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In this lecture we will discuss a particular method to construct modular forms.
This is actually an elusively rare thing: only two such constructions are known to
us, the first one we will come to in a minute and next week we will see the second
one.

In the last lecture we saw that the modular discriminant is a simultaneous Hecke
eigenform, and, hence, has an Euler product expansion. This revealed ∆’s under-
lying arithmetic properties.

Our construction of modular forms will lead us to the Poincaré series, and with
the help of the Petersson inner product we will see in today’s second lecture that
actually more is true: the space of modular forms even has a basis consisting solely
of simultaneous Hecke eigenforms.

Construction of Modular Forms

Let us first recall the definition of a modular form. It is a function f : H → C
such that

• (Holomorphy) f is holomorphic on H and at i∞,
• (Automorphy) f(γz) = (cz + d)kf(z) ∀γ ∈ Γ.

For the purpose of constructing such functions we begin with constructing functions
that satisfy the automorphy condition, but not yet the holomorphy condition.

The automorphy condition, on the other hand, amounts to saying that we are
interested in functions that transform under Γ according to a given factor. To
prevent, however, the specific factor to interfere with any ideas, we push it out of
our discussion.

Definition (Automorphy factor). A function j : Γ×H → C× is called automorphy
factor, if for each α, β, γ ∈ Γ jγ is holomorphic on H and jαβ(z) = jα(βz)jβ(z).

We immediately generalize and replace the automorphy condition by
• (Automorphy) f(γz) = jγ(z)f(z) ∀γ ∈ Γ

Consider the simplest case for j, i.e., j ≡ 1. The automorphy condition now
becomes the invariance condition f(γz) = f(z), but those functions can be written
as an average over Γ: f(z) =

∑
α∈Γ h(αz) for some h.

Our strategy is to adapt the idea of averaging over Γ to arbitrary automorphy
factors j. Hence, we replace h(αz) in the sum by the more generic term hα(z) for
some function h.

We formally define f(z) :=
∑

α∈Γ hα(z), but not all such f satisfy the auto-
morphy condition yet and we investigate what the condition means for functions
defined in this way.

(Automorphy) ⇐⇒
∑
α∈Γ

hα(γz) =
∑
α∈Γ

jγ(z)hα(z)

=
∑
α∈Γ

jγ(z)hαγ(z) ∀γ ∈ Γ.
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The equation is simplified if we not only ask the sums to be equal, but even ask
for pointwise equality,

hα(γz) = jγ(z)hαγ(z) ∀α, γ ∈ Γ.

The case α = 1 reveals that hα(z) must now take on a particular form,

h1(γz) = jγ(z)hγ(z) ⇐⇒ hγ(z) =
h1(γz)
jγ(z)

∀γ ∈ Γ.

With this identity the automorphy condition follows from

h1(αγz)
jα(γz)

= jα(z)
h1(αγz)
jαγ(z)

⇐⇒ jαγ(z) = jα(γz)jα(z) ∀α, γ ∈ Γ

Automorphy factors evidently satisfy the last expression, and—featuring the
abbreviation h := h1—our construction becomes

f(z) :=
∑
α∈Γ

h(αz)
jα(z)

.

If the sum converges absolutely, then f satisfies the automorphy condition.
Unfortunately, it turns out that searching for the right function h is still unfea-

sible: the main reason is that there may be infinitely many γ with jγ ≡ 1, e.g., in

our case for each Tn =
(

1 n
0 1

)
.

A quick examination, however, reveals that these redundant terms are a subgroup
of Γ,

Γ∞ := {γ ∈ Γ | jγ ≡ 1},
and the idea to mod Γ∞ away raises hopes.

To actually do this, we assume the function h invariant under Γ∞ and we merely
need to show that α 7→ h(αz)

jα(z) only depends on the cosets mod Γ∞. Let α = βα′

with β ∈ Γ∞ and notice that jα(z) = jβα′(z) = jβ(α′z)jα′(z) = jα′(z), and
h(αz) = h(βα′z) = h(α′z).

We finally derived a beautiful formula to construct functions that satisfy the
automorphy condition if h is Γ∞-invariant and the sum converges absolutely,

f(z) :=
∑

α∈Γ∞\Γ

h(αz)
jα(z)

=
∑

α∈Γ∞\Γ

(h|α)(z).

If the series satisfies the holomorphy condition, too, we solved our problem and
found a modular form.

Construction of the Poincaré Series

We are ready to transfer the general construction to our setting with Γ = SL2(Z)
and jγ(z) = (cz + d)k.

Note that the matrices in Γ∞ are those with ±(0, 1) in the second row. Because
they have determinant 1, we have Γ∞ = {±Tn | n ∈ Z}. Hence, Γ∞-invariant
functions are those with period 1. The simplest such function is e(mz) := e2πimz,
which is our choice for h.

To figure out the cosets in Γ∞\Γ, note that

M = ±TnM ′ ⇐⇒ (c, d) = ±(c′, d′).

M =
(
∗ ∗
c d

)
∈ Γ =⇒ gcd(c, d) = 1,

gcd(c, d) = 1 =⇒ ∃M =
(
∗ ∗
c d

)
∈ Γ.
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It follows that
Γ∞\Γ ∼= {(c, d) | c ≥ 0, gcd(c, d) = 1}.

With the understanding that γ always denotes a matrix in Γ with c and d in the
second row, we arrive at the Poincaré series.

Definition (Poincaré series).

P k
m(z) :=

∑
γ∈Γ∞\Γ

e(mγz)
jγ(z)

=
∑

c,d∈Z
c≥0

gcd(c,d)=1

e2πimγz

(cz + d)k

is called the mth Poincaré series of weight k.

Theorem. If k, m ∈ N, m ≥ 0, and k > 2, then the Poincaré series P k
m is a

modular form of weight k.

Proof. As per construction, the automorphy condition is satisfied if the series con-
verges absolutely uniformly on compact subsets of H. The remainder of the proof
is done similarly as in the proof of modularity of the Eisenstein series. �

Fourier Expansion of the Poincaré Series

The Fourier expansion of P k
m will use Kloosterman sums.

Definition (Kloosterman sum). The sum

k(m,n, c) :=
∑

d mod c
gcd(c,d)=1

e

(
md + nd

c

)
with dd ≡ 1 (mod c)

is called Kloosterman sum.

Theorem. Let an be the nth Fourier coefficient of P k
m.

If m = 0, then

an =
(2πi)kσk−1(n)
(k − 1)!ζ(k)

;

if m ≥ 1, then

an =
∑
c>0

k(m,n, c)
(2πi)k

c

( n

m

) k−1
2

Jk−1

(
4π
√

mn

c

)
,

where Jn is the nth Bessel function.

Proof. The Fourier coefficient an is given by

an =
∫ 1+iy

0+iy

P k
m(z)e(−nz)dz =

∑
c,d∈Z
c≥0

gcd(c,d)=1

∫ 1+iy

0+iy

e(mγz)
jγ(z)

e(−nz)dz

The sum is complicated, but note that for all c > 0 and d ∈ Z with gcd(c, d) = 1
there exists l ∈ Z and d′ mod c with gcd(c, d′) = 1 such that d = lc + d′. This
formula generates exactly all d that are relatively prime to c. We split off the terms
with c = 0 and rewrite the remaining sum:

an =
∑

c=0,d=±1

∫ 1+iy

0+iy

e ((m− n) z) dz +
∑
c>0

d′ mod c
gcd(c,d′)=1

∑
l∈Z

d=lc+d′

∫ 1+iy

0+iy

e(mγz)
jγ(z)

e(−nz)dz.

The first terms gives 2δmn, for the second term note that

jγd(z) = (cz + d)k = (c(z + l) + d′)k = jγd′ (z + l)
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and
γz =

az + b

cz + d
=

a

c
− 1

c(cz + d)
,

hence
γdz = γd′(z + l).

As we have terms with z + l now, we change variables with z + l 7→ z to obtain

an = 2δmn +
∑
c>0

d mod c
gcd(c,d)=1

∑
l∈Z

∫ l+1+iy

l+iy

e(mγz)
jγ(z)

e(−nz)dz

= 2δmn +
∑
c>0

d mod c
gcd(c,d)=1

∫ ∞+iy

−∞+iy

e(mγz)
jγ(z)

e(−nz)dz

Note that for c > 0 we have jγ(z) = (cz + d)k = ck(z + d
c )k and γz = a

c −
1

c2(z+ d
c )

.

We change variables with z + d
c 7→ z and obtain

an = 2δmn +
∑
c>0

d mod c
gcd(c,d)=1

∫ ∞+iy

−∞+iy

c−kz−ke
(ma

c

)
e
(
− m

c2z

)
e

(
−n

(
z − d

c

))
dz

= 2δmn +
∑
c>0

c−kk(m,n, c)
∫ ∞+iy

−∞+iy

z−ke
(
− m

c2z
− nz

)
dz

We are nearly finished: the following two lemmas give the expression we seek. �

Lemma. If Jn denotes the nth Bessel function, then∫ ∞+iy

−∞+iy

w−ke−µ1w−µ2w−1
dw = 2π

(
µ1

µ2

) k−1
2

e−ik π
2 Jk−1(4π

√
µ1µ2).

Proof. Exercise. �

Lemma.
∞∑

n=1

n−sRn(m) =
σs−1(m)
ms−1ζ(s)

where Rn(m) :=
∑

k mod n
gcd(k,n)=1

e
(

km
n

)
is the Ramanujan sum.

Proof. See Hardy and Wright’s “An introduction into the theory of numbers”, the-
orem 292. �


