sums, constant multiples, products, and ratios (when the denominator
goes to a non-zero number). The ordinary limit does not behave well in composite
functions, in general.

In the real case, x → ∞ makes sense, because there is only one way to approach
positive infinity. In the complex case, it is not clear what∞means, since, in its widest
interpretation it can be approached in any direction from the origin. It usually makes
more sense to speak of |z| → ∞ in the complex case. Here is a formal definition: Let
A ⊆ C, where A is unbounded, and let f : A→ C. Let L ∈ C, and then

lim
|z|→∞

f(z) = L

means that for all ε > 0, there is a real number M such that if |z| > M and z ∈ A,
then |f(z)− L| < ε. The simplest example: 1/z → 0 as |z| → ∞.

We also have limits of the modulus going to infinity, with the usual definition.
Here is an example: a typical, useful fact about polynomials similar to the real case.

Proposition 8. Let f(z) be a polynomial with complex coefficients and of degree at
least 1. Then we have the following limit in the complex numbers:

lim
|z|→∞

|f(z)| =∞

Proof. Write

f(z) =
n∑
k=0

ak · zk

where ak ∈ C for each k, and an 6= 0, with n ≥ 1. Choose a positive real number
δ ≥ 1 with

δ >
1

|an|
·
n−1∑
k=0

|ak| and then |an| −
1

δ
·
n−1∑
k=0

|ak| > 0

Denote by b the number on the left of the second inequality.
Let |z| ≥ δ, and since δ ≥ 1, we have |zk| ≥ |z| ≥ δ for all k ≥ 1.

3Some use the term accumulation point.
4Uniqueness is why the number a needs to be a limit point of A.
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Now use the (reverse) Triangle Inequality to estimate

|f(z)| =

∣∣∣∣∣
n∑
k=0

ak · zk
∣∣∣∣∣ = |zn| ·

∣∣∣∣∣an +
n−1∑
k=0

ak
zn−k

∣∣∣∣∣
≥ |z|n ·

[
|an| −

∣∣∣∣∣
n−1∑
k=0

ak
zn−k

∣∣∣∣∣
]
≥ |z|n ·

[
|an| −

n−1∑
k=0

∣∣∣ ak
zn−k

∣∣∣]

= |z|n ·

[
|an| −

n−1∑
k=0

|ak|
|zn−k|

]
≥ |z|n ·

[
|an| −

n−1∑
k=0

|ak|
δ

]
= |z|n · b

Since n ≥ 1 and b > 0, we see that |f(z)| → ∞ as |z| → ∞. �

The definition of continuity in complex functions is identical to that for the real
case, using the modulus. Let A ⊆ C and f : A → C. Let a ∈ A. Then f is
continuous at a if for all ε > 0, there’s δ > 0 such that if x ∈ A and |x− a| < δ, then
|f(x)− f(a)| < ε.

As in the real case, it doesn’t matter whether a ∈ A is a limit point, or not, but
if it is, then f being continuous at a is exactly that f(z)→ f(a) as z → a.

The function f : A → C is continuous (or continuous on A) if it is continuous at
all the elements of A.

The sum, difference, and product of functions continuous on A ⊆ C is continuous
on A. Constant multiples of continuous functions are continuous, as well. If f, g are
continuous on A, and if g(z) 6= 0 for all z ∈ A, then f(z)/g(z) is continuous on A.

It follows that every polynomial is continuous on C. Every rational function (ratio
of polynomials) is continuous wherever the denominator is not 0. Recall that a
polynomial of degree n can have at most n roots. Thus, every rational function
is continuous on the open set obtained by removing the finitely many roots of the
denominator – its domain is an open subset of the complex numbers.

Composites: if A,B ⊆ C, if f : A → B is continuous, and if g : B → C is
continuous, then g(f(z)) is continuous on A. This makes continuity a much more
useful concept than the mere limit.

Let A ⊆ C and f : A → C. For each a ∈ A, we can write f(a) = u(a) + i · v(a)
in rectangular representation, where u, v : A → R. We can also write a = x + i · y
in rectangular, and this allows us to think of u(x, y) and v(x, y) as real functions of
two real variables. We say that u is the real part of f and v is the imaginary part of
f . We will prove the following in class or as a homework exercise.

Proposition 9. Let A ⊆ C and f : A→ C. Let u, v be the real and imaginary parts
of f , respectively. Then f is continuous if and only if u and v are continuous (as
real functions of two variables).

We need an additional fact.

Proposition 10. Let C ⊂ C be closed and bounded. Let f : C → C be continuous.
Then f(C) is bounded.5

5It is the case that f(C) is closed, as well, but we will not need that fact.



NOTES ON COMPLEX ANALYSIS 9

Proof. Assume that f(C) is not bounded. Then, for each positive integer n there
is an ∈ C such that |f(an)| ≥ n. Proposition 6 finds a number c such that, for all
δ > 0, there are infinitely many n such that an ∈ D(c; δ). Because C is closed, we
have c ∈ C.

Since f is continuous at c, there is δ > 0 such that if |z − c| < δ and z ∈ C, then
|f(z)− f(c)| < 1. Among the infinitely many n such that an ∈ D(c; δ), choose such
an n with n > |f(c)|+ 1. Then

|f(an)| ≤ |f(an)− f(c)|+ |f(c)|
< 1 + |f(c)| < n

contradicting the fact that |f(an)| ≥ n. �

Let A ⊆ C and let fn : A→ C for n = 0, 1, 2, . . .. Then fn → f uniformly means
that for all ε > 0, there is N such that if n ≥ N and x ∈ A, then |fn(x)− f(x)| < ε.
The reader should remember that the N is chosen before x is specified.

Proposition 11. Let A ⊆ C and let fn : A → C be continuous for n = 0, 1, 2, . . ..
Suppose that fn → f uniformly. Then f is continuous.

Proof. Let a ∈ A and ε > 0. Get N such that if n ≥ N , then |fn(x) − f(x)| < ε
for all x ∈ A. Choose n ≥ N . Since fn(x) is continuous, there is δ > 0 such that if
|x− a| < δ, then |fn(x)− fn(a)| < ε. For such x, compute

|f(x)− f(a)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(a)|+ |fn(a)− f(a)| < 3 · ε

This proves that f(x) is continuous at a; since a is arbitrary, f is continuous. �

4. The Derivative

The definition of the derivative in the complex plane looks exactly like the defini-
tion over the reals. That similarity hides significant differences, as we will see. Let
V ⊆ C, and let f : V → C. Let w ∈ V be a limit point of V . If the following limit
exists:

(4) lim
z→w

f(z)− f(w)

z − w
then we write f ′(w) for the limit and call it the derivative of f at w. The notation
z → w requires z ∈ V and z 6= w.

To be absolutely clear, let’s rehearse the meaning of the limit (4). The limit says
that for each ε > 0, there is δ > 0 such that if z ∈ V and z 6= w and |z − w| < δ,
then ∣∣∣∣f(z)− f(w)

z − w
− f ′(w)

∣∣∣∣ < ε

We can always replace a given δ by a smaller positive numbers. Since w is a limit
point of V , there are always infintely many elements z ∈ V with |z − w| < δ. For
that reason, the limit f ′(w) is unique, if it exists.

Observe that if V ⊆ R and f : V → R, then (4) gives the ordinary derivative of
calculus. We are also interested in the case where V = [a, b], a closed interval on the
reals, and f : V → C. We call f a curve in this case, and f ′(t) is what might be
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called the vector derivative – if we write f(t) = u(t) · i · v(t), where u, v are the real
and imaginary parts, then

f ′(t) =
du

dt
+ i · dv

dt
The following facts are immediate, using proofs very similar to those used in the

real case. Let V ⊆ C, let f : V → C and g : V → C. Let w ∈ V be a limit point of
V , and suppose that f ′(w) and g′(w) exist.

(1) f is continuous at w
(2) If α ∈ C, then (α · f)′(w) = α · f ′(w)
(3) Then (f + g)′(w) = f ′(w) + g′(w).
(4) Then (f · g)′(w) = f ′(w) · g(w) + f(w) · g′(w)
(5) If g(w) 6= 0, then(

f

g

)′
(w) =

f ′(w) · g(w)− f(w) · g′(w)

g(w)2

Our version of the Chain Rule is subtle in that it covers two rather different cases,
as we will see.

Chain Rule. Let A ⊆ C and let B be an open subset of C. Let f : A → B and
g : B → C. Let w ∈ A be a limit point of A, and suppose that f ′(w) exists. Suppose
that g′(f(w)) exists. Then (g(f))′(w) = g′(f(w)) · f ′(w).

Proof. Define h : B → C by

h(z) =

{
g(z)−g(f(w))
z−f(w) if z 6= f(w)

g′(f(w)) z=f(w)

The fact that h(z) → g′(f(w)) as z → f(w) (with z 6= f(w)) shows that h is
continuous at f(w). Observe that

h(z) · (z − f(w)) = g(z)− g(f(w)) for all z ∈ B
for when z = f(w) the equation says merely that 0 = 0.

Let p ∈ A \ {w} and compute

g(f(p)− g(f(w))

p− w
=
h(f(p)) · (f(p)− f(w))

p− w
= h(f(p)) · f(p)− f(w)

p− w
As p → w, the fraction on the right goes to f ′(w). Since f ′(w) exists, f(p) is
continuous at w, and so as p → w, we have f(p) → f(w). Since h is continuous at
w, we have h(f(p))→ h(f(w)) = g′(f(w)). �

5. The Cauchy-Riemann Equations

Complex Analysis, as a subject, is primarily concerned with the following situation:
Let V be an open subset6 of the complex numbers and f : V → C. If f ′(w) exists at
all points w ∈ V , we say that f is holomorphic7 on V .

6Observe that all elements of an open subset are limit points of the subset.
7We will discuss the use of the word holomorphic in class. It will become apparent that it would

not serve our purpose to refer to f as differentiable, as we do in the real case.
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If A,B are open subsets of C, if f : A → B and g : B → C, and if f and
g are holomorphic on their domains, then the Chain Rule shows that g(f(z)) is
holomorphic on A.

It will be useful to express the derivative of f in terms of partial derivatives in its
real and imaginary parts. Let V be an open subset of the comples numbers, and let
f : V → C. Write f(z) = u(z) + i · v(z), where u, v are the real and imaginary parts
of f(z), respectively. Recall that we think of u(z) as u(x, y), where z = x+ i · y.

The equations (5) in the following are the famous Cauchy-Riemann equations.

Proposition 12. Let V be an open subset of C and let f : V → C. Write f = u+i·v
in rectangular form. If w ∈ V , and if f ′(w) exists, then u, v have first partial
derivatives at w, and

f ′(w) =
∂u

∂x
(w) + i · ∂v

∂x
(w) = −i · ∂u

∂y
(w) +

∂v

∂y
(w)

and so at w, we have

(5)
∂u

∂x
=
∂v

∂y
and

∂u

∂y
= −∂v

∂x

Proof. Write w = a + i · b, its rectangular representation. We let z → w by setting
z = x+ i · b and having x→ a. Then

f ′(w) = lim
z→w

f(z)− f(w)

z − w
= lim

x→a

u(x, b)− u(a, b) + i · (v(x, b)− v(a, b))

x− a

= lim
x→a

u(x, b)− u(a, b)

x− a
+ i · lim

x→a

v(x, b)− v(a, b)

x− a

=
∂u

∂x
(w) + i · ∂v

∂x
(w)

We see that the partial derivatives of u and v with respect to x exist at w.
We repeat the limit, this time letting z = a+ i · y and having y → b. We get

f ′(w) = lim
z→w

f(z)− f(w)

z − w
= lim

y→b

u(a, y)− u(a, b) + i · (v(a, y)− v(a, b))

i · (y − b)

= −i · lim
y→b

u(a, y)− u(a, b)

y − b
+ lim

y→b

v(x, b)− v(a, b)

y − b

= −i · ∂u
∂y

(w) +
∂v

∂y
(w)

Equating the real parts and imaginary parts in the two expressions for the deriva-
tives, we obtain (5). �

Here is a consequence of the Cauchy-Riemann equations: a function with zero
derivative in a disk is constant there. This generalizes a fact from real analysis.

Proposition 13. Let c ∈ C and r > 0 and suppose that f(z) has derivative 0 at
every point of D(c; r). Then f(z) is constant on the disk.

Proof. From the equations for f ′(z), we see that the first partial derivatives of its
real and imaginary parts of f are 0 in the disk. Proposition 1 then shows that the
real and imaginary parts of f are constant. �
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We will see that the converse of Proposition 12 is true – that is a major theo-
rem. For now, we can prove a partial converse – partial in the sense that we add a
hypothesis.

Proposition 14. Let V be an open subset of C, and let u, v : V → R have continuous
first partial derivatives and also satisfy the Cauchy-Riemann equations (5). Then
f(z) = u(z) + i · v(z) defines a holomorphic function on V .

Proof. Let w ∈ V and get r > 0 such that D(w; r) ⊆ V . For z ∈ D(w; r) with z 6= w,
write ∆z = z−w, and write ∆z = ∆x+ i ·∆y to give its rectangular representation.

We apply Proposition 1 (using the equation form (1)) to both u and v, and we
have8

∆u = ∆xu+ ∆yu =
∂u

∂x
·∆x+

∂u

∂y
·∆y

=
∂u

∂x
·∆x− i · ∂u

∂y
· (i ·∆y) =

∂u

∂x
·∆x+ i · ∂v

∂x
· (i ·∆y)

using Cauchy-Riemann for the last equation. Also

∆v = ∆xv + ∆yv =
∂v

∂x
·∆x+

∂v

∂y
·∆y so that

i ·∆v = i · ∂v
∂x
·∆x+ i · ∂v

∂y
·∆y = i · ∂v

∂x
·∆x+

∂u

∂x
· (i ·∆y)

again using a Cauchy-Riemann equation. Adding ∆u and i ·∆v:

∆u+ i ·∆v =
∂u

∂x
·∆x+ i · ∂v

∂x
· (i ·∆y) + i · ∂v

∂x
·∆x+

∂u

∂x
· (i ·∆y)

=

[
∂u

∂x
+ i · ∂v

∂x

]
·
[
∆x+ i ·∆y

]
=

[
∂u

∂x
+ i · ∂v

∂x

]
·∆z

Thus
f(w + ∆z)− f(w)

∆z
=
∂u

∂x
+ i · ∂v

∂x
Letting ∆z → 0, the partial derivatives approach their values at w, because those
partial derivatives are continuous. This proves that f ′(w) exists. �

6. Taylor Series: Analytic Functions

Let an be a complex sequence and let z0 ∈ C. The formula

∞∑
n=0

an · (z − z0)n = lim
m→∞

m∑
n=0

an · (z − z0)n

is the Taylor series for an about z0.

8Recall from Proposition 1 that the partial derivatives of u and v are evaluated at points in the
disk. As z → w, those points will approach w.
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Let V be an open subset of C and let f : V → C. We say that f is analytic (and
we say that f is an analytic function) if for every w ∈ V , there is r > 0 such that
D(w; r) ⊆ V and such that there is a complex sequence an with

f(z) =
∞∑
n=0

an · (z − w)n for every z ∈ D(w; r)

In other words, f(z) has a Taylor series formula about every point in its domain.
It can well be that the sequence an in the Taylor series depends on the point w in

question.
One of the main theorems in our course is that the analytic functions are precisely

the holomorphic functions. In this section we prove that analytic functions are
holomorphic; this leads to a host of examples.

Write the complex sequence an in rectangular form: an = cn + i · dn. Then the
series for an converges if and only if the series for cn and for dn converge. And it will
not surprise us to find that

∞∑
n=0

an =
∞∑
n=0

cn + i ·
∞∑
n=0

dn

Our first result is very basic: boundedness of absolute sums implies absolute con-
vergence implies convergence.

Proposition 15. Let an ∈ C. Define

bn =
n∑
k=0

|ak|

If the sequence bn is bounded, then the series for |an| converges, and the series for
an converges.

Proof. We are assuming that the (real-valued) increasing sequence bn is bounded; it
converges by the Monotone Convergence Theorem. In other words, the series for |an|
converges.

Write ak = ck + i ·dk, where ck, dk ∈ R. Then |ck| ≤ |ak| for all k, and so the series
for |ck| is bounded, and therefore converges. We have 0 ≤ |ck| − ck ≤ 2 · |ck|, and
this shows that the series for |ck| − ck is increasing and bounded, and so that series
converges. It follows that the series for ck = |ck| − (|ck| − ck) converges.

Similarly, the series for dk converges, and it follows that the series for ak converges.
�

Now we make a definition that is key to telling whether a complex sequence an
can be used in a Taylor series. Let r be a positive number; we say that r is a radius
for an if, whenever 0 ≤ s < r, the sequence |an| · sn is bounded.

Two trivial examples. if an is a non-zero constant and if 0 < r ≤ 1, then r is a
radius for an. If an = tn for some non-zero complex number t, and if 0 < r ≤ 1/|t|,
then r is a radius for an.

Here is the significance of the radius.
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Proposition 16. Let an be a complex sequence, and let r > 0. Then

(6) f(z) =
∞∑
n=0

an · zn

converges for all z ∈ D(0; r) if and only if r is a radius for an.

Proof. Assume that f(z) converges for all z ∈ D(0; r), and choose s with 0 ≤ s < r.
Then s ∈ D(0; r), and

f(s) =
∞∑
n=0

an · sn

We are assuming that this series converges, and so an · sn → 0 as n→∞. It follows
that |an| ·sn → 0, and therefore the sequence |an| ·sn is bounded. Thus, r is a radius.

Assume that r is a radius for an. Let z ∈ D(0; r). There is s with |z| < s < r.
Choose an upper bound B for the sequence |an| · sn. Let m be a positive integer and
estimate

m∑
n=0

|an · zn| =
m∑
n=0

|an| · |z|n =
m∑
n=0

|an| · sn ·
|z|n

sn

=
m∑
n=0

|an| · sn ·
(
|z|
s

)n
≤

m∑
n=0

B ·
(
|z|
s

)n

This last series is seen to be geometric, and since |z|/s < 1, it converges.
m∑
n=0

|an · zn| ≤
B

1− |z − w|/s

By Proposition 15, the series f(z) converges. �

You should remember the Ratio Test from calculus; it can often be used with
Proposition 16.

Ratio Test. Suppose that an is eventually not 0 (not 0 for n large enough), and
suppose that

lim
n→∞

∣∣∣∣ anan+1

∣∣∣∣ = R

whether R is a number or R =∞. Then R is a radius for an.

Proof. Taking s < R, there is a positive integer m such that if n ≥ m, then
|an/an+1| > s. It follows that

|am| · sm ≥ |am+n| · sm+n for all n ≥ 0

This proves that |an| · sn is bounded. �

If an has a ratio limit R as in the Ratio Test, then Proposition 16 says that the
Taylor series (6) converges on D(0;R).

Proposition 17. Let an ∈ C. Let r be a radius of an. Then r is a radius of the
sequence n · an.
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Proof. Let 0 ≤ s < r. Choose t with s < t < r. The sequence |an| · tn is bounded
above – say by B. Since s/t < 1, the sequence n · (s/t)n goes to 0 as n→∞, as can
be seen using the real exponential function.9

Then

|n · an| · sn = |an| · tn ·
(
n · s

t

)n
≤ B ·

(
n · s

t

)n
The sequence on the right goes to 0 as n → ∞, and it follows that |n · an| · sn is
bounded. �

We will need the following in a derivative calculation momentarily.

Proposition 18. Let r > 0, and let z, w ∈ D(0; r) with z 6= w, and let n be a
positive integer. Then∣∣∣∣zn − wnz − w

− n · wn−1
∣∣∣∣ ≤ |z − w| · (n− 1) · n

2
· rn−2

Proof. Direct calculation. When n = 1, the conclusion is trivial; let n ≥ 2 and write
S for the sum inside the norm bars.

S =
zn − wn

z − w
− n · wn−1 =

n−1∑
k=0

zk · wn−1−k − n · wn−1

=
n−1∑
k=0

[
zk · wn−1−k − wn−1

]
=

n−1∑
k=0

[
(zk − wk) · wn−1−k

]
=

n−1∑
k=1

[
(zk − wk) · wn−1−k

]
=

n−1∑
k=1

[
wn−1−k · (z − w) ·

k−1∑
j=0

zj · wk−1−j
]

= (z − w) ·
n−1∑
k=1

[
k−1∑
j=0

zj · wn−2−j
]

Now we switch the summations and let p = k − 1. We see that 0 ≤ j ≤ n − 2; for
each j, we have j < k ≤ n− 1, so that j ≤ p ≤ n− 2. We obtain

S = (z − w) ·
n−2∑
j=0

n−2∑
p=j

zj · wn−2−j = (z − w) ·
n−2∑
j=0

(n− 1− j) · zj · wn−2−j

Now we can estimate.

|S| ≤ |z − w| ·

∣∣∣∣∣
n−2∑
j=0

(n− 1− j) · zj · wn−2−j
∣∣∣∣∣

≤ |z − w| ·
n−2∑
j=0

(n− 1− j) · rj · rn−2−j = |z − w| · (n− 1) · n
2

· rn−2

�

9Write n · (s/t)n as exp(ln(n) + n · ln(s/t)).
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Now we are ready for the main theorem of this section. The formula for an in
terms of the derivatives of f(z) is called Taylor’s Formula.

Theorem 19. Let an be a complex sequence. Let r be a radius of an. Let z0 ∈ C.
Then

f(z) =
∞∑
n=0

an · (z − z0)n

is holomorphic on D(z0; r). Indeed, for all z ∈ D(z0; r) we have

f ′(z) =
∞∑
n=1

an · n · (z − z0)n−1

In fact, f(z) has infinitely many derivatives on D(z0; r), and we have

an =
f (n)(z0)

n!
for all n

Proof. We first prove the theorem when z0 = 0. Proposition 16 shows that f(z)
converges for all z ∈ D(0; r). Define g(z) to be the series on the right of the claimed
formula for f ′(z). Proposition 17 shows that g(z) converges on D(0; r).

Let w ∈ D(0; r). Choose s with |w| < s < r. For z ∈ D(0; s) \ {w}, The series for
f(z) and f(w) can be combined.

f(z)− f(w)

z − w
=
∞∑
n=0

an ·
zn − wn

z − w

The n = 0 and n = 1 terms are 0, and so we take n to start at 2. We can then write

f(z)− f(w)

z − w
− g(w) =

∞∑
n=2

an ·
[
zn − wn

z − w
− n · wn−1

]
We will show that this difference converges to 0 as z → w.

We estimate, using Proposition 18, noting that w, z ∈ D(0; s).∣∣∣∣∣
∞∑
n=2

an ·
[
zn − wn

z − w
− n · wn−1

]∣∣∣∣∣ ≤
∞∑
n=2

|an| ·
∣∣∣∣zn − wnz − w

− n · wn−1
∣∣∣∣

≤
∞∑
n=2

|an| · |z − w| ·
(n− 1) · n

2
· sn−2

= |z − w| ·
∞∑
n=2

|an| ·
(n− 1) · n

2
· sn−2

Since r is a radius of an, Proposition 16 shows that the series for |an| · sn converges.
Proposition 17 shows that r is a radius for (n− 1) · n · |an|/2, and so the series

n · (n− 1)

2
· |an| · sn−2

converges as well – call the sum T . We have shown that∣∣∣∣f(z)− f(w)

z − w
− g(w)

∣∣∣∣ ≤ |z − w| · T
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As z → w, the right side goes to 0, and thus

lim
z→w

f(z)− f(w)

z − w
= g(w)

and this proves the theorem in case z0 = 0.
For the general case, let

g(z) =
∞∑
n=0

an · zn

so that g(z) is holomorphic on D(0; r) and that g′(z) can be computed term by term.
We see that f(z) = g(z − z0) is then holomorphic on D(z0; r).

Now we can apply to f ′(z) what we did to f(z): we get the existence of f ′′(z), and
so on. We see that f(z) has infinitely many derivatives on D(z0; r). The formula for
the coefficients follows easily from the fact that f(z0) = a0. �

7. Exponential, Cosine, Sine, Logarithm

The most important function in mathematics: define

exp(z) =
∞∑
n=0

zn

n!

We see that exp(0) = 1. The Ratio Test shows that every positive number is a radius
of 1/n!, and so the series converges on all of C. In other words, exp(z) is an entire
function. Since we can differentiate term by term, we find that exp′(z) = exp(z).

Let a ∈ C and compute that exp(z + a) · exp(−z) has derivative 0 for all z.
Proposition 13 shows that exp(z + a) · exp(−z) is a constant. Taking z = 0, we see
that

(7) exp(z + a) · exp(−z) = exp(a)

Taking a = 0 in (7), we have exp(z) · exp(−z) = 1. It follows that exp(z) is never 0;
and we have exp(−z) = 1/ exp(z).

In (7), write c = z + a and d = −z, so that a = c − z = c + d and we have the
expected identity

exp(c) · exp(d) = exp(c+ d)

When z ∈ R, the formula for exp(z) gives the usual real exponential function. By
analogy with the real case, we continue to write exp(z) = ez for z ∈ C. This formula
makes algebraic sense when z is a (real) rational number.

We construct the trigonometric functions in a similar manner, using the coefficients
of their real series. Define

cos(z) =
∞∑
n=0

(−1)n · z
2n

(2n)!
and sin(z) =

∞∑
n=0

(−1)n · z2n+1

(2n+ 1)!

As with ez, every positive number is a radius, and so cos(z) and sin(z) are entire
functions. We get the expected formulas

cos′(z) = − sin(z) and sin′(z) = cos(z)

We also see that cos(0) = 1 and sin(0) = 0.
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It follows that cos2(z) + sin2(z) has derivative 0 for all z; Proposition 13 says that
this function is constant. The case z = 0 shows us that the constant is 1, and we
have the Pythagorean Identity.

cos2(z) + sin2(z) = 1

Next, another central fact. It is most common to use the following in the case that
z ∈ R, but it holds in general.

Euler’s Identity. For all z ∈ C we have

ei·z = cos(z) + i · sin(z) for all z ∈ C

Proof. We have to remember how to compute powers of i.

exp(i · z) =
∞∑
n=0

in · zn

n!
=
∞∑
n=0

i2n · z2n

(2n)!
+
∞∑
n=0

i2n+1 · z2n+1

(2n+ 1)!

=
∞∑
n=0

(−1)n · z2n

(2n)!
+ i ·

∞∑
n=0

(−1)n · z2n+1

(2n+ 1)!
= cos(z) + i · sin(z)

�

Earlier in the course, we defined

exp(i · θ) = cos(θ) + i · sin(θ)

Now that we have the complex exponential function, we interpret that equation as
a property of the exponential.

Here is a consequence: let x, y ∈ R and compute

exp(x+ i · y) = exp(x) · exp(i · y) = exp(x) · (cos(y) + i · sin(y))

This exhibits the real and imaginary parts of exp(x+ iy).
Here is a collection of identities that follow.

(1) exp(z) = exp(z) (complex conjugate)
(2) If x, y ∈ R, then | exp(x+ i · y)| = exp(x)
(3) Let w, z ∈ C. Then exp(w) = exp(z) if and only if w − z = 2πki for some

integer k.

Another consequence: we can write cos(z) and sin(z) in terms of exp(z). It is a
direct calculation to prove these equations:

cos(z) =
exp(i · z) + exp(−i · z)

2
and sin(z) =

exp(i · z)− exp(−i · z)

2 · i
The cosine and sine angle addition formulas follow directly. Let a, b ∈ C.

cos(a+ b) = cos(a) · cos(b)− sin(a) · sin(b)

sin(a+ b) = sin(a) · cos(b) + cos(a) · sin(b)

The point is that we have the familiar identities from the real case even when the
variables are complex.
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A Logarithm
We are interested in the logarithm; this turns out to be ticklish. We will give one

example and discuss others in class. We will use some particular open subsets of the
complex numbers. Let S1 consist of the complex numbers with positive real part.
Let S2 be the set of complex numbers with positive imaginary part. Let S3 consist of
complex numbers with negative imaginary part. Finally, let S = S1 ∪ S2 ∪ S3. Then
S can be described as the complex plane with the negative x-axis and 0 removed.

In a previous problem, you considered the function

A(x+ i · y) = arctan(y/x)

on S1, and you showed that

L(z) = ln |z|+ i · A(z)

satisfies the Cauchy-Riemann equations and that the first partial derivatives are
continuous. Thus, L(z) defines a holomorphic function on S1. We also see that
A(z) ∈ Arg(z) for all z ∈ S1.

For z ∈ S1 we compute

exp(L(z)) = exp(ln |z|) · exp(i · A(z)) = |z| · exp(i · A(z)) = z

For z ∈ T1 (from the problem just given), we see that exp(z) ∈ S1, for the real part of
exp(z) is |z| · cos(y), where −π/2 < y < π/2 shows that cos(y) > 0. Thus, L(exp(z))
is defined for all z ∈ T1. Write such z = x+ i · y in rectangular, and then

L(exp(z)) = ln | exp(z)|+ i · A(exp(z)) ln |ex|+ i · y = x+ i · y = z

We have shown that L(z) and exp(z) are inverse functions here. We will write
log(z) = L(z).

We an perform a similar construction on the set S2. This time, the argument
function needs to use the inverse-cotangent.10 For z ∈ S2, write z = x + i · y and
define

A(z) = cot−1(x/y)

Again, we have a logarithm that inverts the exponential.

log(z) = ln |z|+ i · A(z) for all z ∈ S2

This function log maps S2 onto T2, the set of x+ i · y with 0 < y < π.
Taking S1∪S2, we now have a logarithm on a fairly large open set. We can extend

to the set S3, by defining

A(x+ i · y) = cot−1(x/y)− π

You can observe that A maps S3 into the real open interval (−π, 0). The resulting
logarithm maps S3 onto the set T3 of complex numbers x + i · y with −π < y < 0.
This logarithm agrees with the one on S1 where they overlap.

Here is a summary. Define S to be the complex numbers that are not non-positive
numbers. In other words, x+ i · y ∈ S if and only if either y 6= 0 or x > 0. (The set

10The inverse cotangent function cot−1(t) gives the angle α such that 0 < α < π and cot(α) = t.
It is defined for all real numbers t. Notice that sin(α) > 0 here.
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S is C with 0 and the negative x-axis removed.) Define A : S → (−π, π), as follows:

A(x+ i · y) =


arctan(y/x) if x > 0

cot−1(x/y) if y > 0

cot−1(x/y)− π if y < 0

Then

log(z) = ln |z|+ i · A(z)

defines a holomorphic mapping from S onto the set T of complex numbers x + i · y
with −π < y < y. Then exp maps T onto S and

exp(log(z)) =z for all z ∈ S and log(exp(z)) = z for all z ∈ T

What about Taylor series for log(z)? First we work in D(1; 1) ⊂ S.
Consider the sequence (−1)n/n. By the Ratio Test, 1 is a radius for this sequence,

and so

L(z) =
∞∑
n=1

(−1)n−1

n
· (z − 1)n

is holomorphic on D(1; 1). Notice that L(1) = 0.
Compute for z ∈ D(1; 1) that

L′(z) =
∞∑
n=1

(−1)n−1 · (z − 1)n−1 =
∞∑
n=1

(1− z)n−1

This geometric series converges to

1

1− (1− z)
=

1

z

Therefore, (log(z) − L(z))′ = 0 for all z ∈ D(1; 1). Proposition 13 shows that
log(z)−L(z) is constant, and since log(1) = L(1) = 0, we have log(z) = L(z). Thus,

log(z) =
∞∑
n=1

(−1)n−1

n
· (z − 1)n for all z ∈ D(1; 1)

Proposition 20. The function log(z) is analytic on S.

Proof. Let w ∈ S and get r > 0 (as in a problem above) with D(w; r) ⊂ S. For
z ∈ D(w; r), a problem has shown that z/w ∈ D(1; 1), and so the Taylor series for
the logarithm on D(1; 1) shows that

log(z/w) =
∞∑
n=1

(−1)n−1

n
·
( z
w
− 1
)n

=
∞∑
n=1

(−1)n−1

n
· 1

wn
· (z − w)n

Another problem showed that log(z/w) = log(z) − log(w) for all z ∈ D(w; r), and
now we see that

(8) log(z) = log(w) +
∞∑
n=1

(−1)n−1

n
· 1

wn
· (z − w)n for all z ∈ D(w; r)

�
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A Square Root
We can use our logarithm to get a square root. Recall the sets

S =
{
x+ i · y

∣∣ x, y ∈ R, (x > 0 or y 6= 0)
}

T1 =
{
x+ i · y

∣∣ x, y ∈ R, −π/2 < y < π/2
}

The function log(z)/2 maps S onto T1. Define

R(z) = exp(log(z)/2) for z ∈ S

and R maps S to S1. We see that[
R(z)

]2
= exp(log(z)) = z

so that R(z) is a holomorphic square root.

Arbitrary Powers
You might remember that for real numbers a, b, with b > 0, we have

ba = exp(a · ln(b))

We want to explore an analogous complex formula.
We will continue to use the set S of complex numbers with the non-positive x-axis

removed. For each α ∈ C, we want to define

zα = exp(α · log(z)) for all z ∈ S

The algebraic properties of the exponential function tell us for α, β ∈ C that

(9) zα · zβ = zα+β

We also have z0 = 1 and 1α = 1.
Taking the derivative, we have

(zα)′ = exp(α · log(z)) · α
z

= α · zα−1

The Power Rule! And notice that it holds for all complex number exponents – of
course that includes all the cases where the exponent has algebraic significance, such
as when α is an integer or rational number. We have constructed a holomorphic zα

on S.
Let’s show that zα is analytic on S. We will get a series on the disk D(1; 1)

and then show how to transfer the series to other disks, exactly as we did with the
logarithm. Our series needs the binomial sequence: define(

α

0

)
= 1 and

(
α

n+ 1

)
=
α− n
n+ 1

·
(
α

n

)
for n = 0, 1, 2, . . .

(Thus, there is a binomial sequence for each given complex number α.) Now define

L(z) =
∞∑
n=0

(
α

n

)
· (z − 1)n

In the case that α is not a non-negative integer, a problem showed that the ratio limit
of the binomial coefficients is 1. Theorem 19 proves that L(z) can be differentiated
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term by term on D(1; 1). For z ∈ D(1; 1), it will be convenient to calculate z ·L′(z).
Here goes.

z · L′(z) = z ·
∞∑
n=1

(
α

n

)
· n · (z − 1)n−1

= (z − 1) ·
∞∑
n=1

(
α

n

)
· n · (z − 1)n−1 +

∞∑
n=1

(
α

n

)
· n · (z − 1)n−1

=
∞∑
n=1

(
α

n

)
· n · (z − 1)n +

∞∑
n=1

(
α

n

)
· n · (z − 1)n−1

=
∞∑
n=1

(
α

n

)
· n · (z − 1)n +

∞∑
n=0

(
α

n+ 1

)
· (n+ 1) · (z − 1)n

=
∞∑
n=0

(
α

n

)
· n · (z − 1)n +

∞∑
n=0

(
α

n

)
· (α− n) · (z − 1)n

= α · L(z)

Now we can show that zα = L(z) on D(1; 1). Consider

z · [z−α · L(z)]′ = z ·
[
−α · z−α−1 · L(z) + zα · L′(z)

]
= −α · z−α · L(z) + zα · α · L(z)

= 0

Since z ∈ D(1; 1) implies that z 6= 0, we see that z−α · L(z) has 0 derivative, and
Proposition 13 says it is constant. Taking z = 1, we have L(1) = 1, and thus,
z−α · L(z) = 1, so that

zα = L(z) on D(1; 1)

We will drop the notation L(z) and use zα, remembering that the series is defined
on D(1; 1).

Let w ∈ S, and we will see that it is easy to get a series for zα in a disk around
w. Indeed, recall the open set S(w) of z ∈ S such that z/w ∈ S.

Using the previous problem we are in position to show that zα is analytic on S.
Given w ∈ S and D(w; r) ⊂ S, as previously, we have

(10) zα = wα ·
∞∑
n=0

(
α

n

)
· 1

wn
· (z − w)n for all z ∈ D(w; r)

8. Line Integrals

We begin working toward another of our fundamental theorems; Cauchy’s Theorem
involves integration of a holomorphic function over a curve in the complex plane. To
handle curves generally, we would need some non-trivial topology that we would
rather not broach. To avoid the topology we will restrict ourselves somewhat while
still obtaining fairly strong versions of our main theorems.

The reader should be familiar with smooth curves in the plane. Since the plane is
the set of complex numbers, a smooth curve is a function g : [a, b]→ C, where [a, b] is
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a closed interval in the reals, such that g′ is continuous. If we write g(t) = x(t)+i·y(t)
in rectangular form, then the definition we gave of the general derivative shows that

g′(t) = x′(t) + i · y′(t)

for all t ∈ [a, b]. The image of a smooth curve is its function image: the set of all
g(t) ∈ C such that t ∈ [a, b]. To call attention to the endpoints, we say that g starts
at g(a) and ends at g(b).

It is very common to identify the curve g with its image. For instance, if g(t) = t
for 0 ≤ t ≤ 1, then the image is a line segment on the x-axis. It is sometimes safe
to confuse the function with its image, but to be formal, the curve is the function g,
not its image.

A standard curve for a line segment: given p, q ∈ C, define L(p, q) : [0, 1]→ C by
the formula

L(p, q)(t) = p+ t · (q − p) for t ∈ [0, 1]

The image of L is the line segment connecting p and q.
To travel around a circle, choose a center p ∈ C, a radius r > 0. The image of the

smooth curve p+ r · eit, for 0 ≤ t ≤ 2π, is the circle with center p and radius r. We
call this curve C(p; r).

We occasionally want to travel over part of a circle: for c ∈ C and α < β and
r > 0, define arc(c, r, α, β) to be the curve mapping t to c+r ·exp(i ·t), for α ≤ t ≤ β.
It will be convenient to allow α > β, as well; in that case, define arc(c, r, α, β) =
−arc(c, r, β, α). The image of the arc connects the two angles in every case.

It will be convenient to be able to “run g backwards.” To this effect, we define
the function −g : [a, b] → C by the formula −g(t) = g(a + b − t). Observe that if
a ≤ t ≤ b, then a ≤ a + b− t ≤ b, as well, and so the expression g(a + b− t) makes
sense – in particular notice that g and −g have the same image. Also notice that
−g is not (−1) · g. This misuse of the negative sign is standard when working with
curves.

Compute (−g(t))′ = (−1) · g′(a+ b− t); this shows that −g is smooth.
As in calculus, we can define the length of a smooth curve:

|g| =
∫ b

a

|g′(t)| · dt

Since g′ is continuous, |g′| is continuous, hence the integral is defined.
We want to integrate a continuous, complex function over a smooth curve. To get

started, we suppose that h : [a, b] → C is continuous. If x and y are the real and
imaginary parts of h, respectively, then x and y are continuous, real-valued functions
on [a, b], and so their integrals are defined as in calculus:∫ b

a

x(t) · dt and

∫ b

a

y(t) · dt

We define ∫ b

a

h(t) · dt =

∫ b

a

x(t) · dt+ i ·
∫ b

a

y(t) · dt
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There are antiderivatives X(t) for x(t) and Y (t) for y(t), and we see that

(11)

∫ b

a

h(t) · dt = (X(b)−X(a)) + i · (Y (b)− Y (a))

If we let H(t) = X(t) + i · Y (t), then our formula for general derivatives shows that
H ′(t) = h(t). The equation (11) can be written like this:

(12)

∫ b

a

h(t) · dt = H(b)−H(a)

and we have a natural generalization of the Fundamental Theorem of Calculus. To
summarize: we have defined the integral of a continuous function h : [a, b] → C. If
H : [a, b]→ C with H ′(t) = h(t), then we can integrate h using H as in real calculus.

Notice that none of the functions we have considered up to this point are holo-
morphic, since we have been taking a closed interval in the reals as domain.

Let g : [a, b] → C be a smooth curve, and suppose that f is continuous on the
image of g. We consider the function f(g(t)) · g′(t), which maps [a, b] into C; it
is continuous, because f and g and g′ are continuous, and therefore, its integral is
defined. We write

(13)

∫
g

f(z) · dz =

∫ b

a

f(g(t)) · g′(t) · dt

This is called the line integral of f over g. In this notation, f(z) · dz is a shorthand:
z = g(t) and dz = g′(t) · dt in the standard differential notation.

Line integrals are sometimes called contour integrals, the word contour referring
to the image of a smooth curve.

If we write g(t) = x(t) + i · y(t) and f(z) = u(z) + i · v(z) to indicate real and
imaginary parts of each function, then we can write the line integral (13) in terms
of ordinary real integrals:∫

g

f(z) · dz =

∫ b

a

[u(g(t)) · x′(t)− v(g(t)) · y′(t)] · dt

+ i ·
∫ b

a

[u(g(t)) · y′(t) + v(g(t)) · x′(t)] · dt

This looks cumbersome, but it points the way to evaluation of line integrals: do
orginary algebra on the integrand to reduce the calculation to real-valued integrals.

We have been careful about definitions. As in multi-variable calculus, the purpose
of the line integral notation is to hide cumbersome definitions behind more ordinary
algebra – we will see examples momentarily.

Here are properties of the line integral meant to show the naturalness of its notation
by imitating properties of ordinary integrals on the real line. Until further notice, we
assume that g : [a, b] → C is a smooth curve. The proofs of the first two properties
are left to you.

Property 1. Let f(z), k(z) be continuous, complex-valued functions on the image
of g. Then ∫

g

(f(z) + k(z)) · dz =

∫
g

f(z) · dz +

∫
g

k(z) · dz
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Property 2. Let f(z) be a continuous, complex-valued function on the image of
g, and let α ∈ C. Then ∫

g

(α · f(z)) · dz = α ·
∫
g

f(z) · dz

(Note: α and f(g(t)) ·g′(t) have real and imaginary parts – you will need to use them
to apply the definition.)

Property 3. Let f(z) be a continuous, complex-valued function on the image of
g. Then ∫

−g
f = −

∫
g

f

Proof. Indeed, observe that

f(−g(t)) · (−g)′(t) = f(g(a+ b− t)) · (−1)g′(a+ b− t)
Let s = a+ b− t, and then

f(−g(t)) · (−g)′(t) = (−1) · f(g(s)) · g′(s)
Then we use Property 2 to factor out −1.∫

−g
f(z) · dz =

∫ b

a

f(−g(t)) · g′(t) · dt =

∫ a

b

(−1)f(g(s)) · g′(s) · (−ds)

= (−1)

∫ b

a

f(g(s)) · g′(s) · ds = −
∫
g

f(z) · dz

�

Property 4. Let f(z) be a continuous, complex-valued function on the image of
g, and suppose that M is a real number with |f(g(t))| ≤M for all t ∈ [a, b]. Then∣∣∣∣∫

g

f(z) · dz
∣∣∣∣ ≤M · |g|

Proof. Let θ be an argument for the complex number
∫
g
f(z) · dz, and then∣∣∣∣∫

g

f(z) · dz
∣∣∣∣ = e−iθ ·

∫
g

f(z) · dz

In particular, the number on the right is a real number, and therefore is equal to its
real part. By Property 2 we can pull the e−iθ into the integral.∣∣∣∣∫

g

f(z) · dz
∣∣∣∣ = Re

[
e−iθ

∫
g

f(z) · dz
]

= Re

[∫
g

e−iθ · f(z) · dz
]

The definition of integration over a curve in the complex plane shows that the real
part of the integral is the integral of the real part of the integrand:

(14) Re

[∫
g

e−iθ · f(z) · dz
]

=

∫ b

a

Re[e−iθ · f(g(t)) · g′(t)] · dt

We know that the real part of a complex number is less than or equal to its
modulus. Thus,

Re[e−iθ · f(g(t)) · g′(t)] ≤
∣∣e−iθ · f(g(t)) · g′(t)

∣∣
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The integral on the right side of (14) is an ordinary real integral. Thus, we can use
the inequality just established to show that∫ b

a

Re[e−iθ · f(g(t)) · g′(t)] · dt ≤
∫ b

a

∣∣e−iθ · f(g(t)) · g′(t)
∣∣ · dt

Continuing this estimate, we use that |e−iθ| = 1, and that |f(g(t))| ≤M .∫ b

a

∣∣e−iθ · f(g(t)) · g′(t)
∣∣ · dt ≤ ∫ b

a

M · |g′(t)| · dt = M · |g|

Putting all this together, we have the desired inequality. �

Our final fact about line integration over the smooth curve g looks like the Fun-
damental Theorem of Calculus. It is a special case of (12).

Property 5. Let f(z) be a continuous, complex-valued function on the image of
g, and suppose that it has an antiderivative F (z) there.11 Then∫

g

f(z) · dz = F (g(b))− F (g(a))

Proof. The general Chain Rule shows us that[
F (g(t))

]′
= F ′(g(t)) · g′(t) = f(g(t)) · g′(t)

and the equation follows from (12) on p.24. �

In the context of Property 5, if the smooth curve g(t) starts and ends at the same
point, then g(a) = g(b), and so F (g(b)) − F (g(b)) = 0. This is very important, as
we will see.

Property 5 should not be misinterpreted: it does not say that the line integral
depends only on starting and ending points.

We can use integral substitution on line integrals. Here are the technical details.
Let g : [a, b]→ [c, d] and h : [c, d]→ C, let g and h be smooth. Then∫

h

f(z) · dz =

∫
g

f(h(w)) · h′(w) · dw

Indeed, the two integrals are these:∫ d

c

f(h(t)) · h′(t) · dt =

∫ b

a

f(h(g(s))) · h′(g(s)) · g′(s) · ds

The equality of these last two integrals follows directly from (12) and the Chain Rule.
We want to generalize line integration from smooth curves to multi-sets of smooth

curves. A multi-set is like a set, except that repeats are allowed (and counted). To
distinguish multi-sets from sets, we will enclose them in angle brackets. Thus, the
set {a, a} is equal to the set {a}, but the multi-sets < a, a > and < a > are different.
Like a set, there is no ordering of elements (constituents) in a multi-set, and so the
multi-sets < a, a, b > and < a, b, a > are equal. In the multi-set < g1, g2, . . . , gn >, if

11Technical note: for F ′(z) = f(z) to be defined when z is in the image of g, we need z to be a
limit point of the domain of F . If g is not constant, then every element of the image of g is a limit
point of the image, and so we only need F to be defined on the image of g. We will neither prove
nor use this fact.
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we replace one of the gk by a different object, we have changed the multi-set. If we
re-order the gk, we have not changed the multi-set.

A chain is a non-empty multi-set of smooth curves:

G =< g1, g2, . . . , gn >

such that each curve ends where the next one starts. More formally, let the domain
of each gk be [ak, bk], and we want to have gk(bk) = gk+1(ak+1) when 1 ≤ k < n. If,
additionally, g1(a1) = gn(bn), (if the chain starts and ends at the same point), then
we call G a closed chain.

The image of the chain G is the union of the images of its constituents. The length
of G is denoted |G| and

|G| =
n∑
k=1

|gk|

The circle < C(c; r) > makes a closed chain with a single constituent. If p, q, r ∈ C,
the chain < L(p, q), L(q, r), L(r, p) > is a closed chain; it is called a chain triangle
for obvious reasons. (We allow p, q, r to be co-linear, by the way, and in that case
the image of the chain triangle is a line segment.)

Let G =< g1, . . . , gn > be a chain, and suppose that f is continuous on the image
of G. Define ∫

G

f(z) · dz =
n∑
k=1

∫
gk

f(z) · dz

This is the line integral of f over G.
We can easily generalize to chains the properties 1-5 we proved about integration

over smooth curves.
Here is a more technical fact allowing us to switch a limit and an integral.

Proposition 21. Let A ⊆ C be open and let G be a chain whose image lies in A.
Let fn : V → C for n = 0, 1, 2, . . . each be continuous, and suppose that fn → f
uniformly on A as n→∞. Then

lim
n→∞

∫
G

fn(z) · dz =

∫
G

f(z) · dz

Proof. By Proposition 11, f(z) is continuous on A, and so the integral of f(z) over
the chain G is defined. To get the limit of the conclusion, it suffices to get the
analogous limit over a smooth curve g that is a constituent of the chain.

Let ε > 0 and get N such that n ≥ N implies |fn(z)− f(z)| < ε for all x ∈ [a, b].
For such n estimate∣∣∣∣∫

g

f(z) · dz −
∫
g

fn(z) · dz
∣∣∣∣ =

∣∣∣∣∫
g

(f(z)− fn(z)) · dz
∣∣∣∣

≤ ε · |g|

Since ε is arbitrary, the proof is complete. �
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9. Goursat’s Theorem

This technical result is our entry into Cauchy’s Theorem. It presents a level of
sophistication above what we have done up to this point. Recall the definition of a
chain triangle. The closed interior of a chain triangle is the boundary and interior
of the image of that triangle in the complex plane.

Goursat’s Theorem. Let V be an open subset of C and let f : V → C be holo-
morphic. Suppose that T is a chain triangle whose closed interior lies in V . Then∫
T
f(z) · dz = 0.

Proof. Suppose that T =< L(p, q), L(q, r), L(r, p) >. Let R be the midpoint of the
segment from p to q, let P be the midpoint of the segment qr, let Q be the midpoint
of the segment rp. We will use these points to divide T into four sub-triangles. Define

A =< L(R,Q), L(Q, p), L(p,R) >

B =< L(Q,P ), L(P, r), L(r,Q) >

C =< L(P,R), L(R, q), L(q, P ) >

D =< L(R,P ), L(P,Q), L(Q,R) >

The closed interiors of these four chain triangles are contained in the closed interior
of T . We claim that the line integral of f(z) over T is the sum of the line integrals
over these four sub-triangles. This is a direct calculation, using a previous problem
in such manipulations as∫

L(p,R)

f(z) · dz +

∫
L(R,q)

f(z) · dz =

∫
L(p,q)

f(z) · dz

and using another problem to conclude that reversing a segment negates the integral
– for instance L(R,Q) = −L(Q,R), so that Property 3 applies.∫

L(R,Q)

f(z) · dz +

∫
L(Q,R)

f(z) · dz =

∫
L(R,Q)

f(z) · dz +

∫
−L(R,Q)

f(z) · dz

=

∫
L(R,Q)

f(z) · dz −
∫
L(R,Q)

f(z) · dz = 0

When the 12 line integrals over line segments are added up, we end up with the line
integral over T . Thus,

(15)

∫
T

f(z) · dz =

∫
A

f(z) · dz +

∫
B

f(z) · dz +

∫
C

f(z) · dz +

∫
D

f(z) · dz

Next we claim that one of the four sub-triangles, call it E, satisfies∣∣∣∣∫
E

f(z) · dz
∣∣∣∣ ≥ 1

4
·
∣∣∣∣∫
T

f(z) · dz
∣∣∣∣

Indeed, if each sub-integral is less than one-fourth of the integral over T , then the
sum of the four numbers on the right side of (15) cannot be the integral over T . We
call the sub-triangle E a fat sub-triangle.
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Now we define a sequence of triangles. Let T0 = T ; let T1 be a fat sub-triangle of
T0; let T2 be a fat sub-triangle of T1; and so on. An easy induction argument shows
that

(16)
1

4k
·
∣∣∣∣∫
T

f(z) · dz
∣∣∣∣ ≤ ∣∣∣∣∫

Tk

f(z) · dz
∣∣∣∣

for each k ≥ 0.
Plane geometry shows that each of the four sub-triangles of some Tk has length

exactly one-half the length of Tk. In other words, |Tk+1| = |Tk|/2 for all k ≥ 0. It
follows that

(17) |Tk| =
1

2k
· |T0|

The closed interior of each Tk is a closed and bounded subset of the complex num-
bers, and the closed interior of Tk contains the closed interior of Tk+1. Proposition 7
finds a complex number c in all the Tk. Since the Tk’s are all in T , and since T ⊂ V ,
we have c ∈ V , and so f ′(c) is defined.

Let ε be an arbitrary positive number. We will obtain the estimate

(18)

∣∣∣∣∫
T0

f(z) · dz
∣∣∣∣ ≤ ε · |T0|2

Because ε is arbitrary, this will prove that the line integral is 0, as needed.
We will identify a particular Tk and then work back to T0. Because f ′(c) is defined,

there is δ > 0 such that if z ∈ D(c; δ), then

|f(z)− f(c)− (z − c) · f ′(c)| ≤ ε · |z − c|

The sides of the image triangle of Tk+1 are half as big as the sides of Tk, for each
k. It follows that the dimensions of Tk go to 0 as k → ∞. Thus, there is a positive
integer k such that the closed interior of Tk is contained in D(c; δ). When z is in the
closed interior of Tk, the estimate just made holds. In the right side ε · |z − c|, we
have |z − c| ≤ |Tk|, and we see that

|f(z)− f(c)− (z − c) · f ′(c)| ≤ ε · |Tk|

Property 4 then yields

(19)

∣∣∣∣∫
Tk

(
f(z)− f(c)− (z − c) · f ′(c)

)
· dz
∣∣∣∣ ≤ ε · |Tk| · |Tk|

Next we rid the integral of f(c) + (z − c) · f ′(c). Indeed, this function has an
antiderivative f(c)·z+(z−c)2·f ′(c)/2 on the entire complex plane. By Property 5, we
can integrate this function over each line segment side of Tk by taking the difference
in this antiderivative. Since Tk is a closed chain, this proves that∫

Tk

(
f(c) + (z − c) · f ′(c)

)
· dz = 0

Therefore, ∫
Tk

(
f(z)− f(c)− (z − c) · f ′(c)

)
· dz =

∫
Tk

f(z) · dz
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and now the estimate (19) is this.∣∣∣∣∫
Tk

f(z) · dz
∣∣∣∣ ≤ ε · |Tk| · |Tk|

We use (16) and (17) to replace Tk by T0 in this last estimate.

1

4k
·
∣∣∣∣∫
T0

f(z) · dz
∣∣∣∣ ≤ ∣∣∣∣∫

Tk

f(z) · dz
∣∣∣∣

≤ ε · |Tk|2 = ε ·
(

1

2k
· |T0|

)2

= ε · 1

4k
· |T0|2

The estimate (18) follows, and we are done. �

10. Cauchy’s Theorem

There are many versions of this fundamental theorem. We will employ the follow-
ing kind of domain: a subset V of C is star-like if it is open and there is b ∈ V such
that for every c ∈ V , the line segment from b to c is entirely in V . In other words,
the image of the smooth curve L(b, c) lies in V . The point b is called a base-point for
V ; it does not have to be unique.

We will need the following technical fact.

Proposition 22. Let V be a star-like subset of C with base point b. Let c ∈ V and
r > 0 and suppose that D(c; r) ⊆ V . Let a ∈ D(c; r). Then the closed interior of the
triangle < L(b, a), L(a, c), L(c, b) > is contained in V .

Proof. The line segments that are the images of L(b, a) and L(c, b) are in V since b
is a base point. The line segment image of L(a, c) lies in D(c; r) and so it is in V , as
well. Thus, if q is on one of the sides of the triangle, then the line segment from b
to q is in V . If q is in the closed interior of the triangle, then it is on a line segment
from b to a point on one of the sides; again, q ∈ V . �

Goursat’s Theorem will combine with the following result to give Cauchy’s Theo-
rem.

Proposition 23. Let V be a star-like open subset of C and let f : V → C be
continuous. Assume that

∫
T
f(z) · dz = 0 for every chain triangle whose image is in

V . Then f(z) has an antiderivative in V .

Proof. Let b ∈ V be a base point. For each z ∈ V , we know that the image of L(b, z)
lies in V . Define

F (z) =

∫
L(b,z)

f(v) · dv

so that F : V → C. We will prove that F ′(z) = f(z)
Let z ∈ V and choose ε > 0. Because f is continuous at z, there is δ > 0 such

that if |w − z| < δ, then we have w ∈ D(b; r) and |f(w)− f(z)| < ε.
Proposition 22 shows that the closed interior of the triangle

T =< L(b, z), L(z, w), L(w, b) >
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is contained in the star-like set V . By hypothesis,∫
T

f(v) · dv = 0

A previous problem showed that L(w, b) = −L(b, w) and Property 3 gets involved
as well. We also use the definition of F .

0 =

∫
T

f(v) · dv

=

∫
L(b,z)

f(v) · dv +

∫
L(z,w)

f(v) · dv +

∫
L(w,b)

f(v) · dv

= F (z) +

∫
L(z,w)

f(v) · dv −
∫
L(b,w)

f(v) · dv

= F (z)− F (w) +

∫
L(z,w)

f(v) · dv

and therefore

(20) F (w)− F (z) =

∫
L(z,w)

f(v) · dv

The number z is constant in the present context. Thus, we can compute∫
L(z,w)

f(z) · dv = f(z) · (w − z)

We can subtract each side of this equation from the opposite sides of (20).

(21) F (w)− F (z)− f(z) · (w − z) =

∫
L(z,w)

(f(v)− f(z)) · dv

For v on the image of L(z, w), we have v ∈ D(z; δ), and so we have |f(v)−f(z)| < ε.
Property 4 then takes (21) and gives this.

|F (w)− F (z)− f(z) · (w − z)| ≤ ε · |L(z, w)| = ε · |w − z|

That this inequality holds for all w in D(z; δ) and that ε is arbitrary show that
F ′(z) = f(z), as needed. �

And now, one of the most remarkable theorems of mathematics.

Cauchy’s Theorem. Let V be a star-like subset of C, and let f be holomorphic on
V . Then f has an antiderivative on V . If G is a closed chain whose image is in V ,
then ∫

G

f(z) · dz = 0

Proof. Goursat’s Theorem tells us that
∫
T
f(z) · dz = 0 for every chain triangle in

V . Proposition 23 then finds an antiderivative F (z) for f(z). Then the statement
about closed chains follows by Property 5. �
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11. Null Chains and Equivalent Chains

Let V be an open subset of the complex numbers, and let G and H be chains whose
images lie in V . We define G + H to be their multi-set union: if G =< g1, . . . , gj >
and H =< h1, . . . , hk >, then

G+H =< g1, . . . , gj, h1, . . . , hk >

We could take some time to derive the obvious properties of this addition, we prefer
merely to note that addition is obviously commutative and that∫

G+H

f(z) · dz =

∫
G

f(z) · dz +

∫
H

f(z) · dz

for all continuous functions f on V .
A chain G is null on V if its image is contained in V and if

∫
G
f(z) · dz = 0 for all

f holomorphic on V . For instance, if G =< g,−g > for a smooth curve g, then G is
null by Property 3.

For a chain G =< g1, g2, . . . , gn >, define −G =< −g1, . . . ,−gn >, and we see that
G+ (−G) is null.

Let W be a star-like subset of V . If G is a closed chain curve whose image is
contained in W , then Cauchy’s Theorem shows that G is null on V .

The sum of chains, each of which is null on V , is null on V .
If G,H are chains whose image lies in V , and if∫

G

f(z) · dz =

∫
H

f(z) · dz

for every holomorphic function f on V , then we say that G and H are equivalent on
V .

A previous problem you did shows that if a, b, c are co-linear elements of C, then
< L(a, b), L(b, c) > and < L(a, c) > are equivalent on C.

If there are chains A,B, each null on V , such that G+A = H +B, then it is easy
to see that G and H are equivalent on V .

Here are two examples we will need; proofs and other examples will be discussed
in class. As you read the statements of each of the next three problems, draw a
picture of the hypothesis!

12. Cauchy’s Integral Formula

This extremely powerful consequence of Cauchy’s Theorem says that the values of
a holomorphic function inside a circle are determined by the values on the circle.

Cauchy’s Integral Formula. Let V be an open subset of C, and let f be holomor-
phic on V . Let c ∈ V and suppose that D(c; r) is contained in V . If z ∈ D(c; r),
then

f(z) =
1

2πi
·
∫
C(c;r)

f(w)

w − z
· dw

Proof. Let ε > 0. There is a positive number s such that D(z; s) ⊆ D(c; r) and such
that |f(w)− f(z)| ≤ ε for all w ∈ D(z; s).
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A problem says that C(c; r) and C(z; s) are equivalent in D(c; r) − {z}. The
function f(w)/(w − z) is holomorphic there, and so

(22)

∫
C(c;r)

f(w)

w − z
· dw =

∫
C(z;s)

f(w)

w − z
· dw

A problem you have done shows that∫
C(z;s)

dw

w − z
= 2πi

and so since f(z) is constant, we have∫
C(z;s)

f(z) · dw
w − z

= 2πi · f(z)

Subtracting the two sides here from the opposite sides of (22), we obtain

(23)

∫
C(c;r)

f(w)

w − z
· dw − 2πi · f(z) =

∫
C(z;s)

f(w)− f(z)

w − z
· dw

We can estimate the integral on the right using the fact that |f(w)− f(z)| ≤ ε, from
the choice of s, and that |w − z| = s.∣∣∣∣∫

C(z;s)

f(w)− f(z)

w − z
· dw

∣∣∣∣ ≤ ε

s
· 2 · π · s = ε · 2 · π

Taking this to (23), we see that∣∣∣∣∫
C(c;r)

f(w)

w − z
· dw − 2 · π · i · f(z)

∣∣∣∣ ≤ ε · 2 · π

Because ε is arbitrary, this gives the required formula. �

Our next theorem involves this defintion: a set V ⊆ C is path connected if for
every a, b ∈ V , there is a smooth curve starting at a, ending at b, and whose image
lies in V .

The Maximum Modulus Theorem. Let f(z) be holomorphic on the path con-
nected open set V ⊆ C. Suppose that |f(z)| has a maximum on V . Then f(z) is
constant on V .

Proof. Suppose that the maximum of |f(z)| occurs at b ∈ V . If this maximum is 0,
then f(z) = 0 for all z ∈ V , and we are done. If f(b) 6= 0, then we replace f(z) by
f(z)/f(b), so that f(b) = 1 and 1 is the maximum modulus.

Let M be the set of z ∈ V such that f(z) = 1. We will show that M = V . The
following claim does most of the work.

Claim 1. Let c ∈M , and suppose that r is a positive number such that D(c; r) ⊂
V . Then f(z) = 1 for all z ∈ D(c; r).

Proof of Claim 1. By Cauchy’s Integral Theorem, we have

1 = f(c) =
1

2πi
·
∫
C(c;r)

f(w)

w − c
· dw
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The curve is parametrized by w = r · exp(iθ) + c, for 0 ≤ θ ≤ 2π. We see that

1

2πi
·
∫
C(c;r)

f(w)

w − c
· dw =

1

2π
·
∫ 2π

0

f(w) · dθ

Writing f = u+ i · v in rectangular, and remembering f(c) = 1, we have

1 =
1

2π
·
∫ 2π

0

u(w) · dθ +
i

2π
·
∫ 2π

0

v(w) · dθ

Since u and v are real-valued, we conclude that

1 =
1

2π
·
∫ 2π

0

u(w) · dθ

We have |u(w)| ≤ |f(w)| ≤ 1 for each w. The function u is continuous on the
circle, and so it must be identically 1 on the circle: u(w) = 1 for all w = r ·exp(iθ)+c.
Since |f(w)| ≤ 1, we see that f(w) = u(w) for all w, and so v(w) = 0 for all w. It
follows that f(w) = 1 for all w.

If z ∈ D(c; r), then Cauchy’s Integral Formula tells us that

f(z) =
1

2πi
·
∫
C(c;r)

f(w)

w − z
· dw =

1

2πi
·
∫
C(c;r)

1

w − z
· dw = 1

To complete the proof, we show that M = V . If not, there is c ∈ V \M . Because
V is path connected, there is a smooth curve g starting at b ∈ M and ending at
c, with the image of g lying in V . Let g : [p, q] → V , and then g(p) = b, so that
f(g(p)) = 1, and g(q) = c, so that f(g(q)) 6= 1. Let s be the sup of t ∈ [p, q] such
that f(g(t)) = 1, and it is easy to see that f(g(s)) = 1 and that if s < t ≤ q, then
f(g(t)) 6= 1.

There is a positive number r such that D(g(s); r) ⊂ V , and Claim 1 shows that
f(z) = 1 on this disk. Since g is continuous, there is a real number t with s < t ≤ q
and g(t) ∈ D(g(s); r). This is a contradiction, and it proves that M = V . �

We turn to a special case of what is called the Residue Theorem. This case allows
us to compute some interesting integrals. The hypothesis of the following may be
indicated by saying the f(z) has a simple pole at w.

Proposition 24. Let w ∈ C and r > 0 and suppose that f(z) is holomorphic on
D(w; r) \ {w}. Suppose that there is A ∈ C with (z − w)f(z) → A as z → w. Let
0 < s < r. Then

1

2πi
·
∫
C(w;s)

f(z) · dz = A

Proof. Let ε > 0 and get δ > 0 so that if z ∈ D(w; δ) \ {w}, then

|(z − w) · f(z)− A| < ε

We leave it to you to show that C(w; s) is equivalent to C(w; δ) in D(w; r) \ {w},
and so

1

2πi
·
∫
C(w;s)

f(z) · dz =
1

2πi
·
∫
C(w;δ)

f(z) · dz
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We know that

A =
1

2πi
·
∫
C(w;δ)

A

z − w
· dz

We know that the length of C(w; δ) is 2πδ, and for z on that circle, we can estimate∣∣∣∣(z − w) · f(z)− A
z − w

∣∣∣∣ ≤ ε

δ

Thus, we can estimate∣∣∣∣ 1

2πi
·
∫
C(w;s)

f(z) · dz − A
∣∣∣∣ =

∣∣∣∣ 1

2πi
·
∫
C(w;δ)

f(z) · dz − 1

2πi
·
∫
C(w;δ)

A

z − w
· dz
∣∣∣∣

=

∣∣∣∣ 1

2πi
·
∫
C(w;δ)

(z − w) · f(z)− A
z − w

· dz
∣∣∣∣

≤ 1

2π
· 2π · δ · ε

δ
= ε

�

13. Holomorphic Functions are Analytic

Here is the promised converse to Theorem 19: holomorphic functions are analytic
– they are represented by Taylor series on every disk in their domain! This is another
central theorem of complex analysis.

Theorem 25. Let f be holomorphic on the open set V in the complex plane, and let
D(c; r) ⊂ V . Then f (k)(c) exists for all k ≥ 0, in fact

f (k)(c) =
k!

2πi
·
∫
C(c;r)

f(z)

(z − c)k+1
· dz

Furthermore,

f(z) =
∞∑
k=0

f (k)(c)

k!
· (z − c)k

for every z ∈ D(c; r).

Proof. The image of C(c; r) is the circle of radius r about c. The function f(z) is
continuous on that circle, and so we can define

ak =
1

2πi
·
∫
C(c;r)

f(z)

(z − c)k+1
· dz for each k ≥ 0

Let w ∈ D(c; r). Since |w − c| < r, there is a positive number s < 1 with
|w − c| < s · r. If z is on the image of C(c; r), then |z − c| = r, and we can estimate

(24)

∣∣∣∣w − cz − c

∣∣∣∣ ≤ s · r
r

= s

Since s < 1, the geometric series
∞∑
k=0

(w − c)
(z − c)k+1
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converges. Moreover, the estimate (24) is independent of z, and so the convergence
is uniform over the image of C(c; r). Proposition 21 then allows us to permute the
summation and integral sign in the following calculation.

∞∑
k=0

ak · (w − c)k =
∞∑
k=0

[
1

2πi
·
∫
C(c;r)

f(z)

(z − c)k+1
· dz
]
· (w − c)k

=
1

2πi
·
∫
C(c;r)

[
∞∑
k=0

(w − c)k

(z − c)k+1

]
· f(z) · dz

=
1

2πi
·
∫
C(c;r)

[
1

z − c
· 1

1− (w − c)/(z − c)

]
· f(z) · dz

=
1

2πi
·
∫
C(c;r)

[
1

z − c− (w − c)

]
· f(z) · dz

=
1

2πi
·
∫
C(c;r)

1

z − w
· f(z) · dz

By Cauchy’s Integral Formula, this integral is f(w), and we have the series formula
we claimed.

The convergence of the series on C(c; r) shows that the radius of convergence of ak
is at least r. Theorem 19 then shows that f(z) is infinitely differentiable on C(c; r),
and that theorem also gives the claimed formula for the ak. �

The convergence of the series in the proof of Theorem 25 depends only on the
fact that f(z)/(z − c)k+1 is integrable over C(c; r); we didn’t use that f(z) was
holomorphic until we quoted Cauchy’s Theorem. If we specify an integrable function
on such a circle, the proof of the theorem shows how to define an analytic function
on the disk from that function.

In Proposition 14, where we proved that the Cauchy-Riemann equations on real
functions u, v lead to a holomorphic function u + i · v, we assumed that the partial
derivatives of u, v are continuous. As we will now see, Theorem 25 shows that the
Cauchy-Riemann equations imply the continuity of the partial derivatives.

Theorem 26. Let V be an open subset of C, and let f : V → C. Then f is
holomorphic on V if and only if its real and imaginary parts have continuous first
partial derivatives that satisfy the Cauchy-Riemann equations.

Proof. Write f = u+ i · v with its real and imaginary parts.
Let c ∈ V and let r > 0 with D(c; r) ⊂ V . Theorem 25 shows that there is a

Taylor series for f(z) in D(c; r). Theorem 19 then says that f ′(z) is holomorphic
and therefore continuous at c. We know that

f ′(z) =
∂u

∂x
+ i · ∂v

∂x
=
∂v

∂y
− i · ∂u

∂y

Since f ′ is continuous, we see that the partial derivatives just written are continuous
at c. Thus, if f is holomorphic, then its real and imaginary parts have continuous
first partial derivatives.

Proposition 14 proves that if u, v have continuous first partial derivatives, and if
they satisfy the Cauchy-Riemann equations, then f is holomorphic. �
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But more is true. Since f(z) has a Taylor series, it has infinitely many deriva-
tives, all of which are holomorphic. It follows that u and v have continuous partial
derivatives of all orders. If you are at all familiar with partial differential equations,
you will find it very remarkable that the assumption of a first-order equation leads
to infinite-order continuity.

Morera’s Theorem is a kind of converse to Cauchy’s Theorem. We are working
with star-like subsets of the complex numbers; there are more general versions of this
theorem.

Morera’s Theorem. Let V be a star-like subset of C, and let f : V → C. Suppose
that

∫
G
f(z) · dz = 0 for every closed chain G in V . Then f is holomorphic in V .

Proof. Proposition 23 constructs an antiderivative F (z) for f(z). By Theorem 25,
the function F (z) is analytic, and by Theorem 19, F ′′(z) exists. This shows that
f ′(z) exists, and so f(z) is holomorphic. �

Recall that an entire function is a holomorphic function over the entire complex
plane. Here is another famous consequence of Theorem 25.

Liouville’s Theorem. Every bounded entire function is constant.

Proof. Let f(z) be an entire function and suppose there is a real number B such
that |f(z)| ≤ B for all z ∈ C. Let w ∈ C and choose a positive real number R.
Theorem 25 shows that

f ′(w) =
1

2πi
·
∫
C(w;R)

f(z)

(z − w)2
· dz

Since the length of C(w;R) is 2πR, we can estimate this integral∣∣∣∣ 1

2πi
·
∫
C(w;R)

f(z)

(z − w)2
· dz
∣∣∣∣ ≤ 1

2π
· 2πR ·B · 1

R2
=
B

R

This quantity goes to 0 as R→∞, and we conclude that f ′(w) = 0. Proposition 13
shows that f is constant. �

Here is a remarkable uniqueness theorem: distinct holomorphic functions cannot
agree too often.

Theorem 27. Let f(z) and g(z) be holomorphic on the path connected open set
V ⊆ C. Suppose that zk for k ≥ 0 is a sequence of distinct elements of V that
converges to an element of V , and suppose that f(zk) = g(zk) for all k ≥ 0. Then
f(z) = g(z) for every z ∈ V .

Proof. We can define h(z) = f(z) − g(z) and prove that h(z) is identically 0, given
that h(zk) = 0 for all k.

Let w be the limit of the zk, and since h is continuous, we have h(w) = 0. Let
M be the set of a ∈ V such that there is a sequence of distinct elements ak ∈ V
converging to a and for which h(ak) = 0 for all k. We see that w ∈M .
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Claim. If a ∈ M , and if r > 0 with D(a; r) ⊂ V , then h(z) = 0 for every
z ∈ D(a; r). Also, D(a; r) ⊆M .

Proof of the Claim. Let a and r be as hypothesized. By Theorem 25 we can write
h(z) as a series in D(a; r).

h(z) =
∞∑
k=0

bk · (z − a)k

Since h(a) = 0, we have b0 = 0. Suppose that h is not identically 0 on D(a; r), and
then some bk is not 0. Let j be the minimal such k, and we can write

h(z) = bj · (z − a)j + (z − a)j+1 · g(z)

where g(z) is holomorphic on D(a; r).
The function g is continuous on the closed and bounded set D(a; r/2). Proposi-

tion 10 then finds a positive real number B ≥ |g(z)| on that set. Choose a positive
number s ≤ r/2 such that s ·B < |bj|/2.

Let z ∈ D(a; s). We can estimate

|h(z)| =
∣∣bj · (z − a)j + (z − a)j+1 · g(z)

∣∣
= |z − a|j · |bj + (z − a) · g(z)|
≥ |z − a|j · [|bj| − |z − a| · |g(z)|]
≥ |z − a|j · [|bj| − s ·B]

≥ |z − a|j · [|bj| − |bj|/2]

≥ |z − a|j · |bj|/2
We see that if z 6= a, then h(z) cannot be 0. In other words, a is the only element
of D(a; s) where h is 0. But this contradicts the existence of a sequence of distinct
elements of V converging to a on which h is 0.

Every element of D(a; r) is a limit of a sequence of distinct elements of D(a; r).
The function h is 0 on this sequence, and so D(a; r) ⊆M . This proves the Claim.

Now we can show that M = V , so that h(z) = 0 for all z ∈ V . Let a ∈ M , as
before, and let b ∈ V . There is a smooth curve g : [0, 1]→ V such that g(0) = a and
g(1) = b. Let T be the set of all t ∈ [0, 1] such that g(t) ∈ M . Then g(0) = a ∈ M ,
so that 0 ∈ T . It follows that T has a sup s.

There is r > 0 such that D(g(s); 2r) ⊆ V . Get δ > 0 such that if |t− s| < δ, then
g(t) ∈ D(g(s); r). Becuse s is the sup of T , there is t ∈ (s− δ, s]∩ T . We claim that
g(s) ∈ D(g(t); r) ⊆ V . Indeed, since g(t) ∈ D(g(t); r), we have g(s) ∈ D(g(t); r). If
z ∈ D(g(t); r), then

|z − g(s)| ≤ |z − g(t)|+ |g(t)− g(s)| < r + r = 2 · r
In other words, D(g(t); r) ⊆ D(g(s); 2r) ⊆ V , as claimed.

Now we apply the earlier claim to D(g(t); r), using that g(t) ∈ M . We see that
D(g(t); r) ⊆M . In particular g(s) ∈M . If s < 1, then there is s1 with s < s1 < s+δ,
and then g(s1) ∈ D(g(s); r) ⊆ M . This contradicts the fact that s is the sup of T .
Thus, s = 1, and so b = g(1) ∈M . �


