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Improving Viability of Electric Taxis by
Taxi Service Strategy Optimization:

A Big Data Study of New York City
Chien-Ming Tseng, Sid Chi-Kin Chau and Xue Liu

Abstract—Electrification of transportation is critical for a low-
carbon society. In particular, public vehicles (e.g., taxis) provide
a crucial opportunity for electrification. Despite the benefits of
eco-friendliness and energy efficiency, adoption of electric taxis
faces several obstacles, including constrained driving range, long
recharging duration, limited charging stations and low gas price,
all of which impede taxi drivers’ decisions to switch to electric
taxis. On the other hand, the popularity of ride-hailing mobile
apps facilitates the computerization and optimization of taxi
service strategies, which can provide computer-assisted decisions
of navigation and roaming for taxi drivers to locate potential
customers. This paper examines the viability of electric taxis with
the assistance of taxi service strategy optimization, in comparison
with conventional taxis with internal combustion engines. A big
data study is provided using a large dataset of real-world taxi
trips in New York City. Our methodology is to first model the
computerized taxi service strategy by Markov Decision Process
(MDP), and then obtain the optimized taxi service strategy
based on NYC taxi trip dataset. The profitability of electric taxi
drivers is studied empirically under various battery capacity and
charging conditions. Consequently, we shed light on the solutions
that can improve viability of electric taxis.

Index Terms—Electric vehicles, big data study, taxi service
strategy optimization

I. INTRODUCTION

Taxis are an important part of public transportation system,
offering both flexibility of private vehicles and shareability
of public transportation. In many cities around the world,
there are usually a large of number of taxis, serving the ad
hoc demands of commuters. Notably, taxis consume a large
amount of fuel. For example, there are over 13,000 taxis
operating in New York City, which totally travel over 1.46
billion kilometers each year1, and consume over 86 million
liters of gasoline. As a result, they emit over 242,900 metric
tons of CO2 per year2, which is equivalent to the amount
of around 25,650 US households’ average annual CO2 emis-
sions3. A viable path toward a low-carbon sustainable society
is to promote electrification of transportation, replacing inter-
nal combustion engine (ICE) vehicles by more environment-
friendly and energy-efficient electric vehicles (EVs). Electrifi-
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1According to New York City taxi trip dataset in 2013 [1].
2Estimated by assuming 67% of New York Yellow taxis as hybrid vehicles

and 33% as ICE vehicles, as in 2016.
3The average annual CO2 emission for US household is 9.5 metric tons [2].

cation of private vehicles faces many obstacles, such as cost-
effectiveness, availability of home charging infrastructure and
users’ perception. However, electrification of public vehicles
(e.g., buses, taxis) would be subject to fewer concerns, with
even a greater potential impact than that of private vehicles.
First, public vehicles are used more frequently, whose elec-
trification can effectively reduce greenhouse gas emissions.
Second, public vehicles are likely to park in common facilities,
facilitating the installation of charging stations. Third, public
vehicles generally have shorter life cycles due to frequent
usage, and hence, are more ready to be replaced.

Major cities worldwide are introducing plans to phase out
conventional ICE public vehicles for electric vehicles. For
example, Chinese government has initiated several programs
to promote electrification of public vehicles for air pollu-
tion mitigation [3]. Electric taxi programs were launched in
Shenzhen (in 2010) and Beijing (in 2014) to convert taxis to
electric vehicles, along with the installation of sufficient EV
parking lots and fast charging points. In these programs, the
government also offer subsidies to taxi operators. Singapore
government plans to roll out a total of 1,000 electric cars to be
supported by 2,000 charging points across the city by 2020.

Nonetheless, unlike buses, taxis are often operated as private
businesses. Adoption of electric taxis critically depends on
the willingness of taxi drivers to switch to electric taxis from
conventional ICE taxis. However, it is not clear whether taxi
drivers are willing to do so. Despite the initiatives from the
governments, there are notable shortcomings of electric taxis:

1) Constrained Driving Range: One of the barriers pre-
venting wide adoptions of EVs is a shorter driving range.
With increasing battery capacity, the driving range has
been extended to more than 200 kilometers in production
EVs such as Chevrolet Bolt. Generally, the driving ranges
of production EVs are sufficient for daily commutes of
personal purposes. However, a longer driving range is
normally required by logistic vehicles and taxis (e.g.,
more than 300 kilometers). The driving range of high-
end Tesla (as in 2017) may suffice to meet the required
driving distance, but are too costly for practical taxis.

2) Long Recharging Duration: Recharging the battery of
EVs can take considerable time. For example, charging
Nissan Leaf with 30 kwh battery capacity can take up to
4 hours using mode 3 charging, or half an hour using fast
DC charging (without considering queuing delay). Taxis
traveling long distances are likely to take more than an
hour for recharging between shifts, which is significantly
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longer than ICE taxis with faster refilling of gasoline.
3) Limited Charging Stations: Todays, the number of

charging stations are few. Also, some of charging stations
are reserved for specific models or brands with propri-
etary connectors. The expansion of charging stations is
hampered by electrical infrastructure in certain regions.
As a result, electric taxi drivers always need sufficient
reserve battery capacity in order to be able to return to
certain known charging stations, in case of emergence.

4) Low Gas Price: Nowadays, the oil price has come
down considerably from historic heights. This reduces the
incentive to adopt EVs, as the gasoline is relatively af-
fordable, despite cheaper and cleaner electricity sources.
Unless carbon tax is introduced to mitigate greenhouse
gas emissions, gasoline ICE vehicles are still perceived
as cost-effective by the public in general.

These shortcomings are likely to dissuade taxi drivers from
adopting electric taxis. Particularly, it is not easy to operate a
taxi under the constraints of shorter driving range and limited
charging stations, in comparison with conventional taxis. In
fact, it has been reported in media that taxi drivers tended
to shun electric taxis. Without taxi drivers’ participation, it is
futile to promote electric taxis. Therefore, it is important to
provide a viability analysis of electric taxis. Such an analysis
can also be used as a basis to determine proper governmental
subsidies for electric taxis to promote their adoptions.

In this paper, we identify that a key problem of adopting
electric taxis is the ineffective service strategies practiced by
today’s taxi drivers. In fact, we show that properly optimized
taxi service strategies will not suffer from the shortcomings
of electric vehicles. Therefore, there is a need to provide
an intelligent recommender system to assist taxi drivers to
improve their taxi service strategies, and hence, to increase
their willingness to switch to electric taxis. In particular, there
is a popular trend of ride-hailing mobile apps, which facilitates
the computerization and optimization of taxi service strategies,
and provide an opportunity of integrating computer-assisted
optimized decisions of roaming and navigation to taxi drivers.

A. Modeling Taxi Service Strategy by MDP

The net revenue of a taxi driver (i.e., the revenue from taxi
fares minus energy costs) is determined by his/her service
strategy of passenger searching and efficiency of passenger
delivery. For example, skilful taxi drivers can identify the
popular spots for potential passengers, and deliver passengers
efficiently by choosing faster routes. Note that the service
strategies of taxi drivers can be effectively optimized by uti-
lizing a large historical taxi trip dataset for demand prediction.

To optimize taxi service strategies for electric (or ICE) taxis,
we first model computerized taxi service strategy by Markov
Decision Process (MDP). MDP is a general framework for
optimizing sequential decision process in the presence of
uncertainty. In summary, we denote a Markov state as the
time and location (and possibly battery state) of a taxi, and
an action as the driver’s decision to travel to the next location
(and possibly recharging operations). At each location, there
is a probabilistic transition to another location. The transition

is determined by a random event of passenger pick-up. The
uncertainty in taxi service strategy is the pick-up location
and destination of a passenger, which can be estimated by
a historical taxi trip dataset.

This MDP model facilitates the optimization of comput-
erized taxi service strategies by providing computer-assisted
decisions to taxi drivers. Since human taxi service strategies
are inherently inefficient, optimizing computerized taxi service
strategies can potentially improve the net revenues of taxi
drivers, particularly in presence of constraints of driving range
and charging stations. Computerized taxi service strategies are
becoming more feasible, because the increasing adoption of
ride-hailing mobile apps, which facilitates the integration of
computerized taxi service strategies in a recommender system
for taxi drivers using real-time data analytics from historical
taxi trip dataset. In this paper, we obtain the optimal policy
of MDP that maximizes the revenue of a taxi driver based on
New York City taxi trip dataset, and study the profitability
of electric taxi drivers under various conditions of battery
capacity and charging modes.

B. Summary

Our contributions in this paper are summarized as follows:
1) We formulate an MDP to model computerized electric

taxi service strategies, with explicit consideration of con-
straints of EVs, such as battery capacity and locations of
charging stations.

2) We obtain the optimal policy of the MDP based on a big
data study using a large dataset of real-world taxi trips
in New York City.

3) We study the impact of factors such as battery capacity
and charging modes, and locations of charging stations
on the net revenues of electric taxi drivers.

4) We project our study to understand the benefits of a wider
adoption of electric taxis (up to 1000 taxis).

II. BACKGROUND

A. Related Work

Analyzing taxi trip dataset has been considered by several
research papers in the subjects of knowledge discovery and
cloud-based intelligent transportation systems [4]. One of
the popular topics is the profit/revenue improvement for taxi
drivers by developing a recommender system for assisting the
drivers to find passengers more efficiently. The basic idea is to
identify the good taxi service strategies. Several characteristics
of taxi service strategies are reported in [5]. Their study
shows that searching passengers near the drop-off location
of previous passengers results in a higher revenue. They
also found that better taxi drivers can deliver the passengers
efficiently by choosing a uncongested route. Furthermore,
GPS mobility trace from taxis can be used to predict future
traffic conditions and optimize the route selections [6]. Also,
community detection has been applied to the mobility trace to
reveal potential similar passengers’ travel patterns, as for social
recommendation [7] and improving transportation services [8].

Other studies focus on the specific methods for improving
the profit/revenue of the taxi drivers. One approach in [9]
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shows that experienced taxi drivers usually waits for pas-
sengers at specific locations, and they are usually aware of
particular events like train arrivals or ending times of movies.

Instead of recommending separate pick-up locations, a bet-
ter approach is to maximize the revenue by selecting a route
of a sequence of likely pick-up locations at different times.
The top-k profitable driving routes can be computed based on
a route network with revenues and pick-up probabilities from
historical taxi trip data in [10]. To select an optimal route
with appropriate actions, Markov Decision Process (MDP) is
used to maximize the associated revenue in [11]. The optimal
policy of MDP is determined to improve the taxi driver’s
service strategy. The method of MDP is significantly extended
in this paper to consider the constraints of EVs, such as battery
capacity and locations of charging stations. Our preliminary
study [12] uses a simplified model, whereas this paper presents
a more realistic model and a more extensive analysis.

For EVs, limited driving range is a barrier preventing wide
adoption. Therefore, the estimation of driving range for EVs
has been studied in a number of research papers. The driving
range of EVs is highly affected by driving speed and motor
efficiency. A black-box model is widely used in the literature
to predict the energy consumption of EVs and plug-in hybrid
EVs (PHEVs) [13], [14]. Such a black-box model is used in
this paper to estimate the energy consumption of electric taxis.

There are other studies that investigated the viability of
deploying electric taxis. For example, the return on investment
(ROI) for taxi companies transitioning to EVs was studied
in [15], which considers the mobility trace of yellow cabs
in San Francisco. The prior studies usually assumed that
electric taxi drivers will adopt the same service strategies as
driving a conventional ICE taxi. On the contrary, our study
allows distinctive optimized service strategies for electric taxi
drivers, taking into account that EVs have different operating
constraints than conventional ICE vehicles.

B. New York City Taxi Trip Dataset

We describe the taxi trip dataset of New York City (NYC)
of 2013 that is used in our study. In the following, we list the
attributes of dataset that are used in our study. For each data
record (i.e., a trip), it is composed of following attributes:
• Taxi ID (also known as medallion ID)
• Trip distance and duration
• Times of pick-ups and drop-offs of passengers
• GPS locations of pick-ups and drop-offs of passengers

We summarize the information of taxi trip dataset in Table I.

TABLE I: New York City taxi trip dataset in 2013.

Attribute Quantity
Num. of medallions (i.e., rights to operate a taxi) 13437

Annual average traveled distance per taxi 112,600 km
Total num. of trips 175M

Average num. of trips per day 450,000
Average trip distance 4.2 km

The numbers of taxi trips of NYC dataset on different days
of 2013 are depicted in Fig. 1a. There are about 450K trips
per day and the average trip distance is around 4.2 km. Fig. 1b

displays the pick-up locations on January 16 at 8-9 AM. The
k-means algorithm is employed to cluster the pick-up locations
by 200 clusters. The sizes of circles indicate the number
of pick-up locations. We observe most of pick-ups occur in
Midtown Manhattan. Finally, Fig. 1c displays the locations of
charging stations in NYC [16] that potentially recharge electric
taxis.

III. MARKOV DECISION PROCESS MODEL

In this work, we extend the Markov Decision Process
(MDP) framework in [11] to model the computerized service
strategy of an electric taxi. MDP facilitates the formulation
of computerized taxi service strategies, which can be imple-
mented in a recommender system for taxi drivers. In general, a
MDP comprises of a set of states and a set of possible actions
at each state. Each action transfers the current state to a new
state with a probability and a reward. The objective is to find
the optimal actions in the corresponding states that maximize
the expected total reward.

A. States and Actions

First, we explain the states and actions of the MDP in
our setting. A state for an electric taxi is described by three
parameters: current time, current location and battery state, as
explained as follows.
• Current Time: We consider discrete timeslots. One minute

is used as the interval of a timeslot.
• Current Location: We consider the locations represented

by the nearest junctions, instead of the absolute locations.
A road network is constructed using OpenStreetMap
(OSM) junction data. Each pick-up or drop-off location
is assigned to the nearest junction in OSM. Let N be the
set of all junctions.

• Battery State: We consider discrete levels of state-of-
charge of battery of the electric taxi. The feasible battery
state should be within the range [B,B].

We denote the location of a taxi at time t by S(t), and the
battery state by B(t).

The allowable actions at the current junction are the neigh-
bors of the junction in the road network, and the recharging
duration, if the electric taxi is subject to recharging at this
junction. We denote an action from junction i to junction j
with recharging duration τ at i by A = (i → j, τ), where i
and j are neighbors in the road network.

B. State Transition and Objective Function

The basic idea of the MDP for computerized taxi service
strategy is illustrated in Fig. 2. Assuming the current location
is i, action A = (i→ j, τ) is taken. The next location will be
j after recharging for a duration τ at i. When entering junction
j, there is a probability of not picking up any passenger,
after which the taxi driver will make another action. On the
other hand, there is a probability of picking up a passenger,
with a random destination. The taxi driver will decide if the
current battery state is sufficient to deliver the passenger to
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(a) Num. of trips and average trip distance of NYC
taxi trip dataset.

(b) Pick-up locations in NYC based on
k-means clustering. (c) Charging stations in NYC.

Fig. 1: Overview of NYC taxi trip dataset and locations of charging stations.

Fig. 2: An illustration of MDP for the computerized service
strategy of an electric taxi.

the respective destination, or the trip is discarded. The detailed
descriptions of MDP are provided in the following.

First, we define several parameters for the MDP as follows.
• P

p
t (i): The probability of successfully picking up a

passenger at junction i at time t.
• P d

t (i, j): The probability of a passenger commuting from
junction i to junction j at time t.

• T a
t (A): The required time (mins) for executing action A.

• T t
t (i, j): The required traveling time (mins) from junction
i to junction j at time t.

• Ee
t (i, j): The required energy consumption (kW) from

junction i to junction j at time t.
• Ft(i, j): The net revenue of transporting passengers from

junction i to junction j, which is calculated based on
the fare rule of New York taxi and the respective energy
costs. There are various surcharges in different times and
days, and hence, the net revenue is time-dependent.

• Ua
t (i, j): The energy cost from junction i to j at time t.

Note that some of these parameters (e.g., P p
t (i), P d

t (i, j),
T t
t (i, j), Ee

t (i, j)) can be estimated from the taxi trip dataset,
which will be discussed in the subsequent section.

Next, we formulate a recurrent equation for describing the
MDP, namely, Eqn. (1) (as illustrated in Fig. 3).

If the current location is S(t) = i, after action A = (i →
j, τ) has been taken, the next location will be S(t′) = j,

where t′ , t+T a
t (A). The required time of the action T a

t (A)
is computed as follows:

1) If recharging duration τ = 0, the taxi directly goes to
junction j. The required time of action is given by

T a
t (A) = T t

t (i, j)

2) If recharging duration τ > 0, before driving to junction
j, the taxi first goes to the nearest charging station r(i)
to recharge the electric taxi. The required traveling time
is T t

t (i, r(i)) to travel to charging station r(i). Then the
electric taxi is recharged for τ duration and next goes
from charging station r(i) to junction j, whose required
traveling time is T t

t+T t
t (i,r(i))+τ (r(i), j). Thus, the total

required time of action is given by

T a
t (A) = T t

t (i, r(i)) + τ + T t
t+T t

t (i,r(i))+τ (r(i), j)

Note that if the state-of-charge of battery is insufficient,
certain actions are infeasible (e.g., driving to a distant location
to pick up passengers). Therefore, an action needs to consider
the required energy consumption that can be supported by the
current battery state. If the current battery state is B(t) = b,
after action A = (i → j, τ) has been taken, the new battery
state at j will be B(t′) = b′ , min{b + τC − Ee

t (i, j) −
Ee
t (i, r(i)), B}, where C is the charging rate, and t′ , t +

T a
t (A).
At junction j, there are three possible state transitions:

(C1) The taxi successfully picks up a passenger at junction
j (say, with destination k) and B(t′) is sufficient to
deliver the passenger to junction k and then to the
nearest charging station r(k), if necessary. For each k,
the probability is P p

t′(j)P
d
t′(j, k), subject to the constraint

Ee
t (j, k) + Ee

t (k, r(k)) +B ≤ b′, such that the resultant
battery state is always larger than the minimal B. Hence,
denote the probability of picking up a passenger by
probability P

p
t′(j)P

s
t′(j), where P s

t′(j) is the probability
that the destination of passenger is reachable for the taxi
under battery constraint, and is computed by

P s
t′(j) =

∑
k∈N :Ee

t(j,k)+E
e
t(k,r(k))+B≤b′

P d
t′(j, k)

(C2) The taxi successfully picks up a passenger at junction
j, but B(t′) is insufficient to deliver the passenger to
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R∗[t, i, b, A] =
(

1− P p
t′(j) +

∑
k∈N :Ee

t(j,k)+Ee
t(k,r(k))+B>b′

P
p
t′(j)P

d
t′(j, k)

)
·R∗[t′, j, b′]

+
∑

k∈N :Ee
t(j,k)+Ee

t(k,r(k))+B≤b′
P p
t′(j)P

d
t′(j, k) ·

(
Ft′(j, k) +R∗

[
t′+T t

j,k,t′ , k, b
′]− Ee

t′(j, k)
)
− Ua

t (i, j)
(1)

junction k and then to the nearest charging station r(k).
The total probability of such a case is∑

k∈N :Ee
t(j,k)+Ee

t(k,r(k))+B>b′

P p
t′(j)P

d
t′(j, k)

(C3) The taxi cannot successfully pick up a passenger at
junction j. The probability is 1− P p

t′(j).
Note that the probability that the taxi does not deliver any

passenger (including (C2) and (C3)) is 1−P p
t′(j) ·P s

t′(j). The
complement of P s

t′(j), i.e., 1− P s
t′(j) is given by

1− P s
t′(j) ,

∑
k∈N :Ee

t(j,k)+E
e
t(k,r(k))+B>b

′

P d
t′(j, k)

Hence, we obtain

1− P p
t′(j) · P

s
t′(j)

=1− P p
t′(j) + P p

t′(j) · (1− P
s
t′(j))

=1− P p
t′(j) +

∑
k∈N :Ee

t(j,k)+Ee
t(k,r(k))+B>b′

P p
t′(j)P

d
t′(j, k)

For (C1), the taxi driver will receive a fare of amount
Ft′(j, k), and the next location of the taxi becomes S(t′ +
T t
j,k,t′) = k. For (C2) and (C3), the taxi driver will not

receive any fare, and will decide to drive to another location
or possibly recharge the taxi.

The objective of the MDP is to maximize the total expected
net revenue. Note that the net revenue of the action is the
received fare minus the energy cost of the action. The expected
net revenue for an action A = (i → j, τ) at state (t, i, b) is
denoted by R∗[t, i, b, A], which can be computed recurrently
in Eqn. (1), where
• t′ = t+ T a

t (A) and b′ = min{b+ τC,B}.
• R∗[t, j, b′] = maxAR

∗[t, j, b′, A] is the maximal ex-
pected net revenue in state (t, j, b′) over all possible
actions.

• Ua
t (i, j) is the energy cost, as computed as follows:

1) If recharging duration τ = 0, the taxi directly goes to
junction j. The energy cost is Ua

t (i, j) = Ee
t (i, j) · U ,

where U is the unit price, such that U =20 cent/kWh
for electricity and U =2.5 USD$/gallon for gasoline.

2) If recharging duration τ > 0, the taxi goes to the
nearest charging station r(i) to recharge the electric
taxi at charging rate C. The energy cost of the action
is given by

Ua
t (i, j) =

(
Ee
t (i, r(i))+E

e
t+T t

t (i,r(i))+τ (r(i), k)+τ ·C
)
·U

We seek to devise an optimal policy π for the MDP that
maximizes the expected net revenue:

π(t, S(t), B(t)) = arg max
A

R∗
[
t, S(t), B(t), A

]
(2)

Fig. 3: An illustration for the recurrent equation Eqn. (1).

To obtain the optimal policy for the MDP, one can use
dynamic programming. The dynamic programming algorithm
starts from the last timeslot and then works backwards to the
beginning timeslot. For example, to solve the optimal policy
for a morning shift, the algorithm starts to solve the maximal
expected net revenue at the end of shift, and works backwards.

IV. MARKOV DECISION PROCESS PARAMETERS

In this section, we estimate several parameters of MDP (e.g.,
P

p
t (i), P d

t (i, j), T t
t (i, j), Ee

t (i, j)) from NYC taxi trip dataset.

A. Driving Speed Network

First, we construct a driving speed network from the NYC
taxi trip dataset, for the following purposes:

1) To estimate the traveling time from each junction to the
nearest charging station.

2) To estimate the energy consumption of a taxi for a trip.
Note that traveling time and driving speed are time-dependent
parameters, since they are highly affected by traffic condition,
which is estimated from historical trip data. For example, the
traveling time between the same pair of junction i and junction
j will be higher in office hours and much lower at midnight.

The first step of constructing the driving speed network is to
determine the driving path of a taxi. Spatialite [17] is used to
calculate the shortest path for each pair of pick-up and drop-
off locations. Spatialite utilizes OpenStreetMap (OSM) data.
A resulting path comprises a list of edges (i.e., segments)
described by two junctions. We then compare the recorded
trip distance in the taxi trip dataset to the computed shortest
path distance. If the difference is greater than 300 meters,
the record is discarded since the driver is likely to take other
route. For each computed path, the segments of a path are
labeled with the average speed using recorded traveling time
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and distance. We can obtain the average speed for each taxi trip
record. Each segment has several average speeds by different
trips. We select the highest speed to represent the driving
speed of the segment, since this is usually the speed with
minimal obstacles. Driving speed networks at different times
are visualized in Fig. 4. We observe there is relatively more
congested traffic in 9 to 10 AM or 4 to 5 PM.

Fig. 4: Visualizations of driving speed networks.

Given the driving speed network, we can estimate the
driving time from the network. We can also estimate the
idling time of each trip by subtracting the estimated driving
time from the recorded traveling time. The detailed steps for
calculating the idling time are described as follows:

1) Average traveling time T t
t (i, j): There may be several

trips start from junction i to junction j. However, their
traveling times may be slightly different. We average the
traveling time of these trips.

2) Driving time T d
t (i, j): The shortest path from junction i to

junction j is determined by Spatialite. Then, the driving
time in each segment is computed by its distance and the
driving speed from the driving speed network.

3) Idling time T i
t (i, j): The idling time of a trip is obtained

by subtracting the driving time from the average traveling
time, T i

t (i, j) = T t
t (i, j)− T d

t (i, j)
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Fig. 5: Hourly distribution of idling ratios and median idling
ratio over a day.

To understand traffic conditions, define a metric called the
idling ratio of each source and destination pair by λ , T i

t (i,j)
T t
t (i,j)

.

Denote by λ̄t1,t2 the median of idling ratio between time t1
and t2 in the distribution. Fig. 5 shows the distribution of idling
ratios. We observe that the median is 56% for 9-10 AM, but
only 33% for 3-4 AM due to less traffic.

B. Passenger Pick-up Probability P p
t (i)

The passenger pick-up probability describes the chance of
a taxi driver can pick up a passenger at junction i at time t.
Following the idea in [11], we use the numbers of taxis and
pick-ups around a particular junction to calculate the pick-up
probability P p

t (i) in τ mins. First, denote the number of pick-
ups at junction i from time t to t+τ by Np

t:t+τ (i). To estimate
the number of taxis around junction i in τ mins, denote the
number of drop-offs from time t−τ to t+τ within δ kilometers
distance from junction i by Nd

t-τ :t+τ (i). Assuming the taxis
are vacant after dropping off the passengers and are roaming
immediately around junction i within δ kilometers in τ mins.
Thus, pick-up probability P p

t (i) can be estimated by

P
p
t (i) =

Np
t:t+τ (i)

N
p
t:t+τ (i) +Nd

t-τ :t+τ (i)
(3)

The suitable parameters τ and δ can be obtained from the
historical taxi trip dataset. For example, τ can be estimated by
the average inter-pick-up duration, the time interval between
consecutive pick-ups of a taxi. Using the average driving
speed, δ can be estimated by the reachable distance in the
average inter-pick-up duration. Fig. 6a depicts the average
inter-pick-up durations for weekdays and weekends. We ob-
serve that it takes more time to find a passenger at 4 AM
on weekday and at 7 AM at weekends. Fig. 6b depicts the
respective reachable distance in inter-pick-up duration.

In the following study, we set time-varying τ and δ accord-
ing to the average inter-pick-up duration and the respective
reachable distance from taxi trip dataset for each hour.
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Fig. 6: Parameters for estimating pick-up probability.

C. Passenger Destination Probability P d
t (i, j)

The passenger destination probability describes the chance
that a passenger needs to commute from one junction to
another junction. This probability is time-dependent, because,
for example, passengers are more likely to commute from
living places to offices in working hours. One-hour timeslot
is used to estimate passenger destination probability from
taxi trip dataset. In each timeslot, we obtain the number
of trips between each pair of source and destination, and
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then is normalized by the total number of trips. Denote the
destination probability from junction i to junction j at time
t by P d

t (i, j). Denote the number of pick-ups at junction
i by Np

t (i), and the number of corresponding drop-offs at
junction j by Nd

t (i, j). The passenger destination probability
from junction i to junction x is estimated by

P d
t (i, j) =

Nd
t (i, j)

N
p
t (i)

(4)

D. Energy Consumption Ee
t (i, j)

We use a black-box approach to estimate the energy con-
sumption for EVs, based on the work in [13], [14]. The
energy consumption model is based on the average driving
speed and auxiliary loading. The total energy consumption
can be decomposed into moving energy consumption and
auxiliary loading energy consumption, which can be estimated
by multivariate linear models (see [13], [14] for details):

Ee
t (i, j) = Emv

t (i, j) + Eax
t (i, j) (5)

Emv
t (i, j) = β(α1vt(i, j)

2 + α2vt(i, j) + α3) ·D(i, j) (6)
Eax
t (i, j) = `tT

t
t (i, j)/60 (7)

where vt(i, j) is the driving speed between junctions i and j
at time t, obtained from driving speed network. D(i, j) is the
driving distance between junction i and junction j.

The auxiliary loading `t is highly affected by weather
temperatures which is time variant. The auxiliary loading
can be estimated from the historic weather temperature and
the average auxiliary loading measurements at particular tem-
peratures4. According to New York historical weather and
suggested power load, the average auxiliary loading is between
1.5 to 1 kW. The parameter β represents aggressiveness factor
to capture the driving behavior. Driver behavior has an impact
on the energy consumption of vehicles, as driving range will be
significantly decreased by aggressive acceleration and deceler-
ation. Mild driving behavior can save up to 30% to 40% energy
consumption comparing with aggressive driving behavior [19],
[20]. Therefore, we define three classes of driving behaviors:
i) mild drivers (β = 0.8), ii) normal drivers (β = 1), and iii)
aggressive drivers (β = 1.2). Based on previous work [13],
the parameters of energy consumption model for Nissan Leaf
are set as α1 = 0.1554, α2 = −5.4634, α3 = 189.297.

E. Energy Consumption Ee
t (i, r(i))

The electric taxis should arrive at each junction with cer-
tain battery state, which can guarantee them to reach the
nearest charging stations. The locations of NYC charging
station data are obtained from [16]. We consider the charging
stations for general EVs. Note that there are other charging
stations requiring memberships, and are not considered in this
study. To estimate the minimum required energy consumption
Ee
t (i, r(i)) to the nearest charging station r(i) at junction i

at time t, the minimum distance between the junction and the
nearest charging station is obtained as follows:

4 See [18] for an empirical measurement study

1) Spatialite is used to find the nearest charging station r(i)
for junction i in the road network by the shortest distance.

2) The shortest distance is converted into the required driv-
ing time based on the driving speed network.

3) The median idling ratio λ̄ is used to estimate the idling
time at time t.

4) Given the driving speed network and idling time, the
energy consumption Ee

t (i, r(i)) is obtained by Eqn. (5).

F. Taxi Net Revenue Ft(i, j)

The fares are calculated according to the rules for New York
taxis. Since there are different kinds of surcharge based on
times and days, the fare is time-dependent, because of various
surcharges5. The net revenue of a trip can be calculated by
deducting fuel/electricity cost from the revenue. Therefore, the
net revenue of a trip from junction i to junction j at time t is

Ft(i, j) = F R
t (i, j)− Ee

t (i, j) · U (8)

where F R
t (i, j) is the recorded amount of base fare plus the

surcharges from i to j at time t, and U is the unit price.

G. Charging Rate C

Two types of charging rates are considered in this study:
mode 3 charging and (direct current) fast charging. Currently,
mode 3 charging is more common than fast charging. The
charging power of mode 3 charging is 6.6 kW (e.g., for Nissan
Leaf), whereas the charge power of fast charging is 50 kW.

V. EVALUATION BASED ON NYC TAXI TRIP DATASET

In this section, we apply the MDP to optimize computerized
taxi service strategies and evaluate the improvement in net
revenues using NYC taxi trip dataset. We first examine the
net revenue of conventional ICE taxis and improvement by
MDP under a basic setting with complete knowledge of taxi
trip information for one single taxi, which represents the best-
case scenario. Next, we study a similar setting for electric
taxis. Then, we relax the basic setting by more realistic
settings: (1) using only historical data as training dataset, (2)
an extension to multiple taxis, and (3) considering different
driving behavior.

A. Basic Setting of ICE Taxi

Setting: This section presents an evaluation study based on
one-day data of January 9 2013 in the NYC taxi trip dataset.
In Sec. V-G, an evaluation using a whole year’s data will be
presented. First, we note that the NYC taxi trip dataset has only
records of trip distance and duration, and pick-up and drop-off
information. There is no full mobility data trace of taxis, in
particular when the taxis are roaming without passengers. It

5The initial charge is $2.50. Plus 50 cents per 1/5 mile or 50 cents per
60 seconds in slow traffic or when the taxi is stopped. 50-cent MTA State
Surcharge is required for all trips that end in New York City. Another 30-
cent Improvement Surcharge is required. Daily 50-cent surcharge is required
from 8pm to 6am. $1 surcharge is required from 4pm to 8pm on weekdays,
excluding holidays. Toll fees are ignored since the taxi driver will not receive
any revenue from tolls.
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Fig. 7: Distributions of estimated net revenues and delivery distances of passengers.
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Fig. 8: Distributions of working hours and estimated hourly net revenues.

is difficult to estimate the exact total travel distance (i.e., in-
cluding roaming and passenger delivery). Hence, we estimate
a lower bound for the total travel distance by connecting the
shortest path between a drop-off location and a subsequent
pick-up location. As such, we obtain an optimistic estimation
of net revenue (i.e., revenue minus fuel cost) by the lower
bound of total travel distance. We consider a basic setting,
such that the optimal policy of MDP is employed in one single
taxi, based on complete knowledge of taxi trip information on
the same day from the dataset. In Sec. V-D, using historical
data for prediction and multiple taxis will be presented.

Note that it is challenging to evaluate the exact performance
of modified taxi behavior using historical dataset. For example,
when a passenger is picked up by a taxi with modified behav-
ior, who was originally picked up by another taxi in the dataset,
it is not clear how original taxi should behave in the evaluation.
Therefore, we consider a simple approach of evaluation, such
that other taxis always follow the recorded trajectories as in
the dataset, no matter picking up the supposed passengers
of the dataset or not. Although this will not attain absolute
accuracy, this is a simple approach without the knowledge of
the disrupted behavior of other taxis in real life. Note that if
we only modify the behavior of a small number of taxis, then
this simple approach will give rather accurate evaluation.

Also, refueling is not considered for ICE taxis, because ICE
taxi drivers normally fill up the gas tanks between the shifts6.
Then the MDP model for an ICE taxi is identical to that of
an electric taxi in Sec. III, but without recharging decisions.

Observations: Based on the NYC taxi trip dataset, Fig. 7a
shows the distribution of (optimistically) estimated net rev-
enues from all the trips (with 11746 taxi drivers) for morning

6Most NYC taxis operate in two shifts per day. Each normally lasts for 12
hours. More than 40% of taxi drivers change shifts at around 5 AM or 5 PM.
In this study, we assume that a morning shift is from 5 AM to 5 PM, whereas
an evening shift is from 5 PM to 5 AM.

shifts. The blue dashed line indicates the median of taxi
drivers. We observe that 50% drivers earn above USD$223.
The red dashed line indicates the expected estimated net
revenues when a taxi driver follows the optimal policy of MDP
assuming 12 working hours. This taxi driver is expected to
earn USD$440. Therefore, optimizing the taxi service strategy
enables a taxi driver to earn at most among the top 0.01%.
Fig. 7b shows the delivery distances of passengers per taxi
drivers. More than 50% taxis travel more than 79 kilometers
for passenger delivery. By optimizing taxi service strategy, a
taxi driver is expected to travel up to 155 kilometers for pas-
senger delivery. Fig. 7c-7d show the distributions for evening
shifts. The median net revenue is smaller than that of morning
shifts because of shorter working hours (Fig. 8c). Also, we
observe that the median delivery distances of passengers for
the evening shift is similar to that of morning shifts.

The computation of expected net revenue of the optimal
policy of MDP assumes 12 working hours. The distribution
of working hours for morning shifts is shown in Fig. 8a. We
observe that most of drivers work less than 12 hours, and
the median working hours on the day is 8.7 hours. For a
normalized comparison, we also study the hourly net revenues,
instead of net revenues per shifts. The distribution of estimated
hourly net revenues for morning shifts is presented in Fig. 8b.
We observe that the hourly net revenue of MDP driver is the
top 5% in both shifts. We notice that higher hourly net revenue
is due to shorter working hour with long trips. Fig. 8c shows
that taxi drivers have shorter working hours for evening shifts,
but their hourly net revenues, because of extra surcharge for
evening shifts.

Ramifications: Optimizing taxi service strategies can sig-
nificantly improve the profitability of taxi drivers. Our evalua-
tion based on a basic setting shows that optimized service strat-
egy for a conventional ICE taxi can earn at most among the
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Fig. 9: Estimated net revenues and energy consumptions of electric taxis.
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Fig. 10: Estimated net revenues using historical data for electric taxis.

top 0.1%. Although this represents the best-case evaluation,
the subsequent sections will relax to more realistic settings,
and yet still show a considerable advantage.

B. Basic Setting of Electric Taxi

Setting: In this section, we apply a similar basic evaluation
based on the data of January 9 2013 to electric taxis. We
employ the energy consumption model of Nissan Leaf [13].
In fact, the most determining factor of performance of EVs
is battery capacity. Hence, the energy consumption model
of Nissan Leaf suffices to provide a generic estimation of
energy consumption of electric taxis. Usually, the EVs will
not allowed to be overly re/discharged to protect the battery.
Therefore, we set the available battery level from 5% to 95%
of the capacity. We consider typical settings of battery capacity
for EVs (e.g., 30 kWh, 50 kWh, 70 kWh). Each setting can
affect the recharging decisions and net revenues considerably.

Observations: Figs. 9a-9b show the estimated net revenues
for electric taxis under different battery capacities. The blue
bars represent the net revenues using fast charging, while the
red bars represent those using mode 3 charging. We observe
that electric taxis equipped with 50 kWh battery can make
comparable net revenues with traditional ICE taxis using fast
charging for morning shifts. Note that in general smaller
batteries require more frequent recharging, which can reduce
revenue. EVs with smaller batteries are cheaper. The net
revenue gap between using fast charging and mode 3 charging
is smaller when the battery capacity increases. The estimated
net revenue reaches USD$438 when battery capacity is above
50 kWh. The net revenue is higher than that of ICE taxis

using optimized service strategies (i.e., USD$426 benchmark),
because electricity cost is cheaper.

Figs. 9c-9d show the driving distances and energy consump-
tions under different battery capacities. The blue bordered
bar represent the driving distances using fast charging while
red bordered bars represent those using mode 3 charging.
The green portions represent the amount of charging energy
received from charging stations, while gray portions represent
the amount from initial batteries. We observe that the total
driving distance is around 242 kilometers without recharging
for morning shifts. At night, the electric taxis are expected
to drive longer distances because of less traffic. The required
energy consumption without charging for morning shifts is
43 kWh, which can be provided by 50 kWh battery (i.e.,
45 kWh usable capacity) without recharging. For evening
shifts, the required energy consumption increases to 45.1 kWh.
Therefore, electric taxis with 50 kWh battery are then required
to recharge during shifts.

Ramifications: Optimizing taxi service strategies for elec-
tric taxis can improve the profitability of taxi drivers. But the
effect depends on the battery capacity. With more capacity
(e.g., 50 kWh, 70kWh), the taxi driver can earn comparable
net revenue with the one of ICE taxi using optimized service
strategy. It is because that recharging will incur inefficiency
for electric taxis with a low capacity battery.

C. Using Historical Data for Prediction
Setting: The previous basic evaluation of net revenues is

based on MDP using the complete knowledge, which requires
knowing the pick-up demands and locations in a-priori man-
ner. However, complete information is difficult to obtain in
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Fig. 11: Estimated net revenues for multiple electric taxis.

practice. A more practical approach is to use only historical
data as training dataset for MDP, and then obtain an optimal
policy as a heuristic for other days. In the following, we use
the optimal policy of MDP obtained from 6th January to 12th
January (i.e., the first week after 1st January) as training data.
Then we employ the policy to all morning shifts in the year
in the evaluation.

Observations: Fig. 10 shows the estimated net revenue
using one-day training data on different days of a week.
We observe that the highest net revenue occurs on Friday
while the lowest net revenue occurs on Sunday, because
of more passengers on Fridays. The figures also show the
benchmark for ICE taxis using historical data (i.e., gray band).
In particular, Fig. 10a shows the net revenue of 70 kWh battery
capacity using different dates in January as training data. We
observe that the training data from 6th January performs the
best while training data from 8th January performs the worst.
A taxi driver can receive 7.5% higher net revenue using 6th
January data.

Fig. 10c shows the net revenues with the 30 kWh battery
capacity using training data from 6th January. We observe that
12% higher net revenue can be obtained using fast charging
than using mode 3 charging. Electric taxis with 70 kWh battery
capacity can obtain 2.8% higher than 30 kWh battery capacity
using fast charging.

Ramifications: Using historical data for prediction, instead
of complete knowledge, will inevitably reduce the effective-
ness. However, this creates a similar effect on ICE taxis
that also use historical data. Hence, optimizing taxi service
strategies for electric taxis using historical data still achieves
comparable net revenues as that of ICE taxis.

D. Multiple Electric Taxis

Setting: The optimal policy from MDP has been previously
employed in one single taxi. Next, we employ the optimal
policy to multiple taxis. The idea is to allow multiple electric
taxis adopt the optimal policy from MDP, while ensuring the
number of taxis being sent to each location is constrained.
Otherwise, this leads to over-provision of taxis at certain
locations. This simple constraint allows us to decouple the
individual MDP decisions. Otherwise, considering a large
complex problem will be intractable. In practice, we may
display the potential net revenue of each junction to the taxi

drivers. The junction will become less desirable, when the
number of taxis currently present exceeds a certain threshold.
Hence, they would not prefer to go to the junction.

We first empirically study the distribution of number of taxis
at all the junctions over time from the dataset. We then set of
limit of the number of taxis at each junction according to the
mean number of taxis at each junction from the dataset. To
satisfy the constraint, some electric taxis would need to follow
the second-best decisions in the optimal policy. Each taxi state
is initialized by the junction and the time according to the
dataset. The state of each taxi is tracked and the passenger
pick-up probability P p

t (i) is recomputed using Eqn. (3). We
use the optimal policy based on the data of 6th January.

Observations: Fig. 11a displays the histogram of number
of taxis in a junction. We observe that the number of taxis in
each junction is less than 7 by 99% of time. We set of limit
of the number of taxis at each junction according to the mean
number of taxis at each junction from the dataset.

Fig. 11b shows the net revenues of different numbers of
electric taxis using the optimal policy of MDP on 9 Jan. We
observe that the net revenue drops to $USD 350 when 1000
electric taxis use the optimal policy of MDP. The red bar
indicates the total driving distance of the taxis and blue bar
indicates the passenger delivery distance. We observe that the
delivery distance drops but the total driving distance remains
relatively steady. This implies that the increase of roaming
distance is due to a lower passenger pick-up probability.
Fig. 11c shows the average net revenue of multiple taxis over
entire year of 2013. We observe that the highest net revenue
occurs on Fridays while the lowest occurs on Sundays. We also
observe that the net revenue is less affected by the number of
taxis when mode 3 charging is used. This is because that the
electric taxis require frequent recharging, which may result in
less available taxis, and hence, a higher pick-up probability.

Ramifications: If the optimal policy of MDP is deployed
up to 1000 electric taxis, then the net revenues will decrease,
as a result of diminishing advantage of computerized service
strategies. These 1000 taxi drivers can still earn as top 1.7%
among traditional taxi drivers without computerized service
strategies.

E. Considering Driving Behavior
Setting: Driving behavior plays an important role in energy

consumption of vehicles. Aggressive driving behavior results
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Fig. 12: Estimated net revenues and energy consumptions of different driving behaviors.

in more energy consumption. Furthermore, higher energy
consumption rate induces more frequent recharging of EVs,
which reduces the net revenues of the taxi drivers. We study
three classes of driving behaviors: i) mild drivers (β = 0.8), ii)
normal drivers (β = 1), and iii) aggressive drivers (β = 1.2).

Observations: Fig. 12 shows the estimated net revenues of
different driving behaviors for morning shifts. Fig. 12a shows
the estimated net revenues of different driving behaviors using
mode 3 charging. Mild drivers can receive 14% higher net rev-
enue than aggressive drivers when driving 30 kWh Leaf using
mode 3 charging. However, the net revenue is less affected
by different drivers when the battery capacity is sufficiently
large to eliminate recharging during a shift. Fig. 12b shows the
estimated net revenues using fast charging. We observe that the
net revenue is also less affected by different driving behaviors
because of shorter recharging duration. Fig. 12 shows the
energy consumption of different driving behaviors. We observe
that aggressive drivers consume around 11 kWh more energy
than mild drivers.

Ramifications: Although the aggressive drivers consumes
20% more energy which only results in $USD2.2 difference
for morning shifts. The result shows that the driving behavior
only has a higher impact on the net revenue when the battery
capacity is insufficient to eliminate recharging during a shift.

F. Considering Different Gas Prices

Setting: To complete the study of viability of electric taxis,
we provide a study of ICE taxis’ net revenue under different
gas prices. Note that the current gas price in USA is around
USD$2.5 per gallon, while the current gas price in China is
around 7.2 RMB per liter, which is equivalent to $4.5 USD per
gallon. We analyze the outcomes of three different gas prices
(i.e., $2.5 USD/G, $3.5 USD/G, $4.5 USD/G) considering the
optimal policy of MDP for an ICE taxi.

Observations: Fig. 13 compares the annual net revenues of
ICE taxi under different gas prices, with that of electric taxis
using different charging options. We observe that the annual
net revenue with gas price $2.5 USD/G (i.e., the leftmost bar)
is slightly higher (about USD$ 4000 higher) than that with
gas price $4.5 USD/G. We also observe that the comparable
net revenue can be achieved by 30 kWh EV with fast charging
when gas price increases to $4.5 USD/G. However, the annual
net revenue of 30 kWh EV with mode 3 charging is much
lower (about 14% lower), even when the gas price is high.
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Fig. 13: Annual net revenues under different gas prices.

Ramifications: We observe that when the gas price in-
creases, ICE taxi becomes a less attractive option since its net
revenue decreases. The net revenue of 70 kWh EV is around
3% higher than ICE taxi when gas price is $2.5 USD/G, while
it is around 6.6% higher than ICE taxi when gas price increases
to $4.5 USD/G.

G. Annual Evaluation of NYC Taxi Trip Dataset

1) Net Revenue Evaluation:
Setting: We employ the optimal policy from 6th January to

different numbers of electric taxis and estimate the annual net
revenues. Fig. 15 shows the distribution of annual working
hours, we observe that the median annual working hour is
around 1800 hours, but many drivers work more than 4300
hours, equivalent to working almost 12 hours a day. Therefore,
we consider taxi drivers working every morning shift (i.e.,
4380 working hours) to estimate their net revenues.
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Fig. 15: Annual working hours and estimated net revenues of
taxi drivers in 2013.
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Fig. 14: Daily and annual energy consumption and CO2 emission.

Observations: The right figure in Fig. 15 shows the esti-
mated net revenues of different taxi drivers using the optimal
policy of MDP. There are some observations:
• The case of one electric taxi driver using the optimal

policy of MDP can earn 3% higher than that of one ICE
taxi driver.

• The average net revenue of case of 1000 electric taxis
with 70 kWh battery is ranked top 0.07% among tradi-
tional taxi drivers without computerized service strategy.

• The average net revenue of case of 1000 electric taxis
with 30 kWh battery using mode 3 charging is ranked top
0.4% among traditional taxi drivers without computerized
service strategy.

The results shows that the optimal policy of MDP can enable
electric taxi drivers to make comparable revenues as traditional
taxi drivers.

2) Carbon Emission Evaluation:
Setting: Besides of net revenues as economic motivation,

an important benefit is the reduction of carbon emission by
switching from ICE taxis to electric taxis. Although electric
taxis do not produce tailpipe emissions, the electricity grid
to recharge the battery may still produce emissions. In this
section, we estimate the CO2 emission of electric taxis, as
compared with ICE taxis, with computerized service strategy
optimization. The CO2 emission factors of electricity and
gasoline are obtained from eGrid of Long Island [2]:
• Emission factor of electricity: 0.7007 kg/kWh
• Emission factor of gasoline: 2.348 kg/liter
Observations: We consider taxis working in all shifts.

Fig. 14a shows the daily energy consumption of 1000 taxis
for morning shifts, while Fig. 14b shows the daily energy
consumption for night shifts. We use miles per gallon gasoline
equivalent to convert the consumed gasoline to kWh (i.e., 1
gallon of gasoline equals to 33.7 kWh). Fig. 14c shows the
annual energy consumption of different numbers of electric
taxis. We observe that ICE taxis consume around 4 times more
energy than electric taxis. Fig. 14d shows the corresponding
CO2 emissions of different numbers of electric taxis. We
observe that up to 15 thousand metric tons CO2 (equal to 1560
home’s energy use for one year) can be saved by replacing
1000 ICE taxis by electric taxis.

VI. CONCLUSION

In this paper, we employ Markov Decision Process to
model computerized taxi service strategy and optimize the

strategy for taxi drivers considering electric taxi operational
constraints. We evaluate the effectiveness of the optimal policy
of Markov Decision Process using a big data study of real-
world taxi trips in New York City. The optimal policy can
be implemented in an intelligent recommender system for
taxi drivers. This becomes more viable especially due to the
advent of autonomous vehicles. Our evaluation shows that
computerized service strategy optimization allows electric taxi
drivers to earn comparable net revenues as ICE drivers, who
also employ computerized service strategy optimization, with
at least 50 kWh battery capacity. Hence, this sheds light on
the viability of electric taxis.
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