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PREFACE

Tn recent years water-resources projects and hydraulic engineering
works have been developing rapidly throughout the world. The knowl-
edge of open-channel hydraulics, which is essential to the design of many
hydraulic structures, has thus advanced by leaps and bounds. To the
students and engineers in the field of hydraulic engineering, such valuable
new knowledge should be made available in suitable book form. It is
therefore not surprising that some new books have already appeared.
However, most of them are presented in limited scope and all are written
in foreign languages.! In the English language, the two well-known
books, respectively by Bakhmeteff and by Woodward and Posey, wers
published nearly two decades ago.?

This book gives broad coverage of recent developments; it should meet
the present need. It is designed as a textbook for both undergraduate
and graduate students and also as a compendium for practicing engineers.
Emphasis is given to the qualities of ‘“‘teachability’ and “practicability,”
and attempts were made in presenting the material to bridge the gap
which is generally recognized to exist between the theory and the practice.
In order to achieve these objectives, the use of advanced mathematics is
deliberately avoided as much as possible, and the explanation of hydraulie

: Buch as: Btienne Crausse, “Hydraulique des canaux découverts en régime perma-
nent’ (“Hydraulics of Open Channels with Steady Flow?”), Editions Eyrolles,
Paris, 1951; R. Silber, “Etude et tracé des écoulements permanents en canaux et
rividres”’ (“Study and Description of Steady Flows in Canals and Rivers”), Dunod,
Paris, 1954; Martin Schmidt, “Gerinnehydraulik’” (‘“Open-channel Hydraulics”),
VEB Verlag Technik-Bauverlag GMBH, Berlin and Wiesbaden, 1957; N. N. Pav-
lovskil, “Otkrytye rusla i sopriazhenie biefov sooruzhenii’’ (Open chunnels and adjust-
ment of water levels), in the ‘“Sobranie sochinenii’’ (“Collected Works’”), vol. 1,
pp. 309-543, Academy of Sciences of U.8.8.R., Moscow and Leningrad, 1955; and
the new edition of M. D. Chertousov, “Gidravlika’ (“Hydraulics’’), Gosenergoizdat,
Moscow and Leningrad, 1957,

2 Boris A. Bakhmeteff, “ Hydraulics of Open Channels,”” McGraw-Hill Book Com-
pany, Inc., New York, 1932; and Sherman M. Woodward and Chesley J. Posey,

“Hydraulics of Steady Flow in Open Channels,”” John Wiley and Sons, Ine., New
York, 1941.
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theories is greatly simplified as far as practicable. Tlustrative examples
are given to show the application of the theories, and practical problems
are provided for exercises. Furthermore, short historical accounts are
given in footnotes in order to stimulate the reader’s interest, and ample
references are supplied for his independent studies. Some references,
however, may not be readily available to the reader, but they are listed
for academic and historical interest.

In essence, the book is the outgrowth of the author’s 20 years’ experi-
ence as a student, teacher, engineer, researcher, and consuitant in the
field of hydraulic engineering. The manuscript of the book was drafted
for the first time in the academic year of 1951-1952 for use in teaching
the students of civil, agricultural, and mechanical engineering and of
theoretical and applied mechanics at the University of Illinois. Since
then several revisions have been made. In the beginning, the material
was prepared solely for graduate students. Owing to the general demand -
for & book on the design of hydraulic structures for undergraduate studies,
the manuscript was expanded to include more fundamental principles and
design procedures. At the same time, most of the advanced mathematics
and theories were either omitted or replaced by more practical approaches
using mathematical operations of a level not higher than calculus.

From 1051 to 1955, the author made several special visits to many
major engineering agencies and firms in the United States to discuss
problems with their engineers. As a result, a vast fund of information
on hydraulic design practices was collected and incorporated into the
manuscript. Thereafter, the author also visited many hydraulic insti-
tutions and laboratories in other countries and exchanged knowledge with
their staff members. In 1956 he visited England, France, Belgium, the
Netherlands, Germany, Italy, and Switzerland. In 1958 he visited
Austria, Turkey, India, and Japan, and again England, France, and
Belgium. The information obtained from these countries and from other
countries through publications and correspondence was eventually added
to the final draft of the manuscript as supplements to the American
practice.

The text is organized into five parts—namely, Basic Principles, Uni-~
form Flow, Gradually Varied Flow, Rapidly Varied Flow, and Unsteady
Tlow. The first three parts cover the material which would ordinarily be
treated in a one-semester course on open-channel hydraulics. For a one-~
semester course on the design of hydraulic structures, Chaps. 7 and i1
and Part TV should supply most of the material for the teaching purpose.
Part V on unsteady flow may be used either for advanced studies or as
supplemental material to the one-semester course, depending largely on
the discretion of the instructor with reference to the time available and
the interest shown by the students.
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Tn Part I on basic prineiples, the type of flow in open channels is classi-

fed according to the variation in the parameters of flow with respect to
space and time. For simplicity, the depth of flow is used as the flow
_parameter in the classification. The state of flow is classified according
to the range of the invariants of flow with respect to viscosity and
gravity. The flow invariants used are the Reynolds number and the
Troude number. Since the effect of surface tension of water is insignifi-
cant in most engineering problems, the Weber number as a flow invariant
is not introduced. In fact, the state of flow can be further classified
for its stability in accordance with the Vedernikov number or other suit-
able criteria. However, such a eriterion has not been well established in
engineering practice, and therefore it is taken up only briefly later in
Chap. 8.

Four coefficients for veloeity and pressure distributions are introduced.
In particular, the energy coefficient is presented throughout the book.
This coefficient is usually ignored in most books on hydraulics. In
practical applications, the effect of the energy coeflicient on computations
and hence on designs is quite significant and therefore should not be
overlooked, even though the value of the coefficient may not always be
determined accurately.

The energy and momentum principles constitute the basis of interpre-
tation for most hydraulic phenomena. A thorough treatment of the two
principles is given in Chap. 3. Since the book is intended for the use of
practicing engineers, the treatment of a problem is in most cases based on
a one- or two-dimensional flow.

In Part IT on uniform flow, several uniform-flow formulas are intro-
duced. Despite many new proposals for a formula having a theoretical
background, the Manning formula still holds its indisputable top-positicn
in the field of practical applications. This formula is therefore used

" extensively in the book. In certain specific problems, however, the
Chézy formula is used occasionally.

The design for uniform flow covers nonerodible, erodible, and grassed
channels. The erodible channels in general may be classified under three
types: channels which scour but do not silt, channels which silt but do
not seour, and channels which scour and silt simultaneously. In channels
of the second and third types, it is necessary for the water to carry sedi-
ments. As will be stated later, the sediment transportation is considered
as & subject in the domain of river hydraulics. Therefore, only the chan-
nels of the first type, which carry relatively clear water in stable con-
dition, are treated in this book.,

In Part III on gradually varied flow, several methods for the compu-~
tation of flow profiles are discussed. A new method of direct integration
is introduced which requires the use of a varied-flow function table first



% PREFACE

developed by Professor Boris A. Bakhmeteff in 1912.1 The table given in
Appendix D of this book is an extension of the table to nearly three times
its original size. This extended table and a table for negative slopes were
prepared during 1952 to 1954 by the author for teaching purposes at the
University of Illinois.2 For the computation of flow profiles in circular
conduits, a varied-low function table is also provided in Appendix E.

The method of singular points is a powerful tool for the analysis of flow
profiles. Since this method requires the use of advanced mathematics,
it is described only briefly in Chap. 9 for the purpose of stimulating fur~
ther interest in the theoretical study of flow problems.

In Part IV on rapidly varied flow, the treatment of the problems is
largely supported by experimental data, because this type of flow is so
complicated that a mere theoretical analysis in most cases will not yield
sufficient information for the purpose of practical design. The use of the

flow-net method and the method of characteristics is mentioned but no.

details are given, because the former is so popular that it can be found
in most hydraulics books, while the latter requires the knowledge of
advanced mathematics beyond the scope of this work.

In Part V on unsteady flow, the treatment is general but practical. It
should be recognized that this type of flow is a highly specialized subject.®
The knowledge of advanced mathematics would be required if a compre-
hensive treatment were given.

Tt should be noted that the subject matter of this book dwells mainly
on the flow of water in channels where water contains little foreign mate-
rial.  Consequently, problems related to sediment transportation and
air entrainment are not fully discussed. Inrecent years, sediment trans-
portation in channels has become a broad subject that is generally covered
in the study of river hydraulics, which is often treated independently.*

1 Boris A. Bakhmeteff, “O Neravnomernom Dvizhenii Zhidkosti v Otkrytom
Rusle” (*Varied Flow in Open Channels’”), St. Petersburg, Russia, 1912.

2 Yen Te Chow, Integrating the equation of gradually varied flow, paper no. 838,
Proceedings, American Society of Civil Engineers, vol. 81, pp. 1-32, November, 1955.

Closing discussion by the author in Journal of Hydraulics Division, vol. 83, no. HY1, -

paper no. 1177, pp. 9-22, February, 1957.

s Special references are: J. J. Stoker, “ Water Waves,”” vol. IV of ““Pure and Applied
Mathematics,’’ Interscience Publishers, New York, 1957; V. A. Arkhangelskii,
“Raschety Neustanovivshegosia Dvizheniia v Otkrytykh Vodotockakh” (*Calcu-
lation of Unsteady Flow in Open Channels’’), Academy of Sciences, U.S.8.R., 1947;
and 8. A. Khristianovich, ‘Neustanovivsheiesia dvizhenie v kanalakh i rekakh”
(¢ Unsteady Motion in Channels and Rivers”’), in ‘‘Nekotoryie Voprosy Mekhaniki
Sploshnol Sredy’’ (‘‘Several Questions on the Mechanics of Continuous Media’’),
Academy of Sciences, U.S.8.R., 1938, pp. 13~154.

4 Special references on the subject of river hydraulics are: Serge Leliavsky, “An
Introduction to Fluvial Hydraulics,’ Constable and Co., Ltd., London, 1955; and

T. Blench, “ Regime Behaviour of Canals and Rivers,”” Butterworth & Co. (Publishers)
ILtd., London, 1957.
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Similarly, the transient flow in channels subject to the influence of the
tides is a special topic in the rapidly developed fields of tidal hydraulics
snd coastal engineering and is therefore beyond the scope of this book.

In a science which has reached so advanced & state of development,
e, large portion of the work is necessarily one of coordination of existing
contributions. Throughout the text, the author has attempted o make
specific acknowledgment regarding the source of material employed, and
any failure to do so is an unintentional oversight.

In the preparation of this book, engineers and administrators in many
engineering agencies have enthusiastically furnished information and
extended cooperation. The author is especially indebted to those in the
17.8. Bureau of Reclamation, U.S. Geological Survey, U.S. Soil Conser-
vation Service, U.S. Agricultural Research Service, U.S. Army Engineer
Waterways Esxperiment Station, Offices of the Chief Engineer and
District Engineers of the U.S. Army Corps of Engineers, U.S. Weather
Bureay, U.S. Bureau of Public Roads, and the Tennessee Valley Authority.
Also, many friends and colleagues have kindly supplied information
and generously offered suggestions. In particular, the author wishes
to thank Dr. Hunter Rouse, Professor of Fluid Mechanics and Director of
Towa Institute of Hydraulic Research, State University of Iowa; Dr. Arthur
T, Ippen, Professor of Hydraulics and Director of Hydrodynamics Labora-
tory, Massachusetts Institute of Technology; Dr. Giulic De Marchi,
Professor of Hydraulics and Director of Hydraulic Laboratory, Institute
of Hydraulics and Hydraulic Construction, Polytechnic Institute of
Wilan, Italy; Dr. Roman R. Chugaev, Professor and Head of Hydraulic
Construction, Scientific Research Institute of Hydraulic Engineering,
Polytechnic Institute of Leningrad, U.8.5.R.; Monsieur Pierre Danel,
President of SOGREAH (Société Grenobloise d’Etudes et d’Applications
Hydrauliquesj, France, and President of the International Association of
Eydraulic Research; Dr. Charles Jaeger, Special Lecturer at the Imperial
College of Science and Technology, University of London, and Consulting
Engineer of The English Electric Company, Ltd., England; Professor
1. J. Tison, Director of Hydraulic Institute, University of Ghent, Bel-
gium; Dr. Tojiro Ishihara, Professor of Hydraulics and Dean of Faculty
of Engineering, Kyoto University, Japan; and Dr. Otto Kirschmer,
Professor of Hydraulics and Hydraulic Structures, Technical Institute of
Darmstadt, Germany.

Special acknowledgments are due Dr. Nathan M. Newmark, Professor
and Head of the Department of Civil Engineering, University of Illinois,
for his encouragement and unfailing support of this project; Dr. James M.
Robertson, Professor of Theoretical and Applied Mechanics, University
of Hinois, for his review of and comments on Chapter 8 on theoretical
concepts; and Dr. Steponas Kolupaila, Professor of Civil Engineering,
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University of Notre Dame, for his reading of the entire manuscript and
his valuable suggestions. Dr. Kolupaila also helped in interpreting and
collecting information from the hydraulic literature written in Russian,
Polish, Lithuanian, and several other languages which are unfamiliar to
the author. The author also wishes to express his warm gratitude to
those who have constantly shown a keen interest in his work, as this
interest lent a strong impetus toward the completion of this volume.

Ven Te Chow
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CHAPTER 1

OPEN-CHANNEL FLOW AND ITS CLASSIFICATIONS

i-1. Description. The flow of water in a conduit may be either open-
chanmel flow or pipe flow. The two kinds of flow are similar in many ways
but differ in one important respect. Open-channel flow must have a
free surface, whereas pipe flow has none, since the water must fill the
whole conduit. A free surface is subject to atmospheric pressure. Pipe
flow, being confined in a closed conduit, exerts no direct atmospherie
pressure but hydraulic pressure only.

The two kinds of flow are compared in Fig. 1-1. Shown on the left
side is pipe flow. Two piezometer tubes are installed on the pipe at
sections 1 and 2. The water levels in the tubes are maintained by the
pressure in the pipe at elevations represented by the so-called Aydraulic
grade line. The pressure exerted by the water in each section of the
pipe is indicated in the corresponding tube by the height y of the water
colurnn above the center line of the pipe. The total energy in the flow
of the section with reference to a datum line is the sum of the elevation z
of the pipe-center line, the piezometric height ¥, and the velocity head
V?/2g, where V is the mean velocity of flow.! The energy is represented
in the figure by what is called the energy grade line or simply the energy
Zine. The loss of energy that results when water flows from section 1
to section 2 is represented by hy. A similar diagram for open-channel
flow is shown on the right side of Fig. 1-1. For simplicity, it is assumed
that the flow is parallel and has a uniform velocity distribution and that
the slope of the channel is small. In this case, the water surface is the
hydraulic grade line, and the depth of the water corresponds to the
piezometric height.?

Despite the similarity between the two kinds of flow, it is much more
difficult to solve problems of flow in open channels than in pressure pipes.
Flow conditions in open channels are complicated by the fact that the

1 T4 is here assumed that the velocity is uniformly distributed across the conduit
section; otherwise a correction would have to be made, such as is described in Ar$. 2-7
for open channels,

2 T¢ the flow were curvilinear or if the slope of the channel were large, the piezometric
height would be appreciably different from the depth of flow (Arts. 2-9 and 2-10). As
a result, the hydraulic grade line would not coincide exactly with the water surface.

3
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position of the free surface is likely to change with respect to time and
space and also by the fact that the depth of flow, the discharge, and the
slopes of the channel bottom and of the free surface are interdependent.
Reliable experimental data on flow in open channels are usually difficult to
obtain. Furthermore, the physical condition of open channels varies
rauch more widely than that of pipes. In pipes the cross section of flow
is fixed, since it is completely defined by the geometry of the conduit.
The cross section of a pipe is generally round, but that of an open channel
may be of any shape—{rom the circular to the irregular forms of natural
streams. In pipes, the interior surface ordinarily ranges in roughness
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T1g. 1-1. Comparison between pipe flow and open-channel dow.

from that of new smooth brass or wooden-stave pipes, on the one hand,
to that of old corroded iron or steel pipes, on the other. In open channels
the surface varies from that of the polished metal used in testing flumes
to that of rough irregular river beds. Moreover, the roughness in an
open channel varies with the position of the free surface. Therefore, the
selection of friction coefficients is attended by greater uncertainty for
open channels than for pipes. In general, the treatment of open-channel
flow is somewhat more empirical than that of pipe flow. The empirical
method is the best available at present and, if cautiously applied, can
vield results of practical value.

The flow in a closed conduit is not necessarily pipe flow. It must be
classified as open-channel flow if it has a free surface. The storm sewer,
for example, which is a closed conduit, is generally designed for open-
channel flow because the flow in the sewer is expected to maintain a free
surface most of the time.

1-2. Types of Flow. Open-channel flow can be classified into many
types and described in various ways. The {ollowing classification is made
according to the change in flow depth with respect to time and space.
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Steady Flow and Unsteady Flow: Time as the Criterion. Flow in an
open channel is said to be steady if the depth of flow does not change or if
it can be assumed to be constant during the time interval under consider-
ation. The flow is unsieady if the depth changes with fime. In most
open-channel problems it is necessary to study flow behavior only under
steady conditions. If, however, the change in flow condition with respect
to time is of major concern, the flow should be treated as unsteady. In
floods and surges, for instance, which are typical examples of unsteady
flow, the stage of flow changes instantaneously as the waves pass by, and
the time element becomes vitally important in the design of control
structures.

For any flow, the discharge @ at a channel section is expressed by
@ =VA (1-1)

where V is the mean velocity and A is the flow cross-sectional area normal
to the direction of the flow, since the mean velocity is defined as the
discharge divided by the cross-sectional area.

In most problems of steady flow the discharge is constant throughout
the reach of the channel under consideration; in other words, the flow is
conttnuous., Thus, using Eq. (1-1),

Q = VI-A—I = V2A2 = - (1“2)

where the subscripts designate different channel sections. This is the
continuity equatton for a continuous steady flow.

Equation (1-2) is obviously invalid, however, where the discharge of a
steady flow is nonuniform along the channel, that is, where water runs in
or out along the course of flow. This type of flow, known as spaizally
varied or discontinuous flow, is found in roadside gutters, side-channel
spillways, the washwater troughs in filters, the efluent channels around
sewage-treatment tanks, and the main drainage channels and feeding
channels in irrigation systems.

The law of continuity of unsteady flow requires consideration of the
time effect. Hence, the continuity equation for continuous unsteady
flow should include the time element as a variable (Art. 18-1).

Uniform Flow and Varied Flow: Space as the Criterion. Open-channel
flow is said to be uniform if the depth of flow is the same at every section
of the channel. A uniform flow may be steady or unsteady, depending
on whether or not the depth changes with time.

Steady uniform flow is the fundamental type of flow treated in open-
channel hydraulies. The depth of the flow does not change during the
time interval under consideration. The establishment of unsteady uni-
form flow would require that the water surface fluctuate from time to
time while remaining parallel to the channel bottom. Obviously, this
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is a practically impossible condition. The term “uniform flow” is,
therefore, used hereafter to refer only to steady uniform flow.

Flow is varied if the depth of flow changes along the length of the
channel. Varied flow may be either steady or unsteady. Since unsteady
uniform flow is rare, the term “unsteady flow”’ isused hereafter to designate
unsteady varied flow exclusively.

Varied flow may be further classified as either rapidly or gradually
varied. 'The flow is rapidly varied if the depth changes abruptly over a
comparatively short distance; otherwise, it is gradually varied. A
rapidly varied flow is also known as a local phenomenon,; examples are the
hydraulic jump and the hydraulic drop.

Change of depth from
time to fime

Consfont depth

==
%
-
“ v
Uniform flow — Flow in @ Unsteady uniform fiow — Rare

loboratery channel

RVFE  GvF RVE Gvr RV GV.F. RV.F,

; RV.F

Sluice Hydraulic

r Flow over
ump—___ |

Q weir

Contraction
below the
sluice

Hydraulic
" drop

=

Varied flow

\ e - / :—;—- -
- /- %

GNV.F. ~ Flood wave R.V.F, — Bore

Unsteady flow

Fic. 1-2. ¥arious types of open-channel flow. G.V.F. = gradually varied flow;
R, V.F. = rapidly varied flow.
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Tor clarity, the classification of open-channel flow is summarized as
follows:

A. Steady flow
1. Uniform flow
2. Varied flow
7. Gradusally varied flow
b. Rapidly varied flow
B. Unsteady flow
1. Unsteady uniform flow (rare)
2. Unsteady flow (i.e., unsteady varied flow)
a. Gradually varied unsteady flow
b. Rapidly varied unsteady flow

Various types of flow are sketched in Fig. 1-2. For illustrative purposes,
these diagrams, as well as other similar sketches of open channels in this
book, have been drawn to a greatly exaggerated vertical scale, since
ordinary channels have small bottom slopes.

1-3. State of Flow. The state or behavior of open-channel flow is
governed basically by the effects of viscosity and gravity relative to the
inertial forces of the flow. The surface tension of water may affect the
behavior of flow under certain circumstances, but it does not play a signifi-
cant role in most open-channel problems encountered in engineering.

Effect of Viscosity. Depending on the effect of viscosity relative to
inertia, the flow may be laminar, turbulent, or transitional.

The flow is laminar if the viscous forces are so strong relative to the
inertial forces that viscosity plays a significant part in determining flow
behavior. In laminar flow, the water particles appear to move in definite
smooth paths, or streamlines, and infinitesimally thin layers of fluid seem
to slide over adjacent layers.

The flow is turbulent if the viscous forces are weak relative to the
inertial forces. In turbulent flow, the water particles move in irregular
paths which are neither smooth nor fixed but which in the aggregate still
represent the forward motion of the entire stream.

Between the laminar and turbulent states there is a mixed, or iran-
sttzonal, state.

The effect of viscosity relative to inertia can be represented by the
Reynolds number, defined as
_TL

v

R (1-3)
where V is the velocity of flow in fps; L is a characteristic length in ft,
here considered equal to the hydraulic radius R of a conduit; and » (nu)
is the kinematic viscosity of water in ft?/sec. The kinematic viscosity
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in ft2/sec is equa to the dynamic viscosity p (mu) in slug/ft-sec divided
by the mass density p (rho) in slug/ft3. For water at 68°F (20°C),
g = 2.09 X 10~% and p = 1.937; hence, » = 1.08 X 1075,

An open-channel flow is laminar if the Reynolds number R is small and
turbulent if R is large. Numerous experiments have shown that the
flow in a pipe changes from laminar to turbulent in the range of R
hetween the critical value 2,000 and a value that may be as high as
50,000.* In these experiments the diameter of the pipe was taken as the
characteristic length in defining the Reynolds number. When the
hydraulic radius is taken as the characteristic length, the corresponding
range is from 500 to 12,500,* since the diameter of a pipe is four times its
hydraulic radius.

The laminar, turbulent, and transitional states of open-channel flow
can be expressed by a diagram that shows a relation between the Reynolds
number and the friction factor of the Darcy-Weisbach formula. Such -
a diagram, generally known as the Stanton diagram [1], has been developed
for flow in pipes. The Darcy-Weisbach formula,* also developed prima-
rily for flow in pipes, is

L Ve
h =155 (1-4)

where h; is the frictional loss in ft for flow in the pipe, f is the friction
factor, L is the length of the pipe in ft, do is the diameter of the pipe in
ft, V is the velocity of flow in fps, and g is the acceleration due to gravity
in ft/sec?.

Since do = 4R and the energy gradient § = hy/L, the above equation
may be rewritten for the friction factor

= S0 (1-5)

This equation may also be applied to uniform and nearly uniform flows
in open channels.

The f-R relationship for smooth pipes can be expressed by the Blasius
equation (5]

§=222 (1-6)1

* Tt should be noted that there is actually no definite upper limit.

1 Ag a result of Darey’s study [2] on flow in pipes, his name is commonly associated
with that of Weisbach [3] in designating this equation which Weisbach first formulated.
Actually, d’Aubuisson {4] presented, prior to Darcy, & formula that can be reduced to
the form of Eq. (1-4).

1 In this equation, the hydraulic radius is used as the characteristic length in defin-
ing the Reynolds number. If the diameter of pipe were used as the characteristic
length, the numerical constant of the numerator in this equation would be 0.316.
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which is believed to be valid only where the value of R is between 750
and 25,000. For higher values of R, von Kdrmén [6] developed a general
expression, which was later modified by Prandtl [7] to agree more closely
with the data obtained by Nikuradse [8]. The resulting Prandtl-von
Kdrmdn equation is

1 u
7 = 2log RV 404 (1-7)

Equations (1-6) and (1-7) will be used in the following discussion as
5, basis for comparing flow conditions in open channels. It may be noted
that corresponding equations for flow in open channels have been derived
by Keulegan [9] and appear to be very similar to the pipe-flow equations
given above. It must be remembered, however, that, owing to the free
surface and to the interdependence of the hydraulic radius, discharge, and
slope, the f-R relationship in open-channel flow does not follow exactly the
simple concepts that hold for pipe flow. Some specific features of the
£R relationship in open-channel flow are described below.

Experimental data available for the determination of the f~R relation-
ship in open-channel flow can be found in various publications on hydrau-
tics.! Figure 1-3, which plots the relationship for flow in smooth channels,
is based on data developed at the University of Illinois? [21] and the
University of Minnesota [20]. In this plot the following features may be
noted:

1. The plot shows clearly how the state of flow changes from laminar to
turbulent as the Reynolds number increases. The discontinuity of the
olot and the spread of data characterize the transitional region, as they
do in the Stanton diagram for flow in pipes. The transitional range,
however, is not so well defined as it is for pipe flow. The lower critical
Reynolds number depends to some extent on channel shape. The value
varies from 500 to 600, being generally larger than the value for pipe
flow. For practical purposes, the transitional range of R for open-channel
flow may be assumed to be 500 to 2,000. It should be noted, however,
that the upper value is arbitrary, since there is no definite upper limit
for all flow conditions.

9. The data in the laminar region can be defined by a general equation

K
rrom Eqs. (1-3) and (1-5) it can be shown that
_ 8gR28
K== (1-9)

1 See (10] to [23].
2 The data for the rectangular channel were furnished through the courtesy of Pro-
fessor W. M. Lansford and processed for the present purpose by the author.
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Since V and B have specific values for any given channel shape, K is a
purely numerical factor dependent only on channel shape. For laminar
fow in smooth channels, the valie of K can be determined theoretically
[20]. The plot in Fig. 1-3 indicates that K is approximately 24 for the rec-
tangular channels and 14 for the triangular channel under consideration.
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Fre. 1-3. The f-R relationship for flow in smooth channels.

3 The data in the turbulent region correspond closely to the Blasius-
Prandtl-von Kérmén curve. This indicates that the law for turbulent
flow in smooth pipes may be approximately representative of all smooth
channels. The plot also shows that the shape of the channel does not
have an important influence on friction in turbulent flow, as it does in
laminar flow.

The data for laminar flow obtained at the University of Minnesota [20]
and the data for turbulent flow collected individually by Kirschmer
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Fre. 1-4. The -R relationship for flow in rough channels. Bazin’s channels: No. 4,
gravel embedded in cement; No. 6, unpolished wood; No. 14, unpolished wood
roughened by transverse wooden strips 27 mm long, 10 mm high, and 10 mm in
spacing; No. 17, same as No. 14 except with a spacing of 50 mm; No. 24, cement
lining; and No. 26, unpolished wood. Kirschmer’s channel: smooth concrete.

[15,16], Bisner [22], and KoZeny [23] are shown in the diagram for flow in
rough channels (Fig. 1-4). In some of the data channel roughness is
represented by k, which is a size measure of the roughness particles form-
ing the channel surface. The diagram illustrates the following features:

1. In the laminar region the data can be defined by Eq. (1-8). In this
region, the value of K is generally higher than it is for smooth channels



12 BASIC PRINCIPLES

and ranges between 60 and 33, indicating the pronounced influence of the
channel roughness on the friction factor.

9. In the turbulent region the channel shape has a pronounced effect
on the friction factor. It is believed that, when the degree of rough-
ness is constant, the friction factor decreases roughly in the order
of rectangular, triangular, trapezoidal, and circular channels. At the
suggestion of Prandtl, Kirschmer [15,16] explained that the effect of
channel shape may be due to the development of secondary flow, which
is apparently more pronounced in rectangular channels than in, say, tri-
angular channels. The secondary flow is the movemant of water particles
on & cross section normal to the longitudinal direction of the channel. A
high secondary flow involves high energy loss and thus accounts for high
channel resistance,

3. In the turbulent region most plots appear parallel to the Prandtl-
von Kérmén curve. This curve serves as an approximate limiting posi-
tion toward which a plot moves as the over-all resistance becomes less.
According to a concept advanced by Morris [24] (Art. 8-2), the rise of the
plots above the smooth-conduit curve may be explained as a result of
additional energy loss generated by the roughness elements. When the
Reynolds number is very high, some plots become essentially horizontal,
reaching a state of so-called complete turbulence. At this state the value
of f is independent of Reynolds number and depends solely on roughness,
hydraulic radius, and channel shape.

4. The plot of Varwick’s data [16] for a given roughness, hydraulic
radius, and channel shape starts off from a curve parallel to the Prandtl-
von Kérmsn curve, then rises as the Reynolds number increases, and
finally becomes horizontal as a state of complete turbulence is reached.
The rise of the plot is a peculiar phenomenon which demands explanation,’
and, since this finding has not been verified by other data, more experi-
mental studies seem necessary to substantiate it.

Tt should be noted that the above descriptions are limited to low-
velocity, or subcritical, fiow (which will be defined later in this article)
and to flow on which surface tension does not have a significant influence.

In most open channels laminar flow occurs very ravely. The fact that
the surface of a stream appears smooth and glassy {o an observer is by
ho means an indication that the flow is laminar; most probably, it
indicates that the surface velocity is lower than that required for capillary
waves to form. Laminar open-channel flow is known t0 exist, however,
usually where thin sheets of water flow over the ground or where it is
created deliberately in model testing channels.

1 According to the concept of Morris [24], this phenomenon probably represents a
transition of the flow to another type of flow having higher energy loss. Asthe Rey-
nolds number increases, the flow may be changing from quasi-smooth flow to wake-
interference flow, and then to isolated-roughness flow (Art. 8-2).
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As the flow in most channels is turbulent, a model employed to simulate
a prototype channel should be designed so that the Reynolds number of
flow of the model channel is in the turbulent range. _

Effect of Gravity. The effect of gravity upon the state of flow is repre-
sented by a ratio of inertial forces to gravity forces. This ratio is given
by the Froude number,' defined as

A
VgL
where V is the mean velocity of flow in £ps, g is the acceleration of gravity
in ft/sec?, and L is a characteristic length in ft.  In open-channel flow the
characteristic length is made equal to the hydraulic depth D, which is
defined as the cross-sectional area of the water normal to the direction of
fow in the channel divided by the width of the free surface. For rec-

tangular channels this is equal to the depth of the flow section.
When F is equal to unity, Eg. (1-10) gives

V = ¢D (1-11)

and the flow is said to be in a critical state. If F is less than unity, or
V < +/gD, the flow is suberiiicol. In this state the role played by
gravity forces is more pronounced; so the flow has a low velocity and is
often described as tranquil and streaming. If F is greater than unity, or
V > /gD, the flow is supercritical. In this state the inertial forces
become dominant; so the flow has a high velocity and is usually described
as rapid, shooting, and torrential.

In the mechanics of water waves, the critical velocity /gD is identified
as the celerity of the small gravity waves that occur in shallow water in
channels as a result of any momentary change in the local depth of the
water (Art. 18-6). Such a change may be developed by disturbances or
obstacles in the channel that cause a displacement of water above and
below the mean surface level and thus create waves that exert a weight
or gravity force. It should be noted that a gravity wave can be propa-
gated upstream in water of suberitical flow but not in water of super-
critical flow, since the celerity is greater than the velocity of flow in the
former case and less in the latter. Therefore, the possibility or impossi-
bility of propagating a gravity wave upstream can be used as a criterion
for distinguishing between suberitical and supercritical flow.

Qince the flow in most channels is controlled by the gravity effect, a
model used to simulate a prototype channel for testing purposes must be

¥ = (1-10)

1 Other dimensionless ratios used for the same purpose include (1) the kinetic-flow
factor N = V?/gL = F*, first used by Rehbock [25] and then by Bakhmeteff [26];
(2) the Boussinesq number B = V/+/2gR, first used by Engel [27]; and (3) the kinel

icity or velocily-head ratio k = V?/2gL, proposed by Stevens [28] and Posey [29],
respectively.
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designed for this effect; that is, the Froude number of the flow in the model
channel must be made equal to that of the flow in the prototype channel.

1-4. Regimes of Flow. A combined effect of viscosity and gravity may
produce any one of four regimes of flow in an open channel, namely,
(1) subcritical-laminar, when F is less than unity and R is In the laminar
range; (2} supercritical-laminar, when F 1s greater than unity and R is in
the laminar range; (3) supercritical-turbulent, when F is greater than unity
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Fra. 1-5. Depth-velocity relationships for four regimes of open-channel flow. (After
Robertson and Rouse [30].)

and R is in the turbulent range; and (4) suberitical-turbulent, when F is
less than unity and R is in the turbulent range. The depth-velocity
relationships for the four fow regimes in a wide open channel can be shown
by a logarithmic piot (Fig. 1-5) [30]. The heavy line for F = 1 and the
shaded band for the laminar-turbulent transitional range intersect on
the graph and divide the whole area into four portions, each of which
represents a flow regime. The first two regimes, suberitical-laminar and
supercritical-laminar, are not commonly encountered in applied open-
channel hydraulics, since the flow is generally turbulent in the channels
considered in engineering problems. However, these regimes occur
frequently where there is very thin depth—this is known as sheet flow—
and they become significant in such problems as the testing of hydraulic
models, the study of overland flow, and erosion control for such flow.
Photographs of the four regimes of flow are shown in Fig. 1-6. Ineach
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T AT LT =

E Fre. 1-6. Photographs showing four flow regimes in a laboratory channel. (Courtesy
E of 2. Rouse.)

photograph the direction of flow is from left to right. All flows are uni-
form except those on the right side of the middle and bottom views.
The top view represents uniform subecritical-laminar flow. The flow is
suberitical, since the Froude number was adjusted to slightly below the
critical value; and the streak of undiffused dye indicates that it is laminar.
The middle view shows a uniform supercritical-laminar flow changing to
varied subcritical-turbulent. The bottom view shows a uniform super-
critical-turbulent flow changing to varied suberitical-turbulent. In both
cases, the diffusion of dye is the evidence of turbulence.
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I+ is believed that gravity action may have a definitive effect upon the
flow resistance in channels at the turbulent-flow range. The experi-
mental data studied by Jegorow [31] and Iwagaki [32] for smooth rec-
tangular channels and by Hom-ma [33] for rough channels have shown
that, in the supercritical-turbulent regime of flow, the friction factor is
likely to increase with increasing Froude number. Generally, the effect
of gravity on the value of f is practically negligible where the TFroude
number is small, say, less than 3. A further investigation by Iwagali
[34] indicates that, with increasing Froude number, the friction factor of
turbulent flow in both smooth and rough open channels becomes larger
than that in pipes. It is possible that the presence of the free surface
in open-channel flow makes the channel hydraulically rougher than the
pipe. When more data and evidence become available, the Froude
number, representing the gravity effect, may have to be considered as

an additional factor in defining the f-R relationship for supercritical-
turbulent flow.

PROBLEMS

1-1. With reference to Fig. 1-1, show that the theoretical discharge of the open-
channel flow may be expressed by

_ 2g9(ay — hy)

Q=4 1 — (42/A41)*

where A; and 4. are the cross-sectional areas of the flow at sections 1 and 2, respec-
tively, and Ay is the drop in water surface between the sections.

1-2. Verify Eq. (1-10).

1-3. Verify by computation the depth-velocity relationships shown in Fig. 1-5 for
the four flow regimes in a wide rectangular open channel. The temperature of the
water is taken as 68°F.

1-4. A model channel is used to simulate a prototype channel 100 ft wide, carrying
a discharge of 500 cfs at a depth of 4 ft. The model is designed for gravity efiect,
and a turbulent-fiow condition is assured. Determine the minimum size of the model
and the scale ratio, assuming the upper limit of the transitional-flow region to be
R = 2,000. The scale ratio is the ratio of the linear dimension of the model tothat
of the prototype.

(1-12)
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CHAPTER 2

OPEN CHANNELS AND THEIR PROPERTIES

9-1. Kinds of Open Channel. An open channel is & conduit in which
water flows with a free surface. Classified according to its origin a chan-
nel may be either natural or artificial.

Natural channels include all watercourses that exist naturally on the
sarth, varying in size from tiny hillside rivulets, through brooks, streams,
small and large rivers, to tidal estuaries. Underground streams carrying
water with a free surface are also considered natural open channels.

The hydraulic properties of natural channels are generally very irregu-
lar. In some cases empirical assumptions reasonably consistent with
actual observations and experience may be made such that the conditions
of fow in these channels become amenable to the analytical treatment
of theoretical hydraulics. A comprehensive study of the behavior of
fow in natural channels requires knowledge of other fields, such as
hydrology, geomorphology, sediment transportation, ete. It constitutes,
in fact, & subject of its own, known as river hydraulics.

Artificial channels are those constructed or developed by human effort:
navigation channels, power canals, irrigation canals and flumes, drainage
ditches, trough spillways, floodways, log chutes, roadside gutters, ete., as
well as model channels that are built in the laboratory for testing purposes.
The hydraulic properties of such channels can be either controlled to the
extent desired or designed to meet given requirements. The application
of hydraulic theories to artificial channels will, therefore, produce results
fairly close to actual conditions and, hence, are reasonably accurate. for
practical design purposes.

Under various circumstances in engineering practice the artificial open
channel is given different names, such as “canal’ “flume,” ““chute,”
“drop,” “culvert,” “open-flow tunnel,” ete. These names, however, are
used rather loosely and can be defined only in a very general way. The
canal is usually a long and mild-sloped channel built in the ground, which
may be unlined or lined with stone masonry, concrete, cement; wood, or
bituminous materials. The flume is a channel of wood, metal, concrete,
or masonry, usually supported on or above the surface of the ground to
carry water across a depression. The chute is a channel having steep
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slopes. The drop is similar to a chute, but the change in elevation is
effected in a short distance. The culver flowing partly full is a covered
channel of comparatively short length installed to drain water through
highway and railroad embankments. The open-flow tunnel is a com-
paratively long covered channel used to carry water through a hill or any
obstruction on the ground.

2-2. Channel Geometry. A channel built with unvarying cross section
and constant bottom slope is called a prismatic channel. Otherwise, the
channel is nonprismatic; an example is a trough spillway having variable
width and curved alignment. Unless specifically indicated, the channels
described in this book are prismatic.

The term channel section used in this book refers to the cross section of
8 channel taken normal to the direction of the flow. A wveriical channel
section, however, is the vertical section passing through the lowest or
bottom point of the channel section. For horizontal channels, therefore,
the channel section is always a vertical channel section.

Natural channel sections are in general very irregular, usually varying
from an approximate parabola to an approximate trapezoid. For
streams subject to frequent floods, the channel may consist of a main
channe) section earrying normal discharges and one or more side channel
sections for accommodating overflows.

Artificial channels are usually designed with sections of regular geo-
metric shapes. Table 2-1 lists seven geometric shapes that are in common
use. The trapezoid is the commonest shape for channels with unlined
earth banks, for it provides side slopes for stability. The rectangle and
triangle are special cases of the trapezoid. Since the rectangle has
vertical sides, it is commonly used for channels built of stable materials,
such as lined masonry, rocks, metal, or timber. The triangular section
is used only for small ditches, roadside gutters, and laboratory works.
The circle is the popular section for sewers and culverts of small and
medium sizes. The parabola! is used as an approximation of sections of
small and medium-size natural channels. The round-cornered rectangle
is a modification of the rectangle. The round-bottom triangle is an
approximation of the parabola; it is a form usually created by excavation
with shovels.

Closed geometric sections other than the circle are frequently used in
sewerage, particularly for sewers large enough for a man to enter. These
sections are given various names according to their form; they may be

1 The side slope z:1 of a parabolic section at the intersection of the sides with the
free surface can be computed easily by the simple formula z = T /4y.
Russian engineers [1] also use semielliptical and parabolic sections of higher order:
y = azP with p = 3 or 4. The constant a is computed from the side slope assumed
at the free surface.
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egg-shaped, ovoid, semielliptical, U-shaped, catenary, horseshoe, basket-
handle, ete. The complete rectangle and square are also common for
large sewers. Dimensions and properties of sewer sections may be found
in textbooks on sewerage.!

A special geometric section known as hydrostatic catenary or lintearia
{4 5] is the shape of the cross section of a trough, formed of flexible sheets
assumed to be weightless, filled with water up to the top of the section,
and firmly supported at the upper edges of the sides but with no effects
of fixation. The hydrostatic catenary has been used for the design of the
sections of some elevated irrigation flumes. These flumes are constructed
of metal plates so thin that their weight is negligible, and are firmly
attached to beams at the upper edges.

2-3. Geometric Elements of Channel Section. Geometric elements are
properties of a channel section that can be defined entirely by the geome-
try of the section and the depth of flow. These elements are very
important and are used extensively in flow computations.

For simple regular channel sections, the geometric elements can be
expressed mathematically in terms of the depth of flow and other dimen-
sions of the section. For complicated sections and sections of natural
streams, however, no simple formula can be written to express these
elements, but curves representing the relation between these elements
and the depth of flow can be prepared for use in hydraulic computations.

The definitions of several geometric elements of basic importance are
siven below. Other geometric elements used in this book will be defined
where they first appear.

The depth of flow y is the vertical distance of the lowest point of a

channel section from the free surface. This term is often used inter-
changeably with the depth of flow section d. Strictly speaking, the depth

of flow section is the depth of low normal to the direction of flow, or the:

height of the channel section containing the water. For a channel with
a longitudinal slope angle 6, it can be seen that the depth of flow is equal
to the depth of flow section divided by cos §. In the case of steep chan-
nels, therefore, the two terms should be used discriminately.

The stage is the elevation or vertical distance of the free surface above
a datum. If the lowest point of the channel section is chosen as the
datum, the stage is identical with the depth of flow.

The fop width T is the width of channel section at the free surface.

The water area A is the cross-sectional area of the flow normal to the
direction of flow.

The wetted perimeter P is the length of the line of intersection of the
channel wetted surface with a cross-sectional plane normal to the direc-
tion of flow.

1 Many typical sewer sections are described in [2] and [3].
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Thé hydraulic radius R is the.ratio of the water area to its wetied
périmeter, or

=P (2-1)

The hydraulic depth D is the ratio of the water area to the top width, or

4
D=% (2-2)

The section factor for eritical-flow computatton Z is the product of the

water area and the square root of the hydraulic depth, or

Bz=AD=4,% (2-3)

The section facior for uniform-flow compuiation AR is the product of
the water area and the two-thirds power of the hydraulic radius.
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Fre. 2-1. Geometric elements of a circular section.

Table 2-1 furnishes a list of formulas for six basic geometric elements of
seven commonly used channel sections. For a circular section, the
curves in Iig. 2-1 represent the ratios of the geometric elements of the
section to the corresponding elements when the section is flowing full.
These curves are prepared from a table given in Appendix A. For cer-
tain trapezoidal, triangular, and parabolic sections commonly found in
practical uses, the diagrams given in Appendix B provide a convenient
means of determining the geometric elements.
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Example 2-1. Compute the hydraulic radius, hydraulie depth, and section factor Z
of the trapezoidal channel section in Fig. 2-2. The depth of flow is 6 ft.

T=44'
> |
> — — — ,\64\
L b:20" P
TTT7 7777777777777 777777777
p=46.8'

Fia. 2-2. A channel cross section.

Solution. By formulas given in Table 2-1, the following are computed: P = 20 +
2 X 6~/5 =468 ft; A = 0.5(20 + 44) X 6 = 192.0 ft2; B = 192/46.8 = 4.1C ft;
D =192, = 437 ft; and Z = 192 4/4.37 = 401 ft%5.

9-4. Velocity Distribution in a Channel Section. Owing to the pres-
ence of a free surface and to the friction along the channel wall, the
velocities in a channel are not uniformly distributed in the channel section.
The measured maximum velocity in ordinary channels usually appears to
occur below the free surface at a distance of 0.05 to 0.25 of the depth;
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Fig. 2-3. Velocity distribution in a rectangular channel.

the closer to the banks, the deeperis the maximum. Figure 2-3 illustrates
the general pattern of velocity distribution over various vertical and
horizontal sections of a rectangular channel section and the curves of
equal-velocity in the cross section. The general patierns for velocity
distribution in several channel sections of other shapes are illustrated in
Fig. 2-4.

The velocity distribution in a channel section depends also on other
factors, such as the unusual shape of the section, the roughness of the
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Fra. 2-4. Typical curves of equal velocity in various channel sections.

channel, and the presence of bends. In s broad, rapid, and shallow
stream or in a very smooth channel, the maximum velocity may often be
found at the iree surface. The roughness of the channel will cause the

curvature of the vertical-velocity-distribution
curve to increase (Fig. 2-5). On a bend the veloc-
ity increases greatly at the convex side, owing to
the centrifugal action of the flow. Contrary to
the usual belief, a surface wind has very little effect
on velocity distribution.

As revealed by careful laboratory investigations,
the flow in a straight prismatic channel is in fact
three-dimensional, manifesting a spiral motion,
although the velocity component in the transverse
channel section is usually small and insignificant
compared with the longitudinal velocity com-
ponents. Shukry [6] found that, in short labora-

Fic. 2-50 Effect of
roughness on veloeity
distribution in an open
channel.

tory flumes, a small disturbance at the entrance, which is usually unavoid-
able, is sufficient to cause the zone of highest water level to shift to one
side, thus giving rise to a single spiral motion (Fig. 2-6). In a long and
uniform reach remote from the entrance, a double spiral motion will occur
to permit equalization of shear stresses on both sides of the channel [7,8].



26 ' BASIC PRINCIPLES

The pattern will include one spiral on each side of the center line, where
the water level is the highest. In practical considerations, it is quite
safe to ignore the spiral motion in straight prismatic channels. Spiral
flow in curved channels, however, is an important phenomenon to be
considered in design and will be discussed later (Art. 16-2).
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Trg. 2-6. Distribution of the velocity components, facing downstream at the mid-
section of a straight flume. Velocities are in cm/sec (= 0.0328 fps); y/b = 1.0;
R = 73,500; and @ = 70 liters/sec (= 2.47 efs). (After A. Shukry [6].)

9-5. Wide Open Channel. Observations in very wide open channels
have shown that the velocity distribution in the central region of the
section is essentially the same as it would be in a rectangular channel of
infinite width. In other words, under this condition, the sides of the
channel have practically no influence on the velocity distribution in the
central region, and the flow in the central region can therefore be regarded
as two-dimensional in hydraulic analyses. Careful experiments indicate,
further, that this central region exists in rectangular channels only when
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the width is greater than 5 to 10 times the depth of flow, depending on the
condition of surface roughness. Thus, a wide open channel can safely be
defined as a rectangular channel whose width is greater than 10 times the
depth of flow. For either experimental or analytical purposes, the flow
in the central region of a wide open channel may be considered to be the
same as the flow in a rectangular channel of infinite width.

9-8. Measurement of Velocify. According to the stream-gaging proce-
dure of the U.8. Geological Survey,* the channel cross section is divided
into vertical strips by a number of successive verticals, and mean velocities
in verticals are determined by measuring the velocity at 0.6 of the depth
in each vertical, or, where more reliable results are required, by taking the
average of the velocities at 0.2 and 0.8 of the depth. When the stream
is covered with ice, the mean velocity is no longer close to 0.6 of the water
depth, but the average at 0.2 and 0.8 of the water depth still gives reliable
results. 'The average of the mean velocities in any two adjacent verticals
multiplied by the area between the verticals gives the discharge through
this vertical strip of the cross section. The sum of discharges through all
strips is the total discharge. The mean velocity of the whole section is,
therefore, equal to the total discharge divided by the whole area.

1t should be noted that the above methods are simple and approximate.
For precise measurements more elaborate methods must be used, which
are beyond the scope of this book.

9-7. Velocity-distribution Coefficients. As a result of nonuniform
distribution of velocities over a channel section, the velocity head of an
open-channel flow is generally greater than the value computed according
to the expression V2/2¢g, where V is the mean velocity., When the energy
principle is used in computation, the true velocity head may be expressed
as «V?/2g, where a is known as the energy coefficient or Coriolis cogfiiciens,
in honor of G. Coriolis [12] who first proposed it. Experimental data
indicate that the value of « varies from about 1.03 to 1.36 for fairly
straight prismoatic channels. The value is generally higher for small
channels and lower for large streams of considerable depth.

The nonuniform distribution of velocities alsc affects the computation
of momentum in open-channel flow. From the principle of mechanies,
the momentum of the fluid passing through a channel section per unit
time is expressed by w@V /g, where 8 is known as theé momentum coef-
ficient or Boussinesq coeffictent, after J. Boussinesq [13] who first proposed
it; w is the unit weight of water; @ is the discharge; and V is the mean
veloeity. It is generally found that the value of 8 for fairly straight
prismatic channels varies approximately from 1.01 to 1.12.

The two velocity-distribution coefficients are always slightly larger
than the limiting value of unity, at which the velocity distribution is

1 ¥or details see [9] to [11].
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strictly uniform across the channel section. For channels of regular cross
section and fairly straight alignment, the effect of nonuniform velocity
distribution on the computed velocity head and momentum is small,
especially in comparison with other uncertainties involved in the com-
putation. Therefore, the coeflicients are often assumed to be unity. In
channels of complex cross section, the coeflicients for energy and momen-~
+um can easily be as great as 1.6 and 1.2, respectively, and can vary quite
rapidly from section to section in case of irregular alignment. Upstream
from weirs, in the vicinity of obstructions, or near pronounced irregu-
larities in alignment, values of « greater than 2.0 have been observed.?
Precise studies or analyses of flow in such channels will require measure-
ment of the actual velocity and accurate determination of the coefficients.
In regard to the effect of channel slope, the coefficients are usually higher
in steep channels than in flat channels.

For practical purposes, Kolupaila [16] proposed the values shown below
for the velocity-distribution coefficients. Actual values of the coefficients
for a number of channels may be found in [17] and [18].

Value of « Value of 8
Channels
Min Av | Max | Min Av Max
Regular channels, flumes, spillways..... 1.10 | 1.15 | 1.20 | 1.03 { 1.056 | 1.07
MNMatural streams and torrents.......... 1.1571.30 | 1.50 | 1.08 | 1.10 | 1.17
Rivers underice cover........vcvevvns 1.20 | 1.50 | 2.00 | 1.07 | 1.17 | 1.33
River valleys, overflooded............. 1.50 | 1.75 | 2.00 | 1.17 | 1.25 | 1.33

2-8. Determination of Velocity-distribution Coefficients. Let AA be
an elementary area in the whole water area A, and w the unit weight of
water; then the weight of water passing A4 per unit time with a velocity
v is wy AA. The kinetic energy of water passing A4 per unit time is
wp? AA/2g. 'This is equivalent to the product of the weight wv A4 and
the velocity head v2/2g. The total kinetic energy for the whole water
area is equal to Swv® A4 /2g.

Now, taking the whole area as A, the mean velocity as V, and the

1 A value of @ = 2.08 was computed by Lindquist [14] using data from weir measure-
ments made by Ernest W. Schoder and Kenneth B. Turner.

In the case of closed conduits, much larger values of « have been observed [15}.
A value of o = 3.87, observed at the outlet section of a draft tube in the Rublevo
power plant, is probably the largest known value obtained from actual measurements;
the real value there must have been still larger—10.2% more, if the effect of a 15°
curvature of the streamlines is taken into account. The largest known value from
laboratory measurements is believed to be « = 7.4, which was derived by V. 5.
Kviatkovskii in 1940 in the VIGM (All-Union Institute for Hydraulic Machinery,
U.8.8.R.) for the spiral flow under a model turbine wheel.
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gorrected velocity head for the whole area as aV?/2g, the total kinetic

energy is cwV3A4/2¢. Equating this quantity with Zwv? AA/2g and

reducing,

[ dA  ZwPAA

“T V4 T VA4 (2-4)
The momentum of water passing AA per unit time is the product of

the mass wv AA /g and the velocity v, or wv? A4 /g. The total momentum

is Sww? AA/g. Equating this quantity with the corrected momentum

for the whole area, or SwAV?/g, and reducing,

CJdA 3 ad
8="a ~ 74

(2-5)

O’Brien and Johnson [19] used a graphical solution of the above
formulas as follows:

From the measured velocity-distribution curves, the area within each
curve of equal velocity is planimetered. Taking the velocity indicated
by each equal-velocity curve as v, a curve of v* against the corresponding
planimetered area is constructed. It is evident that the area beneath
this »* curve is the integral Zv? AA, which can be obtained by planim-
etering again. Similarly, integrals Zv?AA and Zv AA can also be
obtained. The integral Zv AA divided by 4 gives V. With these
quantities determined, the above equations can be solved for the coef-
fielents « and SB.

For approximate values, the energy and momentum coefficients can
be computed by the following formulas:?

a =1 3 — 26 (2-6)
g=1+e 27)

where € = v/ V -~ 1, vy being the maximur velocity and V being the
mean velocity.

Computation of the velocity-distribution coefficients for irregular
natural channels will be discussed later (Art. 6-5). In most practical
problems dealing with regular channels it is not necessary to consider
the variation of velocity throughout the cross section, since use of the
average velocity will give the accuracy required. The expressions
V2/2g and wQV /g are used extensively in this book with the understand-
ing either that these items have been corrected for the effect of the non-
uniform velocity distribution, or that a value of unity is assumed.?

: These formulas are obtained by assuming a logarithmic distribution of velocity
(Art. 8-5, Prob. 8-9). Assuming 2 linear velocity distribution, Rehbock [20] obtained
a=1+eandp =1 + /3. .

2 For discussions on this subject, the reader may look into [21] and [22]. However,
he should use judgment in reading these references because they contaia erroneous
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2-9, Pressure Distribution in a Channel Section. The pressure at any
point on the cross section of the flow in a channel of small slope can be
measured by the height of the water column in a piezometer tube installed
at the point (Fig. 2-7). Ignoring minor
disturbances due to turbulence, ete., it
is apparent that this water column should
rise from the point of measurement up to
the hydraulic grade line or the water sur-
face. Therefore, the pressure at any
point on the section is directly propor-
tional to the depth of the point below the
free surface and equal to the hydrostatic
pressure corresponding to thisdepth. In
other words, the distribution of pressure
over the cross section of the channelis the

pressure; that is, the distribution is linear
and can be represented by a straight line
AB (Fig. 2-7a). This is known as the
hydrostatic law of pressure distribution.
Strictly spesking, the application of
the hydrostatic law to the pressure dis-
tribution in the cross section of a flowing

same as the distribution of kydrostatic-

()

Fie. 2-7. Pressure distribution in
straight and curved channels of
small or horizontal slope at the
section under consideration. h =
piezometric head; b, = hydrostatic
head; and ¢ = pressure-head cor-
rection for curvature. (a) Par-
allel flow; (b) convex flow; (¢}
concave flow,

channel is valid only if the flow filaments
have no acceleration components in the
plane of cross section. This type of flow
is theoretically known as parallel flow,?
that is, such that the streamlines have
neither substantial curvature nor diver-
gence. Consequently, there are no ap-
preciable acceleration components nor-

mal to the direction of flow that would
disturb the hydrostatic-pressure distribution in the cross section of a
parallel flow.

statements. Some authors have proposed the use of the momentum coefficient to
replace the energy coefficient even in computations based on the energy prineiple.
This is not correct. Whether the energy coefficient or the momentum coefficient is
to be used depends on whether the energy or the momentum principle is involved.
The two coefficients are derived independently from basically different principles
(Art. 3-6). Neither of them is wrong and neither can be replaced by the other; both
should be used in the correct sense.

! Specific qualifications for parallel flow were clearly stated for the first time by
Bélanger [23].
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In actual problems uniform flow is practically parallel low. Gradually
varied flow may also be regarded as parallel flow, since the change in
depth of flow is so mild that the streamlines have neither appreciable
curvature nor divergence; that is, the curvature and divergence are so
small that the effect of the acceleration components in the eross-sectional
plane is negligible. For praciical purposes, therefore, the hydrostaiic law
of pressure distribution ts applicable to gradually varied flow as well as io
uniform flow.

If the curvature of streamlines is substantial, the flow is theoretically
known as curvilinear flow. The effect of the curvature is to produce appre-
ciable acceleration components or centrifugal forces normal to the direction
of low. Thus, the pressure distribution over the section deviates from the
hydrostatic if curvilinear flow occurs in the vertical plane. Such curvi-
linear flow may be either convex or concave (Fig. 2-7b and ¢). In both
cases the nonlinear pressure distribution is represented by AB’ instead of
the straight distribution AB that would occur if the flow were parallel.
It is assumed that all streamlines are horizontal at the section under
eonsideration. In concave flow the centrifugal forces are pointing down-
ward to reinforce the gravity action; so the resulting pressure is greater
than the otherwise hydrostatic pressure of a parallel flow. In convex
flow the centrifugal forces are acting upward against the gravity action;
consequently, the resulting pressure is less than the otherwise hydro-
static pressure of a parallel flow. Similarly, when divergence of stream-
lines is great enough to develop appreciable acceleration components
normal to the flow, the hydrostatic pressure distribution will be disturbed
accordingly.

Let the deviation from an otherwise hydrostatic pressure h; in a curvi-
linear flow be designated by ¢ (IFig. 2-7b and ¢). Then the true pressure
or the piezometric height A = h, + c.

Tf the channel has a curved longitudinal profile, the approximate
centrifugal pressure may be computed, by Newton’s law of acceleration,
as the product of the mass of water having height d and a cross section of
1 sq ft, that is, wd/g, and the centrifugal acceleration »?/r; or

2
p=wr (2-8)

g r
where w is the unit weight of water, ¢ is the gravitational acceleration,
v is the velocity of flow, and r is the radius of curvature. The pressure-

head correction is, therefore,

- av
=7
Tor computing the value of ¢ at the channel bottom, r is the radius of
curvature of the bouttom, d is the depth of flow, and for practical purposes

(2-9)
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v may be assumed equal to the average velocity of the flow. Apparently,
¢ is positive for concave flow, negative for convex flow, and zero for
parallel flow.

In parallel flow the pressure is hydrostatic, and the pressure head may
be represented by the depth of low y. For simplicity, the pressure head
of & curvilinear flow may be represented by «’y, where o’ is a correction
coefficient for the curvature effect. The correction coefficient is referred
t0 as a pressure-distribuiion coefficient. Since this coefficient is applied to
a pressure head, it may be specifically called a pressure coefficient. 1t can
be shown that the pressure coefficient is expressed by

oL g1+ L [Twaa (2-10)
o =5 ﬁ vdA = Oy j; cv -
where @ is the total discharge and ¥ is the depth of flow. It can easily be
seen that o’ is greater than 1.0 for concave flow, less than 1.0 for convex
flow, and equal to 1.0 for parallel flow.

For complicated curved profiles, the total pressure distribution can be
determined approximately by the fAow-net method or more exactly by
model testing.

In rapidly varied flow the change in depth of flow is so rapid and abrupt
that the streamlines possess substantial curvature and divergence. Con-
sequently, the hydrostatic law of pressure distribution does not hold strictly
for raprdly varied flow.

It should be noted at the outset that throughout this book flow is
treated in general as either parallel or gradually varied. Therefore, the
effect of the curvature of streamlines will not be considered (that is, it
will be assumed that o' = 1) unless the flow is specifically described as
either curvilinear or rapidly varied.

2-10. Effect of Slope on Pressure Distribution. With reference to a
straight sloping channel of unit width and slope angle 6 (Fig. 2-8), the
weight of the shaded water element of length dL is equal to wy cos 8 dL.
The pressure due to this weight is wy cos? 6§ dL. The unit pressure 1s,
therefore, equal to wy cos® §, and the head? is

h = ycos?é (2-11)
or h = d cos 6 (2-12)

where d = y cos 8, the depth measured perpendicularly from the water
surface. It should be noted from geometry (Fig. 9-1) that Eq. (2-11)
does not apply strictly to varied flow, particularly when 8 is very large,
whereas Eq. (2-12) still applies. Equation (2-11) states that the pres-

1 M. Hasumi has measured the disiribution of pressure along the sloping faces of

weirs [24]. The data obtained from these experiments have verified Eqgs. (2-11) and
(2-12) very satisfactorily [25].
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sure head at any vertical depth is equal to this depth multiplied by a cor-
rection factor cos? f. Apparently, if the angle 8 is small, this factor will
not differ appreciably from unity. In fact, the correction tends to
decrease the pressure head by an amount less than 1% until 9 is nearly
6°, a slope of about 1 in 10. Since the slope of ordinary channels is far
less than 1 in 10, the correction for slope effect can usually be safely
ignored. However, when the channel slope is large and its effect becomes
appreciable, the correction should be made if accurate computation is

Circular

arcs used
for graphicatl
construction

Pressure distribution
_on,vertical section AC

Tre. 2-8. Pressure distribution in parallel flow in channels of large slope.

desired. A channel of this type, say, with a slope greater than 1 in 10, is
hereafter called a channel of large slope. Unless specifically mentioned,
oIl channels described hereafter are considered to be channels of small
slope, where the slope effect is negligible.

If 5 channel of large slope has a longitudinal vertical profile of appreci-
able curvature, the pressure head should be corrected for the effect of the
curvature of streamlines (Fig. 2-9). In simple notation, the pressure
head may be expressed as a’y cos? 8, where o' is the pressure coefficient.

In channels of large slope the velocity of flow is usually high, and higher
than the critical velocity. When this velocity reaches a certain magni-
tude, the flowing water will entrain air, producing a swell in its volume
and an increase in depth.! For this reason the pressure computed by
Eq. (2-11) or (2-12) has been shown in several cases t0 be higher than the

1 Air becomes entrained in water generally at velocities of about 20 fps and higher.
Resides velocity, however, other factors such as entrance condition, channel rough-~
ness, distance traveled, channel cross section, volume of discharge, ete., all have some
bearing on air entrainment.
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actual measured pressure obtained by model testing. If the averagé
density of the air-water mixture is known, it should be used to replace
the density of pure water in the computation when air entrainment is
expected. The actual density of the mixture varies from the bottom to

the surface of the flow. For practical purposes, however, the density
may be assumed constant; this assumption of uniform air distributionin

Convex fiow Concave flow

Fia. 2-0. Pressure distribution in curvilinear flow in channels of large slope.

the cross section will simplify computation, with the errors on the safe
side.

PROBLEMS

2-1. Verify the formulas for geometric elements of the seven channel sections given
in Table 2-1.

9-2. Verify the curves shown in Fig. 2-1.

2.8. Construet curves similar to those shown in Fig. 2-1, for a square channel
section.

2_4. Construct curves similar to those shown in Fig. 2-1 for an equilateral triangle
with one side as the channel bottom.

2-5. From the data given below on the cross section? of a natural stream () con-

1 Tt is common practice to show the cross section of a stream in a direction looking
downstream and to prepare the longitudinal profile of a channel so that the water
flows from left to right, unless this arrangement would fail to show the feature to be
illustrated by the cross section and profile. This practice is generally followed by
most engineering offices. FHowever, for geographical reasons or in order to depict
clearly the location and profile of a stream, the profile may be shown with water flow-
ing from right to left and the cross section may be shown looking upstream. This
happens in many drawings prepared by the Tennessee Valley Authority, because the
Tennessee River and most of its tributaries flow from east to west, and so are shown
with the direction of flow from right to left on a conventional map.
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struet curves showing the relationships between the depth y and the section elements
A, B, D, and Z; and (b) determine from the curves the geometric elements for y = 4.

Distance from Distance from

a reference poini Stage, & reference point Stage,

near leff bank, fi It near left bank, ft ft
Left ank: -5 5.6 7 —0.1
—4 4.6 9 —0.1
—2 4.0 11 —0.4
0 1.9 13 ~0.1
1 0.8 15 0.7
2 0.2 17 2.6
3 0.3 19 2.2
b 0.2 Right bank: 20 4.1

2-6. The hydrostatic catenary may be plotted for any given depth y and slope angle
8, at its ends by the following two approximate equations:

Z1

Il

L1 — 34kt — 1964k9) @ + (36k* + ¥2hY) sin 26 — Ifsektsin 44]  (2-13)
Y COS & {2-14)

i

Y1

where z, and ¥, respectively, are the ordinate and abscissa measured from the mid-
point of the free surface; k = sin (80/2); ¢ = sin™* {[sin {¢/2)]/k}; and ¢ is the slope
angle at the point (z:,¥1), varying from 0 at the bottom of the curve to §; at the ends.
The above equations will define the cross section when the flow is at its full depth.
The slope angle at the ends of & hydrostatic catenary of best hydraulic efficiency is
found mathematically to be §, = 35°37'7"”. (a) Plot this section with a depth
y = 10 ft, and (b) determine the values of 4, B, D, and Z at the full depth.

2-7. Estimate the values of momentum coefficient 8 for the given values of energy
coefficient « = 1.00, 1.50, and 2.00.

2-8. Compute the energy and momentum coefficients of the cross section shown in
Fig. 2-3 {a) by Egs. (2-4) and (2-5), and (b) by Egs. (2-6) and (2-7). The cross sec-
tion and the curves of equal velocity can be transferred to a piece of drawing paper
and enlarged for desired accuracy.

2-9. In designing side walls of steep chutes and overflow spillways, prove that the
overturning moment due to the pressure of the flowing water is equal to }§wy® cos* 8,
where w is the unit weight of water, ¥ is the vertical depth of the flowing water, and ¢
is the slope angle of the channel.

2-16. Prove Eq. (2-10).

2-11. A high-head overflow spillway (Fig. 2-10) has a 60-ft-radius flip bucket at
its downstream end. The bucket is not submerged, but acts to change the direction
of the flow from the slope of the spillway face to the horizontal and to discharge the
fiow into the air between vertical training walls 80 ft apart. At a discharge of 56,100
ofs, the water surface at the vertical section OB is at El. 8.52. Verify the curve that
represents the computed hydraulic pressure acting on the training wall at section OB.
The computation is based on Eq. (2-9) and on the following assumptions: (1) the
velocity is uniformly distributed across the section; (2) the value used for r, for pres-
sure values near the wall base, is equal to the radius of the bucket but, for other
pressure values, is equal to the radius of the concentric flow lines; and (3) the flow is
entrained with air, and the density of the air-water mixture can be estimated by the
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Douma formula,? that is,

0.2ve
gl
where u is the percentage of entrained air by volume, V is the velocity of flow, and
R is the hydraulic radius.
2-12. Compute the wall pressure on the section 04 (Fig. 2-10) of the spillway

described in Prob. 2-11. It is assumed that the depth of flow section is the same as
that at section OB.

% =10

1 (2-15)

to EII87.0
Spillway
B\—"{{ training wall,
\-; 80 ft oport
.
\":
>~ Computed
= B \\\s{/pressure
- . QR=56,100cfs
.g \L \.\
E Meusured\‘\\\ 0
» 4 pressure ocr; BN ELL25.0
Ll iesiing modei \\\ £L.8.52
\\._\ ELO.C
> ™ —
. B
\I
e
-~
0 M. ""--..____.__
o 4 8 i2 16 20 24 28 32 36

Unit pressure, ft of water

Tre. 2-10. Side-wall pressures on the flip bucket of a spillway.

2-13. Compute the wall pressure on the section 04 (Fig. 2-10) of the spillway
described in Prob. 2-11 if the bucket is submerged with a tailwater level at El. 75.0.
Tt is assumed that the pressure resulting from the centrifugal force of the submerged
jet need not be considered because the submergence will result in a severe reduction
in velocity.
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CHAPTER 3

ENERGY AND MOMENTUM PRINCIPLES

3-1. Energy in Open-channel Flow. It is known in elementary
hydraulics that the total energy in foot-pounds per pound of water in any
streamline passing through a channel section may be expressed as the
total head in feet of water, which is equal to the sum of the elevation

Siream tube or
a bundle of N
sireamlines p

r Siregm-
line

F1e. 3-1. Energy in gradually varied open-channel flow.

above & datum, the pressure head, and the velocity head. For example,
with respect to the datum plane, the total head H at a section U contain-
ing point 4 on a streamline of flow in a channel of large slope (Fig. 3-1)
may be written

2

H =24+ dicos ¢+ T;‘; (3-1)
where 24 is the elevation of point 4 above the datwum plane, d4 is the depth
of point 4 below the water surface measured along the channel section,
9 is the slope angle of the channel bottom, and V 4?/2g is the velocity head
of the flow in the streamline passing through 4.

In general, every streamline passing through a channel section will have
39
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a different velocity head, owing to the nonuniform velocity distribution
in actual flow. Only in an ideal parallel flow of uniform velocity distri-
bution can the velocity head be truly identical for all points on the cross
section. In the case of gradually varied flow, however, it may be
assumed, for practical purposes, that the velocity heads for all points on
the channel section are equal, and the energy coefficient may be used to
correct for the over-all effect of the nonuniform velocity distribution.
Thus, the total energy at the channel section is
2

H=z+dcos€+a% (3-2)

For channels of small slope, 8 =~ 0. Thus, the total energy at the chan-
nel section is
V2
Hn—z—l—d-{-az—g (3-3}
Consider now a prismatie channel of large slope (Fig. 3-1). ~ The line
representing the elevation of the total head of flow is the energy line.
The slope of the line is known as the energy gradieni, denoted by S;.
The slope of the water surface is denoted by S, and the slope of the
channel bottom?! by S¢ = sin 4. In uniform flow, 8y = S» = S¢ = sin 6.
According to the principle of conservation of energy, the total energy
head at the upstream section 1 should be equal to the total energy head
at the downstream section 2 plus the loss of energy ks between the two
sections; or

2 2
31+d10089+0€1z—;=32+d20056+azgg—i—hf (3-4)

This equation applies to parallel or gradually varied flow. For a channel
of small slope, it becomes
V2 Vet |

zl+y1+a12;2zz+yz+a229 - hy (3-5)

Either of these two equations is known as the energy equation. When
oy = ag = 1 and hy = 0, Eq. (3-5) becomes

V12 . L V?.z _
31+y1+7g“_32+y2 i —Q‘EHCOHS'{) (3"6)

This is the well-known Bernoullt energy equation.?

i The slope is generally defined as tan.d. For the present purpose, however, it is
defined as sin 6.

2 It is believed that this equation is ascribed to the Swiss mathematician Daniel
Bernoulli only by inference, to give recognition to his pioneer achievement in
hydrodynamics, in particular the introduction of the concept of “head.” Actually,

this equation was first formulated by Leonhard Euler and later porularized by Julius
Weisbach [1].
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3-2. Specific Energy. Spectfic energy® in a channel section is defined
as the energy per pound of water at any section of a channel measured
with respect to the channel bottom. Thus, according to Eq. (3-2) with
2z = 0, the specific energy becomes

V2
E=dcos€—{—a$ (3-7)
or, for a channel of small slope and « = 1,
VZ
E=y+5 (3-8)

which indicates that the specific energy is equal to the sum of the depth
of water and the velocity head. For simplicity, the following discussion
will be based on Eq. (3-8) for a channel of small slope. Since V = Q/A4,
Eq. (3-8) may be written £ = y 4+ @2/2gA% Tt can be seen that, for a
given channel section and discharge @, the specific energy in a channel
section 1s a function of the depth of flow only.

When the depth of flow is plotted against the specific energy for a given
channel section and discharge, a specific-energy curve (Fig. 3-2) is obtained.
This curve has two limbs AC and BC. The limb AC approaches the
horizontal axis asymptotically toward the right. Thelimb BC approaches
the line 0D asit extends upward and to the right. Line OD is a line that
passes through the origin and has an angle of inclination equal to 45°.
For a channel of large slope, the angle of inclination of the line OD will
be different from 45°. (Why?) At any point P on this curve, the ordi-
nate represents the depth, and the abscissa represents the specific
energy, which is equal to the sum of the pressure head y and the velocity
head V?2/2g.

The curve shows that, for a given specific energy, there are two possible
depths, for instance, the low stage y; and the high stage y.. The low
stage is called the alternate depih of the high stage, and vice versa. At
point C, the specific energy is s minimum. It will be proved later that
this condition of minimum specific energy corresponds to the eritical
state of flow. Thus, at the critical state the two alternate depths
apparently become one, which is known as the eritical depth y,. When the
depth of flow is greater than the critical depth, the velocity of flow is less
than the critical velocity for the given discharge, and, hence, the flow is
subcritical. When the depth of flow is less than the critical depth, the
How is supercritical. Henee, y; is the depth of a supereritical flow, and
Ys is the depth of a suberitical flow.

If the discharge changes, the speecific energy will be changed accord-
ingly. The two curves A’B’ and A’'B’ (Fig. 3-2) represent positions of

! The concept of specific energy was first introduced by Bakhmeteff [2] in 1912,
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the specific-energy curve when the discharge is less and greater, respec-
tively, than the discharge used for the construction of the curve AB.
3.3, Criterion for a Critical State of Flow. The critical state of fow
has been defined (Art. 1-3) as the condition for which the Froude number
is equal to unity. A more common definition 1s that it is the state of flow
at which the specific energy is a minimum for a given discharge.! A
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Fia. 3-2. Specific-energy curve.

theoretical criterion for critical flow may be developed from this definition
as follows:

Since V = Q/A, Bq. (3-8), the equation for specific energy in &
channel of small slope with « = 1, may be written

Q.‘Z
B=y+ m (3-6)
Differentiating with respect to y and noting that ¢ is a constant,
dE _,_ Q@ dA_, _V'dd
dy gAidy gA dy

The differential water area d4 near the free surface (Fig. 3-2) is equal
to Tdy. Now dd/dy = T, and the hydraulic depth D = A/T; s0 the
above equation becomes

dE _ ver ., VE
dy gA 1 gb

t The concept of critical depth based on the theorem of minimum euvergy was first
introduced by Béss [3].
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At the critical state of flow the specific energy is a minimum, or

il/dy = 0. The above equation, therefore, gives

vz D

= — 2

5 = 2 (3-10)
This is the criterion for critical flow, which states that at the criiical state
of flow, the velocity head is equal to half the hydraulic depth. The above
equation may also be written V/~/gD = 1, which means F = 1; this is
the definition of critical flow given previously {Art. 1-3).

If the above criterion is to be used in any problem, the following con-
ditions must be satisfied: (1) flow parailel or gradually varied, (2) channel
of small slope, and (3) energy coefficient assumed to be unity. If the
energy coeflicient is not assumed to be unity, the critical-flow criterion is

v: D
For a channel of large slope angle § and energy coefficient «, the criterion
for critical flow can easily be proved to be

V:  Dcos 8
LA ekl -19
o 5 5 (3-12)
where I is the hydraulic depth of the water area normal to the channel

bottom. In this case, the Froude number may be defined as

- 14
N
gD cos 8/«

Tt should be noted that the coefficient o of a channel section actually
varies with depth. In the above derivation, however, the coefficient is
assumed to be constant ; therefore, the resulting equation is not absolutely
exact.

3-4. Interpretation of Local Phenomena. Change of the state of flow
from subcritical to supercritical or vice versa occurs frequently in open
channels. Such change is manifested in a corresponding change in the
depth of flow from a high stage to a low stage or vice versa. If the change
takes place rapidly over a relatively short distance, the flow is rapidly
varied, and is known as a local phenomenon. The hydraulic drop and
hydraulic jump are the two types of local phenomena, and may be
described as follows:

Hydraulic Drop. A rapid change in the depth of flow from a high
stage to a low stage will result in a steep depression in the water surface.
Such a phenomenon is generally caused by an abrupt change in the
channel slope or cross section and is known as a hydraulic drop (Fig. 1-2).
At the transitory region of the hydraulic drop a reverse curve usually

(3-13)
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appears, connecting the water surfaces before and after the drop. The
point of inflection on the reverse curve marks the approximate position
of the critical depth at which the specific energy is a minimum and the
flow passes from a subcritical state to a supercritical state.

The free overfall (Fig. 3-3) is a special case of the hydraulic drop. It
oceurs where the bottom of a flat channel is discontinued. As the free
overfall enters the air in the form of a nappe, there will be no reverse curve
in the water surface until it strikes some object at a lower elevation. I%
is the law of nature that, if no energy were added from the outside, the

Theoretical water surface
assuming parallel flow

A

By, to dy,
¢ ¢ Aerated

}I N
-t b
-

g N
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Fra. 3-3. Free overfall interpreted by specific-energy curve.

water surface would seek its lowest possible position corresponding to the
least possible content of energy dissipation. If the specific energy at an
upstream section is E, as shown on the specific-energy curve, it will con-
tinue to be dissipated on the way downstream and will finally reach a
minimum energy content Eu,. The specific-energy curve shows that
the section of minimum energy or the critical section should occur at the
brink. The brink depth cannot be less than the critical depth because
further decrease in depth would require an increase in specific energy,
which is impossible unless compensating external energy issupplied. The
theoretical water-surface curve of an overfall is shown with a dashed line
in Fig. 3-3.

It should be remembered that the determination of critical depth by
Eq. (3-10) or (3-11) is based on the assumption of parallel flow and is
applicable only approximately to gradually varied flow. The flow at the
brink is actually curvilinear, for the curvature of flow is pronounced;
hence, the method is invalid for determining the critical depth as the
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depth at the brink., The actual situation is that the brink section is the
true section of minimum energy, but it is not the critical section as com-
puted by the principle based on the parallel-flow assumption. Rouse [4]
found that for small slopes the computed critical depth is about 1.4 times
the brink depth, or y, = 1.4y, and that it is located about 3y, to 4y.
behind the brink in the channel. The actual water surface of the over-
fall is shown by the full line (Fig. 3-3).

Tt should be noted that, if the change in the depth of flow from a high
stage to a low stage is gradual, the flow becomes a gradually varied flow

=
5 =
T ? 5y
w o ¥y & y
° 2 ! =
= Energy line 1 3
o 2 o
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el E oy
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Specific-energy curve Hydraoulic jump Specific~force curve

Fre. 3-4. Hydraulic jump interpreted by specific-energy and specific-force curves.

having a prolonged reversed curve of water surface; this phenomenon may
be called a gradual hydraulic drop and is no longer a local phenorenon.

Hydraulic Jump. When the rapid change in the depth of flow is from
a low stage to a high stage, the result is usually an abrupt rise of water
surface (Fig. 3-4, in which the vertical scale is exaggerated). This local
phenomenon is known as the hydraulic jump. It occurs frequently in a
canal below a regulating sluice, at the foot of a spillway, or at the place
where a steep channel slope suddenly turns flat.

If the jump is low, that is, if the change in depth is small, the water will
not rise obviously and abruptly but will pass from the low to the high
stage through a series of undulations gradually diminishing in size.
Such a low jump is called an undular jump.

When the jump is high, that is, when the change in depth is great, the
jump is called a direct jump. The direct jump involves a relatively large
amount of energy loss through dissipation in the turbulent body of water
in the jump. Consequently, the energy content in the flow after the
jump is appreciably less than that before the jump.

It may be noted that the depth before the jump is always less than the
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depth after the jump. The depth before the jump is called the initial
depth y1 and that after the jump is called the sequent depth y,. The initial
and sequent depths y1 and y. are shown on the specific-energy curve
(Fig. 3-4). They should be distinguished from the alternate depths
y1 and yo, which are the two possible depths for the same specific energy.
The initial and sequent depths are actual depths before and after a jump
in which an energy loss AE is involved. In other words, the specific
energy F1 at the initial depth y, is greater than the specific energy E.
at the sequent depth y. by an amount equal to the energy loss AE. If
there were no energy losses, the initial and sequent depths would become
identical with the alternate depths in a prismatic channel.

3-5. Energy in Nonprismatic Channels. In preceding discussions the
channel has been assumed prismatic so that one specific-energy curve
could be applied to all sections of the channel. For nonprismatic c¢han-~
nels, however, the channel section varies along the length of the channel .
and, hence, the specific-energy curve differs from section to section. This
complication can be seen in a three-dimensional plot of the energy curves
along the given reach of a nonprismatic channel.

For demonstrative purposes, a nonprismatic channel with variable
slope is taken as an example, in which a gradually varied flow is carried
from a subecritical state to a supercritical state (Fig. 3-5). The vertical
profile of the channel along its center line is plotted on the Hz plane with
the z axis chosen as the datum. For a variable-slope channel, it is more
convenient to plot the total energy head H = 2z 4 y + V?/2¢, instead of
the specific energy, against the depth of flow on the Hy plane. For
simplicity, the pressure correction due to the slope angle and curvature of
flow is ignored in this discussion. An energy line is then plotted on the
Hz plane below a line parallel to the z axis and passing through the initial
total head at the I axis. The exact position of the energy line depends
on the energy losses along the channel. Four channel sections are then
selected, and four energy curves for these sections are plotted in the Hy
planes, as shown. The initial section 0 is an upstream section in the
subcritical-flow region. The two depths corresponding to a given total
energy Hy can be obtained from the energy curve. Since this section is
in the subcritical-flow region, the high stage yo should be the actual depth
of flow, whereas the low stage is the alternate depth. Similarly, the
alternate depths in other sections can be obtained. In the downstream
sections 1 and 2, the low stages y; and y, are the actual depths of flow since
they are in the supercritical-flow region. The critical depth at each sec~
tion can also be obtained from the energy curve at the point of minimum
energy. At section C the critical flow occurs, and the depth y. is the
critical depth. On the Hz plane, various lines can finally be plotted,
showing the channel bottom, water surface, critical-depth line, and
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alternate-depth une. At the critical section, it is noted that the three
lines, namely, the water surface, the critical-depth line, and the alter-
nate-depth line, intersect at a single point. It is seen that, In passing
through the critical section, the water surface enters the supercrltlcalw
fiow region smoothly.

The three-dimensional plot of energy curves is complicated. The
description given here is used only for helping the reader to visualize the
problem. In actual applications, the energy curves may be constructed

Supercritical
fiow raonge

Subgcriticol

f/ flow range

’," Alternate
- depth

Alterncte
depi’h line

Fra. 3-5. Energy in a nonprismatic channel of variable-slope, carrying gradually
varied flow from suberitical to supercritical state.

sparately on a number of two-dimensional Hy planes for the chosen
sections. The data obtained from these curves are then used to plot the
water surface, critical-depth line, and alternate-depth line on a two-
dimensional Hz plane. For simple channels, the energy curves are not
necessary because the critical depth and alternate depths can easily be
computed directly.

Zxample 3-1. A rectangular channel 10 ft wide is narrowed down to 8 ft by a con-
traction 50 ft long, built of straight walls and a horizontal floor., If the discharge is
100 efs and the depth of flow is 5 {t on the upstream side of the transition section,
determine the flow-surface profile in the contraction (a) allowing no gradual hydraulic
drop in the contraction, and (b) allowing a gradual hydraulic drop having its point of
inflection at the mid-section of the contraction. The frictional loss through the con-
fraction is negligible.
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Solution. From the given data, the total energy in the approaching flow measured
above the channel bottom is E = 5 4 [100/(6 X 10)]2/2g = 5.062 ft. This energy is
kept constant throughout the contraction, since energy losses are negligible. A hori-
zontal energy line showing the elevation of the tofal head is, therefore, drawn on the
channel profile (Fig. 3-6).
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F1c. 3-6. Energy principle applied to a channel contraction (a) without gradual
hydraulic drop; (b) with gradual hydraulic drop.

The alternate depths for the given total energy can be computed by Eq. (3-9) as
follows:

1002
5.062 = L
Y ¥ 2y

or y? — 5.062y% + 1552'25 =0

This is a cubic equation in which b is the width of the channel. At the entrance sec-
tion, where b = 10 ft, its solution gives two positive roots: a low stage y, = 0.589 ft,
which is the aslternate depth; and a high stage y» = 5.00 {t, which is the depth of flow.
At the exit section where b = 8 ft, this equation gives a low stage y1 = 0.750 ft and a
high stage y» = 4.964 ft.

When no gradual hydraulic drop is allowed in the contraction (Fig. 3-6a), the depth
of flow af the exit section should be kept at the high stage, as shown. The high stages
for other intermediate sections are then computed by the above equation, which gives
the flow-surface profile. Similarly, the low stages are computed by the above pro-
cedure and indicated by the alternate-depth line.

When & gradual hydraulic drop is desired in the contraction (Iig. 3-6b), the depth
of flow at the exit section should be at the low stage. Since the point of inflection of
the drop or a critical section is maintained at the mid-section of the contraction, the
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eritical depth at this section is equal to the total head divided by 1.5 (Prob. 3-3), or
5.082/1.5 = 3.376ft. By Eq. (3-10), the critical velocity is equal to V., = /3.3755 =
10.45 fps. Hence, the width of this critical section should be 100/(10.45 X 3.38) =
2.83 ft.

With the size of the mid-section determined, the side walls of the contraction ecan
be drawn in with straight lines. The low and high stages at each section are then
computed by the equation previously given. As the flow upstream from the critical
section is suberitical, its water surface should follow the high stage. Downstream
from the critical section, the flow is supercritical and its surface profile follows the
low-stage line.

The critical-depth line is shown to separate the high from the low stage or the sub-
critical from the supercritical region of flow. On the basis of Eq. (3-10), the critical
depth can be computed from the equation

(100/by.)* _ e
2g 2
_.2/10,000

oT . =
Y 75°

where b is the width of the channel, which can be measured from the plan.

It should be noted that the vertical scale of the channel profile is greatly exagger-
ated. Furthermore, the outline of the gradual hydraulic drop is only theoretical,
based on the theory of parallel flow. In reality, the flow near the drop is more or less
. curvilinear, and the actual profile would deviate from the theoretical one.

This example also serves to demonstrate a method of designing a channel transition
 (Arts. 11-5 to 11-7). The designer may fit any type of contraction walls he desires
to suit a given flow profile, or viee versa.

3-6. Momentum in Open-channel Flow. As stated earlier (Art. 2-7),
the momentum of the flow passing a channel section per unit time is
expressed by fw@V /g, where 8 is the momentum coefficient, w is the unit
weight of water in 1b/{t?, Q is the discharge in efs, and V is the mean
veloelty m fps.

According to Newton’s second law of motion, the change of momentum
per unit of time in the body of water in a flowing channel is equal to the
resultant of all the external forces that are acting on the body. Applying
this principle to a channel of large slope (Fig. 3-7), the following expression
for the momentum change per unit time in the body of water enclosed
between sections 1 and 2-may be written:

Qw
g

where §), w, and V are as previously defined, with subscripts referring to
sections 1 and 2; P, and P, are the resultants of pressures acting on the
two sections; W is the weight of water enclosed between the sections; and
#; is the total external force of friction and resistance acting along the
surface of contact between the water and the channel. The above equa-~
tion is known as the momentum equation.!

(62V2—ﬁ1V1) =P1—P2+W8inl9—'Ff Cg—lé)

! The application of the momentum principle was first suggested by Bélanger [5].
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For a parallel or gradually varied flow, the values of P; and P: in the
momentum equation may be computed by assuming a hydrostatic
distribution of pressure. For a curvilinear or rapidly varied flow, how-
ever, the pressure distribution is no longer hydrostatic; hence the values
of Py and P, cannot be so computed but must be corrected for the curva-
ture effect of the streamlines of the flow. For simplicity, P; and P, may
be replaced, respectively, by 8,'Py and B¢ Ps, where 8, and §;' are the
correction coefficients at the two sections. The coefficients are referred

y _Dafum_.______LJ

Fra. 3-7. Application of the momentum principle.

to as pressure-distribution coefficients. Since Py and P, are forces, the
coefficients may be specifically called force coefficients. It can be shown
that the force coefficient is expressed by

=L [fhaa =142 [foaa 3-15
Pz hiA=1t g [ e (3-15)
where % is the depth of the centroid of the water area A below the free
surface, h is the pressure head on the elementary area d4, and ¢ is the
pressure-head correction [Eq. (2-9)]. It can easily be seen that £ is
greater than 1.0 for concave flow, less than 1.0 for convex flow, and equal
t0 1.0 for parallel flow.

Tt can be shown that the momentum equation is similar to the energy
equation when applied to certain flow problems. In this case, a gradually
varied flow is considered; accordingly, the pressure distribution in the
sections may be assumed hydrostatic, and 8/ = 1. Also, the slope of the
. channel is assumed relatively small.! Thus, in the short reach of a

1 If the slope angle 6 is large, then P; = }4wd,? cos 6 and Py = »¢wds? cos §, where
d; and d; are the depths of flow section and cos ¢ is a correction factor (Art. 2-10).
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ractangular channel of small slope and width b (Fig. 3-7),

Py = L3wby.?

and Py = Jowby,?
Assume Fi = wh;'by

where h;' is the frietion head and 7 is the average depth, or (y1 -+ y2)/2.
The discharge through the reach may be taken as the product of the
average velocity and the average area, or

Q = }8(Vy+ Va)by
Also, it is evident (Fig. 3-7) that the weight of the body of water is
W = wbjL

21 — 29

and sin 8 = 7

Substituting all the above expressions for the corresponding items in
Eq. (3-14) and simplifying,

Ve Vo s
5 2o + Y2 1+ B2 % - ny (3-16)

21+y1+51

This equation appears to be practically the same as the energy eguation
(3-5).

Theoretically speaking, however, the two equations not only use dif-
ferent velocity-distribution coefficients, although these are nearly equal,
but also involve different meanings of the frictional logses. In the energy
equation, the item hy measures the infernal energy dissipated in the whole
mass of the water in the reach, whereas the item 2/ in the momentum
equation measures the losses due to external forces exerted on the water
by the walls of the channel. Ignoring the small difference between the
coefficients « and B, it seems that, in gradually varied flow, the internal-
energy losses are practically identical with the losses due %o externsl
forces. In uniform flow, the rate with which surface forces are doing
work is equal to the rate of energy dissipation. In that case, therefore,
a distinction between h; and k' does not exist except in definition.

The similarity between the applications of the energy and momentum
principles may be confusing. A clear understanding of the basic differ-
ences in their constitution is important, despite the fact that in many
instances the two principles will produce practically identical results.
The inherent distinetion between the two principles lies in the fact that
energy is a scalar quantity whereas momentum is a vector quantity; alsoe,
the energy equation contains a term for internal losses, whereas the
momentum equation contains a term for external resistance.

Generally speaking, the energy principle offers a simpler and clearer
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explanation than does the momentum principle. But the momentum
principle has certain advantages in application to problems involving high
internal-energy changes, such as the problem of the hydraulic jump. If
the energy equation is applied to such problems, the unknown internal-
energy loss represented by h; is indeterminate, and the omission of this
term would result in considerable errors. If instead the momentum
equation is applied to these problems, since it deals only with external
forces, the effects of the internal forces will be entirely out of consideration
and need not be evaluated. The term for frictional losses due to external
forces, on the other hand, is unimportant in such problems and can safely
be omitted, because the phenomenon takes place in a short reach of the
channel and the effect due to external forces is negligible compared with
the internal losses. Further discussions on the solution of the hydraulic-
jump problem by both principles will be given later (Example 3-3). ,

An example showing the application of the momentum principle o the
problem of a broad-crested weir is given below.,

Example 3-2. Derive the discharge per unit width of a broad-crested weir across a

rectangular channel,
S I |

i \“-—-—_.__ * Energy line

-
(1'%

Fia. 3-8. Momentum principle applied to flow over a broad-crested weir,

Soluiion. The assumptions to be made in this solution (Fig. 3-8) are (1) the frie-
tional forces F;' and F;'/ are negligible; (2) the depth y: is the minimum depth on the
weir; (3) at the channel sections under consideration there is parallel flow; and (4)
the water pressure P, on the weir surface is equal to the total hydrostatic pressure
measured below the upstream water surface, or

Py = Ywhly: + (y2 — W} = wh(2y, — )

The accuracy of the last assumption has been checked experimentally {6]. If the
momentum equation (3-14) is applied to the body of water between the upstream
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approach section 1 and the downstream section 2 at the minimum depth on the fop
of the weir, the following equation may be writien:

22 (L — L) — 3guyet ~ Ywyst = Juh(u — 1
g \¥: W
where ¢ is the discharge per unit width of the weir.

Experiments by Doeringsfeld and Barker [6] have shown that, on the average,
y1 — h = 2y.. In that case the above equation can be simplified and solved for g,

g = 0.433 \/2_9(

Considering the limit of h from zero to infinity, this equation varies from g = 3.47H%
to g = 2.46H%. 1t is interesting to note that the practical range of the coeflicient to
H3% obtained by actual observations? is from 3.05 to 2.67. In applying the momentum
principle to this problem, it can be seen that knowledge of the internal-energy losses
due to separation of flow at the entrance and to other causes is not needed in the
analysis.

4
Y1 :9:‘ h)} H 8-17)

3-7. Specific Force. In applying the momentum principle to a short
horizontal reach of a prismatic channel, the external force of friction and
the weight effect of water can be ignored. Thus, with § = Oand F; = 0
and assuming also 81 = 82 = 1, Eq. {(3-14) becomes

%ﬁmmvo=ﬁ—P2

The hydrostatic forces P; and P, may be expressed as
P =wi 4, and Py = wi A,

where Z; and 2, are the distances of the centroids of the respective water
areas A; and A; below the surface of flow. Also, V1= Q/4, ana
Vo= @/As Then, the above momentum equation may be written

2

g
5}4: "{‘ 21A1 == "QE + Z2A2 (3_18)

! The value of the coefficient actually depends on many factors: mainly, the round-
ing of the upstream corner, the length and slope of the weir crest, and the height of
the weir. Many experiments on broad-crested weirs have been performed. From
several of the well-known experiments King [7] has interpolated the data and pre-
pared tables for the coefficient under various conditions. A comprehensive analysis
including more recent data and a presentation of the results for practical applications
were made by Tracy [8]. The well-known experiments on broad-crested weirs are
(1) Bazin tests performed in Dijon, France, in 1886 [9]; (2) U.S8.D.W.B. Cornell tests
performed at Cornell University in 1899 by the U.S. Deep Waterways Board under
the direction of G. W. Rafter, and U.8.G.8. Cornell fests performed by the U.S. Geo-
logical Survey under the direction of Robert E. Horton in 1903 [10}; (3) Michigan
tests performed at the University of Michigan during 1928-1929 [11}; and (4) Minne-
sota and Washington iests performed, respectively, at the university of Minnesota and
Washington State University [6]. For some formulas and coefficients of discharge
developed in the U.S.8.R., see [12]. For an analytical treatment of the problem, sec
[13].
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The two sides of Eq. (3-18) are analogous and, hence, may be expressed
for any channel section by a general function

=2 44 (3-19)

This function consists of two terms. The first term is the momentum of
the flow passing through the channel section per unit time per unit weight
of water, and the second is the force per unit weight of water. Since
both terms are essentially force per unit weight of water, their sum may
be called the specific force.! Accordingly, Eq. (3-18) may be expressed
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Fre. 3-9. Specific-force curve supplemented with specific-energy curve. (@) Specific-
energy curve; (b) channel section; (¢} specific-force curve.

as F'y = Fy. This means that the specific forces of sections 1 and 2 are
equal, provided that the external forces and the weight effect of water in
the reach between the two sections can be ignored.

By plotting the depth against the specific force for a given chanmnel
section and discharge, a specific-force curve is obtained (Fig. 3-9). This
curve has two limbs AC and BC. Thelimb AC approaches the horizontal
axis asymptotically toward the right. The limb BC rises upward and
extends indefinitely to the right. For a given value of the specific force,
the curve has two possible depths y; and y2. As will be shown later, the
two depths constitute the initial and sequent depths of a hydraulic
jump. At point C on the curve the two depths become one, and the
specific force 1s a minimum. The following argument shows that the
depth at the minimum value of the specific force is equal to the eritical
depth.?

1'This has been variously called the “force plus momentum,” the “momentum
flux,” the “total force,” or, briefly, the “force’ of a stream (see pp. 81 and 82 of {14]).
The function represented by Eq. (3-19) was formulated by Bresse [15] for the study of
the hydraulic jump to be described in Example 3-3.

2 The concept of critical depth based on the theorem of momentum is believed to
have been developed by Boussinesq [16].
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For 3 minimum value of the specific force, the first derivative of F
with respect to y should be zero, or, from Eq. (3-19),
dF Q* dA | d(E4) _ 0

dy ~  gAldy ' dy

For a change dy in the depth, the corresponding change d(24) in the
static moment of the water area about the free surface is equal to
[A(Z + dy) + T(dy)?/2] — 2A (Fig. 3-9). Ignoring the differential of
higher degree, that is, assuming (dy)? = 0, the change in static moment
becomes d(ZA) = A dy. Then the preceding equation may be written
aF Q*dA _
o= A TATY
Since dd/dy = T, Q/A = V,and A/T = D, the above equation may be
reduced to

w2

Ve D

%2 (3-10)
This is the criterion for the critical state of flow, derived earlier (Art, 3-3).
Therefore, it is proved that the depth at the minimum value of the specific
force is the critical depth.? It may also be stated that at the cretical siate
of flow the specific force 1s @ minvmum for the given discharge.

Now, compare the specific-force curve with the specific-energy curve
(Fig. 3-9). For a given specific energy K, the specific-energy curve indi-
cates two possible depths, namely, a low stage 1 in the supercritical flow
region and a high stage ys' in the suberitical flow region.? For a given
value of F;, the specificforce curve also indicates two possible depths,
namely, an initial depth ¥ in the supercritical region and a sequent depth
ys in the suberitical flow region. It is assumed that the low stage and
the -initial depth are both equal to yi. Thus, the two curves indicate
jointly that the sequent depth y. is always less than the high stage Ya'.
Furthermore, the specific-energy curve shows that the energy content
E, for the depth - is less than the energy content E; for the depth Yy .
Therefore, in order to maintain a constant value of Fi, the depth of flow
may be changed from . to ys at the price of losing a certain amount of
energy, which is equal to E; — E; = AE. One example of this is the

1Tt should be noted that the above proof is based on the assumptions of parallel
fow and uniform velocity distribution. However, the concept of critical depth is a
general concept that is wvalid for all flows, whether derived from energy or from
momentum considerations. ‘This validity has been proved by Jaeger [14,17,18], and
the proof is known as the Jaeger theorem [19].

2 In order 10 make a clear distinction between the sequent depth and the high stage
of the alternate depths, the sequent depth is designated by v, and the high stage by
yz. In some other places in this book, however, both are designated by ys.
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hydraulic jump on a horizontal floor, in which the specific forces before

and after the jump are equal and the loss of energy is a consequence of

the phenomenon. This will be explained further in the following exam-

ple. It may be noted at this point, however, that the depths y; and.
vy shown by the specific-energy curve are the alternate depths; whereas

the depths y; and y. shown by the specific-force curve are, respectively,

the initial depth and the sequent depth of a hydraulic jump.

Example 3-3. Derive a relationship between the initial depth and the sequent
depth of a hydraulic jump on a horizontal floor in a rectangular channel.

Solution. The external forces of friction and the weight effect of water in the
hydraulic jump on a horizontal floor are negligible, because the jump takes place in a
relatively short distance and the slope angle of the horizontal floor is zero. The
specific forces of sections I and 2 (¥Fig. 3-4), respectively, before and after the jump,
can therefore be considered equal; that is,

o

L+ = —Q- + 2.4, (3-18)

For a rectangular channel of width b, § = Vid: = Vod,, 4: = byi, 4ds = by,
71 = y1/2, and Z, = y»/2. Substituting these relations and Fy = V;/«/gy; in the
above equation and simplifying,

(y°) (2F.2 + 1) (y ) 4L 9F2 =0 (3-20)
L a2 iy y_z — — — =
R
2
Then, let (”’:‘—2) + ¥ _opr=09
Y1 Y1

The solution of this quadratic equation is
> = (/1 + 8F;% — 1) (3-21)

For a given Froude number F; of the approaching flow, the ratio of the sequent depth
to the initial depth is given by the above equation.

It should be understood that the momentum prineiple is used in this solution because
the hydraulic jump involves a high amount of internal—energy losses which cannot be
evaluated in the energy equation.

The joint use of the specific-energy curve and the specific-force curve helps to deter-
mine gra,phlcally the energy loss involved in the hydraulic jump for a given approach-
ing flow. For the given approaching depth y:, points P; and P,’ are located on the
specific-force curve and the specific-energy ecurve, respectively (Fig. 3-4). The point
P’ gives the initial energy content ;. Draw a vertical line, passing through the
point P, and intercepting the upper imb of the specific-force curve at point Py, which
gives the sequent depth y». Then, draw a horizontal line passing through the point
P; and intercepting the specific-energy curve at point P.”, which gives the energy con-
tent E, after the jump. The energy loss in the jump is then equal to E; — E,
represented by AE.

3-8. Momentum Principle Applied to Nonprismatic Channels. The
specific force, like the specific energy, varies with the shape of the channel
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section. In applying the momentum principle to nonprismatic channels,
therefore, a three-dimensional plot similar to that shown for the applica-
tion of the energy principle (Fig. 3-5) can be constructed. For practical
purposes, however, this is rarely necessary.

Where there is no intervention of external forces or where these forces
are either negligible or given, the momentum principle can be applied to
its best advantage to problems, such as the hydraulic jump, that deal
with high internal-energy losses that cannot be evaluated if the energy
prineiple aloneisused. The following example shows how the momentum
principle is applied to the design of a channel transition in which a
hydraulic jurap is involved.

Example 3-4. A rectangular shannel 8 ft wide, carrying 100 cfs at a depth of 0.5 £t
is connected by astraight-wall transition to a channel 10 ft wide, fiowing at a deptk

! 50 I
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Fre. 3-10. Epnergy and momentum principles applied to a channel expansion (a) with
hydraulic jump; (b) without hydraulic jump.

of 4 ft (Fig. 3-10). Determine the flow profile in the transition if the frictional loss
through the transition is negligible. If a hydraulic jump occurs in the transition,
how can it be eliminated?

Solution. From the given data, the total energy with respect to the channel bot-
tom in the approaching flow is B = 0.5 + [100/(0.5 X 8)}*/2¢ = 10.207 {}, and in the
downstream, E = 4.0 + [100/(4 X 10)]?/2¢ = 4.097 ft. It is apparent that this
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energy difference of 6.110 £t must be dissipated through the transition by some means,
since the frictional loss is negligible. Furthermore, the Froude numbers 6.24 and
0.22 of the approaching and downstream flows are, respectively, greater and less than
unity, indicating a change of the flow from supereritical to suberitical. Therefore, a
hydraulic jump can be expected to occur to dissipate the energy difference and to
effect a change in the flow state. Whether this jump will occur within the transition
or in the upstream or the downstream channel ig, however, to be disclosed by further
analysis.

TaBLE 3-1. CoMPUTATION FOR A CHANNEL KXPANSION DESCRIBED IN
Exavrre 3-4

Section Low stage High stage

width Y1, ft Fl Yoy ft Fa
b, ft for B = 10.207 for B = 4.097
8.00 0.500 78.6 3.940 71.9
8.50 G.470 78.7 3.960 75.9
9.00 0.443 78.8 3.9279 79.9
9.50 0.419 78.8 3.987 83.6
10.00 0.398 78.8 4.000 87.8

Take five sections of the transition with their widths shown in Table 3-1. For
the total approaching energy of 10.207 ft, the low stage y: for each section can bé com-~
puted by means of Eq. (3-8) or (3-9), or

@)/byl)2

2% + ¥y = 10.207

where b is the width of the section. Similarly, the high stage y» for a total energy of
4.097 can be computed from
(100/by2)?

29 + y2 = 4.097

The low- and high-stage lines are then constructed along with the energy lines (Fig.
3-10a). After these stage and energy lines are determined, the specific forces F; and
F'y for low and high stages, respectively, at each section are computed and plotied to
any convenient scale and datum. The hydraulic jump must oceur where the specific
forces for the low and high stages are equal, or at the intersection of the F lines. A%
this section the water surface at low stage will jump to the high stage, as indicated
by a vertical line (Fig. 3-10a). Actually, however, the jump will take place over a
short distance, as shown by the dotted line. The energy loss in the jump is repre-
sented by the vertical intercept between the upstream and downstream energy lines,
which is equal to 6.110 ft, covering the energy difference between the flows in the con-
necting channels. By varying the shape of the cross sections of the connecting chan-
nels the location of the intersection of the ¥ lines, or the position of the jump, can be
altered. Changing the depth of flow in the downstream channel will also change the
position of the jump. Generally, an increase in the downstream depth will move
the jump upstream, and a decrease in the depth will move the jump downstream.
The hydraulic jump can be eliminated if the energy loss can be dissipated gradually
and smoothly. This can be done by introducing proper roughness in the transition,
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for instance, by boliing cross timbers (v the bottom of the transition. It can be
assumed in this example that the energy difference of 6.110 ft is dissipated uniformly
in the transition by artificial roughness. Thus, the energy line in the transition 'is
simply a straight line joining the total heads of the two end sections (Fig. 3-10b). For
design purposes, it is convenient first to assume the flow profile and then to proportion
she dimensions of the transition so that the jump can be eliminated. In propertion-
ing the transition, the jump is eliminated either by varying the width or by raising
the bottom of the transition. In this example, it is assumed that the bottom is to
be raised, or “humped’’ (Fig. 3-10b). The subsequeiit procedure of the computation
is to (1) assume the flow profile; (2) compute the velocity head, which is equal to the
difference between the total head and the water-surface elevation, at a number of
selected sections; (3) compute the velocity and then the water area and depth of flow
for each section; (4) determine the elevation of the bottom of the transition, which is
equal to the elevation of the water surface minus the depth of flow; (5) compute the
slternate depth, since the bottom of the transition is fixed; and (6) compute F, and
7, lines for the low and high stages, and plot them on & convenient seale. It can be
seen that the two F lines intersect and become tangent to each other at a critical sec-
tion, where the flow changes from low to high stage, that is, from supercritical to sub-
critical state. If the critical-depth line is plotted, it will intersect the alternate-depth
Hine and the water surface simultaneously at the critical section. Based on the crifi-
eal-depth line, a line of minimum specific energy can also be constructed. This line
should be tangent to the total-energy line at the critical section.

PROBLEMS

2.1, With reference to a channel of small slope and a section shown in Fig. 2-2, (a)
construct a family of specific-energy -curves for @ = 0, 50, 100, 200, 300, and 400 c¢fs,
(3) draw the locus of the critical-depth point on these curves, (¢) plot a curve of the
critical depth against the discharge, and (d) plot a family of curves of alternate depths,
Y1 VS. Y2, Tor the given discharges.

3-2. Construct the specific-energy curve for a 36-in. pipe carrying an open-channel
fow of 20 cfs (a) on a flat slope, and (b) on a 30° slope.

5-3. Show that at the critical state of flow the specific-energy head in a rectangular
channel is equal to 1.5 times the depth of flow, assuming zero siope and @ = 1.

3-4. Derive the equations for the locus of the critical-depth point on the specific-
energy curve and for the curve of critical depthvs. discharge, as obtained in Prob. 3-1.

3-5. Prove Eq. (3-12).

3-6. Prove Eqg. (3-13).

3.7. Prove that at the critical state of flow the discharge is a maximum for a given
specific energy.!

3-8. Show that the relation between the alternate depths y; and y; in a rectangular
channel] can be expressed by

2Y1%y*

ST (-22)

where vy, is the critical depth. Using values of yi/y. as ordinates and of y:/y. as
sbscissas, construct a dimensionless graph for the above equation and study its
charaecteristics.

1The concept of eritical depth based on the theorem. of maximum discharge was
first introduced by Bélanger [20].
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3-9. Solve the problem given in Example 3-1 (a) if there is a total energy loss of
0.60 ft uniformly distributed throughout the length of the contraction, and () if
a gradual hydraulic drop is desired with its point of inflection at a distance 20 ft
upstream from the exit section.

3-10. Applying the momentum principle and the continuity equation to the analysis
of a submerged hydraulic jump which occurs at the sluice outlet in a rectangular chan-

nel (Fig. 3-11), prove that
% ‘\/1 + 2F,? (1 - —-y2) ~
Y2 2 ™ (3-23)

where ¥, is the submerged depth; y: is the height of sluice-gate opening; y. is the tail-
water depth; and .2 = ¢2/gys%, ¢ being the discharge per unit width of the channel.
Neglect the channel-bed friction F.

_— - S~
= S Energy line
- == ]
T - Yo
Vs i C’.: ........... 1
1.2 = - - wy?
WYy o F, ] 2 "2
4 ] | y| (et f ]
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Fic. 3-11. A submerged hydraulic jump at sluice outlet.
3-11. Prove that the energy loss in a horizontal hydraulic jump is

{y2 — y1)?
AE = 22 dY 3-24)*
41y ( )

3-12. If a hydraulic jump is formed on the horizontal floor at the toe of the spill-
way described in Prob. 2-11, determine the sequent depth and the energy loss involved
in the jump.

3-13. With reference to a channel of small slope and a section shown in Fig. 2-2,
(@) construct a family of specific-force eurves for @ = 0, 50, 100, 200, 300, and 400 cfs,
and (b) plot a family of curves of initial depth against sequent depth for the given
digcharges.

3-14. Construct the specific-force curve for a 36-in. pipe carrying an open-channel
flow of 20 cfs on a small slope.

3-16. Prove Eq. (3-15).

3-16. Using the momentum principle, show that the Froude number of a parallel
or gradually varied flow in a channel of slope angle § may be defined by

7
/gD cos 0/8

* This formula was shown by Bresse early in 1860 [15]. At the same time Bresse
introduced the concept of critical depth, as a depth at which the subecritical flow
changes to supercritical, or vice versa.

F= (3-25)
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where V is the mean velocity, D is the hydraulic depth of the section, and @ is the
momentum coefficient for nonuniform velocity distribution.

3-17. For eliminating the hydraulic jump in Example 3-4, the flow profile is

assumed to be composed of two reversed circular curves tangent to each other at the
middle section of the transition and also to the water surfaces in the connecting chan-
nels at the two ends of the transition. Verify the computation (shown in scale on
Fig. 3-10b).

3-18. A frictional loss of 1.0 ft is assumed to be uniformly distributed along the
length of the transition in Exaraple 3-4. Determine the flow profile in the transition.

13
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CHAPTER 4

CRITICAL FLOW: ITS COMPUTATION
AND APPLICATIONS

4-1. Critical Flow. As described in the previous chapter, the critical
state of flow through a channel section is characterized by several impor-
tant conditions.! Recapitulating, they are (1) the specific energy 1s a
minimum for a given discharge; (2) the discharge is a maximum for a
given specific energy (Prob. 3-7); (3) the specific force is aminimum for a
given discharge; (4) the velocity head is equal to half the hydraulic
depth in a channel of small slope; (5) the Froude number is equal to
unity:; and (6) the velocity of flow in a channel of small slope with uni-
form velocity distribution is equal to the celerity of small gravity waves
in shallow water caused by local disturbances.

Discussions on critical state of flow have referred mainly to a particular
section of a channel known as the critical section. If the critical state of
flow exists throughout the entire length of the channel or over a reach of
the channel, the flow in the channel is a ¢ritical flow. Since, as indicated
by the eritical-flow criterion Eq. (3-10), the depth of critical flow depends
on the geometric elements 4 and D of the channel section when the
discharge is constant, the critical depth in a prismatic channel of uniform
slope will be the same in all sections, and critical flow in & prismatic
channel should, therefore, be uniform flow. At this condition, the slope
of the channel that sustains a given discharge at a uniform and critical
depth is called the critical slope S.. A slope of the channel less than the
critical slope will cause a slower flow of subcritical state for the given
discharge, as will be shown later, and, hence, is called a mild or subcritical
slope. A slope greater than the critical slope will result in a faster flow
of supercritical state, and is called a steep or supercritical slope.

A flow at or near the critical state is unstable. This is because a minor
change in specific energy at or close to critical state will cause a major
change in depth. This fact can also be recognized in the specific-energy
curve (Fig. 3-2). As the curve is almost vertical near the eritical depth,
a slight change in energy would change the depth to a much smaller or
much greater alternate depth corresponding to the specific energy after

1 For a historical account of the theory of critical flow, see [1].
63
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the ehange. It can be observed also that, when the flow is near the
critical state, the water surface appears unstable and wavy. Such
phenomena are generally caused by the minor changes in energy due to
variations in channel roughness, cross section, slope, or deposits of
sediment or debris. In the design of a channel, if the depth is found at
or near the critical depth for a great length of the channel, the shape or
slope of the channel should be altered, if practicable, in order to secure
greafer stability.

The criterion for a critical state of flow (Art. 3-3) is the basis for the
computation of critical flow, which will be explained in subsequent
articles. Two major applications of critical-flow theory are flow control
and flow measurement, which will also be discussed in this chapter.

4-2. The Section Factor for Critical-flow Computation. Substituting
V = @/A in Eq. (3-10) and simplifying,

Q
Vg
When the energy coefficient is not assumed to be unity,
Q
Z =X (4-2)
Vg/e

In the above equations, Z = A /D, which is the section factor for
critical-flow computation [Bq. (2-3)]. Equation (4-2) states that the
section factor Z for a channel section at the critical state of flow is equal
to the discharge divided by the square root of g/«. Since the section
factor Z is generally a single-valued function of the depth, the equation
indicates that there is only one possible critical depth for maintaining the
given discharge in a channel and similarly that, when the depth is fixed,
there can be only one discharge that maintains a critical flow and makes
the depth critical in the given channel section.?

Equation (4-1) or (4-2) is a very useful tool for the computation and
analysis of critical flow in an open channel. When the discharge is
given, the equation gives the critical section factor Z. and, hence, the
critical depth y.. On the other hand, when the depth and, hence, the
section factor are given, the critical disharge can be computed by
Eq. (4-1) in the following form:

Q=2+yg (4-3)
or by Eq. (4-2) in the following form:

0=1z,f! (4-4)

LIf Z is not a single-valued function of the depth, it is possible to have more than
one critical depth.
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A subseript ¢ is sometimes used to specify the condition of critical flow.
Formulas for the section factor Z of seven common channel sections are
given in Table 2-1. The Z values for a circular section can be found
either from the curve in Fig. 2-1 or from the table in Appendix A.

In order to simplify the computation of critical flow; dimensionless
curves showing the relation between the depth and section factor Z
(Fig. 4-1) have been prepared for rectangular, trapezoidal, and circular
channels. These self-explanatory curves will help to determine the depth
y for a given section factor Z, and vice versa.

Example 4-1. Derive an equation showing critical discharge through a rectangular
channel section in terms of the channel width and the total head.

Solution. For the rectangular section, Table 2-1 gives the section factor Z = byis.
At the critical state of flow, the depth ¥ = H/1.5 (see Prob. 3-3). Substituting these
expressions in Eq. (4-3), using ¢ = 32.16, and simplifying, we find that the critical
discharge is

. = 3.087bH*S (4-5)

4-3. The Hydraulic Exponent for Critical-flow Computation. Since
the section factor Z is a function of the depth of flow y, it may be assumed
that

7t = CyM (4-6)
where C is a coeflicient and M is a parameter called the hydraulic expo-
nent for critical-flow computation.

From the logarithmic plotting of Eq. (4-6), it is evident that the
hydraulic exponent M at depth y is
d(ln Z)
i v) (&0
Now, taking logarithms on both sides of Eq. (2-3), or Z = 4 ~/A4/T, and
then differentiating with respect to In v,

dinZ) 3T y 4T

M =2

diny) 247 73T 4y (4-8)
Eguating the right sides of Eqs. (4-7) and (4-8) and solving for M,
Y _AdT 3
M—Z(ST TF@) (4-9)

This is a general equation for the hydraulic exponent M, which is a fune-
tion of the channel section and the depth of flow. For a trapezoidal
section, the expressions for 4 and 7' obtained from Table 2-1 are substi-
tuted in Eq. (4-9); the resulting equation [2] is simplified and becomes

301+ 22(y/b))® — 22(y/B)[1 + 2(y/b)] )
o [1+ 2z(y/B)][1 + 2(y/b)] (4-10)

* This equation was also developed independently by Chugaev [3]. In this equa-
tion, M can be regarded as a function of z{y/b); accordingly, a single curve of A versus
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This equation indicates that the value of M for the trapezoidal section is
g function of z and y/b. For values of z = 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0,
and 4.0, a family of curves for M versus y/b are constructed (Fig. 4-2).
These curves indieate that the value of M varies in a range from 3.0 ¢ 5.0.
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Fra. 4-2. Curves of M values.

A curve for a cireular section with M plotted against y/de, where do
is the diameter, is also shown (Fig. 4-2). This curve was developed by
a similar procedure but constructed from a much more complicated
formula. The curve shows that the value of M varies within a rather
narrow range for values of y/d, less than 0.7 or so, but mcreases rapidly
as the value of y/do becomes greater than 0.7. The significance of this

2(y/b) may be constructed. It is obvious that this curve would be identical with the
curve for z = 1 in Fig. 4-2. For convenience in application, however, a family of
curves of M versus y/b are shown, using z as a parameter.
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characteristic is that, when the depth of flow in a circular section
approaches the top of the circle, the section factor and with it the critical
discharge, as shown by Eq. (4-3), become indefinitely large. In other
words, it is practically impossible to maintain & critical flow in a circular
conduit at a depth approaching the top of the section. In fact, the wavy
surface of the critical flow will touch the top of the conduit before it
actually comes so near as to approach the top. A similar characteristic
and phenomenon occur also in other
types of closed conduit with gradu-
ally closmg crown, when the water
surface approaches the crown of the
rnsent o conduit.

sl oate For channel sections of other than
T trapezoidal or circular shape, exact

The plot becomes curved
when the depth opprooches
the graduolly converging
crewn of a closed conduit

{9, Zy)

M=21an8 values of M can be computed di-
rectly by Eq. (4-9), provided that
the derivative d7'/dy can be evalu-
ated. Approximate values of M for
*l any channel section, however, may

v be obtained from the following
=—Clog (% / Yo)—

\ equation
1 [OQ(ZI/ZZ)

g=ton log(¥y/ Yz )

log Z

(¥2.22)

o log (Z:/Zy)

M =
log (y1/y2)

(4-11)

L.
.

where Z, and Z, are section factors
F1G. 4-3. Graphical determination of the for any two depths v, and y» of the
M value. given section. This equation can

easily be derived from Egq. (4-6).
In applying Bq. (4-11), a graphical method is recommended instead of
direct computation. This involves a logarithmic plotting of Z as ordi-
nate against the depth as abscissa (Fig. 4-3). For most channels, except
for closed conduits with depth approaching a gradually closing crown and
some channels of peculiar shapes, the plot takes a more or less straight-
line form. The hydraulic exponent is equal to twice the slope of the
plotted straight line. For a depth approaching the gradually closing
crown of a closed conduit, the plot becomes a curve, and the hydraulic
exponent of a given depth is equal to twice the slope of the tangent to the
curve at that depth.

The hydraulic exponent M is described here only as a characteristic
value of 2 channel section under the condition of eritical flow. Theé
application of this exponent will be further described in the computation
of gradually varied flow (Art. 10-2).

logy
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4-4. Computation of Critical Flow. Computation of critical flow
involves the determination of critical depth and velocity when the dis-
charge and the channel section are known. Three methods illustrated
by simple examples will be given below.  On the other hand, if the critical
depth and channel section are known, the critical discharge can be deter-
mined by the method described in Art. 4-2.

A. Algebraic Method. For a simple geometric channel section, the
oritical flow can be determined by an algebrale computation using the
basic equations. The method has already been used (Example 3-1), but
the following example is given for further illustration:

Example 4-2. Compute the critical depth and velocity of the trapezoidal channel
(Fig. 2-2) carrying a discharge of 400 cfs.

Solution. The hydraulic depth and water area of the trapezoidal section are
expressed in terms of the depth y as

_y(10 + ) R _
D =557, T2y and 4 = y(20 +2p)

The velocity is
400
¥(20 + 2y)

Substituting the above expressions for D and V in Eq. (3-10) and simplifying,
2,484(5 + ) = (10 + )P

Solving this equation for y by a trial-and-error procedure, y. = 2.15 ft. This is the
eritical depth. The corresponding area is 4, = 52.2 fi%, and the critical velocity is
V. = 400/52.2 = 7.66 ips.

_9_
V==

B. Graphical Method. For a complicated or natural channel section, a
graphical procedure for critical-flow computation is generally employed.
By this procedure a curve of y versus Z is constructed. The value of
Q/~/g is then computed. Using Eq. (4-1), the critical depth may be
obtained directly from the curve, where Z = @/ Vg.

Example 4-3. A 36-in. concrete circular culvert carries a discharge of 20 cfs.
Determine the critical depth.

Solution. Construct a curve of y vs. Z (Fig. 4-4). Then compute Z = ¢/ Vg =
20/+/g = 3.53. From the curve the critical depth for this value of Z is found to be
y. = 1.44 f§.

The dimensionless curve (Fig. 2-1) or the table in Appendix A for the geometric
elements of a cireular section might also be used to solve this problem. Since do =
3.0 ft and do2® = 15.8, Z/de*® = 3.53/15.6 = 0.226. From the dimensionless curve
or from the table, y/de = 0.48, and so y. = 0.48 X 3 = 1.44 ft.

C. Method of Design Chart. The design chart for determining the
critical depth (Fig. 4-1) can be used with great expediency.

In Example 42, Z = 400/~/ g = 70.5 {Eq. (&1)]. The value of Z /b5 is 0.0384.
. For this value, the chart gives y/b = 0.108 or y. = 2.16 ft.
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Fra. 4-4. Curve of y versus Z for a circular section.

In Example 4-3, Z/d¢?5 = 0.226, TFor this value the chart gives y/d = 0.48 or
Y. = 1.44 ft.

4-8. Control of Flow. The control of flow in an open channel is defined
loosely in many ways. Asused here the term means the establishment of
a definitive flow condition in the channel or, more specifically, a definitive
relationship between the stage and the discharge of the flow. When the
control of flow is achieved at a certain section of the channel, this section
is a control section. It will be shown later that the control section controls
the flow in such a way that it restricts the transmission of the effect.of
changes in flow condition either in an upstream direction or in a down-
stream direction depending on the state of flow in the channel. Since the
control section holds a definitive stage-discharge relationship, it is always
a suitable site for a gaging station and for developing the discharge rating
curve, a curve representing the depth-discharge relationship at the gaging
station.

At the critical state of flow a definitive stage-discharge relationship
can be established and represented by Eq. (4-1). This equation shows
that the stage-discharge relationship is theoretically independent of the
channel roughness and other uncontrolled mrcumstances Therefore, a
critical-flow section is a control section.

The location of the control section in a prismatic channel is generally
governed by the state of flow, which in turn is determined by the slope of
the channel. Take for an example a long straight prismatic channel in
which a pool is created by a dam across the channel and the water flows
over the dam through an overflow spillway (Fig. 4-5). Three flow con-
ditions in the channel are shown, representing the suberitical, critical,
and supercritical flows, respectively. The slopes of the channel in the
three cases are, correspondingly, mild or suberitical, critical, and steep
or supercritical.
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If the channel hag a critical slope (middle sketch in Fig. 4-5), thenthe
flow is initially uniform and critical throughout the channel. In the
presence of the dam, however, the flow through the pool will be suberitical
and the pool surface will approach the horizontal., At the downstream
end a so-called drawdown curve will be developed, extending upstream

Fiow condition controlled af the downstream end |
i L)
Backwater Added depth due |

1\\ /curve to backwater EffEC}medown

L curve

. Control
“““““ section

Critical depth .
line i+ - . T

Depth of suberitical
flow without dom

Critical flow aof oll sections
a

i Practically
L | harizontal /Drcwdown
_—

peol levelz

Control
secfion

Critical depth of 7 %7

flow without dam

. Flow condition confrolled at the
upstream end

|
l
|
Hydraulic | Drowdown
|
|

CUI’VE\

Control
seciion

Confrol
seclion

Depth of supercritical
fiow without dom

T1c. 4-5. Flow conditions in a long prismatic channel.

from a section near the spillway crest and becoming asymptotic to the
pool level.

If the channel has a subcritical slope (top sketch in Fig. 4-5), the flow
is initially subecritical. In the presence of the dam, the pool surface wil
be further raised for a long distance upstream from the pool in a so-called
backwater curve. The additional depth of water is required to build up
enough head to give the increased velocity necessary to pass water over
the spillway. This effect of backing up the water behind the dam is
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known as the backwaiter effect. At the downstream end the backwater
curve is connected with a smooth drawdown curve which leads the water
over the spillway.

If the channel has a supercritical slope (bottom sketch in Fig. 4-5), the
flow is initially supercritical. In the presence of the dam, the backwater
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Fig. 4-6. Plan, elevation, and dimensions of the Parshall flume. (U.8. Soil Conser-
vaiion Service [26).) Plan and elevation of a concrete Parshall measuring flume show-
ing lettered dimensions as follows:

W = size of flume in in. or ft; 4 = length of side wall of converging section;
%44 = distance back from end of crest to gage point; B = axial length of converging
section; € = width of downstream end of fiume; D = width of upstream end of flume;
E = depth of flume; F = length of throat; @ = length of diverging section; X = differ-
ence in elevation between lower end of flume and crest; M = length of approach floor;
N = depth of depression in throat below crest; P = width between ends of curved,
wing walls; B = radius of curved wing wall; X = horizontal distance to Hi gage
point from low point in throat; ¥ = vertical distance to H, gage point from low

point in throat. Bee the table on the next page for actual dimensions for various
sizes of flume.

effect originating from the pool will not extend far upstream. Instead,
the flow in the upstream channel will continue in the downstream direc-
tion at a supercritical state until the flow-surface profile is actually below
the pool level ;! then it will rise abruptly to the pool elevation in a hydrau-

1 It should be noted that the pool level in this case is not horizontal but curved.
The curved water surface has an S1 profile, which will be described later (Art. 9-4).
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lic jump. The backwater effect will not extend upstream through the
hydraulic jump. The flow upstream from the jump is governed entirely
by the upstream conditions.

The above example explains the important fact that on subcritical
slopes the effect of change in water-surface elevation downstream is
transmitted upstream by a backwater curve, whereas on supercritical
slopes the effect cannot be transmitted far upstream. The flow condi-
tion in a suberitical channel is affected by downstream conditions; but,
in a supercritical channel, the flow condition is dependent entirely upon
the condition upstream or at the place where water enters the channel.
Accordingly, the control of flow is said to be at the downstream end for
channels with suberitical slope and at the upstream end for channels
with supercritical slope.

When the channel is on a subcritical slope a control section at the
downstream end may be a critical section, such as that created on the top
of an overflow spillway. On a supereritical slope, the control section at
the upstream end may also be a critical section, as shown in the figure.
A sluice gate or an orifice or other control structure may also be used to
create a control section. It should be noted that whether the channel
slope is critical, subcritical, or supercritical will depend not only on the
measure of the actual slope but also on the discharge or the depth of fow.

4-6. Flow Measurement. Tt was mentioned in the preceding article
that, at a critical control section, the relationship between the depth
and the discharge is definitive, independent of the channel roughness and
other uncontrollable circumstances. Such a definitive stage-discharge
relationship offers a theoretical basis for the measurement of discharge in
open channels.

Based on the principle of critical flow, various devices for flow measure-
ment have been developed. In such devices the eritical depth is usually
created either by the construction of a low hump on the channel bottom,
such as a weir, or by a contraction in the cross section, such as a critical-
flow flume. The use of a weir is a simple method, but it causes relatively
high head loss. If water contains suspended particles, some will be
deposited in the upstream pool formed by the weir, resulting in a gradual
change in the discharge coefficient. These difficulties, however, can be
overcome at least partially by the use of a eritical-flow flume.

The critical-flow flume, also known as the Venturi flume, has been
designed in various forms.? It is usually operated with an unsubmerged

! The eritical-flow flumes mentioned in the text are those developed and studied in
the United States. Outstanding designs of critical-flow flumes were also developed
and tested by Jameson [4,5], Engel [6,7], and Linford [8] in England; by Crump [9] and
Inglis [10] in India; by De Marchi [11,12], Contessini [L1], Nebbia [18~15], and Citrini
[16,17] in Ttaly; by Khafagi [18] in Switzerland; and by Balloffet [19] in Argentina.
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ot free-flow condition having the critical depth at a contracted section and
a hydraulic jump in the exit section. Under certain conditions of flow,
however, the jump may be submerged.

One of the most extensively used eritical-flow flumes is the Parshall
flume* (Fig. 4-6) which was developed in 1920 by R. L. Parshall. The
depth-discharge relationships of Parshall flumes of various sizes, as
calibrated empirically, are represented by the following equations:

Throat width Bguation
3/ Q = 0.092 F 1547 (4_12)
6" Q = 2.06H 1 (4-13)
g7 Q = 3.07H, % (4-14)
12" to 8 Q = 4WH 12w (4-15)
10 to 50’ Q = (3.6875W + 2.5)H P (4-16)

In the above equations @ is the free discharge in cfs, W is the width of
throat in ft, and H. is the gage reading in ft. When the ratio of gage
reading H, (Fig. 4-8) to [, exceeds the limits of 0.6 for 3-, 6-, and 9-in.
flumes, 0.7 for 1- to 8-ft flumes, and 0.8 for 10- to 50-£% flumes, the flow
becomes submerged. The effect of submergence is to reduce the dis-
charge. In this case the discharge computed by the above equations
must be corrected by a negative gquantity. The diagrams in Fig. 4-7
give the corrections for submergence for Parshall flumes of various sizes.
The correction for the 1-ft flume is made applicable to the larger dumes
by multiplying the correction for the 1-ft flume by the factor given
below for the particular size of the flume in use. ‘

Size of flume W, fi Correction factor
1 1.0
1.5 1.4
2 1.8
3 2.4
4 3.1
6 4.3
& 5.4

Similarly, the correction for the 10-ft flume is made applicable to the

1 Experiments on this type of measuring device, then called the Venturi flume, were
began by V. M. Cone at the hydraulic laboratory of the Colorado Agricultural Experi-
ment Station, Fort Collins, Colo. The initial studies were reported in [20] and [211.
The name “Parshall measuring fiume”’ was adopted for the .device by the Execu-
tive Committee of the Irrigation Division, American Society of Civil Engineers, dur-
ing its December meeting of 1929. Further developments on the Parshall dume are
deseribed by R. L. Parshall in [22] to [26].
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Fra. 4-7. Diagrams for computing submerged flow through Parshall flumes of various
sizes. (Colorado Agricultural Experiment Station [25] and U.S. Soil Conservalion
Service [26).) (a) Diagram showing the rate of submerged flow, in cubic feet per
second, through a 3-in. Parshall measuring flume. (b) Diagram showing the rate of
submerged flow, in cubic feet per second, through a 6-in. Parshall measuring flume.
(¢) Diagram showing the rate of submerged flow, in cubic feet per second, through a
O-in. Parshall measuring flume. (d) Diagram for computing the rate of submerged
flow, in cubic feet per second, through a 1-it Parshall measuring flume. (¢) Diagram
for determining the correction in cubic feet per second per 10 It of crest for submerged-
flow discharge.
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larger flumes by multiplying the correction for the 10-ft flume by the
factor given below for the particular flume in use.

Size of flume W, ft Correction factor
10 1.0
12 1.2
15 1.5
20 2.0
25 2.5
30 3.0
40 4.0
50 5.0

Tt is desirable to set the crest of the Parshall flume so that free flow will
occur. If conditions do not permit free-flow operation, the percentage
of submergence Hi/H, should be kept, whenever possible, below the
practical limit of about 95%, since the flume will not measure dependably
if the submergence is greater. The size and elevation of the crest depend
upon the discharge to be measured and upon the size of the flume and,
consequently, upon the loss of head through the flume. The loss of head
can be determined from the diagrams in Fig. 4-8. A practical example
(Example 4-5) will be given to show the determination of the size and
elevation of the flume crest.

Because of the contraction at the throat, the velocity of water flowing
through the flume is higher than that of the flow in the channel. For
this reason any sand or silt in suspension or rolled along the bottom can
be carried through, leaving the flume free of deposit. When a heavy
burden of erosion debris is present in the stream, however, the Parshall
flume will become invalid like the weir, because deposition of the debris
will produce undependable results. For use under such circumstances,
a modified Parshall flume known as the San Dimas flume {27,28] has been
developed, which has the advantage of a self-cleaning mechanism. for
heavily debris-laden flows in the stream.

For measuring open-channel flow in closed conduits, such as sewers and
covered irrigation canals, critical-flow flumes of special designs have been
proposed. Palmer and Bowlus {20-31] have developed several of these
flumes, including one which is simply a flat slab on the bottom and has no
side contractions, one with a rectangular cross section, and several with
trapezoidal-shaped throats. Stevens [32] recommended a critical-flow
flume in which he used a blister-shaped hump control on the bed of the
conduit to produce a critical flow over it. The frictional losses in this
design are believed to be very small.

Like many measuring devices, the critical-flow flume has certain dis-
advantages. The flume cannot be used directly with or combined with
a head gate. It is more expensive to build and requires more accurate
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workmanship in its construction than other commonly used devices,
such as weirs or submerged orifices. Technical information on other
kinds of open-channel measuring devices and methods can easily be
found in many textbooks and handbooks on hydraulies (such as [33]
to [35]).

Many culverts along modern highways can be used as or converted to
critical-flow flumes for measuring runoff from the adjoining agricultural
lands. This idea was first suggested by Mavis [36] and others and was
later studied at the Oklaboma Agricultural Experiment Station [37,38]
by carrying out extensive experimental tests on rectangular highway
culverts. The results of this experimental study indicate that the culvert
can be used as a flow-rate measuring device if it flows part full and has
free outlet fall. A weir sill should be installed, however, to improve the
accuracy of the measurement in the low-flow range. In thisinvestigation,
a standard Villemonte-type weir sill* was developed and its location on

the eulvert floor determined. Head-discharge relationships were also

determined for various flow ranges.

Example 4-4. Using the theory of critical flow, derive an equation for the discharge
over & broad-crested weir.

Solution. Consider the section on the weir crest where critical flow occurs. At this
section, ¥, = 2(V.2/2g9) = H./1L.5or V. = +/gH,/1.5, where H. is the specific-energy
head at the section. The discharge per foot width of the weir is, therefore, equal to

g = V. =24H, ~/%gH. = 3.00H*® (4-17)

This is a theoretical discharge equation in which H., is uncertain since the critical sec-
tion is usually difficult to locate. For practical purposes, however, the equation is
generally written ¢ = CH'S, where H is the elevation of the upstream water surface
above the weir crest. Thas is the form described earlier (Example 3-2).

If an aerated free overfall exists at the downstream end of the weir, the above equa-
tion can be expressed in terms of the brink depth yo, which can easily be measured.
Since y. = 1.4y, (Art. 3-4), the equation required is

g = 9.39y,'* (4-18)

Experiments have shown that, when the head on the broad-crested weir is greater
than about 1.5 times the length of the crest, the nappe of the free overfall becomes
detached and the weir is in effect a sharp-crested weir.

Example 4-6. Design a Parshall flume for handling 20 cfs of flow in a channel of
moderate slope when the water depth in the channel is 2.5 ft.*

Solution. The discharge given can be measured by flumes of several sizes, but the
best selection is the flume of most practical and economical size.

Assume W = 4 ft and Hy/He = 0.7. For Q = 20 cfs, BEq. (4-15) gives Ha = 1.15
ft. Hence, Hy = 0.81 ft.

At 709, submergence, the water surface in the throat, at H; gage, is essentially level
with the surface of the tailwater. Under this condition of flow, shown in Fig. 4-9,

1 The Villemonte weir sill consists of two triangular, tapered converging sills placed
on the culvert floor with an opening left between them [39].
* This example is adopted from [26].
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the taillwater depth D = 2.5 ft, and the elevation of the crest above the channel hot-
tom is X = 2.5 — 0.81 = 1.69 ff.

From Fig. 4-8, the head loss corresponding to Hy/H. = 0.7, @ = 20 cfs, and W =
4 ft is 0.43 ft. Therefore, the depth of water upsiream from the flume will be
2.50 + 0.43 = 2.93 ft.

Similarly, try 2- and 3-ft flumes, It is found that the respective crest elevations
are 1.53 and 1.23 {t and that the respective upstream water depths are 2.98 and 3.12 ft.

In deciding the most practical size of flume to use, it will be necessary to examine
the freeboard of the channel and the effect of rise of the water surface upon the flow
through. the headgate. If these conditions are satisfactory, the 2-ft flume will be the

F1a. 4-9. Section of a Parshall flume illustrating the determination of the proper crest
elavation [26].

most economical because of its small dimensions. However, when the width of the
channel is considered, the final selection may be in favor of the 3- or 4-ft flume because
moderate or long wing walls may be required for a small structure. Usually, the
throat width of the flume will be from one-third to one-half of the channel width.

PROBLEMS

4-31. Prove the following critical-discharge equations for the triangular, trapezoidal,
and ecircular sections:

Channel Section Eguation
Triangular Q. = 2.295:H 25 (4-19)
. _ 5.871[(b 4+ =y)y]t-®
T_rapezmda.l . = B + 22y)0 (4-20)
. _ 0.251(6 — sin §)+% .,
Circular Q. = (sin 148)55 do (4-21)
Parabolic Q. = 2.0056TH 5 (4-22)

In the above equations, @ = 1 and H, is the specific-energy head; other notation
follows that of Table 2-1,

4-2. Compute the hydraulic exponent M of the trapezoidal channel section (Fig.
2-2) having a flow depth of 6 ft, using (a) Eq. (4-10), (b) Fig. 42, and (¢) the
graphical method based on Eq. (4-11).

4-3. Compute the hydraulic exponent M of a 86-in. circular conduit having a
flow depth of 24 in. above the invert, using (a) Fig. 4-2 and (b) the graphical method
based on Eq. (4-11).

4-4, Prove that the critical depth and velocity for a rectangular channet sre
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3 (202
Ye = %‘?{ (4-23)
3
_ oA loye _ (9
and V., = =Ny (4-24)

where Q is the discharge, t 1s the channel width, and « is the energy coeflicient.

4-5. A rectangular channel, 20 ft wide, carries a discharge of 200 efs. Compute
the critical depth and velocity.

4-8. Solve Example 4-2 by various methods if the discharge is 300 efs.

4-7. Solve Example 4-3 by various methods if the discharge is 15 cfs.

4-8. An approximate but practical formula for the critical depth of a circular sec-
tion of diameter d, derived by Braine [40] from an equation equivalent to Eq. (4-21),
is

expressed by

24
ye = 0.325 (%) + 0.083ds (4-25)

which is accurate only when 0.3 < y./do < 0.9. Solve Example 4-3 and Prob. +7 by

this formula.

4-9. Referring to the natural channel given in Prob. 2-5, construct a curve of critical
depth against discharge, ranging from 0 to 400 cfs.

4-10. Prove that the section of a channel in which the flow is critical at any stage
takes the form expressed by :

2

gyt = 'g% (4-26)

where z is half the top width and v is the distance of the water surface below the energy
line. Draw & sketch of the section and describe its properties. Is this channel possi-
ble? If not, how could it be made possible? Is this channel practicable and the
flow stable?

4-11, Verify the computations for the 2- and 3t Parshall flumes tried in Exam-
ple 4-5.

4-12. Determine the discharge through the 4-ft Parshall flume described in Exam-
ple 4-5 if the percentage of submergence is 80%.

4-18. Determine the discharge measured by a 10-ft Parshall flume if the gage read-
ing H. is 3.41 ft at a free-flow condition.

4-14. Design a Parshall flume to measure 10 cfs of flow in & channel having a depth
of flow equal to 1.5 ft.

4-15. A uniform flow of 300 cfs occurs at a depth of 5 ft in a long rectangular chan-
nel 10 ft wide. Cormpute the minimum height of a flat-top hump that can be built
on the floor of the channel in order to produce a critical depth. What will result if
the hump is lower or higher than the computed minimum height?

4-16. If the critical depth in the above problem is produced by a coatraction of the
channel, what will be the maximum contracted width?

4-17. A low dam 5 ft high having a broad horizontal crest is built in a rectangular
_ channel 20 £t wide. Assuming that a depth of 2.5 £t measured on the crest is the
critical depth, compute the discharge and the depth of flow upstream from the dam.

4.18. On the basis of the theory of critical flow, Stevens [32] has derived the rating
curves for the blister-shaped critical-flow flume that he proposed for use in circular
conduits (Fig. 4-10). In the derivation, it is assumed (1) that there is no energy-loss
from w1 t0 ¥., (2) that the approaching velocity in the pipe is equal to the discharge
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Fig. 4-10. Rating curves of a critical-flow flume proposed for a closed conduit.  (Afier
J. . Stevens {32].) dy = diameter of the conduit.

divided by the water area corresponding to the energy head instead of the actual
area corresponding to y;, and (3) that the critical-flow section is at the maximum
height of the control “hump.” The second assumption eliminates a trial procedure
in determining the velocity head of the approaching flow and, furthermore, tends to
compensate for the error involved in the first assumption. Verify any one of the
rating curves.
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CHAPTER 5

DEVELOPMENT OF UNIFORM FLOW
AND ITS FORMULAS

5-1. Qualifications for Uniform Flow. The uniform flow to be con-
gidered has the following main features: (1) the depth, water area,
veloeity, and discharge at every section of the channel reach are constant;
and (2) the energy line, water surface, and channel bottom are all paral-
lel; that is, their slopes are all equal, or S = S, = So = §. For practical
purposes, the requirement of constant velocity may be liberally inter-
preted as the requirement that the flow possess a constant mean velocity.
Strictly speaking, however, this should mean that the flow possesses a
constant velocity at every point on the channel section within the uni-
form-flow reach. In other words, the velocity distribution across the
channel section is unaltered in the reach. Such a stable pattern of
velocity distribution can be attained when the so-called ‘‘boundary layer”
is fully developed (Art, 8-1).

Uniform flow is considered to be steady only, since unsteady uniform
flow is practically nonexistent. In natural streams, even steady uniform
fdow is rare, for rivers and streams in natural states scarcely ever experi-
ence a strict uniform-flow condition. Despite this deviation from the
truth, the uniform-flow condition is frequently assumed in the computa-~
tion of flow in natural streams. The results obtained from this assump-
tion are understood to be approximate and general, but they offer a
relatively simple and satisfactory solution to many practical problems.

As turbulent uniform flow is most commonly encountered in engi-
neering problems, it will be discussed extensively in the following chapters.
Laminar uniform flow has limited engineering applications, and will be
described only in Art. 6-10,

It should be noted that uniform flow cannot oceur at very high veloci-
ties, usually described as ultrarapid. This is because, when uniform flow
reaches a certain high velocity, it becomes very unsiable. At higher
velocities the flow will eventually entrain air and become unsteady.
The criterion for instability of uniform flow will be discussed in Art. 8-8.

5-2. Establishment of Uniform Flow. When flow occurs in an open
channel, resistance is encountered by the water as it lows downstream.

39
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This resistance is generally counteracted by the components of gravity
forces acting on the body of the water in the direction of motion (Fig. 5-2).
A uniform flow will be developed if the resistance is balanced by the
gravity forces. The magnitude of the resistance, when other physical
factors of the channel are kept unchanged, depends on the velocity of flow.

Varied flow; Uniform flow [Voﬁedf[owi
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Fia. 5-1. Establishment of uniform flow in a long channel.

If the water enters the channel slowly, the velocity and hence the resist-
ance are small, and the resistance is outbalanced by the gravity forces,
resuiting in an accelerating flow in the upstreamreach. The velocity and
the resistance will gradually increase until a balance between resistance
and gravity forces is reached. At this moment and afterward the flow
becomes uniform. The upstream reach that is required for the establish-
ment of uniform flow is known as the fransitory zone. In this zone the
flow is accelerating and varied. If the channel is shorter than the transi-
tory length required by the given conditions, uniform flow cannot be
attained. Toward the downstream end of the channel the resistance
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may again be exceeded by gravity forces, and the flow may become varied
again.

For purposes of explanation, a long channel is shown with three dif-
ferent slopes: subcritical, critical, and supercritical (Fig. 5-1). At the
subcritical slope (top sketch in Fig. 5-1) the water surface in the transi-
tory zone appears undulatory. The flow is uniform in the middle reach
of the channel but varied at the two ends.! At the critical slope (middle
sketech in Fig. 5-1) the water surface of the critical flow is unstable.
Possible undulations may occur in the middle reach, but on the average
the depth is constant and the flow may be considered uniform. At the
supercritical slope (bottom sketeh in Fig. 5-1) the transitory water surface
passes from the subcritical stage to the supercritical stage through a
gradual hydraulic drop. Beyond the transitory zone the flow is approach-
ing uniformity. The depth of a uniform flow is called the normal depth.
In all figures the long dashed line represents the normal-depth line,
abbreviated as N.D.L., and the short dashed or dotted line represents
the critical-depth line, or C.D.L.

The length of the transitory zone depends on the discharge and on the
vhysical conditions of the channel, such as entrance condition, shape,
slope, and roughness. From a hydrodynamic standpoint (see Art. 8-1),
the length of the transitory zone should not be less than the length
required for the full development of the boundary layer under the given
conditions,

§-3. Expressing the Velocity of a Uniform Flow. For hydraulic com-
putations the mean velocity of a turbulent uniform flow in open channels
is usually expressed approximately by a so-called uniform-flow formula.
Most practical uniform-flow formulas can be expressed in the following
general form:

V = CR=Sv (5-1)

where V is the mean velocity in fps; R is the hydraulic radius in fi; S is
the energy slope,? z and y are exponents; and ' is a factor of flow resist-
ance, varying with the mean velocity, hydraulic radius; channel rough-
ness, viscosity, and many other factors.

For practical purposes, the flow in a natural channel may be assumed
uniform under normal conditions, that is, if there are no flood flows or
mearkedly varied flows caused by channel irregularities. In applying

! Theoretically speaking, the varied depth at each end approaches the uniform
depth in the middle asymptotically and gradually. For practical purposes, however,
the depth may be considered constant if the variation in depth is within a certain
margin, say, 1% of the average uniform-flow depth.

?In uniform flow, § = 8y = 8y = So. When the uniform-flow formula is applied
to the computation of energy slope in 2 gradually varied flow, the energy slope will
be denoted specifically by Sy instead of 8.
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the uniform-flow formula to a natural stream, it is understood that the
result is very approximate since the flow condition is subject to more
uncertain factors than would be involved in a regular artificial channel.
As pointed out by Schneckenberg [1], a good uniform-flow formula for
an alluvial channel with sediment transport and turbulent flow should
take equal account of all the following variables:

A the water area
V'  the mean velocity
V.. the maximum surface velocity

P the wetted perimeter

R the hydraulic radius

y the maximum depth of water area
S. the slope of the water surface

n a coefficient representing the channel roughness, known as the

coefficient of roughness’

Q. the suspended sediment charge

Q» the bed load

p  the dynamic viscosity of the water
T the temperature of the water

There have been developed and published a large number of practical
uniform-flow formulas,? but none of these formulas meets the qualifica~
tions of a good formula as defined above. The best known and most
widely used formulas are the Chézy and Manning formulas, which will
be described in the following articles and used extensively in this book.
Theoretical uniform-flow formulas have also been derived on the basis of
a theoretical velocity distribution across the channel section, which will
be discussed later (Art. 8-5).

A different approach to the determination of the velocity in & natural
channel has been attempted by Toebes [6]. In this approach a multiple-
correlation analysis is applied to the following significant factors affecting
the velocity in a given alluvial channel: water area, maximum surface
velocity, wetted perimeter, maximum depth, slope of water surface,
coefficient of roughness, and temperature of water. By this method it is
possible to evaluate the independent individual influence of each variable
on the magnitude of the velocity. When such an evaluation is made,
the velocity under any given condition of the variables is simply equal to
the algebraic summation of the individual contributions as affected by
each variable. However, this method applies only to the streams in the
geographical region for which the analysis is made; hence, its application
cannot be generalized.

1In British literature the term “rugosity coefficient’ is used.

2 A pumber of well-known uniform-flow formulas are given and discussed in [2]
to [5].
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5-4. The Chézy Formula. As early as 1769 the French engineer
Antoine Chézy was developing probably the first uniform-flow formula, the
famous Chézy formula® which is usually expressed as follows:

V = /RS (5-2)

where V is the mean velocity in fps, R is the hydraulic radius in %, S is

the slope of the energy line, and ( is a factor of flow resistance, called
Chézy’s C.

Fra. 5-2. Derivation of the Chézy formula for uniform flow in open channel.

The Chézy formula can be derived mathematically from two assump-
tions. The first assumption was made by Chézy. It states that the .
force resisting the flow per unit area of the stream bed is proportional to
the square of the velocity; that is, this force is equal to K72 where K is a
constant of proportionality. The surface of contact of the flow with the
stream bed is equal to the product of the wetted perimeter and the length
of the channel reach, or PL (Fig. 5-2). The total force resisting the flow?
is then equal to KV2PL.

1 The source of this famous formula is not mentioned in most hydraulics textbooks.
In fact, this knowledge has long been sought for. In 1876, the German engineer
Gotthilf Heinrich Ludwig Hagen mentioned in his work [7] that Gaspard de Prony
had stated that Chézy set up this formula in 1775, on the oceasion of a report that
Chézy made on the Canal de 'Yvette in conjunction with Jean-Rodolphe Perronet.
“But,” says Hagen, “I have sought in vain for further information on the subject.”
Then, in 1897, the American engineer Clemens Herschel through the assistance of a
friend in Paris traced the original Canal de I'Yvette report to its hiding place, then
translated the portion relating to the formula, and published it in {8]. Chézy’s report
revealed that the formula was developed and verified by experiments made on an
earthen canal, the Courpalet Canal, and on the Seine River in late 1769.

*This channel resisting force may also be explained by the principles of fluid
dynamics. The open channel can be conceived as a flat plate warped into a cylinder
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The second assuraption is the basic principle of uniform flow, which is
believed to have been claimed first by Brahms [9] in 1754. It states
that, in uniform flow, the effective component of the gravity force causing
the flow must be equal to the total force of resistance. The effective
gravity-force component (Fig. 5-2) is parallel to the channel bottom and
equal to wAL sin § = wALS, where w is the unit weight of water, A is the
water arvea, f is the slope angle, and S is the channel slope. Thence,

wALS = KV?PL. Let A/P = Randlet v/w/K be replaced by a factor
C; then the previous equation is reduced to the Chézy formula, or
V = ~/w/K)(4/P)S = C V/RS.

Many attempts have been made to determine the value of Chézy’s C.
Three important formulas developed for this purpose will be given in the
next article

5-5. Determination of Chézy's Resistance Factor. Three important
formulas for the determination of Chézy’s C are given as follows:

A. The G. K. Formula. In 1869, two Swiss engineers, Ganguillet and
Kutter [10], published a formula expressing the value of C in terms of the
slope S, hydraulic radius R, and the coefficient of roughness n. In
English units, the formula is

0.00281 , 1.811

41.65 + g -+ n ‘
C = (5-3)
0.00281 n
1 41.65 —
+ ( T3 ) V'R

The coeffcient n in this formula is specifically known as Kutter’'sn. The
value of n will be discussed in Arts. 5-7 and 5-8.

The G. K. formula was derived elaborately from flow-measurement
data in channels of various types, including Bazin's gagings and the
gagings of many European rivers and of the Mississippi River.2 Although

but unclosed on one side which corresponds to the free surface of the open-channel
fow. A fluid flowing in the unclosed cylinder will create a drag or resisting forece on
the inside surface. ‘This foree is equal to the drag created by the flow of fluid along
a flat plate whose two surfaces offer resistance to the flow. The latter is equal to
CapV2PL/2, where Cqa is the coefficient of drag and p is the mass density of the fluid.
Thus, the factor Cap/2 is equivalent to the constant of proportionality K.

1 The slope under consideration is defined as the sine of the angle of inclination, or
S = sin 6.

2 The Mississippi River gagings were made by Humphreys and Abbot on the lower
Mississippi River between 1850 and 1860, and the data thus obtained were published
in a report submitted to the U.8. Army Corps of Topographical Engineers in 1861 [11].
The term containing S was introduced into the G. K. formula simply in order to make
the formula agree witl the Humphreys and Abbot data. This seems somewhat
ridiculous now, because these data are known to have been guite inaccurate (see
pp. 133-136 of [2]). Some authors have suggested that the slope term. 0.00281/8 of
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the formula appears cumbersome, it usually produces satisfactory results.
Tt has been so widely used that many tables and charts are available for
its application; so the use of the formula itself is seldom found necessary
in engineering offices. Figure 5-3 gives a popular chart for the solution
of the G. K. formula.

B. The Bazin Formula. In 1897, the French hydraulician H. Bazin!
proposed & formula according to which Chézy’s is considered a function
of B but not of S. Expressed in English units, this formula is

157.6
TFm/vE -4

where m is a coefficient of roughness whose values proposed by Bazin are
given in Table 5-1.

O:

TarrE 5-1. PrROPOSED VALUES oF Bazin's m

Deeseription of channel Bazin’s m
Very smooth cement of planed wood................ 0.11
Unplaned wood, concrete, or brick.................. 0.21
Ashlar, rubble masonry, or poor brickwork........... 0.83
Earth channels in perfect condition................. 1.54
Earth channels in ordinary condition. ............... 2.36
Earth channels in rough condition.................. 3.17

The Bazin formula was developed primarily from data collected from
small experimental channels; hence, its general application is found to be
less satisfactory than the G. K. formula.

The Miami Conservancy District [2] has made a study comparing the
variations in Chézy’s C, Bazin’s m, and Kutter’s n for Bazin’s experi-
mental data and several natural streams. The results based on this
study are shown in Table 5-2. The values of the average variation indi~
cate that Bazin’s formula is not as good as Kutter’s even for his own
measurements.

C. The Powell Formula. In 1950, Powell [14] suggested a logarithmic
formula for the roughness of artificial channels. This formula, an
implicit function of €| is

C ¢ .
C = —42 log (ﬁ -+ E) (5-5)

the G. K. formula be omitted in order to simplify the appearance of the formula and
even to make the general results more satisfactory.

1 From 1855 and 1862 an extensive series of experiments on open-channel flow were
first begun by H. Darcy and then completed by Bazin. The results were published
by Bazin in 1863 [12]. On the basis of the accumulated data, Bazin finally proposed
the formula in 1897 [13].
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where R is the hydraulic radius in ft; R is the Reynolds number; and e is
a measure of the channel roughness, having the tentative values shown
in Table 5-3.

For rough channels, the flow is generally so turbulent that R becomes
very large compared with C; thus, Eq. (5-5) approximates the form

TapLE 5-2. COMPARISON OF VARIATIONS IN CHBEZY'S C, Bazin’s m,
AxD KUTTER'S 1

Average values f}vgrage
variations, %
Measurementa
C m n C m n
Bazin’s Seried 6. .. v erriitiinaanrfoenas 0.185|0.0127..... 5.2 | 1.1
PPN PR 0.156(0.0120].. ... 3.411.0
- SRR PSRN 0.142|0.0116|. . ... 3.812.5
o PR RS 0.199/0.0130j. .. .. 10.6 | 1.2
5 {0 PP [N 0.144:0.0117}. . ... 3.4 1.4
3 PP PR 0.129(0.0113]..... 3.713.8
152U ANPPS DU 0.324/0.0151].. ... 1.6 1.0
§ I SR PP 0.311(0.0148|..... 2.7 01.2
I N R 0.3210.0150..... 4.411.8
31 ) I 0.715]0.0209}..... 4.2 11.2
1 JEPP U RN PP 0.711j0.0212. .. .. 5711.6
) A 0.721:0.0215(. .. .. 6.7 1 2.2
£ 12 OGN D (0.424(0.0168|..... 1.8 10.4
223 SO NS PR 0.444(0.0171|..... 3.1]1.2
. AP PR 0.658(0.0195].. ... 18.6 | 8.8
Y RN PP 0.704|0.0205. . ... 11,11 5.7
Miami River at Tadmor, Ohio, 1915-1916....|67.4%1.98 0.0316| 4.08|10.9 | 4.9
Bogue Phalia River, Miss., 1914............. 63.3%4.00 |0.0704|24.20|35.7 (22.2
Arkansas Drainage Canals, Ark,, 1915....... 65.9%2.12 10.0324| 3.18[ 4.8 | 1.6
Mississippi River, Carrolton, La., 1932 ......}..... 1.33 |0.03200 1.30| 5.4 | 3.0
Mississippi River, Carrolton, La., 1913.......[..... 1.46 (0.0334| 2.80 12.8 1 2.8
Irrawaddy River,Burma.........coooviuees]orns 1.35 |0.0332| 4.10{23.0 | 6.2
Volga River at Samara, Russia. ..........0ot)oeens 1.58 |0.0311) 1.87[13.0 | 4.1
Volga River at Zhiguly, Russia...........voe]o0ne- 1.76 [0.0363|18.80(36.5 | 5.0
Average variation. . ... ... [ e 7.54| 9.67) 3.58

* Values averaged by the author.

C = 42 log (R/¢). TFor smooth channels, the surface roughness may be
so slight that e becomes negligible compared with R; then the formula
approaches the form C = 42 log (4R/C). Since Chézy’s C is expressed
implicitly in the Powell formula, the solution of the formula for C requires
a, trial-and-error procedure.

The Powell formula was developed from limited laboratory experiments
on smooth and rough channels and from the theoretical velocity distri-

Ty
E_
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bution studied by Keulegan (Art. 8-4). The practical application of this
formula is limited, since further investigation is needed for determination
of the proper values of e.

TARLE 5-3. TENTATIVE VALUES OF Powsri's ¢

Powell's e
Description of channel

New O
Neat cement surface. ... .o oot (.0002 0.0004
Unplaned-plank flumes.............o.h. 0.0010 0.0017
Concrete-lined channels. .......... ... .. 0.004 0.006
Earth, straight and uniform............. 0.04
Dredged earth channels................. 0.10

Example 5-1. Compute the velocity and discharge in the trapezoidal channel
described in Example 2-1, having a bottom width of 20 ft, side slopes 2:1, and a depth
of water 6 Tt. Given: Kutter's n = 0.015, and S = 0.005.

Solution. From Example 2-1, 4 = 192.0 ft? and B = 4.10 ft. Using the G. K.
formula, the value of Chézy’s C is

0.00281 . 1.811
41.65 + 55655 T 0.015

¢= - ( 1165 . 0:0028T\ 0.015 = 1242
) 0.005 ~/4.10

Then, by the Chézy formula,

V = 1242 /4.10 X 0.005 = 17.8 fps
Therefore,

Q = 192.0 X 17.8 = 3,420 cfs

5-6. The Manning Formula. In 1889 the Irish engineer Robert
Meanning! presented a formula, which was later modified to its present

! Manning first presented the formula in a paper read on December 4, 1889, at a
meeting of the Institution of Civil Engineers of Ireland. The paper was later pub-
lished in the Transactions of the Institution [15]. The formula was first given in a
complicated form and then simplified to V = CR%8%, where V is the mean velocity,
(' is a factor of flow resistance, R is the hydraulic radius, and S is the slope. This was
further modified by others and expressed in metric units as V = (1/n)R%S8¥. Later,
it was converted back again to English units, resulting in V = (1.486/n)R%S8%. In
this conversion, as in the conversion of the Ganguillet and Kutter formula, the
numerical value of 7 is kept unaffected. Consequently, the same value of n is widely
used in both systems of units.

In the view of modern fluid mechanics, which pays much attention to dimensions,
the dimensions of n become a matter of consideration. Directly from the Manning
formula, the dimensions of n are seen to be TL7%. Since it is unreasonable to sup-
pose that the roughness coefficient would contain the dimension 7', scme authors
assume that the numerator contains +/g, thus yielding the dimensions of L* for n.
Alse, for physical reasons, it will be seen that n = {6 (R/k)IkY {Eq. (8-26)], where k 1s
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well-known form
_ 149
)

V R#8% (5-6)
where V is the mean velocity in fps, R is the hydraulic radius in ft, S is
the slope of energy line, and n is the coefficient of roughness, specifically
known as Manning’s n. This formula was developed from seven diifer-
ent formulas, based on Bazin’s experimental data, and further verified
by 170 observations.! Owing to its simplicity of form and to the satis-

a linear measure of roughness and ¢ (R/k) is a function of Z/k. If ¢(R/k) is considered
dimensionless, n will have the same dimensions as those of k4%, that is, L3S,

On the other hand, of course, it is equally possible to assume that the numerator
of 1.486/n can absorb the dimensions of L¥T 1, or that ¢(&/ %) involves a dimensional
factor, thus leaving no dimensions for n. Some authors, therefore, preferring the
simpler choice, consider n a dimensionless cocflicient.

Tt is intervesting to note that the conversion of the units for the Manning formula
is independent of the dimensions of =, as long as the same value of n is used in both
systems of units. If n is assumed dimensionless, then the formula in English units
gives the numerical constant 3.2808)% = 1.486 since 1 meter = 3.2808 ft. Now, if n
i assumed to have the dimensions of L%, its numerical value in English units must be
different from its value in metric units, unless a numerical correction factor is intro-
duced for compensation. Let n be the value in metric units and n' the value in Eng-
lish units. Then, n’ = (3.2808%)n = 1.2190n. When the formula is converted from
metric to English units, the resulting form takes the numerical constant 3.2808%%4 =
3.9808% = 1.811, since » has the dimensions of L. Thus, the resulting equation
chould be written V = 1.811R%S8%/n/. Since the same value of n is used in both sys-
tems, the practical form of the formula in the English system is Vo= 1.811R34S%/
1.2100n = 1.486R3%:8% /n, which is identical with the formula derived on the assump-
tion that » has no dimensions.

Tn a search of early literature on hydraulics, the author has failed to find any
significant discussion regarding the dimensions of n. It seems that this was not a
problem of concern to the forefathers of hydraulics. It is most likely, however, that
» was unconsciously taken as dimensionless in the conversion of the Manning formula,
because such a conversion, as shown above, is more direct and simpler.

Now, considering the approximations involved in the derivation of the formula
and the uncertainty in the value of =, it seems unjustifiable to carry the numerieal
constant to more than three significant figures. For practical purposes, a value of
1.49 is believed to be sufficiently accurate [16].

Manning mentioned that the simplified form of the formula had been suggested
independently by G. H. L. Hagen prior to Manning’s own work, according to a state-
ment by Major Cunningham [17]. Hagen’s formula was believed to have appeared
frst in 1876 [7). It is also known that Philippe-Gaspard Gauckler [18] had an early
proposal of the simplified form of Manning’s formula in 1868 and that Strickler [19]
presented independently the same form of the formula in 1923.

1 For the derivation of the exponent of R, use was made of Bazin's experimental
data on artificial channels [12]. For different shapes and roughnesses, the average
value of the exponent was found to vary from 0.6499 to 0.8395. Considering these
veriations, Manning adopted an approximate value of 2§ for the exponent. On the
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factory results it lends to practical applications, the Manning formula has
become the most widely used of all uniform-flow formulas for open-chan-
nel flow computations.! A nomographic solution of the formula is given
in Appendix C.

Within the normal ranges of slope and hydraulic radius, the values of
Manning’s n and Kutter’s n are generally found to be numerically very
close. For practical purposes, the two values may be considered identical
when the slope is equal to or greater than 0.0001 and the hydraulic radius
is between 1.0 and 30 ft. Typical values good for both Kutter’s n and
Manning’s n are shown in Table 5-6 and illustrated in Fig. 5-b.

Comparing the Chézy formula with the Manning formula, it can be
seen that

¢ =129 pu (5-7)

n

This equation provides an important relationship? between Chézy’s C
and Manning’s 7.

The exponent of the hydraulic radius in the Manning formula is actually
not & constant but varies in a range depending mainly on the channel
shape and roughness (see a previous footnote). For this reason, some
hydraulicians prefer to use the formula with a variable exponent. For
example, the uniform-flow formula widely used in the U.8.8.R. is of this
type; this is the Pavlovskil formula [21], proposed in 1925.* This formula
in metric units 1s

1
C =R (5-8)
where y = 2.5 v/n — 0.13 — 0.75 v/ R(+v/n — 0.10) (5-9)

and where C is the resistance factor in the Chézy formula expressed in
metric units. The exponent y depends on the roughness coefficient and
hydraulic radius. The formula is valid for & between 0.1 and 3.0 m and

basis of other later studies, some authors suggested a value of 34 [20], and others sug-
gested a variable depending on R and » [21].

1 The Manning formula was suggested for international use by Lindquist {3] at the
Scandinavia Sectional Meeting of the World Power Conference in 1933 in Stockholm.
The final recommendation for such use was made by the Executive Committee at the
3d World Power Conference in 1936 in Washington, D.C.

2 On account of this relationship, the Manning formula is sometimes considered a
variation of the Chézy formula with Chézy’s C defined by Eq. (5-7).

* The Pavlovskil formula was published in several editions of Pavlovskil’s ¢ Hand-
book of Hydraulics” [21]. An article about this formula entitled Formula dlia
koeffitsienta Chézy (Formula for a Chézy coefficient) is given in pp. 140-149 of the 1937
edition of the book. A footnote in this article reads: “The formula was proposed in
1925.”
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for n between 0.011 and 0.040. For practical purposes, the following
approximate forms of Eq. (5-9) are generally suggested for use:

y = 1.5 \/@ for R<10m (6-10)
y=13+n forE>10m (5-11)

5-7. Determination of Manning’s Roughness Coefficient. In applying
the Manning formula or the G. K. formula, the greatest difficulty lies
in the determination of the roughness coefficient n; for there is no exact
method of selecting the » value. At the present stage of knowledge, to
select a value of n actually means to estimate the resistance to flow in a
given channel, which is really a matter of intangibles. To veteran
engineers, this means the exercise of sound engineering judgment and
experience; for beginners, it can be no more than a guess, and different
individuals will obtain different results.

In order o give guidance in the proper determination of the roughness
coefficient, four general approaches will be discussed; namely, (1) to
anderstand the factors that affect the value of n and thus to acquire &
basic knowledge of the problem and narrow the wide range of guesswork,
(2) to consult a table of typical n values for channels of various types,
(3) to examine and become acquainted with the appearance of some
typical channels whose roughness coeflicients are known, and (4) to
determine the value of n by an analytical procedure based on the theoreti-
cal velocity distribution in the channel cross section and on the data of
either velocity or roughness measurement. The first three approaches
will be given in the next three articles, and the fourth approach will be
taken up in Art. 8-7.

5-8. Factors Affecting Manning’s Roughness Coefficient. It is not
uncommon for engineers to think of a channel as having a single value of
n for all occasions. In reality, the value of n is highly variable and
depends on a number of factors. In selecting a proper value of » for
various design conditions, a basic knowledge of these factors should be
found very useful. The factors that exert the greatest influence upon the
coefficient of roughness in both artificial and natural channels are there-
fore described below. It should be noted that these factors are to a cer-
tain extent interdependent: hence discussion about one factor may be
repeated in connection with another.

A. Surface Roughness. The surface roughness is represented by the
size and shape of the grains of the material forming the wetted perimeter
and producing a retarding effect on the flow. This is often considered
the only factor in selecting a roughness coefficient, but it is actually
tust one of several major factors. Generally speaking, fine grains result
in a relatively low value of 7 and coarse grains, in a high value of n.

In alluvial streams where the material is fine in grain, such as sand,
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clay, loam, or silt, the retarding effect is much less than where the material
is coarse, such as gravels or boulders. When the material is fine, the
value of n is low and relatively unaffected by change in flow stage. When
the material consists of gravels and boulders, the value of n is generally
high, particularly at low or high stage. Larger boulders usually collect
ot the bottom of the stream, making the channel bottom rougher than the
banks and increasing the value of n at low stages. At high stages, a
portion of the energy of flow is used in rolling the boulders downstream,
thus increasing the value of n. A theoretical discussion of surface rough-
ness will be given in Art. 8-2.

B. Vegetation. Vegetation may be regarded as a kind of surface
roughness, but it also markedly reduces the capacity of the channel and
retards the flow. This effect depends mainly on height, density, distri-
bution, and type of vegetation, and it is very important in designing
small drainage channels.

At the University of Illinois an investigation has been made to deter-
mine the effect of vegetation on the coefficient of roughness [22]. On one
of the drainage ditches in central Illinois under investigation, an average
n value of 0.033 was measured in March, 1925, when the channel was in
good condition. In April, 1926, there were bushy willows and dry weeds
on the side slopes, and n was found to be 0.055. This increase in n
represents the result of one year’s growth of vegetation. During the
summers of 1925 and 1926 there was a thick growth of cattails on the
bottom of the channel. The n value at medium summer stages was
about 0.115, and at a nearly bankfull stage it was 0.099. The cattails
in the channel were washed out by the high water in September, 1926; the
average value of n found after this occurrence was 0.072. The conclusions
drawn from this investigation were, in part, as follows:

1. The minimum value of n that should be used for designing drainage
ditches in central Illinois is 0.040. This value is obtainable at high
stages during the summer months in the most carefully maintained chan-
nels, where the bottom of the channel is clear of vegetation and the side
slopes are covered with grass or low weeds, but no bushes. This low
value of 7 should not be used unless the channel is to be cleared annually
of all weeds and bushes.

9. A value of n = 0.050 should be used if the channel is to be cleared
in alternate years only. Large weeds and bushy willows from 3 to 4 ft
high on the side slopes will produce this value of n.

3. In channels that are not cleared for a number of years, the growth
may become so abundant that values of n > 0.100 may be found.

4 Trees from 6 to 8 in. in diameter growing on the side slopes do not
impede the flow so much as do small bushy growths, provided overhang-
ing branches are cut off.
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The U.S. Soil Conservation Service has made studies on flow of water
in small shallow channels protected by vegetative linings (Chap. 7,
Sec. C). It was found that n values for these channels varied with the
shape and cross section of the channel, the slope of the channel bed, and
the depth of low. Comparing two channels, all other factors being equal,
the lesser average depth gives the higher n value, owing to a larger
proportion of affected vegetation. Thus, a triangular channel has a
higher n value than a trapezoidal channel, and a wide channel has a
lower n value than a narrow channel. A flow of sufficient depth tends to
bend over and submerge the vegetation and to produce low n values. A
steep slope causes greater velocity, greater flattening of the vegetation,
and low n values. )

The effect of vegetation on flood plains will be discussed later in item H.

C. Channel Irregularity. Channel irregularity comprises irregularities
in wetted perimeter and variations in cross section, size, and shape along
the channel length. In natural channels, such irregularities are usually
introduced by the presence of sand bars, sand waves, ridges and depres-
sions, and holes and humps on the channel bed. These irregularities
definitely introduce roughness in addition to that caused by surface
roughness and other factors. Generally speaking, a gradual and uniform
change in cross section, size, and shape will not appreciably affect the
value of n, but abrupt changes or alternation of small and large sections
necessitates the use of a large value of n. In this case, the increase in n
may be 0.005 or more. Changes that cause sinuous flow from side to
side of the channel will produce the same effect.

D. Channel Alignment. Smooth curvature with large radius will give
a relatively low value of n, whereas sharp curvature with severe meander-
ing will increase n. On the basis of flume tests, Scobey [23] suggested
that the value of n be increased 0.001 for each 20 degrees of curvature in
100 ft of channel. Although it is doubtful whether curvature ever
inereases n more than 0.002 or 0.003, its effect should not be ignored, for
curvature may induce the accumulation of drift and thus indirectly
increase the value of n. Generally speaking, the increase of roughness
in unlined channels carrying water at low velocities is negligible. An
increase of 0.002 in n value would constitute an adequate allowance for
curve losses in most fAlumes containing pronounced curvatures, whether
wuilt of concrete or other materials. The meandering of natural streams,
however, may increase the n value as high as 30%.

E. Silting and Scouring. Generally speaking, silting may change a
very irregular channel into a comparatively uniform one and decrease 7,
whereas scouring may do the reverse and increase 7. However, the
dominant effect of silting will depend on the nature of the material
deposited. Uneven deposits such as sand bars and sand waves are
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channel irregularities and will increase the roughness. The amount and
uniformity of scouring will depend on the material forming the wetted
perimeter. Thus, a sandy or gravelly bed will be eroded more uniformly
than a clay bed. The deposition of silt eroded from the uplands will
tend to even out the irregularities in a channel dredged through clay.
The energy used in eroding and carrying the material in suspension or
rolling it along the bed will also increase the n value. The effect of
scouring is not significant as long as the erosion on channel bed caused by
high velocities is progressing evenly and uniformly.

F. Obstruction. The presence of log jams, bridge piers, and the like
tends to increase n. The amount of increase depends on the nature of
the obstructions, their size, shape, number, and distribution.

G. Size and Shape of Channel. There is no definite evidence about
the size and shape of & channel as an important factor affecting the value
of n. An increase in hydraulic radius may either increase or decrease 7,
depending on the condition of the channel (Fig. 5-4).

H. Stage and Discharge. The n value in most streams decreases with
increase in stage and in discharge. When the water is shallow, the
irregularities of the channel bottom are exposed and their effects become
pronounced. However, the n value may be large at high stages if the
banks are rough and grassy.

When the discharge is too high, the stream may overflow its banks and
g portion of the flow will be along the flood plain. The n value of the
flood plains is generally larger than that of the channel proper, and its
magnitude depends on the surface condition or vegetation. If the bed
and banks of a channel are equally smooth and regular and the bottom
slope is uniform, the value of 7 may remain almost the same at all stages;
so @ constant 7 is usually assumed in the flow computation. This
happens mostly in artificial channels. On flood plains the value of n
usually varies with the stage of submergence of the vegetation at low
stages. This can be seen, for example, from Table 5-4, which shows the
n values for various flood stages according to the type of cover and depth

TapLE 5-4. VALUES OF 7 FOR VARIOUS STAGES IN THE NISHNABOTNA RIvER,
Jowa, FOR THE AVERAGE GROWING SEASON

Flood-plain cover

Depth of Channel
water, ft section Corn Pasture | Meadow Sm_all Brush and

grains waste
Under 1 0.03 0.06 0.05 0.10 0.10 0.12
1to2 0.03 0.08 0.05 0.08 0.09 0.11
2t03 0.03 0.07 0.04 0.07 0.08 0.10
3to4 0.03 0.07 0.04 0.06 0.07 0.09
Over 4 0.03 0.06 0.04 0.05 0.06 0.08
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of inundation, as observed in the Nishnabotna River, Iowa, for the aver-
age growing season [24]. It should be noted, however, that vegetation
has a marked effect only up to a certain stage and that the roughness
coefficient can be considered to remain constant for practical purposes in
determining overbank flood discharges.
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Fre. 5-4. Variations of the n value with the mean stage or depth.

Curves of n value versus stage (Fig. 5-4) in streams have been given
by Lane [25], showing how value of n varies with stage in three large
river channels. For the roughness of large canals, a study in connection
with the design of the Panama Canal was made by Meyers and Schultz
[26]. The two most important conclusions reached from this study were
(1) that the n value for a river channel is least when the stage is at or
somewhat above normal bankfull stage, and tends to increase for both

1A table of n values for eleven large channels at the most efficient depths and the
curves showing the variations of n value with hydraulic radius in eight river channels
are also given in this reference.
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higher and lower stages; and (2) that the bankfull n values do not vary
greatly for rivers and canals in different kinds of material and in widely
separated locations. -

Tor circular conduits, Camp [27,28] was able to show that the n value
for a conduit fowing partially full is greater than that for a full conduit.
Using measurements on clean sewer pipe and drain tile, both clay and
concrete, from 4 to 12 in. in size, he found an Increase of about 24 % in the
n value at the half-depth (Fig. 6-5).! The n value for the pipe flowing
full was found to vary from 0.0095 to 0.011. Taking an average value of
0.0103, the n value at half-depth should be about 0.018. This is identical
with the usual design value, which is based largely on measured values in
sewers flowing partially full.

I. Seasonal Change. Owing to the seasonal growth of aquatic plants,
grass, weeds, willow, and trees in the channel or on the banks, the value
of n may increase in the growing season and diminish in the dormant
season. 'This seasonal change may cause changes m other factors.

J. Suspended Material and Bed Load. The suspended material and
the bed load, whether moving or not moving, would consume energy and
cause head loss or increase the apparent channel roughness.

All the above factors should be studied and evaluated with respect to
conditions regarding type of channel, state of flow, degree of maintenance,
and other related considerations. They provide a basis for determining
the proper value of n for a given problem. As a general guide to judg-
ment, it may be accepted that conditions tending to induce turbulence
and cause retardance will increase n value and that those tending to reduce
turbulence and retardance will decrease n value.

Recognizing several primary factors affecting the roughness coefficient,
Cowan [32] developed a procedure for estimating the value of n. By this
procedure, the value of n may be computed by

n = (’ﬁro + 1y + e+ N + n4)m5 (5—12)

where 7, is a basic n value for a straight, uniform, smooth channel in the
natural materials involved, n. is a value added to nq t0 correct for the
offect of surface irregularities, ns is a value for variations in shape and
size of the channel cross section, ns is a value for obstructions, ng 1S &
value for vegetation and flow conditions, and ms is 2 correction factor
for meandering of channel. Proper values of 7o to 74 and ms may be
selected from Table 5-5 according to the given conditions.

1 The n/no curve was based on measurements by Wilcox {29] on 8-in. clay and con-
crete sewer pipes and by Yarnell and Woodward [30] on open-butt-joint concrete
and clay drain tiles 4 to 12 in. in size. For depths less than about 0.15de, the
curve was verified by the data of Johnson [31] for large sewers.
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In selecting the value of ni, the degree of irregularity is considered
smooth for surfaces comparable to the best attainable for the materials
involved; minor for good dredged channels, slightly eroded or scoured
side slopes of canals or drainage channels; moderate for fair $o poor dredged
channels, moderately sloughed or eroded side slopes of canals or drainage
channels; and severe for badly sloughed banks of natural streams, badly
eroded or sloughed sides of canals or drainage channels, and unshaped,
jagged, and irregular surfaces of channels excavated in rock.

Tn selecting the value of 7., the character of variations in size and
shape of cross section is considered gradual when the change in size or
shape occurs gradually, alternating occasionally when large and small
sections alternate occasionally or when shape changes cause occasional
shifting of main flow from side to side, and alternating frequenily when
large and small sections alternate frequently or when shape changes
cause frequent shifting of main flow from side to side.

The selection of the value of ng is based on the presence and character-
istics of obstructions such as debris deposits, stumps, exposed roots,
boulders, and fallen and lodged logs. One should recall that conditions
considered in other steps must not be reevaluated or double-counted in
this selection. In judging the relative effect of obstructions, consider
the following: the extent to which the obstructions oceupy or reduce the
average water area, the character of obstructions (sharp-edged or angular
objects induce greater turbulence than curved, smooth-surfaced objects),
and the position and spacing of obstructions transversely and longitudi-
nally in the reach under consideration.

In selecting the value of ns, the degree of effect of vegetation is
considered

(1) Low for conditions comparable to the following: (a) dense growths
of fexible turf grasses or weeds, of which Bermuda and blue grasses are
examples, where the average depth of flow is 2 to 3 times the height of
vegetation, and (b) supple seedling tree switches, such as willow, cotton-
wood, or salt cedar where the average depth of flow is 3 to 4 times the
height of the vegetation.

(2) Medium for conditions comparable to the following: () turf grasses
where the average depth of flow is 1 to 2 times the height of vegetation,
(b) stemmy grasses, weeds, or tree seedlings with moderate cover where
the average depth of flow is 2 to 3 times the height of vegetation, and
{¢) brushy growths, moderately dense, similar to willows 1 to 2 years
old, dormant season, along side slopes of a channel with no significant
vegetation along the channel bottom, where the hydraulic radius is
greater than 2 ft.

(3) High for conditions comparable to the following: (a) turf grasses
where the average depth of flow is about equal to the height of vegetation,
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(b) dormant season—willow or cottonwood trees 8 to 10 years old, inter-
grown with some weeds and brush, none of the vegetation in foliage,
where the hydraulic radius is greater than 2 ft, and (c) growing season—
bushy willows about 1 year old intergrown with some weeds in full foliage
along side slopes, no significant vegetation along channel bottom, where
hydraulic radius is greater than 2 ft.

(4) Very high for conditions comparable to the following: (a) turt
grasses where the average depth of flow is less than one-half the height
of vegetation, (b) growing season—bushy willows about 1 year old, inter-
grown with weeds in full foliage along side slopes, or dense growth of
cattails along channel bottom, with any value of hydraulic radius up to
10 or 15 ft, and (¢) growing season—trees intergrown with weeds and brush,
all in full foliage, with any value of hydraulic radius up to 10 or 15 ft.

In selecting the value of ms, the degree of meandering depends on the
ratio of the meander length to the straight length of the channel reach.
The meandering is considered minor for ratios of 1.0 to 1.2, appreciable
for ratios of 1.2 to 1.5, and severe for ratios of 1.5 and greater.

In applying the above method for determining the n value, several
things should be noted. The method does not consider the effect of
suspended and bed loads. The values given in Table 5-5 were developed
from a study of some 40 to 50 cases of small and moderate channels.
Therefore, the method is questionable when applied to large channels
whose hydraulic radii exceed, say, 15 it. The method applies only to
unlined natural streams, floodways, and drainage channels and shows a
minimum value of 0.02 for the n value of such channels. The minimum
value of » in general, however, may be as low as 0.012 in lined channels
and as 0.008 in artificial laboratory flumes.

5-9. The Table of Manning’s Roughness Coefficient. Table 5-6 gives
a list of n values for channels of various kinds.* For each kind of channel
the minimum, normal, and maximum values of n are shown. The nor-
mal values for artificial channels given in the table are recommended only
for channels with good maintenance. The boldface figures are values
generally recommended in design. For the case in which poor mainte-
nance is expected in the future, values should be increased according to
the situation expected. Table 5-6 will be found very useful as a guide to
the quick selection of the n value to be used in a given problem. A
popular table of this type was prepared by Horton {34] from an examina-
tion of the best available experiments at his time.2 ‘Table 5-6 is compiled

1 The minimum value for Lucite was observed in the Hydraulic Engineering Labora~-
tory at the University of Illinois [33]. Such a low n value may perhaps be obtained
also for smooth brass and glass, but no observations have yet been reported.

2 A table showing n values and other elements from 269 observations made on many
existing artificial channels is also given by King [35].
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TABLE 5-5. Varurs ror T™iE COMPUTATION OF THE ROUGHNESS COEFFICIENT

BY Kq. (5-12)
Channel conditions Values
Earth 0.020
Masterial Rock cut 0.025
involved o
Fine gravel 0.024
Coarse gravel 0.028
Smooth 0.000
Degree of Minor 0.005
irregularity e
Moderate 0.010
Severs 0.020
Gradual 0.000
Variations of
channel cross | Alternating oceasionally | 7. 0.005
section
Alternating frequently 0.010-0.015
Negligible 0.000
Relative Minor 0.010-0.015
effect of N3
obstructions | Appreciable 0.020-0.030
Severe 0.040-0.060
Low 0.005~0.010
Medium 0.010-0.025
Vegetation T4
High 0.025-0.050
Very high 0.050-0.100
Minor 1.000
Degree of . Appreciable s 1.150
meandering
Severe 1.300
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TaApLE 5-6. VALUES OF THE ROUGHNESS COEFFICIENT 7

(Boldface figures are values generally recommmended in design)

Type of channel and description

Minimum | Normal

A. Crosep Conpurrs FLOWING Parrtry FuLn

A-1.

A-2.

Metal
a. Brass, smooth
b. Steel
1. Lockbar and welded
2. Riveted and spiral
¢. Cast iron
1. Coated
2. Uncoated
d. Wrought iron
1. Black
9. Galvanized
e. Corrugated metal
1. Subdrain
9. Storm drain
Nonmetal
a. Lucite
b. Glass
c. Cement
1. Neat, surface
2. Mortar
d. Concrete
1. Culvert, straight and free of debris
9. Culvert with bends, connections,
and some debris
3. Finished
4. Sewer with manholes, inlet, etc.,
gtraight
5. Unfinished, steel form
6. Unfinished, smooth wood form
7. Unfinished, rough wood form
e. Wood
1. Stave
2. Laminated, treated
f. Clay
1. Commeon drainage tile
2. Vitrified sewer
3. Vitrified sewer with manholes, inlet,
ete.
4. Vitrified subdrain with open joint
g. Brickwork
1. Glazed
2. Lined with cement mortar
%. Sanitary sewers coated with sewage
slimes, with bends and connections
;. Paved invert, sewer, smooth bottom
4. Rubble masonry, cemented

(o) oo O o O oo [ o O < o [ R ] o

[ I e a4

0

0
0.
0

.00%

.010
.013

.010
011

012
013

017
.021

.008
.009

.010

011

.010
.01t

011
.013

.012
.012
.015

010

.015

.011
.011
.013

.014

.011
012
.012

016

0.018

Maximum
0.010 0.013
0.012 0.014
0.016 0.017
0.013 0.014
0.014 0.016
0.014 0.015
0.016 0.017
0.019 0.021
0.024 0.030
¢.009 0.010
0.010 9.013
0.011 0.013
0.013 0.015
0.011 0.013
0.013 0.014
0.012 0.014
0.015 0.017
0.013 0.014
0.014 0.016
0.017 0.020
0.012 0.014
0.017 0.020
0.013 0.017
0.014 0.017
0.015 0.017
0.016 0.018
0.013 0.015
0.015 0.017
0.013 0.016
0.019 0.020
0.025 0.030
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TaABLE 5-6. VALUES oF TR RovcranEess CoEFFICIENT o (confinued)
}
!= Type of channel and description Minimum | Normal | Maximum
B. LineDp or Buinr-ur CHANNELS
B-1. Metal
¢. Smooth steel surface
1. Unpainted 0.011 0.012 0.014
2. Painted (0.012 0.013 0.017
b. Corrugated 0.021 G.025 0.020
B-2. Nonmetal
a. Cement
1. Neat, surface 0.0610 0.011 $.013
2, Mortar 0.011 0.013 0.015
b, Wood
_ 1. Planed, untreated 0.010 0.012 0.014
} 2. Planed, creosoted 0.011 0.012 0.015
3. Unplaned 0.011 0.013 0.015
4. Plank with battens 0.012 0.01H 0.018
5. Lined with roofing paper 0.010 0.014 0.017
: c. Concrete
; 1. Trowel finish 0.011 0.013 0.015
r 2. Float finish 0.013 0.015 0.016
: 3. Finished, with gravel on bottom 0.015 0.017 0.020
: 4, Unfinished 0.014 0.017 0.020
; 5. Gunite, good section 0.016 | 0.019 | ©0.023
i 6. Gunite, wavy section 0.018 0.022 0.025
i 7. On good excavated rock 0.017 0.020
: 8. On irregular excavated rock 0.022 0.027
d. Concrete bottom float finished with
L sides of
1, Dressed stone in mortar 0.015 0.C17 0.020
! 2. Random stone in mortar 0.017 0.020 0.024
‘\ 3. Cement rubble masonry, plastered 0.016 0.020 0.024
i 4. Cement rubble masonry 0.020 0.025 0.030
! 5. Dry rubble or riprap 0.020 0.030 | 0.035
e. Gravel bottom with sides of
1. Formed conecrete 0.017 0.020 0.025
2. Random stone in mortar 0.020 0.023 0.026
3. Dry rubble or riprap 0.023 0.033 0.036
; f. Brick
d 1. Glazed 0.011 0.013 0.015
; 2. In cement mortar 0.012 0.016 0.018
z} g. Masonry
i 1. Cemented rubble 0.017 0.025 0.030
i 2. Dry rubble 0.023 0.032 0.035
7. Dressed ashlar 0.013 0.015 0.017
7. Asphalt
: 1. Smooth 0.013 0.013
2. Rough 0.016 0.016
; 7. Vegetal lining 0.030 | ..... 0.500

[ P Mol LA T SUIIE PRSI  s
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TasLE 5-6. VALUES OF THE ROUGHNESS CoEFFICIENT 7 {continued)

Type of channel and description Minimum | Normal | Maximum
(. ExcavATED OR DREDGED
a. Earth, straight and uniform
1. Clean, recently completed 0.016 0.018 0.020
9. Clean, after weathering 0.018 0.022 0.025
3. Gravel, uniform section, clean. 0.022 0.025 0.030
4. With short grass, few weeds 0.022 0.027 0.033
b. Earth, winding and sluggish
1. No vegetation 0.023 0.025 0.030
9. Grass, some weeds 0.025 0.030 (0.033
3. Dense weeds or aquatic plants in 0.030 0.035 0.040
deep channels
4. Earth bottom and rubble sides 0.028 0.030 0.035
§, Stony bottom and weedy banks 0.025 0.055 0.040
6. Cobble bottom and clean sides 0.030 0.040 0.050
¢. Dragline-excavated or dredged
1. No vegetation 0.025 0.028 0.033
2. Light brush on banks 0.035 0.050 0.060
d. Rock cuts
1. Smooth and uniform 0.025 0.035 0.040
2. Jagged and irregular 0.035 0.040 0.050
¢. Channels not maintained, weeds and
brush uncut
1. Dense weeds, high as flow depth 0.050 0.080 0.120
2. Clean bottom, brush on sides 0.040 0.050 0.080
3. Same, highest stage of flow 0.045 0.070 g.110
4. Dense brush, high stage 0.080 0.100 0.140
D. NATURAL STREAMS
D-1. Minor streams (top width at flood stage
<100 ft)
a. Streams on plain
1. Clean, straight, full stage, no rifts or 0.025 0.030 0.033
deep pools
2. Same as above, but more stones and 0.030 0.035 0.040
weeds
3. Clean, winding, some pools and (.033 0.040 0.045
shoals
4. Same as above, but some weeds and 0.035 0.045 0.050
stones
5. Same as above, lower stages, more 0.040 0.048 0.055
ineffective slopes and sections
6. Same as 4, but more stones 0.045 0.050 $.060
7. Sluggish reaches, weedy, deep pools 0.050 0.070 ¢ 080
8. Very weedy reaches, deep pools, or 0.075 0.100 G.150

floodways with heavy stand of tim-
ber and underbrush
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TasLe 5-6. VaLuzs or THE Rovcuness COERFFICIENT n {coniinued)

Type of channel and deseription Minimum | Normal | Maximum

w]
B

e e e e T

(V]

b. Mountain streams, no vegetation in
channel, banks usually steep, trees
and brush along banks submerged at
high stages

i. Bottom: gravels, cobbles, and few 0.030 0.040 0.050
boulders
2. Bottom: cobbles with large boulders G.040 0.050 0.870
. Flood plains
a. Pasture, no brush
1. Bhort grass 0.625 0.03¢ G.035
2. High grass 0.63C 0.035 G.050
b. Cultivated areas
1. No erop 0.020 6.030 G.040
2. Mature row crops 0.025 0.035 0.045
3. Mature feld crops 6.030 0.045 0.050
¢, Drush
1. Beatlered brush, heavy weeds 0.035 $.050 0.070
2. Light brugh and trees, in winter £.035 0.050 0.060
3. Light brush and trees, in summer 0.040 0.060 0.08C
4. Medium to dense brush, in winter 0.045 0.070 0.110
5. Medium to dense brugh, in summer 0.0%70 0.100 0.180
d. Trees
1. Dense willows, summer, straight 0.110 ¢.150 0.200
2. Cleared land with tree stumps, no 0.030 0.040 0.050
sprouts
3. Same as above, but with heavy 0.050 0.060 0.080

growth of sprouts

4. Heavy stand of timber, a few dewn 0.080 0.100 0.

trees, litile undergrowth, flood stage

below branches

5. Bame as above, but with flood stage 0.100 0.
reaching branches

. Major streams (top width at flood stage

>100 f£). The 7 value is less than that

for minor streams of similar deseription,

because banks offer less effective resistance.

a. Regular seciion with no boulders or 0.025

brush

b. Irregular and rough section 0.0385

o
b
[e)

[
Sl
<D
o)

160

R S
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from up-to-date information collected from various sources ([34,36,38],
and unpublished data); hence it is much broader in scope than the Horton
table.

5.10. Illusirations of Channels with Various Roughnesses. Photo-
graphs of a number of typical channels, accompanied by brief descriptions
of the channel conditions and the corresponding n values, are shown in
Fig. 5-5. These photographs are collected from different sources and
arranged in order of inereasing magnitude of the n values. They provide
a general idea of the appearance of the channels having different », values
and so should facilitate selection of the n value for a given channel con-
dition. The n value given for each channel represents approximately
the coefficient of roughness when the photograph was taken.

The above type of visual aid is also employed by the U.S. Geological
Survey. The Survey has made several determinations of channel rough-
ness in streams, mostly in the northwestern United States. These in-
clude measurements of eross-sectional area, width, depth, mean velocity,
slope, and computation of the roughness coefficient. The reaches were
photographed in stereoscopic color, and the photographs have been
eirculating among the district offices of the Survey as a guide in evalu-
ating n.
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¥16. 5-5. Typical channels showing different n values. (These photographs are repro-
duced from {37] and [38] with the permission of the U.S. Depariment of Agricullure.
The original pictures used for reproduction purposes were supplied through the courtesy

of Mr. F. C. Scobey for photographs 1 to 14 and photograph 19, and through the couriesy
of Mr. C. E. Ramser for the others.)
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Fre. 5-5 (1-3)
1. n = 0.012. Canal lined with concrete slabs having smooth neat cement joints
and very smooth surface, hand-troweled and with cement wash on concrete base.
9 = 0.014. Concrete canal poured behind screeding and smoothing platform.
3. n = 0.016. Small concrete-lined diteh, straight and uniform, bottom- slightly
dished, the sides and bottom covered with a rough deposit, which increases the n value,
116
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Fiac. 5-5 (4-6)

4 n = 0.018. Shot-concrete lining without smooth treatment. Surface covered
with fine algae and bottom with drifting sand dunes.

5. n = 0.018. FEarth channel excavated in a clay loam, with deposit of clean sand
in the middle and slick silty mud near the sides.

8. n = 0.020. Concrete lining made in a rough lava-rock cut, clean-scoured, very
rough, and deeply pitted.
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Fie. 5-5 (7-9)
7. m = 0.020. Irrigation canal, straight, in hard-packed smooth sand.
8. n = 0.022. Cement-plaster lining applied directly to the trimmed surface of
the earth channel. With weeds in broken places and loose sand on bottom.
9. n = 0.024. Canal excavated in silty clay loam. Slick and hard bed.
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Fra. 5-5 (10-12)
10. n = 0.024. Diteh lined on both sides and. bottom with dry-laid unchinked
czbble. Bottom guite irregular, with scattered loose cobbles.
i1. n = 0.026. Canal exeavated on hillside, with upper bank mostly of willow
roots and lower bank with well-made concrete wall. Bottom covered with coarse

12. n = 0.028. Cobble-bottom channel, where there is insufficient silt in the
water or too high a velocity, preventing formation of & graded smooth bed.
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Fic. 5-5 (13-15)
13. n = 0.029. Farth canal excavated in alluvial silt soil, with deposits of sand
on bottom and growth of grass.
14. n = 0.030. Canal with large-cobblestone bed.
15. n = 0.035. Natural channel, somewhat irregular side slopes; fairly even, clean
and regular bottom; in light gray silty clay to light tan silt loam; very little variation
in cross section.
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Fra. 5-5 {16~18)
16. n = 0.040. Rock channel excavated by explosives.
17. n = 0.040. Ditch in clay and sandy loam; irregular side slopes, bottom, and
cross section; grass on slopes.
18. n = 0.045. Dredge channel, irregular side slopes and bottom, in black, waxy
clay at top to yellow clay at bottom, sides covered with small saplings and brush,
slight and gradual variations in cross section.
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Fra. 5-6 (19-21)

19. n = 0.050. Dredge channel with very irregular side slopes and bottom, in
dark-colored waxy clay, with growth of weeds and grass. Slight variation in shape
of cross section for variation in size.

90. n = 0.060. Ditch in heavy silty clay; irregular side slopes and bottom; practi-
cally entire section filled with large-size growth of trees, principally willows and
cottonwoods. Quite uniform cross section.

21. n = 0.080. Dredge channel in black slippery clay and gray silty clay loam,
irregular wide slopes and bottom, covered with dense growth of bushy willows, some
in bottom; remainder of both slopes covered with weeds and a scattering growth of
willows and poplars, no foliage; some silting on bottom.
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(24)

Fia. 5-5 (22-24)

29. n = 0.110. Same as (21), but with much foliage and covered for about 40 ft
with growth resembling smart weed.

23. m = 0.125. Natural channel floodway in median fine sand to fine clay, none
side slopes; fairly even and regular bottom with occasional flat bottom sloughs;
variation in depth; practically virgin timber, very little undergrowth except occa-
sional dense patches of bushed and small trees, some logs and dead fallen trees.

24. n = 0.150. Natural river in sandy clay soil. Very crooked course, irregular
side slopes and uneven bottorn. Many roots, trees and bushes, large logs and other
drift on bottom: trees continually falling into channel due to bank caving.
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PROBLEMS

§-1. Explain why a uniform flow cannot occur (a) in frictionless channel, and (b)
in a horizontal channel.

5-2. When Chézy’s C determined by the G. K. formula becomes independent of
the slope 8, show that the value of E = 3.28. Find the corresponding relation
between C and Kutter’s ».

5-3. For the conditions given in Example 5-1, compute the values of Bazin’s m and
Powell’s e

5-4. Compute the velocity and discharge of flow in a new earth canal having the
same shape, size, slope, and depth of flow as the channel given in Example 5-1. Use
(2) the G. K. formula, assuming Kutter’s n = 0.022; (b) the Bazin formula, selecting
a, proper value of m; and (¢) the Powell formula, selecting a proper value of e

-6, Taking Manning’s n as the given value of Kutter's n, solve Example 5-1 by
the Manning formula.

B-6. If the coefficient of roughness n is unknown for the channel in Example 5-1,
but a discharge of 2,000 cfs is observed under the given conditions, compute the values
of Kutter's n and Manning’s n.

5-7. Trom the Manning formula (using a constant of 1.486 instead of 1.49 for
theoretical accuracy) and the Chézy formula, determine the relation between Chézy’'s
¢ and Manning's n for the condition described in Prob. 5-2. This will show that the
G. K. formula and the Manning formula are theoretically identical at the condition
when Chézy’s C is independent of the slope S.

5-8. Prove that the friction factor f in the Darcy-Weisbach formula, Eq. (1-4), is
related to Manning’s n by f = 116n%/R%.

5-9. Run 12-4 of Bazin’s tests [12] was made on 2 rectangular plank flume 6.44 ft
wide, with wooden strips 1 em thick and 2.7 em wide nailed crosswise on the bottom
and sides at a spacing of 3.7 cm center to center of strips. This flume gave a mean
velocity of 8.33 fps at a flow depth of 1.02 ft and a slope of 0.0015. The temperature
reading was 8.5°C. Determine Manning’s n, and compute (@) Chézy’s C, (b) Kutter’s
n, (c) Bazin’s m, and (d} Powell’s e

5-10. Run 15-4 of Bazin’s tests was the same as run 12-4, described in the preceding
problem, except that the spacing of strips was increased to 7.7 cm. Using the same
discharge as that of run 12-4, the depth of flow was found to be 1.833 ft. Determine
Manning’s n, and compute (a) Chézy’s C, (b} Kutter’s n, (¢) Bazin’s m, and (d)
Powell'se. Compare the values of ¢ obtained from runs 12-4-and 15-4 with the height
of the strips, and explain the effect of roughness in both cases.

5-11. Using the Manning formula, construct a discharge-rating curve! for the
natural channel section given in Prob. 2-5. The slope is 0.0016, and n = 0.035.
Extend the sides of the channel by straight lines at high stages if necessary.

5-12. The actual rating curve of the channel section in Prob. 2-5 is deseribed below.
Construet s curve showing the variation in Manning’s n with respect to the stage
above the datum.

1 Tt should be noted that the synthetic rating curve thus obtained is very apProxi«
mate, particularly for a natural channel, because the n value is actually not a constant
but a function of the depth (see Art. 5-8).
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Stage, ft Discharge, cfs Stage, ft Discharge, ¢fs
0.3 1.0 1.50 50.0
0.4 2.3 1.75 62.0
0.5 4.6 2.00 75.0
0.6 7.8 2.25 88.0
0.7 11.0 2.50 - 102.0
0.8 15.0 3.00 132.0
0.9 20.0 3.50 164.0
1.0 25.0 4.00 199.0
1.25 38.0

5-13. By the Cowan method, estimate the n value for a slightly curved reach in
channel 21 of Fig. 5-5.

1.
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CHAPTER 6

COMPUTATION OF UNIFORM FLOW

6-1. The Conveyance of 2 Channel Section. The discharge of uniform
fiow in a channel may be expressed as the product of the velocity, repre-
sented by Eq. (5-1), and the water area, or

Q =VA = CAR*Sv = K8 (6-1)
where K =CAR*® (6-2)

The term K is known as the conveyance of the channel section; it is a
measure of the carrying capacity of the channel section, since 1t is directly
proportional to &.

When either the Chézy formula or the Manning forroula is used as the
uniform-flow formula, i.e., when y = 34, the discharge by Eq. (6-1)
becomes

Q = K+/S (6-3)
and the conveyance is '
Q
= X 6-4

This equation can be used to compute the conveyance when the discharge
and slope of the channel are given.
When the Chézy formula is used, Eq. (6-2) becomes

K = CAR% (6-5)

where C is Chézy’s resistance factor. Similarly, when the Manning
formula is used,

K = lﬁ‘—g AR (6-6)

The above two equations are used to compute the conveyance when
the geometry of the water area and the resistance factor or roughness coef-
ficient are given. Since the Manning formula is used extensively, most
of the following discussions and computations will be based on Eq. (6-6).

6-2. The Section Factor for Uniform-flow Computation. The expres-
sion AR% is called the seciton factor for uniform-flow compulation; it 1s

an important element in the computation of uniform flow. From Eg.
128
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8-6). this factor may be expressed as
‘ iy

o nX rr
AR» = TiG (6-7)

1 T nQ
and, from Eq. (6-4), ARY = m (6-8)

Primarily, Eq. (6-8) applies to a channel section when the flow is uni-
form. The right side of the equation contains the values of n, @, and
S: but the left side depends only on the geometry of the water area.
Therefore, it shows that, for a given condition of #n, €, and S, there is
only one possible depth for maintaining a uniform fow, provided that the
value of AR always increases with increase in depth, -which is true in
most cases. This depth is the normal depth. When n and S are known at
o, channel section, it can be seen from Eq. (6-8) that there can be only one
discharge for maintaining a uniform flow through the section, provided
that AR% always increases with increase of depth.? This discharge is
the normal discharge.

Equation (6-8) is a very useful tool for the computation and analysis
of uniform flow. When the discharge, slope, and roughness are known,
this equation gives the section factor 4,E.* and hence the normal depth
Yn. Onthe other hand, when n, S, and the depth, hence the section factor,
are given, the normal discharge Q. can be computed from this equation
in the following form:

1 _
Q =222 4rn /8 (6-9)

This is essentially the product of the water area and the velocity defined
by the Manning formula. The subscript 7 is sometimes used to specify
the condition of uniform flow.

In order to simplify the computation, dimensionless curves showing
the relation between depth and section factor AR (Fig. 6-1) have been
prepared for rectangular, trapezoidal, and circular channel sections.
These self-explanatory curves will help to determine the depth for a
given section factor A R%, and vice versa. The A K% values for a circu-
lar section can also be found from the table in Appendix A.

1 This is true for channels in which the value of 4R% always increases with increase
of depth, since Eq. (6-8) will give one value of AR, which in turn gives only one
depth. In the case of a closed conduit having a gradually closing top, the value of
AR% will first increase with depth and then decrease with depth when the full depth
is approached, because a maximum value of AR usually cceurs in such a conduit at
a. depth slightly less than the full depth. Consequently, it is possible to have two
depths for the same value of AR3%, one greater and the other less than the depth for
the maximum value of AR3%. TFor further discussion on this subject see Art. 6-4,
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8-5. The Bydraulic Exponent for Uniform-flow Computation. Since
the conveyance K is a function of the depth of flow y, it may be assumed
shat

Kt = Cy¥ (6-10)

where (' is a coefficient and N is a parameter called the hydraulic exponent
for uniform-flow computaiion.

From the logarithmic plotting of Eq. (6-10), it is evident that the
hydraulic exponent N at depth y is

d{ln K)
d(ln y)
Now, taking logarithms on both sides of Eg. (6-6), K = 1.48AR%/n, and

then differentiating this equation with respect to In y under the assump-
tion that n is independent of v,

N =2 (6-11)

dnK) ydd , 2ydR ]
diny) Ady 3Rdy (6-12)
Since dA/dy = T and R = A/P, the above equation becomes
M E) _ gy (p_ opdP _
iy ~ 34 (5T 2R dy) (6-13)
Equating the right sides of Eqgs. (6-11) and (8-13) and solving for N,
- 2y _apdl ;
v =2 (57 5 ) 19

This is the general equation for the hydraulic exponent N. For g
trapezoidal channel section having a bottom width b and side slopes 1 on
2, the expressions for 4, T, P, and R may be obtained from Table 2-1.
Substituting them in Eq. (6-14) and simplifying, the resulting equation®
is
v o101+ 2:a/m 8 VIEE @/
3 1T+ 2u/b) 3 1+2+71F2 @yh)

This equation indicates that the value of N for the trapezoidal section is
5 function of z and y/b. For values of z = 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0,
and 4.0, a family of curves for N versus y/b can be constructed
(Fig. 6-2).2 These curves indicate that the value of N varies within a
range of 2.0 to 5.3.

The curve for a circular section with N plotted against y/ds, where do
is the diameter, is also shown in Fig. 6-2. This curve shows that the

(6-15)

1 This equation (1] was also developed independently by Chugaev [2} through the
use of the Chézy formula.

* Similar curves to those in Fig. 6-2 for trapezoidal channels were constructed by
Kirpich [3] and also prepared independently by Pavlovskil [4] and Rakhmanoff [5].
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value of N decreases rapidly as the depth of flow approaches the top of
the channel. Further mathematical analysis has revealed that the
value of N wiil be equal to zero at y/de = 0.938 and will then becoms
negative at greater depths. The significance of this faet will be discussed
later in this article and the next.
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F1g. 6-2. Curves of N values.

Tor channel sections other than the rectangular, trapezoidal, and
circular shapes, exact values of N may be computed directly by Eq. (6-14),
provided that the derivative dP/dy can be evaluated. For most chan-
nels, except for channels with abrupt changes in cross-sectional form and
for closed conduits with gradually closing top, a logarithmic plot of K as
ordinate against the depth as abscissa (Fig. 6-3) will appear approximately
as a straight line. This can also be seen from the dimensionless curves
for AR in Fig. 6-1, which are plotted similarly except that the ordinate
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and abscissa are interchanged. If & constant n value is assumed, Eq.
(6-6) indicates that X « AR?%;hence, these curves for A B% should show
the same characteristics as if the curves were plotted for XK. TFrom
Bq. (6-10), it can be seen that the hydraulic exponent for the straight-
line range of the plot is equal to twice the slope of the plotted straight
line. Thus, if any two points with

coordinates (Xi,y:) and (Ksy.) are 150

taken from the straight line, the ap- Hololas
proximate value of N may be com- -
puted by the following equation: 50~

— 9 ]'Og (Kl/K?.)

= (6-16)
et 1 R l_
log (y1/y2)
A 10k
5
Tangent to Ps -7 L
5/ w
/' The curved ;
plot when fhe
(w, K)d—- depth approaches
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1 closed conduif i
N=2tan§ ] -
x o
g | > 05
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Fia. 6-3. Graphical determination of N by Fig. 6-4. Typical channel sections
logarithmic plotiing. having appreciable variation in N

value with respect to depth. (After
R. B. Chugaev [2].)

When the cross section of a channel changes abruptly with respect to
depth, the hydraulic exponent will change accordingly. Several typical
sections are shown in Fig. 6-4. In such cases the logarithmic plot of N
against ¥ may appear as a broken line or an evident curve. For the
nearly straight portions of the broken line or curve, the hydraulic expo-
nents may be assumed constant.

When the depth of flow approaches the gradually closing erown of &
closed conduit, the logarithmic plot will appear as a curve. The hydraulic
exponent in the range of the curved plot is equal to twice the slope of the
tangent to the curve at the given depth (Fig. 6-3). For practical purposes,
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the curve may be divided into a number of short segments, and each seg-
ment may be considered a straight line having a constant slope or hydrau-
lic exponent.

Now take the circular section as an example. The dimensionless
logarithmic plot of AR against depth is shown in Fig. 6-1. Assuming a
constant value of n, this curve will show the same characteristics as if the
depth were plotted against K. Asthe depth increases, the curve deviates
gradually from a straight line and finally reaches a pronounced curvature
at y/do = 0.938, where the value of AR%/d¢* is a maximum. Since the
n value is assumed constant, this ratio y/do = 0.938 also corresponds to
the maximum value of the conveyance K. The slope of the tangent to
the curve at this depth, according to the graph in which the ordinate and
abscissa are interchanged, is horizontal, and thus the hydraulic exponent
N is equal to zero. For depths with ratio greater than y/ds = 0.938,
the curve shows a decrease in the value of 4 R%/d and, hence, a decrease
in the conveyance K if n is assumed constant. The slope of the tangent
to the curve and with it the hydraulic exponent will thus become
negative.

8-4. Flow Characteristics in a Closed Conduit with Open-channel Flow.
Taking the circular section as an example, the dimensionless curves for
AR¥/AR# and R¥/R¢% are shown by the full lines in Tig. 6-5. The
subscript zero indicates the full-flow condition. If the n value 1s assumed
constant or independent of the depth variation, these two curves will
represent the variation of the ratios of the discharge and velocity to
their corresponding full-flow values (i.e., @/@o and V/Vs). Both the
discharge and velocity curves show maximum values, which occur at
about 0.938d, and 0.81d, respectively. Mathematically, the depth for
the maximum discharge, or 0.938d,, can be obtained simply by equating
to zero the first derivative of AR% with respect to y, since the discharge
computed by the Manning formula is proportional to AR?* for constant
n and S. Similarly, as the velocity by the Manning formula is pro-
portional to R, the depth for the maximum velocity, or 0.81d,, can be
obtained by equating the first derivative of E* to zero. Furthermore,
the dimensionless curve of Q/@, shows that, when the depth is greater
than about 0.82d,, it is possible to have two different depths for the same
discharge, one above and one below the value of 0.938d.. Similarly, the
curve of V/V o shows that, when the depth is greater than the half-depth,
it is possible to have two different depths for the same velocity, one above
and one below the value of 0.81d,.

The above discussion is based on the assumption that the roughness
coefficient remains constant as the depth changes. Actually, the value of
n for average clean sewer pipes and drain tiles, both clay and concrete,
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for example, has been shown to increase by as much as 28% from 1.00d,
0 0.25d,, where it appears to be a maximum (see Fig. 6-5 and the dis-
cussion in Art. 5-8 regarding the stage as a factor affecting n value).
This effect eauses the actual maximum discharge and velocity to oceur
st depths of about 0.97d, and 0.94d,, respectively. The corresponding
curves of Q/Qo and V/V, are shown by the dashed lines i Fig. 6-5.
According to the assumption of constant n value, the velocity would be
the same for a half-full pipe as for a full pipe; whereas, if the n value is

Value of n/nc. g WM o
11'0 12 14 Subscript ‘o indicates the full flow condition
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Fra. 6-5. Flow characteristics of a circular section.  (After T'. B. Camp, {27] of Chap. 5.)

taken to vary with the depth, as shown, the velocity at the half-depth is
only 0.8 the full velocity.

The discussion for $he circular conduit applies also to any closed con-~
duit with a gradually closing top. The exact depths for maximum
discharge and velocity, however, will depend on the shape and roughness
variation of the specific conduit section. Since the maximum discharge
and velocity of a closed conduit of gradually closing top do not occur at
the full depth, this means that the conduit will not flow full at the maxi-
mum capacity as long as it maintains an open-channel flow on a uniform
grade free from obstructions. For practical purposes, however, 1t may
sometimes be assumed that the maximum discharge of a circular conduit
or similar closed conduit with gradually closing top does occur at the full
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depth, because the depth for maximum discharge is so close to the top
that there is always a possibility of slight backwater to inerease this depth
closer to and eventually equal to the full depth.

4-5. Flow in a Channel Section with Composite Roughness. In simple
channels, the roughness along the wetted perimeter may be distinctly
different from part to part of the perimeter, but the mean velocity can
still be computed by a uniform-flow formula without actually subdividing
the section. For example, a rectangular channel built with a wooden
bottom and glass walls must have different n values for the bottom and the
walls. In applying the Manning formula to such channels, it is sometimes
necessary to compute an equivalent n value for the entire perimeter and
use this equivalent value for the computation of the flow in the whole
section.

Tor the determination of the equivalent roughness, the water ares is
divided imaginatively into N parts of which the wetted perimeters P, Po,
.. ., Py and the coefficients of roughness 7, 71y, . . ., Ny 818 known.
Horton [6] and Einstein [7,8] assumed that each part of the area has the
same mean velocity, which at the same time is equal to the mean velocity
of the whole section; that is, Vi =V, = -+ = Vy = V. On the
basis of this assumption, the equivalent coefficient of roughness may be
obtained by the following equation:

[ —1%
2 (Pyna'®)
n = ._].'___“H.—.._ — Plnll.b + P2n21-5 '—i— A + PI\T.nN‘i.a)?é
P s

(6-17)

There are many other assumptions for the determination of an equiva-
lent roughness. Pavlovskii [9] and also Mihihofer [10] and Xinstein
and Banks [11] assumed that the total force resisting the flow (that is,
KV?2PL; see Art. 5-4) is equal to the sum of the forces resisting the flow
developed in the subdivided areas. By this assumption, the eguivalent
roughness coefficient 1s

RE:

N
z (P N?’Wz) N . - 1
_ L7 - _ (Pmi* + Pme _;% « + 4 Pyny®)* (6-18)
Totter [12] assumed that the total discharge of the flow is equal to the

sum of the discharzes of the subdivided areas. Thus, the equivalent
roughness coefficient is

54 %
n= g =y PRgR s 09
EPNRN% PRF | PRRF . Dol
T N1 Ny Ny

1
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where R1, Rs, . . . , Ry are hydraulic radii of the subdivided areas. For
simple channel sections, it may be assumed that
Rl — R2 N RN f—] R

Roughness of Ice-covered Channels. When a channel is covered with
ice, the wetted perimeter of the flow is greatly inereased. The bottom
surface of the ice cover may be either as smooth as a finished concrete
surface or as rough as the natural channel bed when drifting ice blocks
exist. Table 6-1 gives the n values for dredged channels covered with
ice, as proposed by Lotter [13].

TanryE 6-1. » VALUES FOR LCE-COVERED DREDGED CHANNELS

Ice condition Velocity of flow, fps n Value
Smooth ice:
Without drifting ice blocks 1.3-2.0 0.610-0.012
>2.0 0.014-0.017
With drifting ice blocks 1.3-2.0 0.016-0.018
>2.0 0.017-0.020
Rough ice with drifting ice blocks ..., 0.023-0.025

Let n and n: be the roughness coefficients for channels with and without
ice cover, respectively. By means of Eqs. (6-17) to (6-19) it 1s possible
to compute the roughness coefficient ns of the ice cover. However, the
coefficient thus computed may sometimes be a negative value, which is,
of course, unrealistic.

In order to develop a realistic approach to the problem, Pavlovskii {14]
assumed that the total force resisting the flow is equal to the sum of the
resisting forces due to the channel bed and the ice cover. Thus, from
Art. 5-4,

szLP = K1V2LP1 "}" .K2V2LP2 (6"20)

where the subscript 1 refers to the channel bed and 2 to the ice cover.
Since Chézy’s ¢ = Vw/K or K = w/(?, the above equation becomes

P P, P
TR (&2

Let the wetted perimeter Py = aP; or P = Py 4 Py = (1 + a)Py;
then

14 a 1 a
cT TR G (6-22)
Since, by Eq. (5-7), C = 1.49R%/n,
(1 + a)’nP 712 92
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Tt is further assumed that the total hydraulic radius B is made up of
two parts: the hydraulic radius R, due to the channel bed and the
hydraulic radius R, due to the jce cover; that is, that B = Ry + R
Now, let &, = Ri/R;and ex = ny/ns. Then Eq. (6-23) is reduced to

14
(1 4+ a)n® = nJ? (1 + ;1;) (€2 + aer) (6-24)

Tor the condition of maximum discharge, Pavlovskil postulated that
the relation among R,, R», and n is such that dn/der = 0. Thus, from
Bq. (6-24), e = aer*t, and

n = ':\/—‘_:’LE_‘;_—"G’ (a,% "}‘ 62%)% (6-25)*

For wide channels, it may be assumed that P; = P,, that is, that
a = 1. Thus, €? = &%, and

N

n = 3 (1 4 €)% (6-27)
The roughness coefficient for the ice cover is, therefore,
ny = (1.68n% — n )% (6-28)

Now let the discharges with and without lce cover be Q and @4,
respectively. Then, using the Manning formula and assuming B = Ri/2,
where R and R are the hydraulic radii with and without ice cover,
respectively, the discharge of an ice-covered channel is

Q = 0.63 % @ (6-29)

Channels of Compound Section. 'The cross section of a channel may be
composed of several distinct subsections with each subsection different
in roughness from the others. For example, an alluvial channel subject
to seasonal floods generally consists of a main channel and two side
channels (Fig. 6-6). The side channels are usually found to be rougher
than the main channel; so the mean velocity n the main channel is
greater than the mean velocities in the side channels. In such a case,
the Manning formula may be applied separately to each subsection in
determining the mean velocity of the subsection. Then, the discharges
in the subsections can be computed. The total discharge is, therefore,

equal to the sum of these discharges. The mean velocity for the whole

* Pavlovekil [14] used the relation € = R¥ /n instead of Eq. (5-7), obtaining

— %% 54)34 6-26
n m(a + e8)% (6-26)

Tt was Belokon [15] who used Eq. (5-7).
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channel section is equal to the total discharge divided by the total water
area.

Owing to the differences that exist among the velocities of the sub-
sections, the velocity-distribution coefficients of the whole section are
different from those of the subsections. The values of these coefficients
may be computed as follows:

Let 01, 23, . . ., vy be the mean velocities in the subsections; let
oy, oo, .+ ., o and By, B, . . ., By be the velocity-distribution coef-
ficients for the corresponding subsections; let A4y, A4, . .., Adx be

% o \\\5 —— ;,/ = —E
7 _i'
| ] @

L i | 1 I I’ /1\[ .J J

|25 40 L 20 L 8uie 1051 8!

Fre. 6-6. A channel consisting of one main section and two side sections.

the water areas of the corresponding subsections; let Ky, K, . . . , Kny
be the conveyances of the corresponding subsections; let ¥V be the mean
velocity of the total section; and let 4 be the total water area. Irom the
continuity equation and Eq. (6-3), the following can be written:

_ K 1% 14 _ Kx 1%
vl_AAJ_S Vg = AA?,S yN_B_S
Q= VA =U1AA1+7)2AA2+ +?)NAA?\F
W(K1+K2—l—'--—r-KN (EJKN)S;é
N
(2 %) 57
and Vz;A—

Incorporating the above expressions with Eqgs. (2-4) and (2-5) and
simplifying, the velocity—distribution coefficients of the entire section are

E (anKnt/AAN?Y)
o (6-30)

(Z Kn)'/ 4°

Z (BxKn*/AAx)
and g =" i (6-31)

(lz Ky /4
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Example 6-1. Compute the velocity-distribution coefficients at a peak flow in a
natural stream channel consisting of a main section and an overflow side section. The
data obtained at the peak flow stage are:

Subsection A, ft? P, it | n value a@ B
Main section........ 5,360 225 0.035 1.10 1.04
Side section......... 5,710 405 0.040 1.11 1.04

Solution. The computations are given below.

Qubsection | AA |P! R |RB%| n K BK2/AA aK3/AAR

Main section.| 5,360[225(23.8(8.29/0.035 1.892 X 108 ] 6.94 X 108 | 25.93 X 101°
Sidesection...| 5,7101405|14.1}5.85|0.040; 1.244 X 108 | 2.82 X 108 | 6.56 X 10

Total...... 11,070, . .| . | e e e 3.136 X 10°| 9.76 X 108 | 32.49 X 10%¢

By Egs. (6-30) and (6-31), the coefficients are

o 32.40 X 101

@ = (3136 X 109)3/11,070?

g = 9.76 X 108 B
= (3.136 X 109)2/11,070

= 1.29

and 1.10

6-6. Determination of the Normal Depth and Velocity. The normal
depth and velocity may be computed by a uniform-flow formula. In the
following cornputations, the Manning formula is used with three different
methods of solution.?

A. Algebraic Method. For geometrically simple channel sections, the
uniform-flow condition may be determined by an algebraic solution, as
illnstrated by the following example:

Example 6-2. A trapezoidal channel (Fig. 2-2), with b = 201{t, z = 2, 8y = 0.0016,
and n = 0.025, carries a discharge of 400 ofs. Compute the normal depth and
velocity.

Solution 1: The Analytical Approach. The hydraulic radius and water area of the
given section are expressed in terms of the depth y as

R = % and A = y(20 + 2v)
The velocity is
Q@ _ 400
47 y0 + 2v)

Substituting the given quantities and the ajove expressions in the Manning formula

V =

1 Besides the methods described here, there are other methods for the computation
of uniform flow, such as the use of hydraulic tables. Popular tables for this purpose
can be found in [16] to [20].
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and simplifying,
I
200 1.49 [y(lO + ) ]%0_0016%
y(10 +3) 0.025L10 +y+/5
or 7,680 + 1,720y = [y(10 + y)]2$

Solving this equation for y by trial and error, y» = 3.36 ft. This is the normal depth.
The corresponding area is 4, = 89.8 ft2 and the normal velocity is ¥V, = 400/89.8 =
4.46fps. TFrom Example 4-2, it is known that the critical depth for the same discharge
in the channel is 2.15 ft. Since the normal depth is greater than the critical depth,
the flow is subcritical. ‘

Solution 2: The Trial-and-error Approach. Some engineers prefer to solve this
type of problem by trial and error. Using the given data, the right side of Eq. (6-8)
is nQ/1.49 4/8 = 167.7. Then, assume a value of y and compute the section factor
AR%. Make several such trials until the computed value of A K38 is very closely equal
to 167.7; then the assumed y for the closest trial is the normal depth. This trial-and-
error computation is shown as follows:

Y A B R% AR% Remarks

3.00 78.0 2.34 1.762 137.4 | y too small
3.50 g4 .5 2.65 | 1.915 181.0 |wtoolarge
3.30 87.7 2.53 1.852 162 .6
3.35 89.5 2.56 1.870 167.2
3.36 Rg. 1.870 168.0 | The closest

"The normal depth is, therefore, y. = 3.36 ft.

B. Graphical Method. For channels of complicated cross section and
variable flow conditions, a graphical solution of the problem is found to
be convenient. By this procedure, a curve of y against the section factor

AR% is first constructed and the value of nQ/1.49 +/§ is computed.
According to Eq. (6-8), it is evident that the normal depth may be found
from the y-4 R* curve where the coordinate of 4 % equals the computed
value of nQ/1.49 +/S. When the discharge changes, new values of
nQ/1.49 /S are then computed and the corresponding new normal
depths can be found from the same curve.

Example 6-3. Determine the normal depth of flow in a 36-in. culvert (Example 4-3)
laid on a slope of 0.0016, having n = 0.015, and carrying a discharge of 20 cfs.

Solution. Construct a curve of y vs. AR%$ for the given culvert (Fig, 68-7). Com-
pute nQ/1.49 /8 = 0.015 X 20/1.49 +/0.0016 = 5.04. From the y-AR3 curve,
find the depth corresponding to the value of 5.04 for AR%. This depth isthe required
normal depth, or y, = 2.16 ft. Since this depth is greater than the critical depth
determined in Example 4-3 under the same condition, the flow is suberitical.

The table in Appendix A for the geometric elements of a circular section may also
be used for the solution of this problem. Since do = 3.0 ft and d¢¥% = 18.75, AR%/
dod% = 5.04/18.75 = 0.269. From the table, y/ds = 0.72, or y = 0.72 X 3 = 2.16{t.
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C. Method of Design Chart. The design chart for determining the
normal depth (Fig. 6-1) can be used with great expediency.

In Example 6-2, AR% = 1687.7. The value of AR3/b% is 0.0569. Yor this value,
the chart gives y/b = 0.168, or y, = 3.36 {t.

In Example 6-3, AR /de% = 0.269. For this value, the chart gives y/dy = 0.72,
ory = 0.72 X 3 = 2.16 ft.

6-7. Determination of the Normal and Critical Slopes. When the dis-
charge and roughness are given, the Manning formula can be used to
determine the slope of a prismatic channe! in which the flow is uniform
at a given normal depth yn. The slope thus determined is sometimes
called specifically the normal slope Sn.

F 7

\

Sk iniah il ""‘""‘\
M

3 4

AR 2 /3 504

Fic. 6-7. A curve of y vs. AR for a circular section.

By varying the slope of the channel to a certain value, it is possible to
change the normal depth and make the uniform flow occur in a critical
state for the given discharge and roughness. The slope thus obtained is
the critical slope S., and the corresponding normal depth is equal to the
critical depth. The smallest critical slope for a channel of given shape
and roughness is called the limit slope Sz.

Furthermore, by adjusting the slope and the discharge, a critical uni-
form flow may be obtained at the given normal depth. The slope thus
obtained is known as the critical slope at the given normal depth Sen.

The following examples will illustrate the above discussion.

Example 6-4. A trapezoidal channel has 2 bottom width of 20 ft, side slopes of
2:1, and n = 0.025.

a. Deteimine the normal slope at a normal depth of 3.36 {t when the discharge is
400 cfs.
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b. Determine the critical slope and the corresponding normal depth when the dis-
charge is 400 cfs.

¢. Determine the critical slope at the normal depth of 3.36 ft, and compute the cor-
responding discharge.

Solution. (a) From the given data it is found that B = 2.56 {t and V = 4.46 {ps.
Substituting these values in the Manning formula and solving for 8,,

1.49
= 9 4 4
4,46 = 5095 2 B6%8, Y
or 8, = 0.0016

This is the slope that will maintain a uniform flow in the given channel at a depth of
3.36 ft and a discharge of 400 cfs (see Example 6-2).

b. From the given data the critical depth is found o be 2.15 ft (see Example 4-2).
The corresponding values of Rand Vare B = 1.97ftand V = 7.66 fps. Substituting
the known values in the Manning formula and solving for S,

1.49
4858
7.66 = 0.025 1.97388.7

or 8. = 0.0067

This is the slope that will maintain a uniform and critical flow in the given channel for
a discharge of 400 c¢fs. The depth of flow is 2.15 ft.

¢, For the given normal depth of 3.36 ft, it is found that R = 2.56 ft, 4 = 89.8ft,
B = 2.681t, and, by Eq. (1-11), the critical velocity Vs, = 4/2.68¢ 2.68g = 9.3 fps. Substi-
tuting the known values in the Manning formula and solving for Sen,

1.49
9.3 = 553z 2- 56%8,,%

or S = 0.0070

This is the slope that will maintain a uniform and critical flow in the given channel
at the given normal depth of 3.36 ft. The corresponding discharge is equal to 9.3 X
89.8 = 835 cfs.

Exzample 6-5. Determine the limit slope of a rectangular channel (Fig. 6-8) with
b = 10 ft and n = 0.015.

Solution. Since the limit slope is the smallest critical slope, its value may be deter-
mined graphically from a curve of the critical slope plotted against discharge.

For the determination of a critical slope, the {ollowing two conchtlons should be
satisfied:

1. The first condition, from Eq. (6-3), is

Q = K V& (6-32)

or, when the Manning formula is used,

Q = wAR% V'8, (6-33)

or, for the rectangular channel,

_ 149 10y _\* =& :
@ ==——10y (10 T 2y) /8. (6-34)
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9. The second condition, from Eq. (43), is
Q=2.y (6-35)
Q=10gy"” (6-36)

By using Eqgs. (6-34) and (6-36) and eliminating y, the relation between @ and S.
can be established. This relation is expressed, however, as an implieit function, and
a, direet solution is mathematically complicated. A practical solution of the problem
is to assume different values of y, substitute y in Eq. (6-36) and solve for ¢, and then
substitute v and Q in Eq. (6-34) and solve for S,. Following this procedure, the rela-
tion between Q and S, was computed and plotted as shown in Fig. 6-8. The plotted

or, for the rectangular channel,

800 = 3 & 200 i
y o/ o 4o
700 S S ¥
10— K —io—{ 1 |
&
800 LS 150~ o &
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= o
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Fic. 6-8. Curves of critical slope vs. discharge.

curve M LN indicates a minimum value of S; = 0.004 at L, which is the required limit
slope.

Assuming that the maximum expected depth of flow in the channel is 5 ft, a dis-
charge curve OM (Fig. 6-8a) can be constructed according to Eq. (6-9). It becomes
evident that, within the shaded area between the ecurves OM and MLN, all expected
flows will be subcritical. On the right side of the curves, the flows will be super-
critical. Since the point I is below the curve OM, the limit slope is possible in the
expected range of flow.

Similarly, the maximum expected depth of flow is assumed to be 1.5 ft, and the
curves are shown in Fig. 6-8b. In this case, the point L is above the curve OM ; there-
fore, the limit slope cannot be expected to oceur in the realm under consideration.

6-8. Problems of Uniform-flow Computation. The computation of
uniform flow may be performed by the use of two equations: the con-
tinuity equation and a uniform-flow formula. When the Manning
formula is used as the uniform-flow formula, the computation will involve
the following six variables:
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The normal discharge Q

The mean velocity of fow V

The normal depth y

The coefficient of roughness »

The channel slope S

The geometric elements that depend on the shape of the channel
section, such as A4, B, ete.

@ Ov i L0 R =

When any four of the above six variables are given, the remaining two
unknowns can be determined by the two equations. The following are
some types of problems of uniform-flow computation:

A. To compute the normal discharge. In practical applications, this
computation is required for the determination of the capacity of a given
channel or for the construction of a synthetic rating curve of the channel.

B. To determine the velocity of flow. This computation has many
applications. For example, it is often required for the study of scouring
and silting effects in a given channel.

C. To compute the normal depth. This computation is required for
the determination of the stage of flow in a given channel.

D. To determine the channel roughness. This computation is used
to ascertain the roughness coefficient in a given channel; the coefficient
thus determined may be used in other similar channels.

E. To compute the channel slope. This computation is required for
adjusting the slope of a given channel.

F. To determine the dimensions of the channel section. This com-
putation is required mainly for design purposes.

Table 6-2 lists the known and unknown variables involved in each of the
six types of problems mentioned above. The known variables are indi-
cated by a check mark (V) and the unknowns required in the problem
by a question mark (?). The unknown variables that can be determined
from the known variables are indicated by a dash (—). The last

TasLE 6-2. SoME TYpEs oF PROBLEMS oF UNIFORM-FLOW COMPUTATION

. Geo-
Type of | Dis- | Veloc- Depth Rough- Slope | metrie
prob- charge ity ness Example
Yy S ele-
lem Q v n
ments
A ? — v Vv v Vv Prob. 5-5, (Ex. 5-1)
B — 7 v v v 4 Prob. 5-5, (Ex. 5-1)
C v S 7 v Vv v Example 6-2
D v e v ? v v Prob. 5-6
E v/ — v v ? V4 Example 6-4a
F v —_ v 4 ~ ? Example 7-2
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column- of the table shows the example given in this book for each type
of problem. The examples shown in parentheses are solved by the use
of the Chézy formula. It should be noted, however, that Table 6-2
does not include all types of problems. By varying combinations of
various known and unknown variables, more types of problems can be
formed. In design problems, the use of the best hydraulic section and
of empirical rules is generally introduced (Art. 7-7) and thus new types
of problems are created.

6-9. Computation of Flood Discharge. In uniform-flow computation
it is understood, theoretically, that the energy slope S; in the uniform-flow
formula is equal to the slope of the longitudinal water-surface profile and
also to the slope of the channel bottom (Art. 5-1). In natural streams,
however, these three slopes are only approximately equal. Owing .to
irregular channel conditions, the energy line, water surface, and channel
bottom cannot be strictly parallel to one another. If the change n
velocity within the channel reach is not appreciable, the energy slope
may be taken roughly equal to the bottom or the surface slope. On the
other hand, if the velocity varles appreciably from one end of the reach
to the other, the energy slope should be taken as the difference between
the total heads at the ends of the reach divided by the length of the
reach. Since the total head includes the velocity head, which is unknown,
o solution by successive approximation is necessary in the discharge
computation.

During flood stages, the velocity varies greatly, and the velocity head
should be included in the total head for defining the energy slope. Fur-
thermore, flood flow is in fact varied and unsteady, and use of a uniform-
fow formula for discharge computation 1is acceptable only when the
changes in flood stage and discharge are relatively gradual.

The direct use of a uniform-flow formula for the determination of flood
discharges is known as the slope-area method. The flood discharge may
also be determined by another well-known method called the contracted-
opening method, in which the principle of energy is applied. directly to &
contracted opening in the stream. Both methods! require information
about the highwater marks that are detectable in the flooded reach.
Good locations for collecting such information may be found not only
on main streams but also on smaller tributaries, but they must be either
comparatively regular valley channels free from bends and thus well
suited to the slope-area method or else contracted openings with sufficient
constriction to produce definite increase in head and velocity and thus
suited to the contracted-opening method.

The following is a description of the slope-area method.? The con-

1 For a comprehensive description of the methods, see [21].
2 Tt should be noted that the slope-area method actually deals with gradually varied
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tracted-opening method is related to rapidly varied flow and, therefore,
will be described later, in Art. 17-6.

The Slope-area Method. The following information is necessary for the
slope-area method: the determination of the energy slope in the channel
reach; the measurement of the average cross-sectional area and the length
of the reach; and the estimation of the roughness coefficient applicable
to the channel reach, so that frictional losses can be calculated. When
this information is obtained, the discharge can be computed by a uniform-
flow formula, such as Manning’s. The procedure of computation is as
follows: '

1. From the known values of 4, E, and n, compute the conveyances
K, and Kg, respectively, of the upstream and downstream sections of the
reach.

2. Compute the average conveyance K of the reach as the geometric
mean of K, and K, or

K = VKK, (6-37)

3. Assuming zero velocity head, the energy slope is equal to the fall #
of water surface in the reach divided by the length L of the reach, or
F
S=7 (6-38)
The corresponding discharge may, therefore, be comptited by Eq. (6-3),
or

Q=K+8 (6-3)

which gives the first approximation of the discharge.

4. Assuming the discharge equal to the first approximation, compute
the velocity heads at the upstream and downstream sections, or «,V.2/2g
and agV,%/2g. The energy slope is, therefore, equal to

-l (6-39)
where hy = F + k(e V.2/2¢ — aaVit/2g) (6-40)

and k is a factor. When the reach is contracting (V. < Vg), k = 1.0
When the reach is expanding (V. > Va), &k = 0.5. The 509, decrease
in the value of k for an expanding reach is customarily assumed for the
recovery of the wvelocity head due to the expansion of the flow. The
corresponding discharge is then computed by Eq. (6-3) using the revised

flow, but it is believed that at this stage of reading the reader should be able to follow
the procedure described here. This method shows how the uniform-flow formula can
be applied to gradually varied flow and thus paves the way for a more comprehensive
treatment on the subject of ‘gradually varied flow in Part III.



148 UNIFORM FLOW

slope obtained by Eq. (6-39). This gives the second approximation of
the discharge.

5. Repeat step 4 for the third and fourth approximations, and so on
until the assumed and computed discharges agree.

6. Average the discharges computed for geveral reaches, weighting
them equally or as circumstances indicate.

Exzample 6-6. Compute the flood discharge through a river reach of 500 ft having
known values of the water areas, conveyances, and energy coefficients of the upstream
and downstream end sections. The fall of water surface in the reach was found to be
0.50 ft.

Solution. The water areas, conveyances, and energy coefficients for the two end
sections of the reach are:

A, = 11,070 K., = 3.034 X 108 o = 1.134
Aq = 10,990 K4 = 3.103 X 10% ag = 1.177

The average K = +/3.034 X 10¢ X 3.103 X 10° = 3.070 X 10°.

Tor the first approximation, assume h; = 0.50 ft. Then S = 0.50/500 = 0.0010,
/8 = 0.0316, and @ = K 1/§ = 3.070 X 10° X 0.0316 = 97,000 cfs.

Tor the second approximation, assume @ = 97,000 cfs. Then the velocity heads at
the two end sections are:

o Vot _ 1 134 (OT000/LLOT0) _ 55,
2g 2g
2
o %_ = 1.177 (97’000410’990)2 T e
. g ~0.070

Sinee Vo is less than V4, the flow is contracting, and & = 1.0. Hence, hy = 0.500 —
0.070 = 0.430, S = 0.430/500 = 0.00086, /8 = 0.0293, and @ = 3.070 X 10% X
0.0293 = 90,000 cfs.

Similarly, other approximations are made, as shown in Table 6-3. The estimated
discharge is found to be 91,000 efs.

TaeLe 6-3. CoMPUTATION OF FLOOD DISCHARGE BY THE SLoPE-AREA METEOD
FOoR EXAMPLE 6-6

Approxi- | Assumed V.2 Vit Computed
mation Q I 2g “d 2g hs S V8 5
st | ...... 0.500) ..... | ..... 0.500]0.001000|0.0316| 97,000
2d 97,000 {0.500| 1.354 | 1.424 | 0.430 0.0008601(0.0293 | 90,000
3d 90,000 |0.500| 1.165 | 1.225 | 0.440| 0.000880| 0.0297 91,200
4th 91,200 |0.500| 1.195 | 1.258 |0.437|0.000874} 0.0296 91,000
5th 91,000 |0.500| 1.190 | 1.253 | 0.437}0.000874} 0.0296 91,000

6-10. Uniform Surface Flow. When water flows across a broad sur-
face, so-called surface flow is produced. The depth of the flow may be so
thin in comparison with the width of flow that the flow becomes & wide-
open-channel flow, known specifically as sheet flow. Ina drainage basin
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surface flow occurs mostly as a result of natural runoff, and is called over-
land flow.

Uniform flow may be turbulent or laminar, depending upon such factors
as discharge, slope, viscosity, and degree of surface roughness. If
velocities and depths of flow are relatively small, the viscosity becomes a
dominating factor and the flow is laminar. In this case the Newton’s
law of viscosity applies. This law expresses the relation between the

Fia. 6-9. Uniform laminar open-channel flow.

dynamic viscosity p and the shear stress 7 at a distance y from the
boundary surface (Fig. 6-9), as follows:

T= b (6-41)

For uniform laminar flow, the component of the gravitational force
parallel to the flow in any laminar layer is balanced by the frictional
force. In other words, the shear stress 7 per unit area of the flow along
the laminar layer PP (Fig. 6-9) is equal to the effective component of the
sravitational force, that is, 7 = w(ym — ¥)S. Since the unit weight
w = pg and p/p = v (Art. 1-3), v = gu(ym — ¥)S/». Thus, from EKq.
(6-41),

S
dv=97(ym—y)dy

Integrating and noting that v = 0 when y = 0,

S 2
v =2 (yym - %) (6-42)

H Z

This is a quadratic equation indicating that the velocity of uniform
laminar flow in a wide open channel has a parabolic distribution. Inte-
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grate Eq. (6-42) from y = 0 t0 Yy = Ym and divide the result by y.; the
gverage velocity 1s

1 [y gSYm® |
= . =TT vl
V i Is v dy 3y (6-43)

and the discharge per unit width is
g = Cryn’® (6-44}

where Cr, = ¢8/3v, a coefficient involving slope and viscosity.

Uniform surface flow becomes turbulent if the surface is rough and if
the depth of flow is sufficiently large to produce persisting eddies. In
this case the surface roughness is a dominating factor, and the velocity
can readily be expressed by the Manning formula. Thus, the discharge
per unit width 1s

g = CTym% (6“4:5)

where ym 18 the average depth of flow and where Cr = 1.498%%/n, a
coefficient involving slope and roughness.

The change of state of sheet flow from laminar to turbulent has been
studied by many hydraulicians. The transitional reglon was- found
variously at R = 310 by Jeftreys [22], from R = 300 to 330 by Hopf [23],
and from R = 548 to 773 by Horton [24]. However, Horton believed
that the Reynolds criterion is not satisfactory for sheet flow over relatively
rough surfaces. He reasoned that, at the transition point, the velocities
for laminar and turbulent flow are nearly equal, because this condition of
equal velocities represents the minimum amount of energy capable of
maintaining turbulent flow. Thus, the flow cannot be turbulent if the
velocity is less than

4

V = I8P

(6-46)
where ¥ is the average depth of flow.

As the natural ground surface is rarely even and uniferm in slope, over-
1and flow is apt to change from laminar to turbulent, and vice versa, within
o short distance. Consequently, the flow is mixed between the laminar
and turbulent. For very rough surfaces or areas densely covered with
vegetation, the flow in general is highly turbulent. Experiments have
indicated that the discharge of overland flow per unit width of flow varies
with the average depth of flow as follows:

g = Cym® (6-47)

where O is a coefficient and where the exponent varies between 1.0 for
highly turbulent flow and 3.0 for mixed flow.
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PROBLEMS

6-1. Determine the normal discharges in channels having the following sections for

y = 6ft, n = 0,015, and § = 0.0020:

A rectangular section 20 ft wide

A triangular section with a bottom angle equal to 60°

A trapezoidal section with a bottom width of 20 £t and side slopes of 1 on 2
A circular section 15 £t in diameter

A parabolic section having a width of 16 ft at the depth of 4 ft

¢ o o8

8-9. Prove the following equation for the discharge in a triangular highway gutter
(Fig. 6-10) having one side vertical, one side sloped at 1 on 2z, .Manning’s n, depth of

verflow

F1ac. 6-10. A highway gutter section,

fow y, and longitudinal slope S:

Q-.:

Of PR (6-48)

where

) = 2
TRV

6-3. Compute the discharge in the triangular highway gutter described in the pre-
ceding problem when z = 24, n = 0.017, y = 0.22 £t, and § = 0.03.

6-4. Using the Manning formula, determine the hydraulic exponent N for the fol-
lowing channel sections: (@) a very narrow rectangle, (b} a very wide rectangle, (¢) a
very wide parabola for which the wetted perimeter is practically equal to the top
width, and (d) an equilateral triangle with a vertex at the bottom.

8-5. Using the Chézy formula,! show that the general equation for the hydraulic

exponent N is
Y dl ) w
=2 (BT R Y (6-49)

6-6. Solve Prob. 6-4 if the determination of the hydraulic exponent is based on the
Chézy formula. Compare the results with those obtained in Prob. 6-4.

1 The G. K. formula shows that Chézy’s C'is a function. of the hydraulic radius and
hence of the depth y. 'Thus, the Chézy formula has not been found very convenient
for determination of the N value For canals in earth and gravelly soil, the N value
is generally found to have an increase of 0.30 to 0.50 due to the variation in Chézy’s
C with respect to the depth. This increase, however, brings the N value closer to
that based on the Manning {ormula,
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§-7. Compute the hydraulic exponent N of the trapezoidal channel section (Fig.
2.2) having a normal depth of 6 ft, using (a) Eq. (6-15), (b) Fig. 6-2, and (c) the
graphical method based on Eq. (6-16). .

6-8. Compute the hydraulic exponent N of a 36-in. circular conduit having a nor-
mal depth of 24 in. above the invert, using (a) Fig. 6-2 and (b) the graphical method
based on Eq. (6-18).

6-9. Using the Manning formula, show that the depths for a maximum discharge
and velocity in a circalar conduit are, respectively, 0.938d, and 0.81d..

6-10. On the basis of the Chézy formula, determine the respective depths for maxi-
mum discharge and maximum velocity in a circular conduit.

6-11. At what depths will the maximum discharge and veloeity occur in a square
conduit laid flat on one side?

6-12. Prepare the curves of discharge and velocity variations with respect to the
depth in a square conduit laid on one side.

6-13. A channel is assumed to have a constant hydraulic radius E for any depth of
flow. Prove that the cross section of this channel can be defined by

y = Bln (z + v/z* — R? — In K] (6-50)

where z = B when ¢y = 0. Draw the sketch of this section and discuss its properties.
(Hint: From the given condition, B = A/P = dA/dP =z dy/~/dz? + dy? - Solve
this differential equation, and evaluate the integration constant by the condition that
z = R when y = 0. Mathematically, the section is formed by two catenaries as
sides. For practical purposes, an artificial bottom should be provided since the theo-
retical section is bottomless. A uniform-flow formula, such as the Manning formula,
indicates that the hydraulic radius is the sole shape parameter for the velocity. The
adequacy of this indication can be verified experimentally by testing a channel built
of the section of constant hydraulic radius. If the indication is true, then, once this
channel is designed for a safe veloeity, it should be nonscouring and nonsilting over a
wide range of stages. In earthen canals, however, the large variation in water sur-
face during the change of stage would erode the sides very easily.)

6-14, Verify Eqgs. (6-17) to (6-19).

6-15. A rectangular testing channel is 2 ft wide and laid on a slope of 0.1035%.
When the channel bed and walls were made smooth by neat cement, the measured
normal depth of flow was 1.36 ft for a discharge of 8.9 cfs. The same channel was
then roughened by cemented sand grains, and thus the measured normal depth became
1.31 ft for a discharge of 5.2 cfs.

a. Determine the discharge for a normal depth of 1.31 ft if the bed were roughened
and the walls were kept smoocth. -

b. Determine the discharge for a normal depth of 1.31 ft if the walls were roughened
and the bed were smooth.

¢. The discharges for the conditions described in ¢ and b were actually measured and
found to be n.60 and 6.20 cfs, respectively. Determine the corresponding n values,
and compar; these values with those computed by Eqgs. (6-17) to (6-19}.

6-16. A channel consists of a main section and two side sections (Fig. 6-6). Com-
pute the total discharge, assuming that the main section and the two side sections are
separated (a) by vertical division lines and (&) by extended sides of the main channel.
Given:n = 0.025 for the main channel, n = 0.030for theside channels, and S = 0.001.

6-17. The hydrographic survey of a stream indicates that the hydraulic properties
of the stream are relatively uniform for a length of over 2 miles. The data obtained
by the survey are:



COMPUTATION OF UNIFORM FLOW 153

a. The cross section of the stream at a typical upstream station in $he uniform
reach is given by the following coordinates:

Station Elev. m.s.l, Station Elev. m.s.l
Left bank: 0 + 00 590.0 8 4 00 543 .7

1400 580.7 A 8 - 00 540.0

1+ 50 578.2 10 + 00 572.2

3 400 582.0 11 + 00 573.2

4 + 00 581.0 12 + 00 568.5

5+ 00 580.0 14 4+ 00 500.0

b. The value of n for the main channel is estimated as 0.035, for the side channels
as 0.050.

¢. The natural slope of the stream is about 1 ft/mile.

Construct a synthetic rating curve. It is suggested that the water areas of the
main channel and the side channels be separated by the extended sides of the main
¢hannel.

6-18. Compute the discharge in an overflowed highway gutter (Fig. 6-10) having a
depth of flow of 3 in. and a longitudinal slope of 0.03. The gutter is made of con-
crete with n = 0.017 and has a friangular section with a vertical curb side, a sloped
side of z = 12, and a top width of 7 = 2 ft. The overflowed scil-aggregate pave-
ment has a cross slope of 2, = 24 and n, = 0.020.

6-19. For an equal amount of discharge, an ice-covered channel should have
greater depth of flow than an uncovered channel], for two reasons: (1) the wetted
perimeter is greater in an ice-covered channel and thus results in greater resistance or
less velocity, and (2) the thickness of the ice cover is greater than a depth of water of
equal weight, since the specific gravity of ice is about 0.917. Show that the increase
in depth due to resistance in an ice-covered wide open channel may be expressed by

Ay = [1.32 (En—l)% ~ 1] y (6-51)

where n, is the roughness coefficient of the channel with ice cover, n is the roughness
coefficient of the channel without ice cover, and y is the depth of flow in the channel
carrying the same discharge but without ice cover. '

6-20. Compute the conveyance and velocity-distribution coeflicients of a channel
section 500 ft downstream from the section deseribed in Example 6-1. The survey
data at the section for the same flood are:

Subsection A, it2 P, it 7 o B
Main section........| 5,320 | 205 | 0.035 | 1.12 | 1.05
Side section......... 5,670 | 408 | 0.040 | 1.10 | 1.04

6-21. Solve Example 6-2 by the G. K. Formula.

6-22. A rectangular channel with 20 ft width, S = 0.006, and »n = 0.015, carries 2
discharge of 200 c¢fs. Compute the normal depth and velocity.

6-23. Using the Manning formula, determine the normal depths in channels having
the following sections when @ = 100 cfs, n = 0.015, and § = 0.0020:
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A rectangular section 20 ft wide

A triangular section with the bottom angle equal to 60°

A trapezoidal section with a bottom width of 20 ft and side slopes of 1 on 2
A circular section 15 ft in diameter

A parabolic section having a width of 16 ft at the depth of 4 ft

S Rue =R

6-24. Solve Example 6-2 by the graphical method.

6-26. A rectangular channel 20 ft wide has a roughness coefficient n = 0.015.

a. Determine the normal slope at a normal depth of 1.23 ft when the discharge is
200 cfs.

b. Determine the critical slope and the corresponding normal depth when the dis-
charge is 200 cfs.

¢. Determine the critical slope at the normal depth of 1.23 ft, and compute the
corresponding discharge.

6-26. Show that the critical slope at a given normal depth y» may be expressed by

14.5n2Dy,
Scn bl ‘W— (6“52)
and that this slope for a wide channel is
14.5n%
Scn - y% (6"53)

6-27. Determine the limit slope of the channel described in Example 6-4.

6-28. Construct the critical-slope curves of the channel described in Example 6-5
for bottom widths b = 1 ft, 4 ft, 20 ft, and . ‘

6-29. Determine the critical-slope curves of the channel described in Example 6-4
for side slopes z = 0, 0.2, 0.5, 1, 2, 5, and .

6-30. A channel reach 1,000 ft long has a fall of 0.35 ft in water surface during a
flood. Compute the flood discharge through this reach, using the following data:

Subsection A, Tt P, it 7 o 8
Upstream:
Main channel. ............. 4,250 210 0.038 1.10 1.04
Side channel. .............. 25,620 2,050 0.038 1.20 1.08
Downstream:
Main chanpel. ............. 5,760 320 0.042 1.10 1.04
Side channel.......c.ovuvnnn. 25,610 1,905 0.038 1.18 1.06

6-31. Prove Eq. (6-46).

6-32. Using Eqgs. (1-5) and (6-43), determine the value of K in Eq. (1-8).

6-33. Compute the discharges per unit width of a sheet flow on a surface with
n = 0.01 and S = 0.036 when the depth of flow is () 0.01 ft and (b) 0.004 ft. The
temperature of water is 68°K.

6-34. Compare Horton’s criteria for sheet flow in Prob. 6-33 with those shown by
the chart of Fig. 1-3.

6-35. Show that the velocity-distribution coefficients for lamirar uniform flow in
wide open channels are o = 1.54 and 8 = 1.20.

§-36. Using the Blasius equation (1-6) for turbulent flow in open channels,

show that the corresponding exponent in Eq. (6-47) is x = 1%7.
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CHAPTER 7/

DESIGN OF CHANNELS FOR UNIFORM FLOW

Channels to be discussed in this chapter include nonerodible channels
erodible channels, and grassed channels. For erodible channels, the dis-
cussion will be limited mostly to those which scour but do not silt (see
Preface).

A. NONERODIBLE CHANNELS

7-1. The Nonerodible Channel. Most lined channels and built-up
channels can withstand erosion satisfactorily and are therefore considered
nonerodible. Unlined channels are generally erodible, except those exca~
vated in firm foundations, such as rock bed. In designing nonerodible
channels, such factors as the maximum permissible velocity (Art. 7-9).
and the permissible tractive force (Art. 7-13) are not the criteria to be
considered. The designer simply computes the dimensions of the channel
by & Uniform-flow formula and then decides the final dimensions on the
basis of hydraulic efficiency, or empirical rule of best section, practica-
bility, and economy [1,2]. The factors to be considered in the design
are: the kind of material forming the channel body, which determines
the roughness coefficient; the minimum permissible velocity, to avoid
deposition if the water carries silt or debris; the channel bottom slope
and side slopes; the freeboard; and the most efficient section, either
hydraulically or empirically determined.

7-2. Nonerodible Material and Lining.? The nonerodible materials
used to form the lining of a channel and the body of a built-up channel
include concrete, stone masonry, steel, cast iron, timber, glass, plastic,
ete. The selection of the material depends mainly on the availability
and cost of the material, the method of construction, and the purpose for
which the channel is to be used.

The purpose of lining a channel is in most cases to prevent erosion, but
occasionally it may be to check seepage losses. In lined channels, the
mazimum permissible velocity, i.e., the maximum that will not cause
erosion, can be 1g110red prov1ded that the water does not carry sand,
gravel, or stones. If there are to be very high velocities over a 1111111g,
however, it should be remembered that there is a tendency for the rapidly

I For detajled information on channel lining, see [3].
157
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moving water to pick up lining blocks and push them out of position.
Accordingly, the lining should be designed against such possibilities.

7_3. The Minimum Permissible Velocity. The minimum permissible
velocity, or the monsilting velocily, is the lowest velocity that will not
start sedimentation and induce the growth of aquatic plant and moss.
This velocity is very uncertain and its exact value cannot be easily
determined. For water carrying no silt load or for desilted flow, this
factor has little significance except for its effect on plant growth. Gen-
erally speaking, a mean velocity of 2to 3 fps may be used safely when the
percentage of silt present in the channel is small, and a mean velocity of
not less than 2.5 fps will prevent a growth of vegetation that would
seriously decrease the carrying capacity of the channel.

7-4, Channel Slopes. The longitudinal bottom slope of a channel is
generally governed by the topography and the energy head required for
the flow of water. In many cases, the slope may depend also on the

purpose of the channel. For example, channels used for water-distri-’

bution purposes, such as those used in irrigation, water supply, hydraulic
mining, and hydropower projects, require a high level at the point of
delivery; therefore, a small slope is desirable in order to keep the loss in
elevation to a minimum.

The side slopes of a channel depend mainly on the kind of material,
Table 7-1 gives a general idea of the slopes suitable for use with various

TABLE 7-1. SUITABLE SivE SrLopes ror CHANNELS BuiLT IN Various Kinps
OF MATERIALS

Material Side slope

ROCK . . o e e e e e Nearly vertical
Muck and peat soils ... i i e 171

£iff clay or earth with concrete lining............ . cvnen :lto 1:1
Earth with stone lining, or earth for large channels........ 1:1
Firm clay or earth for small ditches..................ctt 114:1
Loosesandy earth....... ... o i 2:1
Sandy loam OF POTOUS ClaY . . ouviviv v iiieansens 3:1

kinds of material. TFor erodible material, however, a more accurate
determination of the slopes should be checked against the eriterion of
maximum permissible velocity (Art. 7-10) or by the principle of tractive
force (Art. 7-14). Other factors to be considered in determining slopes
are method of construction, condition of seepage loss, climatic change,
channel size, etec. Generally speaking, side slopes should be made as
steep as practicable and should be designed for high hydraulic efficiency
and stability. For lined canals, the U.S. Bureau of Reclamation [4]
has been considering standardizing on a 1.5:1 slope for the usual sizes
of canals. One advantage of this slope is that it is sufficiently flat to
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allow the practicable use of just about any type of lining or lining treat-
ment now or in the future anticipated by the Bureau.

7.5. Freeboard. The freeboard of a channel is the vertical distance
from the top of the channel to the water surface at the design condition.
This distance should be sufficient to prevent waves or fluctuations in
water surface from overflowing the sides. This factor becomes impor-
tant particularly in the design of elevated flumes, for the flume substruc-
ture may be endangered by any overflow.

There is no universally accepted rule for the determination of free-
board, since wave action or water-surface fluctuation in a channel may
be created by many uncontrollable causes. Pronounced waves and
Auctuation of water surface are generally expected in channels where the
velocity is so high and the slope so steep that the flow becomes very
unstable, or on curves where high velocity and large deflection angle
may cause appreciable superelevated water surface on the convex side of
a curve, or in channels where the velocity of flow approaches the critical
state at which the water may flow at alternate depths and thus jump from
the low stage to the high stage at the least obstruction. Other natural
causes such as wind movement and tidal action may also induce high
waves and require special consideration in design.

Freeboards varying from less than 59 to greater than 30% of the depth
of flow are commonly used in design. For smooth, interior, semicireular
metal flumes on tangents, carrying water at velocities not greater than
809, of the critical velocity with a maximum of 8 ips, experience has
indicated that a freeboard of 6% of the flume diameter should be used.
Tor flumes on curves with high velocity or deflections, wave action will
be produced; so freeboard must be increased to prevent water from. slop-
ping over.

Freeboard in an unlined canal or lateral will normally be governed by
considerations of canal size and location, storm-water inflow, and water-
table fluctuations caused by checks, wind action, soil characteristies,
percolation gradients, operating road requirements, and availability of
excavated material. According to the U.S. Bureau of Reclamation {4],
the approximate range of freeboard frequently used extends from 1 ft
tor small laterals with shallow depths to 4 £t in canals of 3,000 cfs or more
capacity with relatively large water depths. The Bureau recommends
that preliminary estimates of the freeboard required under ordinary
conditions be made according to the following formula:

F=+/Cy (7-1)

where F is the freeboard in ft, v is the depth of water in the canal in ft,
and C is & coefficient varying from 1.5 for a canal capaeity of 20 cfs to
2.5 for a canal capacity of 3,000 cfs or more. This approximation 1s
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based upon average Bureau practice; it will not, however, serve for all
conditions.

For lined canals or laterals, the height of lining above the water surface
will depend upon a number of factors: size of canal, velocity of water,
curvature of alignment, condition of storm- and drain-water inflow,
Auctuations in water level due to operation of flow-regulating structures,
and wind action. In a somewhat similar manner, the height of bank
above the water surface will vary with size and location of canal, type
of soil, amount of intercepted storm or drain water, etc. As a guide for
lined-canal design, the U.S. Bureau of Reclamation {3] has prepared
curves (Fig. 7-1) for average freeboard and bank heights in relation to
capacities.
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of Reclamation.}

7-6. The Best Hydraulic Section. It is known that the conveyance of
a channel section increases with increase in the hydraulic radius or with
decrease in the wetted perimeter. From a hydraulic viewpoint, there-
fore, the channel section having the least wetted perimeter for a given
area has the maximum conveyance; such a section is known as the best
hydraulic section. The semicircle has the least perimeter among all sec-
tions with the same area; hence it is the most hydraulically efficient of
all sections.

The geometric elements of six best hydraulic sections are listed in
Table 7-2, but these sections may not always be practical owing to
difficulties in construction and in use of material. In general, a channel
section should be designed for the best hydraulic efficiency but should be
modified for practicability. From a practical point of view, it should
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be noted that a best hydraulic section is the section that gives the mini-
mum area for a given discharge but not necessarily the minimum exca~
vation. The section of minimum excavation occurs only if the water
surface is at the level of the bank tops. Where the water surface is
below the bank tops, as frequently occurs, channels narrower than those
of the best hydraulic section will give minimum excavation. If the
water surface overtops the banks and these are even with the ground
level, wider channels will provide minimum excavation.

TaBrLe 7-2. BesT HyprAULIC SECTIONS

Ar Wetted |Hydraulie] Top |Hydrau-| Section
Cross section Ae a perimeter | radius width |lic depth| factor
P B T D Z
Trapezoid, half B _
of a hexagon \/?; yil 2 \/3 y L5y| 44 \/3 Y 3y 34925
Rectangle, half
of a square 22 4y 14y 2y Y 2y25
Triangle, half of
& square | 2vV2y i Y V2 y 2y By \2/5 y2s
o T . 14 T LY
Semicircle 5 y? Y gy 2y b Y p y2-3
Parabola,
T=2vV2y |4 V2y 8% Vay Yy 22y %y 86 V3
Hydrostatic
catenary 1.39586y2 | 2.9836y | 0.46784y|1.917532y|0.72735y| 1.19093y2-5

The principle of the best hydraulic section applies only to the design
of nonerodible channels. For erodible channels, the principle of tractive
force must be used to determine an efficient section (Art. 7-15).

Example 7-1. Show that the best hydraulic trapezoidal section is one-half of a
hexagon,

Solution. Table 2-1 gives the water area and wetted perimeter of a trapezoid as
A = (b - zy)y and P=b+2+1Fz2y

where y is the depth, b is the bottom width, and z:1 is the side slope.
First, consider A and z to be constant. Differentiating the above two equations
with respect to ¥ and solving simultaneously for dP/dy,

dP TR b
gg}‘=2(\/l + 2t — 2) Y

For a minimum wetted perimeter, dP/dy = 0, or

b = 2y(~/1 + 22 — 2)

Substituting this equation for b in the previous two equations for 4 and P and solving
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simultaneously for P,

P=2VAC2VI T2 —2)

Now, find the value of z that makes P the least. Differentiating P with respect to
z, equating dP/dz to zero, and solving for z,

z = —-\@ = tan 30°
3
This means that the section is a half hexago=

7-7. Devermnation vr Section Dimensivns. The determination of
section dimensions for nonerodible channels includes the following steps:

1. Collect all necessary information, estimate 7, and select S.

2. Compute the section factor AR by Eq. (6-8), or

o MY
AR =T VS (6-8)

3. Substitute in Eq. (6-8) the expressions tor 4 and B obtained from
Table 2-1, and solve for the depth. Tf there are other unknowns; such
as b and z of a trapezoidal section, then assume the values for these
unknowns and solve Eq. (6-8) for the depth. By assuming several values
of the unknowns, a number of combinations of section dimensions can
be obtained. The final dimensions are decided on the basis of hydraulic
efficiency and practicability. For lined canals, the trapezoidal section is
commonly adopted, and the U.S. Bureau of Reclamation [3] has developed
experience curves (Fig. 7-2) showing the average relation of bottom
widths and water depths to canal capacities. These curves can be used
as a guide in selecting proper section dimensions.

The determination of the depth for the computed value of AR% can
be simplified by use of the design chart (Fig. 6-1). Some engineers
prefer a solution by trial and error, similar to Solution 2 for Example 6-2
of Art. 6-6.

4 Tf the best hydraulic section is required directly, substitute in
Eq. (6-8) the expressions for 4 and R obtained from Table 7-2 and
solve for the depth. This best hydraulic section may be modified for
practicability.

5. Tor the design of irrigation channels, the channel section is some-
times proportioned by empirical rules such as the simple rule given by the
early U.S. Reclamation Service [5] for the full supply depth of water in
feet.

y = 0.5VA (7-2)

where A is the water area in ft?. For a trapezoidal section it can be
shown that this rule may also be expressed by 2 simple formula

r=4—2 (7-3)
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where z is the width-depth ratio b/y and z is the horizontal projection
of the side slope corresponding to 1 ft vertical. Similarly, engineers in
India [6] have used an empirical formula y = +/ A73 = 0.577 /4, which
is equivalent to x = 3 — z for trapezoidal sections; and Philippine engi-
neers [7] use Eq. (7-3) with z = 1.5, or = 2.5, for earth canals.
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Fie. 7-2. Experience curves showing bottom width and depth of lined channeis.
(U.S. Bureau of Reclamation.)

6. Check the minimum permissible velocity if the water carries silt.
7. Add a proper freeboard to the depth of the channel section.

Example 7-2. A trapezoidal channel carrying 400 cfs is built with nonerodible
bed having 2 slope of 0.0016 and » = 0.025. Proportion the section dimensions.

Solution. By Eq. (6-8),
ARY = 0.025 X 400

S 2 = 167.7
1.49 ~/0.0016

Substituting 4 = (b + zy)y and B = (b + 2y)y/(b + 2 V1 + 22 ) in the abuve
gxpression,

[(b + 2yl
b +2+1 F+22y)%

= 167.7

Assuming b = 20 £t and z = 2 and simplifying,

7,680 + 1,720y = {y(10 4 y)]*®
y = 3.36 ft
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Tt should be noted that this solution is exactly the same as the computation of
the normal depth given in Solution 1 of Example 6-2. Accordingly, the solutions by
trial and error and by the graphical method described in Example 6-2 can also be
applied to the present problem.

Similarly, assume other suitable values of & and z, and compute the corresponding
depths. The final decision on dimensions will depend on practical considerations.
If the values of b and z are decided at the beginning of the computation, the depth will
be computed only once.

Suppose that b = 20ft, z = 2, and y = 3.36 ft are the final values. Assign a free-~
board of 2 £+; the total depth of the channel is, therefore, 5.36 ft and the top width of
the channel (not the width of the water surface) is 41.4 ft. The water area is 89.8 12,
and the velocity is 4.46 fps, which is greater than the minimum permissible velocity
for inducing silt, if any.

When the best hydraulic section is required, substitute A = 4/3y*and B = 0.5y,
obtained from Table 7-2, in AR% = 167.7 and simplify; the depth is found to be
y = 6.6ft. Add 3 ft freeboard; the total depth is 9.6 ft. The corresponding bottom
width is 7.6 6, the top width of the channel is 18.7 it, the water area is 75.2 ft%, and the
velocity is 5.32 fps.  Since the best hydraulic trapezoidal section is the half hexagon,
the side slopes are 1 on /3/3.

B. ERODIBLE CHANNELS WHICH SCOUR BUT DO NOT SILT

7-8. Methods of Approach. The behavior of flow in an erodible chan-
nel is influenced by so many physical factors and by field conditions so
complex and uncertain that precise design of such channels at the present
stage of knowledge is beyond the realm of theory.! The uniform-flow
formula, which is suitable for the design of stable nonerodible channels,
provides an insufficient condition for the design of erodible channels.
This is because the stability of erodible channels, which governs the
design, is dependent mainly on the properties of the material forming the
channel body, rather than only on the hydraulics of the flow in the chan-
nel. Only after a stable section of the erodible channel is obtained can
the uniform-flow formula be used for computing the velocity of flow and
discharge.

Two methods of approach to the proper design of erodible channels
are described here: the method of permissible velocity and the method of
tractive force. 'The method of permissible velocity has been used exten-
sively for the design of earth canals in the United States to ensure freedom
from scour. The method of tractive force has sometimes been used in
Europe; it is now under comprehensive investigation by the U.S. Bureau

1 T¢ has been noticed that certain channels are erodible whereas others very similar
in channel geometry, hydraulics, and soil physical properties are not. As a further
step in investigation, the chemical properties of the material forming the channel
body should be explored. It may be that an lon exchange between water and soil or

hydration of the material is providing a binder in some places and thus affecting the
erosion. For a general discussion of the complexity of this problem, see [8] and [9].
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of Reclamation and is tentatively recommended for design of erodible
channels. It should be noted that either method at the present stage will
serve only as a guide and will not supplant experience and sound engi-
neering judgment.

7-9. The Maximum Permissible Velocity. The mazimum permissible
velocity, or the nonerodible velocity, is the greatest mean velocity that will
not cause erosion of the channel body. This velocity is very uncertain
and variable, and can be estimated only with experience and judgment.
in general, old and well-seasoned channels will stand much higher veloci-

Tasre 7-3. Maxivum PErMIssisLE VBLOCITIES RECOMMENDED BY FORTIER
AND ScoBEY AND THE CORRESPONDING UNIT-TRACTIVE-FORCE VALUES
ConverTeED BY THE U.S. BurEavu oF REcraMaTioN®
(For straight channels of small slope, after aging)

Water trans-

Clear water porting col-
Material " loidal silts
V: 70, V! T,

fps | Ib/ft? | fps | Ib/ft®

Fine sand, colloidal...................... 0.020 | 1.50 | 0.027 | 2.50 | 0.Q75

Sandy loam, noneolloidal. ................ 0.020 | 1.75 ; 0.037 | 2.50 | 0.075
Bilt loam, noneolloidal .................... 0.020 | 2.00 ) 0.048 | 3.00 | 0.11
Alluvial silts, noncolloidal.................| 0.020 { 2.00 | 0.048 | 3.50 | 0.15
Ordinary firm loam . ... ................. 0.020 : 2.50 | 0.075 | 3.50 | 0.15
Voleanic ash. ......... ... ... ... ... . ... 0.020 | 2,50 | 0.075 | 3.50 | 0.15
Stiff elay, very colloidal................... 0.025 | 3.7510.28 | 5,00 0.48
Alluvial silts, colloidal.................... 0.025 | 3.75 | 0.26 5.00 ] 0.46
Shales and hardpans..................... 0.025 | 6.00 | 0.67 6.00 | 0.87
Finegravel.......... ... .. .. ... ... ...... 0.020 | 2.50 | 0.075 } 5.00 | 0.32
Graded loam to cobbles when noncolloidal..| 0.030 | 3.75 | 0.38 5.00 | 0.66
Graded silts to cobbles when colloidal. ... .. 0.030 | 4.00 | 0.43 5.50 | 0.80
Coarse gravel, noncolloidal................ 0.025 | 4.00 | 0.30 | 6.00 | 0.67
Cobbles and shingles..................... 0.035 1 5.00 | 0.91 | 5.50 | 1.10

* The Fortier and Scobey values were recommended for use in 1926 by the Special
Committee on Irrigation Research of the American Society of Civil Engineers.

ties than new ones, because the old channel bed is usually better stabi-
lized, particularly with the deposition of colloidal matter. When other
conditions are the same, a deeper channel will convey water at a higher
mean velocity without erosion than a shallower one. This is probably
because the scouring is caused primarily by the bottom velocities and,

for the same mean velocity, the bottom velocities are greater in the shal-
lower channel.
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Attempts! were made early to define a mean velocity that would cause =
neither silting nor scouring. From the present-day viewpoint, how-
ever, it is doubtful whether such a velocity actually exists. In 1915,
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Etcheverry [26] published probably the first table of maximum inean
velocities that are safe against erosion, In 1925, Fortier and Scobey [27]
published the well-known table of ‘ Permissible Canal Velocities” shown
in Table 7-3. The values in this table are for well-seasoned channels of
small slopes and for depths of flow less than 3 ft. The table also shows

1 The first famous formula for this nonsilting and noneroding velocity for silt-laden
water was published in 1895 by Kennedy [10]. From a study of the discharge and
depth of 22 canals of the Upper Bari Doab irrigation system in Punjab, India, the T
Kennedy formula was developed as o

Vo = Cy* (7-4)

where V,is the nonsilting and noneroding mean velocity in fps; ¥ is the depth of flow
in ft; ¢ = 0.84, depending primarily on the firmness of the material forming the chan-
nel body; and z = 0.64, an exponent which varies only slightly. Based on later
studies by other engineers, the values of C generally recommended are 0.56 for

_ extremely fine soils such as those found in Egypt; 0.84 for fine light sand soils such

" as those found in the Punjab, India; 0.92 for coarse light sandy soils; 1.01 for sandy
Joamy silts; and 1.09 for coarse silt or hard-soil debris. For clear water, a value of
z = 0.5 has been suggested.

For the design of canals carrying sediment-laden water, the Kennedy formula is
now practically obsolete and is being replaced by methods based on Lacey’s regime
theory [11-16], Einstein’s bed-load function [17], and Maddock-Leopold’s principle
of channel geometry [18]. There are voluminous writings on these methods. Com-~
prehensive bibliographies can be found in [19] to [25].
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suitable n values for various materials and the converted values for the

corresponding permissible tractive force, which
will be discussed later (Art. 7-13). In 1936, a
Russian magazine [28] published values of maxi-
mum permissible velocities (Figs. 7-3 and 7-4)
above which scour would be produced in noncohe-
sive material of a wide range of particle sizes and
various kinds of cohesive soil. It also gave the
variation of these velocities with channel depth
(Fig. 7-5).

The maximum permissible velocities mentioned
above are with reference to straight channels.
For sinuous channels, the velocities should be
lowered in order to reduce scour. Percentages of
reduction suggested by Lane [29] are 5% for
slightly sinuous canals, 139, for moderately
sinuous canals, and 229, for very sinuous canals.
These percentage values, however, are very ap-
proximate, since no accurate data are available
at the present time.

7-10. Method of Permissible Velocity. Using
the maximum permissible velocity as a criterion,
the design procedure for a channel section, as-
sumed to be trapezoidal, consists of the following
steps:
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i, For the given kind of material forming the channel body, estimate
the roughness coefficient n (Art. 5-7), side slope z (Table 7-1), and the
maximum permissible velocity ¥V (Table 7-3 and Figs. 7-3 to 7-5).

2. Compute the hydraulic radius R by the Manning formula.

3. Compute the water area required by the given discharge and per-
missible velocity, or 4 = @/V.

4. Compute the wetted perimeter, or P = A/E.

5. Using the expressions for 4 and P from Table 2-1, solve simul-
taneously for b and y. The solution may be expedited by using the charts
given in Appendix B.

6. Add a proper freeboard, and modify the section for practicability.

Example 7-3. Compute the bottom width and the depth of flow of a trapezoidal
channel laid on a slope of 0.0016 and carrying a design discharge of 400 cfs. The
channel is to be excavated in earth containing noneolloidal coarse gravels and pebbles.

Solution. Tor the given conditions, the following are estimated: n = 0.023, z = 2,.

and maximum permissible velocity = 4.5 fps.
Using the Manning formula, solve for k.

1.49
45 = 5o B¥ /0.0016

or K = 2.60ft
Then A = 400/4.5 = 88.8 ft2, and P = A/R = 88.8/2.60 = 34.2 ft. Now

=0 +2y)y = (b + 2y)y = 88.8 ft*
and P=b+2+1Fz2y=(0b+2~b5y) =3421t

Solving the above two equations simultaneously, b = 18.7 ft and y = 3.46 ft.

7-11. The Tractive Force. When water flows in a channel, a force is
developed that acts in the direction of flow on the channel bed. This
force, which is simply the pull of water on the wetted area, is known as the
tractive force.t  In a uniform flow the tractive force is apparently equal to
the effective component of the gravity force acting on the body of water,
parallel to the channel bottom and equal to wALS, where w is the unit
weight of water, 4 is the wetted area, L is the length of the channel
reach, and S is the slope (Art. 5-4). Thus, the average value of the
tractive force per unit wetted area, or the so-called unit tractive force
7o, is equal to wALS/PL = wRS, where P is the wetted perimeter and
R is the hydraulic radius; that is

7o = WES (7-5)

In a wide open channel, the hydraulic radius is equal to the depth of flow
y; hence 7o = wys.

1 This is also known as the shear force or the drag force. 'The idea of tractive force
iz generally believed to have been first introduced into hydraulic literature by du
Boys in 1879 [p. 149 of 30]. However, the principle of balancing this force with the
channel resistance in a uniform flow was stated by Brahms early in 1754 (see Art. 5-4).
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It should be noted that the unit tractive force in channels, except for
wide open channels, is not uniformly distributed along the wetted perim-
eter. Many attempts have been made to determine the distribution of
the tractive force in a channel. Leighly [31] attempted to determine this
distribution in many trapezoidal and several rectangular and triangular
channels from the published data on the velocity distribution in the

1.5 1.5

0.750wySs 0.750wyS
C.970wyS

F1g. 7-6. Distribution of tractive force in a trapezoidal channel section.
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channels. Unfortunately, owing to deficiency of data, the results of his
study were not very conclusive. In the U.3. Bureau of Reclamation,
Olsen and Florey [32] and other engineers have used the membrane
analogy and analytical and finite-difference methods for determining the
distribution of tractive foree in trapezoidal, rectangular, and triangular
channels. A typical distribution of tractive force in a trapezoidal chan-
nel resulting from the membrane-analogy study is shown in Fig. 7-6.
The pattern of distribution varies with the shape of the section but is
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practically unaffected by the size of the section. Based on such studies,
curves (Fig. 7-7) showing the maximum unit tractive forces on the sides
and bottom of various channel sections have been prepared for use In
canal design. Generally speaking, for trapezoidal channels of the shapes
ordinarily used in canals, the maximum tractive force on the bottom is
close to the value wyS, and on the sides close to 0.76 wysS. ‘
7.19. Tractive-force Ratio. On a soil particle resting on the sloping
side of a channel section (Fig. 7-8) in which water is flowing, two forces
are acting: the tractive force ar; and the gravity-force component W, sin ¢,

Y@
NIN T
N s

Fie. 7-8. Analysis of forces acting on a particle resting on the surface of a channel bed.

Y Wsasinaqb -4-c121'52

which tends to cause the particle to roll down the side slope.! The
symbols used are ¢ = effective area of the particle, r, = unit tractive
force on the side of the channel, W, = submerged weight of the particle,
and ¢ = angle of the side slope. The resultant of these two forces, which
are at right angles to each other, is

T T

When this force is large enough, the particle will move.
By the principle of frictional motion in mechanics, it may be assumed
that, when motion is impending, the resistance to motion of the particle

1 The concept of the three-dimensional analysis of the gravity and tractive foreces
acting on a particle resting on a slope at the state of impending motion was first given
by Forchheimer (33]. A complete analysis of a channel section using this concept
was first developed by Chia-Hwsa Fan [34]. The analysis was also developed inde-
pendently by the U.S. Bureau of Reclamation under the direction of E. W. Lane
[29,35].
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is equal to the force tending to cause the motion. The resistance to
motion of the particle is equal to the normal force W, cos ¢ multiplied by
the coefficient of friction, or tan 8, where # is the angle of repose. Hence,

W, cos ¢ tan 0 = /W, tsin? ¢ + air? (7-6)

Solving for the unit tractive foree 7. that causes impending motion on a
sloping surface,

_ W, tan® ¢
Ty = a COSQSt&IlBJ]_ t&_llz__é (77)
Similarly, when motion of a particle on the level surface is impending
owing to the tractive force arz, the following is obtained from Eq. (7-6)
with ¢ = 0:
Wg tan 0 = argp (7-8)

Solving for the unit tractive force 7, that causes impending motion on a
level surface,

r = 2t g (7-9)

The ratio of 75 to rz is called the fractive-force ratio; this is an important
ratio for design purposes. From Egs. (7-7) and (7-9), the ratio is

_ T _ _ tan? ¢ :
== cos ¢ \/1 P (7-10)
. o1 s _ sin? ¢ )
Simplifying, K \/ 1 e (7-11)

Tt can be seen that this ratio is a function only of the inclination of the
sloping side ¢ and of the angle of repose of the material 6. For cohesive
and fine noncohesive materials, the cohesive forces, even with com-
paratively clear water, become so great in proportion to the gravity-
force component causing the particle to roll down that the gravity force
can safely be neglected. Therefore, the angle of repose need be con-
sidered only for coarse noncohesive materials. According to the U.S.
Bureau of Reclamation’s investigation, it was found in general that the
angle of repose increases with both size and angularity of the material.
For use in design, curves (Fig. 7-9) were prepared by the Bureau, showing
values of the angle of repose for noncohesive material above 0.2 in. in
diameter for various degrees of roughness. The diameter referred to
is the diameter of & particle than which 25% (by weight) of the material
is larger,

1 Equation (7-10) was presented by the U.S. Bureau of Reclamation [35,36] and
Bq. (7-11) by Fan [34]. The two equations are mathematically identical.
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Particle size ininches
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Fic. 7-9. Angles of repose of noncohesive material. (U.S. Bureau of Reclanation.)

7_13. Permissible Tractive Force. The permissible tractive force is the
maximum unit tractive foree that will not cause serious erosion of the
material forming the channel bed on a level surface. This unit tractive
force can be determined by laboratory experiments, and the value thus
obtained is known as the critical tractive force. However, experience has
shown that actual canals in coarse noncohesive material can stand sub-
stantially higher values than the critical tractive forces measured in the
laboratory. This is probably because the water and soil in actual canals
contain slight amounts of colleidal and organic matter which provide a
binding power and also because slight movement of soil particles can be
tolerated in practical designs without endangering channel stability.
Since the permissible tractive force is the design eriterion for field condi-
tions, the permissible value may be taken less than the critical value.

The determination of permissible tractive force is now based upon
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particle size for noncohesive material and upon compactness or voids
ratio for cohesive material. Other soil properties such as the plasticity
index! or the chemical action may probably also be taken as indexes for
defining permissible tractive force more precisely. However, sufficient,
data and information on these indexes are lacking. The U.S. Bureau
of Reclamation has made a comprehensive study of the problem, using
data for coarse noncohesive material obtained from the San Luis Valley

4
3
2
pil
W
! y.
N-t—
= e
& 0.5 %
g Recommended value for canals with high Ve
- content of fine sediment in the water g
: LU L /
2 |
S Recommended vaiue for canals with 1> y
= low content of fine sediment //‘ A
5 infthe water, ey X1l Recommended value for
o O A e Z L canals in coorse,
o 3 — noncohesive matericl;
0 S etV ‘ size 25% larger
z —
ﬁ:'-i 0.05 1T P
1]
T | "I Recommended value for canals
with clear water
0.01
Q4 05 1 5 10 50 100

Average particle diometer in mm

Fra. 7-10. Recommended permissible unit tractive forces for canals in noncohesive
material, (U.S. Bureau of Reclamation.)

canals [37], values converted from permissible velocities, given by Etche-
verry and by Fortier and Scobey, the U.S.S.R. values, ete. (Art. 7-9).

As a result, values of permissible tractive force recommended for canal
design were developed as follows:

! The plasticity index is the difference in per cent of moisture between plastic limit
and liquid limit in Atterberg soil tests. Thisindex has been investigated by the U.S.
Bureau of Reclamation as a soil characteristic that can be used to indicate resistance
to scour for cohesive materials. Tor canal design, a plasticity index of 7 may be
taken tentatively as the critical value, with scour occurring for moderate tractive
forces below this value. However, scours are still observed in many cases where the
index is above 7. Research shows that determination of the plasticity index in con-
junction with consolidated-shear tests may possibly be necessary.
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Tor coarse noncohesive material, with sufficient factor of safety, the
Bureau recommends tentatively a value of permissible tractive force in
pounds per square foot equal to 0.4 times the diameter in inches of a
particle than which 25% (by weight) of the material is larger. This
recommendation is shown by the straight line in the design chart (Fig.
7-10).

For fine noncohesive material, the size specified is the median size, or
size smaller than 509% of the weight. Three design curves (Fig. 7-10)

1.0 T T T T
I 13 U111 i ] ¥
AN Sandy clays (sond < 50 %
N e !
0.5 \ /Heovy cloyey soils
N L
\ \\ /Cluys
11 ’
k- Lean clayey soils
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Tig. 7-11. Permissible unit tractive forees for canals in cohesive material as converted
from the U.S.8.R. data on permissible velocities.

are tentatively recommended (1) for canals with high content of fine
sediment in the water, (2) for canals with low content of fine sediment in
the water, and (3) for canals with clear water.

For cohesive materials, the data based on conversion of permissible
velocities to unit tractive forces and given in Table 7-3 and Fig. 7-11 are
recommended as design references.

The permissible tractive forces mentioned above refer to straight chan-
nels. For sinuous channels, the values should be lowered in order to
reduce scour. Approximate percentages of reduction, suggested by
Lane [29], are 109, for slightly sinuous canals, 25% for moderately sinu-
ous canals, and 40% for very sinuous canals. :
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7-14. Method of Tractive Force. The first step in the design of erodi-
hle channels by the method of tractive force consists in selecting an
approximate channel section by experience or from design tables,? collect-
ing samples of the material forming the channel bed, and determining
the required properties of the samples. With these data, the designer
investigates the section by applying tractive-force analysis to ascertain
probable stability by reaches and to determine the minimum section that
appears stable. For channels in noncohesive materials the rolling-down
effect should be considered in addition to the effect of the distribution of
tractive forces; for channels in cohesive material the rolling-down effect is
negligible, and the effect of the distribution of tractive force alone is a
criterion sufficient for design. The final proportioning of the channel
section, however, will depend on other nonhydraulic practical considera-
tions. The analysis for tractive force is best described by the following
example:

Example 7-4. Design a trapezoidal channel laid on & slope of 0.0016 and carrying
a discharge of 400 cfs. The channel is to be excavated in earth containing noncol-
loidal coarse gravels and pebbles, 25 % of which is 1.25 in. or over in diameter, Man-
ning's n = 0.025.

Solution. For trapezoidal channels, the maximum unit tractive force on the slop-
ing sides is usually less than that on the bottom (Fig. 7-7); hence, the side force is the
controlling value in the analysis. The design of the channel should therefore include
(a) the proportioning of the section dimensions for the maximum unit tractive force
on the sides and (b) checking the proportioned dimensions for the maximum unit
tractive force on the botiom.

a. Proportioning the Section Dimensions. Assuming side slopesof 2:1,0rz = 2, and
a base-depth ratio b/y = 5, the maximum unit tractive force on the sloping sides
(Fig. 7-7) 1s 0.775wyS = 0.775 X 62.4 X 0.0016y = 0.078y lb/ft%

Considering a very rounded material 1.25 in. in diameter, the angle of repose (Fig.
7-9) is @ = 33.5°. With 6 = 33.5° and z = 2, or ¢ = 26.5° the tractive-force ratio
by Eq. (7-11) is K = 0.587. For a size of 1.25 in., the permissible tractive force on
a level bottom is 7z = 0.4 X 1.25 = 0.5 lb/ft? (same from Fig. 7-10), and the permis-
sible tractive force on the sides is 7, = 0.587 X 0.5 = 0.294 lb /ft=.

For a state of impending motion of the particles on side slopes, 0.078y = 0.294, or
y = 3.77 ft. Accordingly, the bottom width is b = 3.77 X 5 = 18.85 ft. For this
trapezoidal section, 4 = 99.5.ft2and R = 2.79 {t. With n = 0.025 and § = 0.00186,
the discharge by the Manning formula is 470 cfs, Further computation will show
that, for z = 2 and b/y = 4.1, the section dimensions are y = 3.82ftand b = 15.66f%
and that the discharge is 414 cfs, which is close to the design discharge.

Alternative section dimensions may be obtained by assuming other values of z or
side slopes.

b. Checking the Proportioned Dimensions. Withz = 2and b/y = 4.1, the maximum
unit tractive foree on the channel bottom (Fig. 7-7) is 0.97wyS = 0.97 X 62.4 X
3.82 X 0.0016 = 0.370 1b/ft2, less than 0.5 1b/ft?, which is the permissible fractive
force on the level bottom.

1 Typical average earth sections of irrigation canals and laterals, constructed or
proposed by the U.S. Bureau of Reclamation and selected for the flows required on
the basis of economy and stability, are given in Fig. &, paragraph 1.12C, of [4].
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7-15. The Stable Hydraulic Section. The section of an erodible chan-
nel in which no erosion will occur at a minimum water area for a given
discharge is called the stable hydraulic section. Empirical profiles, such
as the ellipse and the parabola, have been suggested as stable hydraulic
sections by many hydraulicians. The U.S. Bureau of Reclamation [38]
has employed the principle of tractive force to develop a theoretically
stable section for erodible channels carrying clear water in noncohesive
materials.

In designing trapezoidal sections, as described in the preceding article,
the tractive force is made equal to the permissible value over only a part
of the perimeter of the section, where the forces are close to maximum;
on most of the perimeter forces are less than the permissible value. In
other words, the impending instability oceurs only over a small part of
the perimeter. In developing a stable hydraulic section for maximum

efficiency, it is necessary to satisfy the condition that impending motion

shall prevail everywhere on the channel bed. For material with a given
angle of repose and for a given discharge, this optimal section will provide
not only the channel of minimum water area, but also the channel of
minimum top width, maximum mean velocity, and minimum excavation.
In the mathematical derivation of this section by the Bureau, the follow-
ing assumptions are made:

1. The soil particle is held against the channel bed by the component of
the submerged weight of the particle acting normal to the bed.

9. At and above the water surface the side slope is at the angle of
repose of the material under the action of gravity.

3. At the center of the channel the side slope is zero and the tractive
force alone is sufficient to hold the particles at the point of incipient
instability.

4. At points between the center and edge of the channel the particles
are kept in a state of incipient motion by the resultant of the gravity
component of the particle’s submerged weight acting on the side slope and
the tractive force of the flowing water.

5. The tractive force acting on an area of the channel bed is equal to
the weight component of the water directly above the area acting in the
direction of flow. This weight component is equal to the weight times
the longitudinal slope of the channel.

If assumption 5 is to hold there can be no lateral transfer of tractive
force between adjacent currents moving at different velocities in the sec-
tion—a situation, however, that never actually occurs. Fortunately,
the mathematical analysis made by the Bureau! has shown that the actual

1 Taking the effect of lateral tractive force into account, an alternative assumption

was made by the Bureau, which states that the tractive force acting on a particle is
proportional to the square of the mean velocity in the channel at the point where the
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transfer of tractive force has little effect on the results and can safely be
ignored.

Accerding to assumption 5, the tractive force acting on any elementary

area AB on the sloping side (IFig. 7-12a) per unit length of the channel is

equal to wyS dz, where w i1s the unit weight of water, ¥ is the depth of
water above AB, and S is the

longitudinal slope. Since the area e Te246
AB is /(dz)* + (dy)?, the unit I : l“_"‘:‘i - 58,
tractive force is equal o \H,ji y P
S
wysS dx A\ ey
- = = wyS cos ¢ o
v (dz)® -~ (dy)*? 'Y  {dx )iy
. {a) .
where ¢ is the slope angle of the
tangent at A5,
The other assumptions stated | 255 .
above have been u.sed previously to gﬁ‘g@ffga“\gg;;gg o1
develop the equation for the trac- L2400 |
tive-force ratio K (Art. 7-12). The F4.9|3‘a-}
unit tractive force on the level
bottom at the channel center is 2 |
T, = WyoS, where yois the depth of ]
flow at the center. The corre- I p16.s' j

sponding unit tractive force on the 4},5'1

sloping area 4B is, therefore, equal :

to wySK. 1

In order to achieve impending )

motion over the entire periphery of Fic. 7-12. Analysis and design of stable

the channel bed. the two forces hydraulie section. {@) Theoretical szec-
. _ ’ tion for given soil properties and channel

mentloned in the above paragraphs  gope providing Q = 220 efs; (b) modi-

should be equal; that is, fied section for @ = 400 cfs; (¢) modi-

. fied section for €' = 100 cfs.
wyS cos ¢ = wySK

Substituting Bq. (7-10) for K and tan—? (dy/dz) for ¢ in the above equa-
tion and simplifying,

AYN' (YN 2 s
(c—ﬁs—) —+ (LR) tan? 8§ = tan’* ¥

At the center of the channel, y = y, and x = 0. With this condition

particle is located. This assumption gives a solution that agrees very closely with
the solution based on assumption 5. Therefore, neglect of the transfer of tractive

force in the analysis will give equally satisfactory results, and with considerably
less work,
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the solution of the above differential equation is

6 x) (7-12)

This equation shows that the shape of a stable hydraulic section under
the specified assumptions is a simple cosine curve. From the results of
the Bureau’s mathematical analysis, the following properties of this stable
section can be stated:

Y = 10 cOS tan
Yo 7o

__To -
Yo = 0.07ws (7-43)
7 135 — 1@.19 tan o (7-14)
2.047,
- tany; 719

where 7, is the permissible tractive force in 1b/ft%, V is the mean velocity
in the section in fps, A is the water area in ft2, # is the angle of repose for
the material or the slope angle of the section at the water edge of the
channel, T is the top width, and the rest of the symbols are as previously
defined.

The discharge of the theoretical section is equal to @ = VA. If the
channel is to carry a discharge less than @, it is necessary to remove a
vertical portion of the section at the channel center. Suppose the dis-
charge to be carried is €', which is less than @, and the top widths of the
designed section and the removed area are T and 77, respectively. The
value of 77 may be computed by

Ql
T = 0.96 (1 ~\g T (7-16)

On the other hand, if the channel is to carry more than the theoretical

section will carry, it 1s necessary to add a rectangular section at the center.

Suppose the discharge to be carried is @/, which is greater than @, and

the top width of the added rectangular area is 77. The value of T
may be computed by

T — ?’L(Q” - Q)

1.49y,%8%

Example 7-b. Determine the profile of the stable hydraulic section to replace the
trapezoidal section of the channel deseribed in Example 7-4.

Solution. For the given conditions, ry = 0.5 1b/ft?, § = 0.0016, 8 = 33.5° and
n = 0.025. By Eq. (7-13), the center depth is yp = 0.5/(0.97 X 62.4 X 0.0016) =
5.16 ft. From Eq. (7-12), the shape of the theoretical section is

(7-17)

y = 5.16 cos 0.128z

which is plotted as shown in Fig. 7-12¢. It should be noted that the angle of the
cosine function is expressed in radians; it may be converted to degrees by multiplying
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it by 180/# or 57.3. The top width may be computed by Eq. (7-12) with y = 0, or
cos 0.128z = 0. Thus, 0.1282 = »/2 and = 12.3 ft. The top widthis T = 2z =
24.6 ft.

By Eq. (7-14), the mean velocity is V' = (1.35 — 1.19 tan 33.5°) 5.16%% X 0.0018%/
0.025 = 2.69 fps. By Eq. (7-15), the water area is 4 = 2.04 X 5.16%/tan 33.5° =
82.2 ft2%. Hence the discharge is 220 cfs. Since the design discharge is 400 cfs, it is
necessary to add a rectangular area at the middle (Fig. 7-12b). The width of the
rectangle may be computed by Eq. (7-17) as

o 0.025(400 — 220)
T 1.49 X 5.16% X 0.0016%

= 4.9 {t

Therefore the top width is 24.6 + 4.9 = 29.5 ft.
If the channel is designed to carry 100 cfs, it is necessary to remove a vertical area

from the middle (Fig. 7-12¢). The top width of the removed area may be computed
by Eq. (7-16).

T = 0.96(1 — v/19%0y) X 24.6 = 7.7 {%
Therefore the top width is 24.6 — 7.7 = 16.9 ft.

C. GRASSED CHANNELS

7-16. The Grassed Channel. Presence of grass or vegetation in
channels will result in considerable turbulence, which means loss of energy
and retardance of flow. For earth channels used for carrying water on
farm lands, however, a lining of grass is often found to be advantageous
and desirable. The grass will stabilize the body of the channel, consoli-
date the soil mass of the bed, and check the erosion on the channel sur-
face and the movement of soil particles along the channel bottom. The
U.8. Soil Conservation Service [39—41] has conducted a series of experi-
ments on channels lined with various kinds of grass (Fig. 7-13). The
results thus obtained under different testing conditions and the procedure
suggested for the design of grassed channels will be described in the
following articles.

7-17. The Retardance Coeflicient. The Manning coefficient of rough-
ness for grassed channels is specifically known as the retardance coefficient.
According to the investigation by the Soil Conservation Service, it was
found that Manning’s n for just one kind of grass varied over a wide
range depending on the depth of flow and the shape and slope of the
channel. Thus, the selection of a design value for n would be nearly
impossible. Fortunately, it was discovered that the retardance coef-
ficient n holds a certain relationship with the product of the mean velocity
of flow V and the hydraulic radius E. This relationship is characteristic
of the vegetation and practically independent of channel slope and shape.
As a result, therefore, a number of experimental curves for n versus VR
(Fig. 7-14) were developed for five different degrees of retardance:
very high, high moderate, low, and very low. For very low retardance
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Fre. 7-13. Centipede grassed channel. (Courtesy of W. O. Ree, U.S. Agricultural
Research Service.) (A) Before experiment; (B) after test at a flow equal to 15 cfs
for 40 min; (C) during test at a flow equal to 30 efs; (D) at completion of thz whole
experiment.

only the average curve is shown, together with the curves for low retard-
ance. The classification of degree of retardance is based on the kind of
vegetation and the condition of growth, as described in Table 7-4. The
term ““stand’’ used in the table refers to the density of grass, or the count
of vegetation, which is sometimes expressed as the number of stems per
square foot. The n-V R curves thus developed may also be applied to
other kinds of grass, provided that their characteristics and degree of
retardance can be identified. For this purpose, Table 7-5 is provided as a
guide in the selection of the vegetal retardance for different conditions of
stand and average length of the grass.
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P apLe 7-4. CLASSIFICATION OF DEGREE OF RETARDANCE FOR VARIOUs KINDS

oF Gmass*

Retardance

4 Very high

Cowver

Condition

Weeping love grass............
Yellow bluestem ischaemum....

Excellent stand, tall (av 30 in.}
Excellent stand, tall (av 36in.)

Bermudsa grass...............

Native grass mixture (little blue-
stem, blue grama, and other
jong and short Midwest
EUASSESE) ..t vn vt e

Very dense growth, uncut

.| Good stand, tall (av 12 in.)

Good stand, unmowed

B High Weeping love grass............ 1 Good stand, tall (av 24 in.)

Lespedeza sericea. ............. Good stand, not woody, tall
(av. 19 in.)

Alfalfa. .. ... . il Good stand, uncut (av 11in.)
Weeping love grass............ Good stand, mowed (av 13 in.)
Kudzu...... .ot Dense growth, uncub
Blue grama..........ooivenn. Good stand, uncut (av 13 in.)
Crabegrass......... . oiiuenn Fair stand, uncut (10 to 48 in.)
Bermuda grass........... ... Good stand, mowed {av 6in.)
Common lespedeza............ Good stand, uncut (av 11in.)
Grass-legume mixture—summer

C  Moderate (orchard grass, rediop, Italian

rye grass, and common les- :
pedeza)....... .o iiiiiins Good stand, uncut (8 to 8 in.)
Centinede grass............... Very dense cover (av 6 in.)
Kentucky bluegrass............ Good stand, headed (610 121n.)
Bermuda grass................ Good stand, cut to 2.5 in. height
Common lespedeza. .. ......... Excellent stand, uncut {av 4.5
in.)

Buffalograss......... . ... Good stand, uncut (3 to 6in.)

D Low G asslegume mixture—fall, spring

{orchard grass, redtop, Italian
rye grass, and common les-
pedeza) ... ...
Lespedeza sericea..............

(Good stand, uncut (4 o 5 in.)
After cutting to 2 in. height,
very good stand before cutting

E Very low

Bermuda grass........
Bermuda grass............o00. -

.1 Good stand, eut to 1.51n. height

Burned stubble

* 17.8. Soil Conservation Service {41}
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TasLE 7-5. GUIDE IN SELECTION OF VEGETAL RETARDANCE™

Stand | Average length of grass, in. | Degree of retardance
>30 A Very high
11-24 B High
Good 6-10 C Moderate
26 D Low
<2 E Very low
>30 B High
11-24 C Moderate
Fair 6-10 D Low
2-6 D Low
<2 E Very low

* 1J.8. Soil Conservation Service [41].

7-18. The Permissible Velocity. The permissible velocity of flow in a
grassed channel is the velocity that will prevent severe erosion in the
channel for a reasonable length of time. Permissible velocities for differ-
ent vegetal covers, channel slopes, and soil conditions, recommended on
the basis of investigation by the Soil Conservation Service, are shown in
Table 7-6.

7-19. Selection of Grass. The selection of grass for the channel lining
depends mainly on the climate and soil in which the plant will grow and
survive under the given conditions. From the hydraulic viewpoint,
stability and other factors should also be considered. In general, a
higher discharge requires a stronger or better lining. On steep slopes,
bunch grasses, such as alfalfa, lespedeza, and kudzu, will develop channel-
ing of the flow and, hence, are unsatisfactory for lining. For slopes
greater than 5%, only fine and uniformly distributed sod-forming grasses,
such as Bermuda grass, Kentucky bluegrass, and smooth brome, are
recommended for lining where the main flow occurs. Because of the
objectionable spreading nature of sod-forming grasses, the top portion of
the sides and the berm may be planted with grasses that do not spread
easily, such as weeping love grass. For fast establishment of the lining,
Bermuda grass and weeping love grass are recommended. Sometimes
annuals are used as temporary protection until permanent covers by
native grasses are established. Silt deposition in channels may be con-
trolled by lining with bunch grasses, which will develop channeled flow,
increase velocity, and thus reduce silting.

7-20. Procedure of Design. After the kind of grass for channel lining
is selected, the degree of retardance can be determined from the condition
of the stem length and the density of growth. During the period of
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establishment, the grass will grow and the channel will be stabilized under
2 condition of low degree of retardance. The channel will not reach its
maximum capacity until the grass cover is fully developed and well
established. Therefore, it is suggested that the hydraulic design of a
grassed channel consist of two stages. The first stage (4) is to design
the channel for stability, that is, to determine the channel dimensions
under the condition of a lower degree of retardance. The second stage

TABLE 7-6. PERMISSIBLE VELOCITIES FoR CHANNELS Linep wiTH Grass™

Permissible velocity, fps
Cover Slope range, - - .
T Erosion-resistant | Easily eroded
soils soils
Bermuda grass 0-5 8 6
5-10 7 5
>10 6 4
Buffalo grass, Kentucky bluegrass, 0-5 7 5
smooth brome, blue grama 5-10 6 4
>10 5 3
Grass mixture 0-5 5 4
5-10 4 3
Do not use on slopes steeper than 10%
Lespedeza sericea, weeping love 0-5 3.5 2.5
grass, ischaemum. (yellow blue- | Do not use on slopes steeper than 5%, except for
stem), kudzu, alfalfa, erabgrass side slopes in a combination channel
Apnuals—used on mild slopes or as 0-5 3.5 2.5
temporary protection until per-| Use on slopes steeper than 5% is not recom-
manent covers are established, | mended
common lespedeza, Sudan grass

Remargs. The values apply to average, uniform stands of each type of cover.
Use velocities exceeding 5 fps only where good covers and proper maintenance can be
obtained.

* 17.8. Soil Conservation Service [41].

(B) is to review the design for maximum capacity, that is, to determine
the increase in depth of flow necessary to maintain a maximum capacity
under the condition of a higher degree of retardance. For instance, if
common lespedeza is selected as the grass for lining, the common lespedeza
of low vegetal retardance (green, average length 4.5 in.} is used for the
first stage in design. Then, in the second stage, the common lespedeza
of moderate vegetal retardance (green, uncut, average length 11 in.)
should be used. Finally, a proper freeboard is added to the computed
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depth of the channel, which will further increase the maximum design
capacity. The design procedure! is described as follows:

A. Design for Stability. Given the discharge, channel slope, and kind
of grass, the first stage of design may proceed in the following steps:

1. Assume a value of n, and determine the corresponding values of V'R
from the n-VE curve (Fig. 7-14). _

2. Select the permissible velocity from Table 7-6, and compute the
value of R.

3. Using the Manning formula, compute the value of

R
VR = LA9E"S

and check this value against the value of V'E obtained in step 1.

4. Make other trials until the computed value of VR is equal to the
V R value obtained from the n-VE curve.

5. Compute the water area, or 4 = Q/V.

6. Since the correct values of A4 and R have been obtained, the section
dimensions may be determined by the procedure described in Art. 7-7.

The sections generally used for grassed channels are the trapezoid,
parabola, and triangle, named in order of increasing depth required in
excavation. Owing to the normal action of channel deposition and
erosion, trapezoidal and triangular sections, if selected but not well
maintained, will generally become parabolic after a long period of service.

Example 7-6. Determine the section of a channel lined with grass mixture, laid
on erosion-resistant soil at a slope of 0.04, and carrying a discharge of 50 cfs.

Solution. In designing for stability, the grass mixture that offers a low vegetal
retardance, i.e., that of the dormant season, is considered. Therefore, the correspond-
ing n-VE curve should be used in the computation.

From Table 7-6, the permissible velocity for design is taken as 5 fps. Using the
n-VR curve (Fig 7-14) for grass mixture for fall, winter, and spring, the trial computa-
tions involved in the design procedure are as follows:

Trial no; n VE R 1—..549R%S%
Fi
1 0.04 1.80 0.36 1.36
2 0.05 0.90 0.18 0.34
3 0.035 3.50 0.70 4.72
4 0.0375 2.50 0.50 2.50

The correct values for the determination of sections are B = 0.50ft and 4 = 5% =

10 ft%. Several channel sections meeting these requirements are proposed as follows
(using charts in Appendix B):

1 For an example of the practical design of a grassed channel, see [42].
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i
. Side slope | Bottom width { Depth | Top width
Section 21 b, b y, tt T, 1t
Trapezoid......... 3:1 17.0 0.53 20.18
Trapezoid.. ....... 6:1 12.5 0.62 19.94
Triangle........... 10:1 0 1.00 20.00
Parabola.......... 0.73 20.00

B. Design for Mazimum Capacity. The second stage in design is to
determine the additional depth necessary to sustain the maximum
capacity of a fully developed lining. The procedure is as follows:

1. Assume the depth ¢, and compute the water area A and the hydraulic
radius E.

2. Compute the velocity V by ¥V = Q/4 and the value of V &.

3. From the n-VR curve of a higher degree of retardance for the
selected lining, determine the value of n.

4. Compute the velocity by the Manning formula, and check this
value of V against the value obtained in step 2.

5. Make trial comvutations until the computed V in step 4 is equal to
the computed V in step 2. It should be noted that this veloeity is always
less than the permissible velocity assumed in the first stage of design,
that is, in design for stability, since the cross section has been enlarged in
the second stage of the design.

6. Add proper freeboard to the computed depth.

Example 7-7. Modify the selected sections in Example 7-6 for maximum eapacity.

Solution. For determining the proper depth for maximum capacity of the pro-
posed sections, the grass mixture of the growing season, which offers a moderate
vegetal retardance, is considered in the computation. The n-VR curve (Fig. 7-14)
for grass mixture in summer is therefore used. Other known data are @ = 50 cfs and
S = 0.04.

Tor the trapezoidal section with 3:1 side slope and b = 17.0 ft, the trial computa-
tions are given below:

Trial y A R v VR n v = 1.49R3%8%%
no. n

1 0.70 13 .4 0.63 3.73 2.3b 0.051 4.22

2 0.60 11.3 0.54 4.42 2.39 0.050 3.96

3 0.65 12.3 0.58 4.07 2.36 0.051 4.07

The correct depth is 0.65 ft. Adding a freeboard of 0.2 ft, the total depth is 0.85 ft.

For the trapezoidal section with a side slope of 6:1and b = 12.5 {t, the computation
results in a total depth of 0.94 ft. Similarly, the total depth of the triangular section
with a side slope of 10:1is found to be 1.33 it.
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For the parabolic section of y = 0.73 ft and T = 20 ft, the trial computations are
as follows:

Trial y T A R v VR " 1.49R%58%
no. n

1 0.80 21.0 11.2 0.52 4.46 | 2.32 | 0.051 3.78

2 0.96 22.2 13.3 0.60 3.76 | 2.25 | 0.051 4.16

3 0.85 21.6 12.2 0.57 4.10  2.34 | 0.031 4.03

4 0.86 21.7 12.4 0.58 4.03 | 2.341 0.051 4.07

It should be noted that the computation for the parabolic section is simplified by
the use of the equation for B in Table 2-1 and by the fact that the depth is proportional
to the square of the top width; that is, 77 = 20 4/y/0.73. Allowing a freeboard of
0.20 ft, the total depth is 1.06 ft and the top width is 24.1 ft.

The final choice of the channel section and its dimensions will depend on practicability
and on the circumstances under which the problem is proposed.

PROBLEMS

7-1. Show that the most efficient rectangular or triangular section is one-half of a
square.

7-2. Explain (a) that any section formed by a polygon which can be inseribed by
a semicircle with the center in the water surface will have its hydraulic radius equal
t0 one-half the radius of the inscribed circle, and (b) that such section will have the
best hydraulic efficiency.

7-3. Determine the best hydraulic section of the channel in Example 7-2 if the sec-
tion is (a) rectangular, (b) triangular, (¢} circular, (d) parabolie, and (e) in the form of
a hydraulic catenary.

7-4. Solve Example 7-2 by the empirical rule of Egs. (7-2) and (7-3).

7-5. Design a nonerodible channel carrying 200 ¢fs with n = 0.020 and § = 0.0020.
Use your own judgment and assumptions.

7-6. Based on the practice of the U.S. Bureau of Reclamation, determine (a) the
freeboard of the channel designed in Example 7-2 when the channel is unlined, and
(b) the heights of the lining and bank if the channel is lined.

7-7. Solve Example 7-3 if the material forming the channel body is fine silt having
an average particle size of 0.006 mm. Estimate the permissible velocity with the aid
of (a) Fortier and Scobey’s table, (b) U.8.S.R. data, and (c) the Kennedy formula
modified for clear water,

7-8. Solve Example 7-3 if the material forming the channel body is fairly compact
heavy clayey soil with a voids ratio of 1.0.

7-9. Solve Example 7-3 if the channel has a parabolic section.

7-10. Design the section of a canal to carry a discharge of 200 cfs through a land of
erodible soils with » = 0.020 and 8 = 0.0020. Assume other necessary data and use
your own judgment.

7-11. The All-American Canal is designed to divert 15,155 cfs of desilted water from
the Colorado River to irrigate the Imperial Valley in southern California. This canal
is 80 miles long. The typical maximum section has a bottom width of 160 ft, width
at water surface of 232 ft, water depth of 20.6 ft, minimum freeboard of 6 {t, and bank
width of 27 to 30 ft. The terminal capacity is 2,600 cfs. The canal was excavated
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mostly in alluvial soil, ranging from light sandy or silty loams to adobe and having
an average particle size of 0.0025 in. Review the hydraulic design of the channel
section. '

7-12. Review the stability of the section dimensions obtained in Example 7-3 by
the method of tractive force, assuming that 259% of the material forming the channel
bed is 1.25 in. or over in diameter.

7-13. Solve Example 7-4 for the following conditions, respectively:

(a) If the side slopes are assumed as 1 on 1.5.

(b) If the material forming the channel bed contains fine noncohesive particles,
509, of which are larger than 1 mm in diameter. The water is clear.

(¢) If the material forming the channel bed is cohesive compact clay, having a voids
ratio equal to 0.5.

(d) If-the channel is moderately sinuous.

7-14. The conversion from the maximum permissible velocity to permissible trac-
tive force (Table 7-3) is based on a flow depth of 3 ft and an average channel section
having & bottom width of 10 ft and side slopes of 1.5:1. For alluvial noncolloidal silts
and clear-water flow, the maximum permissible velocity recommended by Fortier and
Scobey is 2.00 fps and the n value is taken as 0.020. Compute the corresponding
permissible tractive force.

7-16. Compute the maximum tractive force per unit area on the section of the All-
American Canal described in Prob. 7-11.

7-16. Determine the cross section and discharge of the stable hydraulic section of a
channel excavated in a noncohesive material having ro = 0.1 lb/ft? S = 0.0004,
g = 31° and n = 0.020.

7-17. Determine the modified profile for the channel section obtained in the preced-
ing problem if the channel is to carry (a) 75 cfs and (b) 300 cfs.

7-18. Design a waterway lined with Bermuda grass on erosion-resistant soil and
carrying a discharge of 200 efs. The average slope of the channel is 3%. Use the
curve for moderate vegetal retardance.

7-19. Determine the totsl depth for maximum capacity of the channel section pro-
posed for the preceding problem. Allow a freeboard equal to 209 of thie computed
depth,
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CHAPTER 8

THEORETICAL CONCEPTS OF BOUNDARY LAYER,
SURFACE ROUGHNESS, VELOCITY DISTRIBUTION,
AND INSTABILITY OF UNIFOEM FLOW

This chapter presents assorted theoretical concepts which have been
developed in the mechanics of open-channel flow. These concepts,
though not to be thoroughly discussed, may shed some light upon the
solution of many practical problems.

8-1. The Boundary Layer. When water enters a channel, the velocity
distribution across the channel section, owing to the presence of boundary
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F1c. 8-1. Development of the boundary layer in an open channel with an ideal entrance
condition.

roughness, will vary with the distance over which the water travels in
the channel (Fig. 8-1).! If the flow is uniform and stable and if the
channel is prismatic and of constant roughness, the velocity distribution
will eventually reach a definite pattern. For simplicity of discussion the
following are assumed: (1) the flow entering the channel is laminar and of
uniform velocity distribution; (2) no restriction exists at the entrance that
will cause abrupt disturbance of the water surface and the velocity distri-

1 For the sake of simplicity, the two-dimensional profile of a wide open channel
with exaggerated vertical scale is shown.
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bution; (3) the depth of flow is indefinitely large, so the depth of flow can
be considered constant as the water enters the channel. In the channel,
the effect on the velocity distribution due to boundary roughness is
indicated by the line ABC. Outside the surface represented by ABC,
the velocity distribution is practically uniform. Near the channel sur-
face and within the region ABC, velocity varies according to distance
from the channel surface. The region inside ABC, though not distine-
tive, is known as the boundary layer' and its thickness is designated by é.
Since the boundary layer is not dis-
tinctive, its thickness has been de- i Vo
fined arbitrarily in various ways. —
A common definition is that the
thickness § is the magnitude of the
normal distance from the boundary
surface at which the velocity v; is
equal to 999% of the limiting veloc- Il
ity vo, which the velocity-distribu-
tion curve In the boundary layer
approaches asymptotically (Fig. v T
8_2) Turbuient
The effect of the boundary layer s
on the flow is equivalent to a ficti-

v=0.98 vg~——rf— — 1~

tious upward displacement of the Y
channel bottom to a virtual position Virtual
by an amount equal to the so-called boftom
displacement thickness §* (Fig. 8-2), PR R ol it o
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0% = ﬁ (1 - v_> dy (8-1) Fic. 8-2. Distribution of velocity over a
* stnooth channel surface (not in scale),

where v is the velocity at any dis-

tance y from the channel surface and v, is the velocity at the edge of the
boundary layer. The value of the displacement thickness generally varies
from one-eighth to one-tenth of the thickness of the boundary layer,
depending on the magnitude of the Reynolds number,

At the beginning of the flow in the channel (Fig. 8-1) the flow is entirely
laminar and a lominar boundary layer is developed along the channel
surface, as shown by the curve AB, The velocity distribution in the
layer is approximately parabolic. As the water travels farther along in
the channel, the flow in the boundary layer will eventually change to
turbulent. The point where the change takes place is indicated by B,

Downstream from B a turbulent boundary layer is developed, as shown

1 For a comprehensive treatment of this subject see {1] to [4].
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by BC. The velocity distribution in this layer can be shown analytically
to be approximately logarithmic (Art. 8-4).

If the channel surface is relatively smooth, the velocity close to the
channel surface is low: thus, a very thin stable film of flow known as the
laminar sublayer will be developed on the surface. Within the laminar
sublayer the flow is kept laminar.! The top surface of the laminar sub-
layer corresponds to the transitional zone of flow from laminar to turbu-~
lent (Art. 1-3) and, hence, cannot be precisely defined.
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Fic. 8-3. Nature of surface roughness. (a) Smooth; (b) wa\'ry ; (¢) rough.

If the conditions for uniform flow exist throughout the channel, the
turbulent boundary layer will be fully developed at section CD; thereafter
the velocity distribution will have a definite pattern. In a laboratory
channel, the laminar boundary layer AB can be eliminated easily by
placing a roughuess element at the entrance. Thus, the turbulent bound-
ary layer will be developed at the very beginning of the channel, and the
total length of the zone for the full development of boundary layer can be
shortened. Since the flow in ordinary channels is usually turbulent, the
following articles will deal only with the turbulent boundary layer.

8-2. Comncept of Surface Roughness. The concept of the existence of a
laminar sublayer in the turbulent boundary layer offers a picturesque
explanation of the behavior of surface roughness. When the surface
profile of a channel is enlarged (Fig. 8-3), it can be seen that the surface is
composed of irregular peaks and valleys. The effective height of the

1 A refined concept of the laminar sublayer will consider that there exists in the sub-
layer a small amount of eddy which decreases very rapidly to zero at the boundary
surface.
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irregularities forming the roughness elements is called the roughness
height' k. The ratio k/R of the roughness height to the hydraulic radius
is known as the relative roughness.

If the roughness height is less than a certain fraction of the thickness
of the laminar sublayer, the surface irregularities will be so small that all
roughness elements will be entirely submerged in the laminar sublayer
(Fig. 8-3a).2 Under this condition the roughness has no effect upon the
flow outside the laminar sublayer, and the surface is said to be hydrau-
lically smooth. A hydraulically smooth surface is said to be wavy if the
average surface profile follows a curve (Fig. 8-3b).

Tn connection with flow in pipes or on flat plates at zero incidence,
Schlichting (see p. 454 of [1]) gives the following condition for a surface
to be hydraulically smooth:

Vik
- <5 or k< “17; (8-2)
where V; = V/gRS, a term known as the friction velocity (Art. 8-4).

Using the Chézy formula, it can be shown from the above condition
that, for-a surface to be hydraulically smooth, the roughness height must
be less than a critical roughness expressed by

5C v
ko Nz (8-3)
where € is Chézy’s , » is the kinematic viscosity, and V is the mean
velocity. The above condition is given for roughness obtained with sand
having values of C greater than 100, probably. For the average con-
dition, Schlichting gives k. = 100v»/ V which corresponds to C = 113.5.
As an approximation, Eq. (8-3) may be applied to channels.

If the roughness height is greater than the critical value defined by Eq.
(8-3) (Fig. 8-3c), the roughness elements will have sufficient magnitude
and angularity to extend their effects beyond the laminar sublayer and
thus 