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Problems and solutions

minimize f(x) subject to x ∈ Ω ⊆ Rn. (†)

f : Ω → R is (sufficiently) smooth.
f objective; x variables.
Ω feasible set determined by finitely many (equality and/or

inequality) constraints.

x∗ global minimizer of f over Ω =⇒ f(x) ≥ f(x∗), ∀x ∈ Ω.
x∗ local minimizer of f over Ω =⇒
∃N(x∗, δ) such that f(x) ≥ f(x∗), for all x ∈ Ω ∩ N(x∗, δ).
• N(x∗, δ) := {x ∈ Rn : ‖x − x∗‖ ≤ δ}.
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Example problem in one dimension

Example : min f(x) subject to a ≤ x ≤ b.

x 1x 2x 

f(x)

ba
The feasible region Ω is the interval [a, b].
The point x1 is the global minimizer; x2 is a local
(non-global) minimizer; x = a is a constrained local minimizer.
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Optimality conditions for constrained problems

== algebraic characterizations of solutions −→ suitable for
computations.
provide a way to guarantee that a candidate point is optimal

(sufficient conditions)
indicate when a point is not optimal

(necessary conditions)

minimizex∈Rn f(x) subject to cE(x) = 0, cI(x) ≥ 0.
(CP)

f : Rn → R, cE : Rn → Rm and cI : Rn → Rp (suff.) smooth;
• cI(x) ≥ 0 ⇔ ci(x) ≥ 0, i ∈ I.
• Ω := {x : cE(x) = 0, cI(x) ≥ 0} feasible set of the problem.
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Optimality conditions for constrained problems

unconstrained problem −→ x̂ stationary point (∇f(x̂) = 0).
constrained problem −→ x̂ Karush-Kuhn-Tucker (KKT) point.
Definition: x̂ KKT point of (CP) if there exist ŷ ∈ Rm and
λ̂ ∈ Rp such that (x̂, ŷ, λ̂) satisfies

∇f(x̂) =
∑

j∈E

ŷj∇cj(x̂) +
∑

i∈I

λ̂i∇ci(x̂),

cE(x̂) = 0, cI(x̂) ≥ 0,

λ̂i ≥ 0, λ̂ici(x̂) = 0, for all i ∈ I.

• Let A := E∪{i ∈ I : ci(x̂) = 0} index set of active constraints
at x̂; cj(x̂) > 0 inactive constraint at x̂ ⇒ λ̂j = 0. Then
∑

i∈I λ̂i∇ci(x̂) =
∑

i∈I∩A λ̂i∇ci(x̂).
• J(x) =

(
∇ci(x)T

)
i
Jacobian matrix of constraints c. Thus

∑
j∈E ŷj∇cj(x̂) = JE(x)T ŷ and ∑

i∈I λ̂i∇ci(x̂) = JI(x)T λ̂.
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Optimality conditions for constrained problems ...

x̂ KKT point −→ ŷ and λ̂ Lagrange multipliers of the equality
and inequality constraints, respectively.
ŷ and λ̂ −→ sensitivity analysis.

L : Rn × Rm × Rp → R Lagrangian function of (CP),

L(x, y,λ) := f(x) − y#cE(x) − λ#cI(x), x ∈ Rn.

Thus ∇xL(x, y,λ) = ∇f(x) − JE(x)#y − JI(x)#λ,
and x̂ KKT point of (CP) =⇒ ∇xL(x̂, ŷ, λ̂) = 0

(i. e., x̂ is a stationary point of L(·, ŷ, λ̂)).

• duality theory...
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An illustration of the KKT conditions

min
x∈R2

(x1 − 2)2 + (x2 − 0.5(3 −
√
5))2 subject to

−x1 − x2 + 1 ≥ 0, x2 − x2
1 ≥ 0. (∗)

x∗ = 1
2(−1+

√
5, 3−

√
5)#:

• global solution of (∗),
• KKT point of (∗).
∇f(x∗) = (−5 +

√
5, 0)#,

∇c1(x∗) = (1 −
√
5, 1)#,

∇c2(x∗) = (−1,−1)#.
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∇f(x∗) = λ∗
1∇c1(x∗) + λ∗

2∇c2(x∗), with λ∗
1 = λ∗

2 =
√
5 − 1 > 0.

c1(x∗) = c2(x∗) = 0: constraints are active at x∗.
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An illustration of the KKT conditions ...

min
x∈R2

(x1 − 2)2 + (x2 − 0.5(3 −
√
5))2 subject to

−x1 − x2 + 1 ≥ 0, x2 − x2
1 ≥ 0. (∗)

x := (0, 0)#

is NOT a KKT point of (∗)!
c1(x) = 0: active at x.
c2(x) = 1: inactive at x.
=⇒ λ2 = 0 and
∇f(x) = λ1∇c1(x),
with λ1 ≥ 0.

⇓
−4 −3 −2 −1 0 1 2 3

−1

−0.5

0

0.5

1

1.5

2

x1

x 2

1

¢ c1(0)

¢ c2(0)

¢ f(0)

c1
c2

Contradiction with ∇f(x) = (−4,
√
5 − 3)# and

∇c1(x) = (0, 1)#.
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Optimality conditions for constrained problems ...

In general, need constraints/feasible set of (CP) to satisfy
regularity assumption called constraint qualification in order
to derive optimality conditions.

Theorem (First order necessary conditions) Under suitable
constraint qualifications,
x∗ local minimizer of (CP) =⇒ x∗ KKT point of (CP).

Let (CP) with equalities only (I = ∅). Then feasible descent
direction s at x ∈ Ω if ∇f(x)T s < 0 and JE(x)s = 0.
Let (CP). Then feasible descent direction s at x ∈ Ω if

∇f(x)T s < 0, JE(x)s = 0 and ∇ci(x)T s ≥ 0 for all i ∈ I ∩ A(x).
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Constraint qualifications

Proof of theorem needs (first-order) Taylor to linearize f

and ci along feasible paths/perturbations x(α) etc. Only
correct if linearized approximation covers the essential
geometry of the feasible set. CQs ensure this is the case.
Examples:
(CP) satisfies the Slater Constraint Qualification (SCQ)

⇐⇒ if ∃x s.t. cE(x) = 0 and cI(x) > 0 (i.e., ci(x) > 0, i ∈ I).
(CP) satisfies the Linear Independence Constraint
Qualification (LICQ) ⇐⇒ ∇ci(x), i ∈ A(x), are linearly
independent (at relevant x).

Both SCQ and LICQ fail for
Ω = {(x1, x2) : c1(x) = 1 − x2

1 − (x2 − 1)2 ≥ 0; c2(x) = −x2 ≥ 0}.
[see Nocedal & Wright, Numerical Optimization for full details]
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Optimality conditions for constrained problems ...

If the constraints of (CP) are linear in the variables, no constraint
qualification is required.

Theorem (First order necessary conditions for linearly
constrained problems) Let (cE, cI)(x) := Ax− b in (CP). Then
x∗ local minimizer of (CP) =⇒ x∗ KKT point of (CP).

Let A = (AE, AI) and b = (bE, bI) corresponding to equality
and inequality constraints.
KKT conditions for linearly-constrained (CP): x∗ KKT point ⇔
there exists (y∗,λ∗) such that

∇f(x∗) = AT
Ey∗ + AT

I λ
∗,

AEx∗ − bE = 0, AIx
∗ − bI ≥ 0,

λ∗ ≥ 0, (λ∗)T (AIx
∗ − bI) = 0.
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Optimality conditions for convex problems

(CP) is a convex programming problem if and only if
f(x) is a convex function, ci(x) is a concave function for all
i ∈ I and cE(x) = Ax − b.
• ci is a concave function ⇔ (−ci) is a convex function.
• (CP) convex problem ⇒ Ω is a convex set.
• (CP) convex problem ⇒ any local minimizer of (CP) is global.

First order necessary conditions are also sufficient for optimality
when (CP) is convex.

Theorem. (Sufficient optimality conditions for convex
problems: Let (CP) be a convex programming problem.
x̂ KKT point of (CP) =⇒ x̂ is a (global) minimizer of (CP). !
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Optimality conditions for nonconvex problems

• When (CP) is not convex, the KKT conditions are not in
general sufficient for optimality
−→ need positive definite Hessian of the Lagragian function
along “feasible” directions.
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Penalty methods
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Nonlinear equality-constrained problems

min
x∈Rn

f(x) subject to c(x) = 0, (eCP)

where f : Rn → R, c = (c1, . . . , cm) : Rn → Rm smooth.
attempt to find local solutions (at least KKT points).
constrained optimization −→ conflict of requirements:
objective minimization & feasibility of the solution.

easier to generate feasible iterates for linear equality
and general inequality constrained problems;
very hard, even impossible, in general, when general
equality constraints are present.

=⇒ form a single, parametrized and unconstrained objective,
whose minimizers approach initial problem solutions as
parameters vary (eg: barrier methods for (iCP)).
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A penalty function for (eCP)

min
x∈Rn

f(x) subject to c(x) = 0. (eCP)

The quadratic penalty function:

min
x∈Rn

Φσ(x) = f(x) +
1

2σ
‖c(x)‖2, (eCPσ)

where σ > 0 penalty parameter.
σ: penalty on infeasibility;
σ −→ 0: ’forces’ constraint to be satisfied and achieve
optimality for f .
Φσ may have other stationary points that are not solutions
for (eCP); eg., when c(x) = 0 is inconsistent.

Methods for Constrained OptimizationNumerical Optimization Lectures 3-4 – p. 16/48



Contours of the penalty function Φσ - an example
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2 = 1
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Contours of the penalty function Φσ - an example...
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A quadratic penalty method

Given σ0 > 0, let k = 0. Until “convergence” do:

Choose 0 < σk+1 < σk.

Starting from xk
0 (possibly, xk

0 := xk), use an
unconstrained minimization algorithm to find an
“approximate” minimizer xk+1 of Φσk+1.
Let k := k + 1. ♦

Must have σk → 0, k → 0. σk+1 := 0.1σk, σk+1 := (σk)2, etc.
Algorithms for minimizing Φσ:
• Linesearch, trust-region methods.
• σ small: Φσ very steep in the direction of constraints’
gradients, and so rapid change in Φσ for steps in such
directions; implications for “shape” of trust region.
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A convergence result for the penalty method

Theorem. (Global convergence of penalty method) Apply the
basic quadratic penalty method to the (eCP). Assume that
f, c ∈ C1, yk

i = −ci(xk)/σk, i = 1,m, and

‖∇Φσk(xk)‖ ≤ εk, where εk → 0, k → ∞,

and also σk → 0, as k → ∞. Moreover, assume that
xk → x∗, where ∇ci(x∗), i = 1,m, are linearly independent.

Then x∗ is a KKT point of (eCP) and yk → y∗, where y∗ is the
vector of Lagrange multipliers of (eCP) constraints. !
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Derivatives of the penalty function

Let y(σ) := −c(x)/σ: estimates of Lagrange multipliers.
Let L be the Lagrangian function of (eCP),

L(x, y) := f(x) − yT c(x).
Φσ(x) = f(x) + 1

2σ‖c(x)‖
2. Then

∇Φσ(x) = ∇f(x) + 1
σJ(x)

T c(x) = ∇xL(x, y(σ)),

where J(x) Jacobian m × n matrix of constraints c(x).

∇2Φσ(x) = ∇2f(x) + 1
σ

∑m
i=1 ci(x)∇2ci(x) +

1
σJ(x)

TJ(x)

= ∇2
xxL(x, y(σ)) + 1

σJ(x)
TJ(x).

σ −→ 0: generally, ci(x) → 0 or ∇2ci(x) → 0 at the same
rate with σ for all i. Thus usually, ∇2

xxL(x, y(σ)) well-behaved.
σ → 0: J(x)TJ(x)/σ → J(x∗)TJ(x∗)/0 = ∞.
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Ill-conditioning of the penalty’s Hessian

Asymptotic estimates of the eigenvalues of ∇2Φσk(xk):
m eigenvalues of ∇2Φσk(xk) are O(1/σk) and hence, tend to
infinity as k → ∞ (ie, σk → 0); remaining n − m are O(1).
• Hence, the condition number (ie, largest/smallest eigenvalue)
of ∇2Φσk(xk) is O(1/σk)

=⇒ it blows up as k → ∞.
=⇒ worried that we may not be able to compute changes to

xk accurately. Namely, whether using linesearch or
trust-region methods, asymptotically, we want to minimize
Φσk+1(x) by taking Newton steps, i.e., solve the system

∇2Φσ(x)dx = ∇Φσ(x), (*)
for dx from some current x = xk,i and σ = σk+1.
Despite ill-conditioning present, we can still solve for dx
accurately!
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Solving accurately for the Newton direction

Due to computed formulas for derivatives, (*) is equivalent to(
∇2

xxL(x, y(σ)) + 1
σJ(x)

TJ(x)
)
dx = −

(
∇f(x) + 1

σJ(x)
T c(x)

)
,

where y(σ) = −c(x)/σ. Define auxiliary variable w

w = 1
σ (J(x)dx + c(x)).

Then the Newton system (*) can be re-written as
(

∇2L(x, y(σ)) J(x)#

J(x) −σI

)(
dx

w

)
= −

(
∇f(x)

c(x)

)

This system is essentially independent of σ for small σ =⇒
cannot suffer from ill-conditioning due to σ → 0.
Still need to be careful about minimizing Φσ for small σ. Eg,
when using TR methods, use ‖dx‖B ≤ ∆ for TR constraint.
B takes into account ill-conditioned terms of Hessian so as to
encourage equal model decrease in all directions.
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Perturbed optimality conditions

min
x∈Rn

f(x) subject to c(x) = 0. (eCP)

(eCP) satisfies the KKT conditions

(dual feasibility)∇f(x) = J(x)Ty and (primal feasibility) c(x) = 0.

Consider the perturbed problem




∇f(x) − J(x)T y = 0

c(x)+σy = 0
(eCPp)

Find roots of nonlinear system (eCPp) as σ −→ 0 (σ > 0); use
Newton’s method for root finding.
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Perturbed optimality conditions...

Newton’s method for system (eCPp) computes change
(dx, dy) to (x, y) from


 ∇2L(x, y) −J(x)$

J(x) σI







 dx

dy



 = −



 ∇f(x) − J(x)$y

c(x) + σy





Eliminating dy, gives
(
∇2

xxL(x, y) +
1

σ
J(x)TJ(x)

)
dx = −

(
∇f(x) +

1

σ
J(x)T c(x)

)

=⇒ ‘same’ as Newton for quadratic penalty ! what’s different?
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Perturbed optimality conditions...

Primal:
(
∇2

xxL(x, y(σ)) +
1

σ
J(x)TJ(x)

)
dxp = −

(
∇f(x) +

1

σ
J(x)T c(x)

)

where y(σ) = −c(x)/σ.
Primal-dual:
(
∇2

xxL(x, y) +
1

σ
J(x)TJ(x)

)
dxpd = −

(
∇f(x) +

1

σ
J(x)T c(x)

)

The difference is in freedom to choose y in ∇2L(x, y) in
primal-dual methods - it makes a big difference computationally.
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Other penalty functions

Consider the general (CP) problem
minimizex∈Rn f(x) subject to cE(x) = 0, cI(x) ≥ 0. (CP)

Exact penalty function: Φ(x,σ) is exact if there is σ∗ > 0 such
that if σ < σ∗, any local solution of (CP) is a local minimizer of
Φ(x,σ). (Quadratic penalty is inexact.)
Examples:

l2-penalty function: Φ(x,σ) = f(x) + 1
σ‖cE(x)‖

l1-penalty function: let z− = min{z, 0},
Φ(x,σ) = f(x) + 1

σ

∑
i∈E |ci(x)| + 1

σ

∑
i∈I [ci(x)]

−.
Extension of quadratic penalty to (CP):
Φ(x,σ) = f(x) + 1

2σ
‖cE(x)‖2 + 1

2σ

∑
i∈I

(
[ci(x)]−

)2

(may no longer be suff. smooth; it is inexact)
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Interior point methods
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Nonconvex inequality-constrained problems

min
x∈Rn

f(x) subject to c(x) ≥ 0, (iCP)

where f : Rn → R, c = (c1, . . . , cp) : Rn → Rp smooth.
• ignore (linear) equality constraints for simplicity.
• Ω := {x : c(x) ≥ 0} feasible set; let Ωo := {x : c(x) > 0}

Assumption: strictly feasible set Ωo 6= ∅. [SCQ (Slater)]
Attempt to find local solutions (at least KKT points) of (iCP).

For (each) µ > 0, associate the logarithmic barrier subproblem

min
x∈Rn

fµ(x) := f(x) − µ
p∑

i=1

log ci(x) subject to c(x) > 0. (iCPµ)

• (iCPµ) is essentially an unconstrained problem as each
ci(x) > 0 is enforced by the corresponding log barrier term of fµ.
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The logarithmic barrier function for (iCP)

Assume x(µ) minimizes the barrier problem

min
x∈Rn

fµ(x) = f(x) − µ
p∑

i=1

log ci(x) subject to c(x) > 0. (iCPµ)

Since (ci(x) → 0 =⇒ − log ci(x) → +∞), x(µ) must be “well
inside” the feasible set Ω, “far” from the boundaries of Ω,
especially when µ > 0 is “large”. Strict feasibility well-ensured!
When µ “small”, µ → 0: the term f(x) “dominates” the log
barrier terms in the objective of (iCPµ) =⇒ x(µ) “close” to the
optimal boundary of Ω. [This also causes ill-conditioning ...]

• Subject to conditions, some minimizers of fµ converge to
local solutions of (iCP), as µ → 0. But fµ may have other
stationary points, useless for our purposes.
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Contours of the barrier function fµ - an example
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Contours of the barrier function fµ - an example...
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Optimality conditions for (iCP) and (iCPµ)

fµ(x) := f(x) − µ
∑p

i=1 log ci(x) =⇒

∇fµ(x) = ∇f(x) −
∑p

i=1
µ

ci(x)
∇ci(x) = ∇f(x) − µJ(x)#C−1(x)e,

where J(x) Jacobian of c(x), C(x) := diag(c(x)), e = (1, .., 1).
First-order necessary optimality conditions for (iCPµ): [=uncons.]
x(µ) local minimizer of fµ =⇒ ∇fµ(x(µ)) = 0 ⇐⇒
∇f(x(µ)) =

∑p
i=1

µ
ci(x(µ))

∇ci(x(µ)) with µ
ci(x(µ))

> 0, i = 1, p.

First-order necessary optimality conditions for (iCP): [=KKT]
Assume Ωo 6= ∅. If x∗ local minimizer of (iCP) =⇒
∇f(x∗) =

∑p
i=1 s

∗
i∇ci(x∗), s∗ ≥ 0, s∗i ci(x∗) = 0, i = 1, p.

If x∗ (nondegenerate) local min. of (iCP) (2nd order sufficient
optimality conditions), µ

ci(x(µ))
→ s∗i , i = 1, p, as µ → 0.

Moreover ...
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The central path exists locally

... under second order sufficient optimality conditions at x∗ ∈ Ω,
the central path of fµ-minimizers {x(µ) : µε > µ > 0} exists,
for µε sufficiently small, and x(µ) → x∗, as µ → 0.
Theorem. (Local existence of central path) Assume that
Ωo 6= ∅, and x∗ is a local minimizer of (iCP) s. t.
(a) s∗i > 0 if ci(x∗) = 0.
(b) ∇ci(x∗), i ∈ A := {i ∈ {1, . . . , p} : ci(x∗) = 0}, are

linearly independent. [LICQ]
(c) ∃α > 0 such that d#∇2

xxL(x∗, s∗)d ≥ α‖d‖2, where d

such that J(x∗)Ad = 0, and ∇2
xxL is the Hessian of the

Lagragian function of (iCP).
Then a unique, continuously differentiable vector function
x(µ) of minimizers of fµ exists in a neighbourhood of µ = 0
and x(µ) → x∗ as µ → 0. !
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Central path trajectory

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Central path trajectory x(µ) for
all µ > 0.

min(x1 − 1)2 + (x2 − 0.5)2

subject to x1 + x2 ≤ 1

3x1 + x2 ≤ 1.5

(x1, x2) ≥ 0
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Central path trajectory - nonconvex case

−0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Central path trajectory x(µ) for
all µ > 0.

min−2(x1 − 0.25)2 + 2(x2 − 0.5)2

subject to x1 + x2 ≤ 1

3x1 + x2 ≤ 1.5

(x1, x2) ≥ 0
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Basic barrier method (Fiacco-McCormick, 1960s)

Given µ0 > 0, let k = 0. Until “convergence” do:

Choose 0 < µk+1 < µk.

Find xk
0 such that c(xk

0) > 0 (possibly, xk
0 := xk).

Starting from xk
0, use an unconstrained minimization

algorithm to find an “approximate” minimizer xk+1

of fµk+1. Let k := k + 1.

Must have µk → 0, k → 0. µk+1 := 0.1µk, µk+1 := (µk)2, etc.
Algorithms for minimizing fµ: take Newton steps inside
• Linesearch methods: use special linesearch to cope with
singularity of the log.
• Trust region methods: “shape” trust region to cope with
contours of the singularity of the log. Reject points for which
c(xk + dk) is not positive.
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A convergence result for the barrier algorithm

Theorem. (Global convergence of barrier algorithm)
Apply the basic barrier algorithm to the (iCP). Assume that
f, c ∈ C2, ski = µk/ci(xk), i = 1, p, and

‖∇fµk(xk)‖ ≤ εk, where εk → 0, k → ∞

and also that µk → 0 as k → ∞. Moreover, assume that
xk → x∗, where ∇ci(x∗), i ∈ A, are linearly independent,
where A := {i : ci(x∗) = 0} (ie LICQ).

Then x∗ is a KKT point of (iCP) and sk → s∗, where s∗ is the
vector of Lagrange multipliers of (iCP). !
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Minimizing the barrier function fµ

Use Newton’s method with linesearch or trust-region.
fµ(x) := f(x) − µ

∑p
i=1 log ci(x) =⇒

∇fµ(x) = ∇f(x) −
∑p

i=1
µ

ci(x)
∇ci(x) = ∇f(x) − µJ(x)$C−1(x)e,

where J(x) is the Jacobian of c(x), and C(x) := diag(c(x)).

∇2fµ(x) = ∇2f(x) −
p∑

i=1

µ

ci(x)
∇2ci(x) +

p∑

i=1

µ

ci(x)2
∇ci(x)∇ci(x)

$

= ∇2f(x) −
p∑

i=1

µ

ci(x)
∇2ci(x) + µJ(x)$C−2(x)J(x).

Given x such that c(x) > 0, the Newton direction for fµ solves
∇2fµ(x)d = −∇fµ(x) [µ = µk+1]

Estimates of the Lagrange multipliers: si(x) := µ/ci(x), i = 1, p.
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Minimizing the barrier function fµ ...

=⇒ ∇fµ(x) = ∇f(x) − J(x)s(x)

=⇒ gradient of Lagrangian of (iCP) at (x, s(x)).
Recall: the Lagragian function of (iCP)

L(x, s) := f(x) −
p∑

i=1

sici(x).

=⇒ ∇2fµ(x) = ∇2L(x, s(x)) + µJ(x)$C−1(x)S(x)J(x),
or ∇2fµ(x) = ∇2L(x, s(x)) + 1

µ
J(x)$S2(x)J(x),

where S(x) := diag(s(x)) = diag(µ/ci(x) : i = 1, n).
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Potential difficulties

I. Ill-conditioning of the Hessian of fµ
Asymptotic estimates of the eigenvalues of ∇2fµk(xk):
• some eigenvalues of ∇2fµk(xk) tend to infinity as k → ∞,
while the rest stay bounded.
• the condition number of ∇2fµk(xk) is O(1/µk)

=⇒ it blows up as k → ∞.
=⇒ may not be able to compute xk accurately.

(This is the main reason for the barrier methods falling out of favour with the nonlinear
optimization community in the 1960s.)

Methods for Constrained OptimizationNumerical Optimization Lectures 3-4 – p. 41/48



Potential difficulties ...

II. Poor starting points
Recall we need xk

0 starting point for the (approximate)
minimization of fµk+1 , after the barrier parameter µk has been
decreased to µk+1.
It can be shown that the current computed iterate xk appears
to be a very poor choice of starting point xk

0, in the sense that
the full Newton step xk + dk will be asymptotically infeasible
(i. e., c(xk + dk) < 0) whenever µk+1 < 0.5µk (i. e., for any
meaningful decrease in µk). Thus the barrier method is
unlikely to converge fast.

Solution to troubles I & II: use primal-dual IPMs.
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Perturbed optimality conditions

Recall first order necessary conditions for (iCPµ):
x(µ) local minimizer of fµ =⇒ ∇fµ(x(µ)) = 0 ⇐⇒
∇f(x(µ)) = µJ(x(µ))#C−1(x(µ))e. Let s(µ) := µC−1(x(µ)).
Thus (x(µ), s(µ)) satisfy:

{
∇f(x) − J(x)#s = 0,

C(x)Se = µe, (OPTµ)
c(x) > 0, s > 0.

Compare with the KKT system for (iCP):
{

∇f(x) − J(x)#s = 0,

C(x)Se = 0, (KKT)
c(x) ≥ 0, s ≥ 0.
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Primal-dual path-following methods (1990s)

Satisfy c(x) > 0 and s > 0, and use Newton’s method to
solve the system

{
∇f(x) − J(x)#s = 0,

C(x)Se = µe, (OPTµ)

i. e., the Newton direction (dx, ds) satisfies
(

∇2L(x, s) −J(x)#

SJ(x) C(x)

)(
dx

ds

)
= −

(
∇f(x) − J(x)#s

C(x)s − µe

)
.

Eliminating ds, we deduce
(∇2L(x, s)+J(x)#C−1(x)SJ(x))dx = −(∇f(x)−µJ#C−1(x)e).
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Primal-dual versus primal methods

Primal-dual:

(∇2L(x, s) + J(x)#C−1(x)SJ(x))dxpd = −∇L(x, s(x)).

Primal:

(∇2L(x, s(x))+J(x)#C−1(x)S(x)J(x))dxp = −∇L(x, s(x)),

where s(x) := µC−1(x)e.
=⇒ In PD methods, changes to the estimates s of the
Lagrange multipliers are computed explicitly on each iteration.
In primal methods, they are updated from implicit information.
Makes a huge difference!
• For PD IPMs, xk

0 := xk is a good starting point for the
subproblem solution. Ill-conditioning of the Hessian can be
‘overlooked’ by solving in the right subspaces.
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Primal-dual path-following methods

Choice of barrier parameter: µk+1 = O((µk)2)

=⇒ Fast (superlinear) asymptotic convergence!

Several Newton iterations are performed for each value of µ
(with linesearch or trust-region).

In implementations, it is essential to keep iterates away from
boundaries early in the algorithm (else iterates may get
trapped near the boundary ⇒ slow convergence!)

The computation of initial starting point x0 satisfying
c(x0) > 0 is nontrivial. Various heuristics exist.

Powerful software available: IPOPT, KNITRO etc.
Linear Programming (LP): IPMs solve LP in polynomial time!
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The simplex versus interior point methods for LP

worst-case complexity: exponential versus polynomial for
LP (in problem dimension/length of input);

the Klee-Minty example (1972): the simplex method
has exponential running time in the worst-case; linear
polynomial in the average case
IPMs: Karmarkar (1984), A New Polynomial-Time
Algorithm for Linear Programming, Combinatorica.
Khachiyan (the ellipsoid method, 1979).
Renegar (best-known worst-case complexity bound).
Central path is unique and global; Newton’s method
for barrier function can be precisely quantified.

IPMs solve very large-scale LPs;
numerically-observed average complexity:
log(LP dimension) iterations.

each IPM iteration more expensive than the simplex one.
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What we have not covered

methods for smooth constrained optimization: augmented
Lagrangian, SQP, active-set, filter
special structure smooth optimization: linear
programming, etc. (see discrete course, MT ?)
derivative-free optimization methods (see HT course)
global optimization
integer (linear and nonlinear) programming (see discrete
course, MT ?)
stochastic programming
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