
Assignment #13 Solutions

Page 412, 48.1 Let G be the graph in the figure.

(a) How many different walks are there from a to b?

(b) How many different paths are there from a to b?

(a) There are infinitely many walks from a to b, since a walk could retrace the same set of vertices
arbitrarily many times.

(b) There are 5× 3 = 15 paths from a to b.

Page 412, 48.4 Let n ≥ 2 be an integer. Form a graph Gn whose vertices are all the two-element

subsets of {1, 2, . . . , n}. In this graph, we have an edge between distinct vertices {a, b} and {c, d}
exactly when {a, b} ∩ {c, d} = ∅. Please answer:

(a) How many vertices does Gn have?

(b) How many edges does Gn have?

(c) For which values of n ≥ 2 is Gn connected? Prove your answer.

(a) There are
(
n
2

)
vertices.

(b) Each vertex is adjacent to
(
n−2
2

)
other vertices, so there are |E| = 1

2

∑
v∈Gn(v)

d(v) = 1
2

(
n
2

)(
n−2
2

)
edges.

(c) G2 has only one vertex and so is clearly connected. In G3 and G4, there is no path from {1, 2}
to {1, 3} (for example), so that G3 and G4 are not connected. We will now show that Gn is
connected for n ≥ 5, so that Gn is connected for all n ≥ 2 except n = 3, 4.

Let n ≥ 5 and {a, b}, {c, d} ∈ V (Gn). We will show that Gn is connected by finding a path
from {a, b} to {c, d}. We proceed by cases:
Case 1: {a, b} = {c, d}. Then {a, b} is a ({a, b}, {a, b})-path.
Case 2: {a, b} ∩ {c, d} = ∅. Then {a, b} ∼ {c, d} is a ({a, b}, {c, d})-path.
Case 3: {a, b}∩{c, d} 6= ∅, but {a, b} 6= {c, d}. In this case, it must be that |{a, b}∩{c, d}| = 1,
and that {a, b, c, d} actually only contains three distinct elements (since one of a = c, a = d,
b = c, or b = d holds). Since n ≥ 5 and |{a, b, c, d}| = 3, there must be e, f ∈ {1, . . . , n} such
that neither e nor f are in {a, b, c, d}. Then {a, b} ∼ {e, f} ∼ {c, d} is a ({a, b}, {c, d})-path.

In all cases, we have found a ({a, b}, {c, d})-path. Since {a, b} and {c, d} were arbitrarily
chosen vertices, Gn is connected for n ≥ 5.

Page 412, 48.8 Consider the is-connected-to relation on the vertices of a graph. Show that is-

connected-to need not be irrefelexive or antisymmetric.

Consider the graph G = (V,E) where V = {a, b} and E = {{a, b}}. Then a is connected to b
and b is connected to a. Since is-connected-to is transitive, a is connected to a, so is-connected-to is
not irreflexive. Also, a 6= b, so is-connected-to is not antisymmetric.
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Page 412, 48.9 Let G be a graph. Prove that G or G (or both) must be connected.

If G is connected, there is nothing to show. Suppose that G is not connected. We will show
that G is connected.

Let a, b ∈ V (G). We will show that there is an (a, b)-path in G. Since G is not connected, there
exist vertices x, y ∈ V (G) such that there is no (x, y)-path in G. We proceed by cases:
Case 1: Both a and b are in the same component as x in G. Then neither a nor b is connected to
y in G. In particular, neither a nor b is adjacent to y in G and so both a and b are adjacent to y in
G. Thus, a ∼ y ∼ b is an (a, b)-path in G.
Case 2: Neither a nor b is in the same component as x in G. Then neither a nor b is connected to
x in G. In particular, neither a nor b is adjacent to x in G and so both a and b are adjacent to x in
G. Thus, a ∼ x ∼ b is an (a, b)-path in G.
Case 3: One of a or b is in the same component as x in G, but the other is not. Without loss of
generality, suppose that a is in the same component as x in G. Then a is not in the same component
as y in G, so a is not adjacent to y in G and so a ∼ y in G. Also, x is not in the same component of
y in G and so is not adjacent to y in G, and so y ∼ x in G. Finally, b is not in the same component
as x in G, so is not adjacent to x in G and so x ∼ b in G. Thus, a ∼ y ∼ x ∼ b is a (a, b)-path in G.

In all cases, we have found a (a, b)-path in G. Since a and b were arbitrarily chosen vertices, G
is connected.

Page 420, 49.2 Let T be a tree. Prove that the average degree of a vertex is less than 2.

Suppose that T has n vertices. By Theorem 49.12, T has n − 1 edges. Then
∑

v∈V (T ) d(v) =

2|E(V )| = 2(n− 1), so that the average degree of a vertex is 1
n

∑
v∈V (T ) d(v) = 2(n−1)

n < 2.

Page 420, 49.5 Complete the proof of Theorem 49.4. That is, prove that if G is a graph in which

any two vertices are joined by a unique path, then G must be a tree.

Since any two vertices of G are connected, G is connected. Thus, we need only show that G is
acyclic.

Assume for contradiction that G has a cycle. Call it C = v0 ∼ v1 ∼ · · · ∼ v` where v0 = v`.
Then v1 ∼ · · · ∼ v` is a (v1, v0)-path and v1 ∼ v0 is a (v1, v0)-path. Since ` ≥ 3 (as all cycles contain
at least three vertices), the first of these paths has length at least 2, while the second of these paths
has length 1. Thus, they must be distinct (v1, v0)-paths, contradicting the fact that G has a unique
(v1, v0)-path. So, it must be that G has no cycle and so is a tree.

Page 420, 49.7 Prove the following converse to Proposition 49.8: Let T be a tree with at least two

vertices and let v ∈ V (T ). If T − v is a tree, then v is a leaf.
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Let T be a tree with at least two vertices and let v ∈ V (T ). We will proceed by contraposi-
tion. Suppose that v is not a leaf–that is, that dT (v) ≥ 2 (since clearly dT (v) 6= 0 as T is connected
and has at least two vertices); we will show that T − v is not a tree. Since dT (v) ≥ 2, v has at least
two neighbors: call them x and y. Note that x ∼ v ∼ y is an (x, y)-path in T , and that this path
must be the unique (x, y)-path in T since T is a tree. Thus, T − v does not have an (x, y)-path since
any (x, y)-path of T − v would also be an (x, y)-path of T distinct from the (x, y)-path x ∼ v ∼ y
(as v is not a vertex of T − v). Since there is no (x, y)-path in T − v, it must be that T − v is not
connected and so is not a tree.

Page 420, 49.9 Let G be a forest with n vertices and c components. Find and prove a formula for

the number of edges in G.

Let n1, n2, . . . , nc be the number of vertices in the c components of G (that is, n1 is the num-
ber of vertices in the first component, n2 is the number of vertices in the second component,
and so on). Then n1 + n2 + · · · + nc = n. Note that each component of G is a tree and so
the jth component of G (1 ≤ j ≤ c) has nj − 1 edges by Theorem 49.12. So, in total, G has
(n1 − 1) + (n2 − 1) + · · ·+ (nc − 1) = (n1 + n2 + · · ·+ nc)− c = n− c edges.
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