
 | MARCH 2014 | WWW.usenix.oRg PAge 2

To Wash It All Away
J a m e s m i c k e n s

W hen I was in graduate school in Ann Arbor, I had a friend who
was deeply involved with the environmentalist movement. He
purchased his food from local farmers’ markets, and he com-

muted by bike instead of by car to reduce his carbon footprint, and he main-
tained a horrid compost bin that will probably be the origin of the next flu
pandemic. One day, he told me that he was going to visit a farm for a week.
I asked him why, and he said that he wanted to “get closer to the land,” a
phrase that you can only say with a straight face if you’re narrating a docu-
mentary about ancient South American tribes. I told my friend that the land
didn’t want to get closer to him, and if he really looked at the land, he’d see
that it was not composed of delicious organic trail mix, but famine and
vultures and backbreaking labor involving wheelbarrows and generally
un acceptable quantities of insects. He responded with an extended lecture
about eco-responsibility, a lecture that I immediately forgot because I real-
ized that my naïve friend was going to die on that farm. So, I told my friend
that he shouldn’t be afraid to end his trip early if he wasn’t having a good
time. He smiled at me, the way that people in slasher movies smile before
they get chopped up, and he left for the farm. Precisely 37 hours later, he
called me on the phone. I asked him how everything was going, and he made
a haunting, elegiac noise, like a foghorn calling out for its mate. I asked him
to describe his first day, and he said that his entire existence revolved around
bleating things: bleating goats that wanted to be fed, and bleating crows that
wanted to steal the food that he gave the bleating goats, and bleating farm
machines that were composed of spinning metal blades and had no discern-
able purpose besides enrolling you in the “Hook Hand of the Month” club.
I asked my friend when he was coming back home, and he said that he was
calling me from the Ann Arbor train station; he had already returned. And
then he let out that foghorn noise, that awful, lingering sound, and I thought,
MAYBE THAT’S THE FIRST SYMPTOM OF COMPOST BIN FLU.

Computer scientists often look at Web pages in the same way that my friend looked at farms.
People think that Web browsers are elegant computation platforms, and Web pages are
light, fluffy things that you can edit in Notepad as you trade ironic comments with your
friends in the coffee shop. Nothing could be further from the truth. A modern Web page is a
catastrophe. It’s like a scene from one of those apocalyptic medieval paintings that depicts
what would happen if Galactus arrived: people are tumbling into fiery crevasses and lament-
ing various lamentable things and hanging from playground equipment that would not pass
OSHA safety checks. This kind of stuff is exactly what you’ll see if you look at the HTML,

This is my last column! Thanks
for reading, and thanks for all
of the support :-). never forget
that when you are alone, i
am with you, and when you

are with someone else, i am also with you,
because i think that i am better than that other
person and i have lengthy opinions about why
this is true. mickens@microsoft.com

https://www.usenix.org/

 | MARCH 2014 | WWW.usenix.oRg PAge 3

To Wash It All Away

CSS, and JavaScript in a modern Web page. Of course, no human
can truly “look” at this content, because a Web page is now like
V’Ger from the first “Star Trek” movie, a piece of technology
that we once understood but can no longer fathom, a thrashing
leviathan of code and markup written by people so untrust-
worthy that they’re not even third parties, they’re fifth parties
who weren’t even INVITED to the party, but who showed up
anyways because the hippies got it right and free love or what-
ever. I’m pretty sure that the Web browser is one of the “dens of
iniquity” that I keep hearing about on Fox News; I would verify
this using a Web search, but a Web search would require me to
use a browser, AND THIS IS EXACTLY WHAT BICOASTAL
LIBERAL ELITES WANT ME TO DO.

Describing why the Web is horrible is like describing why it’s
horrible to drown in an ocean composed of pufferfish that are
pregnant with tiny Freddy Kruegers—each detail is horrendous
in isolation, but the aggregate sum is delightfully arranged
into a hate flower that blooms all year. For example, the World
Wide Web Consortium (W3C) provides “official” specifications
for many client-side Web technologies. Unfortunately, these
specifications are binding upon browser vendors in the same
way that you can ask a Gila monster to meet you at the airport,
but that gila monster may, in fact, have better things to do [1].
Each W3C document is filled with alienating sentences that
largely consist of hyperlinks to different hyperlinks. For
instance, if you’re a browser vendor, and you want to add
 support for HTML selectors, you should remember that,
during the third step of parsing the selector string, “If result
is invalid ([SELECT], section 12), raise a SYNTAX_ERR
exception ([DOM-LEVEL-3-CORE], section 1.4) and abort
this algorithm.” Such bodice-ripping legalese is definitely
exciting for people who yearn for the dullness of the Cheerios
ingredient list combined with the multi-layered bureaucracy
of the Soviet Union. Indeed, you could imagine a world in which
browser vendors hire legions of Talmudic scholars to under-
stand why, precisely, SYNTAX_ERR is orange and not mauve,
and how, exactly, this orangeness relates to the parenthetic
purpleness of ([DOM-LEVEL-3-CORE]). You could also
imagine a world in which browser vendors do not do this, and
instead implement 53% of each spec and then hope that no
Web page tries to use HTML selectors and then the geolocation
interface and then a <canvas> tag, because that sequence of
events will unleash the Antichrist and/or a rendered Web page
that looks like one of those Picasso paintings that you pretend
to understand, but which everyone wants to throw into an

ocean because nobody wants to look at a painting of a blue man
who is composed of isosceles triangles and has a guitar emerg-
ing from his forehead for no reason at all.

Given the unbearable proliferation of Web standards, and the
comically ill-expressed semantics of those standards, browser
vendors should just give up and tell society to stop asking for
such ridiculous things. However, this opinion is unpopular,
because nobody will watch your TED talk if your sense of
optimism is grounded in reality. I frequently try to explain to
my friends why they should abandon Web pages and exchange
information using sunlight reflected from mirrors, or the
enthusiastic waving of colored flags. My friends inevitably
respond with a spiritually vacant affirmation like, “People
invented flying machines, so we can certainly make a good
browser!” Unfortunately, defining success for a flying machine
is easy (“I’M ME BUT I’M A BIRD”), whereas defining success
for a Web browser involves Cascading Style Sheets, a technol-
ogy which intrinsically dooms any project to epic failure. For
the uninitiated, Cascading Style Sheets are a cryptic language
developed by the Freemasons to obscure the visual nature
of reality and encourage people to depict things using ASCII
art. Ostensibly, CSS files allow you to separate the defini-
tion of your content from the definition of how that content
looks—using CSS, you can specify the layout for your HTML
tags, as well as the fonts and the color schemes used by those
tags. Sadly, the relationship between CSS and HTML is the
same relationship that links the instructions for building your
IKEA bed, and the unassembled, spiteful wooden planks that
purportedly contain latent bed structures. CSS is not so much
a description of what your final page will look like, but rather
a loose, high-level overview of what could happen to your page,
depending on the weather, the stock market, and how long it’s
been since you last spoke to your mother. Like a naïve Dungeon
Master untouched by the sorrow of adulthood, you create
imaginative CSS classes for your <div> tags and your
tags, assigning them strengths and weaknesses, and defining
the roles that they will play in the larger, uplifting narrative of
your HTML. Everything is assembled in its proper place; you
load your page in a browser and prepare yourself for a glorious
victory. However, you quickly discover that your elf tag is over-
weight. THE ELF CAN NEVER BE OVERWEIGHT. Even
worse, your barbarian tag does not have an oversized hammer
or axe. Without an oversized hammer or axe, YOUR BARBAR-
IAN IS JUST AN ILLITERATE STEROID USER. And then
you look at your wizard tag, and you see that he’s not an old
white man with a flowing beard, but a young black man from
Brooklyn. FOR COMPLEX REASONS THAT ARE ROOTED
IN EUROPEAN COLONIAL NARRATIVES, YOUR WIZARD
MUST BE AN OLD WHITE MAN WITH A FLOWING BEARD,
NOT A BLACK MAN WITH HIPSTER SHOES AND A
FANTASTIC VINYL COLLECTION. Such are the disasters

[1] “Gila Monsters Meet You at the Airport” is the name of a real children’s
book that had an enormous impact on my emotional growth. The book’s
unf linching realism inspired my own series of ill-received children’s
books, such as “Spiders Ate Your Sister That We Never Talk About,”
“Capitalist Advertising Makes You Hate Your Body and Buy Things Made
from Slave Labor,” and “I Could Lie and Say that Your Comic Book Collec-
tion Is Interesting, Or I Could Tell The Truth and Explain Why You Don’t
Get Second Dates.”

https://www.usenix.org/

 | MARCH 2014 | WWW.usenix.oRg PAge 4

To Wash It All Away

that CSS will wroughth upon thee. Or wrought *at* thee. To be
honest, I don’t know how to conjugate or spell “wrought,” but
my point is undoubtedly understood. See Figure 1 for a con-
crete example of CSS’s wroughtiness. Or CSS’ (no trailing “s”)
wroughtiness. MY NON-CASCADING STYLE MANUALS
FIGHT FOR MY SOUL.

When you’re a Web developer, CSS is just one of your worries.
The aggregate stack of Web technologies is so fragile that
developers just accept a world in which various parts of a Web
page will fail at random times. Apparently this is okay because
e-commerce isn’t a serious thing, and if you really wanted a
secure banking experience, you’d visit the bank in person like
someone from the 1800s instead of accessing a banking Web
site that is constantly (but silently) vomiting execution errors
to the console log (a console log which the browser does not
show by default, because if you knew about it, and you read its
tales of woe, you’d abandon computer science and become a
maker of fine wooden shoes). In Figure 2, I provide an unal-
tered example of such a console log; the log was generated by a
real Web page from a popular site.

◆◆ The first log entry says that the browser executed a downloaded
file as JavaScript, even though the MIME type of the file was
text/html. Here’s a life tip: when you’re confused about what
something is, DON’T EXECUTE IT TO DISCOVER MORE
CLUES. This is like observing that your next-door neighbor
is a creepy, bedraggled man with weird eyes, and then you start
falling asleep on his doorstep using a chloroform rag as a pillow,
just to make sure that he’s not going to tie you to a radiator and
force you to paint tiny figurines. Here’s how your life story ends:
YOU ARE A PAINTER OF TINY FIGURINES.

◆◆ The second and third errors say that the page’s JavaScript used
a variable name that is deprecated in strict mode, but accept-
able in quirks mode. How can I begin to explain this delicious
confection of awfulness? Listen: when a man and a woman fall
in love, they want to demonstrate their love to each other. So,
they force browsers to support different types of runtime envi-
ronments. “Standards mode” refers to the unreliable browser
APIs that are described by recent HTML and CSS specifica-
tions. “Quirks mode” refers to the unreliable browser APIs that
were defined by browsers from the Eisenhower administration.
Quirks mode was originally invented because many Web pages
were made during the Eisenhower administration, and the
computing industry wanted to preserve Web-based narratives
about why “the rock and roll” is corrupting our youth. Quirks
mode then persisted because Web developers learned about
quirks mode and used it as an excuse to not learn new skills.
But then some Web developers wanted to learn new skills, so
standards mode was invented to allow these developers to
make old mistakes in new ways. There is also a third browser
mode called “almost standards mode”; this mode is similar to

Figure 1: one time, i tried to build a browser-agnostic debugging infra-
structure. i had a client-side Javascript library that could traverse the
Javascript heap and display fun things about the page’s state. My art his-
tory friends told me that console output is for neanderthals, so i made an
HTML gui to display the diagnostic information. The first version of the
gui used the browser’s default layout policies. Much like icarus, i dreamt
of more, so i decided to make A Fancy Layout™. i wrote Css that specified
whether my tags should have static positioning, or floating positioning,
or relative zodiac-based positioning. Here’s what i learned: Never specify
whether your tags should be static or floating or zodiac-based. As soon as a
single tag is released from the automatic layout process, the browser will
immediately go insane and stack random HTML tags along the z-axis, an
axis which apparently is an option even if your monitor can only display
two dimensions. i eventually found a working Css file inside a bottle that
washed up on the beach, and i tweaked the file until it worked for my gui.
Then i went home and cried big man tears that were filled with ninja stars
and that turned into lions when they hit the ground.

https://www.usenix.org/

 | MARCH 2014 | WWW.usenix.oRg PAge 5

To Wash It All Away

standards mode, except that it renders images inside table cells
using the quirks mode algorithm. For reasons that have been
eaten by a wildebeest, “almost standards mode” is also called
“strict” mode, even though it is less strict than standards mode.
For reasons so horrendous that the wildebeest would not eat
them, there is no completely reliable way to make all brows-
ers load your page using the same compatibility mode. Thus,
even if your page recites the recommended incantations, the
browser may still do what it wants to do, how it wants to do it.
And that’s where babies come from.

◆◆ The fourth and seventh errors represent uncaught JavaScript
exceptions. In a rational universe, a single uncaught excep-
tion would terminate a program, and if a program continued
to execute after throwing such an exception, we would know
that Ragnarok is here and Odin is not happy. In the browser
world, ignoring uncaught exceptions is called “Wednesday, and
all days not called ‘Wednesday.’” The JavaScript event loop is
quite impervious to conventional notions of software reliabil-
ity, so if an event handler throws an exception, the event loop
will literally pretend like nothing happened and keep running.
This ludicrous momentum continues even if, in the case of
the seventh error, the Web page tries to call init() on an object
that has no init() method. You should feel uncomfortable that
a Web page can disagree with itself about the existence of
initialization routines, but the page is still allowed to do things

with things. Such a dramatic mismatch of expectations would
be unacceptable in any other context. You would be sad if you
went to the hospital to have your appendix removed, and the
surgeon opened you up, and she said, “I DIDN’T EXPECT
YOUR LIVER TO HAVE GILLS,” and then she proceeded with
her original surgical plan, despite the fact that you’re apparently
a mer-person. Being a mer-person should have non-ignorable
ramifications in the material universe. Similarly, if a Web page
thinks than an object should be initialized, but the object has no
initialization method, the browser shouldn’t laugh about it and
then proceed under the assumption that the rest of the page is
agnostic about whether its objects are composed of folly.

An interpretation of the remaining errors is left as an exercise
to the reader. Note that understanding the eighth error requires
a Ouija board, the eye of a newt, and the whispering of a secret
to a long-lost friend.

At this point, it should be intuitively obvious that different
browsers may or may not produce the same error log for the
same page. In general, if a Web page has more than three bits
of entropy, different browsers will generate extravagantly
unique mappings between the Web developer’s intentions and
the schizophrenic beast palette that browsers use to paint
the world. Thus, picking the “best browser” is like playing
one of those horrid trust-building exercises where you decide

Figure 2: They said that i could become anything, so i became the error log of a Web browser. now i own fifteen cats and i wonder where the parties are.

https://www.usenix.org/

 | MARCH 2014 | WWW.usenix.oRg PAge 6

To Wash It All Away

which three of your five senses you would prefer to lose, and
then your coworkers berate you for making different tradeoffs
than they made, even though there is no partial ordering that
relates scuba diving accidents in which you lose your ears and
eyes, and industrial accidents in which you lose your nose and
tongue. All options are bad options; it’s a world of lateral moves.
Indeed, trying to pick the best browser is like trying to decide
which of your worthless children should inherit the family
business. Little Oliver refuses to accept society’s notion of
what an event handling loop should do, so whenever the user
presses a key on the keyboard, Oliver does not fire one keyPress
event, but instead three keyDown events, a keyUp event, and
the deleted saxophone solo from Mozart’s eighth symphony.
Dearest Fiona, an unrepentant workaholic, designed her
browser so that when you “close” it, the GUI goes away, but
the underlying process lingers in the background, silent and
angry, slowly consuming entries in kernel tables and mak-
ing it impossible to restart the browser without receiving
the error message “Somewhere in this world, another copy of
the browser is running; find Carmen Sandiego and she will
reveal the truth.” Beloved Christopher, in an attempt to make
his browser fast and lightweight, decided to replace his Flash
 plugin with code that prints “Shockwave has crashed” and
then immediately dereferences a NULL pointer; this ensures
that most attempts to watch a video will end with you wish-
ing for the simpler audiovisual pleasures of a woodcut or
cave painting. And poor IE6, voted “Least Likely to Succeed
Because IE6 Is Not a Proper Christian Name,” manages to
stumble through the world while surviving more assassination
attempts than Fidel Castro.

Each browser is reckless and fanciful in its own way, but all
browsers share a love of epic paging to disk. Not an infrequent
showering of petite I/Os that are aligned on the allocation
boundaries of the file system—I mean adversarial thunder-
snows of reads and writes, a primordial deluge that makes you
gather your kinfolk and think about which things you need two
of, and what the consequences would be if you didn’t bring fire
ants, because fire ants ruin summers. Browsers don’t require
a specific reason to thrash the disk; instead, paging is a way of
life for browsers, a leisure activity that is fulfilling in and of
itself. If you’re not a computer scientist or a tinkerer, you just
accept the fact that going to CNN.com will cause the green
blinky light with the cylinder icon to stay green and not blinky.
However, if you know how computers work, the incessant pag-
ing drives you mad. It turns you into Torquemada, a wretched
figure consumed by the fear that your ideological system is an
elaborate lie designed to hide the excessive disk seeks of shad-
owy overlords. You launch your task manager, and you discover
that your browser has launched 67 different processes, all of
which are named “browser.exe,” and all of which are launching
desperate volleys of I/Os to cryptic parts of the file system like

“\roaming\pots\pans\cache\4$$Dtub.partial”, where “\4$$” is
an exotic escape sequence that resolves to the Latvian double
umlaut. You do an Internet search for potential solutions, and
you’re confronted with a series of contradictory, ill-founded
opinions: your browser has a virus; your virus has a virus; you
should be using Emacs; you should be using vi, and this is why
your marriage is loveless.

Of course, the most popular advice for solving any browser
problem is to clear your browser cache. It is definitely true that
emptying the cache will sometimes help, in the same sense that
if you’re poor, kicking a tree will sometimes lead to a hilarious
series of events that conclude with you finding a big bag of
money on the ground with a note that says, “Spend it all! XOXO,
Life.” Unfortunately, kicking a tree does not typically lead to
riches, so your faith-based act of tree assault really just makes
you a savage, tree-kicking monster who will be vilified by chil-
dren and emotionally sensitive adults. Similarly, your arbitrary
clearing of the browser cache, however well-intentioned, is
just a topical anesthetic to briefly dull the pain of existence.
Clearing the cache to fix a Web browser is like when your dad
was driving you to kindergarten, and the car started to smoke,
and he tried to fix the car by banging on the hood three times
and then asking you if you could still smell the carbon monox-
ide, and you said, “Yeah, it’s better,” because you didn’t want to
expose your dad as a fraud, and then both of you rode to school
in silence as you struggled to remain conscious.

So, yes, it would be great if fixing your browser involved actions
that were not semantically equivalent to voodoo. But, on the
bright side, things could always be worse. For example, it
would definitely be horrible if your browser’s scripting lan-
guage combined the prototype-based inheritance of Self, a
quasi-functional aspect borrowed from LISP, a structured
syntax adapted from C, and an aggressively asynchronous
I/O model that requires elaborate callback chains that span
multiple generations of hard-working Americans. OH NO I’VE
JUST DESCRIBED JAVASCRIPT. What an unpleasant turn
of events! People were begging for a combination of Self, LISP,
and C in the same way that the denizens of Middle Earth were
begging Saruman to breed Orcs and men to make Uruk-hai.
Orcs and men were doing a fine job of struggling in their sepa-
rate communities—creating a new race with the drawbacks of
both is not a good way to win popularity contests. But despite
its faults, Java Script has become widespread. Discovering why
this happened is similar to understanding the causes for World
War I—everyone agrees on the top five reasons, but everyone
ranks those causes differently. The basic story is that, in the
’90s, when JavaScript and Java were competing for client-side
supremacy, Java applets were horrendously slow and lacked
a story for interacting with HTML; in contrast, JavaScript
was only semi-horrendously slow, and it had a bad (but extant)

https://www.usenix.org/

 | MARCH 2014 | WWW.usenix.oRg PAge 7

To Wash It All Away

story for interacting with HTML. So, Java lost, despite facts
like this:

◆◆ JavaScript is dynamically typed, and its aggressive type co-
ercion rules were apparently designed by Monty Python. For
example, 12 == “12” because the string is coerced into a num-
ber. This is a bit silly, but it kind of makes sense. Now consider
the fact that null == undefined. That is completely janky; a
reference that points to null is not undefined—IT IS DEFINED
AS POINTING TO THE NULL VALUE. And now that you’re
warmed up, look at this: “\r\n\t” == false. Here’s why: the
browser detects that the two operands have different types, so
it converts false to 0 and retries the comparison. The operands
still have different types (string and number), so the browser
coerces “\r\n\t” into the number 0, because somehow, a
non-zero number of characters is equal to 0. Voila—0 equals
0! AWESOME. That explanation was like the plot to Inception,
but the implanted idea was “the correctness of your program
has been coerced to false.”

◆◆ Hello, kind stranger—let me keep you warm during this cold
winter night! Did you know that JavaScript defines a special
NaN (“not a number”) value? This value is what you get when
you do foolish things like parseInt(“BatmanIsNotAnInteger”).
In other words, NaN is a value that is not indicative of a number.
However, typeof(NaN) returns… “number.” A more obvious
return value would be “HAIL BEELZEBUB, LORD OF DARK-
NESS,” but I digress.

◆◆ By the way, NaN != NaN, so Aristotle was wrong about that
whole “Law of Identity” thing.

◆◆ Also, JavaScript defines two identity operators (=== and !==

operators) which don’t perform the type coercion that the stan-
dard equality operators do; however, NaN !== NaN. So, basically,
don’t use numbers in JavaScript, and if you absolutely have to
use numbers, implement a software-level ALU. It’s slow, but it’s
the only way to be sure.

◆◆ Actually, you still can’t be sure. Unlike C++, which uses stati-
cally declared class interfaces, JavaScript uses prototype-based
inheritance. A prototype is a dynamically defined object which
acts as an exemplar for “instances” of that object. For example,
if I wanted to declare a Circle class in JavaScript, I could do
something like this:

 //This is the constructor, which defines a

 //“radius” property for new instances.

 function Circle(radius){

 this.radius = radius;

 }

 //The constructor function has an object property

 //called “prototype” which defines additional

 //attributes for class instances.

 Circle.prototype.getDiameter = function(){

 return 2*this.radius;

 };

 var circle = new Circle(2);

 alert(circle.getDiameter()); //Displays “4”.

The exemplar object for the Circle class is Circle.prototype,
and that prototype object is a regular JavaScript object.
Thus, by dynamically changing the properties of that object,
I can dynamically change the properties of all instances of
that class. YEAH I KNOW. For example, at some random
point in my program’s execution, I can do this…

 Circle.prototype.getDiameter = function(){

 return -5;

 };

…and all of my circles will think that they have a diameter of
less than nothing. That’s a shame, but what’s worse is that
the predefined (or “native”) JavaScript objects can also have
their prototypes reset. So, if I do something like this…

 Number.prototype.valueOf = function(){return 42;};

…then any number primitive that is boxed into a Number
object will think that it’s the answer to the ultimate ques-
tion of life, the universe, and everything:

 alert((0).valueOf()); //0 should be 0 for all values of 0,
 //but it is 42.

 alert((1).valueOf()); //Zeus help me, 1 is 42 as well.

 alert((NaN).valueOf()); //NaN is 42. DECAPITATE ME AND

 //BURN MY WRITHING BODY WITH FIRE.

I obviously get what I deserve if my JavaScript library rede-
fines native prototypes in a way that breaks my own code.
However, a single frame in a Web page contains multiple
JavaScript libraries from multiple origins, so who knows
what kinds of horrendous prototype manipulations those
heathen libraries did before my library even got to run. This
is just one of the reasons why the phrase “JavaScript secu-
rity” causes Bibles to burst into flames.

◆◆ Much like C, JavaScript uses semicolons to terminate many
kinds of statements. However, in JavaScript, if you forget a
semicolon, the JavaScript parser can automatically insert
semicolons where it thinks that semicolons might ought to
possibly maybe go. This sounds really helpful until you realize
that semicolons have semantic meaning. You can’t just scatter
them around like you’re the Johnny Appleseed of punctua-
tion. Automatically inserting semicolons into source code is
like mishearing someone over a poor cell-phone connection,
and then assuming that each of the dropped words should be
replaced with the phrase “your mom.” This is a great way to cre-
ate excitement in your interpersonal relationships, but it is not
a good way to parse code. Some JavaScript libraries intention-
ally begin with an initial semicolon, to ensure that if the library
is appended to another one (e.g., to save HTTP roundtrips

https://www.usenix.org/

To Wash It All Away

during download), the JavaScript parser will not try to merge
the last statement of the first library and the first statement of
the second library into some kind of semicolon-riven statement
party. Such an initial semicolon is called a “defensive semico-
lon.” That is the saddest programming concept that I’ve ever
heard, and I am fluent in C++.

I could go on and on about the reasons why JavaScript is a
cancer upon the world. I know that there are people who like
JavaScript, and I hope that these people find the mental health
services that they so desperately need. I don’t know all of the
answers in life, but I do know all of the things which aren’t
the answers, and JavaScript falls into the same category as
Scientology, homeopathic medicine, and making dogs wear tiny
sweaters due to a misplaced belief that this is what dogs would
do if they had access to looms and opposable thumbs.

In summary, Web browsers are like quantum physics: they offer
probabilistic guarantees at best, and anyone who claims to
fully understand them is a liar. At this stage in human devel-
opment, there are big problems to solve: climate change,
heart disease, the poor financial situation of Nigerian princes
who want to contact you directly. With all of these problems
un solved, Web browsing is a terrible way to spend our time; the
last thing that we should do is run unstable hobbyist operating
systems that download strange JavaScript files from people
we don’t know. Instead, we should exchange information using
fixed-length ASCII messages written in a statically verifiable

subset of Latin, with images represented as mathematical
combinations of line segments, arcs, and other timeless shapes
described by dead philosophers who believed that minotaurs
were real but incapable of escaping mazes. That is the kind of
clear thinking that will help us defeat the space Egyptians
that emerge from the StarGates. Or whatever. I’m an Ameri-
can and I don’t really understand history, but I strongly believe
that Greeks spoke Latin to defeat intergalactic Egyptians.
#TeachTheControversy! Anyways, my point is that browsers
are too complex to be trusted. Unfortunately, youth is always
wasted on the young, and the current generation of software
developers is convinced that browsers need more features, not
fewer. So, we are encouraged to celebrate the fact that browsers
turn our computers into little Star Wars cantinas where every -
one is welcome and you can drink a blue drink if you want to
drink a blue drink and if something bad happens, then maybe
a Jedi will save you, and if not, HEY IT’S A STAR WARS
CANTINA YESSSSS. Space cantinas are fun, but they’re just
a fantasy; they’re just a series of outlandish details stitched
together to amuse and entertain. You have to open your eyes
and see that in the real, non-hyperbolic world that you actually
inhabit, your browser will frequently stop playing a video and
then display flashing epilepsy pixels while making the sound
that TVs make in Japanese horror movies before a pasty sala -
mander child steps out of the screen and voids your warranty.
That’s a thing which could actually happen, and we should
wash it all away.

We support members’ professional and technical
development through many ongoing activities,
including:

 Open access to research presented at our events

 Workshops on hot topics

 Conferences presenting the latest in research and
practice

 LISA: The USENIX Special Interest Group for
 Sysadmins

 ;login:, the magazine of USENIX

 Student outreach

Your membership dollars go towards programs
including:

 Open access policy: All conference papers and videos
are immediately free to everyone upon publication

 Student program, including grants for conference
attendance

 Good Works program

Why Join USENIX?

Helping our many communities share, develop, and adopt
ground-breaking ideas in advanced technology

Join us at www.usenix.org

https://www.usenix.org/

	a

