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Bayesian Nonparametric Modelling



Modelling Data

All models are wrong, but some are useful.

—George E. P. Box, Norman R. Draper (1987).

» Models are never correct for real world data.
» How do we deal with model misfit?

1. Quantify closeness to true model, and optimality of fitted model;
2. Model selection or averaging;
3. Increase the flexibility of your model class.



Nonparametric Modelling

» What is a nonparametric model?

» A parametric model where the number of parameters increases
with data;

» Areally large parametric model;

» A model over infinite dimensional function or measure spaces.

» A family of distributions that is dense in some large space.

» Why nonparametric models in Bayesian theory of learning?

» broad class of priors that allows data to “speak for itself”;
» side-step model selection and averaging.

» How do we deal with the infinite parameter space?

» Marginalize out all but a finite number of parameters;
» Define infinite space implicitly (akin to the kernel trick) using either
Kolmogorov Consistency Theorem or de Finetti’s theorem.



Classification and Regression

» Learn a mapping f: X — Y.
Data: Pairs of data points (x1, y1), (X2, ¥2), - - -, (Xn, ¥n)-
Model: yj|x;, w ~ F(-|xi, w)
Classification: Y = {+1,—1} or {1,...,C}.
Regression: Y =R
» Prior over parameters
p(w)

» Posterior over parameters

p(w)p(y|x, w)

PN = iy

> Prediction with posterior:

PVl Xe, X, Y) = / P(Ys X, w)p(w|x,y)dw



Nonparametric Classification and Regression

» Learn a mapping f: X — Y.
Data: Pairs of data points (x1, y1), (X2, ¥2), - - -, (Xn, ¥n)-
Model: yj|x;, w ~ F(-|xi, f)
Classification: Y = {+1,—1} or {1,...,C}.
Regression: Y =R

» Prior over parameters
p(f)

» Posterior over parameters

p(fIx.y) = W

> Prediction with posterior:

PV I%, X, Y) = / p(y.|x.. Hp(FIx, y)df



Density Estimation

» Parametric density estimation (e.g. Gaussian, mixture models)
Data: x = {x1, %, ...}
Model: p(x|w) = g(xi|w)

» Prior over parameters

» Posterior over parameters

plue) — 2Lt

p(x

» Prediction with posterior

pOx.x) = [ plx[w)p(wix) o



Nonparametric Density Estimation

» Nonparametric density estimation
Data: x = {x1, X2, ...}
Model: p(x;|f) = f(x;)

» Prior over densities

» Posterior over densities

» Prediction with posterior

p(x.[x) = / F(x)p(f|x) df



Semiparametric Modelling

> Linear regression model for inferring effectiveness of new medical
treatments.

Yii ZﬂTX,'/-i-b,-TZ,'j-‘re,'j

yij is outcome of jth trial on jth subject.
Xjj, zj are predictors (treatment, dosage, age, health...).
(3 are fixed-effects coefficients.
b; are random-effects subject-specific coefficients.
€j are noise terms.
» Care about inferring 3. If x; is treatment, we want to determine
p(3 > 0x,y, 2).
» Usually we assume Gaussian noise €; ~ N (0,2). Is this a sensible
prior? Over-dispersion, skewness,...
> May be better to model noise nonparametrically: ¢; ~ F.

> Also possible to model subject-specific random effects
nonparametrically: b; ~ G.



Model Selection/Averaging

» Data: x = {xy,x2,...}
Models: p(9k|Mk)a ,D(X‘ek, Mk)
Marginal likelihood

v

mnmo=/mmwwmmwMde

v

Model selection

M = argmax p(x| M)
My

v

Model averaging

P X) = 3 0 M)p(Melx) = 3 p(x, M) PEIMLM)
My m p(x)

v

But: is this computationally feasible?



Model Selection/Averaging

» Marginal likelihood is usually extremely hard to compute.

P(X|My) = /'p(x|9k7Mk>p(9k|Mk)dek

» Model selection/averaging is to prevent underfitting and overfitting.

» But reasonable and proper Bayesian methods should not overfit
[Rasmussen and Ghahramani 2001].

» Use a really large model M, instead, and let the data speak for
themselves.



Model Selection/Averaging

How many clusters are there?




Other Tutorials on Bayesian Nonparametrics

» Zoubin Gharamani, UAI 2005.
» Michael Jordan, NIPS 2005.
» Volker Tresp, ICML nonparametric Bayes workshop 2006.

» Workshop on Bayesian Nonparametric Regression, Cambridge, July
2007.

» My Machine Learning Summer School 2007 tutorial and practical course.

» | have an introduction to Dirichlet processes [Teh 2007], and another to
hierarchical Bayesian nonparametric models [Teh and Jordan 2009].
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A Tiny Bit of Measure Theoretic Probability Theory

> A o-algebra ¥ is a family of subsets of a set © such that

» Y is not empty;
» fAec X then©\Ae X;
> If Ay, Az,... € X then U A € .

> (©,Y)is a measure space and A € ¥ are the measurable sets.

> A measure 1 over (©,%) is a function p : ¥ — [0, o] such that

1(0) = 0;

If A, Az, ... € X are disjoint then p(UX,A) = Y7 1(A).
Everything we consider here will be measurable.

A probability measure is one where ;(©) = 1.

vV vyVvyy

» Given two measure spaces (©,%) and (A, ®), afunction f: © — A'is
measurable if f~1(A) € ¥ for every A € ®.



A Tiny Bit of Measure Theoretic Probability Theory

> If pis a probability measure on (©, X), a random variable X taking
values in A is simply a measurable function X : © — A.

» Think of the probability space (0, ¥, p) as a black-box random
number generator, and X as a function taking random samples in ©
and producing random samples in A.

» The probability of an event A € ® is p(X € A) = p(X~'(A)).

» A stochastic process is simply a collection of random variables {X;};c1
over the same measure space (0, ¥), where I is an index set.

» What distinguishes a stochastic process from, say, a graphical
model is that T can be infinite, even uncountably so.

» This raises issues of how do you even define them and how do you
ensure that they can even existence (mathematically speaking).

» Stochastic processes form the core of many Bayesian nonparametric
models.

» Gaussian processes, Poisson processes, gamma processes,
Dirichlet processes, beta processes...
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Gaussian Processes

» A Gaussian process (GP) is a random function f : X — R such that for

any finite set of input points x1, ..., Xs,
f(x1) m(x1) c(x1,x1) ... c(x1,Xn)
LN SN : : :
f(xn) m(xn) c(Xny X1) ... C(Xn, Xn)

where the parameters are the mean function m(x) and covariance
kernel c(x, y).

» GPs can be visualized by iterative sampling f(x,)|f(x1),...,f(x,—1) On a
sequence of input points x1, X, . ..

» Demonstration.

» Note: a random function f is a stochastic process. It is a collection of
random variables {f(x)}xex one for each possible input value x.

[Rasmussen and Williams 2006]



Posterior and Predictive Distributions

» How do we compute the posterior and predictive distributions?
» Training set (x1, y1), (X2, ¥2), - .., (Xn, ¥n) and test input X, 1.

» Out of the (uncountably infinitely) many random variables {f(x)}xex
making up the GP only n+ 1 has to do with the data:

f(X1)7 f(Xg)7 ey f(Xn+1)

» Training data gives observations f(x1) = y1,...,f(Xn) = ¥n. The
predictive distribution of f(x,.1) is simply

P(f(xni1)lf(x1) = y1, ... 1(Xn) = ¥n)
which is easy to compute since f(x1),. .., f(X,11) is Gaussian.

» This can be generalized to noisy observations y; = f(x;) + ¢; or non-linear
effects y; ~ D(f(x;)) where D(#) is a distribution parametrized by 6.



Consistency and Existence

» The definition of Gaussian processes only give finite dimensional
marginal distributions of the stochastic process.

» Fortunately these marginal distributions are consistent.

» For every finite set x ¢ X we have a distinct distribution
Px([f(x)]xex)- These distributions are said to be consistent if

Px([f(X)]xex) = /quy([f(X)]xexuy)d[f(X)]xev

for disjoint and finite x,y C X.
» The marginal distributions for the GP are consistent because
Gaussians are closed under marginalization.

» The Kolmogorov Consistency Theorem guarantees existence of GPs,
i.e. the whole stochastic process {f(x)}xex.



Poisson Processes

» A Poisson process (PP) is a random function f : ¥ — R such that:

» Y is the o-algebra over X.
» For any measurable set A C X,

f(A) ~ Poisson(A(A)),

where the parameter is the rate measure A (a function from the
measurable sets of X to R, ).

» And if A, B C X are disjoint then f(A) and f(B) are independent.

» The above family of distributions is consistent, since the sum of two
independent Poisson variables is still Poisson with the rate parameter
being the sum of the individual rates.

» Note that f is also a measure, a random measure. It always consists of

point masses:
n
f = Z 6)(/
i=1

where xi, X2, ... € X and n ~ Poisson(\(X)), i.e. f is a point process.



Gamma Processes

» A Gamma process (I'P) is a random function f : ¥ — R such that:
» For any measurable set A C X,
f(A) ~ Gamma(A(A), 1),

where the parameter is the shape measure \.
» Andif A, B C X are disjoint then f(A) and f(B) are independent.

» The above family of distributions is also consistent, since the sum of two
independent gamma variables (with same scale parameter 1) is still

gamma with the shape parameter being the sum of the individual shape
parameters.

> fis also a random measure. It always consists of weighted point
masses:
o0
1= w,
i=1

with total weight >~°, w; ~ Gamma(\(X)).
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Dirichlet Distributions

» A Dirichlet distribution is a distribution over the K-dimensional probability
simplex:
Ak ={(m1,...,7k) : Tk > 0,5, Tk =1}

» We say (71, ..., k) is Dirichlet distributed,
(71’17. .. ,TFK) ~ Dirichlet()m. .. ,/\K)

with parameters (A1, ..., \k), if

p(ms, ... mk) =



Dirichlet Distributions
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Normalizing a Gamma Process

» We can obtain a sample of (7, ..., mx) by drawing K independent
Gamma samples and normalizing:
vk ~Gamma(Ag, 1) fork=1,....K
T =K/ Y e
L
» Similarly a Dirichlet process is obtained by normalizing a gamma
process:
v ~TP(X) G =7/7(©)

where )\ is a base measure.



Dirichlet Processes

» A Dirichlet Process (DP) is a random probability measure G over (©,Y)
such that for any finite set of measurable partitions A;U...UAx = ©,
(G(A1),...,G(Ak)) ~ Dirichlet(A(A1), ..., A(Ak))

where )\ is a base measure.

A

A

» The above family of distributions is consistent (next slide), and
Kolmogorov Consistency Theorem can be applied to show existence (but
there are technical conditions restricting the generality of the definition).

[Ferguson 1973, Blackwell and MacQueen 1973]



Consistency of Dirichlet Marginals

» Because Dirichlet variables are normalized gamma variables and sums
of gammas are gammas, if (/, ..., /;) is a partition of (1,. .., K),

(Sien s+ -+ ey mi) ~ Dirichlet (i A+ s Xiey )

> If we have two partitions (Aq,...,Ak) and (B, ..., By) of ©, form the
common refinement (Cy, ..., C.) where each C; is the intersection of
some A, with some B;. Then:

By definition, (G(Cy),..., G(C.)) ~ Dirichlet(A(Cy), ..., A(CL))
(G(A1),..., G(Ak)) = (Xc,ca, G(Cr),- ZC[CAK G(Cv))
~ Dirichlet(A(A1),. .., AM(Ak))
Similarly, (G(B1), ..., G(B,)) ~ Dirichlet(A(B1), ..., A(B)))
so the distributions of (G(A+), ..., G(Ak)) and (G(By), ..., G(B,)) are
consistent.

» Demonstration.



Parameters of Dirichlet Processes

» Usually we split the A\ base measure into two parameters A = aH:

» Base distribution H, which is like the mean of the DP.
» Strength parameter «, which is like an inverse-variance of the DP.

> We write:
G ~ DP(a, H)
if for any partition (Aq, ..., Ak) of ©:
(G(A1),...,G(Ak)) ~ Dirichlet(aH(A+), ..., aH(Ak))

» The first and second moments of the DP:
Expectation: E[G(A)] = H(A)
Variance: VIG(A)] = w

where A is any measurable subset of ©.



Representations of Dirichlet Processes

» Since draws of gamma processes consist of weighted point masses, so
will draws from Dirichlet processes:

G == Z 7Tk59;
k=1

where ), 7 =1 and 6; € ©.
» What is the joint distribution over 7y, 7o, ... and 65,653,...?

» Since G is a (random) probability measure over ©, we can treat it as a
distribution and draw samples from it. Let

01,0p,...~ G

be random variables with distribution G.

» What is the marginal distribution of 61, 6, . .. with G integrated out?

» There is positive probability that sets of 6;’s can take on the same
value 05 for some k, i.e. the ¢;’s cluster together. How do these
clusters look like?

» For practical modelling purposes this is sufficient. But is this
sufficient to tell us all about G?



Stick-breaking Construction

G = Z 71'/((50;
k=1

» There is a simple construction giving the joint distribution of 71, 7, . ..
and 07,03, ... called the stick-breaking construction.

0; ~ H

k—1
Tk = Vk 1—v) T
L=

Tl

vk ~ Beta(1, «) J _____ Tls)

> Also known as the GEM distribution, write w ~ GEM(«).

» If we order 71, 7o, ... in decreasing order, the resulting distribution is
called the Poisson-Dirichlet distribution.

[Sethuraman 1994]



Pélya Urn Scheme

|

01,02,...~G

The marginal distribution of 01,65, ... has a simple generative process
called the Pdlya urn scheme.

oH + Y75 6,

Onl01.0—1 ~ p—

Picking balls of different colors from an urn:

» Start with no balls in the urn.

» with probability o o, draw 6, ~ H, and add a ball of color 6, into urn.

» With probability o« n — 1, pick a ball at random from the urn, record
0, to be its color and return two balls of color 6, into urn.

Pélya urn scheme is like a “representer” for the DP—a finite projection of
an infinite object G.

Also known as the Blackwell-MacQueen urn scheme.

[Blackwell and MacQueen 1973]



Chinese Restaurant Process

» According to the Pélya urn scheme, and because G consists of weighted
point masses, 64, ..., 0, take on K < ndistinct values, say 65, ..., 6.

» This defines a partition of (1,..., n) into K clusters, such that if / is in
cluster k, then 0; = 0;.

» The distribution over partitions is a Chinese restaurant process (CRP).

» Generating from the CRP:

» First customer sits at the first table.
» Customer n sits at:
» Table k with probability
at table k.
> Anew table K + 1 with probability 7.
» Customers < integers, tables < clusters.

+n 7 where ny is the number of customers

» The CRP exhibits the clustering property of the DP.

» Rich-gets-richer effect implies small number of large clusters.
» Expected number of clusters is K = O(«log n).

01010101010



Representations of Dirichlet Processes
» Posterior Dirichlet process:

G~DP(H) 0~H
|G~ G G|9~DP<a+1,“H+‘59>

a-+1

» Polya urn scheme:

0,10 oH + Y7 6y,
n|Y1:n—1 Oé—|—n—1

» Chinese restaurant process:

——  if occupied table
customer n sat at table k|past) = ¢ "'+«
p( Ipast) { a if new table

n71‘+a
» Stick-breaking construction:
k—1

=0 [J(1=8) Bk~Beta(l,0) Oi~H G=> mdy

i=1 k=1



Density Estimation

» Parametric density estimation (e.g. Gaussian, mixture models)
Data: x = {x1, X2, ...}
Model: xj|w ~ F(-|w)

» Prior over parameters
p(w)
» Posterior over parameters

plue) — 2L

p(x
> Prediction with posteriors

p(x,[x) = / P(x.|W)p(w|x) diw



Density Estimation

|

Bayesian nonparametric density estimation with Dirichlet processes
Data: x = {x1, X2,...}
Model: x; ~ G

Prior over distributions
G ~ DP(a, H)
Posterior over distributions

p(Glx) = LS

Prediction with posteriors

p(x.|x) = / p(x.|G)P(GIx) oF = / G(x.)p(GIX) dG

Not quite feasible, since G is a discrete distribution, in particular it has no
density.



Density Estimation

» Solution: Convolve the DP with a smooth distribution:

G ~ DP(a, H) o k;me;
F(-) = /F(~\0)dG(9) = Fo(-) = imF(-lﬁi)
k=1

XINFX
X/"\‘Fx

» Demonstration.



Density Estimation

07r
06l
05}
0.4} || [

AN

F(-|u, ) is Gaussian with mean p, covariance x.

H(w, X) is Gaussian-inverse-Wishart conjugate prior.

Red: mean density. Blue: median density. Grey: 5-95 quantile. Others:
draws. Black: data points.



Density Estimation

0451
0.4+
0.35F
0.3F
0.25¢
0.2F
0.15F

0.1

F(-|u, ) is Gaussian with mean p, covariance x.

H(w, X) is Gaussian-inverse-Wishart conjugate prior.

Red: mean density. Blue: median density. Grey: 5-95 quantile. Others:
draws. Black: data points.



Clustering
» Recall our approach to density estimation:

G=)_mds; ~DP(a, H)
k=1

Fe(-) = mkF(-16%)
k=1

XfNFX

» Above model equivalent to:
z; ~ Discrete()
0 =03,
Xilzi ~ F(-6;) = F(:07)

> This is simply a mixture model with an infinite number of components.
This is called a DP mixture model.



Clustering

» DP mixture models are used in a variety of clustering applications,
where the number of clusters is not known a priori.

> They are also used in applications in which we believe the number of
clusters grows without bound as the amount of data grows.

» DPs have also found uses in applications beyond clustering, where the
number of latent objects is not known or unbounded.

Nonparametric probabilistic context free grammars.
Visual scene analysis.

Infinite hidden Markov models/trees.

Haplotype inference.

vV vy VY VvYy

> In many such applications it is important to be able to model the same
set of objects in different contexts.

» This corresponds to the problem of grouped clustering and can be
tackled using hierarchical Dirichlet processes.

[Teh et al. 2006, Teh and Jordan 2009]



Exchangeability

» Instead of deriving the Pélya urn scheme by marginalizing out a DP,
consider starting directly from the conditional distributions:

oH + Y7 6,
On|01:n—1 ~ Tatn_1
» For any n, the joint distribution of 44, ..., 6, is:
K K *
Q@ L h(05)(mp, — 1)!
p(917~-~:9n): Hk_fl ( k)( n )
[loi—1+a
where h(0) is density of 6 under H, 05, ..., 0} are the unique values, and
05 occurred myx times among 64, ..., 0.
» The joint distribution is exchangeable wrt permutations of 04, ..., 6.

» De Finetti’s Theorem says that there must be a random probability
measure G making 61, 6,, ... iid. This is the DP.



De Finetti’'s Theorem
Let64,02,... be an infinite sequence of random variables with joint
distribution p. If for all n > 1, and all permutations o € ¥, on n objects,

p(91,‘ .. ,9,7) = p(90(1), .. .,90(,7))

That is, the sequence is infinitely exchangeable. Then there exists a latent
random parameter G such that:

P01, 0 /p p(6G)dG

where p is a joint distribution over G and 6;’s.
> 0;'s are independent given G.
» Sufficient to define G through the conditionals p(6,|01,...,0,-1).
» G can be infinite dimensional (indeed it is often a random measure).

> The set of infinitely exchangeable sequences is convex and it is an
important theoretical topic to study the set of extremal points.

> Partial exchangeability: Markov, group, arrays,...



Pitman-Yor Processes

» Two-parameter generalization of the Chinese restaurant process:

n—5_if occupied table
customer n sat at table k|past) = { " '1¢
A past) { tBKif new table

» Associating each cluster k with a unique draw ¢; ~ H, the
corresponding Pdélya urn scheme is also exchangeable.

» De Finetti’s Theorem states that there is a random measure underlying
this two-parameter generalization.

» This is the Pitman-Yor process.
» The Pitman-Yor process also has a stick-breaking construction:

k—1 o)
me=v [[(1=v) Bk~Beta(l —B,a+pBk) bi~H G=) mdy;
i=1 k=1

[Pitman and Yor 1997, Perman et al. 1992]



Pitman-Yor Processes

» Two salient features of the Pitman-Yor process:

» With more occupied tables, the chance of even more tables
becomes higher.

» Tables with smaller occupancy numbers tend to have lower chance
of getting new customers.

» The above means that Pitman-Yor processes produce Zipf’s Law type
behaviour, with K = O(an®).
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Pitman-Yor Processes

Draw from a Pitman-Yor process
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Beyond Clustering

» Dirichlet and Pitman-Yor processes are nonparametric models of
clustering.

» Can nonparametric models go beyond clustering to describe data in
more expressive ways?

» Hierarchical (e.g. taxonomies)?
» Distributed (e.g. multiple causes)?



Indian Buffet Processes

» The Indian Buffet Process (IBP) is akin to the Chinese restaurant
process but describes each customer with a binary vector instead of
cluster.

» Generating from an IBP:

>

Parameter a.

» First customer picks Poisson(«) dishes to eat.
» Subsequent customer i picks dish k with probability “; and picks
Poisson(%) new dishes.

<— Customers

Tables —

<— Customers

Dishes —>




Infinite Independent Components Analysis

» Each image X; is a linear combination of sparse features:
Xi = MY
k

where yj is activity of feature k with sparse prior. One possibility is a
mixture of a Gaussian and a point mass at 0:

Yik = Zik@ik ax ~N(0,1) Z ~ IBP(«)

» An ICA model with infinite number of features.

[Knowles and Ghahramani 2007]



Indian Buffet Processes and Exchangeability

» The IBP is infinitely exchangeable, though this is much harder to see.

» De Finetti’'s Theorem again states that there is some random measure
underlying the IBP.

» This random measure is the Beta process.

[Griffiths and Ghahramani 2006, Thibaux and Jordan 2007]



Beta Processes

> A beta process B ~ BP(c, aH) is a random discrete measure with form:

B= Z Mk56;
k=1

where the points P = {(07, 1u1), (65, 112), . . .} are spikes in a 2D Poisson
process with rate measure:

cu™ (1 — p)° " duaH(d)
> The beta process with ¢ = 1 is the de Finetti measure for the IBP. When
¢ # 1 we have a two parameter generalization of the IBP.
» This is an example of a completely random measure.

> A beta process does not have Beta distributed marginals.

[Hjort 1990]



Stick-breaking Construction for Beta Processes

» When ¢ = 1 it was shown that the following generates a draw of B:

k—1
vk ~ Beta(1, a) pe=(1-v) [T = w) 0 ~ H

i=1
o0

B =D ko
k=1

» The above is the complement of the stick-breaking construction for DPs!

Tl2)

Tl
e Tl

[Teh et al. 2007]



Survival Analysis

>

The Beta process was first proposed as a Bayesian nonparametric
model for survival analysis with right-censored data.

The hazard rate B is given a BP(c, aH) prior. B(6)dé is the chance of
death in an infinitesimal interval [0, 0 4+ d@) given that the individual has
survived up to time 6.

Data consists of a set of death times 7y, 7, ... and censored times
Y1,72, - - -, and can be summarized as:

Death measure: D=Y ¢,
j
Number-at-risk function: R(6) = D([0,0)) + > 1(v; > 6)
i

The posterior of B is:
B|D,R ~ BP(c+ R,aH + D)

Note: the above is a generalization to ¢ being a function of 6.
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Completely Random Measures

» A completely random measure (CRM) is a random measure f such that
f(A) and f(B) are independent whenever A and B are disjoint.

» A CRM f can always be decomposed into three distinct and independent
components: f = fy + f; + f> where:

» fyis a constant measure;

> fi = 27:1 uiéy, where w; are independent, and y; are fixed,

» b =>1, Vidy Where (x1, v1), (X, 2), ... are the atoms of a Poisson
process with non-atomic rate measure A over the space X x (0, co].

» Examples of CRMs: Poisson, gamma, beta processes. DPs are
normalized random measures.

fo: constant

f1: random weights
fixed locations

f2: random weights
random locations




Examples of Completely Random Measures

Gamma process: a > 0

NdO, dp) = p~ e~ duaH(db)
Inverse Gaussian process: 7 >0, a >0

A6, du) = u=32e" ™ |/ 2rdpuaH(d6)
Stable process: 0 < < 1,a>0

(db, dp) = Bu~" =P /T(1 — B)duaH(d6)
Generalized gamma process: 0 < <1, 7>0,a >0

Ndb, du) = g~ Pe ™ /T (1 — B)duaH(db)
Betaprocess: 0 <c<1,a>0

A(d0, dp) = e~ (1 — p)° dpaH(d0)
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Summary

» Introduced the major Bayesian nonparametric models and stochastic
processes developed in statistics and machine learning:

» Gaussian processes, Poisson processes, gamma processes,
Dirichlet processes, beta processes, completely random measures.

» Missing: hierarchical Dirichlet processes and other hierarchical
Bayesian nonparametric models, infinite hidden Markov and other
time series models, Dirichlet diffusion trees and other hierarchical
clustering models...

» Described two important theoretical tools used to build such models:

» Consistency and Kolmogorov’s Consistency Theorem
» Exchangeability and de Finetti’'s Theorem

» Touched upon a number of prototypical applications of Bayesian
nonparametric models.

» Missing: Inference methods based on MCMGC, variational, and on
different representations.
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Dirichlet Processes and Beyond in Machine Learning

Dirichlet Processes were first introduced by [Ferguson 1973], while [Antoniak 1974] further developed DPs as well as introduce
the mixture of DPs. [Blackwell and MacQueen 1973] showed that the Pélya urn scheme is exchangeable with the DP being its de
Finetti measure. Further information on the Chinese restaurant process can be obtained at [Aldous 1985, Pitman 2002]. The DP
is also related to Ewens’ Sampling Formula [Ewens 1972]. [Sethuraman 1994] gave a constructive definition of the DP via a
stick-breaking construction. DPs were rediscovered in the machine learning community by [Neal 1992, Rasmussen 2000].

Hierarchical Dirichlet Processes (HDPs) were first developed by [Teh et al. 2006], although an aspect of the model was first
discussed in the context of infinite hidden Markov models [Beal et al. 2002]. HDPs and generalizations have been applied across
a wide variety of fields.

Dependent Dirichlet Processes are sets of coupled distributions over probability measures, each of which is marginally DP
[MacEachern et al. 2001]. A variety of dependent DPs have been proposed in the literature since then

[Srebro and Roweis 2005, Griffin 2007, Caron et al. 2007]. The infinite mixture of Gaussian processes of

[Rasmussen and Ghahramani 2002] can also be interpreted as a dependent DP.

Indian Buffet Processes (IBPs) were first proposed in [Griffiths and Ghahramani 2006], and extended to a two-parameter family
in [Ghahramani et al. 2007]. [Thibaux and Jordan 2007] showed that the de Finetti measure for the IBP is the beta process of
[Hjort 1990], while [Teh et al. 2007] gave a stick-breaking construction and developed efficient slice sampling inference algorithms
for the IBP.

Nonparametric Tree Models are models that use distributions over trees that are consistent and exchangeable. [Blei et al. 2004]
used a nested CRP to define distributions over trees with a finite number of levels. [Neal 2001, Neal 2003] defined Dirichlet
diffusion trees, which are binary trees produced by a fragmentation process. [Teh et al. 2008] used Kingman’s coalescent
[Kingman 1982b, Kingman 1982a] to produce random binary trees using a coalescent process. [Roy et al. 2007] proposed
annotated hierarchies, using tree-consistent partitions first defined in [Heller and Ghahramani 2005] to model both relational and
featural data.

Markov chain Monte Carlo Inference algorithms are the dominant approaches to inference in DP mixtures. [Neal 2000] is a
good review of algorithms based on Gibbs sampling in the CRP representation. Algorithm 8 in [Neal 2000] is still one of the best
algorithms based on simple local moves. [Ishwaran and James 2001] proposed blocked Gibbs sampling in the stick-breaking
representation instead due to the simplicity in implementation. This has been further explored in [Porteous et al. 2006]. Since
then there has been proposals for better MCMC samplers based on proposing larger moves in a Metropolis-Hastings framework
[Jain and Neal 2004, Liang et al. 2007a], as well as sequential Monte Carlo [Fearnhead 2004, Mansingkha et al. 2007].

Other Approximate Inference Methods have also been proposed for DP mixture models. [Blei and Jordan 2006] is the first
variational Bayesian approximation, and is based on a truncated stick-breaking representation. [Kurihara et al. 2007] proposed an
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improved VB approximation based on a better truncation technique, and using KD-trees for extremely efficient inference in large
scale applications. [Kurihara et al. 2007] studied improved VB approximations based on integrating out the stick-breaking
weights. [Minka and Ghahramani 2003] derived an expectation propagation based algorithm. [Heller and Ghahramani 2005]
derived tree-based approximation which can be seen as a Bayesian hierarchical clustering algorithm. [Daume Il 2007] developed
admissible search heuristics to find MAP clusterings in a DP mixture model.

Computer Vision and Image Processing. HDPs have been used in object tracking

[Fox et al. 2006, Fox et al. 2007b, Fox et al. 2007a]. An extension called the transformed Dirichlet process has been used in
scene analysis [Sudderth et al. 2006b, Sudderth et al. 2006a, Sudderth et al. 2008], a related extension has been used in fMRI
image analysis [Kim and Smyth 2007, Kim 2007]. An extension of the infinite hidden Markov model called the nonparametric
hidden Markov tree has been introduced and applied to image denoising [Kivinen et al. 2007a, Kivinen et al. 2007b].

Natural Language Processing. HDPs are essential ingredients in defining nonparametric context free grammars

[Liang et al. 2007b, Finkel et al. 2007]. [Johnson et al. 2007] defined adaptor grammars, which is a framework generalizing both
probabilistic context free grammars as well as a variety of nonparametric models including DPs and HDPs. DPs and HDPs have
been used in information retrieval [Cowans 2004], word segmentation [Goldwater et al. 2006b], word morphology modelling
[Goldwater et al. 2006a], coreference resolution [Haghighi and Klein 2007], topic modelling

[Blei et al. 2004, Teh et al. 20086, Li et al. 2007]. An extension of the HDP called the hierarchical Pitman-Yor process has been
applied to language modelling [Teh 2006a, Teh 2006b, Goldwater et al. 2006a].[Savova et al. 2007] used annotated hierarchies to
construct syntactic hierarchies. Theses on nonparametric methods in NLP include [Cowans 2006, Goldwater 2006].

Other Applications. Applications of DPs, HDPs and infinite HMMs in bioinformatics include

[Xing et al. 2004, Xing et al. 2007, Xing et al. 2006, Xing and Sohn 2007a, Xing and Sohn 2007b]. DPs have been applied in
relational learning [Shafto et al. 2006, Kemp et al. 2006, Xu et al. 2006], spike sorting [Wood et al. 2006a, Gortir 2007). The HDP
has been used in a cognitive model of categorization [Griffiths et al. 2007]. IBPs have been applied to infer hidden causes

[Wood et al. 2006b], in a choice model [Gorlr et al. 2006], to modelling dyadic data [Meeds et al. 2007], to overlapping clustering
[Heller and Ghahramani 2007], and to matrix factorization [Wood and Griffiths 2006].
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Posterior Dirichlet Processes

» Suppose G is DP distributed, and @ is G distributed:

G ~ DP(a, H)
01G~ G

» This gives p(G) and p(6|G).
» We are interested in:

p(0) = / p(6|G)p(G) dG

p(0|G)p(G)

p(Glo) = 0



Posterior Dirichlet Processes

Conjugacy between Dirichlet Distribution and Multinomial.

» Consider:
(71'1 s 77TK) ~ Dirichlet(a1 yeeey aK)
z|(m1,...,mk) ~ Discrete(m,...,7k)
z is a multinomial variate, taking on value i € {1, ..., n} with probability
.
> Then:

z ~ Discrete (Eﬁu" o %)
(7T1 e ,WK)‘Z ~ Dirichlet(a1 + 01 (Z), Lo, F (5K(Z))

where 0;(z) = 1 if z takes on value /, 0 otherwise.

» Converse also true.



Posterior Dirichlet Processes
» Fix a partition (A+,...,Ak) of ©. Then
(G(A1),...,G(Ak)) ~ Dirichlet(aH(Ay), ..., aH(Ak))
P(0 € AilG) = G(A)

» Using Dirichlet-multinomial conjugacy,
P(e S A,‘) = H(A,)
(G(A1),...,G(Ak))|0 ~ Dirichlet(a«H(A1)+d9(A1), ..., aH(Ak)+00(Ak))

» The above is true for every finite partition of ©. In particular, taking a
really fine partition,

p(d6) = H(db)

> Also, the posterior G|f is also a Dirichlet process:

aH + by
a+1

G|0 ~ DP <a+1,



Posterior Dirichlet Processes

G~DP(aH) 0~H
0|G~ G G|o ~ DP (a+1 aH+5e)

Y a1



Pélya Urn Scheme

» First sample:
011G~ G

— 01 ~H

» Second sample:
92‘917 G~G

aH+6¢
— 92|91 ~ 1

» n" sample
9n|91:n—1 ) G~G

aH+3217" 6,

— On|01:n—1 ~ P

G ~ DP(a, H)
G|y ~ DP(a+1,

Gl6s ~ DP(a +1,
G|91 ,0o ~ DP(O& + 2,

6‘91;,7_1 ~ DP(a +n-1,

Gl61.n ~ DP(a + n,

aH+691
a+1 )

0(H+($g1 )
a+1

aH+5g1 +5@2

a2

a—+n

)

aH+317" 6y,
a+n—1
aH+377 1 O,

)

)



Stick-breaking Construction
» Returning to the posterior process:
G ~ DP(a, H) 0~H
&
0|G ~ G G|0 ~ DP(ar + 1, 200

' a1

» Consider a partition (6, ©\0) of ©. We have:

(G(6), G(©\0))|6 ~ Dirichlet((a + 1)2252(9), (a + 1) 222 (©\0))
= Dirichlet(1, «)

» G has a point mass located at 6:
G=p5%+1-p8)G with 8 ~ Beta(1, «)

and G’ is the (renormalized) probability measure with the point mass
removed.

» Whatis G'?



Stick-breaking Construction

> Currently, we have:

O ~H
G ~ DP(a, H) N Gl0 ~ DP(a + 1, 2500 )
0~G G=pdy+(1-5)G

g8 ~ Beta(1, )

» Consider a further partition (6, Ay, ..., Ax) of ©:
(G(9), G(A1),...,G(AK))

=(8,(1 = B)G'(A1),....(1 = B)G'(Ak))
~ Dirichlet(1, aH(Ar), . . ., aH(Ax))

» The agglomerative/decimative property of Dirichlet implies:
(G'(A1),...,G(Ak))|0 ~ Dirichlet(aH(A1),...,aH(Ak))
G' ~ DP(a, H)



Stick-breaking Construction

» We have:

where

G ~ DP(a, H)

G = B1do; + (1 — B1)Gi

G = B1de; + (1 — B1)(B200; + (1 — 52)G2)

G == Z 7Tk59;
k=1

m= G115 (1 - 6)

Bk ~ Beta(1,a)

T2

Tlo

.| Tls)

Tl

Tl

0; ~ H
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