
Stroustrup Myths December 2014

Five Popular Myths about C++

Bjarne Stroustrup

Morgan Stanley, Columbia University, Texas A&M University

1. Introduction
Here, I will explore, and debunk, five popular myths about C++:

1. “To understand C++, you must first learn C”
2. “C++ is an Object-Oriented Language”
3. “For reliable software, you need Garbage Collection”
4. “For efficiency, you must write low-level code”
5. “C++ is for large, complicated, programs only”

If you believe in any of these myths, or have colleagues who perpetuate them, this short article is for
you. Several of these myths have been true for someone, for some task, at some time. However, with
today’s C++, using widely available up-to date ISO C++ 2011 compilers, and tools, they are mere myths.

I deem these myths “popular” because I hear them often. Occasionally, they are supported by reasons,
but more often they are simply stated as obvious, as if needing no support. Sometimes, they are used to
dismiss C++ from consideration for some use.

Each myth requires a long paper or even a book to completely debunk, but my aim here is simply to
raise the issues and to briefly state my reasons.

2. Myth 1: “To understand C++, you must first learn C”
No. Learning basic programming using C++ is far easier than with C.

C is almost a subset of C++, but it is not the best subset to learn first because C lacks the notational
support, the type safety, and the easier-to-use standard library offered by C++ to simplify simple tasks.
Consider a trivial function to compose an email address:

 string compose(const string& name, const string& domain)
 {
 return name+'@'+domain;
 }

It can be used like this

 string addr = compose("gre","research.att.com");

1

Stroustrup Myths December 2014

Naturally, in a real program, not all arguments will be literal strings.

The C version requires explicit manipulation of characters and explicit memory management:

 char* compose(const char* name, const char* domain)
 {
 char* res = malloc(strlen(name)+strlen(domain)+2); // space for strings, '@', and 0
 char* p = strcpy(res,name);

p += strlen(name);
 *p = '@';
 strcpy(p+1,domain);
 return res;
 }

It can be used like this

char* addr = compose("gre","research.att.com");
 // …
 free(addr); // release memory when done

Which version would you rather teach? Which version is easier to use? Did I really get the C version
right? Are you sure? Why?

Finally, which compose() is likely to be the most efficient? Yes, the C++ version, because it does not have
to count the argument characters and does not use the free store (dynamic memory) for short argument
strings.

2.1 Learning C++
This is not an odd isolated example. I consider it typical. So why do so many teachers insist on the “C
first” approach?

• Because that’s what they have done for ages.
• Because that’s what the curriculum requires.
• Because that’s the way the teachers learned it in their youth.
• Because C is smaller than C++ it is assumed to be simpler to use.
• Because the students have to learn C (or the C subset of C++) sooner or later anyway.

However, C is not the easiest or most useful subset of C++ to learn first. Furthermore, once you know a
reasonable amount of C++, the C subset is easily learned. Learning C before C++ implies suffering errors
that are easily avoided in C++ and learning techniques for mitigating them.

For a modern approach to teaching C++, see my Programming: Principles and Practice Using C++ [13]. It
even has a chapter at the end showing how to use C. It has been used, reasonably successfully, with tens
of thousands of beginning students in several universities. Its second edition uses C++11 and C++14
facilities to ease learning.

2

Stroustrup Myths December 2014

With C++11 [11-12], C++ has become more approachable for novices. For example, here is standard-
library vector initialized with a sequence of elements:

 vector<int> v = {1,2,3,5,8,13};

In C++98, we could only initialize arrays with lists. In C++11, we can define a constructor to accept a {}
initializer list for any type for which we want one.

We could traverse that vector with a range-for loop:

 For (int x : v) test(x);

This will call test() once for each element of v.

A range-for loop can traverse any sequence, so we could have simplified that example by using the
initializer list directly:

 for (int x : {1,2,3,5,8,13}) test(x);

One of the aims of C++11 was to make simple things simple. Naturally, this is done without adding
performance penalties.

3. Myth 2: “C++ is an Object-Oriented Language”
No. C++ supports OOP and other programming styles, but is deliberately not limited to any narrow view
of “Object Oriented.” It supports a synthesis of programming techniques including object-oriented and
generic programming. More often than not, the best solution to a problem involves more than one style
(“paradigm”). By “best,” I mean shortest, most comprehensible, most efficient, most maintainable, etc.

The “C++ is an OOPL” myth leads people to consider C++ unnecessary (when compared to C) unless you
need large class hierarchies with many virtual (run-time polymorphic) functions – and for many people
and for many problems, such use is inappropriate. Believing this myth leads others to condemn C++ for
not being purely OO; after all, if you equate “good” and “object-oriented,” C++ obviously contains much
that is not OO and must therefore be deemed “not good.” In either case, this myth provides a good
excuse for not learning C++.

Consider an example:

 void rotate_and_draw(vector<Shape*>& vs, int r)
{

 for_each(vs.begin(),vs.end(), [](Shape* p) { p->rotate(r); }); // rotate all elements of vs
for (Shape* p : vs) p->draw(); // draw all elements of vs

}

Is this object-oriented? Of course it is; it relies critically on a class hierarchy with virtual functions. It is
generic? Of course it is; it relies critically on a parameterized container (vector) and the generic function

3

Stroustrup Myths December 2014

for_each. Is this functional? Sort of; it uses a lambda (the [] construct). So what is it? It is modern C++:
C++11.

I used both the range-for loop and the standard-library algorithm for_each just to show off features. In
real code, I would have use only one loop, which I could have written either way.

3.1 Generic Programming
Would you like this code more generic? After all, it works only for vectors of pointers to Shapes. How
about lists and built-in arrays? What about “smart pointers” (resource-management pointers), such as
shared_ptr and unique_ptr? What about objects that are not called Shape that you can draw() and
rotate()? Consider:

 template<typename Iter>
void rotate_and_draw(Iter first, Iter last, int r)
{

 for_each(first,last,[](auto p) { p->rotate(r); }); // rotate all elements of [first:last)
for (auto p = first; p!=last; ++p) p->draw(); // draw all elements of [first:last)

}

This works for any sequence you can iterate through from first to last. That’s the style of the C++
standard-library algorithms. I used auto to avoid having to name the type of the interface to “shape-like
objects.” That’s a C++11 feature meaning “use the type of the expression used as initializer,” so for the
for-loop p’s type is deduced to be whatever type first is. The use of auto to denote the argument type of
a lambda is a C++14 feature, but already in use.

Consider:

void user(list<unique_ptr<Shape>>& lus, Container<Blob>& vb)
{
 rotate_and_draw(lus.begin(),lus.end());
 rotate_and_draw(begin(vb),end(vb));
}

Here, I assume that Blob is some graphical type with operations draw() and rotate() and that Container
is some container type. The standard-library list (std::list) has member functions begin() and end() to
help the user traverse its sequence of elements. That’s nice and classical OOP. But what if Container is
something that does not support the C++ standard library’s notion of iterating over a half-open
sequence, [b:e)? Something that does not have begin() and end() members? Well, I have never seen
something container-like, that I couldn’t traverse, so we can define free-standing begin() and end() with
appropriate semantics. The standard library provides that for C-style arrays, so if Container is a C-style
array, the problem is solved – and C-style arrays are still very common.

3.2 Adaptation
Consider a harder case: What if Container holds pointers to objects and has a different model for access
and traversal? For example, assume that you are supposed to access a Container like this

4

Stroustrup Myths December 2014

 for (auto p = c.first(); p!=nullptr; p=c.next()) { /* do something with *p */}

This style is not uncommon. We can map it to a [b:e) sequence like this

template<typename T> struct Iter {
T* current;
Container<T>& c;

};

template<typename T> Iter<T> begin(Container<T>& c) { return Iter<T>{c.first(),c}; }
template<typename T> Iter<T> end(Container<T>& c) { return Iter<T>{nullptr,c}; }
template<typename T> Iter<T> operator++(Iter<T> p) { p.current = p.c.next(); return *this; }
template<typename T> T* operator*(Iter<T> p) { return p.current; }

Note that this is modification is nonintrusive: I did not have to make changes to Container or some
Container class hierarchy to map Container into the model of traversal supported by the C++ standard
library. It is a form of adaptation, rather than a form of refactoring.

 I chose this example to show that these generic programming techniques are not restricted to the
standard library (in which they are pervasive). Also, for most common definitions of “object oriented,”
they are not object-oriented.

The idea that C++ code must be object-oriented (meaning use hierarchies and virtual functions
everywhere) can be seriously damaging to performance. That view of OOP is great if you need run-time
resolution of a set of types. I use it often for that. However, it is relatively rigid (not every related type
fits into a hierarchy) and a virtual function call inhibits inlining (and that can cost you a factor of 50 in
speed in simple and important cases).

4 Myth 3: “For reliable software, you need Garbage Collection”
Garbage collection does a good, but not perfect, job at reclaiming unused memory. It is not a panacea.
Memory can be retained indirectly and many resources are not plain memory. Consider:

class Filter { // take input from file iname and produce output on file oname
pubilic:
 Filter(const string& iname, const string& oname); // constructor
 ~Filter(); // destructor
 // …
private:
 ifstream is;
 ofstream os;
 // …
};

This Filter’s constructor opens two files. That done, the Filter performs some task on input from its input
file producing output on its output file. The task could be hardwired into Filter, supplied as a lambda, or
provided as a function that could be provided by a derived class overriding a virtual function. Those
details are not important in a discussion of resource management. We can create Filters like this:

5

Stroustrup Myths December 2014

 void user()
 {
 Filter flt {“books”,”authors”};
 Filter* p = new Filter{“novels”,”favorites”};
 // use flt and *p
 delete p;
 }

From a resource management point of view, the problem here is how to guarantee that the files are
closed and the resources associated with the two streams are properly reclaimed for potential re-use.

The conventional solution in languages and systems relying on garbage collection is to eliminate the
delete (which is easily forgotten, leading to leaks) and the destructor (because garbage collected
languages rarely have destructors and “finalizers” are best avoided because they can be logically tricky
and often damage performance). A garbage collector can reclaim all memory, but we need user actions
(code) to close the files and to release any non-memory resources (such as locks) associated with the
streams. Thus memory is automatically (and in this case perfectly) reclaimed, but the management of
other resources is manual and therefore open to errors and leaks.

The common and recommended C++ approach is to rely on destructors to ensure that resources are
reclaimed. Typically, such resources are acquired in a constructor leading to the awkward name
“Resource Acquisition Is Initialization” (RAII) for this simple and general technique. In user(), the
destructor for flt implicitly calls the destructors for the streams is and os. These destructors in turn
close the files and release the resources associated with the streams. The delete would do the same for
*p.

Experienced users of modern C++ will have noticed that user() is rather clumsy and unnecessarily error-
prone. This would be better:

void user2()
 {
 Filter flt {“books”,”authors”};
 unique_ptr<Filter> p {new Filter{“novels”,”favorites”}};
 // use flt and *p
 }

Now *p will be implicitly released whenever user() is exited. The programmer cannot forget to do so.
The unique_ptr is a standard-library class designed to ensure resource release without runtime or space
overheads compared to the use of built-in “naked” pointers.

However, we can still see the new, this solution is a bit verbose (the type Filter is repeated), and
separating the construction of the ordinary pointer (using new) and the smart pointer (here,
unique_ptr) inhibits some significant optimizations. We can improve this by using a C++14 helper
function make_unique that constructs an object of a specified type and returns a unique_ptr to it:

void user3()
 {
 Filter flt {“books”,”authors”};

6

Stroustrup Myths December 2014

 auto p = make_unique<Filter>(“novels”,”favorites”);
 // use flt and *p
 }

Unless we really needed the second Filter to have pointer semantics (which is unlikely) this would be
better still:

void user4()
 {
 Filter flt {“books”,”authors”};
 Filter flt2 {“novels”,”favorites”};
 // use flt and flt2
 }

This last version is shorter, simpler, clearer, and faster than the original.

But what does Filter’s destructor do? It releases the resources owned by a Filter; that is, it closes the
files (by invoking their destructors). In fact, that is done implicitly, so unless something else is needed for
Filter, we could eliminate the explicit mention of the Filter destructor and let the compiler handle it all.
So, what I would have written was just:

class Filter { // take input from file iname and produce output on file oname
public:
 Filter(const string& iname, const string& oname);
 // …
private:
 ifstream is;
 ofstream os;
 // …
};

void user3()

 {
 Filter flt {“books”,”authors”};
 Filter flt2 {“novels”,”favorites”};
 // use flt and flt2
 }

This happens to be simpler than what you would write in most garbage collected languages (e.g., Java or
C#) and it is not open to leaks caused by forgetful programmers. It is also faster than the obvious
alternatives (no spurious use of the free/dynamic store and no need to run a garbage collector).
Typically, RAII also decreases the resource retention time relative to manual approaches.

This is my ideal for resource management. It handles not just memory, but general (non-memory)
resources, such as file handles, thread handles, and locks. But is it really general? How about objects
that needs to be passed around from function to function? What about objects that don’t have an
obvious single owner?

7

Stroustrup Myths December 2014

4.1 Transferring Ownership: move
Let us first consider the problem of moving objects around from scope to scope. The critical question is
how to get a lot of information out of a scope without serious overhead from copying or error-prone
pointer use. The traditional approach is to use a pointer:

 X* make_X()
 {
 X* p = new X:
 // … fill X …
 return p;
 }

 void user()
 {
 X* q = make_X();
 // … use *q …
 delete q;
 }

Now who is responsible for deleting the object? In this simple case, obviously the caller of make_X() is,
but in general the answer is not obvious. What if make_X() keeps a cache of objects to minimize
allocation overhead? What if user() passed the pointer to some other_user()? The potential for
confusion is large and leaks are not uncommon in this style of program.

I could use a shared_ptr or a unique_ptr to be explicit about the ownership of the created object. For
example:

 unique_ptr<X> make_X();

But why use a pointer (smart or not) at all? Often, I don’t want a pointer and often a pointer would
distract from the conventional use of an object. For example, a Matrix addition function creates a new
object (the sum) from two arguments, but returning a pointer would lead to seriously odd code:

 unique_ptr<Matrix> operator+(const Matrix& a, const Matrix& b);
 Matrix res = *(a+b);

That * is needed to get the sum, rather than a pointer to it. What I really want in many cases is an
object, rather than a pointer to an object. Most often, I can easily get that. In particular, small objects
are cheap to copy and I wouldn’t dream of using a pointer:

 double sqrt(double); // a square root function
 double s2 = sqrt(2); // get the square root of 2

On the other hand, objects holding lots of data are typically handles to most of that data. Consider
istream, string, vector, list, and thread. They are all just a few words of data ensuring proper access to
potentially large amounts of data. Consider again the Matrix addition. What we want is

Matrix operator+(const Matrix& a, const Matrix& b); // return the sum of a and b
Matrix r = x+y;

8

Stroustrup Myths December 2014

We can easily get that.

Matrix operator+(const Matrix& a, const Matrix& b)
{
 Matrix res;
 // … fill res with element sums …
 return res;
}

By default, this copies the elements of res into r, but since res is just about to be destroyed and the
memory holding its elements is to be freed, there is no need to copy: we can “steal” the elements.
Anybody could have done that since the first days of C++, and many did, but it was tricky to implement
and the technique was not widely understood. C++11 directly supports “stealing the representation”
from a handle in the form of move operations that transfer ownership. Consider a simple 2-D Matrix of
doubles:

class Matrix {
 double* elem; // pointer to elements
 int nrow; // number of rows
 int ncol; // number of columns
public:
 Matrix(int nr, int nc) // constructor: allocate elements

:elem{new double[nr*nc]}, nrow{nr}, ncol{nc}
 {

for(int i=0; i<nr*nc; ++i) elem[i]=0; // initialize elements
}

 Matrix(const Matrix&); // copy constructor
 Matrix operator=(const Matrix&); // copy assignment

 Matrix(Matrix&&); // move constructor
 Matrix operator=(Matrix&&); // move assignment

~Matrix() { delete[] elem; } // destructor: free the elements

// …

};

A copy operation is recognized by its reference (&) argument. Similarly, a move operation is recognized
by its rvalue reference (&&) argument. A move operation is supposed to “steal” the representation and
leave an “empty object” behind. For Matrix, that means something like this:

Matrix::Matrix(Matrix&& a) // move constructor
 :nrow{a.nrow}, ncol{a.ncol}, elem{a.elem} // “steal” the representation
{
 a.elem = nullptr; // leave “nothing” behind
}

9

Stroustrup Myths December 2014

That’s it! When the compiler sees the return res; it realizes that res is soon to be destroyed. That is, res
will not be used after the return. Therefore it applies the move constructor, rather than the copy
constructor to transfer the return value. In particular, for

 Matrix r = a+b;

the res inside operator+() becomes empty – giving the destructor a trivial task – and res’s elements are
now owned by r. We have managed to get the elements of the result – potentially megabytes of
memory – out of the function (operator+()) and into the caller’s variable. We have done that at a
minimal cost (probably four word assignments).

Expert C++ users have pointed out that there are cases where a good compiler can eliminate the copy
on return completely (in this case saving the four word moves and the destructor call). However, that is
implementation dependent, and I don’t like the performance of my basic programming techniques to
depend on the degree of cleverness of individual compilers. Furthermore, a compiler that can eliminate
the copy, can as easily eliminate the move. What we have here is a simple, reliable, and general way of
eliminating complexity and cost of moving a lot of information from one scope to another.

Also, move semantics applies to assignment also, so for

r = a+b;

we get the move optimization from the move assignment operator. Optimizing assignment is far harder
for an optimizer to do without language/programmer support than optimizing initialization.

Often, we don’t even need to define all those copy and move operations. If a class is composed out of
members that behave as desired, we can simply rely on the operations generated by default. Consider:

class Matrix {
 vector<double> elem; // elements
 int nrow; // number of rows
 int ncol; // number of columns
public:
 Matrix(int nr, int nc) // constructor: allocate elements

:elem(nr*nc), nrow{nr}, ncol{nc}
 { }

// …

};

This version of Matrix behaves like the version above except that it copes slightly better with errors and
has a slightly larger representation (a vector is usually three words).

What about objects that are not handles? If they are small, like an int or a complex<double>, don’t
worry. Otherwise, make them handles or return them using “smart” pointers, such as unique_ptr and
shared_ptr. Don’t mess with “naked” new and delete operations.

Unfortunately, a Matrix like the one I used in the example is not part of the ISO C++ standard library, but
several are available (open source and commercial). For example, search the Web for “Origin Matrix

10

Stroustrup Myths December 2014

Sutton” and see Chapter 29 of my The C++ Programming Language (Fourth Edition) [11] for a discussion
of the design of such a matrix.

4.2 Shared Ownership: shared_ptr
In discussions about garbage collection it is often observed that not every object has a unique owner.
That means that we have to be able ensure that an object is destroyed/freed when the last reference to
it disappears. In the model here, we have to have a mechanism to ensure that an object is destroyed
when its last owner is destroyed. That is, we need a form of shared ownership. Say, we have a
synchronized queue, a sync_queue, used to communicate between tasks. A producer and a consumer
are each given a pointer to the sync_queue:

void startup()
{
 sync_queue* p = new sync_queue{200}; // trouble ahead!
 thread t1 {task1,iqueue,p}; // task1 reads from *iqueue and writes to *p
 thread t2 {task2,p,oqueue}; // task2 reads from *p and writes to *oqueue
 t1.detach();
 t2.detach();
}

I assume that task1, task2, iqueue, and oqueue have been suitably defined elsewhere and apologize for
letting the thread outlive the scope in which they were created (using detatch()). Also, you may imagine
pipelines with many more tasks and sync_queues. However, here I am only interested in one question:
“Who deletes the sync_queue created in startup()?” As written, there is only one good answer:
“Whoever is the last to use the sync_queue.” This is a classic motivating case for garbage collection. The
original form of garbage collection was counted pointers: maintain a use count for the object and when
the count is about to go to zero delete the object. Many languages today rely on a variant of this idea
and C++11 supports it in the form of shared_ptr. The example becomes:

void startup()
{
 auto p = make_shared<sync_queue>(200); // make a sync_queue and return a stared_ptr to it
 thread t1 {task1,iqueue,p}; // task1 reads from *iqueue and writes to *p
 thread t2 {task2,p,oqueue}; // task2 reads from *p and writes to *oqueue
 t1.detach();
 t2.detach();
}

Now the destructors for task1 and task2 can destroy their shared_ptrs (and will do so implicitly in most
good designs) and the last task to do so will destroy the sync_queue.

This is simple and reasonably efficient. It does not imply a complicated run-time system with a garbage
collector. Importantly, it does not just reclaim the memory associated with the sync_queue. It reclaims
the synchronization object (mutex, lock, or whatever) embedded in the sync_queue to mange the
synchronization of the two threads running the two tasks. What we have here is again not just memory

11

Stroustrup Myths December 2014

management, it is general resource management. That “hidden” synchronization object is handled
exactly as the file handles and stream buffers were handled in the earlier example.

We could try to eliminate the use of shared_ptr by introducing a unique owner in some scope that
encloses the tasks, but doing so is not always simple, so C++11 provides both unique_ptr (for unique
ownership) and shared_ptr (for shared ownership).

4.3 Type safety
Here, I have only addressed garbage collection in connection with resource management. It also has a
role to play in type safety. As long as we have an explicit delete operation, it can be misused. For
example:

 X* p = new X;
 X* q = p;
 delete p;
 // …
 q->do_something(); // the memory that held *p may have been re-used

Don’t do that. Naked deletes are dangerous – and unnecessary in general/user code. Leave deletes
inside resource management classes, such as string, ostream, thread, unique_ptr, and shared_ptr.
There, deletes are carefully matched with news and harmless.

4.4 Summary: Resource Management Ideals
For resource management, I consider garbage collection a last choice, rather than “the solution” or an
ideal:

1. Use appropriate abstractions that recursively and implicitly handle their own resources. Prefer
such objects to be scoped variables.

2. When you need pointer/reference semantics, use “smart pointers” such as unique_ptr and
shared_ptr to represent ownership.

3. If everything else fails (e.g., because your code is part of a program using a mess of pointers
without a language supported strategy for resource management and error handling), try to
handle non-memory resources “by hand” and plug in a conservative garbage collector to handle
the almost inevitable memory leaks.

Is this strategy perfect? No, but it is general and simple. Traditional garbage-collection based strategies
are not perfect either, and they don’t directly address non-memory resources.

5. Myth 4: “For efficiency, you must write low-level code”
Many people seem to believe that efficient code must be low level. Some even seem to believe that low-
level code is inherently efficient (“If it’s that ugly, it must be fast! Someone must have spent a lot of time
and ingenuity to write that!”). You can, of course, write efficient code using low-level facilities only, and
some code has to be low-level to deal directly with machine resources. However, do measure to see if
your efforts were worthwhile; modern C++ compilers are very effective and modern machine

12

Stroustrup Myths December 2014

architectures are very tricky. If needed, such low-level code is typically best hidden behind an interface
designed to allow more convenient use. Often, hiding the low level code behind a higher-level interface
also enables better optimizations (e.g., by insulating the low-level code from “insane” uses). Where
efficiency matters, first try to achieve it by expressing the desired solution at a high level, don’t dash for
bits and pointers.

5.1 C’s qsort()
Consider a simple example. If you want to sort a set of floating-point numbers in decreasing order, you
could write a piece of code to do so. However, unless you have extreme requirements (e.g., have more
numbers than would fit in memory), doing so would be most naïve. For decades, we have had library
sort algorithms with acceptable performance characteristics. My least favorite is the ISO standard C
library qsort():

int greater(const void* p, const void* q) // three-way compare
{
 double x = *(double*)p; // get the double value stored at the address p

double y = *(double*)q;
if (x>y) return 1;

 if (x<y) return -1;
 return 0;
}

void do_my_sort(double* p, unsigned int n)
{
 qsort(p,n,sizeof(*p),greater);
}

int main()
{
 double a[500000];
 // … fill a …
 do_my_sort(a,sizeof(a)/sizeof(*a)); // pass pointer and number of elements
 // …
}

If you are not a C programmer or if you have not used qsort recently, this may require some
explanation; qsort takes four arguments

• A pointer to a sequence of bytes
• The number of elements
• The size of an element stored in those bytes
• A function comparing two elements passed as pointers to their first bytes

Note that this interface throws away information. We are not really sorting bytes. We are sorting
doubles, but qsort doesn’t know that so that we have to supply information about how to compare
doubles and the number of bytes used to hold a double. Of course, the compiler already knows such
information perfectly well. However, qsort’s low-level interface prevents the compiler from taking

13

Stroustrup Myths December 2014

advantage of type information. Having to state simple information explicitly is also an opportunity for
errors. Did I swap qsort()’s two integer arguments? If I did, the compiler wouldn’t notice. Did my
compare() follow the conventions for a C three-way compare?

If you look at an industrial strength implementation of qsort (please do), you will notice that it works
hard to compensate for the lack of information. For example, swapping elements expressed as a number
of bytes takes work to do as efficiently as a swap of a pair of doubles. The expensive indirect calls to the
comparison function can only be eliminated if the compiler does constant propagation for pointers to
functions.

5.2 C++’s sort()
Compare qsort() to its C++ equivalent, sort():

void do_my_sort(vector<double>& v)
{
 sort(v,[](double x, double y) { return x>y; }); // sort v in decreasing order
}

int main()
{
 vector<double> vd;
 // … fill vd …
 do_my_sort(v);
 // …
}

Less explanation is needed here. A vector knows its size, so we don’t have to explicitly pass the number
of elements. We never “lose” the type of elements, so we don’t have to deal with element sizes. By
default, sort() sorts in increasing order, so I have to specify the comparison criteria, just as I did for
qsort(). Here, I passed it as a lambda expression comparing two doubles using >. As it happens, that
lambda is trivially inlined by all C++ compilers I know of, so the comparison really becomes just a
greater-than machine operation; there is no (inefficient) indirect function call.

I used a container version of sort() to avoid being explicit about the iterators. That is, to avoid having to
write:
 std::sort(v.begin(),v.end(),[](double x, double y) { return x>y; });

I could go further and use a C++14 comparison object:

sort(v,greater<>()); // sort v in decreasing order

Which version is faster? You can compile the qsort version as C or C++ without any performance
difference, so this is really a comparison of programming styles, rather than of languages. The library
implementations seem always to use the same algorithm for sort and qsort, so it is a comparison of
programming styles, rather than of different algorithms. Different compilers and library
implementations give different results, of course, but for each implementation we have a reasonable
reflection of the effects of different levels of abstraction.

14

Stroustrup Myths December 2014

I recently ran the examples and found the sort() version 2.5 times faster than the qsort() version. Your
mileage will vary from compiler to compiler and from machine to machine, but I have never seen qsort
beat sort. I have seen sort run 10 times faster than qsort. How come? The C++ standard-library sort is
clearly at a higher level than qsort as well as more general and flexible. It is type safe and parameterized
over the storage type, element type, and sorting criteria. There isn’t a pointer, cast, size, or a byte in
sight. The C++ standard library STL, of which sort is a part, tries very hard not to throw away
information. This makes for excellent inlining and good optimizations.

Generality and high-level code can beat low-level code. It doesn’t always, of course, but the sort/qsort
comparison is not an isolated example. Always start out with a higher-level, precise, and type safe
version of the solution. Optimize (only) if needed.

6. Myth 5: “C++ is for large, complicated, programs only”
C++ is a big language. The size of its definition is very similar to those of C# and Java. But that does not
imply that you have to know every detail to use it or use every feature directly in every program.
Consider an example using only foundational components from the standard library:

set<string> get_addresses(istream& is)
{
 set<string> addr;
 regex pat { R"((\w+([.-]\w+)*)@(\w+([.-]\w+)*))"}; // email address pattern
 smatch m;
 for (string s; getline(is,s);) // read a line
 if (regex_search(s, m, pat)) // look for the pattern
 addr.insert(m[0]); // save address in set
 return addr;
}

I assume you know regular expressions. If not, now may be a good time to read up on them. Note that I
rely on move semantics to simply and efficiently return a potentially large set of strings. All standard-
library containers provide move constructors, so there is no need to mess around with new.

For this to work, I need to include the appropriate standard library components:

#include<string>
#include<set>
#include<iostream>
#include<sstream>
#include<regex>
using namespace std;

Let’s test it:

istringstream test { // a stream initialized to a sting containing some addresses
 "asasasa\n"
 "bs@foo.com\n"
 "ms@foo.bar.com$aaa\n"
 "ms@foo.bar.com aaa\n"

15

Stroustrup Myths December 2014

 "asdf bs.ms@x\n"
 "$$bs.ms@x$$goo\n"
 "cft foo-bar.ff@ss-tt.vv@yy asas"
 "qwert\n"
};

int main()
{
 auto addr = get_addresses(test); // get the email addresses
 for (auto& s : addr) // write out the addresses
 cout << s << '\n';
}

This is just an example. It is easy to modify get_addresses() to take the regex pattern as an argument, so
that it could find URLs or whatever. It is easy to modify get_addresses() to recognize more than one
occurrence of a pattern in a line. After all, C++ is designed for flexibility and generality, but not every
program has to be a complete library or application framework. However, the point here is that the task
of extracting email addresses from a stream is simply expressed and easily tested.

6.1 Libraries
In any language, writing a program using only the built-in language features (such as if, for, and +) is
quite tedious. Conversely, given suitable libraries (such as graphics, route planning, and database) just
about any task can be accomplished with a reasonable amount of effort.

The ISO C++ standard library is relatively small (compared to commercial libraries), but there are plenty
of open-source and commercial libraries “out there.” For example, using (open source or proprietary)
libraries, such as Boost [3], POCO [2], AMP [4], TBB [5], Cinder [6], vxWidgets [7], and CGAL [8], many
common and more-specialized tasks become simple. As an example, let’s modify the program above to
read URLs from a web page. First, we generalize get_addresses() to find any string that matches a
pattern:

set<string> get_strings(istream& is, regex pat)
{
 set<string> res;
 smatch m;
 for (string s; getline(is,s);) // read a line
 if (regex_search(s, m, pat))
 res.insert(m[0]); // save match in set
 return res;
}

That is just a simplification. Next, we have to figure out how to go out onto the Web to read a file. Boost
has a library, asio, for communicating over the Web:

#include “boost/asio.hpp” // get boost.asio

Talking to a web server is a bit involved:

16

Stroustrup Myths December 2014

int main()
try {
 string server = "www.stroustrup.com";
 boost::asio::ip::tcp::iostream s {server,"http"}; // make a connection

connect_to_file(s,server,"C++.html"); // check and open file

regex pat {R"((http://)?www([./#\+-]\w*)+)"}; // URL
 for (auto x : get_strings(s,pat)) // look for URLs
 cout << x << '\n';
}
catch (std::exception& e) {
 std::cout << "Exception: " << e.what() << "\n";
 return 1;
}

Looking in www.stroustrup.com’s file C++.html, this gave:

http://www-h.eng.cam.ac.uk/help/tpl/languages/C++.html
http://www.accu.org
http://www.artima.co/cppsource
http://www.boost.org
…

I used a set, so the URLs are printed in lexicographical order.

I sneakily, but not altogether unrealistically, “hid” the checking and HTTP connection management in a
function (connect_to_file()):

void connect_to_file(iostream& s, const string& server, const string& file)
 // open a connection to server and open an attach file to s
 // skip headers
{
 if (!s)

throw runtime_error{"can't connect\n"};

 // Request to read the file from the server:
 s << "GET " << "http://"+server+"/"+file << " HTTP/1.0\r\n";
 s << "Host: " << server << "\r\n";
 s << "Accept: */*\r\n";
 s << "Connection: close\r\n\r\n";

 // Check that the response is OK:
 string http_version;
 unsigned int status_code;

s >> http_version >> status_code;

 string status_message;
 getline(s,status_message);

17

Stroustrup Myths December 2014

 if (!s || http_version.substr(0, 5) != "HTTP/")
 throw runtime_error{ "Invalid response\n" };

 if (status_code!=200)
 throw runtime_error{ "Response returned with status code" };

 // Discard the response headers, which are terminated by a blank line:
 string header;
 while (getline(s,header) && header!="\r")
 ;
}

As is most common, I did not start from scratch. The HTTP connection management was mostly copied
from Christopher Kohlhoff’s asio documentation [9].

6.2 Hello, World!
C++ is a compiled language designed with the primary aim of delivering good, maintainable code where
performance and reliability matters (e.g., infrastructure [10]). It is not meant to directly compete with
interpreted or minimally-compiled “scripting” languages for really tiny programs. Indeed, such
languages (e.g. JavaScript) – and others (e.g., Java) – are often implemented in C++. However, there are
many useful C++ programs that are just a few dozen or a few hundred lines long.

The C++ library writers could help here. Instead of (just) focusing on the clever and advanced parts of a
library, provide easy-to-try “Hello, World” examples. Have a trivial-to-install minimal version of the
library and have a max-one-page “Hello, World!” example of what the library can do. We are all novices
at some time or other. Incidentally, my version of “Hello, World!” for C++ is:

#include<iostream>

int main()
{
 std::cout << "Hello, World\n";
}

I find longer and more complicated versions less than amusing when used to illustrate ISO C++ and its
standard library.

7 The Many Uses of Myths
Myths sometimes have a basis in reality. For each of these myths there have been times and situations
where someone could reasonably believe them based on evidence. For today, I consider them flat-out
wrong, simple misunderstandings, however honestly acquired. One problem is that myths always serve
a purpose – or they would have died out. These five myths have served and serve in a variety of roles:

• They can offer comfort: No change is needed; no reevaluation of assumptions is needed. What is
familiar feels good. Change can be unsettling, so it would be nice if the new was not viable.

18

Stroustrup Myths December 2014

• They can save time getting started with a new project: If you (think you) know what C++ is, you
don’t have to spend time learning something new. You don’t have to experiment with new
techniques. You don’t have to measure for potential performance snags. You don’t have to train
new programmers.

• They can save you from having to learn C++: If those myths were true, why on earth would you
want to spend time learning C++?

• They can help promote alternative languages and techniques: If those myths were true,
alternatives are obviously necessary.

But these myths are not true, so intellectually honest promotion of status quo, alternatives to C++, or
avoidance of modern C++ programming styles cannot rely on them. Cruising along with an older view of
C++ (with familiar language subsets and techniques) may be comfortable, but the state of software is
such that change is necessary. We can do much better than with C, “C with Classes”, C++98, etc.

Sticking to the old-and-true is not cost free. Maintenance cost is often higher than for more modern
code. Older compilers and tool chains deliver less performance and worse analysis than modern tools
relying on more structured modern code. Good programmers often choose not to work on “antique”
code.

Modern C++ (C++11, C++14) and the programming techniques it supports are different and far better
than “common, popular myths” would indicate.

If you believe one of these myths, don’t just take my word for it being false. Try it. Test it. Measure “the
old way” and the alternatives for some problem you care about. Try to get a real hold on the time
needed to learn the new facilities and techniques, the time to write code the new way, the runtime of
the modern code. Don’t forget to compare the likely maintenance cost to the cost of sticking with “the
old way.” The only perfect debunking of a myth is to present evidence. Here, I have presented only
examples and arguments.

And no, this is not an argument that C++ is perfect. C++ is not perfect; it is not the best language for
everything and for everybody. Neither is any other language. Take C++ for what it is, rather than what it
was 20 years ago or what someone promoting an alternative claims it to be. To make a rational choice,
get some solid information and – as far as time allows – try for yourself to see how current C++ works
for the kind of problems you face.

8 Summary
Don’t believe “common knowledge” about C++ or its use without evidence. This article takes on five
frequently expressed opinions about C++ and argues that they are “mere myths:”

1. “To understand C++, you must first learn C”
2. “C++ is an Object-Oriented Language”
3. “For reliable software, you need Garbage Collection”
4. “For efficiency, you must write low-level code”

19

Stroustrup Myths December 2014

5. “C++ is for large, complicated, programs only”

They do harm.

9 Feedback
Not convinced? Tell me why. What other myths have you encountered? Why are they myths rather than
valid experiences? What evidence do you have that might debunk a myth?

10 References
1. ISO/IEC 14882:2011 Programming Language C++
2. POCO libraries: http://pocoproject.org/
3. Boost libraries: http://www.boost.org/
4. AMP: C++ Accelerated Massive Parallelism. http://msdn.microsoft.com/en-

us/library/hh265137.aspx
5. TBB: Intel Threading Building Blocks. www.threadingbuildingblocks.org/
6. Cinder: A library for professional-quality creative coding. http://libcinder.org/
7. vxWidgets: A Cross-Platform GUI Library. www.wxwidgets.org
8. Cgal - Computational Geometry Algorithms Library. www.cgal.org
9. Christopher Kohlhoff: Boost.Asio documentation.

http://www.boost.org/doc/libs/1_55_0/doc/html/boost_asio.html
10. B. Stroustrup: Software Development for Infrastructure. Computer, vol. 45, no. 1, pp. 47-58, Jan.

2012, doi:10.1109/MC.2011.353.
11. Bjarne Stroustrup: The C++ Programming Language (4th Edition). Addison-Wesley. ISBN 978-

0321563842. May 2013.
12. Bjarne Stroustrup: A Tour of C++. Addison Wesley. ISBN 978-0321958310. September 2013.
13. B. Stroustrup: Programming: Principles and Practice using C++ (2nd edition). Addison-Wesley. ISBN

978-0321992789. May 2014.

Postscript
The 10 sections of this article was posted on isocpp.org in three installments and reposted widely. It
attracted a quite varied set of comments. I have now fixed a few typos that were reported. Thanks.

This postscript is my observations on some of the comments posted.

The comments prove – yet again – that the “Myths” paper was needed. People keep repeating the old
hairy rationalizations. Unfortunately, many programmers don’t read long papers and dismiss short ones
for being incomplete. The unwillingness of many programmers to read a long paper was the reason I
released this paper in three separate parts.

This paper is not a research paper carefully outlining every alternative and carefully documenting every
detail. I said that right up front:

20

Stroustrup Myths December 2014

Each myth requires a long paper or even a book to completely debunk, but my aim here is
simply to raise the issues and to briefly state my reasons.

However, many seems to confuse the examples used to illustrate a point with the point itself. Many
tried to “debunk the debunking” by changing examples, by changing the constraints on the examples, or
by deeming the examples trivial. The examples are small – they have to be to fit into a short paper – but
they are not unrepresentative of code found as part of real-world programs.

Many commenters quickly did a shift from the C++11/C++14 that I base my arguments on to some older
version. C++14 is not the C++ of the 1980s. It is not what most people were first taught. It is not the C++
that people is presented with in most beginning C++ courses today. It is not what most people see when
they look at a large code base. I want to change that. Not being able to do some example that I present
in an antique version of C++ or with an outdated compiler is unfortunate, but better versions of the
major compiler ship (typically for free) today. I showed no examples of “bleeding edge” code.

The problem of code in older styles is one that every successful programming language must face, so
please don’t judge C++ exclusively based on 20-year-old techniques and 10-year old compilers. Look at
modern C++ and find ways of getting it into use – many has already. You almost certainly used a
program today that was written using C++11. There are C++11 in many steps of the chain between the
computer on which I write this and the computer on which you read it.

Quite a few comments were along the lines of “Language X has a feature that does exactly that” and
“Library Y in language X does exactly that.” Obviously, if you have a language that provides a simpler
solution to the best you can do in C++, with acceptable performance, portability, and tool-chain
constraints for what you want to do, use it. However, no language and library is perfect for everything
and everybody.

I present examples of general problems and general techniques. Matching a single example in some way
is not necessarily significant. My points are general and the examples only simple illustrations. Given a
sufficiently good library, just about any programming task can be simple and pleasant. Given a
sufficiently constrained task, we can always design a specialized language to be more elegant than a
general-purpose one. For example, the asio library I used in §6.1 is a flexible, efficient, general-purpose
networking library. For any one task, I could wrap it in a far simpler function (or small set of functions) to
make that task significantly more convenient. The code I showed would then be the implementation. My
key point in §6.2 is that the C++ library development community could do many programmers a favor by
spending a little more tome making simple things simple. For example 99% of the time I prefer sort(v) to
sort(v.begin(),v.end()).

Performance
My comments about performance caused quite a stir in places. Many people tried to dismiss them with
arguments or mere counter-assertions. I don’t accept performance arguments unsupported by
measurements. My comments have been validated by real performance measures in many contexts
over years. Many can be found in the literature. My main performance points hold over a wide range of
similar examples and scale.

21

Stroustrup Myths December 2014

Please note that I assume a modern, standards-conforming C++ implementation. For example, when I
talk about the performance of the short-string optimization, I don’t mean a pre-C++11 standard library
without that optimization. Also, I take no notice of comments to the effect that C++ facilities such as
std::sort() or std::string are slow if you don’t use an optimizer – of course they are, but talking about
performance of unoptimized code is silly. If you use GCC or Clang use –O2; for Microsoft, use release
mode.

C
I know C and its standard library pretty well. I wrote considerable amounts of C before many of today’s
students were even born and contributed significantly to the C language: function prototypes, const,
inline, declarations in for-statement, declarations as statements, and more came from my work. I have
followed its development and the evolution programming styles in C.

Yes, the C versions of compose() fails to check malloc()’s return value. I did ask if you thought I got it
right. I did not present production-quality code, and I knew that. Failing to check results is a major
source of errors, so my “mistake” failing to check the result of malloc() was deliberate illustrates a real
problem. As in this case, exceptions can often help.

Yes, you could write the C version of compose() differently using less well known standard-library
functions, and yes, you can avoid the use of free store if you let the caller supply a buffer allocated on
the stack and let the caller deal with the problem of string arguments that would overflow the buffer.
However, such alternatives completely miss the point: it is harder to write such code than the C++
version, and far harder to get it right. Novices get the C++ version right the first time, but not any of the
C versions, especially not the C versions that rely on standard-library function not commonly taught to
novices.

C++ use
C++ has been used for demanding embedded systems and critical systems for years, examples are The
Mars Rovers (scene analysis and autonomous operations), The F-35s and F-16s (flight controls), and
many, many more: http://www.stroustrup.com/applications.html. And, yes, the Orion space capsule is
programmed in C++.

Libraries
Yes, libraries vary in quality and it can be extremely hard to choose from the large selection of libraries
beyond the standard. This is a major problem. However, such libraries exist and researching them is
often more productive than simply barging ahead and reinventing yet-another wheel.

Unfortunately, C++ Libraries are often not designed for interoperability with other libraries.

Unfortunately, there is not a single place to go to look for C++ Libraries.

Teaching
I have observed students being taught by the “C first” approach for many years and seen the programs
written by such students for decades. I have taught C++ as the first programming language to thousands

22

Stroustrup Myths December 2014

of students over several years. My claims about the teachability of C++ are based on significant
experience, rather than introspection.

C++ is easier to teach to beginners than C because of a better type system and more notational support.
There are also fewer tricks and workarounds to learn. Just imagine how you would teach the styles of
programming you use in C using C++; C++’s support for those is better.

I would never dream of giving a beginner’s C++ course that

• didn’t include a thorough grounding in memory management, pointers, etc.
• didn’t give the students a look at “plain C”’ and some idea of how to use it
• didn’t present a rationale for the major features
• tried to teach all of C++ and every C++ technique

Similarly, good C teachers do not try to teach all of C and all C techniques to beginners.

http://www.stroustrup.com/programming.html is my answer to the question “How would you teach
C++ to beginners?” It works.

For a rather old paper comparing aspects of teachability of C and C++, see B. Stroustrup: Learning
Standard C++ as a New Language. C/C++ Users Journal. pp 43-54. May 1999
(www.stroustrup.com/papers.html). Today, I could write the C version a bit better and the C++ version
quite a bit better. The examples reflect common styles of the time (and were reviewed by expert C and
C++ programmers).

C++ today is ISO Standard C++14, rather than what I described 30 years ago or what your teacher may
have taught you 20 years ago. Learn C++11/C++14 as supported by current mainstream compilers and
get used to it. It is a far better tool than earlier versions of C++. Similarly, C today is ISO Standard C11,
rather than K&R C (though I am not sure if the C compilers today are as close to C11 as the C++
compilers are close to C++14).

I am appalled by much that is taught as “good C++.”

C++ is not (and never were meant to be) an “OOP” language. It is a language that supports OOP, other
programming techniques, and combinations of such techniques.

If you are an experienced programmer, I recommend A Tour of C++ [12] as a quick overview of modern
C++.

23

	Five Popular Myths about C++
	Bjarne Stroustrup
	Morgan Stanley, Columbia University, Texas A&M University

	1. Introduction
	2. Myth 1: “To understand C++, you must first learn C”
	2.1 Learning C++

	3. Myth 2: “C++ is an Object-Oriented Language”
	3.1 Generic Programming
	3.2 Adaptation

	4 Myth 3: “For reliable software, you need Garbage Collection”
	4.1 Transferring Ownership: move
	4.2 Shared Ownership: shared_ptr
	4.3 Type safety
	4.4 Summary: Resource Management Ideals

	5. Myth 4: “For efficiency, you must write low-level code”
	5.1 C’s qsort()
	5.2 C++’s sort()

	6. Myth 5: “C++ is for large, complicated, programs only”
	6.1 Libraries
	6.2 Hello, World!

	7 The Many Uses of Myths
	8 Summary
	9 Feedback
	10 References
	Postscript
	Performance
	Libraries

