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ABSTRACT

This paper presentsthe Compaantool that automatically transforms
anestedloop programwritten in Matlab into aprocessnetwork spec-
ification. Theprocessnetwork model of computationfitsbetter with

the new emerging kind of embedded architectures that use copro-

cessors. Processnetworkscan describeboth fine-grained and coarse-
grained parallelism, making the mapping of the applicationseasier.
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1. INTRODUCTION

A new kind of embedded architecturesisemerging that is composed
of amicroprocessor, some memory, and a number of dedicated co-
processorsthat are linked together via some kind of programmable
interconnect (See Figure 1). These architectures are devised to be
used in real-time, high-performance signal processing applications.
Examplesof thesenew architecturesare the Prophid architecture[12],
The Jacobiumarchitecture[15], and the Pleiadesarchitecture[1], to
be used in respectively, video consumer appliances, adaptive radar
processing, and mobile communication devices. Thesearchitectures
havein commonthat they exploit parallelism using instruction level
parallelism offered by the microprocessor and coarse-grained par-
allelism offered by the coprocessors. Given a set of applications,
the hardware/software codesign problemisto determinewhat needs
to execute on the microprocessor and what on the coprocessorsand
furthermore, what should each coprocessor contain, while being pro-
grammable enough to support the set of applications.

The applications that need to execute on the architectures are typi-
cally specifiedusing animperativemodel of computation, most com-
monly C or Matlab. InFigure 1, for example, we show an algorithm
written in Matlab. Although the imperative model of computation
is well suited to specify applications, it does not reveal parallelism
due to its inherent sequential nature. Compilers exist that are able
to extract instruction level parallelism from the original specifica-
tions at avery fine level of granularity. They are, however, unable
to exploit coarse-grained parallelism offered by the coprocessorsof

Errataw.r.t. the published version: In the result section, Figure 9. Edge f
communicates 500 tokensinstead of 15. Again result section; the sequence
C,D, and E hasto be C, D, and B.
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Figure 1: Mapping the application onto an architecture is diffi-
cult because the Model of Computation of the application does not
match the way the architecture operates.

the architectures. This makes the mapping of the applications onto
the architecture difficult.

Instead, a better specification format would be to use an inherently
parallel model of computation like Process Networks [7; 11]. This
describesan application asanetwork of concurrently executing pro-
cesses. |t describesparallelism naturally from the very fine-grained
tothevery coarse-grained, it doesnot pre-imposeany particular sched-
ule, and it describes each processin a process network using anim-
perativelanguage. The mapping then becomesputting the processes
either on a microprocessor or on a coprocessor as shown by tools
like ORAS [10], or SPADE [13]. Using these tools, a Y-chart [8]
can be constructed, allowing the quality assessment of mappingson
architectures.

This paper describesthe Compaantool that automatically transforms
a Matlab application into a process network description, as shown
in Figure 1. It converts a Matlab application into a polyhedral re-
duced dependencegraph, that is subsequently convertedinto apro-
cess network description. The Compaan tool is confined to operate
on affine nested loop programs (NLP) [6], but the applications of
interest are often described this way.

TheCompaantool describesapplicationsasaprocessnetwork, which
is at a much more coarse-grained level description than a Control
DataFlow Graph (CDFG). Moreover, it doesadata-dependency anal -
ysison thearray domain that goesfar beyondthe conventional data-



dependenceanalysis performed on CFDGs. Finally, Compaan syn-
thesesthe processesin away, that each processis a possibleimple-
mentation model for a coprocessor [8] or a piece of code that exe-
cutes on the microprocessor.

The outline of the paper is asfollows. Section 2 describesthe way
we decomposethe transformation task that Compaan performsinto
smaller tasks. Section 3 deals with the polyhedral reduced depen-
dencegraph (PRDG) that is the model from which Compaan gener-
atesaprocess network. Section 4 explainshow processesare struc-
tured in so called SBF objects. Section 5 and Section 6 describethe
tools inside Compaan in more detail. Section 7 describes how we
make the process networks available. Section 8 gives some results
and Section 9 gives conclusions.

2. THE COMPAAN TOOL

Wedevelopedthe Compilation of Matlab to ProcessNetworks (Com-
paan) tool, which transforms anested loop program written in Mat-
lab into aprocessnetwork specification. Thetool doesthis transfor-
mation in anumber of steps, shownin Figure 2, leveraging alot of
techniques available in the Systolic Array community [16]. In Fig-
ure 2, abox represents aresult and an ellipsoid representsan action
or tool.
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Figure 2: Compaan consists of three tools that transform a Matlab
specification into a process network specification.

Compaan starts the transformation by converting a Matlab specifi-

cation into a single-assignment code (SAC) specification. This de-

scribesall parallelism availablein the original Matlab specification.

Next, it derivesthe polyhedral reduced dependencegraph (PRDG)

specification from the SAC. From this PRDG, the network descrip-

tion and the individual processesare derived. The three steps done
in Compaan arerealized by separatetools, respectively, MatPar ser,

DgParser, and Panda.

Thelast mentioned tool, Panda, usesthe PRDG description to gen-

erate the network description and the contents of the processesthat

make up the process network description. The processes are struc-

tured in aparticular way based on the SBF model, whichisexplained
in Section4. The SBF model isequivalent to ProcessNetworks[7],

with the exception that processesin the SBF model are more struc-
tured. The generation of the processesis further decomposed into
domain scanning, domain reconstruction, and linearization.

In Section 5 and Section 6, the three tools are discussedin more de-
tail. In the next two sections, we discusswhat aPRDG isaswell as
what the SBF model is.

3. POLYHEDRAL REDUCED DEPENDENCE

GRAPH

A polyhedral reduced dependence graph is a compact representa-
tion of a dependence graph (DG) using parameterized polyhedra,
making a DG description more amenable to further mathematical
manipulation. A polyhedral reduced dependence graph (PRDG) is
adirected graph G = (V, E), whereV isaset of nodedomainsand
where E is aset of edge domains. In Figure 3, an PRDG is shown
consisting of 5 nodedomainsand 12 edgedomains. It isthe PRDG
representation of the algorithm givenin Figure 1.

Figure 3: An example of a polyhedral reduced dependence graph.

3.1 Nodedomain

A node domainis a collection of polytopes[17], a function, and a
set of port domains. An iteration domain is defined by a polytope
in which each point contained correspondsto a nodein the original
DG. With every pointinsidethisiteration domain, the samefunction
is associated. A function has a number of input ports and output
ports. Aninput port correspondswith an argument of the function;
an output port corresponds with a value the function returns. The
points of anode domain of which oneinput port reads datafrom, or
the points of a node domain to which an output port writes data to,
form respectively the input port domain (IPD) and the output port
domain (OPD).

3.2 Edgedomain

An edge domain is the ordered pair (v;, v;) of node domains to-
gether with the ordered pair (p:, p; ) of port domainswhere p; isthe
OPD of »; and p; theIPD of v;. Thisordered pair correspondswith
adatadependencyinaDG, which is expressed using an affine map-
ping M.

3.3 Example

To illustrate the notion of node and port domains, we show in Fig-
ure 4 a node that represents node C in Figure 3. The figure shows
the node domain (a), its iteration domain with the iterators ¢ and j
(b), its port domains (c)-(f), and its view asit appearsin the PRDG
(9). Thus, the four port domains (c)-(f) partition the node domain
(a) of nodeC.

In (c) and (d), we show IPDs and in (e) and (f), we show OPDs.
In (c) we identify two IPD functions, ipd (¢, §) and ipd2 (%, 5). In
(e) we identify two OPD functions, opd: (4, j) and opd2 (3, j). The
figure shows one dependency between opd; of port domain (€) and
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Figure 4: A node domain and its corresponding port domains.

tpdy of port domain (c). The dependenciesin the PRDG are ex-
pressed in terms of an affinefunction M (2, j) between the different
IPDs and OPDs.

The PRDG is basisfor the construction of the network description
in the SBF model, which is explained next.

4. THE SBF MODEL

The SBF Model [8] describes an application as a network of SBF
objects that are interconnected by channels. A channel is an un-
bounded FIFO queuethat can contain an infinite sequenceof tokens,
i.e. astream. SBF objects can write to a channel unconditionally,
but can only read from the channel when the queue is non-empty,
like aregular process network. An SBF object, however, describes
aprocessin terms of acontroller, a state, and a set of functions, as
illustrated in Figure 5.
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Figure5: An SBF object.

The set of functions I' = {f1, fa,-- -, fir|} definesthe function
repertoire. The state of the object consists of control state ¢ and
data state d. The controller operates on the control state and de-
finestwo functions, i.e. the transition function w, and the binding
function ¢ which are defined as follows:

w:C—=C a
w:C — F,

where C'isthe spaceof all possiblevaluesof ¢. Thetransition func-
tionw determinesthenew state s’ from the current state s. Thebind-

%% Si ngl e Assi gnment Code Generated by Mat Parser
for k =1: 1: K
for j =1: 1: N,

if k-2>= 0,

[ in 0] = ipd( r_2( k-1, j ) );
else Woif -k+1l >= 0

[ inO] =ipd( r( j,j) )
end
if j-2>= 0,

[ in_ 1] = ipd( x_1( k, j-1, j ) );
else Woif -j+1 >= 0

[ in_1] = ipd( x( k, j ) );
end

[ out_0O, out_1, out_2 ] = Vec( in_ 0, in_1);

[ r 2 k, j) 1 = opd( out_0);

[ x 2 k, j) 1 = opd( out_1);

[ t.2(C k, j) 1 = opd( out_2);
end

end
Figure 6: Single Assignment Code

ing function i determines what function has to be enabled for the
current state s and exactly one function is associated with a state.
Enabling of afunction is called afiring. When a process executes,
asequenceof firings will occur as given in equation 2.

finit M(“’_(i)) fa M(W—(i)) fb M(W—(i)) e fg: M(w—(i)) N (2)

When a function fires, it consumes data from the read ports, from
the state, or from both, and it produces data on the write ports, on
the state, or on both. Each function knows where to get its input
data from and where to send its output data. Thisleadsto so-called
function variants, which are functions with the same functionality
but bound differently to read and write ports, and state.

5. MATPARSER & DGPARSER

In the path from Matlab to the PRDG, Compaan uses the tools Mat-
Parser [9; 6] and DgParser [6]. MatParser is an array dataflow
analysis compiler that finds all parallelism availablein NLPs writ-
ten in Matlab using a very aggressive data - dependency analysis
technique based on integer linear programming [4]. We focus on
Matlab since many signal-processing algorithms are written in this
language. Just by writing another language front-end, MatParser
can also operate on NLPs written in other languages, for example
C.

MatParser finds whether two variables are dependent on each other,
and moreover, at which iteration. It partitions the iteration space
defined by the for-next loops, and gives the dependence vector be-
tween partitions. For the simple program given in Figure 1, Mat-
Parser solvesabout a hundred parametric integer program problems
to find all data-dependencies.

In Figure 6, part of the output of MatParser is shown for the algo-
rithm givenin Figure 1. 1t showshow theiteration space spanned by
the for-next iterators k£ and j is partitioned using if/else statements.
Consequently, for different partitions, different data-dependencies
may apply. In caseof input argument in¢ of function Vect , avalue
previously defined by function Vect should be used (i.e., r1 (k —
1, 7), defining the data-dependency vector M () or avalue from the
original r matrix (i.e., r(7, ) ).

DgParser convertsthe SAC description into the PRDG description,
which is a straightforward conversion. Accordingly, the shape of
the node domain is given by the way the for-next loops are defined
and the partitioning of the node-domain correspondswith theif/else



conditions. In addition, the termsi pd and opd used in Figure 6
relate to the IPD and OPD defined in section 3.

6. PANDA

Once DgParser has established a PRDG model of an algorithm, the
Panda tool can generate a network description and the individual
processes. The network description is straightforward, asit follows
the topology of the PRDG. Each nodein the PRDG is mapped onto
asingle SBF object and each edge represents an unbounded FIFO.
In caseof Figure 3, nodes A, B, C, D, and F definean SBF Object
and the edges « until I define an unbounded FIFO.

As shown in Figure 2, the Pandatool divides the generation of an
SBF object into three different steps; domain scanning, domain re-
construction, and linearization, which we now discussin more de-
tail.

6.1 Domain Scanning

Panda needsto derive a transition function w for each SBF object,
a process we call domain scanning. For now, Panda constructs w
such that it follows the lexicographical order imposed by the origi-
nal nested-loop program. Nevertheless, another ordering could have
been selected. This may, however, lead to out-of-order problems.

6.2 Domain Reconstruction

MatParser generatesa SAC description in which only the IPDs are
explicitly specified. This means that the input arguments :no and
wn1 in Program 6, are surrounded by if/else statements, while the
output values outo, out:, and out, arenot. A consequence of this
isthat output values can be generated that are never used by some
input domain. Hence, Panda needsto reconstruct the OPD.
Making the output port domains explicit is illustrated in Figure 7.
It shows two communicating node domains N D, and N D.. The
tokens produced by port domain P, of nodedomain N D, areto be
consumed by port domain P, of nodedomain N 1., asdescribed by
the data-dependency with mapping A/ . Port domain P, isan OPD
and port domain P. isan IPD. To make P, explicit, Panda applies
M () that is derived by MatParser, to IPD P, which is a operation
on Z-polyhedra[14].

MO

NDp, ND

Figure 7: Making the output port domain explicit.

6.3 Linearization

The channel shetween processesare FIFO buffers and the processes
operate using blocking reads. Therefore, the order in which a con-
suming process reads token from a channel should be the same as
the order in which tokens are written onto the channel by the pro-
ducing process. Now, the way tokens are written on and read from
channelsis determined by the w of each process, and can unfortu-
nately easily be chosenin such away that an out-of-order consump-
tion pattern results. That is, tokens need to be read too early, to al-
low the processto make progress.

Panda solvesthe out-of-order problem by storing tokens temporar-
ily in the state of an SBF object, thus operating asa piece of random
access memory. This requires that Pandais able to find the proper

read and write address for this piece of memory, a process that is
called linearization.

The linearization method in Panda relies on methods to count the
number of integral points contained by a polytope using so-called
Ehrhart Polynomials[2]. Using such polynomial, and thew of both
the producing and consuming processes, Pandais able to statically
derive the read and write address solving the out-of-order process-
ing. ldeally, it should do this under some constraint like throughput
or trying to keep the amount of memory needed inside the state of
SBF objects to a minimum, as well asthe memory required in the
FIFO buffers between processes. For the situation shown in Fig-
ure 7, the solution with the least memory is the one with the traver-
sal of P, and P. the same, requiring no additional state and a very
small FIFO.

7. PROCESSNETWORKS

Theresulting process networks need to be made accessiblein some
kind, suchthat it canbesimulated. We generatethe processnetwork
description for two PN-simulators.

One simulator is SBFsim, which isavery fast, very simple simula-
tor in C++ based on threads [8]. In this case, the SBF Objects are
generated as C++ classes.

The other simulator is the Ptolemy Il framework [3]. In this case,
we make a process network available in the PN-domain. Compaan
generates the network description in MoML, which is a modeling
markup language based on XML [5] used in Ptolemy 1l for speci-
fying interconnections of parameterized components. The process
generation step in this case, generates the Ptolemy Il actors in the
PN-domain. A MoML description can be executed as an applica-
tion using a command-line interface or as avisual rendition in the
Ptolemy |1 block diagram editor Vergil, as shownin Figure 8. This
view of the screen shows the same network as given in Figure 3.

27 Vergil M=l E3
File Ptolemy Il &=l
D [;?' E ||pt0|emy.d0mains.pn.kerneI.PNDirector L||
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sfarmers :-
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|»

ND 2 |
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Figure 8: The derived PN network in the Ptolmey |11 framework.

The Ptolemy Il framework enables us to combine the derived pro-
cessnetwork descriptionswith predefined actorslike sourcesto read
Matricesand sinksto read and visualizeMatrices. It alsolet uscom-
bine process networkswith other domains, enabling the description
and simulation of more complex systems.

8. RESULTS



We have executed the PN network shown in Figure 8, with the pa-
rameter values N =6 and /K'=100. Thisgivesusthe number of times
aparticular SBF object fired and how many tokensweretransported
over FIFO buffers between nodes as shown in Figure 9, which de-
scribes the same network as given in Figure 3. Thus SBF object A
and F fired 21 times, SBF object B and C fired 600 times, and SBF
object D fired 1500 times. Furthermore, we see that for example
edge b transported 15 tokens, while edge ¢ transported 500 tokens
and edge e transported 594 tokens. In Figure 9, the SBF objectsthat
fire more frequently are colored darker and the edges have a differ-
ent width depending on their communication load.

€594

Figure 9: Thefiring ratesfound for SBF objects and the communi-
cation load found for the FIFO buffers when executing the PN net-
work in Ptolemy |I.

From the Figure, we see that some SBF objects fired many times
(i.e, node B, C, and D), while othersdo so sporadically (i.e., A and
FE). Based on this insight, we can suggest a partition for the archi-
tecture shown in Figure 1; the frequently fired SBF objects become
candidates for coprocessors whereas the incidental fired SBF ob-
jects are put on the microprocessor. This could mean that SBF ob-
ject C', D and B become coprocessors, while SBF object A and
are mapped onto the microprocessor. Consequently, edges{a, b, 1, k}
map onto thelow-bandwidth communicationstructurethat connects
the coprocessors with the microprocessor. Edges {c, d, f, ¢} map
onto the programmable interconnect network, which is the high -
bandwidth communicationstructure. Edgee and edges{i, 7, &} map
onto internal communication structures inside the coprocessor for
node C' and D, respectively. Thisvery high-bandwidth communi-
cation isthuskept local to the coprocessors. Suggesting such a par-
tition on the basis of the original Matlab program is unlikely.

To further determine the quality of this partition, especially in con-

text of time and limited resources, we canrelay ontoolslike ORAS[10]

or SPADE [13]. Because Compaan obtainsthe network of SBF ob-
jects automatically, it could be used in combination with a design
space exploration tool.

9. CONCLUSIONS

In this paper, we have described the Compaantool that can automat-
ically derive aprocessnetwork descriptionin the SBF model from a
nested loop program written in Matlab. Such a network description
reveals the parallelism present in the original sequential program.
This network description makes the mapping onto the new emerg-
ing architectureseasier asthe granularity and model of computation

better fit. A lot of effort isin the synthesis of the SBF objects. An
SBF object can now serve as a possible implementation model for
acoprocessor, or equally, be put onto amicroprocessor. The PRDG
model gives us a good mathematical framework to structure SBF
objects. We hope, we can exploit this PRDG model to get, for ex-
ample, SBF objectsthat uselimited state memory inside and require
small sized FIFO buffers between processesas shown in Section 6.
All elements of the Compaan tool are implemented in Java. With
respect to the Pandatool, we are still working on further improve-
ment of thelinearization problem. Nevertheless, we have shown for
some Matlab programs, that we can automatically compileit, using
thetrajectory illustrated in Figure 2. For moreinformation about the
Compaanwork, seeht t p: / / ww. gi gascal e. or g/ conpaan.
Thiswork was supportedin part by the MARCO/DARPA Gigascale
Silicon Research Center. Their support isgratefully acknowledged.
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