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Preface
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Madras.
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The audience included some B.Tech. students and a faculty
member (Dr. Parag Ravindran) from Mechanical Engineering
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• The contents of the book is in the line of the well-written,
small book Complex Function Theory1 by Donald Sarason. I
fondly acknowledge some e-mail discussions that I had with
Prof. Sarason during the time of giving the course.

IIT Madras M. Thamban Nair
June 2011
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Complex Plane

1.1 Complex Numbers

After having the real field R, it is natural to look for a bigger field
in which algebraic equations such as

x2 + 1 = 0 (∗)

has a solution. Of course, the + sign here must be the symbol for
addition in the bigger field. Since two fields can be considered to
be identical if there is a surjective isomorphism between then, it is
enough to have a field which contains an isomorphic image of R and
having required properties such as solution to algebraic equations.
We shall define such a field with the intention of having a solution
to the equation (∗).

Definition 1.1.1 The set C of complex numbers is the set of all
ordered pairs (x, y) of real numbers with the following operations of
addition and multiplication:

(x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),

(x1, y1).(x2, y2) = (x1x2 − y1y2, x1y2 + x2y1).

♦

The proof of the following theorem is left to the reader.

Theorem 1.1.1 The following hold.
(i) C is a field with additive identity (0, 0) and multiplicative

identity (1, 0).
(ii) The map ϕ : R→ C defined by

ϕ(x) = (x, 0), x ∈ R,

is a field isomorphism.

1



2 Complex Plane

We observe that the multiplicative inverse of a nonzero complex
number z = (x, y) is given by(

x

x2 + y2
, − y

x2 + y2

)
.

Writing
i = (0, 1)

and for x ∈ R,
x̃ = (x, 0),

we observe that
i2 = −1̃,

and
C = {x̃+ iỹ : x, y ∈ R}.

With the above notations, the addition and multiplication in C can
be written as

(x̃1 + iỹ1) + (x̃2 + iỹ2) = (x̃1 + ỹ2) + i(ỹ1 + ỹ2)

= ˜(x1 + y2) + i ˜(y1 + y2),

(x̃1 + iỹ1).(x̃2 + iỹ2) = (x̃1x̃2 − ỹ1ỹ2) + i(x̃1ỹ2 + x̃2ỹ1)

= ˜(x1x2 − y1y2) + i ˜(x1y2 + x2y1).

Throughout this course, we identify x̃ with x for every x ∈ R, so
that C is the set of all numbers of the form

a+ ib with a, b ∈ R.

Thus,
a+ i0 = a, 0 + i1 = i and i2 = −1,

and for nonzero z = x+ iy,

1

z
:= z−1 =

x

x2 + y2
− i y

x2 + y2

One of the important properties of this field is that, not only equa-
tion (∗) has a solution in C, but every algebraic equation also has a
solution. This is the so called fundamental theorem of algebra which
we shall prove in the due course.
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1.2 Some Definitions and Properties

Definition 1.2.1 For a complex number z = x+ iy, x is called the
real part of z and is denoted by Re(z), y is called the imaginary
part of z and is denoted by Im(z),

z̄ = x− iy

is called the complex conjugate of z, and the non-negative number

|z| =
√
x2 + y2

is called the absolute value or modulus of z. ♦

We observe that

Re(z) ≤ |z|, Im(z) ≤ |z|, z̄z = |z|2, 1

z
=

z̄

|z|2
.

Using the face that |z|2 = z̄z, it can be easily verified that

|z1 + z2| ≤ |z1|+ |z2| ∀ z1, z2 ∈ C.

The above inequality is called the triangle inequality.

1.2.1 Metric on C
Theorem 1.2.1 The function d : C× C→ R defined by

d(z1, z2) = |z1 − z2|, z1, z2 ∈ C

is a metric on C.

Hereafter any metric property of C is referred to the metric de-
fined as in the above theorem. With respect to the above metric we
have the following:

• A sequence (zn) in C converges to z ∈ C if and only if

|zn − z| → 0 as n→∞.

• A point z0 ∈ C is called an interior point of a set A ⊆ C if
there exists r > 0 such that

B(z0, r) := {z ∈ C : |z − z0| < r} ⊆ A.

The set B(z0, r) is called the open ball with centre z and radius
r, usually denoted by B(z, r).
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• A subset G of C is open in C if and only if every point in G is
an interior point of G.

• A point z0 ∈ C is call a boundary point of a set A ⊆ C if every
open ball containing z0 contains some point of A and some
point of its compliment, i.e., for every r > 0, B(z0, r) ∩A 6= ∅
and B(z0, r) ∩Ac 6= ∅.

• A subset S of C is closed in C it contains all its boundary
points. It can be shown that a set

S ⊆ C is closed if and only if Sc := C \ S is open if
and only if for every sequence (zn) in S,

zn → z =⇒ z ∈ S.

• A function f : A→ C defined on a subset A of C is continuous
at a point z0 ∈ A if and only if for every ε > 0, there exists
δ > 0 such that

z ∈ A, |z − z0| < δ =⇒ |f(z)− f(z0)| < ε.

Equivalently, f is continuous at a point z0 ∈ A if and only if
for every ε > 0, there exists δ > 0 such that

z ∈ A ∩B(z0, δ) =⇒ f(z) ∈ B(f(z0), ε).

• A function f : A→ C defined on a subset A of C has the limit
ζ ∈ C at a point z0 ∈ C if and only if for every ε > 0, there
exists δ > 0 such that

z ∈ A, 0 < |z − z0| < δ =⇒ |f(z)− ζ| < ε,

and in that case we write

lim
z→z0

f(z) = ζ.

• A subset A of C is bounded if and only if there exists α > 0
such that

|z| ≤ α ∀z ∈ A.

• A subset A of C is compact if and only if every sequence in A
has a convergent subsequence.



Some Definitions and Properties 5

Theorem 1.2.2 The set C is a complete metric space.

Proof. Let (zn) be a Cauchy sequence in C. Writing zn = xn+iyn
with xn, yn ∈ R, we have

|xn − xm| ≤ |zn − zm|, |yn − ym| ≤ |zn − zm|

for all n,m ∈ N. Hence, (xn) and yn) are Cauchy sequences in R.
Since R is a complete metric space with respect to the absolute-value
metric, there exist x, y ∈ R such that xn → x and yn → y. Then,
writing z = x+ iy, we have

|zn − z|2 = (xn − x)2 + (yn − y)2 → 0.

Thus, (zn) converges to z.

1.2.2 Polar representation and nth-roots

Let z be a nonzero complex number and let θ be the angle which
the line segment joining 0 to z makes with the positive real axis, and
r = |z|, the length of the line segment. Then it is clear from the
geometry that

z = r(cos θ + i sin θ). (∗)

Definition 1.2.2 The representation (∗) of a nonzero z ∈ C is called
its polar representation, and an angle θ for which (∗) holds is
called an argumet of z, denoted by arg(z). ♦

Note that each (r, θ) with r > 0 and θ ∈ R represents a unique
nonzero z ∈ C with the representation (∗), but a non zero z ∈ C has
many polar representations, namely,

z = r(cos θ + i sin θ), θ ∈ {θ0 + 2πk : k ∈ Z},

where θ0 is one of the angles for which (∗) holds.

We note that if z1 = r1(cos θ1 + i sin θ1) and z2 = r2(cos θ2 +
i sin θ2), then

z1z2 = r1r2[cos(θ1 + θ2) + i sin(θ1 + θ2)].

Thus, if z = r(cos θ + i sin θ) and n ∈ N, then

zn = rn(cosnθ+i sinnθ) = rn[cos(nθ+2kπ)+i sin(nθ+2kπ)], k ∈ Z.
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The above observation helps us in finding the nth roots of complex
numbers.

Let ζ = ρ(cosα+ i sinα), z = r(cos θ + i sin θ) and n ∈ N. Then
we have

zn = ζ ⇐⇒ r = ρ1/n and θ =
α+ 2kπ

n
, k ∈ Z.

Thus, n-th roots of ζ are

zk = ρ1/n

[
cos

(
α+ 2kπ

n

)
+ i sin

(
α+ 2kπ

n

)]
, k ∈ Z.

Note that for each k ∈ Z

zk = zk+n for j ∈ {1, . . . , n}.

Thus, the only distinct n-th roots of ζ are z1, z2, . . . , zn.
If ζ = 1, then we have ρ = 1 and α = 0, and in this case we see

that the n-th roots of unity are

ω, ω2, . . . , ωn with ωn = 1,

where

ω = cos

(
2kπ

n

)
+ i sin

(
2kπ

n

)
.

1.2.3 Steriographic projection

Theorem 1.2.3 The complex plane is homeomorphic with the set
S2 \ {(1, 0, 0)}, where S2 is the unit sphere in R3 with centre as the
origin, i.e.,

S2 = {(α, β, γ) ∈ R3 : α2 + β2 + γ2 = 1}.

Proof. Clearly, C is homeomorphic with the set

X = {(x, y, 0) ∈ R3 : x, y ∈ R}

with the homeomorphism being the map x + iy 7→ (x, y, 0). Hence,
we find a surjective homeomorphism from X to S2 \ {(1, 0, 0)}.

Note that the parametric representation of the straight line join-
ing the north pole u0 = (1, 0, 0) with a point u = (x, y, 0) ∈ X is
given by

uλ = (1− λ)u0 + λu, λ ∈ R,
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i.e.,

uλ = (λx, λy, 1− λ), λ ∈ R.

Clearly, for every u = (x, y, 0) ∈ X there exists one and only λ := λu
such that uλ ∈ S2. We consider the map

u := (x, y, 0) 7→ (λux, λuy, 1− λ)

from X to S2 \ {(0, 0, 1)}. Note that

uλ ∈ S2 ⇐⇒ λ2x2 + λ2y2 + (1− λ)2 = 1

if and only if λ = 0 or λ(x2 + y2 + 1) − 2 = 0. The point λ = 0
correspond to u0. Hence,

λu =
2

x2 + y2 + 1
.

Thus the map

z := x+ iy 7→
(

2x

1 + |z|2
,

2x

1 + |z|2
,
|z|2 − 1

1 + |z|2

)
is a bijective continuous function from C onto S2 \{(1, 0, 0)} with its
inverse

(α, β, γ) 7→ α+ iβ

1− γ
,

which is also continuous.

1.3 Problems

1. Show that C is a field under the addition and multiplication
defined for complex numbers.

2. Show that the map f : R → C defined by f(x) = (x, 0) is a
field isomorphism.

3. For a nonzero complex number x, show that z−1 = z̄/|z|.

4. Show that for z1, z2 in C, |z1 + z2| ≤ |z1|+ |z2|.

5. Show that d(z1, z2) := |z1 − z2| defines a metric on C, and it is
a complete metric.



8 Complex Plane

6. Show that |z1 − z2| ≥ |z1| − |z2| for all z1, z2 ∈ C.

7. Suppose α, β, γ are nonzero complex numbers such that |α| =
|β| = |γ|.

Show that α+ β + γ = 0 ⇐⇒ 1

α
+

1

β
+

1

γ
= 0.

8. Suppose z1, z2, z3 are vertices of an equilateral triangle. Show
that z2

1 + z2
2 + z2

3+ = z1z2 + z2z3 + z3z1.

9. Show that the equation of a straight line using complex variable
z is given by ᾱz + αz̄ + γ = 0 for some α ∈ C and γ ∈ R.

10. If |z| = 1 and z 6= 1, then show that
1 + z

1− z
= ib for some b ∈ R.

11. For n ∈ N, derive a formula for the nth root of a complex
number z using its polar representation.

12. Let S2 be the unit sphere in R3 with centre at the origin, i.e.,
S2 := {(α, β, γ) ∈ R3 : α2 + β2 + γ2 = 1}. Show that the
steriographic projection

z := x+ iy 7→
(

2x

1 + |z|2
,

2x

1 + |z|2
,
|z|2 − 1

1 + |z|2

)
is a bijective continuous function from C onto S2 \ {(1, 0, 0)}
with its inverse

(α, β, γ) 7→ α+ iβ

1− γ
,

which is also continuous.

13. Show that the functions z 7→ Re(z), z 7→ Im(z), z 7→ |z|
are continuous functions on C.

14. Show that lim
z→0

z

|z|
does not exist.



2

Analytic Functions

In this chapter we do calculus of complex valued functions of a com-
plex variable.

2.1 Differentiation

Let f be a complex valued function defined on a set Ω ⊆ C.

Definition 2.1.1 Let z0 be an oneerior point of Ω. Then f is said
to be differentiable at z0 if

lim
z→z0

f(z)− f(z0)

z − z0

exists, and in that case the above limit is called the derivative of f
at z0, denoted by f ′(z0). ♦

Thus the following are equivalent:

(i) f is differentiable at z0 ∈ Ω.
(ii)There exists c ∈ C such that for every ε > 0, there exists δ > 0

satisfying

z ∈ Ω, 0 < |z − z0| < δ =⇒
∣∣∣∣f(z)− f(z0)

z − z0
− c
∣∣∣∣ < ε.

(iii) There exists c ∈ C such that

f(z)− f(z0)− c(z − z0)

|z − z0|
→ 0 as z → z0.

The equivalence in (iii) above shows that if f is differentiable at
z0, then f(z) is approximately equal to f(z0)− c(z− z0) whenever z
is in some neighbourhood of z0, which we write as

f(z) ' f(z0)− c(z − z0)

9
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whenever z is in some neighbourhood of z0.

The following theorem can be proved (exercise) using arguments
similar to the real case of real valued functions of a real variable.

Theorem 2.1.1 Let z0 be an interior point of Ω ⊆ C. Then the
following holds.

(i) If f differentiable at z0 ∈ Ω, then f is continuous at z0.

(ii) If f and g are differentiable at z0 ∈ Ω, then f + g and fg are
differentiable at z0, and

(f+g)′(z0) = f ′(z0)+g(z0), (fg)′(z0) = f ′(z0)g(z0)+f(z0)g′(z0).

(iii) If f and g are differentiable at z0 ∈ Ω and if g(z0) 6= 0, then
f/g is differentiable at z0, and(

f

g

)′
(z0) =

g(z0)f ′(z0)− g′(z0)f(z0)

[g(z0)]2
.

(iv) If f is differentiable at z0 ∈ Ω and g is differentiable in a
neighbourhood of f(z0), then g ◦ f is differentiable at z0 and

(g ◦ f)′(z0) = g′(f(z0)f ′(z0).

Now, let us write f(z) as u(z) + iv(z), where u(z) = Ref(z) and
v(z) = Imf(z). Recall that f is differentiable at z0 ∈ Ω if and only
if there exists c ∈ C such that

R(z)

|z − z0|
→ 0 as z → z0,

where R(z) = f(z)− f(z0)− c(z − z0). Writing

z = x+ iy, z0 = x0 + iy0, c = a+ ib,

we have

R(z) = f(z)− f(z0)− c(z − z0)

= [u(z)− u(z0)] + i[v(z)− v(z0)]− (a+ ib)[(x− x0) + i(y − y0)]

= [u(z)− u(z0)− a(x− x0) + b(y − y0)]

+i[v(z)− v(z0)− b(x− x0)− a(y − y0)]

= R1(z) + iR2(z),
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where
R1(z) = u(z)− u(z0)− [a(x− x0)− b(y − y0)],

R2(z) = v(z)− v(z0)− [b(x− x0) + a(y − y0)].

Thus,

R(z)

|z − z0|
→ 0 ⇐⇒ R1(z)

|z − z0|
→ 0 &

R2(z)

|z − z0|
→ 0

if and only if u and v are differentiable as a functions of two real
variables at (x0, y0), and

a =
∂u

∂x
(x0, y0), −b =

∂u

∂y
(x0, y0),

b =
∂v

∂x
(x0, y0), a =

∂v

∂y
(x0, y0),

i.e.,

∂u

∂x
(x0, y0) =

∂v

∂y
(x0, y0) &

∂u

∂y
(x0, y0) = −∂v

∂x
(x0, y0),

and in that case

f ′(z0) = a+ ib =
∂u

∂x
(x0, y0) + i

∂v

∂x
(x0, y0)

=
∂v

∂y
(x0, y0)− i∂u

∂y
(x0, y0).

Thus, we have proved the following theorem.

Theorem 2.1.2 The function f is differentiable at z0 ∈ Ω if and only
if its real part u and imaginary part v are differentiable at (x0, y0)
and ux, uy, vx, vy satisfy the equations

ux(z0) = vy(z0), uy(z0) = −vx(z0), (∗)

and in that case

f ′(z0) = ux(z0) + ivx(z0) = vy(z0)− iuy(z0).

Equations in (∗) are called the Cauchy-Riemann equations,
or in short CR-equations.

Now, recalling from a sufficient condition for differentiability of a
real valued function of two variables, we have the following sufficient
condition of differentiability of f at z0 ∈ Ω.
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Theorem 2.1.3 Let f = u + iv and z0 = x0 + iy0 ∈ Ω. Suppose
ux, uy, vx, vy exist in a neighbourhood of z0 and are continuous at
(x0, y0), and suppose they satisfy the CR-equations at (x0, y0). Then
f is differentiable at z = x0 + iy0, and

f ′(z0) = ux + ivx.

EXAMPLE 2.1.1 Let us find out points at which some of the
simple functions are differentiable.

(i) Let f(z) = x. In this case we have u(x, y) = x and v(x, y) = 0.
Hence, ux = 1, uy = 0, vx = 0 = vy at every point. Since u and v do
not satisfy CR-equations, f is not differentiable at any z ∈ C.

(ii) Let f(z) = z̄ = x − iy. In this case we have u(x, y) = x
and v(x, y) = −y. Hence, ux = 1, uy = 0, vx = 0, vy = −1 at every
point. Again CR-equations are not satisfied at any point. Hence, f
is not differentiable at any z ∈ C.

(iii) Let f(z) = |z|2 = x2+y2. In this case we have u(x, y) = x2+
y2 and v(x, y) = 0. Hence, ux = 2x, uy = 2y, vx = 0 = vy at every
point. Thus, partial derivatives of u and v exist and are continuous
on R2, and CR-equations are satisfied only at (0, 0). Hence, f is
differentiable only at 0.

(iv) Let f(z) = z̄2 = (x2 − y2) − i2xy. In this case we have
u(x, y) = x2 − y2 and v(x, y) = 2xy. Hence, ux = 2x, uy = −2y,
vx = −2y, vy = −2x at every point. Thus, partial derivatives of u
and v exist and are continuous on R2, and CR-equations are satisfied
only at (0, 0). Hence, f is differentiable only at 0. �

CR-equations in polar coordinates:

Let f = u+ iv where u = Ref and v = Imf . For z = x+ iy with
x = Rez and y = Imz, writing

r =
√
x2 + y2, θ = tan−1(y/x), x 6= 0,

and considering u and v as we have the following:

∂u

∂x
=
∂u

∂r

∂r

∂x
+
∂u

∂θ

∂θ

∂x
,

∂v

∂x
=
∂v

∂r

∂r

∂x
+
∂v

∂θ

∂θ

∂x
.
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Now, r2 = x2 + y2 and tan θ = y/x so that

2r
∂r

∂x
= 2x, 2r

∂r

∂y
= 2y,

sec2 θ
∂θ

∂x
= − y

x2
, secθ

∂θ

∂y
=

1

x
,

i.e.,
∂r

∂x
=
x

r
,

∂r

∂y
=
y

r
,

x2 + y2

x2

∂θ

∂x
= − y

x2
,

x2 + y2

x2

∂θ

∂y
=

1

x
,

i.e.,

∂r

∂x
=
x

r
,

∂r

∂y
=
y

r
,

∂θ

∂x
= − y

r2
,

∂θ

∂y
=

x

r2
.

Now,

∂u

∂x
=
∂u

∂r

∂r

∂x
+
∂u

∂θ

∂θ

∂x
,

∂u

∂y
=
∂u

∂r

∂r

∂y
+
∂u

∂θ

∂θ

∂y
.

Thus,
∂u

∂x
=
x

r

∂u

∂r
− y

r2

∂u

∂θ
,

∂u

∂y
=
y

r

∂u

∂r
+
x

r2

∂u

∂θ
. (1)

Similarly,

∂v

∂x
=
x

r

∂v

∂r
− y

r2

∂v

∂θ
,

∂v

∂y
=
y

r

∂v

∂r
+
x

r2

∂v

∂θ
. (2)

Recall that the CR-equations in Cartesian coordinates are

∂u

∂x
=
∂v

∂y
,

∂u

∂y
= −∂v

∂x
.

Hence, (1)− (2) give

x

r

∂u

∂r
− y

r2

∂u

∂θ
=
y

r

∂v

∂r
+
x

r2

∂v

∂θ
, (5)

y

r

∂u

∂r
+
x

r2

∂u

∂θ
=
x

r

∂v

∂r
− y

r2

∂v

∂θ
. (6)

The equations (3)− (4) imply that

r
∂u

∂r
=
∂v

∂θ
,

∂u

∂θ
= −r ∂v

∂r
.

These are the CR-equations in polar coordinates.



14 Analytic Functions

2.2 Holomorphic or Analytic Functions

Definition 2.2.1 Let Ω ⊆ C.

(i) A function f : Ω→ C is said to be analytic at a point z0 ∈ Ω if
there exists r > 0 such that B(z0, r) ⊆ Ω and f is differentiable
at every point in B(z0, r).

(ii) A function f : Ω→ C is said to be holomorphic or analytic
on Ω0 ⊆ Ω if f is analytic at every point in Ω0.

♦

• If f : Ω→ C is analytic on Ω0 ⊆ Ω, then Ω0 is an open set.

• f : Ω → C is not analytic at a point z0 ∈ Ω if and only if for
every r > 0, there exists ζ ∈ B(z0, r) ∩ Ω such that f is not
differentiable at ζ.

Definition 2.2.2 A complex valued function defined and analytic
on the entire complex plane is called an entire function. ♦

• f : Ω→ C is analytic at a point z0 ∈ Ω if it is analytic on some
open set containing z0.

• f : Ω → C is analytic on Ω if and only if u := Re(f) and
v := Im(f) have continuous first partial derivatives in Ω and
they satisfy the CR-equations at every point in Ω.

Remark 2.2.1 In the subject of complex analysis, it is very common
to say a function

f is analytic at a point z0 ∈ C

to mean that f is defined in an open neigbourhood of z0 and f is
analytic at z0.

Usually, a function is given in terms of certain expression, and in
that case, the domain of definition of f is taken to be the largest sub-
set of C in which the expression makes sense. For example, consider
the expression

f(z) =
1

z
.



Holomorphic or Analytic Functions 15

In this case, the domain of definition of f is taken to be Ω := C\{0},
and f is not analytic at z0 = 0, since 0 6∈ Ω. The function

f(z) = z̄

is not analytic at any point in C, since f is defined on C, but f is
not differentiable at any z0 ∈ C. ♦

Definition 2.2.3 A set Ω0 ⊆ C is called the domain of analyticity
of a function f if Ω0 is the largest open set in which f is analytic. ♦

For example, the domain of analyticity of f(z) = 1/z is C \ {0},
whereas the domain of analyticity of f(z) = z̄ is ∅.

Definition 2.2.4 A point z0 ∈ C is a singularity of an analytic
function f if z0 is not in the domain of analyticity of f . ♦

Definition 2.2.5 A point z0 ∈ C is an isolated singularity of
a function f if the domain of analyticity of f contains a deleted
neigbourhood of z0. ♦

EXAMPLE 2.2.1 1. For a1, a1, . . . , an in C, let

f(z) := a0 + a1z + . . .+ anz
n, z ∈ C.

Then f is an entire function.

2. The function z 7→ 1/(1− z) is analytic on C \ {0}.

3. The function f defined by f(z) =
∑∞

n=0 z
n is analytic on the

unit disc Ω := {z ∈ C : |z| < 1}.
�

2.2.1 Analytic extension

Definition 2.2.6 Suppose Ω is an open subset of C and f : Ω→ C is
an analytic function. Let Ω̃ be an open set such that Ω̃ ⊇ Ω. We say
that f has an analytic extension to Ω̃ if there exists an analytic
function g on Ω̃ which is an extension of f , i.e., g : Ω̃→ C is analytic
and g(z) = f(z) for all z ∈ Ω. ♦

EXAMPLE 2.2.2 1. Let Ω = {z ∈ C : |z| < 1} and f(z) =
1

1− z
, z ∈ Ω. Then f is analytic on Ω, and has extension to

the open set Ω̃ := C\{1}. Clearly, in this case, g(z) = 1/(1−z)
for all z ∈ Ω̃.
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2. The function f defined by f(z) =
∑∞

n=0 z
n is analytic on the

unit disc Ω := {z ∈ C : |z| < 1}, and cannot be extended to a
bigger open set.

�

2.2.2 Geometric representations

We know that a real valued function of a real variable can be repre-
sented by its graph, as a subset of the plane. Such a representation
is not possible for a complex valued function of a real variable, as we
require at least four real dimensions. But, we can represent them as
mappings of C into itself as which specify changes taking place for
certain figures such as straight lines and circles. Let consider a few
simple examples.

EXAMPLE 2.2.3 Consider the function

z 7→ az

for some nonzero a ∈ C. Let us consider the following cases.

Case (i) a ∈ R and a > 0.

We see that this maps scales the figures in the plane - if a > 1,
then it takes a circle to a bigger circle, and if a < 1, then it takes a
circle to a smaller circle. More precisely, consider a circle

C : |z − z0| = r. (∗)

Writing ζ = az, we have

|z − z0| = r ⇐⇒
∣∣∣∣ζa − z0

∣∣∣∣ = r ⇐⇒ |ζ − az0| = ar.

Thus above function transforms a circle with centre z0 and radius r
into a circle with centre az0 and radius ar.

A straight line has the equation

L : ᾱz + αz̄ + γ = 0. (∗∗)

Indeed, for a, b, c ∈ R,

ax+ by + c = a

(
z + z̄

2

)
+ b

(
z − z̄

2i

)
+ c

=

(
a− ib

2

)
z +

(
a+ ib

2

)
z̄ + c.
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Now, under the map z 7→ ζ := az with a > 0, we have

ᾱz+αz̄+γ = 0 ⇐⇒ ᾱ

(
ζ

a

)
+α

(
ζ̄

a

)
+γ = 0 ⇐⇒ ᾱζ+αζ̄+aγ = 0.

Thus, the function z 7→ az transforms a straight line into a a straight
line.

Case (ii) a ∈ C and |a| = 1.

In this case a is of the form a = cos θ0 + i sin θ0 for some θ 6= 0.
Hence, by the map z 7→ az, a point z = r cos0 θ+i sin θ0 is rotated by
an angle θ0. Thus, circles and straight lines are mapped onto circles
and straight lines, respectively.

Case (iii) a ∈ C, a 6= 0.

Since

a = |a|
(
a

|a|

)
,

this function is a composition of the functions considered in Case (i)
and Case (ii). �

Exercise 2.2.1 Explain the last statement in Case(ii) analytically
using the circle and straight line given in (∗) and (∗∗). /

EXAMPLE 2.2.4 Consider the function

z 7→ z + b

for some nonzero b ∈ C. In this case the circle in (∗) is mapped into
the circle

C̃ : |ζ − (z0 − b)| = r,

i.e., the original circle is translated by −b, and the straight line in
(∗∗) is mapped into the straight line

L̃ : ᾱz + αz̄ + (β̄ + αb̄+ γ) = 0.

Note that for γ ∈ R, β̄ + αb̄+ γ is also in R. �

EXAMPLE 2.2.5 Consider the function

z 7→ az + b
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for some nonzero a, b ∈ C. This case is combination of the function
considered in the previous two examples, i..e, f(z) = g(h(z)), where
h(z) = az and g(z) = z + b. Therefore, circles and straight lines are
mapped into circles and straight lines, respectively. �

Remark 2.2.2 We observe that under the under the map z 7→ az+b
with a 6= 0, the tangent at a point z0 on a curve Γ is mapped onto the
tangent at the point ζ := f(z0) on the curve Γ̃ := f(Γ). Of course,
we have not defined so far what we mean by a curve in C. We shall
do this now. ♦

2.2.3 Curves in the complex plane

Definition 2.2.7 A curve in the complex plane is a complex valued
function γ defined on an interval I.

If I = [a, b], then the point z1 := γ(a) is called the initial point
of γ and z2 := γ(b) is called the terminal point of γ. ♦

If γ is a curve in C, then we shall identify it with its image

Γγ := {γ(t) : t ∈ I}.

If Γγ lies in an open set Ω, then we say that the curve γ is in Ω.

The direction of a curve γ is along the direction in which the
points on Γ vary as t increases on I.

EXAMPLE 2.2.6 Given z1, z2 ∈ C, the line segment joining z1 to
z2 is a curve given by

γ(t) := (1− t)z1 + tz2, t ∈ [0, 1].

This curve has the same image as the one given by

γ(t) :=

(
b− t
b− a

)
z1 +

(
t− a
b− a

)
z2, t ∈ [a, b].

�

EXAMPLE 2.2.7 (i) The curve defined by

γ(t) := cos t+ i sin t, 0 ≤ t ≤ 2π

traces the unit circle (with centre 0) once in anti-clockwise direction.
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(ii) The curve defined by

γ(t) := cos t− i sin t, 0 ≤ t ≤ 2π

traces the unit circle (with centre 0) once in clockwise direction.
(iii) The curve defined by

γ(t) := cos t+ i sin t, 0 ≤ t ≤ 2nπ

traces the unit circle (with centre 0) n-times in anticlockwise direc-
tion. �

EXAMPLE 2.2.8 Using the definition of a line segment in Example
2.2.6, it can be seen that the following curve traces the boundary of
the square with vertices at 0, 1, 1+i, i once in anticlockwise direction:

γ(t) :=


t, 0 ≤ t ≤ 1,
1 + (t− 1)i, 1 < t ≤ 2,
3− t+ i, 2 < t ≤ 3,
(4− t)i, 3 < t ≤ 4.

�

Definition 2.2.8 A curve γ : I → C is said to be differentiable at
a point t0 ∈ I if

lim
t→t0

γ(t)− γ(t0)

t− t0
exists, and in that case the above limit is called the derivative of γ
at t0, denoted by γ ′(t0). ♦

If γ ′(t0) exists and is nonzero, then it represents the direction of
the tangent vector to the curve at the point z0 := γ(t0). In this case,
the direction of the curve γ at t0 is specified by

arg γ ′(t0) or by the unit vector
γ ′(t0)

|γ ′(t0)|
.

Definition 2.2.9 A curve γ : I → C is said to be regular at a point
t0 ∈ I if γ is differentiable at t0 and γ ′(t0) 6= 0.

If γ : I → C is regular at t0 ∈ I, then abusing the terminology,
we may say that γ is regular at z0 := γ(t0). ♦

Definition 2.2.10 We say that curves γ1 and γ2 (or their images
Γ1 and Γ2) intersect at a point z0 ∈ C if there are points t1, t2 such
that γ1(t1) = γ2(t2) = z0. ♦
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Remark 2.2.3 (i) In the above definition the curves γ1 and γ2 may
be defined on different intervals I1 and I2.

(ii) As a particular case of the above definition, if we take γ1 = γ2,
the we can say that γ is self intersecting at z0. ♦

Definition 2.2.11 Suppose that curves γ1 and γ2 intersect at a point
z0 ∈ C and regular at z0. Then the angle between γ1 and γ2 at z0

is defined as

Θz0(γ1, γ2) := arg γ2
′(t2)− arg γ1

′(t1),

where t1, t2 are such that γ1(t1) = γ2(t2) = z0. ♦

Note that

Θz0(γ1, γ2) = arg γ2
′(t2)γ1

′(t1).

We observe that if γ : I → C is a curve with its image as Γ, and
if f is a continuous complex valued function on Γ, then γ̃ : I → C
defined by

γ̃(t) = (f ◦ γ)(t), t ∈ I

is also a curve in C. Note that (Exercise) if f is defined on an open
set containing Γ, γ is differentiable at t0 ∈ I, and f is differentiable
at z0 := γ(t0), then γ̃ is also differentiable at t0 and

γ̃ ′(t0) = f ′(z0)γ ′(t0).

If, in addition, if γ is regular at t0 and f ′(z0) 6= 0, then we obtain

arg γf
′(t0) = arg f ′(z0) + arg γ ′(t0).

Definition 2.2.12 Let f be a continuous complex valued function
defined on an open set Ω and z0 ∈ Ω. Let γ1 and γ2 be curves
intersecting at z0 and regular at z0. Then f is said to preserve
angle between γ1 and γ2 at z0 if γ̃1 := f ◦ γ1 and γ̃2 := f ◦ γ2 are
regular at z̃0 := f(z0) and Θz̃0(γ̃1, γ̃2) = Θz0(γ1, γ2). ♦

Thus we have the following theorem.

Theorem 2.2.1 Let f be defined on an open set Ω and differentiable
at a point z0 ∈ Ω and f ′(z0) 6= 0. Then f preserves angle between
curves which are regular at z0 and intersecting at z0.
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In fact, with some additional conditions, we have the converse of
the above theorem as well. We shall state it without proof. For a
proof of this, see Sarason1

Theorem 2.2.2 Let f := u + iv be defined on an open set Ω such
that u and v are differentiable at a point z0 ∈ Ω. If f preserves angle
between curves which are regular at z0 and intersecting at z0, then f
is differentiable at z0 and f ′(z0) 6= 0.

Definition 2.2.13 A function f defined on an open set Ω is said to
be a conformal map at z0 ∈ Ω if it preserves angles between any
two curves in Ω intersecting at z0 and regular at z0. ♦

Thus, a holomorphic function is conformal at every point in its
domain of definition.

Now, let f be defined on an open set Ω. Let

u = Ref, v = Imf.

Considering f as a function of two real variables and assuming the
quantities involved are well-defined on Ω, we can write

∂f

∂x
=
∂u

∂x
+ i

∂v

∂x
and

∂f

∂y
=
∂u

∂y
+ i

∂v

∂y
.

Hence,
∂f

∂x
+ i

∂f

∂y
=

(
∂u

∂x
− ∂v

∂y

)
+ i

(
∂v

∂x
+
∂u

∂y

)
.

Thus, u and v satisfy CR-equations if and only if

∂f

∂x
+ i

∂f

∂y
= 0

Notation:

∂

∂z
:=

1

2

(
∂

∂x
− i ∂

∂y

)
,

∂

∂z̄
:=

1

2

(
∂

∂x
+ i

∂

∂y

)
.

Thus, u and v satisfy CR-equations if and only if
∂f

∂z̄
= 0.

1D. Sarason, Notes on Complex Function Theory, Hindustan Book Agency,
New Delhi, 1994.
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The following would justify the introduction of the above nota-

tions
∂

∂z
and

∂

∂z
: Recall that, for z = x+ iy,

x =
z + z̄

2
, y =

z − z̄
2i

so that

∂x

∂z
=

1

2
,

∂x

∂z̄
=

1

2
,

∂y

∂z
=
−i
2
,

∂y

∂z̄
=
i

2
.

Thus,
∂f

∂z
=
∂f

∂x

∂x

∂z
+
∂f

∂y

∂y

∂z
=

1

2

(
∂f

∂x
− i∂f

∂y

)
,

∂f

∂z̄
=
∂f

∂x

∂x

∂z̄
+
∂f

∂y

∂y

∂z̄
=

1

2

(
∂f

∂x
+ i

∂f

∂y

)
.

We can also define higher partial derivatives:

∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
,

∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)
∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
,

∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
.

Definition 2.2.14 Let f be defined on an open set Ω ⊆ C. Then
(i) f is said to be of class C1 if first partial derivatives of f exist

and are continuous.
(ii) f is said to be of class C2 if second partial derivatives of f

exist and are continuous.
(iii) f is said to be harmonic if f is of class C2 and

4f :=
∂2f

∂x2
+
∂2f

∂y2
= 0.

The above equation is called the Laplace equation, and the oper-
ator 4 is called the Laplacian. ♦

The following can be easily verified:

• f holomorphic on Ω and is of class of C2 =⇒ f is harmonic.

• f holomorphic on Ω =⇒ u and v are harmonic, i.e.,

4u = 0 = 4v.
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• f harmonic on Ω ⇐⇒ ∂2f

∂z̄∂z
= 0. In fact,

∂2f

∂z̄∂z
=

1

4

(
∂2f

∂x2
+
∂2f

∂y2

)
.

Exercise 2.2.2 Prove the above three statements. /

Definition 2.2.15 Let u and v be real valued functions of class C2

defined on Ω (considered as a subset of R2). Then v is said to be a
harmonic conjugate of u if f := u+ iv is holomorphic on Ω. ♦

We observe the following:

• If u and v are of class C2 on an open set Ω, then then v is a
harmonic conjugate of u if and only they and satisfy CR-equations,
and in that case both u and v are harmonic on Ω.

Exercise 2.2.3 Prove that v is a harmonic conjugate of u if and
only −u is a harmonic conjugate of v. /

2.3 Fractional linear transformations

2.3.1 The map z 7→ 1/z

Recall that, for nonzero complex numbers a and b, the functions

z 7→ az, z 7→ z + b

map circles onto circles and straight lines onto straight lines. Now
let us look at another simple function

z 7→ 1

z
, z 6= 0.

Let us see the images of circles and straight lines under this function:
Consider the image of the circle:

C : |z − z0| = r.

Since

|z − z0|2 = (z̄ − z̄0)(z − z0) = |z|2 − (z̄0z + z0z̄) + (|z0|2 − r2),

the above equation can also be written as

|z|2 − (z̄0z + z0z̄) + ρ = 0, ρ := |z0|2 − r2. (∗)
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To find its image under z 7→ 1/z, let us write ζ = 1/z. Thus, the
image is given by the equation

1− (z0ζ + z̄0ζ̄) + ρ|ζ|2 = 0.

Thus, if ρ = 0, i.e., if |z0| = r, i.e., if the circle passes through 0,
then the image is given by

1− (z0ζ + z̄0ζ̄) = 0

which is an equation of a straight line.
Now, assume that ρ 6= 0 i.e., |z0| 6= r. Then the equation of the

image takes the form

|ζ|2 −
(
z0ζ

ρ
+
z̄0ζ̄

ρ

)
+

1

ρ
= 0. (∗∗)

Note that

1

ρ
=

∣∣∣∣z0

ρ

∣∣∣∣2 −
(∣∣∣∣z0

ρ

∣∣∣∣2 − 1

ρ

)
=

∣∣∣∣z0

ρ

∣∣∣∣2 − (rρ
)2

.

Comparing (∗∗) with (∗), it follows that (∗∗) represents a circle with
centre at z̄0/ρ and radius r/ρ. Thus, under the function z 7→ 1/z,

(i) circles passing trough 0 are mapped onto straight lines, and
(ii) circles not passing trough 0 are mapped onto circles.

Next, consider a straight line

L : ᾱz + αz̄ + γ = 0.

This is mapped onto

L̃ : ᾱ

(
1

ζ

)
+ α

(
1

ζ̄

)
+ γ = 0

⇐⇒ ᾱζ̄ + αζ + γ|ζ|2 = 0.

If γ = 0, i.e., if the line L passes through 0, then its image also a
straight line passing through 0. If γ 6= 0, i.e., if L does not pass
through 0, then

L̃ : |ζ|2 +

(
ᾱζ̄

γ
+
αζ

γ

)
= 0
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which is an equation of a circle with centre at −ᾱ/γ and radius |α|/γ,
which also pass through 0. Thus, under the function z 7→ 1/z,

(i) straight lines passing through 0 are mapped onto straight lines
trough 0, and

(ii) straight lines not passing through 0 are mapped onto circles
passing through 0.

Thus, in general, under the function z 7→ 1/z,

• circles and straight lines are are mapped onto either circles or
straight lines.

2.3.2 Extended plane

Note that the function z 7→ 1/z is not defined at z = 0. However, we
know that

lim
|z|→0

1

|z|
=∞,

i.e., for every M > 0, there exists δ > 0 such that

|z| < δ =⇒ 1

|z|
> M.

We shall write this fact by

lim
z→0

1

z
=∞.

In the above, the ∞ is just a symbol which correspond to the north
pole in steriographic projection. Let us extend the complex plane C
by incorporating ∞, i.e., let us consider

C̃ := C ∪ {∞}.

Definition 2.3.1 The set C̃ := C ∪ {∞} is called the extended
complex plane. ♦

In view of the above definition, we say that lim
z→0

1

z
= ∞ in the

extended complex plane C̃.

Since, we have

lim
|z|→∞

1

|z|
= 0,
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i.e., for every ε > 0, there exists M > 0 such that

|z| > M =⇒ 1

|z|
< ε,

we also write

lim
z→∞

1

z
= 0

in the extended complex plane. Thus, for the functions

f(z) := az, g(z) = z + b, h(z) =
1

z

for nonzero complex numbers a and b, we can write

lim
z→∞

f(z) =∞, lim
z→∞

g(z) =∞,

lim
z→∞

h(z) = 0, lim
z→0

h(z) =∞.

Now, defining

f(∞) =∞, g(∞) =∞, h(∞) = 0, h(0) =∞,

we can say that f, g, h are defined on the extended complex plane C̃.

2.3.3 Fractional linear transformations

Now, for complex numbers a, b, c, d, consider the function

ϕ : z 7→ ϕ(z) :=
az + b

cz + d
.

Since,

az + b

cz + d
=
a

c

(
cz + bc/a

cz + d

)
=
a

c

(
cz + d− [d− bc/a]

cz + d

)
.

Thus,
az + b

cz + d
=
a

c
−
(

1

c

)(
ad− bc
cz + d

)
.

Thus, the function ϕ can be thought of as compositions of the func-
tions f, g, h we can write the function. Note that if ad − bc = 0,
then ϕ is a constant function. To avoid this case, we shall assume
that ad− bc 6= 0.
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Definition 2.3.2 For complex numbers a, b, c, d with ad − bc 6= 0,
the function

ϕ(z) =
az + b

cz + d
, z ∈ C̃,

is called a fractional linear transformation or a linear frac-
tional transformation or a Möbius transformation. ♦

We observe that

ϕ(∞) = lim
z→∞

ϕ(z) = lim
z→∞

a+ b/z

c+ d/z
=
a

c
.

Thus,

ϕ(∞) =∞ ⇐⇒ c = 0.

Since ϕ is a composition of the functions z 7→ az, z 7→ z + b and
z 7→ 1/z, we can infer that under ϕ, the family of circles and straight
lines in C are mapped onto the family of circles and straight lines.

It can be easily seen that compositions of a finite number of frac-
tional linear transformations is a fractional linear transformation.

Exercise 2.3.1 Suppose ϕ1 and ϕ2 are fractional linear transforma-
tions. Prove that ϕ1 ◦ ϕ2 and ϕ2 ◦ ϕ1 are fractional linear transfor-
mations. /

Exercise 2.3.2 Consider a fractional linear transformation ϕ given
by

ϕ(z) =
az + b

cz + d
, z ∈ C̃.

(i) Show that ϕ is one-one and onto and its inverse is given by

ϕ−1(z) =
−dz + b

cz − a
, z ∈ C̃.

(ii) Show that ϕ is differentiable at every z ∈ C and its derivative
is given by

ϕ′(z) =
ad− bc

(cz + d)2
, z ∈ C.

/

Definition 2.3.3 A point z0 ∈ C̃ is said to be a fixed point of a
function f : C̃→ C̃ if f(z0) = z0. ♦
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Consider a fractional linear transformation ϕ given by

ϕ(z) =
az + b

cz + d
, z ∈ C̃.

We have already observed that ϕ(∞) =∞ if and only if c = 0. Thus
∞ is a fixed point of ϕ if and only if c = 0. Suppose c 6= 0. Then we
have

ϕ(z) = z ⇐⇒ cz2 + (d− a)z − b = 0.

Since the above equation has either two distinct roots or one repeated
root, we can say that

Theorem 2.3.1 A fractional linear transformation which is not an
identity function has either one or two fixed points.

In particular, the identity function is the only fractional linear
transformation having more than two distinct fixed points.

By the above theorem we can identity a fractional linear trans-
formation by requiring to map three distinct points z1, z2, z3 to three
distinct points w1, w2, w3, respeoctively. This is done in the following
theorem.

Theorem 2.3.2 Given distinct points z1, z2, z3 and distinct points
w1, w2, w3 in the plane C̃, there exists a unique fractional linear trans-
formation ϕ such that ϕ(zj) = wj for j ∈ {1, 2, 3}.

Proof. First let us settle the uniqueness part. Suppose ϕ1 and ϕ2

are fractional linear transformations such that

ϕ(zj) = wj = ϕ2(zj), j ∈ {1, 2, 3}.

Then the fractional linear transformation ψ := ϕ−1
2 ◦ ϕ1 satisfies

ψ(zj) = wj for j ∈ {1, 2, 3}. Hence, ψ is the identity transformation,
so that ϕ− 1 = ϕ2.

Now, the question of existence. Let ϕ1 and ϕ2 be defined by

ϕ1(z) =
(z − z1)(z2 − z3)

(z − z3)(z2 − z1)
, ϕ2(z) =

(z − w1)(w2 − w3)

(z − w3)(w2 − w1)
.

If none of the points z1, z2, z3, w1, w2, w3 is ∞, then we see that

ϕ1(z1) = 0, ϕ1(z2) = 1, ϕ1(z3) =∞,

ϕ2(w1) = 0, ϕ2(w2) = 1, ϕ2(w3) =∞.
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Hence, the transformation ϕ := ϕ−1
2 ϕ1 satisfies the requirements. In

case one of the points z1, z2, z3 is ∞, then we define ϕ1 as follows:

(i) If z1 =∞, then ϕ1(z) = lim
ζ→∞

(z − ζ)(z2 − z3)

(z − z3)(z2 − ζ)
=
z2 − z3

z − z3
.

(ii) If z2 =∞, then ϕ1(z) = lim
ζ→∞

(z − z1)(ζ − z3)

(z − z3)(ζ − z1)
=
z − z1

z − z3
.

(iii) If z3 =∞, then ϕ1(z) := lim
ζ→∞

(z − z1)(z2 − ζ)

(z − ζ)(z2 − z1)
=

z − z1

z2 − z1
.

Similarly, if one of the points w1, w2, w3 is ∞, then we define ϕ2

as in the case of ϕ1 by replacing zj by wj . Thus, in these cases also,
the transformation ϕ := ϕ−1

2 ϕ1 maps zj onto wj for j ∈ {1, 2, 3}.

In the above theorem, if we write w = ϕ(z), then it can be seen
that

(w − w1)(w2 − w3)

(w − w3)(w2 − w1)
=

(z − z1)(z2 − z3)

(z − z3)(z2 − z1)

with the convention that if any of the points z1, z2, z3, w1, w2, w3 is
∞, the limit is taken for the corresponding expression.

2.3.4 Image of inverse points

Definition 2.3.4 Points p and q in the extended complex plane C̃ are
said to be inverse points with respect to a circle {z ∈ C : |z−z0| = r}
if

z0 − p =
r2

z̄0 − q̄
,

and in that case we say that p is inverse to q (respectively q is inverse
to p). ♦

Thus, points p and q are inverse points with respect to a circle
{z ∈ C : |z − z0| = r} if and only if

(i) they line on a ray emanating from 0 and have same arguments,
and

(ii) satisfies |z0 − p| |z0 − q| = r2 whenever p and q are different
from z0, and in case one of them is z0, then the other is ∞.

We are going to show that

Theorem 2.3.3 Under a bilinear transformation, inverse points are
mapped onto inverse points.



30 Analytic Functions

First suppose that the bilinear transformation is linear, i..e, it is
given by

ϕ(z) = az + b

for some nonzero a, b ∈ C. Let p and q be inverse points with respect
to a circle {z ∈ C : |z−z0| = r}. Then, taking α = ap+b, β = aq+b,
we have p = (α− b)/a and q = (β − b)/a so that

z0 − p =
r2

z̄0 − q̄
⇐⇒ z0 − (α− b)/a =

r2

z̄0 − (β̄ − b̄)/ā
.

Thus, α and β are inverse points with respect to the circle with
centre at −b/a and radius r. Clearly, p = ∞ (resp. q = ∞) if and
only if α =∞ (resp. β =∞).

Next we consider the situation under the transformation

ϕ(z) =
1

z
.

Suppose p is inverse to q with respect to the circle, |z − z0| = r.

Case (i): Assume first that both p and q are different from z0.
Then we have

z0 − p =
r2

z̄0 − q̄
⇐⇒ (z0 − p)(z̄0 − q̄) = r2

⇐⇒ (|z0|2 − r2)− (z̄0p+ z0q̄) + pq̄ = 0.

Now, taking α = 1/p, β = 1/q and ρ = |z0|2 − r2, we have

z0 − p =
r2

z̄0 − q̄
⇐⇒ (|z0|2 − r2)− (z̄0p+ z0q̄) + pq̄ = 0

⇐⇒ ρ− (
z̄0

α
+
z0

β̄
) +

1

αβ̄
= 0

⇐⇒
(
z̄0

ρ
− α

)(
z0

ρ
− β̄

)
= R2,

where

R2 =

∣∣∣∣ z̄0

ρ

∣∣∣∣2 − 1

ρ
=
r2

ρ2
.

Thus α := 1/p is inverse to β := 1/q with respect to the circle,
|z − w0| = R, where w0 = z̄0/ρ and R = r/|ρ|.

Case (ii): Suppose p = z0 so that q =∞.
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Clearly, if z0 = 0, then α := 1/p = ∞ is inverse to β := 1/q = 0
with respect to the circle, |z − w0| = R, where w0 = 0 and R =
r/|ρ| = 1/r.

Next assume that z0 6= 0. In this case, we have to show that
α = 1/z0 and β = 0 are inverse points. Note that(

z̄0

ρ
− α

)(
z0

ρ
− β̄

)
=

(
z̄0

ρ
− 1

z0

)(
z0

ρ

)
=
|z0|2 − ρ

ρ2
=
r2

ρ2
.

Thus, the point α = 1/z0 is inverse to β := 0 with respect to the
circle, |z − w0| = R, where w0 = z̄0/ρ and R = r/|ρ|.

Case (iii): Suppose p = z0 so that q = ∞: This case is similar to
last case.

Thus, we have proved Theorem 2.3.3.
Theorem 2.3.3 helps in finding a general bilinear transformation

that maps the open unit disc D = {z ∈ C : |z| < 1} onto itself.
Suppose the the required transformation is given by

ϕ(z) =
az + b

cz + d
, ad− bc 6= 0.

Suppose z0 ∈ D be such that ϕ(z0) = 0, i.e.,

az0 + b

cz0 + d
= 0.

Hence, z0 = −b/a. Also we have

ϕ(z) =
(a
c

) z + b/a

z + d/a
=
(a
c

) z − z0

z + d/a
.

Note that z1 := 1/z̄0 = −ā/b̄ is the inverse point of z0 with respect
to the circle S := {z ∈ C : |z| = 1}. Since inverse points are mapped
onto the respective inverse points, z1 must be mapped onto ∞, as 0
and ∞ are inverse points. Thus, z1 = −d/a, and hence, d/a = −z̄0

so that

ϕ(z) =
(az̄0

c

) z − z0

zz̄0 − 1
.

Again, since

|ϕ(1)| = 1 and

∣∣∣∣1− z0

1− z̄0

∣∣∣∣ = 1,

we have |az̄0/c| = 1. Thus, we obtain

ϕ(z) = α

(
z − z0

zz̄0 − 1

)
with |α| = 1, |z0| < 1.
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2.4 Problems

1. Suppose u is a real valued function defined on an open set
Ω ⊆ R2. Let (x0, y0) ∈ Ω.

(i) When do you say that u has partial derivatives ux and uy
at (x0, y0)?

(ii) When do you say that u is differentiable at (x0, y0)?

(iii) What is gradient of u at (x0, y0)?

(iv) What is the relation between gradient and derivative of u?

2. Show that a function f is differentiable at z0 ∈ Ω if and only if
its real part u and imaginary part v are differentiable at (x0, y0)
and ux, uy, vx, vy satisfy the equations

ux(z0) = vy(z0), uy(z0) = −vx(z0),

and in that case

f ′(z0) = ux(z0) + ivx(z0) = vy(z0)− iuy(z0).

3. Find points at which the following functions are differentiable:

(i) f(z) = x, (ii) f(z) = z̄ = x− iy,

(iii) f(z) = |z|2, (iv) f(z) = z̄2.

4. Find points at which the functions in the last problem satisfy
CR-equations.

5. Prove that the CR-equations in polar coordinates are qrur =
vθ, uθ = −rvr.

6. Suppose f is holomorphic on an open set Ω. Prove that if f
satisfies any of the following conditions, then f is a constant
function.

(i) f ′ is constant on Ω,

(ii) f is real valued on Ω,

(iii) |f | is constant on Ω,

(iv) arg(f) is constant on Ω.
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7. Suppose f is holomorphic on an open set Ω. Prove that the
function z 7→ g(z) = f(z̄) is holomorphic in Ω∗ := {z̄ : z ∈ G}.

8. (i) Show that the equation of a straight line is given by

ᾱz + αz̄ + γ = 0

for some α, β in C and γ ∈ C.

(ii) Show that the above line passes through 0 if and only if
γ = 0.

9. Show that the equation of a circle with centre at z0 and radius
r > 0 is given by

|z|2 − (z̄0z + z0z̄) + |z0|2 − r2 = 0

10. Prove the following:

(i) For nonzero a ∈ C, the function z 7→ az maps a straight
line into a straight line and a circle into a circle.

(ii) For nonzero b ∈ C, the function z 7→ z + b maps a straight
line into a straight line and a circle into a circle.

11. For nonzero a, b ∈ C, the function z 7→ az + b maps a straight
line into a straight line and a circle into a circle - Why?

12. Given a curve γ : [0, 1]→ C, let γ̃ : [a, b]→ C be defined by

γ̃(t) = γ(a+ (b− a)t).

If Γ and Γ̃ are the images of γ and γ̃ respectively, then show
that Γ and Γ̃ are homeomorphic.

13. Find the points at which the curve γ : [0, 4]→ C defined in the
following are not regular. Justify your answer:

γ(t) :=


t, 0 ≤ t ≤ 1,
1 + (t− 1)i, 1 < t ≤ 2,
3− t+ i, 2 < t ≤ 3,
(4− t)i, 3 < t ≤ 4.

14. Let f be defined on an open set Ω and differentiable at a point
z0 ∈ Ω and f ′(z0) 6= 0. Then prove that f preserves angle
between curves which are regular at z0 and intersecting at z0.
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15. Define
∂f

∂x
and

∂f

∂y
, and show that the real and imaginary parts

of f satisfy the CR-equations if and only if

∂f

∂x
+ i

∂f

∂y
= 0

16. Define the operators
∂f

∂z
and

∂f

∂z̄
and show that the real and

imaginary parts of f satisfy the CR-equations if and only if
∂f

∂z̄
= 0.

17. Show that
∂2f

∂z̄∂z
=

1

4

(
∂2f

∂x2
+
∂2f

∂y2

)
,

and deduce that f harmonic on Ω ⇐⇒ ∂2f

∂z̄∂z
= 0.

18. Prove that v is a harmonic conjugate of u if and only if −u is
a harmonic conjugate of v.

19. Prove that v1 and v2 are harmonic conjugates of u if and only
v1 − v2 is a constant.

20. Prove that if u is a real valued harmonic function on an open set
Ω, then any two harmonic conjugates of u differ by a constant.

21. Prove that if u is a real valued on an open set Ω such that both
u and u2 are harmonic on Ω, then u is a constant function.

22. Prove that if u and v are harmonic functions on an open set Ω
such that v is a harmonic conjugate of u, then uv and u2 − v2

are harmonic.

23. Prove that the Laplace equation 4u = 0 can be written in
polar coordinates as r2urr + rur + uθτ = 0.

24. Prove that if u is a real valued harmonic function on an open

set Ω, then
∂u

∂z
is holomorphic on Ω.

25. Suppose ϕ1 and ϕ2 are fractional linear transformations. Prove
that ϕ1 ◦ ϕ2 and ϕ2 ◦ ϕ1 are fractional linear transformations.
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26. Consider a fractional linear transformation ϕ given by

ϕ(z) =
az + b

cz + d
, z ∈ C̃.

(i) Show that ϕ is one-one and onto and its inverse is given by

ϕ−1(z) =
−dz + b

cz − a
, z ∈ C̃.

(ii) Show that ϕ is differentiable at every z ∈ C and its deriva-
tive is given by

ϕ′(z) =
ad− bc

(cz + d)2
, z ∈ C.

27. Show that the set of all fractional linear transformations is in
one-one correspondence with the set of all 2 × 2 nonsingular
matrices with complex entries.

28. Let F be the set of all fractional linear transformations. Define
a binary operation on F so that F becomes a group.

29. Show a fractional linear transformation maps every circle and
straight line in C onto either a circle or a straight line.

30. Prove that the identity function is the only fractional linear
transformation having more than two distinct fixed points.

31. Given distinct points z1, z2, z3 and distinct points w1, w2, w3

in the plane C̃, show that the fractional linear transformation
w = ϕ(z) defined by

(w − w1)(w2 − w3)

(w − w3)(w2 − w1)
=

(z − z1)(z2 − z3)

(z − z3)(z2 − z1)

map z1, z2, z3 onto w1, w2, w3, respectively.

32. Find the fractional linear transformation ϕ that maps −1, 0, i
onto the points 0, 1, −i, respectively.

What is the image of the circle passing through −1, 0, i? A
circle or a straight line? Why?
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33. Find the fractional linear transformation ϕ that maps 0, 1, ∞
onto the points 1, i, −1, respectively.

What is the image of the real axis under this transformation?
Why?

34. Find the fractional linear transformation ϕ that maps 1, i, −1
onto the points i, 0, −i, respectively.

What is the image of the unit circle (with centre at 0) under
this transformation? Why?

35. Suppose

ϕ(z) =
az + b

cz + d
, z ∈ C̃.

is the fractional linear transformation that maps the real axis
onto the unit circle (with centre 0). Show that

|a| = |c| 6= 0, |b| = |d| 6= 0.

36. If the fractional linear transformation in the last problem maps
the upper half plane onto the open unit disk, then show that
it is of the form

ϕ(z) = α
z − z0

z − z̄0

for some α, z0 in C such that |α| = 1 and Im(z0) > 0.
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Elementary Functions

In this chapter we define the complex analogues of real elementary
functions, namely, the functions such as polynomials, rational func-
tions, exponential functions, and the functions obtained from these
functions by applying the operations of addition, substraction, multi-
plications, divisions and compositions. We are already familiar with
polynomials

p(z) = a0z
n + a1z

n−1 + . . .+ an−1z + an

and rational functions

f(z) =
a0z

n + a1z
n−1 + . . .+ an−1z + an

b0zm + b1zm−1 + . . .+ bm−1z + bm
.

Note that the above two types functions are holomorphic wherever
they are defined. Now we shall consider exponential function and
other elementary functions associated with it.

3.1 Exponential Function

Recall that the function exp(x), denoted by ex for real x is defined
by

ex :=

∞∑
n=1

xn

n!
,

and we know that, it satisfies the relation

ex1+x2 = ex1ex2 , x1, x2 ∈ R.

In view of this we may define

eiy :=

∞∑
n=1

(iy)n

n!
, (∗)

37
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for real y. Note that the series in (∗) converge absolutely for every
y ∈ R so that

eiy =
∞∑
n=0

(iy)2n

(2n)!
+
∞∑
n=0

(iy)2n+1

(2n+ 1)!

=
∞∑
n=0

(−1)ny2n

(2n)!
+ i

∞∑
n=0

(−1)ny2n+1

(2n+ 1)!

= cos y + i sin y.

In view of the above we may define ez for z = x + iy with x, y ∈ R
as

ez := ex(cos y + i sin y).

We note that the function z 7→ ez satisfies

• ez1+z2 = ez1ez2 for every z1, z2 ∈ C,

• ez+2πi = ez for every z ∈ C, and

• it is holomorphic on the entire complex plane.

Further, we observe that for x = Re(z) and y = Im(z),

• |ez| = ex and arg(z) = y.

The last property shows that the function z 7→ ez maps straight
lines parallel to y-axis onto concentric circles with centre 0, and
straight lines parallel to y-axis onto rays emanating from 0. In fact,

• the strip {z ∈ C : −π ≤ Im(z) < π} is mapped onto the entire
complex plane.

Exercise 3.1.1 Given θ1 and θ2 ∈ [0, 2π) with θ1 < θ2, , describe
the image of the strip {z ∈ C : θ1 ≤ Im(z) < θ2} under the map
z 7→ ez. /

Exercise 3.1.2 Given r,R0 with 0 < r < R, describe the image of
the strip {z ∈ C : r ≤ Re(z) < R} under the map z 7→ ez. /

Exercise 3.1.3 For the function f(z) = ez, describe the curves

|f(z)| = constant, arg(f(z)) = constant.

/
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Exercise 3.1.4 If f is is holomorphic on C satisfying f ′(z) = f(z),
and g is defined by g(z) = e−zf(z), then show that g′(z) = 0, so that
f(z) = cez for some constant c ∈ C. /

Exercise 3.1.5 Find the most general form of a holomorphic f on
C satisfying f ′(z) = cf(z) for some constant c ∈ C. /

Having defined exponential function, we move on to define hy-
perbolic and trigonometric functions.

3.2 Hyperbolic and Trigonometric Functions

For z ∈ C, we define hyperbolic and trigonometric functions.

Hyperbolic functions:

sinh z =
ez + e−z

2
, cosh z =

ez − e−z

2
,

tanh z =
sinh z

cosh z
, coth z =

cosh z

sinh z
,

sechz =
1

cosh z
, cosechz =

1

sinh z
.

Trigonometric functions:

sin z =
eiz + e−iz

2
, cos z =

eiz − e−iz

2i
,

tan z =
sin z

cos z
, cot z =

cos z

sin z
,

secz =
1

cos z
, cosecz =

1

sin z
.

One may observe that

sin z =
sinh z

i
, cos z = cosh iz.

Exercise 3.2.1 Derive the identities:
(i) cosh(z1 + z2) = cosh z1 cosh z2 + sinh z1 sinh z2.

(ii) sinh(z1 + z2) = sinh z1 cosh z2 + cosh z1 sinh z2.

(iii) cos z = cosx cosh y − i sinx sinh y.

(iv) sin z = sinx cosh y + i cosx sinh y.
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(v) | cos z|2 = cos2 x+ sinh2 y.

(vi) | sin z|2 = sin2 x+ sinh2 y. /

Exercise 3.2.2 Show that

cos(z + 2π) = cos z, sin(z + 2π) = sin(z)

for all z ∈ C. /

Exercise 3.2.3 Find zeros of sin z and cos z. /

Exercise 3.2.4 Find all roots of the equation cos z = 1. /

3.3 Logarithms

Definition 3.3.1 Logarithm of a complex number a is a complex
number b such that eb = a, and in that case we write b = log a. ♦

Thus,
• a complex number b is a logarithm of a complex number a if

and only if b is a zero of the function f defined by f(z) = ez − a.
Clearly,
• if b is a logarithm of a, then b + 2nπi is also a logarithm of a

for every n ∈ Z.
Observe that if b = log a, then

|a| = |eb| = eRe(b) and arg(a) = Im(b).

Hence,
log a = ln |a|+ i arg(a).

The value of log a corresponding to the principal value of arg a is
denoted by Log a, i.e.,

Log a = ln |a|+ iArg a.

Exercise 3.3.1 Show that, for n ∈ Z,
(i) 2nπi = log 1.
(ii) (2n+ 1)πi = log(−1).
(iii)

(
2n+ 1

2

)
πi = log i. /

Exercise 3.3.2 Find all values of
(i) cosh(log 2),
(ii) log(log i). /

Exercise 3.3.3 Does the relation log a1a2 = log a1 + log a2 hold for
all nonzero a1, a2 in C? /
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3.4 Branches of arg(z) and log(z)

Recall that
z 7→ arg(z) and z 7→ log(z)

are “multi-valued mappings”. So, by the strict definition of the term,
they are not functions. They can be considered as set-valued func-
tions, that is, arg(z) and log(z) are subsets of C containing more
than one elements rather than single numbers. Recall that

log(z) = ln |z|+ i arg(z). (∗)

Now, the question is the following:

Given a multi-valued map f(z) on certain open set Ω,
can we identify certain values of f(z) for each z ∈ Ω, say
F (z) ∈ f(z) such that the F : Ω → C is a continuous
function?

For instance,
z 7→ Arg (z)

is a single valued function on C \ {0}. But, this function is not
continuous on the negative real axis:

zn = −1 + i/n→ −1, z′n = −1− i/n→ −1,

but,
Arg (zn)→ π, Arg (z′n)→ −π.

However, if Ω0 is the set obtained by deleting the whole of negative-
real axis, including 0, from the complex plane, then the function

z 7→ Arg (z)

is continuous on Ω0. Similarly,

z 7→ Log (z)

is continuous on Ω0.

Definition 3.4.1 Suppose f is a multi-valued map defined on an
open connected set Ω ⊆ C. Then by a branch of f we mean a
continuous function f0 : Ω0 → C defined on an open set Ω0 ⊆ Ω such
that for each z ∈ Ω0, f0(z) is one of the values of f(z). ♦
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Suppose fa and f` are branches of arg(z) and log(z), respectively,
on an open connected set Ω0.

In view of (∗),
f`(z) = ln |z|+ ifa(z)

and hence

fa(z) = Imf`(z).

It can be see that

• difference of any two branches of arg(z) is an integer multiple
of 2π and

• difference of any two branches of log(z) is an integer multiple
of 2πi.

By the discussion preceding the definition, it is clear that

fa(z) := Arg (z) and f`(z) := Log (z)

are branches of arg(z) and log(z), respectively, on the set

Ω := {z = reiθ : r > 0, −π < θ < π}.

Also, arg(z) and log(z) have branches on any open disc which
does not contain the point 0. If z0 = r0e

iθ0 is the centre of the disc,
then we can define

fa(z) = arg(z) with θ0 − π/2 < arg(z) < θ0 + π/2.

The point 0 has special significance for the arg(z) and log(z) and
hence has a special name for it, the branch point.

Definition 3.4.2 Let f be a multi-valued map defined on an open
connected set Ω and f0 be a branch of f on an open subset Ω0 of Ω.

(i) A curve Γ in Ω is called a branch cut for f if f has a branch
on Ω0 := Ω \ Γ.

(ii) A point z0 ∈ Ω is called a branch point for f if z0 is the
intersection of all branches of f .

♦
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Analyticity of branches of logarithm function

Let fa(z) be a branch of arg(z) in an open connected set Ω. We
know that Ω cannot contain 0, and fa(z) is a real valued continuous
function. Let f`(z) be the corresponding branch of log(z), i.e.,

f`(z) = ln |z|+ ifa(z), z ∈ Ω.

We show that f` is analytic in Ω.

Clearly,

f`(z) =
1

2
ln(r2) + iθ, z := reiθ ∈ Ω.

Recall that if f := u+ iv is an analytic function on an open set, then
the CR-equations in polar coordinates is given by

rur = vθ, uθ = −rvr.

In the case of f` we have

u(r, θ) =
1

2
ln(r2), v(r, θ) = θ.

Hence, we have

ur =
1

r
, uθ = 0, vr = 0, vθ = 1.

Thus, the partial derivatives of u and v are continuous and they
satisfy CR-equations. Hence, f` is analytic in Ω.

It can be also, seen that

f`(z) =
1

2
ln(x2 + y2) + i tan−1(y/x), z = x+ iy ∈ Ω.

Hence,

ux =
x

x2 + y2
, uy =

y

x2 + y2
, vx =

−y
x2 + y2

, vy =
x

x2 + y2
.

Again we see that partial derivatives of u and v are continuous and
they satisfy CR-equations. Further, we have

f ′(z) = ux + ivx =
x− iy
x2 + y2

=
z̄

|z|2
=

1

z
.
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3.5 Problems

1. For y ∈ R, show that the series eiy :=
∑∞

n=1
(iy)n

n! converges.

2. For y ∈ R, eiy = cos y + i sin y. Why?

3. Show that the function z 7→ ez is holomorphic on the entire
complex plane and satisfies the following:

(i) ez1+z2 = ez1ez2 for every z1, z2 ∈ C,

(ii) ez+2πi = ez for every z ∈ C,

(iii) if x = Re(z) and y = Im(z), then |ez| = ex and arg(z) = y,
and

(iv) the strip {z ∈ C : −π ≤ Im(z) < π} is mapped onto the
entire complex plane.

4. Given θ1 and θ2 ∈ [0, 2π) with θ1 < θ2, , describe the image of
the strip {z ∈ C : θ1 ≤ Im(z) < θ2} under the map z 7→ ez.

5. Given r,R0 with 0 < r < R, describe the image of the strip
{z ∈ C : r ≤ Re(z) < R} under the map z 7→ ez.

6. For the function f(z) = ez, describe the curves

|f(z)| = constant, arg(f(z)) = constant.

7. If f is is holomorphic on C satisfying f ′(z) = f(z), and g is
defined by g(z) = e−zf(z), then show that g′(z) = 0, so that
f(z) = cez for some constant c ∈ C.

8. Find the most general form of a holomorphic f on C satisfying
f ′(z) = cf(z) for some constant c ∈ C.

9. Derive the identities:

(i) cosh(z1 + z2) = cosh z1 cosh z2 + sinh z1 sinh z2.

(ii) sinh(z1 + z2) = sinh z1 cosh z2 + cosh z1 sinh z2.

(iii) cos z = cosx cosh y − i sinx sinh y.

(iv) sin z = sinx cosh y + i cosx sinh y.
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(v) | cos z|2 = cos2 x+ sinh2 y.

(vi) | sin z|2 = sin2 x+ sinh2 y.

10. Show that

cos(z + 2π) = cos z, sin(z + 2π) = sin(z)

for all z ∈ C.

11. Find zeros of sin z and cos z.

12. Find all roots of the equation cos z = 1.

13. Show that if b is a logarithm of a, then b + 2nπi is also a
logarithm of a for every n ∈ Z.

14. Show that if b = log a, log a = ln |a|+ i arg(a).

15. Show that, for n ∈ Z,

(i) 2nπi = log 1.

(ii) (2n+ 1)πi = log(−1).

(iii)
(
2n+ 1

2

)
πi = log i.

16. Find all values of

(i) cosh(log 2),

(ii) log(log i).

17. Does the relation log a1a2 = log a1 + log a2 hold for all nonzero
a1, a2 in C?
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Power Series

4.1 Convergence

In this chapter we study convergence and other properties of series
of the form a0 +

∑∞
n=1 an(z − z0)n which we write as

∞∑
n=0

an(z − z0)n (∗)

whenever sequence (an) in C and z0 ∈ C are given.
Clearly, the series (∗) is a special case of the series

∞∑
n=0

fn(z), (∗∗)

where (fn) is a sequence of complex valued functions defined on some
subset Ω ⊆ C.

Definition 4.1.1 The series in (∗∗) is said to converge at a point
z ∈ Ω if the sequence of its partial sums converge at z, i.e., if the
sequence (gn(z)) of complex numbers, where

gn(z) =
n∑
j=0

fj(z), z ∈ Ω, (+)

converges. ♦

Definition 4.1.2 The series in (∗∗) is said to converge

(i) point-wise to a function g on Ω if it converges to g(z) at every
point z ∈ Ω;

(ii) absolutely on Ω if the series
∑∞

n=0 |fn(z)| converges at every
point z ∈ Ω;

46
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(iii) uniformly to a function g on Ω if the sequence (gn) defined as
in (+) converge uniformly to g on Ω.

♦
Remark 4.1.1 It can be seen that if (∗∗) converges at a point z,
then

fn(z)→ 0 as n→∞.

This follows from the face that

|fn(z)| = |gn(z)− gn−1(z)| → 0 as n→∞.

It should be noted that a series of the form
∑∞

n=1 an, where (an)
is a sequence of complex numbers, is a particular case of (∗∗) with
fn(z) = an for all z ∈ C. ♦

EXAMPLE 4.1.1 Consider the series
∑∞

n=0 z
n. Note that

gn(z) =

n∑
j=0

zj =
1− zn+1

1− z
, z 6= 1,

so that
1

1− z
− gn(z) =

zn+1

1− z
.

Thus, if |z| < 1, then

gn(z)→ 1

1− z
as n→∞.

Also, for z| < 1, we have

n∑
j=0

|zj | = 1− |z|n+1

1− |z|
→ 1

1− |z|
as n→∞.

Thus, the series
∑∞

n=0 z
n converges absolutely for |z| < 1. Further,

if 0 < r < 1, then for |z| ≤ r, we have∣∣∣∣ 1

1− z
− gn(z)

∣∣∣∣ =
|z|n+1

|1− z|
≤ rn+1

1− r
.

Since rn → 0, it follows that
∑∞

n=0 z
n converges uniformly on the set

{z ∈ C : |z| < r}. �
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As in the case of real valued functions of real variable, we have
the following result.

Theorem 4.1.1 (M-test) Suppose (fn) is a sequence of complex
valued functions defined on some subset Ω ⊆ C. Suppose there exists
a sequence (Mn) of positive real numbers such that

(i) |fn(z)| ≤Mn for all n ∈ N and for all z ∈ Ω, and

(ii)
∑∞

n=1Mn converges.

Then the series
∑∞

n=1 fn converges uniformly on Ω.

Proof. Note that for n > m,

|gn(z)− gm(z)| =

∣∣∣∣∣∣
n∑

j=m+1

fj(z)

∣∣∣∣∣∣ ≤
n∑

j=m+1

|fj(z)| ≤
n∑

j=m+1

Mj . (?)

Now, let ε > 0, and let N ∈ N, Since
∑∞

n=1Mn converges, from
the above it follows from (?) that (gn(z)) is a Cauchy sequence, and
hence it converges. Let

g(z) = lim
n→∞

gn(z), z ∈ Ω.

Again from (?),

|g(z)− gm(z)| = lim
n→∞

|gn(z)− gm(z)| ≤
∞∑

j=m+1

Mj .

Now, let ε > 0 be given and N ∈ N be such that
∑n

j=m+1Mj < ε
for all m ≥ N . Then we have

|g(z)− gm(z)| < ε ∀n ≥ N, ∀ z ∈ Ω.

Thus, (gn) converges uniformly to g.

Now, we prove an important theorem due to Abel1 in the theory
of power series.

1Niels Henrik Abel (5 August 1802 – 6 April 1829) was a noted Norwegian
mathematician who proved the impossibility of solving the quintic equation in
radicals - Curtsey Wikepedia.
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Theorem 4.1.2 Consider a power series
∑∞

n=0 an(z − z0)n. If this
series converges at a point z1, then it converges at every point z such
that |z − z0| < |z1 − z0|.

An immediate corollary:

Corollary 4.1.3 If the power series
∑∞

n=0 an(z− z0)n diverges at a
point z2, then it diverges at every point z such that |z−z0| > |z2−z0|.

Proof of Theorem 4.1.4. Suppose
∑∞

n=0 an(z − z0)n converges at
z1. Let z be such that |z−z0| < |z1−z0|. Note that for every n ∈ N,

|an(z − z0)n| = |an(z1 − z0)n|
(
|z − z0|
|z1 − z0|

)n
.

Since |an(z1−z0)n| → 0, there exists M > 0 such that |an(z1−z0)n| ≤
M for all n ∈ N, and since |z − z0| < |z1 − z0|,

∑∞
n=1

( |z−z0|
|z1−z0|

)n
converges. Hence, by comparison test, the series

∑∞
n=0 |an(z − z0)n|

converges.

Theorem 4.1.4 Suppose a power series
∑∞

n=0 an(z−z0)n converges
for all z with |z − z0| < r for some r > 0. Then, for any ρ with
0 < ρ < r, the series

∑∞
n=0 an(z − z0)n converges uniformly on the

set {z : |z − z0| ≤ ρ}.
In particular,

∑∞
n=0 an(z − z0)n converges uniformly on every

compact subset of the disc {z : |z − z0| < r}.

Proof. Let ρ < r1 < r and let z1 be such that |z1−z0| = r1. Then
we have

|an(z − z0)n| = |an(z1 − z0)n|
(
|z − z0|
r1

)n
≤ |an(z1 − z0)n|

(
ρ

r1

)n
.

Let M > 0 be such that |an(z1 − z0)n| ≤M for all n ∈ N. Thus,

|an(z − z0)n| ≤M
(
ρ

r1

)n
∀n ∈ N.

Hence, by M-test,
∑∞

n=0 an(z − z0)n converges uniformly on the set
{z : |z − z0| ≤ ρ}.

Suppose

R := sup{|z − z0| :
∞∑
n=0

an(z − z0)n converges at z}.
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By Theorem 4.1.4 and Corollary 4.1.3, it follows that

∞∑
n=0

an(z − z0)n converges for |z − z0| < R

and
∞∑
n=0

an(z − z0)n diverges for |z − z0| > R.

Definition 4.1.3 For the series
∑∞

n=0 an(z − z0)n, the number

R := sup{|z − z0| :
∞∑
n=0

an(z − z0)n converges at z}

is called the radius of convergence of the series. The disc

{z : |z − z0| < R}

is its disc of convergence and the set

{z ∈ C :
∞∑
n=0

an(z − z0)n converges at z}

is called its region of convergence. ♦

Clearly, if Ω is the region of convergence, then

{z : |z − z0| < R} ⊆ Ω ⊆ {z : |z − z0| ≤ R}.

Thus, region of convergence may include some of the boundary points
of the disc of convergence. See the following examples.

EXAMPLE 4.1.2 (i) Consider the series
∞∑
n=0

zn. Its radius of con-

vergence is 1. Its disc of convergence and region of convergence are
the same, the disc:

{z : |z − z0| < 1}.

(ii) Consider the series
∞∑
n=0

zn

n2
. Since |zn/n2| ≤ 1/n2 for all z

with |z| ≤ 1, the series converges absolutely on

Ω := {z ∈ C : |z| ≤ 1}.
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If z 6∈ Ω, then |z|n/n2 6→ 0 (see Exercise 4.1.1). Thus, the series does
not converge outside Ω. Hence, the region of convergence is Ω, and
the disc of convergence is interior of Ω.

(iii) Consider the series
∞∑
n=0

zn

n
. Since |zn/n| ≤ |z|n for all n ,

the series converges absolutely for |z| < 1. Also, the series does not
converge at z = 1. Hence, the radius of convergence is 1.

Now, let z be such that |z| = 1 and z 6= 1. Since∣∣∣ n∑
j=0

zj
∣∣∣ =

∣∣∣∣1− zn+1

1− z

∣∣∣∣ ≤ 2

|1− z|
∀n ∈ N.

Now, recall (see Theorem 3.42 in Rudin2) that if
(∑n

j=1 aj

)
is bounded

and (bn) is a decreasing sequence of non-negative real numbers which
converges to 0, then

∑∞
n=1 anbn converges. In the present example,

we have an = zn with |z| = 1, z 6= 1 and bn = 1/n. Thus,
∑∞

n=0 z
n/n

converge. Thus, the region of convergence of
∑∞

n=0 z
n/n is

{z : |z − z0| ≤ 1} \ {1}.

(iv) Consider the series
∞∑
n=0

zn

n!
. Since |zn/n!| ≤ 1/n! for all n

and for all z ∈ C, the series converges absolutely in the entire plane.
Hence, the region of convergence is the entire C.

(v) Consider the series

∞∑
n=0

n!zn. Writing an = n!zn, we have for

z 6= 0 ∣∣∣an+1

an

∣∣∣ = (n+ 1)|z| → ∞ as n→∞.

Hence, for z 6= 0, an 6→ 0 (see Exercise 4.1.1). Thus, region of
convergence of the series is the singleton set {0}. �

2W. Rudin, Principles of Mathematical Analysis, 1976: Let An :=
∑n
j=1 an

and M > 0 is such that |An| ≤M for all n ∈ N. For q > p, we have

q∑
n=p

anbn =

q∑
n=p

(An −An−1)bn =

q−1∑
n=p−1

An(bn − bn+1) + Apbp + Aqbq.

Hence,
∣∣∣ q∑
n=p

anbn| ≤ M

q−1∑
n=p−1

(bn − bn+1) + Mbp + Mbq = M(bp−1 + bq) → 0 as

p, q →∞.
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Exercise 4.1.1 Suppose an > 0 for all n ∈ N and
an+1

an
→ α. Prove

that
(i) if α ≥ 1, then an 6→ 0, and
(ii) if α > 1, then an →∞. /

For the next theorem, we recall the following from real analysis:

Theorem 4.1.5 Let (an) be a sequence of positive real numbers and
b = lim supn an. Then the following hold:

(i) If b < `, then there exists k ∈ N such that an < ` for all n ≥ k.

(ii) If b > `, then an > ` for infinitely many n ∈ N.

Proof. Let bn := sup{aj : j ≥ n}. Then, we see that (bn) is a
decreasing sequence, and hence

b := lim sup
n
an := lim

n→∞
bn.

(i) Suppose b < `. Then there exists k ∈ N such that bk < `.
Hence, an ≤ bk < ` for all n ≥ k.

(ii) Suppose b > `. Then bn > ` for all n ∈ N. Hence for each
n ∈ N, there exists kn ∈ N such that kn > n and a

kn
> `.

Using the above theorem we have the following result on conver-
gence of a sequence of complex numbers.

Theorem 4.1.6 Suppose (an) is a sequence in C, and

b := lim sup
n
|an|1/n.

Then the series
∑∞

n=1 an

(i) converges absolutely if b < 1, and

(ii) diverges if b > 1.

Proof. (i) Suppose b < 1, and let ` be such that b < ` < 1. Then
by Theorem 4.1.5 (i), there exists k ∈ N such that |an|1/n < ` for all
n ≥ k. Thus,

|an| < `n ∀n ≥ k.
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Since 0 ≤ ` < 1, the series
∑∞

n=1 `
n, and hence the series

∑∞
n=1 |an|

converges.

(ii) Suppose b > 1, and let ` be such that 1 < ` < b. Then
by Theorem 4.1.5 (ii), there exists a sequence (kn) in N such that
|akn |1/kn > ` for all n ∈ N. Thus,

|akn | > `kn > 1 ∀n ∈ N.

Hence, an 6→ 0. Consequently, the series
∑∞

n=1 an diverges.

Theorem 4.1.7 (Cauchy3–Hadamard4 theorem) For a sequence
(an) in C, let

β := lim sup
n
|an|1/n.

Then R := 1/β is the radius of convergence of
∑∞

n=0 an(z − z0)n.

Proof. By Theorem 4.1.6, the series
∑∞

n=0 an(z − z0)n

(i) converges if |z − z0| lim supn |an|1/n < 1, and

(ii) diverges if |z − z0| lim supn |an|1/n > 1.

From the above, the conclusion follows.

Using similar arguments as in the proof of Theorem 4.1.7, we
obtain the following.

Theorem 4.1.8 (Ratio test) For a sequence (an) of nonzero com-
plex numbers, let

γ := lim sup
n

∣∣∣an+1

an

∣∣∣.
Then R := 1/γ is the radius of convergence of

∑∞
n=0 an(z − z0)n.

Exercise 4.1.2 Find the radius of convergence for each of the fol-
lowing series5:

(i)
∞∑
n=0

n2zn, (ii)

∞∑
n=0

2n

n!
zn, (iii)

∞∑
n=1

2n

n2
zn, (iv)

∞∑
n=0

n3

3n
zn. /

3Augustine Luis Cauchy (21 August 1789 – 23 May 1857)
4Jaques Hadamard (8 December 1865 - 17 October 1963)
5W.Rudin, Chapter 3, Exercise 9.
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Theorem 4.1.9 Suppose R > 0 be the radius of convergence of the
series

∑∞
n=0 an(z − z0)n, and

f(z) :=
∞∑
n=0

an(z − z0)n for |z − z0| < R.

Then f is differentiable and the series
∑∞

n=1 nan(z−z0)n−1 converges
for |z| < R and

f ′(z) =
∞∑
n=1

nan(z − z0)n−1 for |z − z0| < R.

Proof. Since lim supn |nan|1/n = lim supn |an|1/n the radii of con-
vergence of

∑∞
n=0 an(z−z0)n and

∑∞
n=1 nan(z−z0)n−1 are the same.

Thus,
∑∞

n=1 nan(z − z0)n−1 converges for |z − z0| < R. Let

g(z) =
∞∑
n=1

nan(z − z0)n−1, |z − z0| < R.

For the sake simplicity of presentation, without loss of generality, we
assume that z0 = 0. Thus,

f(z) =

∞∑
n=0

anz
n, g(z) =

∞∑
n=1

nanz
n−1 for |z − z0| < R.

Now, let 0 < ρ < R and let z 6= z1 with |z| ≤ ρ, |z1| ≤ ρ. Note that

f(z)− f(z1) =
∞∑
n=0

an(zn − zn1 )

=
∞∑
n=0

an(z − z1)
n−1∑
k=0

zkzn−k−1
1

Hence,

f(z)− f(z1)

z − z1
− g(z1) =

∞∑
n=1

an

[ n−1∑
k=0

zkzn−k−1
1 − nzn−1

1

]
=

∞∑
n=2

an

[ n−1∑
k=0

zn−k−1
1 (zk − zk1 )

]
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Now,

zn−k−1
1 (zk − zk1 ) = zn−k−1

1 (z − z1)
k−1∑
j=0

zjzk−j−1
1

so that

|zn−k−1
1 (zk − zk1 ) ≤ |z − z1|ρn−k−1

k−1∑
j=0

ρjρk−j−1 ≤ |z − z1|kρn−2.

Thus,

∣∣∣f(z)− f(z1)

z − z1
− g(z1)

∣∣∣ ≤ ∞∑
n=2

|an|
[ n−1∑
k=0

|z − z1|kρn−2

≤ |z − z1|
∞∑
n=2

|an|
n(n− 1)

2
ρn−2.

Since
∑∞

n=2 |an|
n(n−1)

2 ρn−2 converges (Why?), we have

f(z)− f(z1)

z − z1
→ g(z1) as z → z1.

Thus, the proof is complete.

By the above theorem, a power series can be differentiated term
by term within its disc of convergence. Further, if f represents a
power series on its disc of convergence, i.e.,

f(z) :=

∞∑
n=0

an(z − z0)n for |z − z0| < R.

then f is infinitely times differentiable, and for any k ∈ N,

f (k)(z) :=

∞∑
n=k

n!

(n− k)!
an(z − z0)n−k for |z − z0| < R.

Hence, we have

ak =
f (k)(z0)

k!
, k ∈ N.

The above discussion urges us to ask the following question:
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Suppose f is holomorphic in a disc centered at z0. Then,
does f have the representation

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n

in that disc?

We answer this question affirmatively.

Suppose f is holomorphic in a neighborhood of z0. Let Ω be the
largest open disc centered at z0 in which f is holomorphic, i.e., if

ρ := sup{|z − z0| : f is holomorphic at z},

then Ω = {z ∈ C : |z − z0| < ρ}. We shall show that there exists
(an) in C such that

f(z) =

∞∑
n=0

an(z − z0)n ∀ z ∈ Ω,

and hence

f(z) =
∞∑
n=0

f (n)(z0)

n!
(z − z0)n ∀ z ∈ Ω.

This is one of the biggest differences between

(i) a real valued differentiable function of a real variable on an
open set in R and

(ii) a complex valued differentiable function of a complex variable
on an open set in C.

4.2 Problems

Note: Problems from 1-3 and 9-12 are discussed in class, either by
proving them, or by way of indicating their proofs.

1. Suppose a power series
∑∞

n=0 an(z − z0)n converges for all z
with |z − z0| < r for some r > 0. Then, prove that for any ρ
with 0 < ρ < r, the series

∑∞
n=0 an(z−z0)n converges uniformly

on the set {z : |z − z0| ≤ ρ}.
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2. Let R be the radius of convergence of
∑∞

n=0 an(z− z0)n. Prove
the following:

(i) If the series converges at z1, then R ≥ |z1 − z0|.

(ii) If the series diverges at z2, then R ≤ |z2 − z0|.

(iii) If
∑∞

n=0 |an(z − z0)n| diverges at z2, then R ≤ |z2 − z0|.

3. If (an) and (bn) are sequences of complex numbers such that
|an| ≤ M |bn| for all n ∈ N, and if R1 nd R2 are the radius of
convergence of

∑∞
n=1 an(z− z0)n and

∑∞
n=1 bn(z− z0)n respec-

tively, then prove that R1 ≤ R2.

4. Using Problem 3, show that radius of convergence of
∑∞

n=1 n
−nzn

is ∞.

5. Prove that radius of convergence of
∑∞

n=1 n
nzn is 0.

6. Find a power series in a neighborhood of z0 = 1 which repre-
sents the function f(z) := 1/z.

7. Find the radius of convergence for each of the following series:

(i)

∞∑
n=0

n2zn, (ii)

∞∑
n=0

2n

n!
zn, (iii)

∞∑
n=1

2n

n2
zn, (iv)

∞∑
n=0

n3

3n
zn.

(v)

∞∑
n=0

(n!)3

(3n)!
z3n, (vi)

∞∑
n=1

zn!

n
, (vii)

∞∑
n=0

nnzn
2
, (viii)

∞∑
n=0

n+ 1

n!
zn

3
.

8. Give one example each of a power series which

(a) converges only on the interior of the disc of convergence,

(b) converges diverges on a proper subset of the boundary of
the disc of convergence,

(c) converges on the closure of the disc of convergence.

9. Show that the series
∑∞

n=0 an(z−z0)n and
∑∞

n=1 nan(z−z0)n−1

have the same radius of convergence.

10. If (an) and (bn) are sequences of complex numbers such that
lim supn |bn|1/n, then show that the series

∑∞
n=0 an(z−z0)n and∑∞

n=1 nanbn(z − z0)n−1 have the same radius of convergence.
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11. For a sequence (an) of nonzero complex numbers, let γ :=

lim supn

∣∣∣an+1

an

∣∣∣. Then show that R := 1/γ is the radius of

convergence of
∑∞

n=0 an(z − z0)n.

12. If f represents a power series
∑∞

n=0 an(z − z0)n on its disc of

convergence, then ak = f (k)(z0)
k! for every k ∈ N. Justify.

13. Let f be a holomorphic function in an open set Ω such that
f ′ = f and f(0) = 1. Then show that f(z) = ez. Deduce that,
for all z ∈ C,

(i) ez =

∞∑
n=0

zn

n!

(ii) sin z =
∞∑
n=0

(−1)n
z2n+1

(2n+ 1)!
,

(iii) cos z =
∞∑
n=0

(−1)n
z2n

(2n)!
.

14. Prove that, for |z| < 1,

(i)
1

1 + z2
=

∞∑
n=0

(−1)nz2n

(ii) Log
1

1− z
=

∞∑
n=1

zn

n
.

15. Find the function represented by the series
∑∞

n=1 n
2zn.
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Integration

5.1 Integrals along Piecewise Smooth Curves

Recall that a curve in C is a continuous function from a closed (non-
degenerate) interval to C. Thus, a continuous function

γ : [a, b]→ C

is a curve in C. If the range of γ is contained in a set Ω ⊆ C, then
we say that γ is a curve in Ω. The point z1 := γ(a) is called the
initial point of γ and the point z2 := γ(b) is called the final point or
terminal point of γ.

Definition 5.1.1 Given a curve γ : [a, b] → C, the corresponding
reversed curve γ̃ : [a, b]→ C is defined by

γ̃(t) = γ(a+ b− t), t ∈ [a, b].

♦

Note that, γ̃ has the same range as that of γ, but its orientation
as t varies from a to b is reversed.

Definition 5.1.2 We shall call the range of a curve γ : [a, b] → C
with orientation as t varies from a to b as oriented range of γ, and
denote it by Γγ or, simply, Γ.

If Γ is the oriented range of γ : [a, b] → C, then we say that γ is
a parametrization of Γ. ♦

Thus, oriented range of γ : [a, b]→ C is

Γγ := {γ(t) : a ≤ t ≤ b}.

with orientation as t varies from a to b.
Similarly, the oriented range of γ̃ will be denoted by Γ̃.

59
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Convention: Hereafter, if we say Γ is a curve, then we mean that
Γ is the oriented range of a curve γ : [a, b]→ C.

Definition 5.1.3 Curves γ1 : [a1, b1] → C and γ2 : [a2, b2] → C are
said to be equivalent, if there exists continuous increasing bijection
ϕ : [a1, b1]→ [a2, b2] such that γ1 = γ2 ◦ϕ, and in that case we write
γ1 ∼ γ2.

If γ1 ∼ γ2, then for γ2 is called a reparameterization of γ1. ♦

Exercise 5.1.1 (i) Show that equivalence of curves defines an equiv-
alence relation.

(ii) If γ1 ∼ γ2, then show that Γγ1 = Γγ2 .
(iii) Given a curve γ : [a, b]→ C and a closed interval [α, β], find

a curve η : [α, β]→ C such γ ∼ η. /

Exercise 5.1.2 Given a curve γ : [a, b] → C, show that the curve
η : [−b,−a]→ C defined by

η(t) = γ(−t), −b ≤ t ≤ −a,

is equivalent to the reverse of γ, i.e., η ∼ γ̃. /

Given curves γ1 : [a, b] → C and γ1 : [c, d] → C, define γ3 :
[a, b+ d− c]→ C by

γ3(t) =

{
γ1(t), a ≤ t ≤ b,
γ2(t+ c− b), b ≤ t ≤ b+ d− c.

Then, γ3 : [a, b + d − c] → C is a curve such that terminal point of
γ1 is the initial point of γ2. This curve γ3 is called the sum of the
curves γ1 and g2 and is denoted by γ1 + γ2.

In the sequel, we shall be dealing with piecewise smooth curves.

Definition 5.1.4 A curve γ : [a, b] → C is said to be piecewise
smooth if

(i) γ is differentiable except possibly at a finite number of points
in [a, b], and

(ii) right and left derivative of γ exists at every point in [a, b]. ♦

Definition 5.1.5 If γ : [a, b]→ C is a piecewise smooth curve, then
its length is defined by

`(Γ) :=

∫ b

a
|γ ′(t)|dt,

where Γ is the oriented range of γ. ♦
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In order to define integrals of complex valued functions of a com-
plex variable along piecewise smooth curves, first we define integral
of complex valued functions on bounded intervals.

Suppose ϕ : [a, b] → C be a continuous function. Then the inte-
gral ∫ b

a
ϕ(t) dt

is defined in a natural way:

Definition 5.1.6 If ϕ = ϕ1 + iϕ2, where ϕ1 and ϕ2 are real and
imaginary parts of ϕ, respectively, then∫ b

a
ϕ(t) dt :=

∫ b

a
ϕ1(t) dt+ i

∫ b

a
ϕ2(t) dt.

♦
The following properties can be easily verified.

•
∫ b

a
[ϕ(t) + ψ(t)] dt =

∫ b

a
ϕ(t) dt+

∫ b

a
ψ(t) dt,

•
∫ b

a
[αϕ(t)] dt = α

∫ b

a
ϕ(t) dt for all α ∈ R.

Exercise 5.1.3 Verify the above properties. /

Further, we have the following.

Proposition 5.1.1 ∣∣∣ ∫ b

a
ϕ(t) dt

∣∣∣ ≤ ∫ b

a
|ϕ(t)| dt. (∗)

Proof. If
∫ b
a ϕ(t) dt = 0, then clearly (∗) holds. So, assume that∫ b

a ϕ(t) dt is nonzero and λ :=
∣∣∣ ∫ b

a
ϕ(t) dt

∣∣∣/ ∫ b

a
ϕ(t) dt. Then we have

∣∣∣ ∫ b

a
ϕ(t) dt

∣∣∣ = λ

∫ b

a
ϕ(t) dt =

∫ b

a
λϕ(t) dt

=

∫ b

a
Reϕ(t) dt ≤

∫ b

a
|λϕ(t)| dt =

∫ b

a
|ϕ(t)| dt

This completes the proof.
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Exercise 5.1.4 For a > 0 and α > 0, show that

lim
α→∞

∫ a

0
e−(α+it)2

dt = 0 . /

We have the following analogue of the fundamental theorem of
integration.

Proposition 5.1.2 If ϕ : [a, b] → C is continuously differentiable,
then ∫ b

a
ϕ′(t) dt = ϕ(b)− ϕ(a). (∗∗)

Now we define the integral for a continuous complex valued func-
tion of a complex variable along a piecewise smooth curve.

Definition 5.1.7 Let γ : [a, b] → C be a piecewise smooth curve
with oriented range Γ and f : Γ→ C be a continuous function. Then
we define ∫

Γ
f(z) dz :=

∫ b

a
f(γ(t))γ ′(t) dt.

We shall also denote the above integral by

∫
γ
f(z)dz. ♦

Proposition 5.1.3 The following hold.

1.

∫
Γ
[f(z) + g(z)] dz =

∫
Γ
f(z) dz +

∫
Γ
g(z) dz,

2.

∫
Γ
[αf(z)] dz = α

∫
Γ
f(z) dz for all α ∈ C.

3.

∫
Γ̃
f(z) dz = −

∫
Γ
f(z) dz.

4.

∫
γ1+γ2

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz.

Proof. Exercise.

Remark 5.1.1 It is to be observe that the integral
∫

Γγ
f(z)dz de-

pends essentially on the way the point γ(t) moves along Γγ as t varies
on [a, b]. It can happen that two different curves γ and η can have
same range Γ, but

∫
γ f(z)dz 6=

∫
η f(z)dz. For example, consider the

curves
γ(t) = t2, η(t) = t for 0 ≤ t ≤ 1.
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Clearly, the range of γ and η coincide and it is the line segment [0, 1].
However, if we take f(z) = z, then∫

γ
f(z)dz =

∫ 1

0
t2(2t)dt =

1

2
,

∫
η
f(z)dz =

∫ 1

0
t(t)dt =

1

3
.

♦

Definition 5.1.8 (i) A curve γ : [a, b]→ C is called a closed curve
if its initial and terminal points are the same.

(ii) A curve γ : [a, b] → C is said to intersect at a point z0 if
there exists distinct t1, t2 ∈ [a, b] such that γ(t1) = z0 = γ(t2).

(iii) A closed curve γ : [a, b] → C is said to be a simple closed
curve if for distinct points t1, t2 in [a, b], γ(t1) = γ(t2) implies
{t1, t2} = {a, b}. ♦

Proposition 5.1.4
∣∣∣ ∫

Γ
f(z) dz

∣∣∣ ≤M`Γ, where M = maxz∈Γ |f(z)|.

Proof. By (∗),∣∣∣ ∫
Γ
f(z) dz

∣∣∣ ≤ ∫ b

a
|f(γ(t))| |γ ′(t)| dt ≤M`Γ.

Thus, the proof is complete.

Proposition 5.1.5 Let f be continuously differentiable in an open
set containing a piecewise smooth curve with initial point z1 and
terminal point z2. Then∫

Γ
f ′(z) dz = f(z2)− f(z1).

In particular, if Γ is closed, then

∫
Γ
f ′(z) dz = 0.

Proof. By (∗∗), we have∫
Γ
f ′(z) dz =

∫ b

a
f ′(γ(t))γ ′(t) dt

=

∫ b

a
(f ◦ γ)′(t) dt = (f ◦ γ)(b)− (f ◦ γ)(a)

= f(z2)− f(z1).

The particular case follows, since in this case z2 = z1.
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Corollary 5.1.6 Let Γ be a closed curve and f has a primitive on
an open set Ω containing Γ, i.e., there exists a continuously differ-
entiable function g such that g′ = f on Ω. Then∫

Γ
f(z) dz = 0.

Proof. Follows from Theorem 5.1.4.

Remark 5.1.2 We shall prove in the next section that if f is holo-
morphic on a simply connected domain Ω, then integral of f along
every closed curve in Ω is 0. This result is known as Cauchy’s theo-
rem. ♦

EXAMPLE 5.1.1 Let Γ be the circle with center at z0 and radius
r given by

Γ := {z0 + reit, 0 ≤ t ≤ 2π}.

Then, we can take γ(t) := z0 + reit, 0 ≤ t ≤ 2π so that∫
Γ

dz

z − z0
dz =

∫ 2π

0

γ ′(t)dt

γ(t)− z0
=

∫ b

a

rieitdt

reit
= 2πi.

Note that the value if the above integral does not depend on the
centre and the radius. �

Exercise 5.1.5 Let Γn be the circle with center at z0 and radius r
traced n times, i.e., Γn := {z0 + reit, 0 ≤ t ≤ 2nπ}. Then, show that

(i)

∫
Γn

dz

z − z0
= 2nπi, and if p(z) is a polynomial, then

(ii)

∫
Γn

p(z) dz = 0. /

EXAMPLE 5.1.2 Let Ω be the disc of convergence of a power
series

∑∞
n=0 an(z − z0)n and let f(z) represent this series in Ω. Let

g(z) =
∑∞

n=0
an
n+1(z − z0)n+1. Then we have g′(z) = f(z). Hence, if

Γ is a closed piecewise smooth curve in the disc of convergence, then∫
Γ
f(z) dz = 0.

Thus, integral of a function which represents a power series, over any
closed piecewise curve in its disc of convergence, is 0. �
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Exercise 5.1.6 For a > 0 and α > 0, let Γα be the line segment

joining z0 = α to z1 = α+ ia. Show that lim
α→∞

∫
Γa

e−z
2
dz = 0. /

Exercise 5.1.7 Suppose fn → f uniformly on Γ. Then show that∫
Γ
fn(z)dz →

∫
Γ
f(z) dz. /

Exercise 5.1.8 If f is continuous on {z : |z − z0| ≤ 1} and if
γ(t) = z0 + reit, 0 ≤ t ≤ 2π} and Γ is the oriented range of γ for

0 < r ≤ 1, then show that lim
r→0

1

2πi

∫
Γ

f(z)

z − z0
dz = f(z0). /

5.2 Cauchy’s Theorem

Now, we prove one of the most important theorems in complex anal-
ysis, the so called Cauchy’s theorem. For its statement we shall use
the following definitions.

Definition 5.2.1 An open connected subset of the complex plane is
called a domain. ♦

It is easy to conceive the statement in the following theorem,
though its proof is much involved and beyond the scope of this course:

Theorem 5.2.1 (Riemann’s theorem) If Γ is a simple closed
curve, then it is the boundary of two disjoint domains one of which
is bounded and the other is unbounded.

Definition 5.2.2 If Γ is a simple closed curve, then the bounded
domain as in Definition 5.2.1 is called the domain enclosed by Γ.

♦

Definition 5.2.3 A domain Ω is said to be simply connected if
for every simple closed curve Γ in Ω, the domain enclosed by Γ is
contained in Ω. ♦

In the following, we shall call a simple closed piecewise smooth
curve as simple closed contour.

Definition 5.2.4 A simple closed contour γ is said to be positively
oriented if the domain enclosed by it is on the left while traversing
along γ.

More precisely, for each t ∈ [a, b], the normal vector γ ′(t)eiπ/2 at
the point γ(t) must direct towards the domain enclosed by γ, i.e., for
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each t ∈ [a, b], there exists εt > 0 such that

γ(t) + εγ ′(t)eiπ/2 ∈ Ωγ whenever 0 < ε < εt,

where Ωγ is the domain enclosed by γ. ♦

Theorem 5.2.2 (Cauchy’s theorem - using Green’s theorem)
Let Γ be a positively oriented simple closed contour and let Ω be
the domain enclosed by Γ. Let f be holomorphic and its derivative
continuous on Ω ∪ Γ. Then∫

Γ
f(z)dz = 0.

Proof. Let u and v be the real and imaginary parts of f . Let Γ
have the parametrization γ on [a, b]. Let γ(t) = x(t)+iy(t), t ∈ [a, b].
Then∫

Γ
f(z) dz =

∫ b

a
f(γ(t))γ ′(t) dt

=

∫ b

a
[u(x(t), y(t)) + iv(x(t), y(t))][x′(t) + iy′(t)] dt

=

∫ b

a
[ux′ − vy′]dt+ i

∫ b

a
[uy′ − vx′]dt

=

∫
Γ
[udx− vdy] + i

∫
Γ
[udy + vdx].

Now, by Green’s theorem1 and using the CR-equations, we have∫
Γ
[udx− vdy] =

∫∫
Ω

(
−∂v
∂x
− ∂u

∂y

)
dxdy = 0,

∫
Γ
[vdx+ udy] =

∫∫
Ω

(
∂u

∂x
− ∂v

∂y

)
dxdy = 0.

This completes the proof.

Exercise 5.2.1 Prove Cauchy’s theorem if Γ is any piecewise closed
curve which intersects itself only at a finite number of points. /

1Green’s theorem, named after the British mathematician and physicist

George Green (14 July 1793 31 May 1841) :
∫

Γ
Pdx+Qdy =

∫∫
Ω

(
∂Q
∂x
− ∂P

∂y

)
dxdy.
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We shall see that the condition that the real and imaginary parts
of f have continuous partial derivatives is redundant. In fact, we
shall prove the following general version of Cauchy’s theorem.

Theorem 5.2.3 (Cauchy’s theorem) Let Ω be a simply connected
domain and f be a holomorphic function on Ω. Then for every piece-
wise smooth closed curve Γ in Ω,∫

Γ
f(z) = 0.

Our proof involves the following steps:

1. The theorem holds with γ as a triangle.

2. The theorem holds if γ is a rectangle.

3. Every holomorphic function on a simply connected domain has
a holomorphic primitive.

4. Use Corollary 5.1.6.

First we require the following simple property of a domain. For
simplicity of expression, we shall call a curve a rook-path2 if it is
a polygonal curve consisting of line segments parallel to coordinate
axes.

Lemma 5.2.4 Any two points in an open connected set can be joined
by a rook-path.

Proof. Let Ω be an open connected set. If Ω is empty, then
the lemma holds vacuously. Hence assume that Ω is nonempty and
z0 ∈ Ω. Now, consider the set Ω0 of all those points in Ω which can
be joined with z0 by rook-paths. We have to show that Ω0 = Ω.
Since Ω is connected and z0 ∈ Ω0, it is enough to show that both Ω0

and its compliment Ω1 := Ω \ Ω0 are open.
Let z ∈ Ω0, and let r > 0 be such that B(z, r) ⊆ Ω. Since

every point in B(z, r) can be joined to z by a rook-path, we have
B(z, r) ⊆ Ω0. Thus, Ω0 is an open set.

2borrowed from Persian rokh, in Sanskrit rath meaning “chariot”, is a piece in
the strategy board game of chess.
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Next, let ζ ∈ Ω1, and let ρ > 0 be such that B(ζ, ρ) ⊆ Ω. Since
every point in B(ζ, ρ) can be joined to ζ by a rook-path, and since
ζ 6∈ Ω0, we have B(ζ, ρ) ⊆ Ω1. Thus, Ω1 is also an open set. This
completes the proof.

Now, we proceed to prove (1)-(3).

Theorem 5.2.5 (Goursat’s lemma)3 Suppose Γ is a positively
oriented triangle and f is holomorphic on and inside Γ. Then∫

Γ
f(z)dz = 0.

Proof. By joining midpoints of the sides of Γ construct four pos-
itively oriented triangles, say Γ0,1,Γ0,2,Γ0,3,Γ0,4. Then we obtain

I :=

∫
Γ
f(z)dz =

4∑
j=1

∫
Γ0,j

f(z)dz.

Since |I| ≤
4∑
j=1

∣∣∣ ∫
Γ0,j

f(z)dz
∣∣∣, it follows that there exists j0 ∈ {1, 2, 3, 4}

such that ∣∣∣ ∫
Γ0,j0

f(z)dz
∣∣∣ ≥ 1

4

∣∣∣ ∫
Γ
f(z)dz

∣∣∣.
Denote this Γ0,j0 by Γ1.

Now, joining midpoints of the sides of Γ1 construct four positively
oriented triangles, say Γ1,1,Γ1,2,Γ1,3,Γ1,4. Following the same argu-
ment as above with Γ1 in place of Γ, there exists j1 ∈ {1, 2, 3, 4} such
that ∣∣∣ ∫

Γ1,j1

f(z)dz
∣∣∣ ≥ 1

4

∣∣∣ ∫
Γ1

f(z)dz
∣∣∣ ≥ 1

42

∣∣∣ ∫
Γ
f(z)dz

∣∣∣. (1)

Denote Γ1,j1 by Γ2 and continue the above procedure. Then we
obtain a sequence {Γn} of positively oriented triangles such that∣∣∣ ∫

Γn

f(z)dz
∣∣∣ ≥ 1

4n

∣∣∣ ∫
Γ
f(z)dz

∣∣∣.
3Edouard Goursat (1858-1936, a French mathematician, was the first rec-

ognized, in 1800, that continuity of the derivative is not required for proving
Cauchy’s theorem.
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Let Ωn be the closure of the domain enclosed by Γn. Then we see
that Ωn ⊇ Ωn+1 for all n ∈ N and

diam(Ωn) ≤ `(Γn) =
1

2n
`(Γ). (2)

Hence, by nested compact sets theorem in real analysis,
⋂∞
n=1 Ωn is a

singleton set, say
⋂∞
n=1 Ωn = {z0}.

Now, let ε > 0 be given. Since z0 ∈ Γ ∪ Ω and f is holomorphic
at z0, there exists δ > 0 such that

|f(z)− f(z0)− f ′(z0)(z − z0)| < ε|z − z0| whenever |z − z0| < δ.

Let N ∈ N be such that Ωn ⊆ B(z0, δ) for all n ≥ N . Then, we have∣∣∣ ∫
Γn

(f(z)− f(z0)− f ′(z0)(z − z0)dz
∣∣∣ ≤ ε[`(Γn)]2. (3)

Note that, since the function z 7→ f(z0) + f ′(z0)(z − z0) has a prim-
itive, by Corollary 5.1.6,∫

Γn

[f(z0)− f ′(z0)(z − z0)]dz = 0 ∀n ∈ N. (4)

Hence, by (1)-(4),∣∣∣ ∫
Γ
f(z)dz

∣∣∣ ≤ 4n
∣∣∣ ∫

Γn

f(z)dz
∣∣∣ ≤ ε4n[`(Γn)]2 = ε`(Γ).

This is true for every ε > 0. Hence,

∫
Γ
f(z)dz = 0.

Corollary 5.2.6 Conclusion in Theorem 5.2.5 holds if the positive
oriented triangle Γ is replaced by a rectangle.

Theorem 5.2.7 Every holomorphic function on a simply connected
domain has a holomorphic primitive.

Proof. Let Ω be a simply connected domain and f be a holo-
morphic function on Ω. We show that there exists a holomorphic
function g on Ω such that g′(z) = f(z) for every z ∈ Ω.

Let z0 ∈ Ω, and z be any arbitrary point in Ω. By Lemma 5.2.4
there exists a rook-path Γz0,z joining z0 to z. Define

g(z) =

∫
Γz0,z

f(ζ)dζ.
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In view of Corollary 5.2.6, the integral along any two rook-paths
joining z0 to z will give the same value. Hence, g is well defined on
Ω as long as we restrict the integration along rook-paths joining z0

to z. Further, if δ > 0 and if B(z, δ) ⊆ Ω, then for any h ∈ C with
z + h ∈ B(z, δ), we have

g(z + h) =

∫
Γz0,z+h

f(ζ)dζ.

Hence, by Corollary 5.2.6, we obtain

g(z + h)− g(z)

h
− f(z) =

1

h

∫
Γz,z+h

[f(ζ)− f(z)]dζ.

Here, we also used the fact that

∫
Γz,z+h

dζ = h, by Proposition 5.1.5.

Also, by Theorem 5.2.5,

1

h

∫
Γz,z+h

[f(ζ)− f(z)]dζ =
1

h

∫
Ch

[f(ζ)− f(z)]dζ,

where Ch is the straight line segment joining z to z + h. Hence, by
Proposition 5.1.4,∣∣∣g(z + h)− g(z)

h
− f(z)

∣∣∣ =
`(Ch)

|h|
max
ζ∈Ch

|f(ζ)− f(z)|.

Now, let ε > 0 be give. Since f is uniformly continuous on cl (Ω), for
every ε > 0, there exists δ > 0 such that

z + h ∈ Ω, |h| < δ =⇒ max
ζ∈Ch

|f(ζ)− f(z)| < ε.

Thus, ∣∣∣g(z + h)− g(z)

h
− f(z)

∣∣∣ < δ whenever |h| < δ.

Consequently, g is differentiable at z and g′(z) = f(z). This com-
pletes the proof.

Proof of Theorem 5.2.3. The proof follows from Theorem 5.2.7
and Corollary 5.1.6.

If we observe the proof of Theorem 5.2.7, it is apparent that we
have actually proved the following.
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Theorem 5.2.8 Suppose f is a continuous function on a simply
connected domain Ω and ∫

Γ
f(z)dz = 0

for every positively oriented triangle Γ in Ω. Then f has a holomor-
phic primitive on Ω.

5.3 Cauchy’s Integral Formulas

Theorem 5.3.1 (Cauchy’s integral formula) Suppose f is an-
alytic on and inside a simple closed contour Γ, and let ΩΓ be the
domain enclosed by Γ. Then for every z ∈ ΩΓ,

f(z) =
1

2πi

∫
Γ

f(ζ)

ζ − z
dζ.

Proof. Let z ∈ ΩΓ and let C := Cr be a positively oriented circle
with centre at z and radius r such that Cr ⊆ ΩΓ. Take two points
on Cr and join with Γ by a line segments, say L1 and L2. More
precisely, take two points z1, z2 ∈ Cr and join with ζ1, ζ2 ∈ Γ such
that

|z1 − ζ1| = dist (z1,Γ), |z2 − ζ2| = dist (z2,Γ).

Cut Γ into into two pieces Γ1,Γ2 at the points ζ1, ζ2, and cut C
into into two pieces C1, C2 at the points z1, z2 retaining the original
orientations. Note that the function ζ 7→ f(ζ)/(ζ − z) is analytic in
the region between Γ and C, Hence by Cauchy’s theorem, integral of
f(ζ)/(ζ−z) over the curves Γ1 +L1 + C̃1 +L2 and Γ2 + L̃2 + C̃2 + L̃1

are zeros. Therefore, we have

1

2πi

∫
Γ

f(ζ)

ζ − z
dζ =

1

2πi

∫
C

f(ζ)

ζ − z
dζ.

Since 1
2πi

∫
Γ

dζ
ζ−z = 1, we have

1

2πi

∫
C

f(ζ)

ζ − z
dζ − f(z) =

1

2πi

∫
C

f(ζ)− f(z)

ζ − z
dζ. (∗)

Since ∣∣∣∣f(ζ)− f(z)

ζ − z

∣∣∣∣→ |f ′(z)| as ζ → z,
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there exists δ > 0 such that∣∣∣∣f(ζ)− f(z)

ζ − z

∣∣∣∣→ |f ′(z)|+ 1 whenever |ζ − z| < δ.

Now, taking r < δ, we have∣∣∣∣∫
C

f(ζ)− f(z)

ζ − z
dζ

∣∣∣∣ ≤ (|f ′(z)|+ 1)2πr. (∗∗)

From (∗) and (∗∗), we have∣∣∣∣ 1

2πi

∫
Γ

f(ζ)

ζ − z
dζ − f(z)

∣∣∣∣ ≤ (|f ′(z)|+ 1)r.

This is true for all r such that 0 < r < dist (z,Γ). Hence,

1

2πi

∫
Γ

f(ζ)

ζ − z
dζ = f(z),

completing the proof.

Corollary 5.3.2 Suppose f is holomorphic on {z ∈ C : |z−z0| ≤ r}.
Then

f(z0) =
1

2π

∫ 2π

0
f(z0 + reit) dt.

Our next attempt is to show that if f is analytic at a point z0,
then in neigbourhood of z0, f can be expressed as a power series.

Proposition 5.3.3 Let C be a circle with centre z0 and ΩC be the
domain enclosed by C. Let g be continuous on C and let

ϕ(z) =

∫
C

g(ζ)

ζ − z
dζ, z ∈ ΩC .

Then for every z ∈ ΩC ,

ϕ(z) =
∞∑
n=0

an(z − z0)n, an :=

∫
C

g(ζ)

(ζ − z0)n+1
dζ.
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Proof. Let ζ ∈ C and z lies inside C. Since |z− z0| < |ζ − z0|, we
have

1

ζ − z
=

1

(ζ − z0)− (z − z0)

=
1

(ζ − z0)[1− z−z0
ζ−z0 ]

=
1

ζ − z0

∞∑
n=0

(
z − z0

ζ − z0

)n
.

Since the above series converges uniformly on C, we have∫
C

g(ζ)

ζ − z
dζ =

∞∑
n=0

an(z − z0)n, an :=

∫
C

g(ζ)

(ζ − z0)n+1
dζ.

This completes the proof.

Theorem 5.3.4 Suppose f is analytic at a point z0. Then f is
infinitely differentiable in a neigbourhood D0 of z0 and we have the
following.

(i) (Talor series expansion)

f(z) =

∞∑
n=0

f (n)(z0)

n!
(z − z0)n, z ∈ D0 (∗)

in that neigbourhood.
(ii) (Cauchy’s integral formula of higher orders)

f (n)(z0) =
n!

2πi

∫
Γ

f(ζ)

(ζ − z0)n+1
dζ,

where Γ is a simple closed curve enclosing z0 such that f is analytic
on and inside Γ.

Proof. Using Proposition 5.3.3 taking g = f and applying Cauchy’s
integral formula (Theorem 5.3.1), we have

f(z) =

∞∑
n=0

an(z − z0)n, an :=
1

2πi

∫
C

f(ζ)

(ζ − z0)n+1
dζ,

for z in a neigbourhood of z0, where C is a circle with centre at z0

lying inside that neigbourhood. Since the function

ζ 7→ f(ζ)

(ζ − z0)n+1
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is analytic on ΩΓ ∩ Ωc
C , by Cauchy’s theorem (Theorem 5.2.3), we

obtain (How?)

1

2πi

∫
C

f(ζ)

(ζ − z0)n+1
dζ =

1

2πi

∫
Γ

f(ζ)

(ζ − z0)n+1
dζ.

Now, from the discussion at the end of Chapter 4, we know that

an =
f (n)(z0)

n!
.

This completes the proof.

Definition 5.3.1 The series expansion (∗) of f is called the Taylor
series expansion of f around z0. ♦

By the above theorem derivative of a holomorphic function is
holomorphic. Hence, in view of Theorem 5.2.8, we have a converse
to the Cauchy’s theorem.

Theorem 5.3.5 (Morera’s theorem) Suppose f is a continuous
function on a simply connected domain Ω and∫

Γ
f(z)dz = 0

for every positively oriented triangle Γ in Ω. Then f is holomorphic
on Ω.

Remark 5.3.1 In fact, the conventional Morera’s theorem is slightly
weaker form of the above theorem, namely, if f is a continuous func-
tion on a simply connected domain Ω and

∫
Γ f(z)dz = 0 for every

closed contour Γ in Ω, then f is holomorphic on Ω. ♦

Exercise 5.3.1 Suppose f is an entire function, M > 0, R > 0 and
n ∈ N such that

|f(z)| ≤M |zn| ∀ z with |z| ≥ R.

Show that f is a polynomial of degree atmost n. /

Exercise 5.3.2 Suppose f is holomorphic for |z| < 1 and

|z| < 1 =⇒ |f(z)| < 1.

Show that

|f ′(z)| ≤ 1

1− |z|
.

/
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Theorem 5.3.6 (Liouville’ therem) Suppose f is an entire func-
tion, i.e., f is holomorphic on the entire C. If f is bounded, then f
is a constant function.

Proof. Let z ∈ C. Then, by Theorem 5.3.4,

f ′(z) =
1

2πi

∫
ΓR

f(ζ)

(ζ − z)2
dζ,

where ΓR is the circle with centre z0 and radius R. Hence, we have

|f ′(z)| = M`(ΓR)

2πR2
=
M

R
.

Now, letting R → ∞, we have f ′(z) = 0. This is true for all z ∈ C.
Hence, f is a constant function.

Theorem 5.3.7 (Fundamental theorem of algebra) Suppose
p(z) is a nonconstant polynomial with complex coefficients. Then
there exists z0 ∈ C such that p(z0) = 0.

Proof. For a0 6= 0, let p(z) = a0z
n + a1z

n−1 + . . . + an−1z + an.
Suppose p(z) 6= 0 for all z ∈ C. Then, for z 6= 0,

p(z) = a0z
n

(
1 +

a1

a0z
+ . . .+

an−1

a0zn−1
+

an
a0zn

)
.

Hence,

|p(z)| ≥ |a0z
n|
(

1− |a1|
|a0z|

+ . . .+
|an−1|
|a0zn−1|

+
|an|
|a0zn|

)
.

Let R > 0 be such that

|z| ≥ R =⇒ |a1|
|a0z|

+ . . .+
|an−1|
|a0zn−1|

+
|an|
|a0zn|

≤ 1

2
.

Then, for |z| ≥ R, we have

1

|p(z)|
≤ 2

|a0zn|
≤ 2

|a0|Rn
.

Since 1/p(z) is bounded for |z| ≤ R, it then follows that 1/p(z) is a
bounded entire function. Hence, by Liouville’s theorem, 1/p(z) is a
constant function, so that p(z) is a constant polynomial, which is a
contradiction to our assumption on p(z).



76 Integration

5.3.1 Appendix

We state again the Cauchy’s integral formula for the derivatives of
analytic functions, and give another proof for the same.

Theorem 5.3.8 Suppose f is analytic on an inside a positively ori-
ented simple closed curve Γ and z lies inside Γ. Then, for every
n ∈ N ∪ {0}, f (n)(z) exists and

f (n)(z) =
n!

2πi

∫
Γ

f(ζ)

(ζ − z)n+1
dζ.

Proof. We know that the above result is true for n = 0. Assume
it for n−1. We shall prove it for n. Let ρ > 0 be such that the circle
with centre z and radius ρ lies inside Γ. Then for h ∈ C with |h| < ρ,

f (n−1)(z + h)− f (n)(z)

h
− n!

2πi

∫
Γ

f(ζ)

(ζ − z)n+1
dζ

takes the form

(n− 1)!

2πi

∫
Γ

f(z)

h

[
(ζ − z)n − (ζ − z − h)n

(ζ − z − h)n(ζ − z)n
− n

(ζ − z)n+1

]
dζ.

Now, writing a = ζ − z and b = ζ − z − h), we have

(ζ − z)n − (ζ − z − h)n

h(ζ − z − h)n(ζ − z)n
− n

(ζ − z)n+1
=

an − bn

hanbn
− n

an+1

=
a(an − bn)− nhbn

han+1bn

Since a(an−bn) = a(a−b)
∑n−1

j=0 a
n−1−jbj = h

∑n−1
j=0 a

n−jbj , we have

a(an − bn)− nhbn =
n−1∑
j=0

hbn−1−j(aj+1 − bj+1)

=

n−1∑
j=0

h2bn−1−j [aj + aj−1b+ . . .+ abj−1 + bj ]

Since |a| = ρ and ρ−|h| ≤ |b| ≤ ρ+ |h|, taking α = ρ+ |h| we obtain,

|a(an− bn)− nhbn| ≤ |h|2
n−1∑
j=0

αn−1−j [ρj + rj−1α+ . . .+ ραj−1 +αj ].
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Thus, absolute value of

f(z)

h

[
(ζ − z)n − (ζ − z − h)n

(ζ − z − h)n(ζ − z)n
− n

(ζ − z)n+1

]
is less than or equal to

εh :=
M |h|

∑n−1
j=0 α

n−1−j [ρj + rj−1α+ . . .+ ραj−1 + αj ]

ρn+1(ρ− |h|)n
.

Hence,∣∣∣∣∣f (n−1)(z + h)− f (n)(z)

h
− n!

2πi

∫
Γ

f(ζ)

(ζ − z)n+1
dζ

∣∣∣∣∣ ≤ εhρ.
Since εh → 0 as |h| → 0, it follows that f (n−1) is differentiable at z
and

f (n)(z) = lim
|h|→0

f (n−1)(z + h)− f (n)(z)

h
=

n!

2πi

∫
Γ

f(ζ)

(ζ − z)n+1
dζ.

This completes the proof.

5.4 Zeros of analytic functions

Suppose f is analytic in a domain Ω and z0 is a zero of f , i.e.,
f(z0) = 0. Then, using the Taylor series expansion of f around z0,
it follows that

f(z) = (z − z0)g(z)

in a neigbourhood of z0, where g is analytic in a neigbourhood of z0.
In fact,

g(z) = f ′(z0) +

∞∑
n=2

f (n)(z0)

n!
(z − z0)n−1

in a neigbourhood of z0. Note that, if f ′(z0) = 0, then we can write

f(z) = (z − z0)2g1(z),

where

g(z) =
f (2)(z0)

2
+
∞∑
n=3

f (n)(z0)

n!
(z − z0)n−2

in a neigbourhood of z0.
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Definition 5.4.1 (i) A point z0 ∈ Ω is said to be a zero of f of
order m if f (k)(z0) = 0 for k = 0, 1, . . . ,m−1 and f (m)(z0) 6= 0.

(ii) A point z0 ∈ Ω is said to be a zero of f of finite order if it
is a zero of f of order m for some m ∈ N.

(iii) A zero of f which is not of finite order is called a zero of f of
infinite order.

♦

Definition 5.4.2 A zero z0 ∈ Ω of an analytic function f is said to
be an isolated zero if there exists a r > 0 such that B(z0, r) ⊆ Ω
and f(z) 6= 0 for every z ∈ B(z0, r) \ {z0}. ♦

Remark 5.4.1 We observe the following:

(a) If z0 ∈ Ω is a zero of f of order m, then

f(z) = (z − z0)mg(z)

in a neigbourhood of z0, where g is analytic in a neigbourhood
of z0 and g(z0) 6= 0.

(b) If z0 ∈ Ω is a zero of f of infinite order, then f (k)(z0) = 0 for
all k ∈ N; consequently, f = 0 in a neigbourhood of z0.

♦

Exercise 5.4.1 Prove the statements in the above remark. /

Theorem 5.4.1 Every zero of finite order of an analytic function is
isolated.

Proof. Follows from Remark 5.4.1(a).

Theorem 5.4.2 Suppose f is analytic in an open connected set Ω.
If Ω contains a zero of f of infinite order, then f = 0 on Ω.

Proof. Follows from Remark 5.4.1(b) using the fact that Ω is open
and connected.
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5.4.1 Identity theorem

Theorem 5.4.3 (Identity theorem-I) Suppose f is analytic in an
open connected set Ω. If Ω contains a point which is the limit point
of a set of zeros of f , then f = 0 on Ω.

Proof. Follows from Theorem 5.4.2.

Theorem 5.4.4 (Identity theorem-II) Suppose f and g are an-
alytic in an open connected set Ω. If f = g on a set having a limit
point in Ω, then f = g on Ω.

Proof. Follows from Theorem 5.4.3.

EXAMPLE 5.4.1 Let f be analytic in {z ∈ C : |z| < 1} and

f
( 1

n+ 1

)
=

1

n+ 1
∀n ∈ N,

and

g
( 1

n+ 1

)
= 0 ∀n ∈ N.

Then, by Theorem 5.4.4, f(z) = z and g(z) = 0 for all z. �

EXAMPLE 5.4.2 We show that there is no analytic function f on
Ω := {z ∈ C : |z| < 1} satisfying

f
( 1

n

)
=

(−1)n

n2
∀n ∈ N.

Suppose there is an analytic function f satisfying the above require-
ments. Then we have

f
( 1

2n

)
=

1

(2n)2
∀n ∈ N,

f
( 1

2n− 1

)
= − 1

(2n− 1)2
∀n ∈ N.

Then, by Theorem 5.4.4, we have f(z) = z2 and f(z) = −z2 for all
z ∈ Ω, which is not possible. �

EXAMPLE 5.4.3 Suppose Ω is a connected (nonempty) open set
which is symmetric with respect to the real axis, i.e., z ∈ Ω ⇐⇒
z̄ ∈ Ω. Suppose f is holomorphic on Ω such that it is real on Ω ∩R.
We show that f(z̄) = f(z).
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It can be shown that g defined by g(z) := f(z̄) is analytic on Ω
(verify). For z ∈ Ω∩R, we have g(z) = f(z). Sine f is real on Ω∩R,
we have g(z) = f(z) for all z ∈ Ω ∩ R. Hence, by Theorem 5.4.4,
f = g on Ω so that f(z̄) = f(z) on Ω. �

5.4.2 Maximum modulus principle

Theorem 5.4.5 (Maximum modulus principle) Suppose f is
holomorphic in a connected open set Ω. If f is not a constant func-
tion, then |f | cannot attain maximum at a point in Ω.

In other words, if there exists z0 ∈ Ω such that |f(z)| ≤ |f(z0)|
for all z ∈ Ω, then f is a constant function.

Proof. Suppose there exists z0 ∈ Ω such that |f(z)| ≤ |f(z0)| for
all z ∈ Ω. Let r > 0 such that {z ∈ C : |z − z0| ≤ r} ⊆ Ω. Recall
that

f(z0) =
1

2π

∫ 2π

0
f(z0 + reit)dt.

If f(z0) = 0, then we have f(z) = 0 for all z ∈ Ω. Hence, assume
that f(z0) 6= 0, and let λ := |f(z0)|/f(z0). Then we have

|f(z0)| = λf(z0) =
1

2π

∫ 2π

0
λf(z0+reit)dt =

1

2π

∫ 2π

0
Re[λf(z0+reit)]dt.

Hence,
1

2π

∫ 2π

0
[|f(z0)| − Re(λf(z0 + reit))]dt = 0.

Since |Re(λf(z0 + reit)| ≤ |f(z0)|, we have

|f(z0)| = Re(λf(z0 + reit)) ∀ t ∈ [0, 2π],

i.e.,

|f(z0)| = Re[λf(z)] ∀ z ∈ Cr := {ζ : |ζ − z0| = r}.

Again, since |λf(z)| ≤ |f(z)| for all z ∈ Cr, we have

|f(z0)| = λf(z) ∀ z ∈ Cr.

Hence,
f(z) = f(z0) ∀ z ∈ Cr.

By, identity theorem, f(z) = f(z0) for all z ∈ Ω.

Exercise 5.4.2 Suppose f is holomorphic in a connected open set
Ω. If f is not a constant function and |f | attains minimum at z0 ∈ Ω,
then f(z0) = 0. /
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5.4.3 Schwarz’s lemma

Theorem 5.4.6 (Schwarz’s lemma) Suppose f is holomorphic in
the open unit disc D := {z ∈ C : |z| < 1} such that

f(0) = 0 and f(z) ∈ D ∀ z ∈ D.

Then |f(z)| ≤ |z| for all z ∈ D. Strict inequality follows unless f is
of the form f(z) = λz for some λ ∈ C.

Proof. By the assumptions on f , we have

f(z) = zg(z), z ∈ D,

where g is holomorphic on D and g(0) = f ′(0). Since f(z)| ≤ 1, we
have

|g(z)| ≤ 1

|z|
=

1

r
whenever |z| = r < 1.

By maximum modulus principle,

|g(z)| ≤ 1

r
whenever |z| ≤ r < 1.

Now, let z ∈ D, and 0 < r < 1 such that |z| ≤ r. By the above
arguments,

|g(z)| ≤ 1

r
.

Letting r → 1, we obtain |g(z)| ≤ 1. Thus, |f(z)| ≤ |z| for all
z ∈ D.

5.4.4 On harmonic functions

Theorem 5.4.7 Suppose u is real harmonic in a simply connected
domain Ω. Then u has a harmonic conjugate which is unique up to
addition of an imaginary constant.

Theorem 5.4.8 Suppose u is real harmonic in a simply connected
domain Ω. Then u ∈ C∞(Ω).

Theorem 5.4.9 Suppose u is real harmonic in an open set Ω. Then,
for z0 ∈ Ω,

u(z0) =
1

2π

∫ 2π

0
u(z0 + reit)dt, 0 < r < dist (z0,C \ Ω).
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Theorem 5.4.10 Suppose u is real harmonic in a connected open set
Ω. If u is not a constant function, then |u| cannot attain maximum
at a point in Ω.

In other words, if there exists z0 ∈ Ω such that |u(z)| ≤ |u(z0)|
for all z ∈ Ω, then u is a constant function.

Theorem 5.4.11 Suppose u is real harmonic in an open connected
set Ω. If f = 0 on an open set Ω0 ⊆ Ω, then f = 0 on Ω.

5.5 Problems

1. A curve η : [α, β] → C is called a reparameterization of the
curve γ : [a, b] → C if there exists continuous increasing bijec-
tion ϕ : [α, β]→ [a, b] such that η = γ ◦ ϕ, and in that case we
may say that η is equivalent to γ and we write η ∼ γ.

(a) Given a curve γ : [a, b] → C and a closed interval [α, β],
find a curve η : [α, β]→ C such γ ∼ η.

(b) If γ̃ is the reverse of γ : [a, b]→ C and η : [−b,−a]→ C is
defined by η(t) = γ(−t) for −b ≤ t ≤ −a, then show that
η ∼ γ̃.

(c) If γ and η are piecewise smooth curves such that η ∼ γ,
then show that `(Γη) = `(Γγ).

2. Given a piecewise smooth curve γ : [a, b] → C and a parti-
tion Πn := a = t0, < t1 < . . . < tn = b of [a, b], let Sn :=∑n

j=1 |γ(tj)− γ(tj−1)|. If max1≤j≤n |tj − tj−1| → 0, then show

that Sn →
∫ b
a |γ

′(t)|dt.

3. If η is a differentiable reparamterization of a piecewise smooth
curve γ, and if f is continuous on Γγ , then show that

∫
γ f(z)dz =∫

η f(z)dz.

4. Prove:

∫
γ1+γ2

f(z) dz =

∫
γ1

f(z) dz +

∫
γ2

f(z) dz.

5. Given a piecewise smooth curve γ : [a, b] → C, a partition
Πn := a = t0, < t1 < . . . < tn = b of [a, b], and a continuous
function f on Γ, let Sn(f) :=

∑n
j=1 f(γ(tj))[γ(tj)−γ(tj−1)]. If

max1≤j≤n |tj − tj−1| → 0, then show that Sn(f)→
∫

Γ f(z)dz.
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6. If ϕ : [a, b]→ C is continuously differentiable, then show that∫ b

a
ϕ′(t) dt = ϕ(b)− ϕ(a).

7. Let Γ be a closed curve and f has a primitive on an open set
Ω containing Γ, i.e., there exists a continuously differentiable

function g such that g′ = f on Ω. Then

∫
Γ
f(z) dz = 0. Justify.

8. Let Γn be the circle with center at z0 and radius r traced n
times, i.e., Γn := {z0 + reit, 0 ≤ t ≤ 2nπ}. Then, show that∫

Γn

dz

z − z0
= 2nπi,.

9. If p(z) is a polynomial, then prove that

∫
Γn

p(z) dz = 0.

10. If Γ is the circle with centre z0 and radius r, then show that∫
Γ

dz

(z − z0)n
= 0 for every n ∈ Z \ {−1}.

11. Given distinct points α and β in C, evaluate the integrals∫
[α,β] z

ndz and
∫

[α,β] z̄
ndz, where [α, β] denotes the line segment

joining α to β.

12. If f is a real valued function defined on the interval [a, b] and

if γ(t) = t, a ≤ t ≤ b, then show that
∫

[a,b] f(z)dz =
∫ b
a f(t)dt.

13. Let Γ be a closed piecewise smooth curve in the disc of conver-
gence of a power series

∑∞
n=0 an(z−z0)n and let f(z) represent

this series in that disc. Then

∫
Γ
f(z) dz = 0. Justify.

14. Evaluate the integrals
∫
γ f(z)dz in following, where

(a) γ is the curve joining z1 = −1− i to z2 = 1 + i consisting
of the line segment from −1− i to 0 and the portion of the

curve y = x2 from 0 to 1 + i and f(z) =

{
1, y < 0,
4y, y > 0

.

Answer: −5
8 + 5

2 i

(b) γ is the curve consisting of the line segments joining the
points 0 to 1 and 1 to 1 + 2i and f(z) = 3x2 − y + ix3.

Answer: 2 + 3i
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(c) f(z) = z̄ and γ is the curve joining 1 to 1 + i along the
parabola y = x2. Answer: 1 + 1

3 i

(d) γ is the positive oriented circle z− 1| = 4 traced once and
f(z) = 1

z−1 + 6
(z−1)2 Answer: −6πi

15. Show that
∣∣∣ ∫γ z

z2+1
dz
∣∣∣ ≤ 1

2 , where γ be the line segment joining

2 to 2 + i.

16. For piecewise smooth curve γ :: [a, b] → C and continuous

function f : Γ → C, define

∫
γ
f(z)|dz| :=

∫ b

a
f(g(t))|γ ′(t)|dt.

Show that ∣∣∣ ∫
γ
f(z)dz

∣∣∣ ≤ ∫
γ
|f(z)| |dz|.

17. If Γr is the circle γ(t) = z0 + reit, 0 ≤ t ≤ 2π and if f is
continuous on and inside Γr, then prove that

lim
r→0

1

2πi

∫
Γr

f(z)

z − z0
dz = f(z0).

18. For every closed piecewise smooth curve Γ,

∫
Γ
e−z

2
dz = 0.

Why?

19. For positive real numbers, let I1, I2, I3, I4 be the integrals of
e−z

2
over the line segments

[−a, a], [a, a+ ib], [a+ ib,−a+ ib], [−a+ ib,−a],

respectively. Prove that

(i) I1 =

∫ a

−a
e−x

2
dx,

(ii) |I2| ≤ be−a
2+b2 .

(iii) I3 = −eb2
∫ a

−a
e−t

2
cos(2bt)dt,

(iv) |I4| ≤ be−a
2+b2 .

(v) eb
2

∫ ∞
−∞

e−t
2

cos(2bt)dt =

∫ ∞
−∞

e−x
2
dx.
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20. Suppose fn → f uniformly on Γ. Then show that∫
Γ
fn(z)dz →

∫
Γ
f(z) dz.

21. Prove that

∫ ∞
0

e−t
2

cos t2dt =
1

4

√
π

√
1 +
√

2, by integrating

e−z
2

over the positive oriented triangle with vertices at 0, R,Reiπ/8

for R > 0 and letting R→∞.

22. Evaluate the integrals

∫ ∞
0

cos t2dt,

∫ ∞
0

cos t2dt by integrat-

ing e−z
2

over the positive oriented triangle with vertices at
0, R,Reiπ/4 for R > 0 and letting R→∞.

23. Let (Ωn) be a sequence of nonempty compact sets in C such
that Ωn ⊇ Ωn+1 for all n ∈ N and diam(Ωn) → 0 as n → ∞.
Let z0 ∈ ∩∞n=1Ωn. If f is a continuous function defined on Ω1,
show that

max
z∈Ωn

|f(z)− f(z0)| → 0 as n→∞.

24. Suppose Ω be a simply connected domain and f be holomorphic
on Ω. Suppose integral of f over every positively oriented trian-
gle is zero. Prove that if Γ1 and Γ2 are two polygonal lines join-
ing any two points z0 and ζ0 in Ω, then

∫
Γ1
f(z)dz =

∫
Γ2
f(z)dz.

25. Let f be continuous in a neigbourhood of z0 and Γr := {z ∈
C : |z − z0| = r}. Show that

1

2πi

∫
Γr

f(z)

z − z0
dz → f(z0) as r → 0.

26. Evaluate the integral

∫ 2π

0

dθ

1− 2r cos θ + r2
(using complex in-

tegrals).

27. Let f be an entire function such that for some n ∈ N and R > 0,∣∣∣f(z)
zn

∣∣∣ is bounded for |z| > R. Prove tht f is a polynomial of

degree atmost n.
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28. Let f be holomorphic and map Ω := {z ∈ C : |z| < 1} into
itself. Prove that |f ′z)| ≤ 1/(1− |z|) for all z ∈ Ω.

29. Prove that there is no analytic function f on Ω := {z ∈ C :
|z| < 1} such that

(i) f(1/n) = (1/2n for n ∈ N \ {1}.
(ii) f(1/n) = (−1)n/n2 for n ∈ N \ {1}.

30. Let f be a nonconstant holomorphic function in a connected
opens set Ω. If z0 ∈ Ω is such that |f(z0)| ≤ |f(z)| for all z ∈ Ω,
then prove that f(z0) = 0.

31. Let u be a (real valued) harmonic function in a connected opens
set Ω. Let g := ux − iuy on Ω. Justify the following:

(i) g is holomorphic on Ω.

(ii) There exists a holomorphic function f on Ω such that
Ref = u.

(iii) u is infinitely differentiable.



6

Laurent Series and Isolated
Singularities

6.1 Laurent Series

In this chapter we consider series expansions of functions which are
analytic in an annulus. Such series are known as Laurent series.

We know that
1

1− z
=
∞∑
n=0

zn

whenever |z| < 1. We also have

1

1− z
=

−1

z(1− 1/z)
= (−1/z)

∞∑
n=0

(1/zn)

whenever |z| > 1. Note also that

1

(z − 1)(z − 2)
=

1

z − 1
− 1

z − 2

=

∞∑
n=1

(−1)

zn
+

∞∑
n=0

(−1)

2n+1
zn

whenever 1 < |z| < 2.

In view of the above examples, for a function f which is analytic
in an annulus {D := {z ∈ C : R1 < |z − z0| < R2}, we may look for
an expansion of f of the form

∞∑
n=−∞

an(z − z0)n.

87
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Definition 6.1.1 A series of the form
∑∞

n=−∞ an(z−z0)n for a given
z0 ∈ C and sequences (an) and a−n) in C is said to converge at a point
z 6= z0 if both the series

∑∞
n=1 a−n(z − z0)−n and

∑∞
n=1 an(z − z0)n

converge at z. If the series
∑∞

n=−∞ an(z− z0)n converges for all z in
a subset Ω of C, then we say that it converges in Ω. ♦

Note that

• the series

∞∑
n=1

a−n(z − z0)−n converge for all z such that

|z − z0| > R1 := lim sup
n∈N

|a−n|1/n

and

• the series

∞∑
n=1

an(z − z0)n converge for all z such that

|z − z0| < R2 :=
1

lim supn∈N |an|1/n
.

Here, R1 can be 0 andR2 can be∞. Thus, the series
∞∑

n=−∞
an(z−z0)n

converges in the annulus z such that R1 < |z − z0| < R2.

Questions: Consider an annulus

D := {z ∈ C : R1 < |z − z0| < R2}.

• Suppose a series
∑∞

n=−∞ an(z − z0)n converges in D. Then, is
the function represented by this series is holomorphic in D? In
such case, are the coefficients uniquely determined?

• If f is holomorphic in D, does it have a series expansion of the
form

∑∞
n=−∞ an(z − z0)n in D?

We answer both the above questions affirmatively.

Theorem 6.1.1 Suppose
∑∞

n=−∞ an(z−z0)n converges in an annu-
lus D := {z ∈ C : R1 < |z − z0| < R2} and let

f(z) =

∞∑
n=−∞

an(z − z0)n, z ∈ D.
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Then f is holomorphic in D and

an =
1

2πi

∫
Γ

f(ζ

(ζ − z0)n+1
dζ ∀n ∈ Z,

where Γ is any simple closed contour in D enclosing z0.

Proof. Let Γr := {z : |z − z0| = r}, R1 < r < R2. Since f is
uniformly continuous on Γr,

1

2πi

∫
Γr

f(z)dz =
∞∑

n=−∞
an

1

2πi

∫
Γr

(z − z0)ndz.

Hence,

a−1 =
1

2πi

∫
Γr

f(z)dz.

Also, for k ∈ N, we have

f(z)

z − z0)k+1
=

∞∑
n=−∞

an(z − z0)n−k−1, z ∈ D.

Hence,

1

2πi

∫
Γr

f(z)

z − z0)k+1
dz =

∞∑
n=−∞

an
1

2πi

∫
Γr

(z − z0)n−k−1dz

so that (since n− k − 1 = −1 ⇐⇒ n = k)

ak =
1

2πi

∫
Γr

f(z)

z − z0)k+1
dz.

By Cauchy’s theorem, Γr can be replaced by any cure Γ as in the
theorem.

By the above theorem the coefficients of the convergent series∑∞
n=−∞ an(z − z0)n is uniquely determined by the function which it

represents. In view of this fact, we have the following definition.

Definition 6.1.2 Suppose the series
∑∞

n=−∞ an(z − z0)n converges
in an annulus D := {z ∈ C : R1 < |z − z0| < R2} and let f be the
function represented by the series in D. Then the series is said to be
the Laurent series of f in D. ♦
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Proposition 6.1.2 Suppose ϕ is continuous on piecewise smooth
curve Γ and

ψ(z) :=

∫
Γ

ϕ(ζ)

ζ − z
dζ ∀ z 6∈ Γ.

Then ψ is holomorphic in C \ Γ and ψ has the series expansions

∞∑
n=0

an(z − z0)n whenever |z − z0| < inf
ζ∈Γ
|ζ − z0|,

∞∑
n=1

bn(z − z0)−n whenever |z − z0| > sup
ζ∈Γ
|ζ − z0|,

where

an =

∫
Γ

f(ζ

(ζ − z0)n+1
dζ ∀n ∈ Z,

with a−n = bn for n ∈ N.

Proof. We note that for ζ 6= z,

1

ζ − z
=

1

(ζ − z0)− (z − z0)
=

−1

(z − z0)− (ζ − z0)

=
−1

(z − z0)
[
1− ζ−z0

z−z0

] .
Hence, for |z − z0| > maxζ∈Γ |ζ − z0|,

1

ζ − z
=
−1

z − z0

∞∑
n=0

(ζ − z0

z − z0

)n
=

∞∑
n=1

(−1)
(ζ − z0)n−1

(z − z0)n

Thus,

ϕ(z)

ζ − z
=

∞∑
n=1

(−1)ϕ(z)
(ζ − z0)n−1

(z − z0)n

so that ∫
Γ

ϕ(z)

ζ − z
dζ =

∞∑
n=1

bn(z − z0)−n

where

bn = −
∫

Γ
ϕ(z)(ζ − z0)n−1dζ, n ∈ N.
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Also, for ζ 6= z,

1

ζ − z
=

1

(ζ − z0)− (z − z0)
=

1

(ζ − z0)
[
1− z−z0

ζ−z0

] .
Hence, for |z − z0| < infζ∈Γ |ζ − z0|,

1

ζ − z
=

1

ζ − z0

∞∑
n=0

(z − z0

ζ − z0

)n
=

1

ζ − z0

∞∑
n=0

(z − z0)n

(ζ − z0)n+1
.

Thus, ∫
Γ

ϕ(z)

ζ − z
dζ =

∞∑
n=1

an(z − z0)n

where

an =

∫
Γ

ϕ(z)

(ζ − z0)n+1
dζ, n ∈ N0 := N ∪ {0}.

This completes the proof.

Theorem 6.1.3 Suppose f is holomorphic annulus D := {z ∈ C :
R1 < |z − z0| < R2}. Then f has a series expansion

∞∑
n=−∞

an(z − z0)n on D,

where

an =
1

2πi

∫
Γ

f(ζ)

(ζ − z0)n+1
dζ ∀n ∈ Z.

Proof. Let R1 < r < R < R2 and let C := {ζ : |ζ − z0| = r} and
Γ := {ζ : |ζ − z0| = R}. Then it can be seen that (verify!) for every
z with r < |z − z0| < R,

f(z) =
1

2πi

∫
Γ

f(ζ)

ζ − z
dζ − 1

2πi

∫
C

f(ζ)

ζ − z
dζ = f1(z) + f2(z).

By Proposition 6.1.2, we have

f1(z) =
1

2πi

∫
Γ

f(ζ)

ζ − z
dζ =

∞∑
n=1

bn(z − z0)−n

and

f2(z) =
1

2πi

∫
C

f(ζ)

ζ − z
dζ =

∞∑
n=1

an(z − z0)n,
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where,

bn =

∫
Γ
f(z)(ζ − z0)n−1dζ, n ∈ N,

an =
1

2πi

∫
Γ

f(ζ)

(ζ − z0)n+1
, n ∈ N0.

Thus,
∞∑

n=−∞
an(z − z0)n on D,

where

an =
1

2πi

∫
Γ

f(ζ)

(ζ − z0)n+1
dζ ∀n ∈ Z.

This completes the proof.

6.2 Isolated Singularities

Definition 6.2.1 Let f be analytic in an open set Ω. A point z0 6∈ Ω
is said to be a singularity of f if z0 is a limit point of Ω and f cannot
be extended to an open set Ω̃ which contains Ω and z0. ♦

• z0 is a singularity of an analytic function f : Ω→ C if and only
if z0 is a limit point of Ω and for every r > 0, f cannot be extended
analytically to Ω ∪ B(z0, r), i.e., there is not analytic function g :
Ω ∪B(z0, r)τC such that g(z) = f(z) for all z ∈ Ω.

Definition 6.2.2 Let Ω be an open set in which a holomorphic
function f is defined and z0 ∈ C\Ω. Then z0 is said to be an isolated
singularity of f if a deleted neigbourhood of z0 is contained in Ω.

Let z0 be an isolated singularity of a holomorphic function f , and
let

∞∑
n=−∞

an(z − z0)n

be its Laurent series expansion in a deleted neigbourhood D0 of f .
Then z0 is said to be

• a removable singularity of f if a−n = 0 for all n ∈ N;

• a pole order m of f if a−m 6= 0 and an = 0 for all n < −m;

• an essential singularity of f if a−n 6= 0 for infinitely many
n ∈ N.
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If z0 is a pole of order 1, then z0 is called a simple pole. ♦

EXAMPLE 6.2.1 (i) For the function f(z) := 1/z3, z0 = 0 is a
pole of order 3.

(ii) For the function f(z) := sin z/z, z0 = 0 is a removable sin-
gularity.

(iii) For the function f(z) := e1/z2
, z0 = 0 is an essential singu-

larity. �

Theorem 6.2.1 Let z0 be an isolated singularity of a holomorphic
function f . Then the following are equivalent.

(i) z0 is a removable singularity of f .

(ii) f can be extended holomorphically to a neigbourhood of z0.

(iii) f is bounded in a deleted neigbourhood of z0.

(iv) limz→z0(z − z0)f(z) = 0.

Proof. Let
∑∞

n=0 an(z − z0)n be the Laurent series expansion f
in a deleted neigbourhood D0 of z0.

(i)⇐⇒ (ii): Suppose z0 is a removable singularity of f . Defining

f̃(z0) =

{
f(z), z 6= z0,
a0, z 6= z0,

, we see that f̃ is a holomorphic extension

of f to a neigbourhood of z0.
Conversely, suppose f̃ is a holomorphic extension of f to neig-

bourhood D of z0. Let
∑∞

n=0 an(z − z0)n be the Taylor series ex-
pansion of f̃ in D. Then,

∑∞
n=0 an(z − z0)n is the Laurent series

expansion of f in the deleted neigbourhood D \ {0}.

(i) ⇐⇒ (iii): Suppose z0 is a removable singularity of f . Since
limz→z0 f(z) = a0, there exists δ > 0 such that

0 < |z − z0| < δ =⇒ |f(z)− a0| ≤ 1.

Hence,
0 < |z − z0| < δ =⇒ |f(z)| ≤ |a0|+ 1.

Conversely, suppose that f is bounded in a deleted neigbourhood
D0 of z0, say |f(z)| ≤ M for all z ∈ D0. Let r > 0 be such that
Γr := {z ∈ C : |z − z0| = r} ⊆ D0. Then, for each n ∈ N,

|a−n| =
∣∣∣ 1

2πi

∫
Γr

(z − z0)n−1f(z)dz
∣∣∣ ≤Mrn.
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Letting r → 0, we obtain a−n = 0.

(i) ⇐⇒ (iv): Suppose z0 is a removable singularity of f . Since
limz→z0 f(z) = a0, we have limz→z0(z − z0)f(z) = 0.

Conversely, suppose limz→z0(z − z0)f(z) = 0. Let ε > 0 and let
δ > 0 be such that

0 < |z − z0| < δ =⇒ |(z − z0)f(z)| < ε.

Let 0 < r < min{δ, 1}. Then, for each n ∈ N,

|a−n| =
∣∣∣ 1

2πi

∫
Γr

(z − z0)n−1f(z)dz
∣∣∣

=
∣∣∣ 1

2πi

∫
Γr

(z − z0)n−2(z − z0)f(z)dz
∣∣∣

≤ rn−1ε ≤ ε.

Hence, a−n = 0 for all n ∈ N, and hence z0 is a removable singularity
of f .

Theorem 6.2.2 Let z0 be an isolated singularity of a holomorphic
function f . Then the following are equivalent.

(i) z0 is a pole of f .

(ii) There exists m ∈ N and a holomorphic function ϕ in a neig-
bourhood D of z0 such that f(z) = (z − z0)−mϕ(z) for all
z ∈ D \ {0} with ϕ(z0) 6= 0.

(iii) |f(z)| → ∞ as z → z0.

(iv) There exists m ∈ N such that z0 is a removable singularity of
ϕ(z) := (z − z0)mf(z) with limz→z0 ϕ(z) 6= 0.

(v) The function 1/f defined in a deleted neigbourhood of z0 can
be extended holomorphically to a neigbourhood of z0 and z0 is
a zero of order m of the extended function.

Proof. Let
∑∞

n=0 an(z − z0)n be the Laurent series expansion f
in a deleted neigbourhood D0 of z0.

(i)⇐⇒ (ii): This is obvious from the definition of the pole.
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(i)⇐⇒ (iii): Suppose z0 is a pole of order m of f . By (ii), There
exists m ∈ N and a holomorphic function ϕ in a neigbourhood D of
z0 such that

f(z) = (z − z0)−mϕ(z) ∀ z ∈ D0 := D \ {0}

with ϕ(z0) 6= 0. Since ϕ(z)→ ϕ(z0) 6= 0, we obtain

|f(z)| = |(z − z0)−mϕ(z)| → ∞ as z → z0.

Conversely, suppose |f(z)| → ∞ as z → z0. Then f is nonzero in
a deleted neigbourhood D0 of z0, and hence, the function defined by
g(z) = 1/f(z) for z ∈ D0, satisfies

|g(z)| → 0 as z → z0.

Define g(z0) = 0. Then g is holomorphic in D := D0 ∪ {0}. Hence,
there exists m ∈ N and a holomorphic function ϕ in D such that

g(z) = (z − z0)mϕ(z) ∀ z ∈ D

ϕ(z0) 6= 0. Thus, for z ∈ D0,

f(z) =
1

g(z)
= (z − z0)−mψ(z), ψ(z) :=

1

ϕ(z)

and ψ(z0) 6= 0. Hence, z0 is a pole of order m of f .

(i) ⇐⇒ (iv): Suppose z0 is a pole of f . By (ii), there exists
m ∈ N and a holomorphic function ϕ in a neigbourhood D of z0 such
that

f(z) = (z − z0)−mϕ(z) ∀ z ∈ D0 := D \ {0}

with ϕ(z0) 6= 0. Then, ϕ(z) = (z − z0)mf(z) in D0. Clearly,
limz→z0 ϕ(z) = ϕ(z0). Hence, z0 is a removable singularity of ϕ.

Conversely, suppose there exists m ∈ N such that z0 is a remov-
able singularity of ϕ(z) := (z− z0)mf(z) with limz→z0 ϕ(z) 6= 0. Let
ϕ̃ be the holomorphic extension of ϕ to a neigbourhood D of z0.
Then we have

f(z) = (z − z0)−mϕ(z) ∀ z ∈ D0 := D \ {0}

and ϕ̃(z) 6= 0. Hence z0 is a pole of order m of f .
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(i)⇐⇒ (v): Suppose z0 is a pole of f . By (ii), there exists m ∈ N
and a holomorphic function ϕ in a neigbourhood D of z0 such that

f(z) = (z − z0)−mϕ(z) ∀ z ∈ D0 := D \ {0}

with ϕ(z0) 6= 0. Then,

1

f(z)
= (z − z0)mψ(z) ∀ z ∈ D0 := D \ {0},

where ψ, defined by ψ(z) := 1/ϕ(z), is analytic on D. Thus, the
function 1/f can be extended holomorphically to D by defining 0 at
z0, and z0 is a zero of order m of the extended function.

Conversely, if g := 1/f can be extended holomorphically to a
neigbourhood D of z0 and z0 is a zero of order m of the extended
function g̃, then there exists a an analytic function ψ in D such that

g̃(z) = (z − z0)mψ(z) ∀ z ∈ D.

Thus, we have

f(z) = (z − z0)−mϕ(z) ∀ z ∈ D0 := D \ {0}

where ϕ(z) = 1/ψ(z) on D and ϕ(z0) 6= 0 so that z0 is a pole of f
order m.

The following theorem shows that if z0 is an essential singularity
of a holomorphic function f , then in a neigbourhood of z0, there are
values of f which are arbitrarily close to any complex number.

Theorem 6.2.3 (Casorati-Weierstrass theroem) Suppose z0 is
an essential singularity of a holomorphic function f . Then for every
w ∈ C, there exists a sequence (zn) in the domain of analyticity of f
such that f(zn)→ w as n→∞.

Proof. Suppose for a moment that the conclusion in the theorem
does not hold. Then there exists w ∈ C such that for any sequence
(zn) with zn → z0, f(zn) 6→ w. Then the function g(z) := 1

f(z)−w is

analytic in a deleted neigbourhood of z0. Further, |g| is bounded in
a deleted neigbourhood of z0. (If |g| is not bounded in any deleted
neigbourhood of z0, then there exists a sequence (zn) such that zn →
z0 and |g(zn)| → ∞.) Hence, by Theorem 6.2.1, z0 is a removable
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singularity of g. Suppose g(z)→ α0 as z → z0. We have the following
two cases:

Case (i): α0 6= 0: In this case, f(z) = w + 1/g(z)→ w + 1/α0 as
z → z0, so that by Theorem 6.2.1, z0 is a removable singularity of f
as well.

Case (ii): α0 = 0: In this case, we have |f(z)| = |w+1/g(z)| → ∞
as z → z0, and hence by Theorem 6.2.2, z0 is a pole of f .

Since z0 is an essential singularity, cases (i) and (ii) can not occur.
Thus, our assumption that the conclusion in the theorem does not
hold is not true.

6.3 Problems

1. For 0 < a < 1, find the annulus of convergence of the series∑∞
n=−∞ a

n2
zn.

2. Locate and classify the isolated singularities of the following
functions:

(i)
z5

1 = z + z2 = z3 + z4
, (ii)

1

sin2 z
, (iii) sin(1/z).

Also, check whether z0 = ∞ is an isolated singularity (i.e.,
w0 = 0 is an isolated singularity of f(1/z)) in each case.

3. If f and g are holomorphic functions having z0 a pole of the
same order for both, then prove that

lim
z→z0

f(z)

g(z)
= lim

z→z0

f ′(z)

g′(z)
.
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Residues and Real Integrals

7.1 Residue theorem

Definition 7.1.1 Suppose f is holomorphic in a deleted neigbour-
hood D0 of z0 ∈ C and Γr := {z ∈ C : |z − z0| = r} ⊆ D0. Then
residue of f at z0 is defined by

Res(f, z0) =
1

2πi

∫
Γr

f(z)dz.

♦

Recall that if f is holomorphic in a deleted neigbourhood D0 of
z0 ∈ C, then f has Laurent series expansion

f(z) =

∞∑
n=−∞

an(z − z0)n, z ∈ D0,

and we know that

an =
1

2πi

∫
Γr

f(z)

(z − z0)n+1
dz, n ∈ Z.

Thus,
Res(f, z0) = a−1.

The following theorem, known as residue theorem follows from
Cauchy’s theorem.

Theorem 7.1.1 (Residue theorem) Suppose Γ is a simple closed
contour and z1, . . . , zk are points in ΓΓ which are the only singular
points of f in Γ ∪ ΩΓ. Then∫

Γ
f(z)dz = 2πi

k∑
j=1

Res(f, zj).

98
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7.2 Calculation of Residues

Suppose z0 is a pole of order m of a holomorphic function f . Then we
know that there exists a holomorphic function ϕ in a neigbourhood
D of z0 such that

f(z) = (z − z0)−mϕ(z) ∀ z ∈ D0 := D \ {z0}.

Let

ϕ(z) =

∞∑
n=0

αn(z − z0)n, z ∈ D.

Then we have

αn =
ϕ(n)(z0)

n!
, n ∈ N0 := N ∪ {0}

so that

f(z) = (z − z0)−mϕ(z) =

∞∑
n=0

αn(z − z0)n−m =

∞∑
n=−m

an(z − z0)n.

Hence,

Res(f, z0) = a−1 = αm−1 =
ϕ(m−1)(z0)

(m− 1)!
.

Thus, we have proved the following theorem.

Theorem 7.2.1 Suppose z0 is a pole of order m of a holomorphic
function f . Then the function

z 7→ ϕ(z) := (z − z0)mf(z)

defined in a deleted neigbourhood of z0 has a holomorphic extension
to a neigbourhood D of z0, again denoted by ϕ, and

Res(f, z0) =
ϕ(m−1)(z0)

(m− 1)!
.

In particular, if z0 is a simple pole of f , then

Res(f, z0) = lim
z→z0

(z − z0)f(z).
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Corollary 7.2.2 Suppose g and h are holomorphic in a neigbourhood
D of z0 and z0 is a zero of h of order m. If h(z) = (z − z0)mh0(z)
with h0(z0) 6= 0, then

Res(
g

h
, z0) =

ϕ(m−1)(z0)

(m− 1)!
,

where ϕ(z) = g(z)/h0(z). In particular, if m = 1, then

Res(
g

h
, z0) =

g(z0)

h0(z0)
=

g(z0)

h′(z0)
.

EXAMPLE 7.2.1 Let us find

∫
Γ
f(z)dz, where f(z) =

1

z(z − 1)
and Γ is the positively oriented circle with centre 0 and radius 2.

By residue theorem,∫
Γ

dz

z(z − 1)
= 2πi[Res(f, z1) +Res(f, z2)], z1 = 0, z2 = 1.

Since z1 = 0 and z2 = 1 are simple poles of the function

Res(f, z1) = lim
z→0

zf(z) = −1,

Res(f, z2) = lim
z→1

(z − 1)f(z) = 1.

Hence,

∫
Γ

dz

z(z − 1)
= 0. �

EXAMPLE 7.2.2 Let us find

∫
Γ
f(z)dz, where f(z) =

1

z(z − 1)2

and Γ is the positively oriented circle with centre 0 and radius 2. By
residue theorem,∫

Γ

dz

z(z − 1)2
= 2πi[Res(f, z1) +Res(f, z2)], z1 = 0, z2 = 1.

Since z1 = 0 is a simple pole and z2 = 1 is a pole of order 2,

Res(f, z1) = lim
z→0

zf(z) = 1, Res(f, z2) = ϕ′(1)

where ϕ(z) = 1
z so that ϕ′(1) = −1. Thus,

∫
Γ

dz

z(z − 1)2
= 0. �
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Exercise 7.2.1 1. Find Res(f, z0), where

(a) f(z) = ze1/z, z0 = 0.

(b) f(z) =
z + 2

z(z + 1)
, (i) z0 = 0, (ii) z0 = −1.

2. Evaluate

∫
Γ
f(z)dz, where

(a)
3z + 1

z(z − 1)3
and Γ = {z : |z| = 2}.

(b)
z + 1

2z3 − 3z2 − 2z
and Γ = {z : |z| = 1}.

(c)
z + 1/z

z(2z − 1/(2z)
and Γ = {z : |z| = 1}.

(d)
log(z + 2)

2z + 1
and Γ = {z : |z| = 1}.

(e)
cosh(1/z)

z
and Γ = {z : |z| = 1}.

/

7.3 Evaluation of Improper Integrals

In this section we shall evaluate integrals of the form∫ ∞
0

f(x)dx and

∫ ∞
−∞

f(x)dx,

where f is a continuous function.

EXAMPLE 7.3.1 Let us evaluate

∫ ∞
−∞

dx

1 + x2
. For this consider

the function f(z) =
dx

1 + z2
for z 6= 0. Note that z = i is the only

singularity of f in the upper half plane and it is a simple pole. Con-
sider the positively oriented curve ΓR consisting of the semicircle
with centre 0 and radius R, i.e., SR := {z : |z| = R, Im(z) > 0} and
the line segment LR := [−R, R]. Then, by Cauchy’s theorem,∫

ΓR

f(z)dz =

∫
Cr

f(z)dz,
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where Cr = {z : |z − i| = r} with 0 < r < R. But,∫
Cr

f(z)dz = 2πiRes(f, i) = 2πi lim
z→i

(z − i)f(z) = π.

Thus, ∫
ΓR

f(z)dz = π.

Also, we have∫
ΓR

f(z)dz =

∫
SR

f(z)dz +

∫
LR

f(z)dz =

∫
SR

f(z)dz +

∫ R

−R
f(x)dx.

But, for z ∈ SR,

|f(z)| ≤ 1

R2 − 1
.

Hence, ∣∣∣ ∫
SR

f(z)dz
∣∣∣ ≤ `(SR)

R2 − 1
=

πR

R2 − 1
.

Hence,

lim
R→∞

∫
ΓR

f(z)dz = lim
R→∞

∫
SR

f(z)dz + lim
R→∞

∫
LR

f(z)dz

= 0 +

∫ ∞
−∞

f(x)dx.

Thus, ∫ ∞
−∞

f(x)dx = lim
R→∞

∫
ΓR

f(z)dz = π.

�

EXAMPLE 7.3.2 Let us evaluate

∫ ∞
−∞

cosx

1 + x2
dx. Since

∫ ∞
−∞

cosx

1 + x2
dx = Re

(∫ ∞
−∞

eix

1 + x2
dx

)
we consider the function

f(z) =
eiz

1 + z2
, z 6∈ {i,−i}.

Following the arguments as in the previous example, one arrive at∫ ∞
−∞

eix

1 + x2
dx =

π

e
.
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But,

Im

(∫ ∞
−∞

eix

1 + x2
dx

)
=

∫ ∞
−∞

sinx

1 + x2
dx = 0.

Hence, ∫ ∞
−∞

cosx

1 + x2
dx =

π

e
.

�

EXAMPLE 7.3.3 Let us evaluate

∫ ∞
−∞

sinx

x
dx. Since

∫ ∞
−∞

sinx

x
dx = Re

(∫ ∞
−∞

eix

x
dx

)
we consider the function

f(z) =
eiz

z
, z 6= 0.

For r > 0, let Sr := {z : |z| = r} with positive orientation. Then, tak-
ing 0 < ε < R and Γ as the curve consisting of SR, [−R,−ε], S̃ε, [ε,R],
using Cauchy’s theorem,

0 =

∫
Γ
f(z)dz

=

∫
SR

f(z)dz +

∫ −ε
−R

f(x)dx+

∫
S̃ε

f(z)dz +

∫ R

ε
f(x)dx

=

∫
SR

f(z)dz +

∫ −ε
−R

f(x)dx−
∫
Sε

f(z)dz +

∫ R

ε
f(x)dx

But, ∫ −ε
−R

cosx

x
dx+

∫ R

ε

cosx

x
dx = 0

and ∫ −ε
−R

sinx

x
dx+

∫ R

ε

sinx

x
dx = 2

∫ R

ε

sinx

x
dx.

Hence, ∫ R

ε
f(x)dx+

∫ −ε
−R

f(x)dx = 2i

∫ R

ε

sinx

x
dx.

Thus,

2i

∫ R

ε

sinx

x
dx =

∫
Sε

f(z)dz −
∫
SR

f(z)dz
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Now, we note that with the parametrization γ(t) = Reit, 0 ≤ t ≤ π
of SR,∫

SR

f(z)dz =

∫ π

0

eiR(cos t+i sin t)

ReiRt
iReiRtdt = i

∫ π

0
eiR(cos t+i sin t)dt.

Hence, ∣∣∣ ∫
SR

f(z)dz
∣∣∣ ≤ ∫ π

0
e−R sin tdt = 2

∫ π/2

0
e−R sin tdt.

Since
sin t

t
is decreasing in [0, π/2], we have

sin t

t
≥ sinπ/2

π/2
so that

sin t ≥ 2t/π.Thus,∣∣∣ ∫
SR

f(z)dz
∣∣∣ ≤ 2

∫ π/2

0
e−2Rt/πdt =

π

2R
(1−e−2R)→ 0 as R→∞.

Next, we observe that

eiz

z
=

1

z
+ ϕ(z)

where ϕ is an entire function. Hence, there exists M > 0 such that
|ϕ(z)| ≤M for all z with |z| ≤ 1. Thus,∫

Sε

f(z)dz =

∫
Sε

dz

z
+

∫
Sε

ϕ(z)dz,

where ∣∣∣ ∫
Sε

ϕ(z)dz
∣∣∣ ≤Mπε, 0 < ε ≤ 1.

Hence,

2i

∫ R

ε

sinx

x
dx =

∫
Sε

dz

z
+

∫
Sε

ϕ(z)dz −
∫
SR

f(z)dz

= πi+

∫
Sε

ϕ(z)dz −
∫
SR

f(z)dz,

where∫
Sε

ϕ(z)dz → 0 as ε→ 0 and

∫
SR

f(z)dz → 0 as R→∞.

Thus, ∫ R

ε

sinx

x
dx =

π

2
.

�
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7.4 Problems

1. Find the residues of the following functions:

(i)
z3

z − 1
(ii)

z3

(z − 1)2

2. If f and g are holomorphic in a neigbourhood of z0, and z0 is a
simple a pole of g, then prove that Res(f/g, z0) = f(z0)/g′(z0).

3. Determine the residues of each of the following functions at
each of their singularities:

(i)
z3

1− z4
, (ii)

z5

(z2 − 1)2
, (iii)

cos z

1 + z + z2
.

4. If f is holomorphic in a neigbourhood of z0, and z0 is a zero of
f order m, then prove that Res(f ′/f, z0) = m.

5. Evaluate the following using complex integrals:

(i)

∫ ∞
0

eix

x
dx, (ii)

∫ ∞
0

dx

1 + x2
,

(iii)

∫ ∞
0

sin2 x

x
dx, (iii)

∫ ∞
0

cos ax

x2 + b2
dx, a ≥ 0, b > 0.
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