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Motivation: six myths of PID and LQ control

Myth 1: A PID controller is simpler to implement and tune than an LQ
controller.

Myth 2: A PID controller with model-based tuning is as good as model-
based control for simple processes such as SISO, 1st order plus time
delay.

Myth 3: A well-tuned PID controller is more robust to plant/model
mismatch than an LQ controller.

Myth 3 (alternate version): LQ controllers are not very robust to
plant/model mismatch
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Motivation: six myths of PID and LQ control

Myth 4: Integrating the tracking error as in PID control is necessary to
remove steady-state offset. Applying some anti-windup strategy for
this integrator is therefore necessary when an input saturates.

Myth 5: For simple processes (SISO, 1st order plus time delay) in the
presence of input saturation, a PID controller with a simple anti-
windup strategy is as good as model predictive control.

Myth 6: PID controllers are omnipresent because they work well on most
processes.
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Introduction

• PID control for single-input single-output (SISO) systems shows up
everywhere in chemical process applications and process control
education.

• Tuning rules are presented in numerous texts and, surprisingly,
remain a topic of current control research [1, 10].

• Question: is PID’s popularity due to any concrete technological
advantage?
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Technical advantages ascribed to PID control

• PID is simple, fast, and easy to implement in hardware and software

• PID is easy to tune

• PID provides good nominal control performance

• PID is robust to model errors
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Model-based Control

• Model-based control methods include linear quadratic (LQ) control
of unconstrained systems, and model predictive control (MPC) of
constrained systems

• MPC is regarded by many in process control as complex to implement
and tune

• The robustness of LQ control to model error has been a topic of
debate [2]

• Some claim that PID controllers outperforms MPC controllers in the
rejection of unmeasured load disturbances [9]
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MPC’s success in applications

• MPC has become the advanced controller of choice by industry mainly
for the economically important, large-scale, multivariable processes
in the plant

• The rationale for MPC in these applications is that the complexity of
implementing MPC is justified only for the important loops with large
payoffs
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A modest proposal

• To address this perception of complexity, we propose a constrained,
SISO linear quadratic controller (CLQ) with the following features:

• CLQ is essentially as fast to execute as PID (within a factor of five
regardless of system order)

• CLQ is easy to implement in software and hardware

• CLQ displays both higher performance and better robustness than PID
controllers
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CLQ: regulation, estimation and steady-state targets
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Tuning parameters

• Regulator: output/input penalty, Q/S.

• Estimator: disturbance variance/measurement variance, Qd/Rv.
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Implementation of CLQ

• Model: System plus
disturbance to remove offset
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• Estimator: unconstrained
Kalman filter (fast)

x̂k+1 = Ax̂k + Lx(yk − Cx̂k)

d̂k+1 = d̂k + Ld(yk − Cx̂k)

• Target: analytical solution for
SISO case (fast)

• Regulator: the expensive part

TWMCC—February 9, 2004 11



The regulator QP

Let v = {v0, v1, . . . , vN−1} be the sequence of inputs. We can write the
regulator as a strictly convex QP:

min
v

1
2
vTHv + vTc (1a)

subject to:


u
u
...
u

 ≤

v0

v1
...

vN−1

 ≤

u
u
...
u

 (1b)

Let v∗ = (v∗0 , . . . , v∗N−1) denote the optimal solution to (1). The current
control input is

uk = us(k)+ v∗0
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Storing the active sets of the regulator

Pr
es

en
t FuturePast value of

control objective

k+ 2k+ 1kk− 1

x(t)

t

u(t)

• Each control move uk can be at the upper bound, at the lower bound,
or somewhere in between.

• We construct all combinations of constraints, 3N.

• For N = 4, 34 = 81 different active sets.
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Regulator implementation — Two basic steps

1. The offline generation of a solution table. This step involves solving
linear equations, multiplications and additions.

2. The online table scanning given the current value of x. This step
involves only multiplications and additions and checking conditionals.
These same operations are required in PID control.
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The active set table

u0 = Kix + bi
N = 2 N = 4

i constraint set Ki bi
1 {u,u} 0 u
2 {u,−} 0 u
3 {u,u} 0 u
4 {−, u} K4 b4

5 {−,−} K5 b5

6 {−, u} K6 b6

7 {u,u} 0 u
8 {u,−} 0 u
9 {u,u} 0 u

i constraint set Ki bi
1 {u,u,u,u} 0 u
2 {u,u,u,−} 0 u
3 {u,u,u,u} 0 u
· · · · · · · · · · · ·
40 {−,−,−, u} K40 b40

41 {−,−,−,−} K41 b41

42 {−,−,−, u} K42 b42

· · · · · · · · · · · ·
79 {u,u,u,u} 0 u
80 {u,u,u,−} 0 u
81 {u,u,u,u} 0 u
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Example 1 — First order plus time delay

• The first example is a first order plus time delay (FOPTD) system:

G1(s) =
e−2s

10s + 1
sampled with Ts = 0.25

• The input is assumed to be constrained |u| ≤ 1.5

• The control horizon is N = 4
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Tuning

• The estimator is designed with qx = 0.05 and Rv = 0.01 for both CLQ
controllers

• The regulator input penalty is s = 1 for CLQ 1, and s = 10 for CLQ 2.

• The tuning parameters for PID 1 are chosen according to Luyben’s
rules [3, p. 97]: Kc = 2.51, Ti = 17.3, Td = 0.

• The tuning parameters for PID 2 are chosen according to Skogestad’s
IMC rules [11]: Kc = 2.35, Ti = 10, Td = 0.

TWMCC—February 9, 2004 17



Setpoint change and load disturbances

• In all simulations the setpoint is changed from 0 to 1 at time zero

• At time 25 a load disturbance passing through the same dynamics as
the plant of magnitude −0.25 enters the system

• at time 50 the disturbance magnitude becomes −1 (which makes the
setpoint 1 unreachable)

• finally at time 75 the disturbance magnitude becomes −0.25 again.
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FOPTD system: nominal case.

Setpoint
PID 2
PID 1

CLQ 2
CLQ 1

Time

C
o

n
tr

o
lle

d
va

ri
ab

le

100806040200

1.2

1

0.8

0.6

0.4

0.2

0
PID 2
PID 1

CLQ 2
CLQ 1

Time

M
an

ip
u

la
te

d
va

ri
ab

le

100806040200

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

Figure 1: FOPTD system: nominal case.
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FOPTD system: noisy case.
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Figure 2: FOPTD system: noisy case.
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FOPTD system: effect of plant/model mismatch.
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Figure 3: FOPTD system: effect of plant/model mismatch.
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Example 2 — Integrating system

• The second example is an integrating system:

G2(s) =
e−2s

s
sampled with Ts = 0.25

• The same input constraints, horizon, setpoint change and disturbances,
and estimator parameters as in the first example are considered.

• CLQ 1 uses a regulator input penalty of s = 500, while CLQ 2 uses
s = 5000.

• The tuning parameters for PID 1 are chosen according to Luyben’s
rules [3, p. 97]: Kc = 0.23, Ti = 18.7, Td = 0.

• The tuning parameters for PID 2 are chosen according to Skogestad’s
IMC rules [11]: Kc = 0.23, Ti = 17, Td = 0.
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Integrating system: nominal case.

Setpoint
PID 2
PID 1

CLQ 2
CLQ 1

Time

C
o

n
tr

o
lle

d
va

ri
ab

le

100806040200

4

3

2

1

0

-1

-2

-3

PID 2
PID 1

CLQ 2
CLQ 1

Time

M
an

ip
u

la
te

d
va

ri
ab

le

100806040200

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0

-0.2

Figure 4: Integrating system: nominal case.
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Integrating system: noisy case.
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Figure 5: Integrating system: noisy case.
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Integrating system: effect of plant/model mismatch.
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Figure 6: Integrating system: effect of plant/model mismatch.
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Example 3 — Under-damped system

• The third example is a second-order, under-damped system:

G3(s) =
K

τ2s2 + 2τξs + 1
Ts = 0.25, K = 1, τ = 5, ξ = 0.2

• The same input constraints, horizon, setpoint change and disturbances,
and estimator parameters as in the first example are assumed.

• CLQ 1 uses a regulator input penalty of s = 1, while CLQ 2 uses s = 10.

• The tuning parameters for PID 1 are chosen according to Luyben’s
rules [3, p. 97]: Kc = 7.29, Ti = 16.8, Td = 1.21.

• The tuning parameters for PID 2 are chosen following the same IMC
approach as in [11]: Kc = 0.40, Ti = 2, Td = 12.5.
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Under-damped system: nominal case.
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Figure 7: Under-damped system: nominal case.
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Under-damped system: noisy case.
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Figure 8: Under-damped system: noisy case.
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Under-damped system: effect of plant/model mismatch.
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Figure 9: Under-damped system: effect of plant/model mismatch.
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Computation time for CLQ

• The computational burden of CLQ is comparable to that of PID.

average CPU time (ms) maximum CPU time (ms)
PID 0.05 0.10
CLQ 0.22 0.55

• The CPU is a 1.7 GHz Athlon PC running Octave
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Revisiting the six myths

Myth 1: A PID controller is simpler to implement and tune than an LQ
controller.

• The validity of this myth rests largely with the hardware and control
software vendors. Not difficult to implement CLQ if vendors offer
on DCS.

• Regarding tuning, it is not difficult to look up tuning rules for a PID
controller.

• It is difficult to find PID tuning parameters that give similar
performance and robustness to an LQ controller.

• The LQ controller is not difficult to tune. The effects of its two
tuning parameters are clear.
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Myth 2: A PID controller with model-based tuning is as good as model-
based control for simple processes such as SISO, 1st order plus time
delay.

• No evidence to support this myth. Figure 1 shows the opposite is true.
• If we restrict “simple process” to “first-order process,” this myth may

remain in currency.
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Myth 3: A well-tuned PID controller is more robust to plant/model
mismatch than an LQ controller.

• No evidence to support this myth. Figures 3, 6, and 9 show the
opposite is true.

• No superior robustness properties for PID control given any
recommended tuning rules.
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Myth 3 (alternate version): LQ controllers are not very robust to
plant/model mismatch.

• One can construct processes for which the state feedback regulator
has good margins but output feedback with the same regulator and a
state estimator has poor margins [2].

• We have yet to see examples that indicate this issue has industrial
significance.
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Myth 4: Integrating the tracking error as in PID control is necessary to
remove steady-state offset. Applying some anti-windup strategy for
this integrator is therefore necessary when an input saturates.

• Integrating the tracking error is not required for offset free control as
shown in all of the examples

• Integrating the model error is a sharper idea, and also removes the
need for an anti-windup strategy when the input saturates.
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Myth 5: For simple processes (SISO, 1st order plus time delay) in the
presence of input saturation, a PID controller with a simple anti-
windup strategy is as good as model predictive control.

• The constraint handling properties of PID are not competitive with
MPC.

• Even for SISO, the difference can be noticeable. See Figures 1 and 7.
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Myth 6: PID controllers are omnipresent because they work well on most
processes.

• Seeing no evidence that PID controllers work particularly well, consider
an explanation rooted more in human behavior.

• PID controllers are everywhere because vendors programmed them in
the DCS when they replaced analog PID.
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Disruptive Technology — Benefits of CLQ

• Provides a single, scalable control technology ranging from the fastest
SISO loop to the slowest, largest, MIMO dynamic plant optimization

• Because of the model forecast, constraints and optimization features,
we can network many SISO CLQs together to achieve full benefits of
multivariable MPC control

• Take advantage of these “smart controllers” embedded at all plant
levels

• Modify model used in forecast as conditions change

• Rewrite objective function to achieve changing plant objectives
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Disruptive Technology — Costs of CLQ

• Vendor companies will have to implement on the DCS

• Modest modeling cost (SISO step test)

• Operators will need new training

• Textbook materials will need to be revised

• Inertia will have to be overcome
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