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Preface

e This book is primarily for the students and teachers of IIT
Madras.

e This is based on a Core Course that I have given for the sec-
ond semester students of M.Sc. (Mathematics) at IIT Madras.
The audience included some B.Tech. students and a faculty
member (Dr. Parag Ravindran) from Mechanical Engineering
department.

e The contents of the book is in the line of the well-written,
small book Complex Function Theory' by Donald Sarason. I
fondly acknowledge some e-mail discussions that I had with
Prof. Sarason during the time of giving the course.

IIT Madras M. Thamban Nair
June 2011

!Second Editin, Hindustan Book Agency (‘trim’ series), New Delhi, 2008.
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Complex Plane

1.1 Complex Numbers

After having the real field R, it is natural to look for a bigger field
in which algebraic equations such as

4+ 1=0 (%)

has a solution. Of course, the + sign here must be the symbol for
addition in the bigger field. Since two fields can be considered to
be identical if there is a surjective isomorphism between then, it is
enough to have a field which contains an isomorphic image of R and
having required properties such as solution to algebraic equations.
We shall define such a field with the intention of having a solution
to the equation (x).

Definition 1.1.1 The set C of complex numbers is the set of all
ordered pairs (z,y) of real numbers with the following operations of
addition and multiplication:

(ajl)yl) + (9527?/2) — (:El + T2,Y1 + y2)7

(x1,1)-(x2,92) = (2122 — Y1Y2, T1Y2 + T2Y1).

The proof of the following theorem is left to the reader.

Theorem 1.1.1 The following hold.

(i) C is a field with additive identity (0,0) and multiplicative
identity (1,0).

(ii) The map ¢ : R — C defined by

o(z) = (x,0), x € R,

is a field isomorphism.
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We observe that the multiplicative inverse of a nonzero complex
number z = (z,y) is given by

x Yy
x2_|_y2’ x2_|_y2 :

Writing
i=(0,1)
and for z € R,
z = (z,0),
we observe that
2= 1,

and
C={z+iy:x,y € R}

With the above notations, the addition and multiplication in C can
be written as
(@1 + i) + (T2 +1i72) = (T1 +F2) + (71 + J2)

= (z1+y2) +i(yr + y2),

(T1+151).(T2 +i92) = (Z1Z2 — 1Y) + i(Z192 + T291)

= (2172 — y1y2) + i(T1Y2 + T201).

Throughout this course, we identify & with = for every = € R, so
that C is the set of all numbers of the form

a+1ib with a,b€R.

Thus,
a+i0=a, 0+il=4 and ¢=—1,

and for nonzero z = x + iy,

1 1 x .Y
— =2z = —1
z w2 4+y? 2?42

One of the important properties of this field is that, not only equa-
tion (*) has a solution in C, but every algebraic equation also has a
solution. This is the so called fundamental theorem of algebra which
we shall prove in the due course.
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1.2 Some Definitions and Properties

Definition 1.2.1 For a complex number z = x + iy, x is called the
real part of z and is denoted by Re(z), y is called the imaginary

part of z and is denoted by Im(z),

Z=x—1y

is called the complex conjugate of z, and the non-negative number

o = Va4
is called the absolute value or modulus of z.

We observe that

1
Re(2) < |z, Im(z) <|z|, zz = |z|%, -=
z

Using the face that |2|? = 2z, it can be easily verified that
‘21+22|§‘21|+|22’ V21,29 € C.
The above inequality is called the triangle inequality.

1.2.1 Metric on C
Theorem 1.2.1 The function d : C x C — R defined by

d(Zl,ZQ):|Zl—Z2|, Zl,ZQEC

is a metric on C.

Hereafter any metric property of C is referred to the metric de-
fined as in the above theorem. With respect to the above metric we

have the following:
e A sequence (z,) in C converges to z € C if and only if

|z — 2| =0 as n — oo.

e A point zg € C is called an interior point of a set A C C if

there exists r > 0 such that

B(zp,7):={2€C: |z —2z| <r} C A

The set B(zp,r) is called the open ball with centre z and radius

r, usually denoted by B(z,r).
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A subset G of C is open in C if and only if every point in G is
an interior point of G.

A point zy € C is call a boundary point of a set A C C if every
open ball containing zy contains some point of A and some
point of its compliment, i.e., for every r > 0, B(zg,7) N A # &
and B(zg,r) N A # .

A subset S of C is closed in C it contains all its boundary
points. It can be shown that a set

S C C is closed if and only if S¢:= C\ S is open if
and only if for every sequence (z,) in S,

Zn —2=—2z€A8.

A function f: A — C defined on a subset A of C is continuous
at a point zg € A if and only if for every € > 0, there exists
0 > 0 such that

z€A, |z— 2] <d=|f(2) — f(20)] <e.

Equivalently, f is continuous at a point zg € A if and only if
for every € > 0, there exists § > 0 such that

z € AN B(z0,0) = f(z) € B(f(20),¢).

A function f: A — C defined on a subset A of C has the limit
¢ € C at a point zg € C if and only if for every ¢ > 0, there
exists > 0 such that

z€A,0<|z—2| <0=|f(2) = (| <e,

and in that case we write

Jim f(z) = ¢.
A subset A of C is bounded if and only if there exists o > 0
such that
2| <« Vz e A.

A subset A of C is compact if and only if every sequence in A
has a convergent subsequence.
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Theorem 1.2.2 The set C is a complete metric space.

Proof. Let (z,) be a Cauchy sequence in C. Writing z,, = z,+1iy,
with z,,,y, € R, we have

|l‘n - l‘m| < |Zn - Zm|a ’yn - ym| < |Zn - Zm’

for all n,m € N. Hence, (x,) and y,) are Cauchy sequences in R.
Since R is a complete metric space with respect to the absolute-value
metric, there exist x,y € R such that x, — x and y, — y. Then,
writing z = x 4 1y, we have

|20 — 2> = (zp — 2) — 0.

Thus, (z,) converges to z. |1

1.2.2 Polar representation and n'"-roots

Let z be a nonzero complex number and let # be the angle which
the line segment joining 0 to z makes with the positive real axis, and
r = |z|, the length of the line segment. Then it is clear from the
geometry that

z =r(cosf +isinb). (%)

Definition 1.2.2 The representation () of a nonzero z € C is called
its polar representation, and an angle 6 for which (x) holds is
called an argumet of z, denoted by arg(z). O

Note that each (r,#) with » > 0 and 6 € R represents a unique
nonzero z € C with the representation (x), but a non zero z € C has
many polar representations, namely,

z =r(cosf +isind), 0 € {6y +2rk: kelZ},

where 6 is one of the angles for which (x) holds.
We note that if z; = r1(cos€y + isin6;) and zo = ra(cosfy +
isinfy), then

2129 = r1r2[cos(01 + O2) + isin(6y + 02)].
Thus, if z = r(cosf +isinf) and n € N, then

2" = r"(cos nf+isinnf) = r’*[cos(nb+2km)+i sin(nf+2km)], ke Z.
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The above observation helps us in finding the n'" roots of complex
numbers.

Let ¢ = p(cosa+isina), z = r(cos@ + isinf) and n € N. Then
we have

2 =( < r=p"" and 92%21”, ke Z.
Thus, n-th roots of ¢ are
2 = pt/™ [cos <o<+2k:77> + isin <a—i—2k:7r>] , keZ.
n n
Note that for each k € Z
2k = 2Zg+n for je{l,...,n}.
Thus, the only distinct n-th roots of  are z1, 2o, . .., 2.

If ( =1, then we have p = 1 and o = 0, and in this case we see
that the n-th roots of unity are

w,w?, . W with W =1,

<2kﬂ'> . <2k:7r>
w=cos|{— | +esm|——]|.
n n

1.2.3 Steriographic projection

where

Theorem 1.2.3 The complex plane is homeomorphic with the set
S2\ {(1,0,0)}, where S? is the unit sphere in R® with centre as the
origin, i.e.,

§? ={(e,8,7) e R’ : 0 + % + 7% = 1}.
Proof. Clearly, C is homeomorphic with the set
X = {(z,y,0) € R®: 2,y € R}

with the homeomorphism being the map x + iy — (x,y,0). Hence,
we find a surjective homeomorphism from X to S?\ {(1,0,0)}.
Note that the parametric representation of the straight line join-
ing the north pole up = (1,0,0) with a point u = (x,y,0) € X is
given by
uy = (1 = Nug + Au, A ER,
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ie.,
uy = (Az, Ay, 1 — \), AeR.

Clearly, for every u = (x,y,0) € X there exists one and only A := A,
such that uy € S%. We consider the map

u:= (z,y,0) = (Auz, \yy, 1 — A)
from X to S2\ {(0,0,1)}. Note that
uy € 8% = N2+ P+ (1-N)2=1

if and only if A = 0 or A(#? +y*> +1) — 2 = 0. The point A\ = 0
correspond to ug. Hence,

2

W S—
u 1:2_|_y2+1

Thus the map

2z |z|2—1>

= Y —
FErtw <1+|z|2’1+|z|2’1+|z|2

is a bijective continuous function from C onto 2\ {(1,0,0)} with its
inverse

a—+ 13
1—7v’

(o, 8,7)

which is also continuous. 1

1.3 Problems

1. Show that C is a field under the addition and multiplication
defined for complex numbers.

2. Show that the map f : R — C defined by f(z) = (z,0) is a
field isomorphism.

3. For a nonzero complex number x, show that 2! = z/|z|.
4. Show that for z1, 22 in C, |21 + 22| < |21] + |22].

5. Show that d(z1, z2) := |21 — 22| defines a metric on C, and it is
a complete metric.
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11.

12.

13.

14.
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Show that |z — 22| > |21]| — |22| for all 21,29 € C.

Suppose «, 3,7 are nonzero complex numbers such that |a| =

18] = 1.
1

1 1
Show that a + f+v7=0 <= —+ -4+ - =0.
a By

Suppose z1, 29, 23 are vertices of an equilateral triangle. Show
that z% + z% + z%—i— = 2129 + 2923 + 23%1.

Show that the equation of a straight line using complex variable
z is given by az + az + v = 0 for some a € C and v € R.

= 4b for some b € R.

1
If |z] =1 and z # 1, then show that 1 Rk

For n € N, derive a formula for the n'" root of a complex
number z using its polar representation.

Let S? be the unit sphere in R? with centre at the origin, i.e.,
S? = {(a,B8,7) € R¥ : a® + 82 + +* = 1}. Show that the
steriographic projection

PPN 2x 2z |22 —1
Z =2 1
Y IR 1+ 22 14 22

is a bijective continuous function from C onto S?\ {(1,0,0)}
with its inverse

a+if
L—n

(o, B,7)

7
which is also continuous.

Show that the functions z — Re(z), =z — Im(z), 2z +— |z|
are continuous functions on C.

z
Show that lim — does not exist.
z—0 ‘Z‘
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Analytic Functions

In this chapter we do calculus of complex valued functions of a com-
plex variable.

2.1 Differentiation

Let f be a complex valued function defined on a set €2 C C.

Definition 2.1.1 Let zg be an oneerior point of 2. Then f is said
to be differentiable at zg if

i 1 ?) = f(20)
z—20 zZ— 20

exists, and in that case the above limit is called the derivative of f
at zg, denoted by f(z0). O

Thus the following are equivalent:

(i) f is differentiable at zo € Q.
(ii) There exists ¢ € C such that for every € > 0, there exists § > 0
satisfying

2€Q, 0<|z—2|<d= W—c <e.
— 20

(iii) There exists ¢ € C such that

f(z) = f(20) — (2 — 20)

|z — 2o

—0 as z— 2.

The equivalence in (iii) above shows that if f is differentiable at
20, then f(z) is approximately equal to f(zg) — c¢(z — 29) whenever z
is in some neighbourhood of zy, which we write as

f(2) = f(20) = e(z = 20)

9
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whenever z is in some neighbourhood of 2.

The following theorem can be proved (ezercise) using arguments
similar to the real case of real valued functions of a real variable.

Theorem 2.1.1 Let zy be an interior point of Q C C. Then the
following holds.

(i) If f differentiable at zy € 2, then f is continuous at 2.

(ii) If f and g are differentiable at zop € Q, then f + g and fg are
differentiable at zg, and

(f4+9) (z0) = f'(20)+9(20),  (f9)'(20) = f'(20)9(20)+f(20)g' (20)-

(iii) If f and g are differentiable at zg € Q and if g(z9) # 0, then
f/g is differentiable at zy, and

(f)/ (20) = 9(20)f"(20) — g'(20) f (20)
g) " [9(z0)]2 ‘

(iv) If f is differentiable at zo € Q and g is differentiable in a
neighbourhood of f(zp), then go f is differentiable at zy and

(g0 f)(20) = g'(f(20)f (20)-

Now, let us write f(z) as u(z) + iv(2), where u(z) = Ref(z) and
v(z) = Imf(z). Recall that f is differentiable at zyp € Q if and only
if there exists ¢ € C such that

R(z)

|z — 20|

where R(z) = f(z) — f(z0) — ¢(z — 20). Writing

—0 as z— zq,

z=x+1y, 2zp=xo+1o, C=a-+1ib,

we have

~

R(z) = f(z) = f(20) — (2 — 20)
(2) — u(20)] + t[v(z) — v(20)] — (a + ) [(z — o) + i(y — yo)]
(2) (20) — a(z — wo) + b(y — yo)]
+i[v(2) — v(z0) — b(z — z0) — a(y — yo)]
= Ri(2) +iRa(z2),

e

—Uu
—Uu

e
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where
Ry (2) = u(2) — u(z0) — [alz — z0) — b(y — vo)],
Ry(z) = v(z) — v(z0) — [b(z — 20) + a(y — yo)]
Thus,
R o R o R
|z — 2o |z — 2o |z — 2o

if and only if u and v are differentiable as a functions of two real
variables at (z, o), and

0 0
a = 571;(1'0790), —b= FZ(:UO?yO)a

0 0
b= 872(3507:90)7 a = 87;(‘%‘07:%))7

i.e.,

0 0 0 0
8*2(1’0790) = 87:(%07y0) & %(xﬂvyO) = _aiz(x()ay()%

and in that case

, 0 0
flz0) = a+ib = Z2(x0,90) + i (0, 0)
ov ou

= %($07y0) - i(ny(fCo,yO)

Thus, we have proved the following theorem.

Theorem 2.1.2 The function f is differentiable at zg € Q if and only
if its real part u and imaginary part v are differentiable at (zg,yo)
and Uz, Uy, Vg, Uy Satisfy the equations

uz(20) = vy(20),  uy(20) = —va(20), (*)
and in that case
J(20) = ua(20) + 1wz (20) = vy(20) — iuy(20)-

Equations in (x) are called the Cauchy-Riemann equations,
or in short CR-equations.

Now, recalling from a sufficient condition for differentiability of a
real valued function of two variables, we have the following sufficient
condition of differentiability of f at zg € €.
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Theorem 2.1.3 Let f = u+iv and zyp = xo + iyg € Q. Suppose
Ug, Uy, Vg, Uy exist in a neighbourhood of zy and are continuous at
(z0,Y0), and suppose they satisfy the CR-equations at (xo,y0). Then
f s differentiable at z = xg + iyg, and

' (20) = ug + v

EXAMPLE 2.1.1 Let us find out points at which some of the
simple functions are differentiable.

(i) Let f(z) = «. In this case we have u(z,y) = x and v(z,y) = 0.
Hence, u, = 1, uy = 0, v, = 0 = v, at every point. Since u and v do
not satisfy CR-equations, f is not differentiable at any z € C.

(ii) Let f(2) = z = x — iy. In this case we have u(z,y) = =
and v(z,y) = —y. Hence, u, =1, uy =0, v, =0, v, = —1 at every
point. Again CR-equations are not satisfied at any point. Hence, f
is not differentiable at any z € C.

(iii) Let f(2) = |2|*> = 22 +y?. In this case we have u(z,y) = v2+
y? and v(z,y) = 0. Hence, u; = 2z, uy = 2y, v, = 0 = v, at every
point. Thus, partial derivatives of v and v exist and are continuous
on R? and CR-equations are satisfied only at (0,0). Hence, f is
differentiable only at 0.

(iv) Let f(z) = 2% = (22 — y?) — i22y. In this case we have
u(z,y) = 22 — y? and v(z,y) = 2zy. Hence, u; = 2z, u, = —2y,
vy = —2y, vy, = —2x at every point. Thus, partial derivatives of u

and v exist and are continuous on R?, and CR-equations are satisfied
only at (0,0). Hence, f is differentiable only at 0. O

CR-equations in polar coordinates:

Let f = u+iv where u = Ref and v = Imf. For z = x + iy with
x = Rez and y = Imz, writing

r=V@2 4R, O=tan\(y/z), @ #£0,
and considering v and v as we have the following:
du_oudr  oudh
or  Ordx 00 0x’

ov_owor ovon
dr  Ordxr 000x
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Now, 72 = 22 + y? and tan = y/z so that

or or
20— 9 2l — 9
o = 20 ray Y,
00y 00 1
2p%” _ I 0~ _ -
sec 06.%' 2 sec oy x
ie.,
o _x O _y
or r’ oy r’
z2 Ox 2%’ z2 Oy
i.e.,
or_x or_y 00 __y 00 _z
oxr r’ oy 1’ oxr  r?’ oy r?’
Now,
ou_ouor ouon  ou_ouor oudn
or  Ordz 000z’ oy Ordy 000y
Thus,
Ou_zdu you  Ou_you z0lu
oxr ror 1200’ oy ror 2o
Similarly,
v _zov yov  Ov_yov, xdv
dr  ror 1200’ oy ror r2of

Recall that the CR-equations in Cartesian coordinates are

ou_ov ou_ o
or Oy’ oy oz’
Hence, (1) — (2) give
rOu  you vy @ x Ov

vor r200  ror 2o
you =z du _xdv  ydv

ror 7290 ror 1200
The equations (3) — (4) imply that

ou_ov ou__ o

"or —000 90 or

These are the CR-equations in polar coordinates.

13
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2.2 Holomorphic or Analytic Functions
Definition 2.2.1 Let Q2 C C.

(i) A function f: Q — Cissaid to be analytic at a point zg € Q if
there exists r > 0 such that B(zp, ) C Q and f is differentiable
at every point in B(zg, 7).

(ii) A function f :Q — C is said to be holomorphic or analytic
on gy C Qif f is analytic at every point in .

o If f:Q — C is analytic on Qg C €2, then ) is an open set.

o f:Q — C is not analytic at a point 2y € 2 if and only if for
every 7 > 0, there exists ¢ € B(zp,7) N Q such that f is not
differentiable at (.

Definition 2.2.2 A complex valued function defined and analytic
on the entire complex plane is called an entire function. %

e f:Q — Cis analytic at a point 2y € {2 if it is analytic on some
open set containing zy.

e f:Q — C is analytic on Q if and only if u := Re(f) and
v := Im(f) have continuous first partial derivatives in Q and
they satisfy the CR-equations at every point in (2.

Remark 2.2.1 In the subject of complex analysis, it is very common
to say a function

f is analytic at a point zg € C

to mean that f is defined in an open neigbourhood of zy and f is
analytic at zp.

Usually, a function is given in terms of certain expression, and in
that case, the domain of definition of f is taken to be the largest sub-
set of C in which the expression makes sense. For example, consider
the expression .

1) =~
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In this case, the domain of definition of f is taken to be 2 := C\ {0},
and f is not analytic at zg = 0, since 0 & 2. The function

f(z) ==
is not analytic at any point in C, since f is defined on C, but f is
not differentiable at any zg € C. %

Definition 2.2.3 A set )y C C is called the domain of analyticity
of a function f if )¢ is the largest open set in which f is analytic. ¢

For example, the domain of analyticity of f(z) =1/zis C\ {0},
whereas the domain of analyticity of f(z) = z is @.

Definition 2.2.4 A point 2y € C is a singularity of an analytic
function f if zg is not in the domain of analyticity of f. O

Definition 2.2.5 A point zg € C is an isolated singularity of
a function f if the domain of analyticity of f contains a deleted
neighourhood of z. O

EXAMPLE 2.2.1 1. For ay,aq,...,a, in C, let
f(z):=ap+ar1z+ ...+ anz", z € C.
Then f is an entire function.
2. The function z — 1/(1 — 2) is analytic on C\ {0}.

3. The function f defined by f(z) = > 72" is analytic on the
unit disc Q:={z € C: |z| < 1}.
]

2.2.1 Analytic extension

Definition 2.2.6 Suppose €2 is an open subset of C and f : Q2 — Cis
an analytic function. Let Q be an open set such that Q20 We say
that f has an analytic extension to Q if there exists an analytic
function g on Q which is an extension of fiie,g: Q—Cis analytic
and g(z) = f(z) for all z € Q. O

EXAMPLE 2.2.2 1. Let @ = {z € C: |z] < 1} and f(2) =

11— 7 € . Then f is analytic on €2, and has extension to
-z

the open set (2 := C\ {1}. Clearly, in this case, g(2) = 1/(1-2)
for all z € Q.
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2. The function f defined by f(z) = > .7, 2" is analytic on the
unit disc 2 := {z € C: |z]| < 1}, and cannot be extended to a
bigger open set.

O
2.2.2 Geometric representations

We know that a real valued function of a real variable can be repre-
sented by its graph, as a subset of the plane. Such a representation
is not possible for a complex valued function of a real variable, as we
require at least four real dimensions. But, we can represent them as
mappings of C into itself as which specify changes taking place for
certain figures such as straight lines and circles. Let consider a few
simple examples.

EXAMPLE 2.2.3 Consider the function

Zaz
for some nonzero a € C. Let us consider the following cases.
Case (i) a € R and a > 0.

We see that this maps scales the figures in the plane - if a > 1,
then it takes a circle to a bigger circle, and if a < 1, then it takes a
circle to a smaller circle. More precisely, consider a circle

C: |z—2z|=r (%)

Writing ¢ = az, we have

|z — 20| =1 < ‘C—Zo =r < |[(—az|=ar
a

Thus above function transforms a circle with centre zg and radius r
into a circle with centre azy and radius ar.
A straight line has the equation

L: az+az+v=0. ()
Indeed, for a,b,c € R,

z+Zz 2=z
ar+by+c = a +b - +c
2 21
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Now, under the map z — ( := az with a > 0, we have

aztaz+y=0 < @& <C> +a <C> +7=0 <= al+al+ay=0.
a a

Thus, the function z — az transforms a straight line into a a straight
line.

Case (ii) a € C and |a| = 1.

In this case a is of the form a = cosfy + isinfy for some 6 # 0.
Hence, by the map z — az, a point z = r cosg 0 +isin y is rotated by
an angle 6y. Thus, circles and straight lines are mapped onto circles
and straight lines, respectively.

Case (iii) a € C, a # 0.
a
a= |a‘ IR
<|a>

this function is a composition of the functions considered in Case (i)
and Case (ii). O

Since

Exercise 2.2.1 Explain the last statement in Case(ii) analytically
using the circle and straight line given in (%) and (k). <

EXAMPLE 2.2.4 Consider the function
z—z+b

for some nonzero b € C. In this case the circle in (%) is mapped into
the circle

C: [(—(0-0)=r

i.e., the original circle is translated by —b, and the straight line in
(#x) is mapped into the straight line

L: az+az+(B+ab+y)=0.
Note that for v € R, 8 + ab+ ~ is also in R. O
EXAMPLE 2.2.5 Consider the function

z+—az+b
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for some nonzero a,b € C. This case is combination of the function
considered in the previous two examples, i..e, f(z) = g(h(z)), where
h(z) = az and g(z) = z + b. Therefore, circles and straight lines are
mapped into circles and straight lines, respectively. O

Remark 2.2.2 We observe that under the under the map z — az+b
with a # 0, the tangent at a point zg on a curve I" is mapped onto the
tangent at the point ¢ := f(zo) on the curve I' := f(T). Of course,
we have not defined so far what we mean by a curve in C. We shall
do this now. O

2.2.3 Curves in the complex plane

Definition 2.2.7 A curve in the complex plane is a complex valued
function ~ defined on an interval I.

If I = [a,b], then the point z; := y(a) is called the initial point
of v and z3 := 7(b) is called the terminal point of ~. O

If v is a curve in C, then we shall identify it with its image
Iyi={~{@):tel}
If Iy lies in an open set (2, then we say that the curve « is in .

The direction of a curve - is along the direction in which the
points on I' vary as ¢ increases on 1.

EXAMPLE 2.2.6 Given 21, 23 € C, the line segment joining z; to
z9 is a curve given by

v(#) = (1 —t)z1 + t2o, t €[0,1].

This curve has the same image as the one given by

v(t) == (Z:Z’;) 21+ <z:z> z,  te[ab).

EXAMPLE 2.2.7 (i) The curve defined by

~(t) :=cost +isint, 0<t<2rm

traces the unit circle (with centre 0) once in anti-clockwise direction.
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(ii) The curve defined by
~(t) := cost —isint, 0<t<2rm

traces the unit circle (with centre 0) once in clockwise direction.
(iii) The curve defined by

v(t) :== cost +isint, 0<t<2nm

traces the unit circle (with centre 0) n-times in anticlockwise direc-
tion. U

EXAMPLE 2.2.8 Using the definition of a line segment in Example
2.2.6, it can be seen that the following curve traces the boundary of
the square with vertices at 0,1, 1+1, ¢ once in anticlockwise direction:

t, 0<t<l,
)14 e-ni, 1<t<
=93 3¢ 2<t<3
(4 — t)i, 3<t<d

O

Definition 2.2.8 A curve 7 : I — C is said to be differentiable at
a point to € I if

L0 = 4(to)

t—to t—1o
exists, and in that case the above limit is called the derivative of ~y
at to, denoted by v’ (to). O

If v/(ty) exists and is nonzero, then it represents the direction of
the tangent vector to the curve at the point zg := v(to). In this case,
the direction of the curve v at tg is specified by

arg~y'(tg) or by the unit vector

Definition 2.2.9 A curve v : I — C is said to be regular at a point
to € I if ~y is differentiable at ty and v'(to) # 0.

If v : I — C is regular at ty € I, then abusing the terminology,
we may say that v is regular at zg := y(tp). ¢

Definition 2.2.10 We say that curves 7; and 2 (or their images
I'; and T'y) intersect at a point zy € C if there are points ¢, to such

that y1(t1) = 12(t2) = 2o. O
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Remark 2.2.3 (i) In the above definition the curves v; and v may
be defined on different intervals I; and Io.

(ii) As a particular case of the above definition, if we take v1 = 72,
the we can say that v is self intersecting at zj. O

Definition 2.2.11 Suppose that curves 1 and 5 intersect at a point
zg € C and regular at z5. Then the angle between ~; and 79 at zg
is defined as

O (71, 72) 1= arg 2/ (t2) — arg ' (t1),
where t1, tg are such that v1(t1) = v2(t2) = 20. O
Note that

O (71,72) = arg 2 (t2)m1' (t1).

We observe that if v : I — C is a curve with its image as ', and
if f is a continuous complex valued function on I'; then 5 : I — C
defined by

) = (feon(®), tel
is also a curve in C. Note that (Ezercise) if f is defined on an open

set containing I', v is differentiable at ty € I, and f is differentiable
at zp := y(to), then 7 is also differentiable at ty and

7' (to) = f'(20)7"(to)-
If, in addition, if 7 is regular at to and f’(zp) # 0, then we obtain
arg vy (to) = arg f'(z0) + argy'(to).

Definition 2.2.12 Let f be a continuous complex valued function
defined on an open set ) and zg € Q. Let 71 and 72 be curves
intersecting at zp and regular at zg. Then f is said to preserve
angle between v, and o at zg if 43 := f oy and A2 := f oy are
regular at Zp := f(20) and Oz, (1,72) = O, (71,72)- O

Thus we have the following theorem.
Theorem 2.2.1 Let f be defined on an open set 2 and differentiable

at a point zg € Q and f'(29) # 0. Then f preserves angle between
curves which are reqular at zy and intersecting at zg.
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In fact, with some additional conditions, we have the converse of
the above theorem as well. We shall state it without proof. For a

proof of this, see Sarason'

Theorem 2.2.2 Let f := u + v be defined on an open set  such
that u and v are differentiable at a point zg € Q. If f preserves angle
between curves which are regqular at zg and intersecting at zg, then f
is differentiable at zg and f'(z9) # 0.

Definition 2.2.13 A function f defined on an open set €2 is said to
be a conformal map at zy € € if it preserves angles between any
two curves in ) intersecting at zp and regular at 2. O

Thus, a holomorphic function is conformal at every point in its
domain of definition.

Now, let f be defined on an open set €). Let
u = Ref, v =Imf.

Considering f as a function of two real variables and assuming the
quantities involved are well-defined on €2, we can write

g—@ﬁ-i@ and g—@—i-i@
dr  Oxr Oz oy Oy Oy
Hence,
of _0f _(0u v\ (0v ou
oz oy \ox Oy or 0Oy/)’
Thus, v and v satisfy CR-equations if and only if
of  of _
% + Zaiy =0
Notation:
0 170 .0 0 170 .0
=zl ), =zl +1r7= .
0z 2 \ Oz y 0z 2 \ Oz dy
of

Thus, v and v satisfy CR-equations if and only if 0.

EZ

'D. Sarason, Notes on Complex Function Theory, Hindustan Book Agency,
New Delhi, 1994.
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The following would justify the introduction of the above nota-

tions — and —: Recall that, for z = x + iy,

0z 0z
z+z z2—2z
T YT Ty
so that
oxr 1 or 1 Oy  —i oy i
0z 2’ 0z 2’ 0z 27 0z 2

Thus,

0z  Oxdz  Oydz 2\ 0z Zay

of _0fdr ofoy 1 (0f 0f
0z 0xdz 0Oydz 2 '

of _0fdr  9foy 1 (af .8f>

%%-zay

We can also define higher partial derivatives:

o*f 0 [(of 2f 0 [(of
o () oo (a)

O*f 0 [of O*f 0 [0f
0xdy Oz <8y> ’ oydx 0Oy <8x) '
Definition 2.2.14 Let f be defined on an open set 2 C C. Then
(i) f is said to be of class C! if first partial derivatives of f exist
and are continuous.
(ii) f is said to be of class C? if second partial derivatives of f

exist and are continuous.
(iii) f is said to be harmonic if f is of class C? and

The above equation is called the Laplace equation, and the oper-
ator /\ is called the Laplacian. O
The following can be easily verified:

e f holomorphic on € and is of class of C? = f is harmonic.

e f holomorphic on 2 = w and v are harmonic, i.e.,

Au = 0= Aw.
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0% f
0z0z

vy 1 (s, o
0z0z 4 \0z2 0y? )’

e f harmonic on } <~ = 0. In fact,

Exercise 2.2.2 Prove the above three statements. <

Definition 2.2.15 Let u and v be real valued functions of class C?
defined on € (considered as a subset of R?). Then v is said to be a
harmonic conjugate of u if f := u + iv is holomorphic on Q. ¢

We observe the following:

e If 4 and v are of class C? on an open set €, then then v is a
harmonic conjugate of u if and only they and satisfy CR-equations,
and in that case both u and v are harmonic on 2.

Exercise 2.2.3 Prove that v is a harmonic conjugate of u if and
only —u is a harmonic conjugate of v. N

2.3 Fractional linear transformations
2.3.1 The map z+— 1/z

Recall that, for nonzero complex numbers a and b, the functions
zZ = az, z—z+0b

map circles onto circles and straight lines onto straight lines. Now
let us look at another simple function

1
Z— =, z # 0.
z

Let us see the images of circles and straight lines under this function:
Consider the image of the circle:

C: |z—z|=r
Since
|2 = 20" = (2= 20)(2 — 20) = |2[” — (202 + 202) + (|20]* = %),
the above equation can also be written as

|Z’2 - (502+205)+p:0, p = ’ZQ|2 — 72 (*)
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To find its image under z +— 1/z, let us write ( = 1/z. Thus, the
image is given by the equation

1 — (20¢ + 20C) + pl¢[> = 0.

Thus, if p = 0, ie., if |z0] = 7, i.e., if the circle passes through 0,
then the image is given by

1— (20¢ +2¢) =0

which is an equation of a straight line.
Now, assume that p # 0 i.e., 20| # r. Then the equation of the
image takes the form

cP - (zfﬁoc) - (s5)

p P
Note that
1_202 o 1 _z02 <r>2
polp Pl p p p)

Comparing (x*) with (x), it follows that (xx) represents a circle with
centre at Zp/p and radius r/p. Thus, under the function z — 1/z,

(i) circles passing trough 0 are mapped onto straight lines, and
(ii) circles not passing trough 0 are mapped onto circles.

Next, consider a straight line
L: az+az+~v=0.

This is mapped onto

i a(2)+a<§_>+’y—0

— al+al+A|¢?=0.

If v = 0, i.e., if the line L passes through 0, then its image also a
straight line passing through 0. If v # 0, i.e., if L does not pass
through 0, then

L: |C’2+(af+ag>_0
Y Y
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which is an equation of a circle with centre at —a/~ and radius |« /7,
which also pass through 0. Thus, under the function z + 1/z,

(i) straight lines passing through 0 are mapped onto straight lines
trough 0, and

(ii) straight lines not passing through 0 are mapped onto circles
passing through 0.

Thus, in general, under the function z +— 1/z,

e circles and straight lines are are mapped onto either circles or
straight lines.
2.3.2 Extended plane

Note that the function z +— 1/z is not defined at z = 0. However, we

know that )

lim — = oo,
|21=0 |2]
i.e., for every M > 0, there exists § > 0 such that

1
z

We shall write this fact by

In the above, the oo is just a symbol which correspond to the north
pole in steriographic projection. Let us extend the complex plane C
by incorporating oo, i.e., let us consider

C := C U {oo}.

Definition 2.3.1 The set C := C U {oo} is called the extended

complex plane. O
1

In view of the above definition, we say that liH(l) — = o0 in the
z—0 2

extended complex plane C.
Since, we have

lim — =0,
2|00 |2
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i.e., for every € > 0, there exists M > 0 such that

1
‘Z‘ > M= W < g,
z
we also write

lim — =0
Z2—00 Z

in the extended complex plane. Thus, for the functions

g(z) =2 +b  h(z) =~

z

f(z) = az,

for nonzero complex numbers a and b, we can write

Jim () =co,  Jlim g(2)= oo
ZIHEO h(z) =0, il_r}r(l) h(z) = oc.
Now, defining
f(e0) =00, g(o0) =00,  h(c0) =0,  h(0)= o0,

we can say that f, g, h are defined on the extended complex plane C.

2.3.3 Fractional linear transformations

Now, for complex numbers a, b, ¢, d, consider the function

N (Z)'_az—i-b
v PR L d
Since,
az+b a (cz+bcfa a (cz+d—[d—bc/d]
cz+d ¢\ cz+d ) ¢ cz+d '
Thus,

az+b _a (1 ad — be

cz+d ¢ c cz+d )’
Thus, the function ¢ can be thought of as compositions of the func-
tions f, g, h we can write the function. Note that if ad — bc = 0,

then ¢ is a constant function. To avoid this case, we shall assume
that ad — be # 0.
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Definition 2.3.2 For complex numbers a, b, c,d with ad — bc # 0,

the function

az+b ~
= ——— C
#(2) cz+d’ et

is called a fractional linear transformation or a linear frac-
tional transformation or a Mobius transformation. O

We observe that

a+b/z a

SO(OO) - Zli)IrOlO QD(Z) - zhﬁnolo c+ d/z T
Thus,
p(oo) =00 <= ¢=0.

Since ¢ is a composition of the functions z — az, z — z + b and
z +— 1/z, we can infer that under ¢, the family of circles and straight
lines in C are mapped onto the family of circles and straight lines.

It can be easily seen that compositions of a finite number of frac-
tional linear transformations is a fractional linear transformation.

Exercise 2.3.1 Suppose ¢ and 9 are fractional linear transforma-
tions. Prove that (1 o 2 and @3 o 1 are fractional linear transfor-
mations. 4

Exercise 2.3.2 Consider a fractional linear transformation ¢ given
by
az+b ~

QO(Z) = m, z € C.

(i) Show that ¢ is one-one and onto and its inverse is given by

—dz+ b -
@—1(2):Z7+7 z e C.
cz—a

(ii) Show that ¢ is differentiable at every z € C and its derivative
is given by
, ad — be
— aazoe C.
7 (z) (cz +d)?’ z€

<

Definition 2.3.3 A point zp € C is said to be a fixed point of a
function f: C — Cif f(z0) = #o. O
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Consider a fractional linear transformation ¢ given by

az +b ~
= — C.
ple)=—"—7  #€
We have already observed that ¢(c0) = oo if and only if ¢ = 0. Thus
o0 is a fixed point of ¢ if and only if ¢ = 0. Suppose ¢ # 0. Then we
have

p(z) =2 <= cz*+(d—a)z —b=0.

Since the above equation has either two distinct roots or one repeated
root, we can say that

Theorem 2.3.1 A fractional linear transformation which is not an
identity function has either one or two fixed points.

In particular, the identity function is the only fractional linear
transformation having more than two distinct fized points.

By the above theorem we can identity a fractional linear trans-
formation by requiring to map three distinct points z1, zo, z3 to three
distinct points w1, ws, ws, respeoctively. This is done in the following
theorem.

Theorem 2.3.2 Given distinct points 21, 22, z3 and distinct points
w1, wo, ws in the plane C, there exists a unique fractional linear trans-
formation ¢ such that ¢(z;) = w; for j € {1,2,3}.

Proof. First let us settle the uniqueness part. Suppose 1 and @9
are fractional linear transformations such that

o(zj) =w;j = p2(z;),  J€{1,2,3}

Then the fractional linear transformation v = @5 Lo o) satisfies
(z;) = wj for j € {1,2,3}. Hence, v is the identity transformation,
so that ¢ — 1 = a.

Now, the question of existence. Let ¢ and ¢s be defined by

(2 — w1) (w2 — w3)
(2 —w3)(wg —w1)

(2 — 21)(22 — 23)
(2 —23)(22 — 21)’

p1(z) = pa(z) =
If none of the points z1, 29, 23, w1, Wy, w3 is 0o, then we see that

¢1(z1) =0, ¢1(z2) = 1, ¢1(z3) = o0,

p2(w1) =0, pa(wz) =1, w2 (ws) = oo.
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Hence, the transformation ¢ := @5 Lo, satisfies the requirements. In
case one of the points z1, 29, 23 is 00, then we define ¢, as follows:

(z—()(2z2 — 23) _ -
oo (2 —z3)(22—C) z—23
)
)

(z — z1)(
(¢

(i) If 2 = oo, then ¢;(2) = 11

(—23) z-—=2
—z1) z—=z3

(ii) If 29 = oo, then ¢1(2) = Chm =
(z—21)(z2—C)  z—=
(=2 —21) 22—z

Similarly, if one of the points w1, wo, w3 is oo, then we define 9
as in the case of ¢ by replacing z; by w;. Thus, in these cases also,
the transformation ¢ := gog_lgol maps z; onto w; for j € {1,2,3}. |

(iii) If z3 = oo, then ¢1(z) := lim
{—00

In the above theorem, if we write w = ¢(z), then it can be seen
that
(w—wi)(w2 —ws) _ (2 —21)(22 — 23)
(w—w3)(wz —w1) (2 — 23)(22 — 21)

with the convention that if any of the points z1, 2o, 23, w1, we, w3 is
oo, the limit is taken for the corresponding expression.

2.3.4 Image of inverse points

Definition 2.3.4 Points p and ¢ in the extended complex plane C are
said to be inverse points with respect to a circle {z € C: |z — 29| = r}
if

2

20—p=_———
Z0—q’
and in that case we say that p is inverse to ¢ (respectively ¢ is inverse

to p). O

Thus, points p and ¢ are inverse points with respect to a circle
{z € C:|z— 2 =r}if and only if

(i) they line on a ray emanating from 0 and have same arguments,
and

(i) satisfies |20 — p| |20 — ¢| = 7? whenever p and q are different
from zp, and in case one of them is zg, then the other is co.

We are going to show that

Theorem 2.3.3 Under a bilinear transformation, inverse points are
mapped onto inverse points.
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First suppose that the bilinear transformation is linear, i..e, it is
given by
o(z) =az+b

for some nonzero a,b € C. Let p and ¢ be inverse points with respect
to acircle {z € C: |z—z9| = r}. Then, taking a« = ap+b, 8 = aq+Db,
we have p = (o — b)/a and ¢ = (8 — b)/a so that

" (a=b)/ -
pp—p=—— <— z—(a—b)/a=————.
204 Z—(B—b)/a
Thus, a and 8 are inverse points with respect to the circle with
centre at —b/a and radius r. Clearly, p = oo (resp. ¢ = o0) if and
only if @ = oo (resp. 8 = o0).

Next we consider the situation under the transformation

Suppose p is inverse to g with respect to the circle, |z — z9| = r.

Case (i): Assume first that both p and q are different from zy.
Then we have

7,2

2—p=——" <= (20-p)(2—q) =1
20 — g

= (Jz0> =) — (20p + 20q) + pg = 0.

Now, taking a = 1/p, B = 1/q and p = |2|> — 72, we have

2

r
ZO_p:%-q <~ (J20|* =) — (Zop + 20q) +pg =0
20 20 1
= p-(=4+5)+—==0
p—( 5) of
ERI
p p
where
R2 = @ _l:j.
p p P2

Thus « := 1/p is inverse to 5 := 1/q with respect to the circle,
|z — wo| = R, where wy = Zp/p and R =r/|p|.

Case (ii): Suppose p = zp so that ¢ = 0.
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Clearly, if zp = 0, then o := 1/p = oo is inverse to f:=1/¢ =0
with respect to the circle, |z — wg| = R, where wg = 0 and R =
/ol =1/r.

Next assume that zg # 0. In this case, we have to show that
a =1/z and B = 0 are inverse points. Note that

20 20 = 20 1 20 ‘Z0|2 —p 2
EAGE -G DG
p P Pz P p P

Thus, the point o = 1/zg is inverse to 5 := 0 with respect to the
circle, |z — wo| = R, where wg = Zp/p and R = r/|p|.

Case (iii): Suppose p = zp so that ¢ = oo: This case is similar to
last case.

Thus, we have proved Theorem 2.3.3.

Theorem 2.3.3 helps in finding a general bilinear transformation
that maps the open unit disc D = {z € C: |z| < 1} onto itself.

Suppose the the required transformation is given by
az+b
= —) d—0b 0.
¢(2) 1 d ad — be #

Suppose zg € D be such that ¢(zp) =0, i.e.,

azo+ b
=0.
czo+d
Hence, zp = —b/a. Also we have
a\ z+b/a ay z— 29
NCE NOE
c/ z+d/a ¢/ z+d/a
Note that z; := 1/%y = —a/b is the inverse point of zy with respect

to the circle S := {z € C: |z| = 1}. Since inverse points are mapped
onto the respective inverse points, z; must be mapped onto oo, as 0

and oo are inverse points. Thus, z; = —d/a, and hence, d/a = —Zj
so that -
() = (20) ==
14 c /) z7—1
Again, since
1—
P =1 and |;—2=1,

we have |aZyp/c| = 1. Thus, we obtain

o) =a

Z_Z°1> with Ja| =1, |z20] < 1.

2Z0 —
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2.4 Problems

1. Suppose u is a real valued function defined on an open set

Q C R2. Let (z0,90) € Q.

(i) When do you say that u has partial derivatives u, and wu,
at (0, Y0)?

(ii) When do you say that u is differentiable at (xo,yo)?

(iii) What is gradient of u at (zo,yo)?

(iv) What is the relation between gradient and derivative of u?

. Show that a function f is differentiable at zo € 0 if and only if

its real part u and imaginary part v are differentiable at (zg, yo)
and ug, Uy, vz, vy satisfy the equations

uz(20) = Uy(ZO)a uy(zo) = —vz(20),
and in that case

f'(20) = ux(20) + vz (20) = vy(20) — 1uy(20)-

. Find points at which the following functions are differentiable:

(i) f(z) =2, (i) f(z) =2=2—1y,

(iii) f(z) =12%, (iv) f(z) = 2%

. Find points at which the functions in the last problem satisfy

CR-equations.

. Prove that the CR-equations in polar coordinates are qru, =

Vg, Ug = —TVp.

. Suppose f is holomorphic on an open set 2. Prove that if f

satisfies any of the following conditions, then f is a constant
function.

(i) f'is constant on €,

(ii) f is real valued on £,
(iii) |f] is constant on €2,
(

iv) arg(f) is constant on (.
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Suppose f is holomorphic on an open set 2. Prove that the
function z — g(z) = f(2) is holomorphic in Q* :={z: z € G}.

(i) Show that the equation of a straight line is given by
az+az+v=0

for some «, 8 in C and v € C.

(ii) Show that the above line passes through 0 if and only if
v=0.

Show that the equation of a circle with centre at zy and radius

r > 0 is given by

|z\2 —(Zoz + 202) + |zo|2 —r?=0

Prove the following:

(i) For nonzero a € C, the function z — az maps a straight
line into a straight line and a circle into a circle.

(ii) For nonzero b € C, the function z — z + b maps a straight
line into a straight line and a circle into a circle.

For nonzero a,b € C, the function z — az + b maps a straight
line into a straight line and a circle into a circle - Why?

Given a curve 7 : [0,1] — C, let 7 : [a,b] — C be defined by
7(t) =(a+ (b—a)t).

IfI and T are the images of v and 7 respectively, then show
that I" and I" are homeomorphic.

Find the points at which the curve v : [0,4] — C defined in the
following are not regular. Justify your answer:

t, 0<t<l,
)14 -1i, 1<t<2,
=90 5y 2<t<3,
(4 —t)i, 3<t<d4

Let f be defined on an open set €2 and differentiable at a point
20 € Q and f'(z9) # 0. Then prove that f preserves angle
between curves which are regular at zp and intersecting at zg.
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23.

24.

25.

Analytic Functions

Define g and g—f, and show that the real and imaginary parts
£ Y
of f satisfy the CR-equations if and only if

of of
%—FZ@—O

of

Define the operators g and == and show that the real and

z z
imaginary parts of f satisfy the CR-equations if and only if

of
95 = 0.
Show that
Ff _1(f Pf
020z 4 \0x2 0Oy?)’
. 0% f
and deduce that f harmonic on  <— —— =0.
0z0z

Prove that v is a harmonic conjugate of u if and only if —u is
a harmonic conjugate of v.

Prove that v; and v9 are harmonic conjugates of « if and only
v1 — V2 1s a constant.

Prove that if u is a real valued harmonic function on an open set
), then any two harmonic conjugates of u differ by a constant.

Prove that if u is a real valued on an open set ) such that both
u and u? are harmonic on €, then u is a constant function.

Prove that if © and v are harmonic functions on an open set
such that v is a harmonic conjugate of u, then uv and u? — v?
are harmonic.

Prove that the Laplace equation Au = 0 can be written in
polar coordinates as r2uy. + ru, + ugr = 0.
Prove that if u is a real valued harmonic function on an open

0
set €0, then 8—u is holomorphic on €.
z

Suppose 1 and 9 are fractional linear transformations. Prove
that 1 o 2 and @3 o 1 are fractional linear transformations.
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Consider a fractional linear transformation ¢ given by

az+b ~
= — C.
#(2) cz+d’ z€

(i) Show that ¢ is one-one and onto and its inverse is given by

_ —dz+D ~

0 1(2) z € C.

cz—a’

(ii) Show that ¢ is differentiable at every z € C and its deriva-
tive is given by
ad — be

1) —
(P(Z)_(cz—i—d)?’ z€C.

Show that the set of all fractional linear transformations is in
one-one correspondence with the set of all 2 X 2 nonsingular
matrices with complex entries.

Let F be the set of all fractional linear transformations. Define
a binary operation on F so that F becomes a group.

Show a fractional linear transformation maps every circle and
straight line in C onto either a circle or a straight line.

Prove that the identity function is the only fractional linear
transformation having more than two distinct fixed points.

Given distinct points z1, 29,23 and distinet points wi, w2, w3
in the plane C, show that the fractional linear transformation
w = (z) defined by

(w —wi1)(w2 —w3) (2 —21)(22 — 23)

(w —w3)(w2 —wi) (2 — z3)(22 — 21)

map 21, 22, 23 onto wi, ws, w3, respectively.
Find the fractional linear transformation ¢ that maps —1, 0, ¢
onto the points 0, 1, —i, respectively.

What is the image of the circle passing through —1, 0, i7 A
circle or a straight line? Why?
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Find the fractional linear transformation ¢ that maps 0, 1, co
onto the points 1, 7, —1, respectively.

What is the image of the real axis under this transformation?
Why?

Find the fractional linear transformation ¢ that maps 1, ¢, —1
onto the points ¢, 0, —i, respectively.

What is the image of the unit circle (with centre at 0) under
this transformation? Why?

Suppose

az+b ~
= — C.
#(2) cz+d’ Z€

is the fractional linear transformation that maps the real axis
onto the unit circle (with centre 0). Show that

lal = e/ #0,  [b] = d] # 0.

If the fractional linear transformation in the last problem maps
the upper half plane onto the open unit disk, then show that

it is of the form
zZ — 20

SO(Z)ZangO

for some a, zp in C such that |a| = 1 and Im(zg) > 0.
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Elementary Functions

In this chapter we define the complex analogues of real elementary
functions, namely, the functions such as polynomials, rational func-
tions, exponential functions, and the functions obtained from these
functions by applying the operations of addition, substraction, multi-
plications, divisions and compositions. We are already familiar with
polynomials

p(z) =apz" + a1z '+ .. +an12+a,

and rational functions

a2+ a2V N4 ap_1z +an
boz™ +b1zm L+ .+ b1z + by

f(2)

Note that the above two types functions are holomorphic wherever
they are defined. Now we shall consider exponential function and
other elementary functions associated with it.

3.1 Exponential Function
Recall that the function exp(x), denoted by e* for real z is defined

by
n
x
:Jc_E:
= nl’

n=1

and we know that, it satisfies the relation

T1+T2 1,2

e =etler?, x1,r2 € R.

In view of this we may define

n

e — Z (Zy') ’ (+)
n=1

n

37
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for real y. Note that the series in (%) converge absolutely for every
y € R so that

(o) .
) (Z )2 )2n+1
eV = + )y
S,y
oo
_ ( n 2n n 2n+1
N nzo t Z 2n+1

= cosy—l—zsmy.

In view of the above we may define e® for z = x + iy with x,y € R

as
z

e” = e"(cosy + isiny).
We note that the function z — e* satisfies

z1+z2 e?l

e e*? for every 21,29 € C,

° ez+2m’

= e® for every z € C, and
e it is holomorphic on the entire complex plane.
Further, we observe that for x = Re(z) and y = Im(2),
o || =¢e” and arg(z) = y.

The last property shows that the function z +— e® maps straight
lines parallel to y-axis onto concentric circles with centre 0, and
straight lines parallel to y-axis onto rays emanating from 0. In fact,

e the strip {z € C: —7 < Im(z) < 7} is mapped onto the entire
complex plane.

Exercise 3.1.1 Given #; and 6y € [0,27) with 6; < 60, , describe
the image of the strip {z € C : 6; < Im(z) < 62} under the map
z = e~. <

Exercise 3.1.2 Given 7, RO with 0 < r < R, describe the image of
the strip {z € C: r <Re(z) < R} under the map z — e”. <

Exercise 3.1.3 For the function f(z) = e?, describe the curves

|f(2)] = constant, arg(f(z)) = constant.
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Exercise 3.1.4 If f is is holomorphic on C satisfying f'(z) = f(2),
and g is defined by g(z) = e~ ?f(z), then show that ¢'(z) = 0, so that
f(2) = ce® for some constant ¢ € C. <

Exercise 3.1.5 Find the most general form of a holomorphic f on
C satistying f'(z) = ¢f(z) for some constant ¢ € C. <

Having defined exponential function, we move on to define hy-
perbolic and trigonometric functions.

3.2 Hyperbolic and Trigonometric Functions
For z € C, we define hyperbolic and trigonometric functions.

Hyperbolic functions:

z —Z z —Zz
. e“+e e’ —e
sinhz = ———, coshz = ———
2 2
sinh z cosh z
tanh z = , cothz = — ,
cosh z sinh z
1 1
sechz = , cosechz = — .
cosh z sinh z

Trigonometric functions:

. eZZ _|_ e—ZZ e’LZ _ e—ZZ
sing = ——, cosz = ———,
2 21
sin z CcoS 2
tan z = , cotz = ——,
CcoS 2 sin z
1 1
secz = , cosecz = ——.
CoS 2 sin z

One may observe that

sinh 2

sin z = , cos z = cosh iz.

/)
Exercise 3.2.1 Derive the identities:
(i) cosh(z; + 2z2) = cosh z; cosh z3 + sinh z; sinh 2.

(ii) sinh(z1 4 z2) = sinh 21 cosh 22 + cosh z; sinh 2.
(iii) cosz = cosx coshy — isinz sinhy.
(

iv) sinz = sinx cosh y + i cos z sinh y.
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(v) |cosz? = cos® x + sinh?y.
(vi) |sinz|* = sin® 2 + sinh?y. q

Exercise 3.2.2 Show that

cos(z + 2m) = cos z, sin(z + 27) = sin(z)
for all z € C. N
Exercise 3.2.3 Find zeros of sin z and cos z. N
Exercise 3.2.4 Find all roots of the equation cosz = 1. N

3.3 Logarithms

Definition 3.3.1 Logarithm of a complex number a is a complex
number b such that e’ = a, and in that case we write b = loga. ¢

Thus,

e a complex number b is a logarithm of a complex number « if
and only if b is a zero of the function f defined by f(z) = e* — a.

Clearly,

e if b is a logarithm of a, then b + 2nmi is also a logarithm of a
for every n € Z.

Observe that if b = log a, then

la] = |eb] = e®°®)  and  arg(a) = Im(b).

Hence,
loga = In|a| +iarg(a).
The value of loga corresponding to the principal value of arga is
denoted by Log a, i.e.,
Log a = In|a| + iArg a.
Exercise 3.3.1 Show that, for n € Z,
(i) 2nmi = log 1.
(ii) (2n+ 1)mi = log(—1).
(iif) (2n+ §) mi = logi. Q
Exercise 3.3.2 Find all values of
(i) cosh(log?2),
(ii) log(logi). N
Exercise 3.3.3 Does the relation logajas = log a; + log as hold for
all nonzero ay,as in C? N
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3.4 Branches of arg(z) and log(z)

Recall that
z+ arg(z) and z— log(z)

are “multi-valued mappings”. So, by the strict definition of the term,
they are not functions. They can be considered as set-valued func-
tions, that is, arg(z) and log(z) are subsets of C containing more
than one elements rather than single numbers. Recall that

log(z) = In|z| + iarg(z). (%)
Now, the question is the following:

Given a multi-valued map f(z) on certain open set €2,
can we identify certain values of f(z) for each z € Q, say
F(z) € f(z) such that the F' : @ — C is a continuous
function?

For instance,
z +— Arg (z)

is a single valued function on C\ {0}. But, this function is not
continuous on the negative real axis:

2n=—14+1i/n— —1, 2 =—1—i/n— —1,

but,
Arg (z,) — m, Arg (2)) — —m.

However, if ) is the set obtained by deleting the whole of negative-
real axis, including 0, from the complex plane, then the function

z+— Arg (z)
is continuous on )y. Similarly,
z — Log (z)

is continuous on 2.

Definition 3.4.1 Suppose f is a multi-valued map defined on an
open connected set £ C C. Then by a branch of f we mean a
continuous function fy : 29 — C defined on an open set 2y C €2 such
that for each z € Qp, fo(2) is one of the values of f(z). O



42 Elementary Functions

Suppose f, and f; are branches of arg(z) and log(z), respectively,
on an open connected set ().
In view of (x),

fe(z) =In|z| +ifa(2)
and hence
fa(2) = Imfe(2).
It can be see that

e difference of any two branches of arg(z) is an integer multiple
of 2 and

e difference of any two branches of log(z) is an integer multiple
of 2.
By the discussion preceding the definition, it is clear that

ful2) = Arg () and  fy(z) == Log (2)
are branches of arg(z) and log(z), respectively, on the set
Qi={z=re" :r>0 -1 < <n}

Also, arg(z) and log(z) have branches on any open disc which
does not contain the point 0. If zg = rge’® is the centre of the disc,
then we can define

fa(z) = arg(z) with 6y —7/2 < arg(z) < by + 7/2.

The point 0 has special significance for the arg(z) and log(z) and
hence has a special name for it, the branch point.

Definition 3.4.2 Let f be a multi-valued map defined on an open
connected set €2 and fy be a branch of f on an open subset 2y of 2.

(i) A curve I in Q is called a branch cut for f if f has a branch
on Qp:=Q\T.

(ii) A point zy € Q is called a branch point for f if zp is the
intersection of all branches of f.
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Analyticity of branches of logarithm function

Let f,(z) be a branch of arg(z) in an open connected set Q2. We
know that 2 cannot contain 0, and f,(z) is a real valued continuous
function. Let fy(z) be the corresponding branch of log(z), i.e.,

fo(z) =In|z| +ifa(2), z€Q.

We show that f, is analytic in €.
Clearly,

1 .
fo(z) = B In(r?) + 6, z:=re? € Q.

Recall that if f := u+1iv is an analytic function on an open set, then
the CR~equations in polar coordinates is given by

U, = Vg, Uy = — Ty

In the case of f;, we have
1 2
u(r,0) = 3 In(r*), v(r,0) = 0.

Hence, we have

1
ur:;, ug =0, v,=0, v9=1.

Thus, the partial derivatives of u and v are continuous and they
satisfy CR-equations. Hence, fy is analytic in 2.
It can be also, seen that

1
fe(z) = §ln(:c2+y2)+itan_1(y/x), z=x+ 1y € .

Hence,

= ——— U,y = S 5 V, = y Vy = ———..
x2+y2’ Y $2+y2 r $2+y2 Y $2+y2

Uy

Again we see that partial derivatives of v and v are continuous and
they satisfy CR-equations. Further, we have
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Problems

. For y € R, show that the series e := 5 °° ()" converges.

n=1 n!
For y € R, €% = cosy + isiny. Why?

Show that the function z — e* is holomorphic on the entire
complex plane and satisfies the following:

(i) e 1?2 = e*e* for every z1, 29 € C,
(ii) e**?™ = ¢* for every z € C,

(iii) if x = Re(z) and y = Im(2), then |e¢*| = e” and arg(z) = v,
and

(iv) the strip {z € C: —7 < Im(z) < 7} is mapped onto the
entire complex plane.

Given 6, and 03 € [0,27) with 6; < 05, , describe the image of
the strip {z € C: 61 <Im(z) < 62} under the map z — €*.

Given r, RO with 0 < r < R, describe the image of the strip
{#z € C:r <Re(z) < R} under the map z — €*.

For the function f(z) = e?, describe the curves

|f(2)| = constant, arg(f(z)) = constant.

If f is is holomorphic on C satisfying f/'(z) = f(z), and ¢ is
defined by g(z) = e *f(z), then show that ¢'(z) = 0, so that
f(2) = ce* for some constant ¢ € C.

Find the most general form of a holomorphic f on C satisfying
f'(z) = ¢f(z) for some constant ¢ € C.

Derive the identities:

(i) cosh(z1 + 2z2) = cosh z; cosh z2 + sinh z; sinh 2.
(ii) sinh(z; + z2) = sinh z1 cosh 2z + cosh 2 sinh z5.
(iii) cosz = cosx coshy — isin z sinh y.

(iv) sinz = sinx coshy + i cos x sinh y.



10.

11.
12.

13.

14.

15.

16.

17.

Problems 45

(v) |cos z|* = cos® x + sinh?y.
(vi) |sin z|? = sin® 2 4 sinh? y.
Show that
cos(z + 2m) = cos z, sin(z 4 27) = sin(z)
for all z € C.
Find zeros of sin z and cos z.
Find all roots of the equation cosz = 1.

Show that if b is a logarithm of a, then b + 2nwi is also a
logarithm of a for every n € Z.

Show that if b = loga, loga = In|a| + i arg(a).
Show that, for n € Z,

(i) 2nmi =log1.

(ii) (2n+ 1)mi = log(—1).

(iii) (2n+ 3) wi = logi.

Find all values of

(i) cosh(log?2),

(ii) log(logi).

Does the relation log ajas = log a; 4+ log as hold for all nonzero
ai, ag in C?
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Power Series

4.1 Convergence

In this chapter we study convergence and other properties of series
of the form ag + Y74 an(z — 20)™ which we write as

Zan(z —zp)" (%)
n=0

whenever sequence (ay,) in C and zg € C are given.
Clearly, the series (x) is a special case of the series

S fal2), (+)
n=0

where (f,,) is a sequence of complex valued functions defined on some
subset Q2 C C.

Definition 4.1.1 The series in (%) is said to converge at a point
z € Q if the sequence of its partial sums converge at z, i.e., if the
sequence (gn(z)) of complex numbers, where

gn(z) = ij(z)7 z € Qv (+)
=0

converges. %

Definition 4.1.2 The series in (*%) is said to converge

(i) point-wise to a function g on Q if it converges to g(z) at every
point z € €

(i) absolutely on 2 if the series Y - |fn(2)| converges at every
point z € €);

46
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(ili) uniformly to a function g on 2 if the sequence (g,,) defined as
in (+) converge uniformly to g on Q.

O

Remark 4.1.1 It can be seen that if (xx) converges at a point z,
then
fn(2) =0 as n— oo.

This follows from the face that

|fn(2)] = |gn(2) — gn-1(2)| = 0 as n — oo.

It should be noted that a series of the form > >° | a,, where (a,)
is a sequence of complex numbers, is a particular case of (xx) with

fn(z) = ay for all z € C. 0
EXAMPLE 4.1.1 Consider the series Zf{’:o 2™ Note that

e
_ J_
gn(z)—Zz =05 z#1,
7=0
so that
1 Zn+1
1—z_gn(z)_1—z
Thus, if |z| < 1, then
(z2) = ! —
as )
gn(z 1= n — 0o

Also, for z| < 1, we have

Zn:|2’j|=1_‘z|n+1—> ! as n — oo
par I=]d 1=

Thus, the series Y7 2" converges absolutely for |z| < 1. Further,
if 0 < r < 1, then for |z| < r, we have

|Z‘n+1 T.n+1

= < .
1—2z2 " 1—r
|

llz — gn(2)

Since r™ — 0, it follows that > 2, 2" converges uniformly on the set
{zeC: |z| <r}. O
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As in the case of real valued functions of real variable, we have
the following result.

Theorem 4.1.1 (M-test) Suppose (f,) is a sequence of complex
valued functions defined on some subset Q2 C C. Suppose there exists
a sequence (M) of positive real numbers such that

(i) |fu(2)| € M, for alln € N and for all z € Q, and
(i) >°o2y My, converges.
Then the series > o | fn converges uniformly on €.

Proof. Note that for n > m,

9n(2) —gm(2) = | D [ Y 1HEIS Y My (%)

j=m+1 j=m+1 j=m+1

Now, let ¢ > 0, and let N € N, Since > >° | M,, converges, from
the above it follows from (x) that (g,(z)) is a Cauchy sequence, and
hence it converges. Let

g(z) = lim gn(2), z €.

n—o0

Again from (%),

9(2) — gm(2)| = lim |ga() —gm(z)| < 3 M.
Jj=m+1

Now, let € > 0 be given and N € N be such that >
for all m > N. Then we have

n
j:m+1Mj <e€

l9(2) —gm(2)| <e Vn>N,VzeQ.
Thus, (g,,) converges uniformly to g. 1

Now, we prove an important theorem due to Abel! in the theory
of power series.

'Niels Henrik Abel (5 August 1802 — 6 April 1829) was a noted Norwegian
mathematician who proved the impossibility of solving the quintic equation in
radicals - Curtsey Wikepedia.
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Theorem 4.1.2 Consider a power series y - an(z — 20)". If this
series converges at a point z1, then it converges at every point z such
that |z — zo| < |21 — 20|

An immediate corollary:

Corollary 4.1.3 If the power series y -, an(z — 29)" diverges at a
point za, then it diverges at every point z such that |z—zo| > |22 — 20|

Proof of Theorem 4.1.4. Suppose Y ° ;an(z — zp)™ converges at
z1. Let z be such that |z — 29| < |21 — 20|. Note that for every n € N,

2 — 2] \"
- n| _ - n 1= — ~0[ )
el = 20)"| = lan = 0" ({2220
Since |an (z1—20)"| — 0, there exists M > 0 such that |a,(z1—20)"| <
M for all n € N, and since |z — zo| < |21 — 20|, Dopy (l!:l:zzoo\‘)n
converges. Hence, by comparison test, the series > > |an(z — 20)"]
converges. |

Theorem 4.1.4 Suppose a power series y -~ an(z—2p)™ converges

for all z with |z — zg| < r for some r > 0. Then, for any p with
0 < p <, the series Y o qan(z — 20)" converges uniformly on the
set {z: |z — 20| < p}.

In particular, > 07 qan(z — z0)™ converges uniformly on every
compact subset of the disc {z : |z — zo| < r}.

n

Proof. Let p < r; < rand let z; be such that |21 — 29| = r1. Then
we have

o — n n
el = 20" = lanter = 0" (E22) < fant = (2]
1 1
Let M > 0 be such that |a,(z1 — 20)"| < M for all n € N. Thus,

lan(z — 20)"| §M<:> Vn eN.
1

Hence, by M-test, Y 2 an(z — 2p)™ converges uniformly on the set
{z:]z—20| <p}. 1

Suppose

o

R :=sup{|z — 2| : Z an(z — 2z9)" converges at z}.

n=0
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By Theorem 4.1.4 and Corollary 4.1.3, it follows that

o
Zan(z — zp)" converges for |z — zp| < R

n=0
and

o0
Z an(z — 20)" diverges for |z — 29| > R.

n=0

Definition 4.1.3 For the series > " ;an(z — z0)", the number

o
R :=sup{|z — 2| : Zan(z — zp)" converges at z}

n=0
is called the radius of convergence of the series. The disc
{z: ]z — 20| <R}

is its disc of convergence and the set

o

{zeC: Zan(z — 29)" converges at z}

n=0

is called its region of convergence.

Clearly, if ) is the region of convergence, then

{z:]z—20| <R} CQCH{z: |z — 20| < R}.

Thus, region of convergence may include some of the boundary points

of the disc of convergence. See the following examples.

o0
EXAMPLE 4.1.2 (i) Consider the series Z 2". Its radius of con-
n=0

vergence is 1. Its disc of convergence and region of convergence are

the same, the disc:
{z: |z — 20| < 1}.

> _n
z
(ii) Consider the series E —. Since |27 /n?| < 1/n? for all z
n
n=0
with |z| < 1, the series converges absolutely on

Q:={zeC:|z] <1}
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If 2 ¢ Q, then |2]"/n? 4 0 (see Exercise 4.1.1). Thus, the series does
not converge outside 2. Hence, the region of convergence is (2, and
the disc of convergence is interior of 2.

(iii) Consider the series Z . Since [z"/n| < |z|™ for all n ,

the series converges absolutely for |z| < 1. Also, the series does not
converge at z = 1. Hence, the radius of convergence is 1.
Now, let z be such that |z| =1 and z # 1. Since

n+1

LI 1—=z
‘ZZJ‘:‘ 1—=z

Now, recall (see Theorem 3.42 in Rudin?) that if (E ) aj> is bounded

and (by,) is a decreasing sequence of non-negative real numbers which
converges to 0, then > >° | anby, converges. In the present example,
we have a, = 2" with 2| =1, 2 # 1 and b, = 1/n. Thus, Y 22" /n
converge. Thus, the region of convergence of > ° ;2" /n is

{2: |z — 2ol < 1)\ {1}.

2
<
T 1—2

Vn € N.

X  _n
z
(iv) Consider the series E — . Since |2"/nl| < 1/n! for all n
n!
n=0
and for all z € C, the series converges absolutely in the entire plane.

Hence, the region of convergence is the entire C.

oo
(v) Consider the series Z nlz". Writing a,, = n!z", we have for
n=0
z#0

‘an+1’:(n+1)\z|—>oo as n — oo.

Hence, for z # 0, a, # 0 (see Exercise 4.1.1). Thus, region of
convergence of the series is the singleton set {0}. 4

2W. Rudin, Principles of Mathematical Analysis, 1976: Let A, := Z;l:l an
and M > 0 is such that |A,| < M for all n € N. For ¢ > p, we have

q—1
Z anbn = Z A - An—l)bn = Z An(bn - bn+1) + Apbp + Aqbq~
n=p n=p—1
Hence, Zanb"\ <M Z —bpy1) + Mb, + Mb, = M(b,_1 + by) — 0 as

n=p—1
qu—>00
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Exercise 4.1.1 Suppose a,, > 0 for all n € N and Intl _, . Prove
a
that "
(i) if @« > 1, then a, # 0, and
(ii) if @ > 1, then a, — oo. <

For the next theorem, we recall the following from real analysis:

Theorem 4.1.5 Let (a,,) be a sequence of positive real numbers and
b = limsup,, a,. Then the following hold:

(i) If b < ¢, then there exists k € N such that a, < ¢ for alln > k.
(ii) If b > ¢, then a, > £ for infinitely many n € N.

Proof. Let by, := sup{a; : j > n}. Then, we see that (b,) is a
decreasing sequence, and hence

b :=limsupa, := lim b,.
n n—+00

(i) Suppose b < ¢. Then there exists k € N such that by < £.
Hence, a,, < b, < £ for all n > k.

(ii) Suppose b > £. Then b, > ¢ for all n € N. Hence for each
n € N, there exists k, € N such that k, > n and a, > ‘. 1

Using the above theorem we have the following result on conver-
gence of a sequence of complex numbers.

Theorem 4.1.6 Suppose (a,) is a sequence in C, and

b := lim sup |a,|*/™.
n

Then the series Y 2 | an
(i) converges absolutely if b < 1, and
(ii) diverges if b > 1.

Proof. (i) Suppose b < 1, and let ¢ be such that b < £ < 1. Then
by Theorem 4.1.5 (i), there exists k € N such that |a,|"/" < ¢ for all
n > k. Thus,

lan| < 0" Vn > k.
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Since 0 < ¢ < 1, the series y -, £", and hence the series Y 7, |ay|
converges.

(ii) Suppose b > 1, and let ¢ be such that 1 < ¢ < b. Then
by Theorem 4.1.5 (ii), there exists a sequence (ky) in N such that
|lag, |Y/*» > ¢ for all n € N. Thus,

lag, | > F» > 1 VneN.
Hence, a,, /4 0. Consequently, the series > 7 a,, diverges. 1

Theorem 4.1.7 (Cauchy?-Hadamard? theorem) For a sequence
(an) in C, let

B := limsup |an,|*/™.
n

Then R :=1/8 is the radius of convergence of Y > an(z — 20)".
Proof. By Theorem 4.1.6, the series > 7 g an(z — 20)"
(i) converges if |z — zg| limsup,, |a,|/™ < 1, and
(ii) diverges if |z — zo|limsup,, |a, |/ > 1.

From the above, the conclusion follows. |

Using similar arguments as in the proof of Theorem 4.1.7, we
obtain the following.

Theorem 4.1.8 (Ratio test) For a sequence (a,) of nonzero com-

plex numbers, let
An+1

v := lim sup
n n

Then R := 1/~ is the radius of convergence of » > an(z — 20)".

Exercise 4.1.2 Find the radius of convergence for each of the fol-
lowing series®:

e8] e8] on o] on 00 TLS
(i) Y n®2", (i) Zmz”, (iif) Zﬁz”, (iv) ngnzn. <
n=0 n=0 n=1 n=0

3 Augustine Luis Cauchy (21 August 1789 — 23 May 1857)
*Jaques Hadamard (8 December 1865 - 17 October 1963)
SW.Rudin, Chapter 3, Exercise 9.
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Theorem 4.1.9 Suppose R > 0 be the radius of convergence of the
series Y o g an(z — 20)", and

f(z):= Zan(z —20)" for |z — 2| < R.
n=0

Then f is differentiable and the series Y .-, nan(z—20)" "1 converges
for |z| < R and

f'(z) = Znan(z - 2’0)"71 for |z — zp| < R.
n=1

1/n 1/n

Proof. Since limsup,, |na,|"/™ = limsup,, |a,|"/™ the radii of con-
vergence of > 00 an(z—20)" and Yo% na,(z—29)" ! are the same.
Thus, >0 ; nan(z — 20)" ! converges for |z — z| < R. Let

[o.¢]
g(z) = Znan(z—zo)"fl, |z — 20| < R.
n=1

For the sake simplicity of presentation, without loss of generality, we
assume that zg = 0. Thus,

f(z) = Zanz”, g(z) = Znanz”_l for |z — 29| < R.
n=0 n=1

Now, let 0 < p < R and let z # z; with |z|] < p, |z1] < p. Note that

fE) = fz) = > an(z" =2
n=0
00 n—1
= Z an(z —21) Y 2Fnh1
n=0 k=0

Hence,

f(z) = f(z1) , ian[nl kon—k—1 n—l}

AR AL
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Now,
k—1 '
S ) R I CEE VD D
j=0
so that
k—1
U = ) < e =l S T < e — sl
§=0
Thus,

~
—
0
~—
|
~~
—
I
-
N~—
<
—~
I
~
AN

[e%¢) n—1
> lanl | 3 Iz = z1lkp"2
n=2 k=0

> n(n —1)
ol X ol
n—=

IN

Since Y 27, |an|@ p" 2 converges (Why?), we have

f(z) = f(x1)

z— 21

—g(z1) as z— 2.

Thus, the proof is complete. |

By the above theorem, a power series can be differentiated term
by term within its disc of convergence. Further, if f represents a
power series on its disc of convergence, i.e.,

f(z):= Zan(z —z9)" for |z — 2| <R.
n=0

then f is infinitely times differentiable, and for any k € N,

> n! _

) (z) = E man(z —20)" % for |z—2| <R
n==k ’
Hence, we have

£ (29)

The above discussion urges us to ask the following question:

ap —
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Suppose f is holomorphic in a disc centered at zg. Then,
does f have the representation

o (),
foy =3 Ty
n=0

in that disc?

We answer this question affirmatively.

Suppose f is holomorphic in a neighborhood of zg. Let €2 be the
largest open disc centered at zy in which f is holomorphic, i.e., if

p :=sup{|z — 29| : f is holomorphic at z},

then Q@ = {z € C: |z — 29| < p}. We shall show that there exists
(ap) in C such that

fR) =) an(z—2)" VzeqQ,
n=0
and hence
> ¢(n)
f(z) = ;)JCR(!ZO)(Z —2)"  VzeQ

This is one of the biggest differences between

(i) a real valued differentiable function of a real variable on an
open set in R and

(ii) a complex valued differentiable function of a complex variable
on an open set in C.

4.2 Problems

Note: Problems from 1-3 and 9-12 are discussed in class, either by
proving them, or by way of indicating their proofs.

1. Suppose a power series » 2 an(z — 20)" converges for all z

with |z — zg| < r for some r > 0. Then, prove that for any p
with 0 < p < r, the series > > ; an(2z—20)" converges uniformly
on the set {z : |z — 20| < p}.
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. Let R be the radius of convergence of Y 7, an(z — 2p)". Prove
the following;:

(i) If the series converges at z1, then R > |21 — 2|
(ii) If the series diverges at za, then R < |29 — zo].

(iii) If Y02 lan(z — 20)™| diverges at za, then R < |23 — 2.

. If (a,) and (b,) are sequences of complex numbers such that
lan| < M]by,| for all n € N, and if R; nd Ry are the radius of
convergence of > > an(z —z9)™ and Y~ by (2 — 20)" respec-
tively, then prove that R; < Ro.

n.,n

. Using Problem 3, show that radius of convergence of 2, n~
is oo.

z

. Prove that radius of convergence of > 2, n™z" is 0.

. Find a power series in a neighborhood of zy = 1 which repre-
sents the function f(z) :=1/z.

. Find the radius of convergence for each of the following series:

) © 9n > 9n oo 3
(i) Z n22n7 (ii) Z Hzn’ (iii) Z ﬁzm (iV) Z 372’71'
n=0 n=0 n=1 n=0
0 ) | o) 0o
(n)? 4 : z" . 2 n+1l s
v) nz% (3n>!2’ " (vi) nz:l — (vii) nz%n”z" , (viii) nz:o p PO

. Give one example each of a power series which

(a) converges only on the interior of the disc of convergence,

(b) converges diverges on a proper subset of the boundary of
the disc of convergence,

(c) converges on the closure of the disc of convergence.

. Show that the series 00 ; an(z2—20)" and Y oo | na,(z—20)" !
have the same radius of convergence.

. If (a,) and (b,) are sequences of complex numbers such that
lim sup,, |b,|'/™, then show that the series S"°°  a,,(z—20)™ and
S50 nanby(z — 20)" ! have the same radius of convergence.
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11.

12.

13.

14.

Power Series

For a sequence (ay,) of nonzero complex numbers, let v :=
Then show that R := 1/~ is the radius of

convergence of Y > an(z — z9)".

An+1
an

lim sup,,

If f represents a power series >~ ;an(z — 29)" on its disc of
F* )( 0)

convergence, then ay = for every k € N. Justify.

Let f be a holomorphic function in an open set 2 such that
/= fand f(0) = 1. Then show that f(z) = e*. Deduce that,
for all z € C,

o Zn
Nz 2"
(1) € = Z n'
n=0
0 2n+1
iy n
(il) sinz = Z(—l) Gni)
n=0
> »2n
(ili) cosz = Z(—l)" ok
n=0
Prove that, for |z| < 1,
1 o
3 — —1)" 2n
R nzo< e
(ii) Log = Z —

15. Find the function represented by the series y > n?z".
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Integration

5.1 Integrals along Piecewise Smooth Curves

Recall that a curve in C is a continuous function from a closed (non-
degenerate) interval to C. Thus, a continuous function

v :la,b] - C

is a curve in C. If the range of v is contained in a set 2 C C, then
we say that 7 is a curve in Q. The point z; := v(a) is called the
initial point of v and the point zo := ~(b) is called the final point or
terminal point of ~.

Definition 5.1.1 Given a curve v : [a,b] — C, the corresponding
reversed curve 7 : [a,b] — C is defined by

J@t)=~(a+b—1), tela,b]

O

Note that, 4 has the same range as that of «, but its orientation
as t varies from a to b is reversed.

Definition 5.1.2 We shall call the range of a curve ~ : [a,b] — C
with orientation as t varies from a to b as oriented range of ~, and
denote it by I'y or, simply, I'.

If T is the oriented range of 7 : [a,b] — C, then we say that ~ is
a parametrization of I'. O

Thus, oriented range of ~ : [a,b] — C is
Iyi={~y({):a<t<b}

with orientation as t varies from a to b. B
Similarly, the oriented range of 4 will be denoted by TI'.

99
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Convention: Hereafter, if we say I' is a curve, then we mean that
I' is the oriented range of a curve v : [a,b] — C.

Definition 5.1.3 Curves 71 : a1, b1] — C and s : [ag, b2] — C are
said to be equivalent, if there exists continuous increasing bijection
¢ : [a1,b1] = [az, ba] such that 1 = 3 0 ¢, and in that case we write
Y1~ 2.

If 41 ~ =9, then for 7, is called a reparameterization of v;. ¢
Exercise 5.1.1 (i) Show that equivalence of curves defines an equiv-
alence relation.

(ii) If 41 ~ 72, then show that Iy, =T',,.

(iii) Given a curve v : [a,b] — C and a closed interval [«, 8], find
a curve 1 : [a, ] — C such vy ~ n. <

Exercise 5.1.2 Given a curve 7 : [a,b] — C, show that the curve
n: [-b,—a] — C defined by

77(75) = ’7(_75)7 —b<t< —a,

is equivalent to the reverse of 7, i.e., n ~ 7. N

Given curves v : [a,b] — C and 71 : [¢,d] — C, define ~3 :
[a,b+d —c] — C by

(1) = 7(t), a<t<b,
BTyt +e—b), b<t<b+d—-c

Then, 3 : [a,b+ d — ¢] — C is a curve such that terminal point of
~1 is the initial point of ~5. This curve 3 is called the sum of the
curves y; and go and is denoted by v + o.

In the sequel, we shall be dealing with piecewise smooth curves.

Definition 5.1.4 A curve 7 : [a,b] — C is said to be piecewise
smooth if

(i) ~ is differentiable except possibly at a finite number of points
in [a,b], and

(ii) right and left derivative of v exists at every point in [a, b]. O

Definition 5.1.5 If v : [a,b] — C is a piecewise smooth curve, then
its length is defined by

b
(r) = / (1) dt,

where I' is the oriented range of ~. O
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In order to define integrals of complex valued functions of a com-
plex variable along piecewise smooth curves, first we define integral
of complex valued functions on bounded intervals.

Suppose ¢ : [a,b] — C be a continuous function. Then the inte-

gral
b
| e

Definition 5.1.6 If ¢ = ¢ + iws, where ¢ and @2 are real and
imaginary parts of ¢, respectively, then

/abSO(t)dt = /abtm(t)dt—l—i/ab(@(t)dt

is defined in a natural way:

%
The following properties can be easily verified.
b b b
o [letyrvmae= [ evdr+ [ v
b b
o / [ap(t)] dt = a/ ©(t) dt for all « € R.
Exercise 5.1.3 Verify the above properties. N
Further, we have the following.
Proposition 5.1.1
b b
[ < [Cewlar ()

Proof. If f; @(t)dt = 0, then clearly () holds. So, assume that
b b
fab o(t) dt is nonzero and \ := ’ / o(t) dt‘/ / ©(t) dt. Then we have

(/abso(t)dt( = )\/abgo(t)dt—/ab)\(p(t)dt
= /abReSD(t)dtS/ablx\go(t)ldtz/ab\go(t)]dt

This completes the proof. |
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Exercise 5.1.4 For a > 0 and « > 0, show that
a

lim e_(a"'it)Zdt =0. <
a—r0o0 0

We have the following analogue of the fundamental theorem of
integration.

Proposition 5.1.2 If ¢ : [a,b] — C is continuously differentiable,
then

b
/ () dt = o(b) — (a). (+)

Now we define the integral for a continuous complex valued func-
tion of a complex variable along a piecewise smooth curve.

Definition 5.1.7 Let v : [a,b] — C be a piecewise smooth curve
with oriented range I' and f : I' — C be a continuous function. Then
we define

b
/F f(2)dz = / SO ) (2) dt.

We shall also denote the above integral by / f(z)d=. ¢
v

Proposition 5.1.3 The following hold.

L[ v o = [ 1) i+ [ o) az,
2. /[af(z)] dz = a/rf(z) dz for all a € C.

r
3. ~f(z)dz-—/Ff(z)dz.

r

4. f(z)dz = (z)dz+/ f(z)d=.
72

Y1+72 71

Proof. Exercise. 1

Remark 5.1.1 It is to be observe that the integral fFv f(2)dz de-
pends essentially on the way the point v(¢) moves along I as ¢ varies
on [a,b]. It can happen that two different curves v and 7 can have
same range I, but f,y f(2)dz # fn f(2)dz. For example, consider the
curves

vty =t )=t for 0<t<1.
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Clearly, the range of v and 7 coincide and it is the line segment [0, 1].
However, if we take f(z) = z, then

Lf(z)dz:/)lt2(2t)dt:;, /nf(z)dz:/olt(t)dt:;.
0

Definition 5.1.8 (i) A curve v : [a,b] — C is called a closed curve
if its initial and terminal points are the same.

(ii) A curve v : [a,b] — C is said to intersect at a point zy if
there exists distinct ¢1,t2 € [a, b] such that y(t1) = z0 = Y(t2).

(iii) A closed curve 7 : [a,b] — C is said to be a simple closed
curve if for distinct points t1,t2 in [a,b], v(t1) = 7(t2) implies

{t17t2} = {a’7 b} v
Proposition 5.1.4 ‘/f(z) dz‘ < My, where M = max,cr |f(2)].
r

Proof. By (%),

| [sa| < [ ol < .

Thus, the proof is complete. I

Proposition 5.1.5 Let f be continuously differentiable in an open
set containing a piecewise smooth curve with initial point z1 and
terminal point zo. Then

(Af@ﬁk=f&ﬁ—f@ﬁ

In particular, if T is closed, then / f(z)dz = 0.
r

Proof. By (xx), we have
b
Af@MZZ'AfWWWGMt
b
- /XfwwaMn:Uoww»—uowm>

a

= [f(z) = f(=)

The particular case follows, since in this case zo = 2z1. |
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Corollary 5.1.6 Let I' be a closed curve and f has a primitive on
an open set ) containing I, i.e., there exists a continuously differ-
entiable function g such that ¢ = f on Q. Then

/ f(z)dz =0.
r
Proof. Follows from Theorem 5.1.4. 1

Remark 5.1.2 We shall prove in the next section that if f is holo-
morphic on a simply connected domain €2, then integral of f along
every closed curve in €2 is 0. This result is known as Cauchy’s theo-
rem. O

EXAMPLE 5.1.1 Let I' be the circle with center at zy and radius
r given by '
[ = {z+7re’, 0<t <2}

Then, we can take y(t) := zg + re®, 0 < ¢t < 27 so that

27 1 b . it
/ dz ds — / ~/(t)dt _ / rie ‘dt _ omi.
rZ— 20 o 1) —2 Jo re?

Note that the value if the above integral does not depend on the
centre and the radius. O

Exercise 5.1.5 Let I',, be the cirqle with center at zy and radius r
traced n times, i.e., I', := {29 + 7€, 0 <t < 2n7}. Then, show that

d
(i) / S 2nmi, and if p(z) is a polynomial, then
Iy #7720

(ii) / n p(2)dz = 0. a

EXAMPLE 5.1.2 Let Q be the disc of convergence of a power
series > an(z — 20)" and let f(z) represent this series in . Let
9(2) = > 0o (2 — 20)" 1. Then we have ¢'(z) = f(z). Hence, if
I" is a closed piecewise smooth curve in the disc of convergence, then

/Ff(z) dz = 0.

Thus, integral of a function which represents a power series, over any
closed piecewise curve in its disc of convergence, is 0. U
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Exercise 5.1.6 For ¢ > 0 and a > 0, let I', be the line segment

joining zp = a to 21 = a + 7a. Show that lim e *dz = 0. <
a—r00 Fu

Exercise 5.1.7 Suppose f, — f uniformly on I". Then show that
/fn(z)dz%/f(z)dz. <
r r

Exercise 5.1.8 If f is continuous on {z : |z — 29| < 1} and if
(t) = 20 +ret, 0 < t < 2r} and T is the oriented range of v for

! /(z) dz = f(zp). <

0 < r <1, then show that lim —
r—0 271 r?— %0

5.2 Cauchy’s Theorem

Now, we prove one of the most important theorems in complex anal-
ysis, the so called Cauchy’s theorem. For its statement we shall use
the following definitions.

Definition 5.2.1 An open connected subset of the complex plane is
called a domain. O

It is easy to conceive the statement in the following theorem,
though its proof is much involved and beyond the scope of this course:

Theorem 5.2.1 (Riemann’s theorem) If I' is a simple closed
curve, then it is the boundary of two disjoint domains one of which
is bounded and the other is unbounded.

Definition 5.2.2 If T' is a simple closed curve, then the bounded
domain as in Definition 5.2.1 is called the domain enclosed by T

O

Definition 5.2.3 A domain ) is said to be simply connected if
for every simple closed curve I' in €2, the domain enclosed by I' is
contained in €. O

In the following, we shall call a simple closed piecewise smooth
curve as simple closed contour.

Definition 5.2.4 A simple closed contour + is said to be positively
oriented if the domain enclosed by it is on the left while traversing
along 7.

More precisely, for each t € [a, b], the normal vector v'(t)e™/? at
the point () must direct towards the domain enclosed by 7, i.e., for
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each t € [a,b], there exists ¢, > 0 such that
v(t) +ey'(t)e™? € Q, whenever 0 <e < e,
where (), is the domain enclosed by . O

Theorem 5.2.2 (Cauchy’s theorem - using Green’s theorem)
Let T' be a positively oriented simple closed contour and let ) be
the domain enclosed by I'. Let f be holomorphic and its derivative
continuous on QUIL. Then

/F F(2)dz = 0.

Proof. Let v and v be the real and imaginary parts of f. Let I’
have the parametrization v on [a, b]. Let v(t) = z(t)+iy(t), t € [a, b].
Then

b
[era = [ rawnoa
b
= / [u(2(t), y(t)) + iv(2(t), y ()] (t) + i3/ ()] dt
b b
= /[u:v’—vy']dt+z’/ [uy’ — va']dt
= /F[udz — vdy| +i/F[udy+vda:].

Now, by Green’s theorem! and using the CR-equations, we have

—0v  Ou
/F[udx—vdy] //( pe —8y> dxdy = 0,
Q
ou Ov
/F[vdx—i— udy] = // <a$ - 8y> dxdy = 0.
Q

This completes the proof. I

Exercise 5.2.1 Prove Cauchy’s theorem if I' is any piecewise closed
curve which intersects itself only at a finite number of points. N

!Green’s theorem, named after the British mathematician and physicist
George Green (14 July 1793 31 May 1841) : [ Pdz+Qdy = fnf (‘Z—g — %) dzdy.
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We shall see that the condition that the real and imaginary parts
of f have continuous partial derivatives is redundant. In fact, we
shall prove the following general version of Cauchy’s theorem.

Theorem 5.2.3 (Cauchy’s theorem) Let Q) be a simply connected
domain and f be a holomorphic function on Q). Then for every piece-
wise smooth closed curve I' in €,

/F F(2) = 0.

Our proof involves the following steps:
1. The theorem holds with v as a triangle.
2. The theorem holds if v is a rectangle.

3. Every holomorphic function on a simply connected domain has
a holomorphic primitive.

4. Use Corollary 5.1.6.

First we require the following simple property of a domain. For
simplicity of expression, we shall call a curve a rook-path? if it is
a polygonal curve consisting of line segments parallel to coordinate
axes.

Lemma 5.2.4 Any two points in an open connected set can be joined
by a rook-path.

Proof. Let € be an open connected set. If  is empty, then
the lemma holds vacuously. Hence assume that ) is nonempty and
zo € . Now, consider the set €y of all those points in €2 which can
be joined with zy by rook-paths. We have to show that ¢ = €.
Since 2 is connected and zy € €, it is enough to show that both g
and its compliment ©; := Q \ Qp are open.

Let z € €, and let » > 0 be such that B(z,7) C Q. Since
every point in B(z,r) can be joined to z by a rook-path, we have
B(z,7) C Q. Thus, Q is an open set.

2borrowed from Persian rokh, in Sanskrit rath meaning “chariot”, is a piece in
the strategy board game of chess.
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Next, let ¢ € Q1, and let p > 0 be such that B({,p) C Q. Since
every point in B((, p) can be joined to ¢ by a rook-path, and since
¢ &€ Qo, we have B((,p) C €. Thus, 4 is also an open set. This
completes the proof. I

Now, we proceed to prove (1)-(3).

Theorem 5.2.5 (Goursat’s lemma)?® Suppose T is a positively
oriented triangle and f is holomorphic on and inside I'. Then

/F f(z)dz = 0.

Proof. By joining midpoints of the sides of I' construct four pos-
itively oriented triangles, say I'g1,1'02,'0,3,1'0.4. Then we obtain

4
I:= /Ff(z)dz = JZ F(2)dz.

i—17To;

4
Since |I] < Z ‘ / f(z)dz‘, it follows that there exists jo € {1,2, 3,4}
j=1 “Toj

such that
’ - f(z)dz‘ > i‘/rf(z)dz‘

Denote this I'g j, by I';.

Now, joining midpoints of the sides of I'; construct four positively
oriented triangles, say I'1 1,11 2,1'1,3,1'1 4. Following the same argu-
ment as above with I'; in place of T, there exists j; € {1,2, 3,4} such
that ) .

’ f(z)dz’ > f‘ f(z)dz’ > 2’/f(z)dz’. (1)
T 41 Jr, 421 Jr
Denote I'1j, by I's and continue the above procedure. Then we
obtain a sequence {I',,} of positively oriented triangles such that

‘/an(z)dz‘ zjn‘/rf(z)dz‘.

3Edouard Goursat (1858-1936, a French mathematician, was the first rec-
ognized, in 1800, that continuity of the derivative is not required for proving
Cauchy’s theorem.




Cauchy’s Theorem 69

Let ©,, be the closure of the domain enclosed by I';,. Then we see
that Q, D Q41 for all n € N and

. 1
diam(§2,) < ¢(T,) = Q—né(I‘). (2)
Hence, by nested compact sets theorem in real analysis, (),—; 2y, is a

singleton set, say (o, O, = {20}
Now, let € > 0 be given. Since zg € ' U2 and f is holomorphic
at zg, there exists § > 0 such that

|f(2) — f(20) — f'(20)(z — 20)| < e&lz — 20| whenever |z — zy| <.

Let N € N be such that €,, C B(zg,0) for all n > N. Then, we have
| [ (6 = 1) - £l - ade| <@ @)

Note that, since the function z — f(z0) + f'(20)(z — 2z0) has a prim-
itive, by Corollary 5.1.6,

/ F(z0) = F'(z0)(z — 20)ldz =0 ¥neN. (4)

n

Hence, by (1)-(4),

‘/Ff(z)dz‘ < 4"

/F F(2)dz] < ca[e(r,) = (D).

This is true for every ¢ > 0. Hence, / f(z)dz=0. 1}
r

Corollary 5.2.6 Conclusion in Theorem 5.2.5 holds if the positive
oriented triangle I is replaced by a rectangle.

Theorem 5.2.7 Every holomorphic function on a simply connected
domain has a holomorphic primitive.

Proof. Let  be a simply connected domain and f be a holo-
morphic function on 2. We show that there exists a holomorphic
function g on Q such that ¢'(z) = f(z) for every z € Q.

Let zg € 2, and z be any arbitrary point in 2. By Lemma 5.2.4
there exists a rook-path I', . joining zp to z. Define

9(z) = ere

on,z
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In view of Corollary 5.2.6, the integral along any two rook-paths
joining zg to z will give the same value. Hence, g is well defined on
Q) as long as we restrict the integration along rook-paths joining zg
to z. Further, if § > 0 and if B(z,d) C Q, then for any h € C with
z+h € B(z,0), we have

g(z+h) = /F F(O)dc.

Hence, by Corollary 5.2.6, we obtain

gt gz ]
=g U0 s

Here, we also used the fact that / d¢ = h, by Proposition 5.1.5.
Fz,z+h

Also, by Theorem 5.2.5,

1
W U@ s@lac= g [ 5@ - s

where C}, is the straight line segment joining z to z + h. Hence, by
Proposition 5.1.4,

9z +h) — g(2) _ UG
)] = T a7 - G

CeCh

Now, let € > 0 be give. Since f is uniformly continuous on cl (£2), for
every € > 0, there exists 0 > 0 such that

z+heq, |h!<6:>£r€1%>:]f(§)—f(z)|<5.

Thus,

g(z+h) —g(z)
h

— f(2)| <& whenever |h| <.

Consequently, ¢ is differentiable at z and ¢'(z) = f(z). This com-
pletes the proof. 1

Proof of Theorem 5.2.3. The proof follows from Theorem 5.2.7
and Corollary 5.1.6. 1

If we observe the proof of Theorem 5.2.7, it is apparent that we
have actually proved the following.
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Theorem 5.2.8 Suppose f is a continuous function on a simply
connected domain €2 and

[ 1tz =

r

for every positively oriented triangle I' in Q2. Then f has a holomor-
phic primitive on Q.

5.3 Cauchy’s Integral Formulas

Theorem 5.3.1 (Cauchy’s integral formula) Suppose f is an-
alytic on and inside a simple closed contour I, and let Qr be the
domain enclosed by I'. Then for every z € Qr,

[

21t Jp ( — 2

f(z) =

dc.

Proof. Let z € Qr and let C := C,. be a positively oriented circle
with centre at z and radius r such that C, C Qp. Take two points
on C), and join with I' by a line segments, say L; and Lo. More
precisely, take two points z1, 20 € C, and join with (1,(o € I" such
that

‘ZI_C1| = dist (zl,F), |ZQ—<2| = dist (ZQ,F).

Cut I' into into two pieces I'1,I's at the points (1,2, and cut C
into into two pieces C1, Csy at the points z1, z5 retaining the original
orientations. Note that the function ¢ — f(()/(¢ — z) is analytic in
the region between I' and C', Hence by Cauchy’s theorem, integral of
f(€)/(¢— z) over the curves I' +L1+Ci+Lyand Ta+ Lo+ Co+ Ly
are zeros. Therefore, we have

f(©)

2m C—z _27m cC—z

dc.

Since 21 Jr <d< =1, we have

1 f(Q) fQ) - f(z)
27 CC—zC 1z 2711/ (—z dc. (*)

Since

"(2)] as ¢ — z,

'f(é)—f(Z)
(=2
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there exists 6 > 0 such that

‘f(C)—f(Z)

c "(2)]+1 whenever |¢—z| <.
—z

Now, taking r < §, we have

f(O) - f(z)
[P a <+ ajem (+%)
From (%) and (*x), we have

s ,
o [ 2L dc- 5| < 4@+ v

This is true for all r such that 0 < r < dist (z,T"). Hence,

LI g
o [ 2L dc= s,

completing the proof. I

Corollary 5.3.2 Suppose f is holomorphic on {z € C: |z—z| < r}.

Then
1 27

o f(zo + re') dt.

f(20) =

Our next attempt is to show that if f is analytic at a point zg,
then in neigbourhood of zg, f can be expressed as a power series.

Proposition 5.3.3 Let C be a circle with centre zy and Q¢ be the
domain enclosed by C. Let g be continuous on C' and let

o(z) = /C c (_O d¢, z € Qc.

Then for every z € Q¢,

N g 9(¢)
=2 onle 0" v= [ e
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Proof. Let ¢ € C and z lies inside C. Since |z — zo| < |¢ — 20|, we
have

1 1
(—z  ((—20)—(z—2)
1
(-2l - =2
B 1 =/z—2\"
B 4_2072(4_7«'0)

Since the above series converges uniformly on C, we have

90O o = e [ 00

This completes the proof. |

Theorem 5.3.4 Suppose f is analytic at a point zg. Then [ is
infinitely differentiable in a neigbourhood Dgy of zy and we have the
following.

(i) (Talor series expansion)

X f(n) (4
f(2) :z:fn(!o)(z:—zo)”7 z € Dy (%)
n=0

in that neigbourhood.
(ii) (Cauchy’s integral formula of higher orders)

n! f(Q)

F (z0) = —dC,

2w Jr (¢ —20)
where I' is a simple closed curve enclosing zg such that f is analytic
on and inside T'.

Proof. Using Proposition 5.3.3 taking ¢ = f and applying Cauchy’s
integral formula (Theorem 5.3.1), we have

1 f(©)

f(z) = Zan(z—zo)", Q= 7 dCs
n=0

" 2mi Jo (¢ - 20)

for z in a neigbourhood of zy, where C' is a circle with centre at zg
lying inside that neigbourhood. Since the function

f(Q)

¢ Ty
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is analytic on Qp N Q%, by Cauchy’s theorem (Theorem 5.2.3), we
obtain (How?)

1 Q) 4o L Q-
27 Jo (¢ — )"t 27 Jp (¢ — zo)7 Ll
Now, from the discussion at the end of Chapter 4, we know that

f(n) (20) |

Ap = ]
n:

This completes the proof. |

Definition 5.3.1 The series expansion (x) of f is called the Taylor
series expansion of f around zg. O

By the above theorem derivative of a holomorphic function is
holomorphic. Hence, in view of Theorem 5.2.8, we have a converse
to the Cauchy’s theorem.

Theorem 5.3.5 (Morera’s theorem) Suppose f is a continuous
function on a simply connected domain 2 and

/Ff(z)dz =0

for every positively oriented triangle I' in Q). Then f is holomorphic
on (.

Remark 5.3.1 In fact, the conventional Morera’s theorem is slightly
weaker form of the above theorem, namely, if f is a continuous func-
tion on a simply connected domain 0 and fF f(2)dz = 0 for every
closed contour ' in Q, then f is holomorphic on €. O

Exercise 5.3.1 Suppose f is an entire function, M > 0, R > 0 and
n € N such that

1f(2)] < M|2"| Vz with |z| > R.
Show that f is a polynomial of degree atmost n. N
Exercise 5.3.2 Suppose f is holomorphic for |z| < 1 and
Iz| < 1= |f(2)] < 1.

Show that
1f'(2)] <

1—lz|
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Theorem 5.3.6 (Liouville’ therem) Suppose f is an entire func-
tion, i.e., f is holomorphic on the entire C. If f is bounded, then f
is a constant function.

Proof. Let z € C. Then, by Theorem 5.3.4,
1
£ =5 | e
I'r

27 Jr, (C—2)
where I'g is the circle with centre zy and radius R. Hence, we have
M¢Tgr) M
! — —

Now, letting R — oo, we have f’(z) = 0. This is true for all z € C.
Hence, f is a constant function. |

Theorem 5.3.7 (Fundamental theorem of algebra) Suppose
p(2) is a nonconstant polynomial with complex coefficients. Then
there exists zo € C such that p(zp) = 0.

Proof. For ag # 0, let p(2) = agz"™ + a1z ' + ... + apn_12 + ay.
Suppose p(z) # 0 for all z € C. Then, for z # 0,

aj Ap—1 Gn
= 14— +... .
p(z) = apz ( + P + ...+ e + aoz”)

Hence,

|p(2)|>\aoz"\<1 ] +|n1\+\n\>'

_\aoz] T Japz™ ] |agz”

Let R > 0 be such that

s R 1l ana] a1

lagz] T Jagz 1 Jagz™| T 2
Then, for |z| > R, we have

1 2 2
< < :
Ip(2)| ~ laoz"| ~ |ao|R"

Since 1/p(z) is bounded for |z| < R, it then follows that 1/p(z) is a
bounded entire function. Hence, by Liouville’s theorem, 1/p(z) is a
constant function, so that p(z) is a constant polynomial, which is a
contradiction to our assumption on p(z). |1
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5.3.1 Appendix

We state again the Cauchy’s integral formula for the derivatives of
analytic functions, and give another proof for the same.

Theorem 5.3.8 Suppose f is analytic on an inside a positively ori-
ented simple closed curve I' and z lies inside I'. Then, for every
n e NU{0}, f™(2) exists and

n!
1) = o [

Proof. We know that the above result is true for n = 0. Assume
it for n — 1. We shall prove it for n. Let p > 0 be such that the circle
with centre z and radius p lies inside I". Then for h € C with |h| < p,

F V(= +h) - f(z) _n!/ f(©)
h 2mi Jp (¢ — z)ntl

dg

takes the form

Y L [ —z—h(><n<_<z—_z;T_(<—Z>n+1]dg'

Now, writing a = — z and b= ( — z — h), we have

(—2"=(—2z—h)" n _oar =" n
h¢(—z—h¢—2)"  (C—2)m1 — hatbr  antl
a(a™ —b") — nhb"
ha™*1pn

Since a(a™ —b") = a(a—1b) >71- L, an! JIﬂ—th Oa" Ib7, we have

n—1
a(a —b") —nhb" = Y hy"I (@t - v
j=0

n—1
= > R I b+ abd T+ ]
j=0
Since |a| = p and p—|h| < |b| < p+|h|, taking o = p+|h| we obtain,

n—1
la(a™ — b™) — nhb"| < |h|? Z I 4 a4 pad T 4 o).
=0
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Thus, absolute value of

fE) [=2)"=(=2z=h)" n

ho | C=z=h)"((=2)" (C—2)

is less than or equal to

_ M|h| Z}:ol Q"I pl i e+ 4 pad T+ o]

IS

Pt (o — |h)"
Hence,
fO D+ h) = fM()  nl )
| h 3 | <

Since g, — 0 as |h| — 0, it follows that f(»~1 is differentiable at z
and

r

k|0 h 2w Jp (¢ — 2l

dc.
This completes the proof. |

5.4 Zeros of analytic functions

Suppose f is analytic in a domain ) and zg is a zero of f, i.e.,
f(20) = 0. Then, using the Taylor series expansion of f around zo,
it follows that

f(z) = (2 = 20)9(2)

in a neighourhood of zy, where g is analytic in a neigbourhood of zj.
In fact,

©  rn)(,
o) = o) + 3 L0 e
n=2

n

in a neighbourhood of zy. Note that, if f/(z9) = 0, then we can write

f(2) = (2= 20)°q1(2),

where

() 2 (s
o) = T2 S TG e
n=3 '

2 n

in a neigbourhood of z.
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Definition 5.4.1 (i) A point zp € € is said to be a zero of f of
order m if f#)(z)) = 0fork =0,1,...,m—1and f(™ () # 0.

(ii) A point zg € Q is said to be a zero of f of finite order if it
is a zero of f of order m for some m € N.

(iii) A zero of f which is not of finite order is called a zero of f of
infinite order.

O

Definition 5.4.2 A zero zy € 2 of an analytic function f is said to
be an isolated zero if there exists a r > 0 such that B(z,r) C
and f(z) # 0 for every z € B(zo,7) \ {20} O

Remark 5.4.1 We observe the following:

(a) If zp € Q is a zero of f of order m, then

f(z) = (2 = 20)"9(2)

in a neighourhood of zy, where g is analytic in a neigbourhood
of zp and g(z9) # 0.

(b) If zp € Qis a zero of f of infinite order, then f*)(z) = 0 for
all k& € N; consequently, f = 0 in a neigbourhood of zj.

O
Exercise 5.4.1 Prove the statements in the above remark. <

Theorem 5.4.1 Every zero of finite order of an analytic function is
1solated.

Proof. Follows from Remark 5.4.1(a). |1

Theorem 5.4.2 Suppose f is analytic in an open connected set €.
If Q) contains a zero of f of infinite order, then f =0 on Q.

Proof. Follows from Remark 5.4.1(b) using the fact that € is open
and connected. 1
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5.4.1 Identity theorem

Theorem 5.4.3 (Identity theorem-I) Suppose f is analytic in an
open connected set Q. If Q) contains a point which is the limit point
of a set of zeros of f, then f =0 on .

Proof. Follows from Theorem 5.4.2. 1

Theorem 5.4.4 (Identity theorem-II) Suppose f and g are an-
alytic in an open connected set Q. If f = g on a set having a limit
point in ), then f =g on .

Proof. Follows from Theorem 5.4.3. 1

EXAMPLE 5.4.1 Let f be analytic in {z € C: |z| < 1} and

1 1
= VneN
(G + )=s 1o e
and 1
= N.
g(n + 1) 0 vn e
Then, by Theorem 5.4.4, f(z) = z and g(z) = 0 for all z. O

EXAMPLE 5.4.2 We show that there is no analytic function f on
2 :={z € C:|z] <1} satisfying

f(l)::(*lyl VneN.

n n?

Suppose there is an analytic function f satisfying the above require-
ments. Then we have

f(l): L Vn €N,

on)  (2n)2
1 1
f(2n— 1) = “@no12 nEN
Then, by Theorem 5.4.4, we have f(z) = 2% and f(z) = —22 for all
z € ), which is not possible. O

EXAMPLE 5.4.3 Suppose (2 is a connected (nonempty) open set
which is symmetric with respect to the real axis, i.e., z € Q <=

z € €. Suppose f is holomorphic on €2 such that it is real on Q NR.
We show that f(z) = f(2).
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It can be shown that g defined by g(z) := f(Z) is analytic on
(verify). For z € QNR, we have g(z) = f(z). Sine f is real on QNR,
we have g(z) = f(z) for all z € Q@ NR. Hence, by Theorem 5.4.4,
f =g on Qsothat f(z) = f(z) on . O

5.4.2 Maximum modulus principle

Theorem 5.4.5 (Maximum modulus principle) Suppose f is
holomorphic in a connected open set Q. If f is not a constant func-
tion, then |f| cannot attain mazimum at a point in €.

In other words, if there exists zg € Q such that |f(2)| < |f(20)]
for all z € Q, then f is a constant function.

Proof. Suppose there exists zp € 2 such that |f(2)| < |f(z0)| for
all z € Q. Let r > 0 such that {z € C: |z — 29| <7} C Q. Recall

that
2T

f(z0) = % ; f(zo + retdt.

If f(20) = 0, then we have f(z) = 0 for all z € Q. Hence, assume
that f(z9) # 0, and let A := |f(20)|/f(20). Then we have

1 27 ) 1 2 )
|f(z0)] = Af(20) = / M (zo+ret)dt = — Re[)\f(zo+re’t)]dt.
271' 0 27T 0
Hence,
1 2T

o= [ [f(z0)[ = Re(Af(z0 + re))]dt = 0.
™ Jo

Since [Re(Af(z0 + re)| < |f(20)], we have
1£(20)] = Re(\f (20 + re)) vVt e [0,2n],
ie.,
[f(20)| = Re[Af(2)]  VzeCri={C:]C—2]=r}
Again, since |Af(2)| < |f(2)| for all z € C,, we have
o)l = M) ¥ze

Hence,
f(z) = f(z0) VzeC,.
By, identity theorem, f(z) = f(2q) for all z € Q. 1
Exercise 5.4.2 Suppose f is holomorphic in a connected open set

Q. If f is not a constant function and | f| attains minimum at zg € €2,
then f(z9) = 0. q
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5.4.3 Schwarz’s lemma
Theorem 5.4.6 (Schwarz’s lemma) Suppose f is holomorphic in
the open unit disc D := {z € C: |z| < 1} such that

f(0)=0 and f(z)eD VzeD.

Then |f(z)| < |z| for all z € D. Strict inequality follows unless f is
of the form f(z) = Az for some A € C.

Proof. By the assumptions on f, we have

f(z) =z9(2), z€D,

where g is holomorphic on D and ¢(0) = f’(0). Since f(z)| < 1, we
have

1 1
l9(2)] < T = whenever |z| =7 < 1.

By maximum modulus principle,

1
r

lg(2)| < whenever |z| <r < 1.

Now, let z € D, and 0 < r < 1 such that |z| < r. By the above

arguments,

Letting » — 1, we obtain |g(z)| <
zeD. 1

Thus, [f(2)] < |z| for all

5.4.4 On harmonic functions

Theorem 5.4.7 Suppose w is real harmonic in a simply connected
domain ). Then u has a harmonic conjugate which is unique up to
addition of an imaginary constant.

Theorem 5.4.8 Suppose u is real harmonic in a simply connected
domain Q. Then u € C*(2).

Theorem 5.4.9 Suppose u is real harmonic in an open set . Then,
for zg € Q,

27
u(zo) = W/O u(zo + re)dt, 0 < r < dist (z9,C\ Q).
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Theorem 5.4.10 Suppose u is real harmonic in a connected open set
Q. If u is not a constant function, then |u| cannot attain mazimum
at a point in €.

In other words, if there exists zg € Q such that |u(z)| < |u(zo)]
for all z € Q, then u is a constant function.

Theorem 5.4.11 Suppose u is real harmonic in an open connected
set Q. If f =0 on an open set Qy C Q, then f =0 on €.

5.5 Problems

1. A curve i : [a, 5] — C is called a reparameterization of the
curve 7 : [a,b] — C if there exists continuous increasing bijec-
tion ¢ : [a, B] — [a,b] such that 7 = v o ¢, and in that case we
may say that 7 is equivalent to v and we write n ~ ~.

(a) Given a curve 7v : [a,b] — C and a closed interval [a, ],
find a curve 1 : [, B] = C such v ~ 7.

(b) If 4 is the reverse of v : [a,b] — C and 7 : [-b, —a] — C is
defined by n(t) = vy(—t) for —b <t < —a, then show that
ne~ .

(c) If v and n are piecewise smooth curves such that n ~ =,
then show that ¢(I",) = ¢(T,).

2. Given a piecewise smooth curve 7 : [a,b] — C and a parti-
tion II,, := a = tp,< t1 < ... < t,, = b of [a,b], let S,
Z? 1 ”y( ) ’y(tj 1)| If maxj<;j<n |tj — tj,1| — 0, then show

that S, —>f |v/(t)|dt.

3. If n is a differentiable reparamterization of a piecewise smooth
curve v, and if f is continuous on I, then show that f7 f(z)dz =

[, f(z)dz

4. Prove: /+ f(z)dz:/ f(z)dz+/ f(z)dz.
M+72 m 72

5. Given a piecewise smooth curve « : [a,b] — C, a partition
I, =a=t),<t1 < ... < t, = b of [a,b], and a continuous
function £ on T, let S,(f) = S0, F(v(t) 7 (t5) —A(tj-1)]. IF
maxi<j<n |tj — tj—1| = 0, then show that S,(f) — [; f(2)dz.
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If ¢ : [a,b] — C is continuously differentiable, then show that

Let I' be a closed curve and f has a primitive on an open set
Q) containing I', i.e., there exists a continuously differentiable

function g such that ¢’ = f on Q. Then / f(2)dz = 0. Justify.
r

Let T',, be the circle with center at zo and radius r traced n
times, i.e., T, := {20 +7e", 0 < t < 2nn}. Then, show that

dz .
= 2nmi,.
I, # %0

If p(z) is a polynomial, then prove that / p(z)dz = 0.

n

If T is the circle with centre zy and radius 7, then show that

dz
——— =0foreveryn € Z\{-1}.
/F(z_zo)n ynez\ {-1}

Given distinct points « and S in C, evaluate the integrals
,f[% g 2"dz and f[a’ g 2"dz, where [, B] denotes the line segment
joining « to S.

If f is a real valued function defined on the interval [a,b] and

if v(t) =t, a <t <b, then show that f[a b f(z)dz = f; f(t)dt.

Let I" be a closed piecewise smooth curve in the disc of conver-
gence of a power series > 2 g an(z—20)™ and let f(z) represent

this series in that disc. Then / f(2)dz = 0. Justify.
r

Evaluate the integrals fv f(2)dz in following, where

(a) ~ is the curve joining z; = —1 — i to 22 = 1 + i consisting
of the line segment from —1 —¢ to 0 and the portion of the
curve y = 22 from 0 to 144 and f(z) = { ‘11;/, ‘Z i 8’

Answer: —% + gz

(b) ~ is the curve consisting of the line segments joining the
points 0 to 1 and 1 to 14 2i and f(z) = 32% — y + ia®.

Answer: 2+ 3i
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15.

16.

17.

18.

19.

Integration

(¢) f(z) = z and ~ is the curve joining 1 to 1 + ¢ along the
parabola y = 22. Answer: 1+ %z

(d) ~ is the positive oriented circle z — 1| = 4 traced once and

flz) =25+ ﬁ Answer: —67i
Show that ’f 2Jrlalz’ < %, where 7 be the line segment joining
2to2+1.
For piecewise smooth curve v :: [a,b] — C and continuous
function f : T' — C, deﬁne/ 2)|dz| == / f(g (t)|dt.
Show that

| [ 1G] < [ 1 1aal.
gl 2l

If T, is the circle y(t) = zo + re, 0 < t < 27 and if f is

continuous on and inside I',., then prove that

f(z)

lim — dz = f(zg).
r—02mi Jp, 2 — 20 f(z0)
For every closed piecewise smooth curve T, / e Fdz = 0.
r
Why?
For positive real numbers, let I, Io, I3, I4 be the integrals of

—22

e over the line segments

[—a,a], [a,a+1b], [a+ib,—a+1ib], [—a+ib,—a],
respectively. Prove that
() I = /a e da,
(i) |[Io| < be@*+0°,
(ifi) I3 = —e” / "t cos(2bt)dt,

—a

(iv) |Iy] < be@"+°.

(v) 6b2/ et cos(2bt)dt:/ e da.

—00 —00
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Suppose f, — f uniformly on I". Then show that

/F Ful2)dz — /F £(2) de.

o0
1
Prove that / e costdt = 1\/7? 1+ /2, by integrating
0

e~ over the positive oriented triangle with vertices at 0, R, Re

for R > 0 and letting R — oc.

o oo
Evaluate the integrals / cos t2dt, / cos t2dt by integrat-
0 0

ing e=** over the positive oriented triangle with vertices at

0, R, Re'™/* for R > 0 and letting R — oo.

Let (£2,) be a sequence of nonempty compact sets in C such
that Q, 2 Q41 for all n € N and diam(£2,,) — 0 as n — oc.
Let zp € No2,Q,. If f is a continuous function defined on €y,
show that

ilég};\f(z)—f(zo)\%O as m — 00.

Suppose €2 be a simply connected domain and f be holomorphic
on ). Suppose integral of f over every positively oriented trian-
gle is zero. Prove that if I'; and I's are two polygonal lines join-
ing any two points zg and (g in €2, then fF1 f(z)dz = fF2 f(2)dz.

Let f be continuous in a neighbourhood of zyp and I, := {z €
C: |z — 29| = r}. Show that

1
— (2) dz — f(z0) as r—0.
27t Jr, 2 — 20

do
1—2rcosf + r?

2
Evaluate the integral / (using complex in-
0

tegrals).

Let f be an entire function such that for some n € Nand R > 0,
‘M
ZTL

is bounded for |z| > R. Prove tht f is a polynomial of

degree atmost n.

iw/8
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28.

29.

30.

31.

Integration

Let f be holomorphic and map Q := {z € C : |z| < 1} into
itself. Prove that |f'z)| < 1/(1 —|z]|) for all z € Q.

Prove that there is no analytic function f on Q := {z € C :
|z| < 1} such that

(i) f(1/n) = (1/2" for n € N\ {1}.
(i) f(1/n) = (=1)"/n? for n € N\ {1}.
Let f be a nonconstant holomorphic function in a connected

opens set . If zp € Qissuch that |f(z0)] < |f(2)] for all z € €,
then prove that f(zp) = 0.

Let u be a (real valued) harmonic function in a connected opens
set ). Let g := u; — iuy on Q. Justify the following:
(i) g is holomorphic on .

(ii) There exists a holomorphic function f on € such that
Ref = u.

(iii) w is infinitely differentiable.
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Laurent Series and Isolated
Singularities

6.1 Laurent Series

In this chapter we consider series expansions of functions which are
analytic in an annulus. Such series are known as Laurent series.

We know that
1 x
. n
=)
n=0

whenever |z| < 1. We also have

o)

1 -1

= = (-1 1/2"
whenever |z| > 1. Note also that
1 11
(z-1D(z-2)  z—-1 2z-2
D (5D
- Z n + n IZ
n=1 “ n=0 2m

whenever 1 < |z] < 2.

In view of the above examples, for a function f which is analytic
in an annulus {D := {z € C: Ry < |z — 20| < Ra}, we may look for
an expansion of f of the form

o0

Z an(z — 2zp)".

n=—oo

87
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Definition 6.1.1 A series of the form ) > an(z—20)" for a given
2o € C and sequences (ay,) and a_,) in C is said to converge at a point
z # zp if both the series > 07 a—n(z — 20) ™" and > 7 | an(z — 20)"
converge at z. If the series > ~2 _an(z — 29)" converges for all z in

a subset 2 of C, then we say that it converges in (2. O

Note that

o
e the series Z a—n(z — 29)" " converge for all z such that

n=1

|z — 20| > Ry :=limsup|a_,|"/"
neN
and

[e.e]
e the series Z an(z — 2zp)" converge for all z such that

n=1

1

lim sup,, ey |an |/

’Z—Zo’ < Ry :=

[e.@]
Here, Ry can be 0 and Ry can be co. Thus, the series Z an(z—20)"

n=-—00
converges in the annulus z such that Ry < |z — 29| < Rs.

Questions: Consider an annulus

D:={z€C: Ry <|z— 2| < Ra}.

e Suppose a series » o7 an(z — z0)™ converges in D. Then, is

the function represented by this series is holomorphic in D7 In
such case, are the coefficients uniquely determined?

e If f is holomorphic in D, does it have a series expansion of the
form Y07 an(z — 2)" in D?

We answer both the above questions affirmatively.

Theorem 6.1.1 Suppose Y 2 an(z—2z)" converges in an annu-

lus D:={z¢€ C: Ry <|z— 2] <Rz} and let

o)

f(z) = Z an(z — 20)", z € D.

n=—oo
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Then f is holomorphic in D and

1
an = f(CnH d¢ Vn€Z,

27 Jr (¢ — 20)
where I' is any simple closed contour in D enclosing zg.

Proof. Let T'y := {2z : |z — 20| = r}, R1 < r < Ry. Since f is
uniformly continuous on I,

1 1 .
f(z)dz = nz_:oo ny . (z — z0)"dz.

Hence,

1
= — dz.
-t zm'/rrf(z) :
Also, for k € N, we have

7f(z)k+1 = i an(z — z9)" K7L, z € D.
z— 2p) S
Hence,
1 f(2) - 1 —k—1
— [ LE g — — z)" kg
oi /F 2 — )1 nzzooa”m L F =) :

so that (sincen —k—1=—-1 <= n=k)

1 f(z)
S (R SO
= ori /FT z — zg)ktl i

By Cauchy’s theorem, I', can be replaced by any cure I' as in the
theorem. |

By the above theorem the coefficients of the convergent series
Yoo o an(z — 20)™ is uniquely determined by the function which it
represents. In view of this fact, we have the following definition.

Definition 6.1.2 Suppose the series > > an(z — 29)" converges
in an annulus D := {z € C: Ry < |z — 29| < Rz} and let f be the
function represented by the series in D. Then the series is said to be

the Laurent series of f in D. %
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Proposition 6.1.2 Suppose ¢ is continuous on piecewise smooth
curve I' and

b(2) ::/Fé"(_i ¢ Vz¢gT.

Then 1) is holomorphic in C\ T and 1) has the series expansions

(e e]

Zan(z —20)"  whenever |z — z| < énlﬁ |¢ — 2o,
€

n=0

o
Z bn(z —20)"" whenever |z — zg| > sup|( — 20|,
n=1 Cer

where

f(¢
an:A@(WdC VnGZ,

— ZO)

with a_, = b, forn € N.

Proof. We note that for ¢ # z,

1 1 B -1

(—=z (C—20)—(z—20) (22— 20) — (¢ — 20)
-1

(zfzo)[lfg:—iﬂ'

Hence, for |z — 29| > maxcer [ — 20,

1 . -1 & ¢— 2o n_oo (C—Zo o
(—z_z—20;<z—zo) _Tg(_l) (z — zo)™

Thus,
p(2) (¢ —z)" "
N e ek
so that
¢(2) - n
/F c zd( = ;bn(z — 20)
where
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Also, for ¢ # z,
1 1 1

N N e A =]

Hence, for |z — 29| < infeer |¢ — 20],

1 1 =yz—20\"_ 1 & (z—2)"
C—Z_C—Zonzzg)(C—Zo) _C—ZOTLZ:;)(C—ZO)”H'

Thus,

d¢ = an(z — 20)"
[ =y
where

an:AR<¢@;HdQ n € Ng := NU {0}.

_ZO

This completes the proof. I

Theorem 6.1.3 Suppose f is holomorphic annulus D := {z € C :
Ry < |z — z0| < Ra}. Then f has a series expansion

o0

Z an(z —20)" on D,

n=—oo

where
1 f(¢)

"7 2w Jr (C— zo)n T

Proof. Let Ry <17 < R < Ry and let C :={( : |( — 29| = r} and
I':=={(:|¢ — 20| = R}. Then it can be seen that (verify!) for every
z with r < |z — 29| < R,

1) =5 [ L0 o [ K00 5oy e

2mi Jr(— 2

By Proposition 6.1.2, we have

O gy o
)= 5 | =Dl

¢ VYnel.

and

2mi Jo C— =

fl) = 5 [ Lac= Y ante -z,
n=1
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where,
b= [ S -2, meN,
r
_ 1 f(©)
ap = 277” /F W, n € Np.
Thus,
Z an(z —2p)" on D,
where
1 f(©)

n=— [ —2>22 __{ 7.
a o7 Jr (€= 29T ¢ Vn e

This completes the proof. I

6.2 Isolated Singularities

Definition 6.2.1 Let f be analytic in an open set 2. A point zg & 2
is said to be a singularity of f if 2z is a limit point of Q and f cannot
be extended to an open set €2 which contains €2 and zy. O

e 2z is a singularity of an analytic function f : Q — C if and only
if zg is a limit point of 2 and for every r > 0, f cannot be extended
analytically to Q U B(zp,7), i.e., there is not analytic function ¢ :
QU B(zp,7)7C such that g(z) = f(z) for all z € Q.

Definition 6.2.2 Let €2 be an open set in which a holomorphic
function f is defined and zy € C\Q. Then z is said to be an isolated
singularity of f if a deleted neigbourhood of zy is contained in €.

Let 2y be an isolated singularity of a holomorphic function f, and
let

[e.e]

Z an(z — 20)"

n=-—o0o
be its Laurent series expansion in a deleted neigbourhood Dy of f.
Then zg is said to be

e a removable singularity of f if a_, =0 for all n € N;
e a pole order m of f if a_,, # 0 and a,, = 0 for all n < —m;

e an essential singularity of f if a_, # 0 for infinitely many
n € N.
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If 2y is a pole of order 1, then zg is called a simple pole. O

EXAMPLE 6.2.1 (i) For the function f(z) := 1/23, 20 = 0 is a
pole of order 3.

(ii) For the function f(z) :=sinz/z, zp = 0 is a removable sin-
gularity.

(iii) For the function f(z) := el/# 2y = 0 is an essential singu-
larity. O

Theorem 6.2.1 Let zy be an isolated singularity of a holomorphic
function f. Then the following are equivalent.

(i) zo is a removable singularity of f.
(ii) f can be extended holomorphically to a neigbourhood of zy.

(iii) f is bounded in a deleted neigbourhood of zy.

(iv) lim,—., (2 — 20) f(2) = 0.

Proof. Let Y. an(z — z)™ be the Laurent series expansion f
in a deleted neigbourhood Dy of z.

(i) <= (ii): Suppose zp is a removable singularity of f. Defining
= f(z), z# 20,
f(ZO) - { a0(7 ) z ZZ 20,
of f to a neigbourhood of z.

Conversely, suppose f is a holomorphic extension of f to neig-
bourhood D of zp. Let > »° jan(z — 20)" be the Taylor series ex-
pansion of f in D. Then, Y.°° an(z — 20)" is the Laurent series
expansion of f in the deleted neigbourhood D \ {0}.

, we see that f is a holomorphic extension

(i) <= (iil): Suppose z¢ is a removable singularity of f. Since
lim,_,,, f(2) = ap, there exists § > 0 such that

0<|z—2]<d=|f(2) —ao| <1

Hence,
0<|z—20 <d=|f(2)| <lao| + 1.

Conversely, suppose that f is bounded in a deleted neigbourhood
Dy of zy, say |f(z)] < M for all z € Dy. Let r > 0 be such that
I':={2z€C:|z— 2| =r} C Dy. Then, for each n € N,

1
la_n| = ’/ (z — Zo)n_lf(z)dz < Mr".
211 T

T
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Letting » — 0, we obtain a_,, = 0.

(i) <= (iv): Suppose zp is a removable singularity of f. Since
lim,_,,, f(2) = ap, we have lim,_,,,(z — 20) f(z) = 0.

Conversely, suppose lim,_,,,(z — z0) f(z) = 0. Let € > 0 and let
d > 0 be such that

0<|z—20] <d=|(z—20)f(2)| <e.

Let 0 < 7 < min{d, 1}. Then, for each n € N,

aal = |5 / (= 20" (2)d

= ‘21“Ar(z—zo)”_Q(z—zo)f(z)dz‘

< le<e.

Hence, a_, = 0 for all n € N, and hence zj is a removable singularity

of f. 1

Theorem 6.2.2 Let zy be an isolated singularity of a holomorphic
function f. Then the following are equivalent.

(i) zo is a pole of f.

(ii) There exists m € N and a holomorphic function ¢ in a neig-
bourhood D of zy such that f(z) = (z — z0) ™¢@(z) for all
z € D\ {0} with ¢(29) # 0.

(iii) |f(2)| = o0 as z — zp.

(iv) There exists m € N such that zy is a removable singularity of
©(z) == (2 — 20)" f(2) with lim,_,,, ¢(z) # 0.

(v) The function 1/f defined in a deleted neighourhood of zy can
be extended holomorphically to a neigbourhood of zy and zg is
a zero of order m of the extended function.

Proof. Let Y >° an(z — z0)™ be the Laurent series expansion f
in a deleted neigbourhood Dy of z.

(i) <= (ii): This is obvious from the definition of the pole.
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(i) <= (iii): Suppose 2z is a pole of order m of f. By (ii), There
exists m € N and a holomorphic function ¢ in a neigbourhood D of
zo such that

f(z) =(z2—=20)""p(2) Vze€ Dy:= D\ {0}
with ¢(z0) # 0. Since ¢(z) = ¢(20) # 0, we obtain
If(2)] = |(z=20) ™p(2)] > 0 as z— 2.

Conversely, suppose |f(z)| — oo as z — zp. Then f is nonzero in
a deleted neighbourhood Dy of zg, and hence, the function defined by
g(z) = 1/f(2) for z € Dy, satisfies

lg(z)] =0 as z— z.

Define g(zp) = 0. Then g is holomorphic in D := Dy U {0}. Hence,
there exists m € N and a holomorphic function ¢ in D such that

9(z) = (: —20)"p(z) VzeD

©(20) # 0. Thus, for z € Dy,

1 —m —
fz) = e (z—20)""(2), ()=

and 1¥(zp) # 0. Hence, z¢ is a pole of order m of f.

(i) <= (iv): Suppose zp is a pole of f. By (ii), there exists
m € N and a holomorphic function ¢ in a neigbhourhood D of zy such
that
f(z) =(z—20)""p(z) VzeDy:=D\{0}

with ¢(z9) # 0. Then, ¢(z) = (2 — 29)"f(2) in Dy. Clearly,
lim,_,, ¢(2) = ¢(20). Hence, 2z is a removable singularity of .

Conversely, suppose there exists m € N such that zg is a remov-
able singularity of p(z) := (2 — 20)™ f(z) with lim,_,,, ¢(z) # 0. Let
» be the holomorphic extension of ¢ to a neigbourhood D of zj.
Then we have

f(z) = (z—20)™p(z)  Vze Dyi=D\{0}

and @(z) # 0. Hence 2z is a pole of order m of f.
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(i) <= (v): Suppose 2 is a pole of f. By (ii), there exists m € N
and a holomorphic function ¢ in a neigbourhood D of zy such that

()= (s =) "p(x)  VzeDyi= D\ {0}
with ¢(z0) # 0. Then,

5= (=)™ VeeDy=D\{oh
where 1), defined by 1(z) := 1/p(2), is analytic on D. Thus, the
function 1/f can be extended holomorphically to D by defining 0 at
2o, and zg is a zero of order m of the extended function.
Conversely, if g := 1/f can be extended holomorphically to a
neigbourhood D of 2y and zg is a zero of order m of the extended
function g, then there exists a an analytic function v in D such that

9(z) = (2 — 20)"Y(2) VzeD.
Thus, we have
f(z) =(z2—20)"p(z) VzeDy:=D\{0}

where ¢(z) = 1/¢(z) on D and ¢(z9) # 0 so that zg is a pole of f
order m. 1

The following theorem shows that if zy is an essential singularity
of a holomorphic function f, then in a neigbourhood of zg, there are
values of f which are arbitrarily close to any complex number.

Theorem 6.2.3 (Casorati-Weierstrass theroem) Suppose zq is
an essential singularity of a holomorphic function f. Then for every
w € C, there exists a sequence (z,) in the domain of analyticity of f
such that f(z,) = w as n — oo.

Proof. Suppose for a moment that the conclusion in the theorem
does not hold. Then there exists w € C such that for any sequence
(zn) with z, — 20, f(2n) # w. Then the function g(z) := ﬁ is
analytic in a deleted neigbourhood of zy. Further, |g| is bounded in
a deleted neigbourhood of zy. (If |g| is not bounded in any deleted
neighourhood of zg, then there exists a sequence (z,) such that z, —

2o and |g(z,)| — o00.) Hence, by Theorem 6.2.1, 2y is a removable



Problems 97

singularity of g. Suppose g(z) — g as z — zp. We have the following
two cases:

Case (i): ag # 0: In this case, f(z) =w+1/g(z) = w+ 1/ as
z — 2p, so that by Theorem 6.2.1, zp is a removable singularity of f
as well.

Case (ii): ag = 0: In this case, we have | f(z)| = |[w+1/g(z)| = o©
as z — zp, and hence by Theorem 6.2.2, zg is a pole of f.

Since zy is an essential singularity, cases (i) and (ii) can not occur.
Thus, our assumption that the conclusion in the theorem does not
hold is not true. 1

6.3 Problems

1. For 0 < a < 1, find the annulus of convergence of the series

Zflozfoo an2 2"

2. Locate and classify the isolated singularities of the following
functions:
5

1l=z2+422=23424

(i) sin(1/2).

(i) (i) sin“ z

Also, check whether zy = oo is an isolated singularity (i.e.,

wp = 0 is an isolated singularity of f(1/z)) in each case.

3. If f and g are holomorphic functions having zy a pole of the
same order for both, then prove that

lim 1) = lim f'(z)

%0 9(x) =% g2)
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Residues and Real Integrals

7.1 Residue theorem

Definition 7.1.1 Suppose f is holomorphic in a deleted neigbour-
hood Dy of z9p € Cand I’ := {2z € C: |z — z9| = r} € Dy. Then
residue of f at zg is defined by

Res(f,z0) = 217”/1“ f(2)dz.

O

Recall that if f is holomorphic in a deleted neigbourhood Dy of
zo € C, then f has Laurent series expansion

o

fz)="Y anlz—2)",  z€ Dy,

n=—oo

and we know that

A,
an /F( d € 7.

- ; _ n+1-
2mi Jr, (2 — 20)

Thus,
Res(f,z0) = a_1.

The following theorem, known as residue theorem follows from
Cauchy’s theorem.

Theorem 7.1.1 (Residue theorem) Suppose I' is a simple closed
contour and z1, ...,z are points in I't which are the only singular
points of f in T'UQr. Then

k
/ f(z)dz = 27TiZRes(f, 2j).
r =

98
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7.2 Calculation of Residues

Suppose zg is a pole of order m of a holomorphic function f. Then we
know that there exists a holomorphic function ¢ in a neigbourhood
D of zy such that

f(z)=(2—20)"p(2) Vze€ Dy:=D\{z}.
Let

o(z) = Zan(z — 2p)", z e D.
n=0

Then we have

an = ‘p(n;(!z"), n € No := NU {0}
so that
&)= () o) =S anc— ) = S anz— z0)"
n=0 n=—m
Hence,

Thus, we have proved the following theorem.

Theorem 7.2.1 Suppose zg is a pole of order m of a holomorphic
function f. Then the function

z(z) = (2 —20)" f(2)

defined in a deleted neigbourhood of zy has a holomorphic extension
to a neigbourhood D of 2y, again denoted by ¢, and

™) (z)

Res(f, zp) = o1

In particular, if zg is a simple pole of f, then

Res(f, z9) = (z —20)f(2).

im
Z—20
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Corollary 7.2.2 Suppose g and h are holomorphic in a neigbourhood
D of zy and zy is a zero of h of order m. If h(z) = (z — z0)™ho(z)
with ho(zo) # 0, then

e (2)
(m—1)!"

Res(%,zo) =

where ©(z) = g(2)/ho(z). In particular, if m = 1, then

g )= g(20)  g(20)
ho(z0)  P'(20)

Res(ﬁ,zo =

1

r z(z - 1)
and I' is the positively oriented circle with centre 0 and radius 2.
By residue theorem,

EXAMPLE 7.2.1 Let us find /f(z)dz, where f(z) =

/ _dz 2mi[Res(f,z1) + Res(f, z2)], z1=0, 22 =1L
rz(z—1)

Since z; = 0 and zo = 1 are simple poles of the function
Res(f,z1) = lim zf(z) = —1,
z—0
Res(f,z2) = lim(z — 1) f(z) = 1.
z—1

Hence, / L =0. O
rz(z—1)

1
EXAMPLE 7.2.2 Let us find /f(z)dz, where f(z) = W
z(z —

and I is the positively oriented circle with centre 0 and radius 2. By
residue theorem,

/rz(zd—zl)Q = 2mi[Res(f,z1) + Res(f, z2)], 21 =0, 29 = 1.

Since z; = 0 is a simple pole and zo = 1 is a pole of order 2,
Res(fv Zl) = hHé Zf(Z) = 17 Res(f, ZQ) = 90/(1)
2=

d
where ¢(2) = 1 so that ¢/(1) = —1. Thus, /pz(z—zl)Q =0. O
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Exercise 7.2.1 1. Find Res(f, z9), where
(a) f() = 2eV%, 2 =0,

) ()= 2

2(z+ 1) (i) 20 =0, (i) z0 = —1.

2. Evaluate/f(z)dz, where
r

3z+1
(a) m and I' = {Z . |Z| = 2}
z+1
—_— ={z:]z| =1}.
0) sy and T = {232 = 1}
z+1/z
—————— and I'={z:|z] = 1}.
(C) 2(22_1/(22) an {Z ‘Z‘ }
log(z + 2)
— I={z:|z| =1}
@ EEE T = 2 e = 1)
h(1
() OB/ AT = (oo = 1),
z
<
7.3 Evaluation of Improper Integrals
In this section we shall evaluate integrals of the form
/ f(z)dz and / f(x)dx,
0 —0o0
where f is a continuous function.
* d
EXAMPLE 7.3.1 Let us evaluate / ﬁmﬁ For this consider
d —0o0
the function f(z) = H—iz for z # 0. Note that z = ¢ is the only
z

singularity of f in the upper half plane and it is a simple pole. Con-
sider the positively oriented curve I'p consisting of the semicircle
with centre 0 and radius R, i.e., Sg := {z : |z| = R,Im(z) > 0} and
the line segment Ly := [—R, R]. Then, by Cauchy’s theorem,

f(2)dz= [ f(2)dz,
Ir C:
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where C, = {z: |z —i| = r} with 0 < r < R. But,

/C F(2)dz = 2mi Res(f, ) = 2milim(z — i) f(2) = 7.

zZ—1

Thus,

f(z)dz = m.
g

Also, we have

R
. f(z)dz = /SR f(z)dz+ . f(z)dz = /SR f(z)dz + /R f(z)dz.

But, for z € Sg,

1
7)<
Hence,
¢(SR) TR
< = .
’ SRf(z)dZ‘ "R-1 R-1
Hence,
lim f(z)dz = lim (z)dz + lim f(2)dz
R—o0 FR R—o0 SR R—o0 LR
= 0+/ f(z)dx.
Thus,
/ f(z)dz = lim f(z)dz = .
—00 R—o0 FR
* coszx .
EXAMPLE 7.3.2 Let us evaluate / ﬁdw. Since
oo x

00 [e%¢) i
JaE—T (/ eQdm)
oo L+ oo Lt
we consider the function

f(z) 2z & {i,—i}.

Following the arguments as in the previous example, one arrive at

o] T
/ ¢ 2d:c:z.
P B e

e’LZ

T 1422
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o0 ix * sinz
I —dz | = — —dx = 0.
m</oo1+:c2 x) /001+:c2 r=0

/°° CcoS T T
2d:)::—.
oo L+ 2 e

o0

But,

Hence,

sin x .
dzx. Since

EXAMPLE 7.3.3 Let us evaluate /

—0o0

/ Smmdx = Re </ edx)
oo T oo T

we consider the function

X

f&)="  z#0.

Forr > 0, let S, := {z : |z| = r} with positive orientation. Then, tak-

ing 0 < ¢ < Rand T as the curve consisting of Sg, [- R, —¢|, S., [¢, R],
using Cauchy’s theorem,

0 = /Ff(z)dz
= [ s / Rg f(@)dz + /g ez + / * @)

—€

R
= . f(z)dz+/_R f(z)dz — . f(z)dz—i—/E f(z)dzx

But,
/_6 cosxd$+/R cosacdx:O
-R X e x
and
/_E sin:nder/R sin;zcdjj _ /R sinxdx.
_R T - T . T
Hence,
R —& R _:
/ f(z)dz + flx)dx = 2i/ ST .
€ —R € X
Thus,

R .
2i/ ST e = g f(z)dz — g f(z)dz

x
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Now, we note that with the parametrization () = Re?, 0 <t <
of Sg,

T 6iR(costJrisint) ) T o
(z)dz — / . iReMtgr — ’L/ ezR(cost—i—z Smt)dt.
Sk 0 Retht 0

Hence,

T ) w/2 )
’ f(z)dz’ < / e~ ftsintgy — 2/ e~ ftsint gy
SR 0 0

sint sint _ sinm/2
Since % is decreasing in [0, /2], we have —— /

that
t = w2 so tha

sint > 2t/m. Thus,

w/2
f(z)dz‘ < 2/ e 2t gt — l(l—e_QR) —0 as R— 0.
0

., R

Next, we observe that
|
- _Z 2
= el

where ¢ is an entire function. Hence, there exists M > 0 such that
|p(2)] < M for all z with |z| < 1. Thus,

RO / 6 = o)

where
’/ @(Z)dz‘ < Mre, 0<e<l.
Se
Hence,
R
d
22/ Slnxdgj = / Z+/ QD(Z)dZ— f(Z)dZ
€ L . 7 e Sk
— wi+ [ eea- [ s,
Se Sr
where

/go(z)dz—>0 as € —0 and f(z)dz—0 as R — oo.
Sgr

Thus,
R .
/ smxdx _ Z
e T 2
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7.4 Problems

1.

Find the residues of the following functions:
N 2 L2

If f and g are holomorphic in a neighourhood of zg, and 2y is a
simple a pole of g, then prove that Res(f/g, 20) = f(20)/4d (20)-

Determine the residues of each of the following functions at
each of their singularities:

3 5

. z .. z COS 2
0= )y (0

If f is holomorphic in a neigbourhood of zy, and zg is a zero of
f order m, then prove that Res(f'/f,z) = m.

Evaluate the following using complex integrals:

) ooeix § [e%e} dz
(1)/0 ?dﬂ% (11)/0 ma

00 32 o)
(ii) / S”; Tdw, (i) / %dw, a>0,b>0.
0 0
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C, 1

absolute value, 3
analytic, 13
angle, 17
annulus, 71
argument, 5

branch, 34

Cauchy’s theorem, 53, 55
Cauchy-Riemann equations,
10
closed curve, 52
complex conjugate, 3
conformal map, 18
converge, 37
absolutely, 37
point-wise, 37
uniformly, 38
CR-equations, 10
curve, 15

differentiable, 8, 16
disc of convergence, 41
domain, 54

extended complex plane, 23

fixed point, 25
fractional linear transforma-
tion, 24

harmonic conjugate, 20
holomorphic, 13

imaginary part, 3
intersect, 17, 52
isolated singularity, 75
isolated zero, 65

Laplace equation, 20

Laplacian, 20

Laurent series, 70, 72

linear fractional transforma-
tion, 24

Logarithm, 33

Mobius transformation, 24
modulus, 3

open ball, 3
oriented range, 48

parametrization, 48
piecewise smooth, 49
polar representation, 5
pole

of order m, 75
positively oriented, 54
preserve angle, 18

radius of convergence, 41
real part, 3

region of convergence, 41
regular, 17
reparameterization, 49
residue, 80

Residue theorem, 80
reversed curve, 48
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rook-path, 56
roots, 5

self intersecting, 17
simple closed curve, 52
simple pole, 75
simply connected, 54
singularity
essential, 75
removable, 75
Steriographic projection, 6

tangent vector, 17
triangle inequality, 3

zero of f, 65
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