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Unreasonable Effectiveness

• First coined by the great Hungarian-American Physicist Eugene

Wigner (1902-1995) in an essay for the Richard Courant lectures [1]

• Posed a very simple question, ”Just why is mathematics so good in

the hands of scientists at predicting the world in which we live?”

• How good? Anomalous Magnetic Moment of an Electron ae = g−2
4π

which measures the strength that the spin of an electron couples to

a magnetic field

ae = 0.001 159 652 181 643(764) Calculated

ae = 0.001 159 652 180 73 (28) Measured!

Which is the distance San Francisco to London within the width of a

human hair!!!!!!

• In this talk I will show the many unreasonably effective applications

of Graph Theory to Fault Localization!
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Summary

• I cover a very very brief introduction to key concepts in Graph

Theory

• Fault localization, is the motivating practical problem

• In particular root cause is the relationship between the signals a

network can send and what is going on

• I survey a series of applications of Graph Theory to the problem of

Fault Localization
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Background



A little bit on me...

• Nearly 30 years building software for Fortune 2000 companies;

Currently CEO of Moogsoft Inc

• 2 IPOs, 2 trade sales, one on way to full scale (Moogsoft)

• And...

• PhD in Informatics, speciality information theory of graphs and

network science

• Publications in IEEE, EPJ-B, Entropy, Complex Networks, on graph

entropy, network science, cancer genetics, and spacetime geometry

[2, 3, 4]

• Adjunct Professor at the Beyond Center, ASU, and visiting

researcher at University of Sussex
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Fault Localization - The Very Big Picture

• An incident is a problem on a digital service that causes service

interruption

• They are hopefully detected by network management systems (NMS)

• NMS systems collect status messages (logs) and typically poll for

status by performing health checks with protocols such as SNMP

• Each status record is called an Event, and will have a source node

and a timestamp as a minimum

• Events can be promoted to an Alert by the NMS to indicate a fault

condition, which may or may not be actionable.

• Fault Localization is the task of working out which subset of alerts

and their events underly the incident and hopefully point the way to

a fix

• Excellent reviews of the field in Steinder et al [5, 6].
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Fault Localization - A Very Brief History
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A little bit about Moogsoft

• Founded in January 2012 in London, HQ now in San Francisco

• 130 + customers across every segment of corporate IT

• Principle business is AIOps, the use of AI techniques to help with

Systems and Network Management

• 50 + Patents, significant footprint in academic research
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AIOps In Action

© 2019 Moogsoft. All rights reserved.

Proactively and automatically 
detects incidents and probable 
root causes (reduces MTTD)

Industrialized data
ingestion from 
multiple sources

Automatically resolves 
signals from alert noise

Enables 
collaborative 
workflows (reduces 
MTTR and adverse 
business impact)

Predictive insights 
(reduces support 

escalations and 
MTTR)

Early detection, fewer tickets, reduced MTTR

AIOps Agile and Proactive 
Event-to-Resolution Workflow

Triggers automation 
to restore services

AI

AI AI AI

AI
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Many different algorithms in a pipeline...

© 2019 Moogsoft. All rights reserved.
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Partnering with Academia to Produce IP!

© 2019 Moogsoft. All rights reserved.

Entropy Time Language Topology Vertex 
Entropy
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A Lightening Course in Graph

Theory



Graph Theory Basics

Definitions

• A Graph G (V ,E ) ≡ G (V ,V × V ), is a

collection of vertices vi ∈ V , and edges

eij ∈ V × V .

• If eij = eji the graph is said to be undirected,

and if {eii} = ∅ the graph is said to be

simple.

• For each node in the graph vi we can

compute the number of in directed edges k in
i

and out directed edges kout
i , and for

undirected graph simply the incident edges

ki , call the in-degree, out-degree or degree.

v1 v2 v3

v4 v5 v6

v7

v8

v9

e1,2
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Graph Theory Basics

Definitions

• Graphs can be decomposed into sub-graphs

H(V ,E ) ⊂ G (V ,E ), implying VH ⊂ VG . A

very important subset being the set of all

‘triangles’ in a graph (e.g. {v2, v4, v5} ).

• Another strong structural hint are the ‘stable

sets’ of a graph, or decomposition of V into

sets of vertices that are not adjacent (do not

share an edge). The minimum number of

such sets is the chromatic number χG of the

graph; etymological origin coming from map

coloring analogy. For example

{{v1, v4, v6, v7, v8, v9}, {v2}, {v3}, {v5}} is

such a decomposition of our graph.

v1 v2 v3

v4 v5 v6

v7

v8

v9

e1,2
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Graph Theory Basics

Perfection, Clustering, Diameter, Centrality!

• A ‘Perfect’ graph on n = |V | nodes, Kn, is

the maximally connected graph, and has

1/2n(n − 1) =
(
n
2

)
edges.

• Clustering measures how ‘Perfect’ a graph is,

by counting the number of triangles in a

graph as a fraction of how many triangles

there could be. It is often defined as:

C =
3× # triangles

# open triples
, globally

Ci =
2× # edges in 1-hop neighborhood

ki (ki − 1)

v1 v2 v3

v4 v5 v6

v7

v8

v9

e1,2
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Graph Theory Basics

Perfection, Clustering, Diameter, Centrality!

• Diameter of a graph is the longest shortest

path (sequence of edges) between any two

vertices. Somewhat related and occasionally

used , is the Volume of the graph

vol(G ) =
∑
i

ki = 2|E |.

• Centrality measures the importance of a node

for navigation in the graph, and is very

important for identifying which nodes cause

disconnection in a graph. Betweenness

Centrality is the fraction of shortest paths

between pairs of nodes that pass through a

given node. In our graph the BC of

v2 = 0.69, and say v9 = 0.0.

v1 v2 v3

v4 v5 v6

v7

v8

v9

e1,2
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Graph Theory Basics

Graph/Matrix Duality

• Can define many matrix representations of a graph.

• Adjacency Matrix A = Aij = 1,∃eij ∈ E , otherwise Aij = 0,Aii = 0.

• Lots of interesting properties, in particular An
ij is the number of n lengths

paths between node i and j . Note links can be traversed more than once!

• Degree matrix ∆ = ∆ij = 0, i 6= j ,∆ii = ki .

• Laplacian L = Lij = ∆ij − Aij .

• The Laplacian has interesting eigenvalues λi , with 0 occurring with at least

multiplicity 1. The multiplicity of λ0 = 0 is the number of disconnected

subgraphs. The second smallest eigenvalue is called the algebraic

connectivity of the graph, and the associated eigenvector the Fiedler vector.

They are useful in assessing how easy it is to dismember the graph into

disconnected ”modules”.

• The name ”Laplacian” is intentional as in certain discrete applications it

plays an analogous role to the Laplace ∇2 operator. For example, if φi is the

”heat” of a node in a graph, the heat diffusion equation for the whole graph

can be written:
dφ

dt
+ kLφ = 0 (1)
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Application 1: Rules Based

Approaches



Rules and Graphs?

The correspondence between rules and decision trees...
• The fundamental idea is to go from a set of received events to the causal

indicator of the problem.

• Begins with mapping the states of a managed system to a direct graph of

states.

• In Figure 1 we depict the states as nodes in this graph, and the links

represent rules that must be matched to transition the system between

states.

• Typically these rules are statements about the attributes of a received

event in the form of:

#

# Dec l a r e Event

#

e v e n t={
” s o u r c e ” : host1 , ” check ” : p i n g F a i l ,

” d e s c r i p t i o n ” : ” Ping F a i l e d on h o s t 1 ”

};

# Check T r a n s i t i o n 1

i f e v e n t . type == ” p i n g F a i l ” then

do

f i r e T r a n s i t i o n ( e v e n t . s o u r c e , ” S t a t e 1” ) ;

done ;

. . .

• Arrival in a given state generally triggers an operational

notification/alert/incident

Start

State 1 State 2

State 3

Event Matches A
Event Matches B

Event B Clears
Event Matches C

Figure 1: Example of a Basic

State Graph in a Rules Based

System (reproduced from [7])
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Implementations and Limitations

• This approach is the single most popular and widespread

implementation of Fault Localization.

• It is the core approach of products from IBM/HP/CA and most

leading suppliers of operational support software

• The IT Infrastructure Library (ITIL), a set of manuals produced by

the British Government [8], encodes the preferred operational

procedures around such an approach.

• BUT, it relies upon being able to produce a model such as Figure 1,

which is often not possible, and suffers badly from ambiguity in

transition rules.

• In other work by my colleague Rob Harper and myself ([9]), we

propose a different data driven approach to rules that overcomes

these limitations.
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Causal Graphs and Codebook

• Pioneered in the early 1990s, as is described in Kliger et al [10]

• A causality graph is a representation of cause (’Problems’, which equate to

incidents or root causes) and effect (Symptoms, which equate to events).

• In principle at any given time, the state of the system is deduced from the

events (Symptoms) present, by selecting the minimal distance to a known

problem. In the codebook in Table 1, the presence of S1,S2 but not S3

(event vector (1, 1, 0) would indicate P1 as the most likely root cause.

• Still suffers from ambiguity (consider for example the event vector (1, 0, 1).

Table 1: Codebook for Causality Graph in

Figure 2, reproduced from [7]

Symptom P1 P2 P3

S1 0.8 0.3 0.0

S2 0.9 0.1 0.0

S3 0.0 0.9 0.9

S1 S2 S3

P1 P2 P3

0.9

0.3

0.1

0.90.9

0.8

Figure 2: A Simple Codebook Causality

Graph - reproduced from [7]
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Fundamental Flaws in Rules; Graph Theoretical Viewpoint

Regardless of Approach - 5 Fatal Flaws

1. Null Event: A common use case is the non-occurrence of an event in a

given timeframe. This is hard to represent as a static transition in a causality

graph and corresponds to a non-deterministic structure of the state graph.

2. Degenerate Causes: Often different causes can cause the same set of

alerts, or in the case of a causality graph two different symptom nodes can

have the identical set of edges to a problem node. This is a type of graph

‘automorphism’ and contributes to a higher entropy of the graph (see next

section). The state of the graph is not deterministic and root causes are not

definable.

3. Order of Arrival: Because events cannot be guaranteed to arrive in a fixed

order the causality graph will need to have each possible path from symptom

to node. This will eventually result in a perfect graph and complete

indeterminacy of causes from symptoms.

4. Completeness: Unless the causality graph completely covers all possible

transitions the arrival of an unknown event will not be able to be processed

by the graph. This is equivalent to adding disconnected nodes to the graph.

5. Max Sat and Closure: A well known NP-Hard/Complete problem is

determining whether an arbitrarily large boolean in normal form has a

solution. This is equivalent to knowing the maximum adjacency set of an

arbitrary causality graph, also an NP-Hard/Complete problem.
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Application 2: Entropy and

Network Resilience



Graph Entropy and Network Resilience

What is Graph Entropy H[G (V ,E )]

• Measures structural information in a graph. The more meshed a

graph, the lower the entropy

• Chromatic Entropy

• Defined using Chromatic number of the graph. Acts like

”negentropy”

• Körner or Structural Entropy1

• Closely related, uses non adjacent sets of vertices

1We assume in our treatment that vertex emission probabilities are all uniform
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Graph Entropy a Measure of Redundancy

A D

B C

S4

A D

B C

K4

A D

B C

C4

A D

B C

P4

Table 2: Graph Types that Maximize and Minimize Entropy2

Chromatic Structural

Maximum Kn Sn

Minimum Sn Kn

2In all of our work we only consider connected, simple graphs
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Global Measures Computationally too Complex

• It is only valid globally, no value for an individual node

• All are expensive to compute, and contain NP-complete problems

We need a vertex value such that H[G (V ,E )] ∼
∑

v∈G H(v)
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The Dehmer Vertex Informational Functional

• Dehmer ([11]) creates a framework for calculating graph entropy in

terms of vertices

• Dehmer scopes locality of a node by the j − Sphere, Sj(v) of a node

v . This is all of the nodes j links distant to v . We include v

(Dehmer doesn’t) and constrain our analysis to j = 1.

• Introduces vertex information functional fi (v) of a node v , with

vertex probability defined as

pi (v) =
fi (v)∑

v∈Sj (v) fi (v)

• Node entropy H(v) = −pi log pi , and total graph entropy

H(G ) =
∑

v∈G H(v)
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Introducing the Local Vertex Entropy VE and VE ′

• We define an inverse degree entropy for a node VE (v) as:

pi (vi ) =
1

ki
where ki is the degree of vi , VE (vi ) =

1

ki
log2(ki )

• And fractional degree entropy of a node VE ′(v) as:

pi (vi ) =
ki

2|E |
, VE ′(vi ) =

ki
2|E |

log2

(2|E |
ki

)
• These two measures do not take into account high degree nodes

which are redundantly connected into the graph
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Not all High Degree Nodes are Equal!

• To capture importance more accurately we suppress entropy for highly meshed

nodes

• A highly meshed network has local similarity to the perfect graph Kn. The

modified 3 clustering coefficient Ci of the neighborhood of a vertex i scales our

metrics as:

Ci =
2|E 1(vi )|
ki (ki + 1)

, NVE (v) =
1

Ci
VE (v) and NVE ′(v) =

1

Ci
VE ′(v)

• And for the whole graphs:

NVE (G ) =
i<n∑
i=0

(ki + 1)

2|E 1(vi )|
log2(ki )]

NVE ′(G ) =
i<n∑
i=0

k2
i (ki + 1)

4|E ||E 1(vi )|
log2

(2|E |
ki

)

3we include the central vertex in our version to avoid problematic zeros
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Comparing NVE and NVE ′ to Global Entropy Measures

Table 3: Values of Normalized Entropy for Special Graphs

NVE NVE’

Sn
n

2(n−1) log2(n − 1) 1
2 log2{2(n − 1)}+ n

4

Kn
n

n−1 log2(n − 1) log 2(n)

Pn
3
4 (n − 2) 1

n−1 + 3n−4
2(n−1) log2(n − 1)

Cn
3
4n

3
2 log 2(n)

Table 4: Maximal and Minimal Total Vertex Entropy Graph Types

NVE NVE’

Maximum Cn Sn

Minimum Sn Kn

Close inspection of the minima and maxima indicate that NVE ′ has

similar limit behavior to Structural entropy, and NVE to Chromatic

entropy
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Investigating the Link Between Vertex and Global Entropy

Indeed Random Graph Sampling Highlights Further Correlation

Sampled sum of Vertex Entropies for Scale Free Graphs of constant —V—=300

and G (N, p) Erdős-Rényi Graphs, with p ∈ [0.3, 0.7] and |V | = 100 [12].

27



Graph Structure and Node Importance

• Network Science demonstrates some nodes are more critical (Barabási-Albert [13], [14])

• Betweenness Centrality is very accurate but expensive.

• Vertex entropy is cheap to compute, and nearly as good!
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Figure 3: Distribution Events/Incidents by Node

Degree [4].
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Figure 4: Distribution of Events/Incidents by

Node Centrality [4]
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Figure 5: Distribution Events/Incidents by

Normalized Inverse Degree [4]
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Figure 6: Distribution of Events/Incidents by
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Vertex Entropy is Almost a Classifier!

• ROC curves for commercial event/incident data at various values of entropy.

• Performance is almost good enough to use as a classifier.
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Figure 7: ROC curve for inverse degree

entropy
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Figure 8: ROC curve for fractional degree

entropy
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Figure 9: ROC curve for normalized inverse

degree entropy
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Vertex Entropy Take Aways...

• Effective alternative to heavy algorithms to compute centrality or

entropy that are either NP-complete, or just plain expensive

• Combines combinatorics with information science to capture the

complexity of a network and identify where failures are likely to

cause impact

• As tested against commercial networks, VE is both effective as an

event ”conditioner”, and almost good enough as a fault localizer in

its own right!
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What I left out...



Graphs, Graphs, Graphs

• There are many other approaches, that fundamentally boil down to

graphs...

• A Neural Net, is essentially a directed signal propagation graph with

weights numerically solved to present a known output for a known

input. In some circumstances (Hopfield Network, Finite Boltzmann

machines [15]) this is achieved by solving a graph Hamiltonian. The

use of Neural Nets is another practical application of graphs!

• My colleague Dr Harper will be presenting a time based correlation

technique that utilizes modularity detection in a graph obtained

from a similarity matrix, again exploiting the correspondence

between matrices and graphs...

• Older Bayesian Network [5] and Fault Propagation inferencing

approaches rely upon representing causality as a directed acyclic

probability graph (standard reference Pearl [16]). These approaches

are not commercially popular and in general are NP-Hard

computationally, and so are omitted.
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Conclusion

• Graphs underpin many structures in fault localization techniques.

• They are the natural way to capture dependency of computer

networks.

• The powerful correspondence between graphs and Linear Algebra

makes them particularly useful!

• The structure of a graph can represent either the logic used to

determine root cause, or alternatively the structure of the managed

system.

• The powerful mathematics of Graph Theory, Information science,

and Network Science can be used to provide novel new approaches

to fault localization...

• All of this underpins the ”Unreasonable Effectiveness of Graph

Theory” for fault localization...
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