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ABSTRACT
This paper presents the Compaan tool that automatically transforms
a nested loop program written in Matlab into a processnetwork spec-
ification. The process network model of computation fits better with
the new emerging kind of embedded architectures that use copro-
cessors. Processnetworks can describe both fine-grained and coarse-
grained parallelism, making the mapping of the applications easier.
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1. INTRODUCTION
A new kind of embeddedarchitectures is emerging that is composed
of a microprocessor, some memory, and a number of dedicated co-
processors that are linked together via some kind of programmable
interconnect (See Figure 1). These architectures are devised to be
used in real-time, high-performance signal processing applications.
Examples of these new architectures are the Prophid architecture [12],
The Jacobiumarchitecture [15], and the Pleiades architecture [1], to
be used in respectively, video consumer appliances, adaptive radar
processing, and mobile communication devices. Thesearchitectures
have in common that they exploit parallelism using instruction level
parallelism offered by the microprocessor and coarse-grained par-
allelism offered by the coprocessors. Given a set of applications,
the hardware/software codesign problem is to determine what needs
to execute on the microprocessor and what on the coprocessors and
furthermore, what should eachcoprocessorcontain, while being pro-
grammable enough to support the set of applications.
The applications that need to execute on the architectures are typi-
cally specifiedusing an imperative modelof computation, most com-
monly C or Matlab. In Figure 1, for example, we show an algorithm
written in Matlab. Although the imperative model of computation
is well suited to specify applications, it does not reveal parallelism
due to its inherent sequential nature. Compilers exist that are able
to extract instruction level parallelism from the original specifica-
tions at a very fine level of granularity. They are, however, unable
to exploit coarse-grained parallelism offered by the coprocessors of
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for k = 1:1:K,
for j = 1:1:N,

[r(j,j), x(k,j), t ] = Vec( r(j,j), x(k,j) );
for i = j+1:1:N,

[r(j,i), x(k,i), t] = Rot( r(j,i), x(k,i), t );
end

end
end

for k = 1:1:K,
for j = 1:1:N,

[r(j,j), x(k,j), t ] = Vec( r(j,j), x(k,j) );
for i = j+1:1:N,

[r(j,i), x(k,i), t] = Rot( r(j,i), x(k,i), t );
end

end
end
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Figure 1: Mapping the application onto an architecture is diffi-
cult because the Model of Computation of the application does not
match the way the architecture operates.

the architectures. This makes the mapping of the applications onto
the architecture difficult.
Instead, a better specification format would be to use an inherently
parallel model of computation like Process Networks [7; 11]. This
describes an application as a network of concurrently executing pro-
cesses. It describes parallelism naturally from the very fine-grained
to the very coarse-grained, it does not pre-impose any particular sched-
ule, and it describes each process in a process network using an im-
perative language. The mapping then becomesputting the processes
either on a microprocessor or on a coprocessor as shown by tools
like ORAS [10], or SPADE [13]. Using these tools, a Y-chart [8]
can be constructed, allowing the quality assessmentof mappings on
architectures.
This paperdescribes the Compaan tool that automatically transforms
a Matlab application into a process network description, as shown
in Figure 1. It converts a Matlab application into a polyhedral re-
duced dependencegraph, that is subsequently converted into a pro-
cess network description. The Compaan tool is confined to operate
on affine nested loop programs (NLP) [6], but the applications of
interest are often described this way.
The Compaan tool describesapplications as a process network, which
is at a much more coarse-grained level description than a Control
Data Flow Graph (CDFG). Moreover, it doesa data-dependencyanal-
ysis on the array domain that goes far beyond the conventionaldata-



dependence analysis performed on CFDGs. Finally, Compaan syn-
theses the processes in a way, that each process is a possible imple-
mentation model for a coprocessor [8] or a piece of code that exe-
cutes on the microprocessor.

The outline of the paper is as follows. Section 2 describes the way
we decompose the transformation task that Compaan performs into
smaller tasks. Section 3 deals with the polyhedral reduced depen-
dence graph (PRDG) that is the model from which Compaan gener-
ates a process network. Section 4 explains how processes are struc-
tured in so called SBF objects. Section 5 and Section 6 describe the
tools inside Compaan in more detail. Section 7 describes how we
make the process networks available. Section 8 gives some results
and Section 9 gives conclusions.

2. THE COMPAAN TOOL
We developedthe Compilation of Matlab to ProcessNetworks (Com-
paan) tool, which transforms a nested loop program written in Mat-
lab into a process network specification. The tool does this transfor-
mation in a number of steps, shown in Figure 2, leveraging a lot of
techniques available in the Systolic Array community [16]. In Fig-
ure 2, a box represents a result and an ellipsoid represents an action
or tool.
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Figure 2: Compaan consists of three tools that transform a Matlab
specification into a process network specification.

Compaan starts the transformation by converting a Matlab specifi-
cation into a single-assignment code (SAC) specification. This de-
scribes all parallelism available in the original Matlab specification.
Next, it derives the polyhedral reduced dependence graph (PRDG)
specification from the SAC. From this PRDG, the network descrip-
tion and the individual processes are derived. The three steps done
in Compaan are realized by separate tools, respectively, MatParser,
DgParser, and Panda.
The last mentioned tool, Panda, uses the PRDG description to gen-
erate the network description and the contents of the processes that
make up the process network description. The processes are struc-
tured in a particular way basedon the SBF model, which is explained
in Section 4. The SBF model is equivalent to Process Networks [7],
with the exception that processes in the SBF model are more struc-
tured. The generation of the processes is further decomposed into
domain scanning, domain reconstruction, and linearization.

In Section 5 and Section 6, the three tools are discussed in more de-
tail. In the next two sections, we discuss what a PRDG is as well as
what the SBF model is.

3. POLYHEDRAL REDUCED DEPENDENCE
GRAPH

A polyhedral reduced dependence graph is a compact representa-
tion of a dependence graph (DG) using parameterized polyhedra,
making a DG description more amenable to further mathematical
manipulation. A polyhedral reduced dependence graph (PRDG) is
a directed graphG = (V; E), where V is a set of node domains and
where E is a set of edge domains. In Figure 3, an PRDG is shown
consisting of 5 node domains and 12 edge domains. It is the PRDG
representation of the algorithm given in Figure 1.
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Figure 3: An example of a polyhedral reduced dependence graph.

3.1 Node domain
A node domain is a collection of polytopes [17], a function, and a
set of port domains. An iteration domain is defined by a polytope
in which each point contained corresponds to a node in the original
DG. With every point inside this iteration domain, the same function
is associated. A function has a number of input ports and output
ports. An input port corresponds with an argument of the function;
an output port corresponds with a value the function returns. The
points of a node domain of which one input port reads data from, or
the points of a node domain to which an output port writes data to,
form respectively the input port domain (IPD) and the output port
domain (OPD).

3.2 Edge domain
An edge domain is the ordered pair (vi; vj) of node domains to-
gether with the ordered pair (pi; pj) of port domains where pi is the
OPD of vi and pj the IPD of vj . This ordered pair corresponds with
a data dependency in a DG, which is expressed using an affine map-
ping M .

3.3 Example
To illustrate the notion of node and port domains, we show in Fig-
ure 4 a node that represents node C in Figure 3. The figure shows
the node domain (a), its iteration domain with the iterators i and j
(b), its port domains (c)-(f), and its view as it appears in the PRDG
(g). Thus, the four port domains (c)-(f) partition the node domain
(a) of node C.
In (c) and (d), we show IPDs and in (e) and (f), we show OPDs.
In (c) we identify two IPD functions, ipd1(i; j) and ipd2(i; j). In
(e) we identify two OPD functions, opd1(i; j) and opd2(i; j). The
figure shows one dependency between opd1 of port domain (e) and
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Figure 4: A node domain and its corresponding port domains.

ipd1 of port domain (c). The dependencies in the PRDG are ex-
pressed in terms of an affine functionM(i; j) between the different
IPDs and OPDs.
The PRDG is basis for the construction of the network description
in the SBF model, which is explained next.

4. THE SBF MODEL
The SBF Model [8] describes an application as a network of SBF
objects that are interconnected by channels. A channel is an un-
boundedFIFO queue that can contain an infinite sequenceof tokens,
i.e. a stream. SBF objects can write to a channel unconditionally,
but can only read from the channel when the queue is non-empty,
like a regular process network. An SBF object, however, describes
a process in terms of a controller, a state, and a set of functions, as
illustrated in Figure 5.

controller

state

...
f|F|

write ports

enable signals

read ports f1

f2

Figure 5: An SBF object.

The set of functions F = ff1; f2; � � � ; fjF jg defines the function
repertoire. The state of the object consists of control state c and
data state d. The controller operates on the control state and de-
fines two functions, i.e. the transition function !, and the binding
function � which are defined as follows:

! : C ! C

� : C ! F;
(1)

whereC is the space of all possible values of c. The transition func-
tion ! determines the new state s0 from the current state s. The bind-

%% Single Assignment Code Generated by MatParser
for k = 1 : 1 : K,

for j = 1 : 1 : N,

if k-2>= 0,
[ in_0 ] = ipd( r_1( k-1, j ) );

else %% if -k+1 >= 0
[ in_0 ] = ipd( r( j, j ) );

end
if j-2>= 0,

[ in_1 ] = ipd( x_1( k, j-1, j ) );
else %% if -j+1 >= 0

[ in_1 ] = ipd( x( k, j ) );
end

[ out_0, out_1, out_2 ] = Vec( in_0, in_1 );

[ r_1( k, j) ] = opd( out_0 );
[ x_1( k, j) ] = opd( out_1 );
[ t_1( k, j) ] = opd( out_2 );

end
end

Figure 6: Single Assignment Code

ing function � determines what function has to be enabled for the
current state s and exactly one function is associated with a state.
Enabling of a function is called a firing. When a process executes,
a sequence of firings will occur as given in equation 2.

finit
�(!(c))
�! fa

�(!(c))
�! fb

�(!(c))
�! : : : fx

�(!(c))
�! : : : (2)

When a function fires, it consumes data from the read ports, from
the state, or from both, and it produces data on the write ports, on
the state, or on both. Each function knows where to get its input
data from and where to send its output data. This leads to so-called
function variants, which are functions with the same functionality
but bound differently to read and write ports, and state.

5. MATPARSER & DGPARSER
In the path from Matlab to the PRDG, Compaan uses the tools Mat-
Parser [9; 6] and DgParser [6]. MatParser is an array dataflow
analysis compiler that finds all parallelism available in NLPs writ-
ten in Matlab using a very aggressive data - dependency analysis
technique based on integer linear programming [4]. We focus on
Matlab since many signal-processing algorithms are written in this
language. Just by writing another language front-end, MatParser
can also operate on NLPs written in other languages, for example
C.
MatParser finds whether two variables are dependent on each other,
and moreover, at which iteration. It partitions the iteration space
defined by the for-next loops, and gives the dependence vector be-
tween partitions. For the simple program given in Figure 1, Mat-
Parser solves about a hundred parametric integer program problems
to find all data-dependencies.
In Figure 6, part of the output of MatParser is shown for the algo-
rithm given in Figure 1. It shows how the iteration space spannedby
the for-next iterators k and j is partitioned using if/else statements.
Consequently, for different partitions, different data-dependencies
may apply. In case of input argument in0 of function Vect, a value
previously defined by function Vect should be used (i.e., r1(k �
1; j), defining the data-dependency vectorM() or a value from the
original r matrix (i.e., r(j; j) ).
DgParser converts the SAC description into the PRDG description,
which is a straightforward conversion. Accordingly, the shape of
the node domain is given by the way the for-next loops are defined
and the partitioning of the node-domain corresponds with the if/else



conditions. In addition, the terms ipd and opd used in Figure 6
relate to the IPD and OPD defined in section 3.

6. PANDA
Once DgParser has established a PRDG model of an algorithm, the
Panda tool can generate a network description and the individual
processes. The network description is straightforward, as it follows
the topology of the PRDG. Each node in the PRDG is mapped onto
a single SBF object and each edge represents an unbounded FIFO.
In case of Figure 3, nodesA, B,C , D, andE define an SBF Object
and the edges a until l define an unbounded FIFO.
As shown in Figure 2, the Panda tool divides the generation of an
SBF object into three different steps; domain scanning, domain re-
construction, and linearization, which we now discuss in more de-
tail.

6.1 Domain Scanning
Panda needs to derive a transition function ! for each SBF object,
a process we call domain scanning. For now, Panda constructs !
such that it follows the lexicographical order imposed by the origi-
nal nested-loop program. Nevertheless, anotherordering could have
been selected. This may, however, lead to out-of-order problems.

6.2 Domain Reconstruction
MatParser generates a SAC description in which only the IPDs are
explicitly specified. This means that the input arguments in0 and
in1 in Program 6, are surrounded by if/else statements, while the
output values out0, out1, and out2 are not. A consequence of this
is that output values can be generated that are never used by some
input domain. Hence, Panda needs to reconstruct the OPD.
Making the output port domains explicit is illustrated in Figure 7.
It shows two communicating node domains NDp and NDc. The
tokens produced by port domainPp of node domainNDp are to be
consumedby port domainPc of node domainNDc, as described by
the data-dependency with mappingM . Port domain Pp is an OPD
and port domain Pc is an IPD. To make Pp explicit, Panda applies
M() that is derived by MatParser, to IPD Pp, which is a operation
onZ-polyhedra [14].

NDND
ipdPp

M()

cP

CP

opd

Figure 7: Making the output port domain explicit.

6.3 Linearization
The channelsbetween processes are FIFO buffers and the processes
operate using blocking reads. Therefore, the order in which a con-
suming process reads token from a channel should be the same as
the order in which tokens are written onto the channel by the pro-
ducing process. Now, the way tokens are written on and read from
channels is determined by the ! of each process, and can unfortu-
nately easily be chosen in such a way that an out-of-order consump-
tion pattern results. That is, tokens need to be read too early, to al-
low the process to make progress.
Panda solves the out-of-order problem by storing tokens temporar-
ily in the state of an SBF object, thus operating as a piece of random
access memory. This requires that Panda is able to find the proper

read and write address for this piece of memory, a process that is
called linearization.
The linearization method in Panda relies on methods to count the
number of integral points contained by a polytope using so-called
Ehrhart Polynomials [2]. Using such polynomial, and the ! of both
the producing and consuming processes, Panda is able to statically
derive the read and write address solving the out-of-order process-
ing. Ideally, it should do this under some constraint like throughput
or trying to keep the amount of memory needed inside the state of
SBF objects to a minimum, as well as the memory required in the
FIFO buffers between processes. For the situation shown in Fig-
ure 7, the solution with the least memory is the one with the traver-
sal of Pp and Pc the same, requiring no additional state and a very
small FIFO.

7. PROCESS NETWORKS
The resulting process networks need to be made accessible in some
kind, such that it can be simulated. We generate the process network
description for two PN-simulators.
One simulator is SBFsim, which is a very fast, very simple simula-
tor in C++ based on threads [8]. In this case, the SBF Objects are
generated as C++ classes.
The other simulator is the Ptolemy II framework [3]. In this case,
we make a process network available in the PN-domain. Compaan
generates the network description in MoML, which is a modeling
markup language based on XML [5] used in Ptolemy II for speci-
fying interconnections of parameterized components. The process
generation step in this case, generates the Ptolemy II actors in the
PN-domain. A MoML description can be executed as an applica-
tion using a command-line interface or as a visual rendition in the
Ptolemy II block diagram editor Vergil, as shown in Figure 8. This
view of the screen shows the same network as given in Figure 3.

Figure 8: The derived PN network in the Ptolmey II framework.

The Ptolemy II framework enables us to combine the derived pro-
cess network descriptions with predefinedactors like sources to read
Matrices and sinks to read and visualize Matrices. It also let us com-
bine process networks with other domains, enabling the description
and simulation of more complex systems.

8. RESULTS



We have executed the PN network shown in Figure 8, with the pa-
rameter valuesN=6 andK=100. This gives us the number of times
a particular SBF object fired and how many tokens were transported
over FIFO buffers between nodes as shown in Figure 9, which de-
scribes the same network as given in Figure 3. Thus SBF object A
andE fired 21 times, SBF objectB andC fired 600 times, and SBF
object D fired 1500 times. Furthermore, we see that for example
edge b transported 15 tokens, while edge g transported 500 tokens
and edge e transported 594 tokens. In Figure 9, the SBF objects that
fire more frequently are colored darker and the edges have a differ-
ent width depending on their communication load.
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Figure 9: The firing rates found for SBF objects and the communi-
cation load found for the FIFO buffers when executing the PN net-
work in Ptolemy II.

From the Figure, we see that some SBF objects fired many times
(i.e, nodeB,C , andD), while others do so sporadically (i.e., A and
E). Based on this insight, we can suggest a partition for the archi-
tecture shown in Figure 1; the frequently fired SBF objects become
candidates for coprocessors whereas the incidental fired SBF ob-
jects are put on the microprocessor. This could mean that SBF ob-
ject C , D and B become coprocessors, while SBF objectA and E
are mapped onto the microprocessor. Consequently,edgesfa; b; i; kg
map onto the low-bandwidth communicationstructure that connects
the coprocessors with the microprocessor. Edges fc; d; f; gg map
onto the programmable interconnect network, which is the high -
bandwidth communication structure. Edgee and edgesfi; j; hgmap
onto internal communication structures inside the coprocessor for
node C and D, respectively. This very high-bandwidth communi-
cation is thus kept local to the coprocessors. Suggesting such a par-
tition on the basis of the original Matlab program is unlikely.
To further determine the quality of this partition, especially in con-
text of time and limited resources,we can relay on tools like ORAS [10]
or SPADE [13]. Because Compaan obtains the network of SBF ob-
jects automatically, it could be used in combination with a design
space exploration tool.

9. CONCLUSIONS
In this paper, we have described the Compaan tool that can automat-
ically derive a process network description in the SBF model from a
nested loop program written in Matlab. Such a network description
reveals the parallelism present in the original sequential program.
This network description makes the mapping onto the new emerg-
ing architectures easier as the granularity and model of computation

better fit. A lot of effort is in the synthesis of the SBF objects. An
SBF object can now serve as a possible implementation model for
a coprocessor,or equally, be put onto a microprocessor. The PRDG
model gives us a good mathematical framework to structure SBF
objects. We hope, we can exploit this PRDG model to get, for ex-
ample, SBF objects that use limited state memory inside and require
small sized FIFO buffers between processes as shown in Section 6.
All elements of the Compaan tool are implemented in Java. With
respect to the Panda tool, we are still working on further improve-
ment of the linearization problem. Nevertheless, we have shown for
some Matlab programs, that we can automatically compile it, using
the trajectory illustrated in Figure 2. For more information about the
Compaanwork, seehttp://www.gigascale.org/compaan.
This work was supported in part by the MARCO/DARPA Gigascale
Silicon Research Center. Their support is gratefully acknowledged.
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