

 1

1

An introduction to Python
for absolute beginners

http://www.ucs.cam.ac.uk/docs/course-notes/unix-courses/PythonAB

Bob Dowling
University Information Services
scientific-computing@ucs.cam.ac.uk

Welcome to the Computing Service's course “Introduction to Python”.
This course is designed for people with absolutely no experience of programming.
If you have any experience in programming other languages you are going to find
this course extremely boring and you would be better off attending our course
"Python for Programmers" where we teach you how to convert what you know from
other programming languages to Python.
This course is based around Python version 3. Python has recently undergone a
change from Python 2 to Python 3 and there are some incompatibilities between
the two versions. The older versions of this course were based around Python 2
but this course is built on Python 3.
Python is named after Monty Python and its famous flying circus, not the snake. It
is a trademark of the Python Software Foundation.

 2

2

But first…

Fire escapes

No drinks or snacks
in the room, please.

Toilets

Notes

Signing in
Feedback

 3

3

Course outline ― 1

Who uses Python & what for
What sort of language it is

How to launch Python
Python scripts

Reading in user data
Numbers
Conversions
Comparisons

Names for values
Text

Truth & Falsehood

 4

4

Course outline ― 2

Assignment
Names

Our first “real” program

Loops
if… else…

Indentation

Comments

 5

5

Course outline ― 3

Lists
Indices
Lengths
Changing items
Extending lists

Methods

Creating lists
Testing lists
Removing from lists

for… loop

Iterables
Slices

 6

6

Course outline ― 4

Files
Reading & writing

Writing our own functions

Tuples

Modules
System modules
External modules

Dictionaries

Formatted text

 7

So who uses Python and what for?
Python is used for everything! For example:
“massively multiplayer online role-playing games” like Eve Online, science
fiction’s answer to World of Warcraft,
web applications written in a framework built on Python called “Django”,
desktop applications like Blender, the 3-d animation suite which makes
considerable use of Python scripts,
the Scientific Python libraries (“SciPy”),
instrument control and
embedded systems.

7

Who uses Python?

On-line games

Web services

Applications

Science

Instrument control

Embedded systems

en.wikipedia.org/wiki/List_of_Python_software

 8

8

What sort of language is Python?

Explicitly
compiled
to machine
code

Purely
interpreted

C, C++,
Fortran

Shell,
Perl

Explicitly
compiled
to byte
code

Java, C#

Implicitly
compiled
to byte
code

Python

Compiled Interpreted

What sort of language is Python? The naïve view of computer languages is
that they come as either compiled languages or interpreted languages.
At the strictly compiled end languages like C, C++ or Fortran are "compiled"
(converted) into raw machine code for your computer. You point your CPU at
that code and it runs.
Slightly separate from the strictly compiled languages are languages like
Java and C# (or anything running in the .net framework). You do need to
explicitly compile these programming languages but they are compiled to
machine code for a fake CPU which is then emulated on whichever system
you run on.
Then there is Python. Python does not have to be explicitly compiled but
behind the scenes there is a system that compiles Python into an
intermediate code which is stashed away to make things faster in future.
But it does this without you having to do anything explicit yourself. So from
the point of view of how you use it you can treat it as a purely interpreted
language like the shell or Perl.

 9

9

Running Python ― 1

We are going to use Python from the command line either directly or
indirectly.
So, first I need a Unix command line. I will get that from the GUI by clicking
on the terminal icon in the desktop application bar.

 10

10

Running Python ― 2

$ python3

Unix prompt

Unix command

Introductory blurb

Python prompt

[GCC 4.6.3] on linux2
(default, May 3 2012, 15:54:42)

Python version

Python 3.2.3

>>>

Now, the Unix interpreter prompts you to give it a Unix command with a
short bit of text that ends with a dollar. In the slides this will be represented
simply as a dollar.
This is a Unix prompt asking for a Unix command.
The Unix command we are going to give is “python3”. Please note that
trailing “3”. The command “python” gives you either Python 2 or Python 3
depending on what system you are on. With this command we are insisting
on getting a version of Python 3.
The Python interpreter then runs, starting with a couple of lines of blurb. In
particular it identifies the specific version of Python it is running. (3.2.3 in this
slide.)
Then it gives a prompt of its own, three “greater than” characters. The
Python 3 program is now running and it is prompting us to give a Python
command.
You cannot give a Unix command at a Python prompt (or vice versa).

 11

11

Quitting Python

>>> exit()

>>> quit()

>>> Ctrl D+

Any one
of these

There are various ways to quit interactive Python. There are two commands
which are equivalent for our purposes: quit() and exit(), but the
simplest is the key sequence [Ctrl]+[D].

 12

12

A first Python command

>>> print('Hello, world!')

Hello, world!

>>>

Python prompt

Python command

Output

Python prompt

There is a tradition that the first program you ever run in any language
generates the output “Hello, world!”.
I see no reason to buck tradition. Welcome to your first Python command;
we are going to output “Hello, world!”.
We type this command at the Python prompt. The convention in these slides
is that the typewriter text in bold face is what you type and the text in regular
face is what the computer prints.
We type “print” followed by an opening round brackets and the text
“Hello, world!” surrounded by single quotes, ending with a closing
round bracket and hitting the Return key, [], to indicate that we are done ↲
with that line of instruction.
The computer responds by outputting “Hello, world!” without the
quotes.
Once it has done that it prompts us again asking for another Python
command with another Python prompt, “>>>”.

 13

13

Python commands

print

Python “function”

(

Function’s “argument”

Round brackets
― “parentheses”

()'Hello, world!'

“Case sensitive”print PRINT≠

This is our first Python “function”. A function takes some input, does
something with it and (optionally) returns a value. The nomenclature derives
from the mathematics of functions, but we don’t need to fixate on the
mathematical underpinnings of computer science in this course.
Our function in this case is “print” and the command necessarily starts
with the name of the function.
The inputs to the function are called its “arguments” and follow the function
inside round brackets (“parentheses”).
In this case there is a single argument, the text to print.

Note that Python, as with many but not all programming languages, is “case
sensitive”. The word “print” is not the same as “Print” or “PRINT”.

 14

14

Python text

The body
of the text

Quotation marks

' 'Hello, world!

!
The quotes are not
part of the text itself.

The text itself is presented within single quotation marks. (We will discuss
the choice of quotation marks later.)
The body of the text comes within the quotes.
The quotes are not part of the text; they merely indicate to the Python
interpreter that “hey, this is text!”
Recall that the the printed output does not have quotes.

 15

15

Quotes?

print Command

'print' Text

So what do the quotes “do”?
If there are no quotes then Python will try to interpret the letters as
something it should know about. With the quotes Python simply interprets it
as literal text.
For example, without quotes the string of characters p-r-i-n-t are a
command; with quotes they are the text to be printed.

 16

16

Python scripts

hello1.py

File in home directory

$ python3

Hello, world!

$

Unix prompt

Unix command
to run Python

Python script

Python script’s output

Unix prompt

hello1.py

print('Hello, world!')

Run from Unix prompt

So we understand the “hello, world” command and how to run it from an
interactive Python. But serious Python programs can’t be typed in live; they
need to be kept in a file and Python needs to be directed to run the
commands from that file.
These files are called “scripts” and we are now going to look at the Python
script version of “hello, world”.
In your home directories we have put a file called “hello1.py”. It is
conventional that Python scripts have file names ending with a “.py” suffix.
Some tools actually require it. We will follow this convention and you should
too.
This contains exactly the same as we were typing manually: a single line
with the print command on it.
We are going to make Python run the instructions out of the script. We call
this “running the script”.
Scripts are run from the Unix command line. We issue the Unix command
“python3” to execute Python again, but this time we add an extra word: the
name of the script, “hello1.py”.

When it runs commands from a script, python doesn’t bother with the lines
of blurb and as soon as it has run the commands (hence the output) it exists
immediately, returning control to the Unix environment, so we get a Unix
prompt back.

 17

17

Editing Python scripts — 1

To edit scripts we will need a plain text editor. For the purposes of this
course we will use an editor called “gedit”. You are welcome to use any
text editor you are comfortable with (e.g. vi or emacs).

If a script already exists then we can launch the file browser and simply
double-click on its icon.
This will launch the appropriate application. For a Python (text) script this is
the text editor (and not a Python instance to run the script).

 18

18

Editing Python scripts — 2

If the file does not already exist then click on the text editor icon in the dock
to launch it with no content.
Just as with the terminal you can get this from the dock on the left hand side
of the screen.

 19

19

Progress

Interactive Python

Python scripts

print() command

Simple Python text

 20

20

Exercise 1

1. Print “Goodbye, cruel world!” from interactive Python.

2. Edit exercise1.py to print the same text.

3. Run the modified exercise1.py script.

2 minutes

 ❢ Please ask if you have questions.

During this course there will be some “lightning exercises”. These are very
quick exercises just to check that you have understood what’s been covered
in the course up to that point.
Here is your first.
First, make sure you can print text from interactive Python and quit it
afterwards.
Second, edit the exercise1.py script and run the edited version with the
different output.
This is really a test of whether you can get the basic tools running. Please
ask if you have any problems!

 21

21

A little more text

hello2.py

print(' эłℏ Ꮣዐ, ω☺ⲗ ∂‼')րFull “Unicode” support

www.unicode.org/charts/

Now let’s look at a slightly different script just to see what Python can do.
Python 3 has excellent support for fully international text. (So did Python 2
but it was concealed.)
Python 3 supports what is called the “Unicode” standard, a standard
designed to allow for characters from almost every language in the world. If
you are interested in international text you need to know about the Unicode
standard. The URL shown will introduce you to the wide range of characters
supported.
The example in the slide contains the following characters:
ℏ PLANCK’S CONSTANT DIVIDED BY TWO PI
э CYRILLIC SMALL LETTER E
ł LATIN SMALL LETTER L WITH BAR
Ꮣ CHEROKEE LETTER DA

ዐ ETHIOPIC SYLLABLE PHARYNGEAL A

ω GREEK SMALL LETTER OMEGA
☺ WHITE SMILING FACE
ր ARMENIAN SMALL LETTER REH
Ꮣ COPTIC SMALL LETTER LAUDA
∂ PARTIAL DIFFERENTIAL
‼ DOUBLE EXCLAMATION MARK

 22

22

Getting characters

ğ

AltGr Shift+ #+ g

“LATIN SMALL
LETTER G
WITH BREVE”

\u011f

Character Selector

Linux

˘

I don’t want to get too distracted by international characters, but I ought to
mention that the hardest part of using them in Python is typically getting
them into Python in the first place.
There are three “easy” ways.
There are key combinations that generate special characters. On Linux, for
example, the combination of the three keys [AltGr], [Shift], and [#] set up the
breve accent to be applied to the next key pressed.
Perhaps easier is the “Character Selector” application. This runs like a free-
standing “insert special character” function from a word processor. You can
select a character from it, copy it to the clipboard and paste it into any
document you want.
Finally, Python supports the idea of “Unicode codes”. The two characters
“\u” followed by the hexadecimal (base 16) code for the character in the
Unicode tables will represent that character. You have all memorized your
code tables, haven’t you?

 23

23

Text: a “string” of characters

>>> type('Hello, world!')

<class 'str'> A string of characters

H e l l o , ␣ w o r l d !13

Class: string

Length: 13

Letters

str

We will quickly look at how Python stores text, because it will give us an
introduction to how Python stores everything.
Every object in Python has a “type” (also known as a “class”).
The type for text is called “str”. This is short for “string of characters” and is
the conventional computing name for text. We typically call them “strings”.
Internally, Python allocates a chunk of computer memory to store our text. It
stores certain items together to do this. First it records that the object is a
string, because that will determine how memory is allocated subsequently.
Then it records how long the string is. Then it records the text itself.

 24

24

Text: “behind the scenes”

str 13 72 101 108 108 111 44 32 33100…

011f
16

ğ

>>> chr(287)

'ğ'

>>> ord('ğ')

287

>>> '\u011f'

'ğ'

287
10

In these slides I’m going to represent the stored text as characters because
that’s easier to read. In reality, all computers can store are numbers. Every
character has a number associated with it. You can get the number
corresponding to any character by using the ord() function and you can
get the character corresponding to any number with the chr() function.

Mathematical note:
The subscript 10 and 16 indicate the “base” of the numbers.

 25

25

Adding strings together: +

print('Hello, ' + 'world!')

hello3.py

“Concatenation”

>>> 'Hello, ' + 'world!'

'Hello, world!'

>>>

Now let’s do something with strings.
If we ‘add’ two strings together Python joins them together to form a longer
string.
Python actually permits you to omit the “+”. Don’t do this.

 26

26

Pure concatenation

>>> 'Hello,␣' + 'world!'

'Hello, world!'

>>> 'Hello,' + '␣world!'

'Hello, world!'

>>> 'Hello,' + 'world!'

'Hello,world!'

Only simple
concatenation

No spaces added
automatically.

This joining together is very simple. If you want words split by a space you
have to put the space in.

 27

27

Single & double quotes

>>> 'Hello, world!'

'Hello, world!'

>>>

'Hello, world!'

Single quotes

"Hello, world!" Double quotes

Single quotes

Single quotes

It doesn’t matter whether we write our strings with single or double quotes
(so long as they match at the two ends). Python simply notes that we are
defining a string.

 28

28

Python strings: input & output

'Hello, world!'

'Hello, world!'

"Hello, world!"

Single or double
quotes on input.

Single quotes on output.

Create same
string object.

H e l l o , ␣ w o r l d !13str

Internally there are no quotes, just a record that the object is text.
When Python comes to display the string and declares “this is text” itself it
uses single quotes.

 29

29

Uses of single & double quotes

>>>

He said "hello" to her.

print('He said "hello" to her.')

>>>

He said 'hello' to her.

print("He said 'hello' to her.")

Having two sorts of quotes can be useful in certain circumstances. If you
want the text itself to include quotes of one type you can define it
surrounded by the other type.

 30

30

Why we need different quotes

>>>

File "<stdin>", line 1
 print('He said 'hello' to her.')
 ^
SyntaxError: invalid syntax

print('He said 'hello' to her.')

✘

You must mix the quotes like that. If you do not then Python will be unable to
make sense of the command.
We will look at Python’s error messages in more detail later.

 31

31

Adding arbitrary quotes

>>> print('He said \'hello\' to her.')

He said 'hello' to her.

\'

\"

'

" “Escaping”

Just an ordinary
character.

H e s a i␣ ' h e l l23str o ' t o h e r .d ␣␣ ␣

There is a more general solution to the “quotes within quotes” problem.
Preceding each quote within the body of the text signals to Python that this
is just an ordinary quote character and should not be treated specially.
Note that what is encoded in the string is a single character. The backslash
is a signal to the Python interpreter as its constructs the string. Once the
string is constructed, with quotes in it, the backslash’s work is done.
This process of flagging a character to be treated differently than normal is
called “escaping” the character.

 32

32

Putting line breaks in text

>>> print('Hello,

Hello,
world! What we want

world')
↵ Try this

>>> print('Hello, ↵
File "<stdin>", line 1
 print('Hello,
 ^

>>>

SyntaxError: EOL while
scanning string literal “EOL”: End Of Line

✘

We will follow the theme of “inserting awkward characters into strings” by
looking at line breaks.
We cannot insert a line break by hitting the [] key. This signals to Python ↵
that it should process the line so far and Python cannot; it is incomplete.

 33

33

Inserting “special” characters

>>> print('Hello,
Hello,
world!

world!')\n
Treated as
a new line.

str 13 e l l o , ↵ w o r l d !H

\n Converted into a
single character.

>>> len
13 len() function: gives

the length of the object

('Hello,\nworld!')

Again, the backslash character comes to our rescue.
If we create a string with the sequence “\n” then Python interprets this as
the single character .↵
Python can tell us exactly how many characters there are in a string. The
len() function tells us the length of the string in characters. There are 13
characters in the string created by 'Hello,\nworld!'. The quotes are not
part of the text and the \n becomes a single character.

 34

34

The backslash

\'

\"

'

"

Special Ordinary

\n

\t

↵

⇥

Ordinary Special

We have used backslash again, this time for a slightly different result.
Backslash before a character with special significance, such as the quote
character, makes the character “ordinary”. Used before an ordinary
character, such as “n”, it produces something “special”.

Only a few ordinary characters have special characters associated with
them but the two most commonly useful are these:
\n ↵ new line

\t ⇥ tab stop

 35

35

\n: unwieldy for long text

'SQUIRE TRELAWNEY, Dr. Livesey, and the\n
rest of these gentlemen having asked me\n
to write down the whole particulars\nabou
t Treasure Island, from the\nbeginning to
 the end, keeping nothing\nback but the b
earings of the island,\nand that only bec
ause there is still\ntreasure not yet lif
ted, I take up my\npen in the year of gra
ce 17__ and go\nback to the time when my
father kept\nthe Admiral Benbow inn and t
he brown\nold seaman with the sabre cut f
irst\ntook up his lodging under our roof.'

Single
line

The “\n” trick is useful for the occasional new line. It is no use for long texts
where we want to control the formatting ourselves.

 36

36

Special input method for long text

Triple
quotes

'''
rest of these gentlemen having asked me
to write down the whole particulars
about Treasure Island, from the
beginning to the end, keeping nothing
back but the bearings of the island,
and that only because there is still
treasure not yet lifted, I take up my
pen in the year of grace 17__ and go
back to the time when my father kept
the Admiral Benbow inn and the brown
old seaman with the sabre cut first
took up his lodging under our roof.

SQUIRE TRELAWNEY, Dr. Livesey, and the

'''

Multiple
lines

Python has a special trick precisely for convenient definition of long, multi-
line text.
If you start the text with a “triple quote” then the special treatment of hitting
the [] key is turned off. This lets you enter text “free form” with natural line ↵
breaks.
The triple quote is three quote characters with no spaces between them.
The quote character used can be either one but the triple use at one end
must match the one used at the other end.

 37

37

Python’s “secondary” prompt

>>> '''Hello,
world'''...

Python asking for more
of the same command.

The triple quote lets us see another Python feature. If we type a long string
raw then after we hit we see Python’s “secondary prompt”. The three dots ↵
indicate that Python is expecting more input before it will process what it has
in hand.

 38

38

It’s still just text!

>>> 'Hello,\nworld!'

'Hello

>>>
...

'''Hello,
world!'''

'Hello\nworld'

world'\n
Python uses \n to represent
line breaks in strings.

Exactly the same!

It is also important to note that triple quotes are just a trick for input. The text
object created is still a standard Python string. It has no memory of how it
was created.
Also note that when Python is representing the content of a string object (as
opposed to printing it) it displays new lines as “\n”.

 39

39

Your choice of input quotes:

'Hello,\nworld!' "Hello,\nworld!"

"""Hello,
world!"""

'''Hello,
world!'''

str 13 e l l o , ↵ w o r l d !H

Same result:

Four inputs:

We have now seen four different ways to create a string with an embedded
new line. They all produce the same string object.

 40

40

Progress

International text

print()

Concatenation of strings

Long strings

Special characters

 41

41

Exercise 2

3 minutes

1. Replace XXXX in exercise2.py so it prints the following
text (with the line breaks) and then run the script.

coffee
café
caffè
Kaffee

é

è \u00e9

\u00e8

AltGr

AltGr

+

+

#

;

e

e

There is more than one way to do this.
You can get the line breaks with \n in a single-quoted string or with literal line
breaks in a triple-quoted string. An alternative, but not in keeping with the
exercise, is to have four print() statements.

You can get the accented characters by using the \u sequences or you can
type them in literally with the keyboard combinations shown. (Linux only)

 42

42

Attaching names to values
message = 'Hello, world!'
print(message)

hello3.py

str 13 e l l o , ␣ w o r l d !Hmessage

“variables”

>>> message='Hello, world!'

>>> message

'Hello, world!'

>>> type(message)

<class 'str'>

Now we will move on to a serious issue in learning any computing language:
how to handle names for values.
Compare the two scripts hello1.py and hello4.py. They both do exactly
the same thing.
We can enter the text of hello4.py manually if we want using interactive
Python, it will work equally well there.
The first line of hello4.py creates the string ‘Hello, world!’ but instead of
printing it out directly the way that hello1.py does, it attaches a name,
“message”, to it.

The second line runs the print() function, but instead of a literal string as
its argument it has this name instead. Now the name has no quotes around
it, and as I said earlier this means that Python tries to interpret it as
something it should do something with. What it does is to look up the name
and substitute in the attached value.
Whenever the name is used, Python will look it up and substitute in the
attached value.

 43

43

Attaching names to values
message = 'Hello, world!'
print(message)

hello4.py

print function

str 13 e l l o , ␣ w o r l d !Hmessage

>>> type(print)

<class 'builtin_function_or_method'>

Both “print” and “message” are the same this way. Both are names
attached to Python objects. “print” is attached to a chunk of memory
containing the definition of a function and “message” is attached to a chunk
of memory containing the text.

 44

44

Reading some text into a script

$ python3

Yes?

input1.py

Boo!

Boo!

message = input('Yes?␣')
print(message)

input1.py

input('Yes?␣')

message = …

print(message)

Now that we know how to attach names to values we can start receiving
input from the user of our script.
For this we will use the cunningly named “input()” function.

This function takes some (typically short) text as its argument. It prints this
text as a prompt and then waits for the user to type something back (and
press []. It then returns whatever the user typed (without the []) as its ↵ ↵
value.
We can use this function on the right hand side of an assignment.
Recall that the assignment completely evaluates the right hand side first.
This means that it has to evaluate the input() function, so it prompts the
user for input and evaluates to whatever it was that the user typed.
Then the left hand side is processed and the name “message” is attached to
this value.
We can then print this input text by using the attached name.

 45

45

Can't read numbers directly!
number = input('N?␣')
print(number + 1)

input2.py

$ python3 input2.py

N? 10

Traceback (most recent call last):
 File "input2.py", line 2, in <module>

print(+)

string integer

number
TypeError:
Can't convert 'int' object
to str implicitly

✘

1

In the previous example script input1.py we simply took what we were
given by input() and printed it. The print() function is a flexible beast; it
can cope with almost anything.
The script hello2.py attempts to take what is given and do arithmetic with
it, namely add 1 to it. It fails, even though we type a number at input()’s
prompt.
This also gives us an error message and it’s time to investigate Python’s
error messages in more detail.
The first (the “trace back”) tells us where the error was. It was on line 2 of
the file input2.py. It also tells us what was on the line. Recall that with
syntax errors it also pointed out where in the line it realized something was
going wrong.
The second part tells us what the error was: we tried to add a string (text)
and an integer (a number). More precisely, Python couldn’t convert the
things we were adding together into things that we could add.

 46

46

input(): strings only
number = input('N?␣')
print(number + 1)

input2.py

✘$ python3 input2.py

N? 10

input('N? ') ␣ str 2 01

int 10≠

The problem is that the input() function always returns a string and the
string “character 1 followed by character 0” is not the same as the integer
ten.
We will need to convert from the string to the integer explicitly.

 47

47

Some more types

>>> type('Hello, world!')

<class 'str'>

>>> type(42)

<class 'int'>

>>> type(3.14159)

<class 'float'>

string of characters

integer

floating point number

To date we have seen only two types: “str” and
“builtin_function_or_method”. Here are some more.

Integers (whole numbers) are a type called “int”.

Floating point numbers (how computers approximate real numbers) are a
type called “float”.

The input() function gave is a “str”. We want an “int”.

 48

48

Converting text to integers

>>> int('10')

10

>>> int('␣-100␣')

-100

>>> int('100-10')

ValueError:
invalid literal for int() with base 10: '100-10'

str 2 01 int 10

str 6 -␣

int -100

01 ␣0

✘

There is a function — also called “int()” ― that converts the textual
representation of an integer into a genuine integer.
It copes with extraneous spaces and other junk around the integer but it
does not parse general expressions. It will take the textual form of a number,
but that's it.

 49

49

Converting text to floats

>>> float('10.0')

10.0

>>> float('␣10.␣')

10.0

'10.0' is a string

10.0 is a floating
point number

There is a similar function called float() which creates floating point
numbers.

 50

50

Converting between ints and floats

>>> float(10)

10.0

>>> int(10.9)

10 Truncates
fractional part

>>> int(-10.9)

-10

The functions can take more than just strings, though. They can take other
numbers, for example. Note that the int() function truncates floating point
numbers.

 51

51

Converting into text

>>> str(10)

'10'

>>> str(10.000)

'10.0'

integer

float

 string

 string

There is also a str() function for turning things into strings.

 52

52

Converting between types

int()

float()

anything

anything

 integer

 float

str() anything string

Functions named after the type they convert into.

In general there is a function for each type that converts whatever it can into
that type.

 53

53

Reading numbers into a script
text = input('N? ')␣
number = int(text)
print(number + 1)$

N?

11

python3 input3.py

10

So finally we can see what we have to do to make our failing script work: we
need to add a type conversion line.

 54

54

Stepping through our script — 1
text = input('N?␣')
number = int(text)
print(number + 1)

str 3 ?N ␣

We can step through the script one element at a time to see the totality of
what we have written.
Starting on the right hand side of the assignment operator (as we always
do), initially we have the literal string which forms the body of the prompt.

 55

55

Stepping through our script — 2
text = input('N?␣')
number = int(text)
print(number + 1)

str 3 ?N ␣

input function

str 2 01 NB: text, not number

Looking at the rest of the right hand side of the line we see that this is used
by the input function. Its name is looked up and the string object “N? ” is
passed to it. The function returns (evaluates to) a second text object “10”.
Note that this is a string object (text) and not an integer (number).

 56

56

Stepping through our script — 3
text = input('N? ')␣
number = int(text)
print(number + 1)

input function

str 2 01text

Now that Python has completd the evaluation of the right hand side its
attention moves to the left hand side. This identifies the name, text, which
is attached to this string value.

 57

57

Stepping through our script — 4
text = input('N? ')␣
number = int(text)
print(number + 1)

input function

str 2 01text

int function

int 10

Moving to the right hand side of the second line, the name text is looked
up to get the string “10” and the name int is looked up to give the function
that converts strings into integers. The string is passed to the function as its
argument and the function returns an integer value, 10.

This completes the evaluation of the right hand side.

 58

58

Stepping through our script — 5
text = input('N? ')␣
number = int(text)
print(number + 1)

input function

str 2 01text

int function

int 10number

Moving now to the left hand side, Python sees the name number and
attaches it to the integer value given by the right hand side.

 59

59

Stepping through our script — 6
text = input('N? ')␣
number = int(text)
print(number + 1)

int 10number

Scrolling up, because slides are never big enough…

 60

60

Stepping through our script — 7
text = input('N? ')␣
number = int(text)
print(number + 1)

int 10number

function

int 11

+

int 1

The third line contains the expression number+1. Python looks up the name
number to give an integer 10, looks up the name + to give a function,
creates an integer 1 directly and calls the function to add the numbers
together. This yields a result of integer 11.

 61

61

Stepping through our script — 6
text = input('N? ')␣
number = int(text)
print(number + 1)

int 10number

int 11

functionprint

Finally, Python looks up the name print to give a function and passes it
the freshly created value of integer 11 as an argument.

 62

62

Progress

Names

Types

Type conversions

 Values

Reading in text

str() int() float()

input(prompt)

name = value

strings

integers

floating point numbers

 63

63

Exercise 3

Replace the two XXXX in exercise3.py to do the following:

1. Prompt the user with the text “How much?␣”.

2. Convert the user’s answer to a floating point number.

3. Print 2.5 plus that number.

3 minutes

 64

64

Integers

ℤ {… -2, -1, 0,
 1, 2, 3, 4 …}

Now that we have some rudimentary understanding of Python it’s time to
dive in a little deeper to the three types we have met so far.
We are going to start with the whole numbers, “integers” in technical
language.
Mathematical note:
The fancy Z is the mathematical symbol for the integers based on the
German word Zahlen.

 65

65

Integer addition & subtraction

>>> 20+5

25

>>> 20␣-␣5

15

Spaces around the
operator don’t matter.

“No surprises”

We can start our handling of integers with some very basic arithmetic.
Note that spaces around the plus and minus character are ignored.
Adding or subtracting two integers simply gives a third integer.

 66

66

Integer multiplication

There is no “×” on the keyboard. Linux:
,+ShiftAltGr +

Use “*” instead

>>> 20␣*␣5

100

Still no surprises

The arithmetical operations addition and subtraction have their usual
mathematical symbols reflected on the standard keyboard. We have a plus
sign and a minus sign (actually a “hyphen”) character and we use them.
There is no multiplication symbol on the standard keyboard. You can
generate it as one of the octopus-friendly key combinations, but it’s not a
simple key.
Instead, the computing profession has settled on using the asterisk (“*”) to
represent multiplication. On your keyboards this is [Shift]+[8].
Multiplying two integers gives a third integer.

 67

67

Integer division

There is no “÷” on the keyboard. Linux:
.+ShiftAltGr +

Use “/” instead

>>> 20␣/␣5

4.0 This is a floating point number!

Surprise!

There is no division symbol on the keyboard without holding three keys
down at the same time. Again a convention has arisen to use the forward
slash character (strictly called a “solidus”) for division.
So far there have been no surprises in Python’s integer arithmetic. That
changes with division.
Not all integer division can be achieved precisely. You cannot divide 3 into 5
exactly. Because of this Python 3 always returns a type of number capable
of representing fractional values (a floating point number) even when the
division would have been exact.

 68

68

Integer division gives floats !

Fractions

>>> 20␣/␣40

0.5

>>> 20␣/␣30

0.6666666666666666

 Floats sometimes

Consistency Floats always

!

The designers of Python decided that consistency of output was important
and therefore because it might sometimes need to use a float it should
always use a float.
Note that even floating point numbers cannot exactly represent all fractions.
½ can be precisely represented but cannot. We will return to the ⅔
imprecision of floating point numbers when we look at them in detail.
(If you really want to stick to integers then Python 3 offers the “//“ operator
which returns an integer answer, rounded strictly down in case of fractional
answers.)

 69

69

Integer powers

There is no “42” on the keyboard.

Use “**” instead

>>> 4␣**␣2

16

>>> 4*␣*2

SyntaxError: invalid syntax

Spaces around the
operator don’t matter.

Spaces in the
operator do!

Just as there is no mathematical symbol on the keyboard for multiplication
and division, there is no symbol at all for raising to powers. Mathematically
we represent it by superscripting the power after the number being raised.
We can’t do this on the keyboard so instead we cheat and invent our own
symbol for the operation.
Computing has split for this operation. Some languages use the circumflex
accent (“^”) and others, including Python, use a double asterisk, “**”.

Note that while spaces around the operator are ignored you can’t split the
two asterisks.

 70

70

Integer remainders

e.g. Is a number even or odd?

>>> 4␣%␣2

0

>>> 5␣%␣2

1

Use “%”

>>> -5␣%␣2

1 Remainder is always non-negative

There’s one last integer arithmetic operator we will use once in a while.
Another way to look at division is to ask what the remainder is after a
division. Python represents this concept by using the percent sign between
to numbers to represent the remainder when the first number is divided by
the second.
We will use it for one purpose only in this course: to determine if a number is
even or odd. If a number’s remainder when divided by 2 is 0 then it’s even
and if the remainder is 1 then it’s odd.

 71

71

How big can a Python integer be?
>>> 2**2
4

>>> 4**2
16

>>> 16**2
256

>>> 256**2
65536

>>> 65536**2
4294967296

>>> 256**2
65536
>>> 256**2
65536

>>> 2**2
4

Now we will look at the numbers themselves. We can ask the question “how
big can an integer be?” Mathematically, of course, there is no limit. In a
computer there are always limits. Each computer has only a finite amount of
memory to store information so there has to be a limit. We will see that
Python has no limits in principle and it is only the technical limit of the
computer that can restrict us. In practice this is never an issue for the size of
integers.
We will experiment with large integers by repeated squaring. We start with a
2 and keep squaring.

 72

72

How big can a Python integer be?
>>> 4294967296**2
18446744073709551616

>>> 18446744073709551616**2
340282366920938463463374607431768211456

>>> 340282366920938463463374607431768211456**2
1157920892373161954235709850086879078532699846
65640564039457584007913129639936

>>> 115792089237316195423570985008687907853269

1340780792994259709957402499820584612747936582
0592393377723561443721764030073546976801874298
1669034276900318581864860508537538828119465699
46433649006084096

984665640564039457584007913129639936**2

Python takes it in its stride and happily carries on.

 73

73

How big can a Python integer be?

10443888814131525066917527107166243825799642490473837803842334832839
53907971557456848826811934997558340890106714439262837987573438185793
60726323608785136527794595697654370999834036159013438371831442807001
18559462263763188393977127456723346843445866174968079087058037040712
84048740118609114467977783598029006686938976881787785946905630190260
94059957945343282346930302669644305902501597239986771421554169383555
98852914863182379144344967340878118726394964751001890413490084170616
75093668333850551032972088269550769983616369411933015213796825837188
09183365675122131849284636812555022599830041234478486259567449219461
70238065059132456108257318353800876086221028342701976982023131690176
78006675195485079921636419370285375124784014907159135459982790513399
61155179427110683113409058427288427979155484978295432353451706522326
90613949059876930021229633956877828789484406160074129456749198230505
71642377154816321380631045902916136926708342856440730447899971901781
46576347322385026725305989979599609079946920177462481771844986745565
92501783290704731194331655508075682218465717463732968849128195203174
57002440926616910874148385078411929804522981857338977648103126085903
00130241346718972667321649151113160292078173803343609024380470834040
3154190336

There is no limit!

Except for
machine
memory

The Python language has no limit on the size of integer.

 74

74

Big integers
2

4

16

256

65536

4294967296

18446744073709551616

3402823669209384634…
63374607431768211456

C / C++
Fortran

Out of the reach
of C or Fortran!

long long
INTEGER*16

long
INTEGER*8

int
INTEGER*4

This may sound rather trivial but, in fact, Python is quite exceptional in this
regard. The compiled languages have to allocate space for their integers in
advance and so place limits on how large they can grow.

 75

75

Floating point numbers

1.0
0.33333333
3.14159265
2.71828182

ℝ✗

And that’s it for whole numbers. Now we will look at floating point numbers,
a computer’s way of storing fractional values. This is a computer’s
approximation to the real numbers. As we will see it is a problematic
approximation.
The fancy is the mathematical symbol for the real numbers, from the ℝ
English word Real.

 76

76

Basic operations

>>> 20.0 + 5.0

25.0

>>> 20.0 - 5.0

15.0

>>> 20.0 * 5.0

100.0

>>> 20.0 / 5.0

4.0

>>> 20.0 ** 5.0

3200000.0

Equivalent to integer arithmetic

For our basic operations, floating point numbers behave just the same as
integers, using the same operators to achieve the same results. Floating
point division creates a floating point number.

 77

77

Floating point imprecision

>>> 1.0 / 3.0

0.3333333333333333

>>> 10.0 / 3.0

3.3333333333333335

≈ 17 significant figures

If you are relying on
this last decimal place,
you are doing it wrong!

So let’s see our first problem.
Floating point arithmetic is not exact, and cannot be.
Floating point numbers on modern hardware tends to give a precision of
17 significant figures. You do see the occasional issue as shown on the slide
but, frankly, if you are relying on the exact value of the final decimal place
you are doing it wroing.

 78

78

Hidden imprecision

>>> 0.1

0.1

>>> 0.1 + 0.1

0.2

>>> 0.1 + 0.1 + 0.1

0.30000000000000004
Really: if you are relying on
this last decimal place,
you are doing it wrong!

!

Not all imprecision is overt. Some of it can creep up on you.
Computers work in base 2. They can store numbers like ½ and ⅞ exactly.
But they cannot store numbers like 1/10 exactly, just like we can’t represent

 exactly in a decimal expansion.⅓
The errors in storing 1/10 are small enough, though, that they are invisible at
first. However, if they accumulate they become large enough to show
through.
Really: don’t depend on precise values.

 79

79

How big can a Python float be? ― 1

>>> 65536.0**2
4294967296.0

>>> 4294967296.0**2
1.8446744073709552e+19

So far, so good.

Switch to
“scientific notation”

1.8446744073709552

1.8446744073709552

×1019

e+19

Let’s ask the same question about floats as we asked about integers: how
large can they be?
We will repeat our approach of repeated squaring. We fast-forward to start
at 65536.0 squared and notice that we soon get anomolous responses.
When we square 4,294,967,296 we get a number with the letter “e” in it.
User’s of pocket calculators at school may recognise this representation: it
indicates a number between 1.0 and 9.999… multiplied by a power of 10.
Floating point numbers can only hold roughly 17 significant figures of
accuracy. This means that when the integer needs more than 17 digits
something has to give.

 80

80

Floats are not exact

>>> 4294967296**2
18446744073709551616

>>> 4294967296.0**2
1.8446744073709552e+19

Integer

Floating point

1.8446744073709552×1019 18446744073709552000

18446744073709551616-

384

The approximation isn’t bad. The error is 384 in 18446744073709551616, or
approximately 2×10-17.

 81

81

How big can a Python float be? ― 2

>>> 1.8446744073709552e+19**2
3.402823669209385e+38

>>> 3.402823669209385e+38**2
1.157920892373162e+77

>>> 1.157920892373162e+77**2
1.3407807929942597e+154

>>> 1.3407807929942597e+154**2

OverflowError: (34,
'Numerical result out of range')

So far, so good.

Too big!

If we accept that our answers are now only approximate we can keep
squaring. The “e-number” representation of scientific notation is accepted on
input by Python.
When we come to square 1.3407807929942597×10154, though, we hit
another issue, this one fatal.
We get an “overflow error”. This means we have tried to create a floating
point number larger than Python can cope with. Under some circumstances
the “too big” problem gives rise to a sort-of-number called “inf” (standing
for “infinity”).

 82

82

Floating point limits

1.2345678901234567×10N

17 significant figures

-325 < N < 308

4.94065645841×10-324 < N < 8.98846567431×10307

Positive values:

Just for the record, floating point numbers have limits both in terms of the
largest and smallest numbers they can contain.

 83

83

z

z2

Complex numbers

>>> (1.25+0.5j)**2

(1.3125+1.25j)

ℂ ℜ

ℑ

Python also supports complex numbers, using j for the square root of -1.
We will not use them in this course, but you ought to know they exist.

 84

84

Progress

Arithmetic

Integers

Floating point numbers

Complex numbers

+ - * / ** %

No limits!

Limited size

Limited precision

 85

85

Exercise 4

3 minutes

Replace the XXXX in exercise4.py to evaluate
and print out the following calculations:

1. 223 ÷ 71

2. (1 + 1/10)10

3. (1 + 1/100)100

4. (1 + 1/1000)1000

 86

86

Comparisons

5 < 10

5 > 10 ✘✘✘

✔

✘✘✘✘✘✘

We can do arithmetic on numbers. What else?
We need to be able to compare numbers.
Is 5 less than 10? Yes it is.
Is 5 greater than 10? No it isn’t.

 87

87

Comparisons

>>> 5 < 10

True

>>> 5 > 10

False

Asking the question

Asking the question

✘✘✘

✔

✘✘✘✘✘✘

Now let’s see that in Python.
The “less than” character appears on the keyboard so we don’t need
anything special to express the concept like “**” for powers.
Python seems to answer the questions with “True” and “False”.

 88

88

True & False

>>> type(True)

<class 'bool'> “Booleans”

5 10 +

5 10 <

int int

15

True

int

bool

The important thing to understand is that this is not just Python reporting on
a test but rather the value generated by the test. True and False are (the
only) two values of a special Python type called a “Boolean” used for
recording whether something is true or not.
Just as the “+” operator takes two integers and returns an integer value, the
“<” operator takes two integers and returns a Boolean.
Booleans are named after George Boole, whose work laid the ground for
modern algebraic logic. (His classic book’s full title is “An Investigation of the
Laws of Thought on Which are Founded the Mathematical Theories of Logic
and Probabilities”, in true Victorian style.)

 89

89

True & False

bool ✓

bool ✗

True

False

Only two values

The boolean type has precisely two values.

 90

90

Six comparisons

Maths

=

≠

<

>

≤

≥

Python

==

!=

<

>

<=

>=

Double equals sign

There are six comparison operations in Python.
The equality comparison is defined in Python with a double equals sign,
“==”. The sign is doubled to distinguish comparison from assignment.

There is no “not equals” symbol on the standard keyboard. Instead, Python
uses the “!=” pair of characters. (As with “**” there must be no space
between the two characters.)
“Less than” and “greater than” we have already covered. These are
implemented directly by the “<” and “>” characters.
There are no “less than or equal to” or “greater than or equal to” keys,
though, so Python resorts to double character sequences again.

 91

91

Equality comparison & assignment

name = value=

value
1
 == value

2==

Attach a name to a value.

Compare two values

If ever there was a “classic typo” in programming it is the confusion of “=”
and “==”. Be careful.

 92

92

Textual comparisons

>>> 'cat' < 'dog'

True

Alphabetic ordering

>>> 'Cat' < 'cat'

True

>>> 'Dog' < 'cat'

True

Uppercase before lowercase

All uppercase before lowercase

Booleans typically arise from comparisons. We can compare more than
numbers (integers or floating point). We can also compare strings.
Text comparisons are based around the ordering of characters in the
Unicode character set. Note that all the uppercase letters in the Latin
alphabet precede all the lowercase letters. So any text that starts with an
uppercase letter counts as “less than“ any text that starts with a lowercase
letter.

 93

93

Ordering text is complicated

German:

Swedish:

z < ö

ö < z

Python inequalities use Unicode character numbers.

This is over-simplistic for “real” use.

Alphabetical order?

“Collation” is a whole field of computing in itself

Please note, however, that this is just a comparison of strings. It is not a
general comparison of text. Ordering text is called “collation” and is a very
compicated field.
For example, different languages order characters differently.
If you want to learn more about this field, start with the Unicode page on
collation: http://www.unicode.org/reports/tr10/

 94

94

“Syntactic sugar”

0 < number < 10

0 < number

and

number < 10

>>> number = 5

>>> 0 < number < 10

True

A common requirement is to determine if a number lies in a particular range.
For this purpose, Python supports the mathematical notation a < b < c. The
inequalities can be any combination that make sense.

 95

95

Converting to booleans

float() Converts to floating point numbers

int() Converts to integers

str() Converts to strings

bool() Converts to booleans

<class 'float'>

<class 'int'>

<class 'str'>

<class 'bool'>

As with all Python types there is a function named after the type that tries to
convert arbitrary inputs into Booleans. Given that there are only two Boolean
values this tends to be a very simple function.

 96

96

Useful conversions

'Fred' True

'' False

Non-empty string

Empty string

1 True

0 False

Non-zero

Zero

12 True

-1 True

The empty string is mapped to False. Every other string is mapped to
True.

For integers, 0 is mapped to False and every other value to True.

For floating point numbers, 0.0 is mapped to False and every other value to
True.

 97

97

Boolean operations

Numbers have +, –, * …

What do booleans have?

bool ✓

bool ✗

bool

bool

bool?

Boolean types have their own arithmetic just like ordinary numbers. It was
the algebra of these that George Boole developed.

 98

98

Boolean operations ― “and”

bool

bool

booland

True Trueand

True Falseand

False Trueand

False Falseand

True

False

False

False

Both have
to be True

The first operation on Booleans is the “and” operator.

The and of two booleans values is True if (and only if) both its inputs are
True. If either is False then its output is False.
>>> True and False
False
>>> True and True
True

 99

99

Boolean operations ― “and”

>>> 4 < 5 and 6 < 7

True

4 < 5

6 < 7

True

True
and True

>>> 4 < 5 and 6 > 7

False

4 < 5

6 > 7

True

False
and False

We are much more likely to encounter the input booleans as the results of
comparisons that as literal values.

 100

100

Boolean operations ― “or”

bool

bool

boolor

True Trueor

True False

False True

False False

True

False

True

True

At least
one has
to be Trueor

or

or

The next boolean operation to look at is “or”. The results of this operation is
True if either of its inputs are True and False only if both its inputs are
False.

 101

101

Boolean operations ― “or”

>>> 4 < 5 or 6 < 7

True

4 < 5

6 < 7

True

True
or True

>>> 4 < 5 or 6 > 7

True

4 < 5

6 > 7

True

False
or True

Again, we tend to encounter it more often with other tests than with literal
booleans.

 102

102

Boolean operations ― “not”

bool boolnot

Truenot

False True

False

not

The final operation is “not”. This takes only one input and “flips” it. True
becomes False and vice versa.

 103

103

Boolean operations ― “not”

>>> not 6 < 7

False

6 < 7 True not False

>>> not 6 > 7

True

6 > 7 False not True

 104

104

Ambiguity in expressions

3 + 6 / 3

(3 + 6) / 3 3 + (6 / 3)

3 5

✘✘✘ ✔✘✘✘✘✘✘

 105

105

Division before addition

5

3 6 / 3+

3 2+

Division first

Addition second

 106

106

“Order of precedence”

x**y x*yx/yx%y x+yx-y+x-x

x==y x>yx>=yx!=y x<yx<=y

not x x or yx and y

First

Last

 107

107

Progress

Comparisons == != < > <= >=

Booleans True False

Numerical comparison

Alphabetical ordering

5 < 7

'dig' < 'dug'

Boolean operators and or not

Conversions ''
0
0.0

False
False
False

other True

 108

108

Exercise 5

3 minutes

Predict whether these expressions will evaluate to True or False.
Then try them.

'dog' > 'Cat' or 45 % 3 == 0

'sparrow' > 'eagle'

60 - 45 / 5 + 10 == 1

1.

2.

3.

 109

109

Names and values: “assignment”

>>> alpha = 100

1. alpha = 100

2. alpha = 100

int 100
Python creates
an “integer 100”
in memory.

int 100alpha

Python attaches
the name “alpha”
to the value.

Now let’s go back to the attaching of names to values that we saw with our
hello3.py script.

Consider the simple Python instruction shown.
Python does two things, strictly in this order:
First, it notices the literal value 100 (an integer). So Python allocates a
chunk of memory large enough and creates a Python object in it that
contains a Python integer with value 100.
Second, it creates the name “alpha” and attaches it to the integer.

 110

110

Assignment: right to left

alpha 100=

“RHS”: right hand side
Evaluated first

“LHS”: left hand side
Processed second

The key thing to note is that the processing happens right to left. Everything
to the right hand side is processed first. Only after that processing is done is
the left hand side considered.
In this example it’s trivial. It will become less trivial very soon so remember
that the right hand side is evaluated before the left hand side is even looked
at.
ps: Computing uses the phrases “left hand side” and “right hand side” so
often that they are typically written as “LHS” and “RHS”.

 111

111

Simple evaluations

>>> beta = 100 + 20

RHS1. 100 20+

int 100 function + int 20

int 1202.

int 1203. beta
LHS

We can see a slightly more involved example if we put some arithmetic on
the RHS.
Again, the RHS is evaluated first.
First, Python notices three “tokens”: the 100, the name “+” and the 20. It
creates two integer objects just as it did with the previous example and it
looks up a pre-existing function object that does addition of integers.
Second, Python triggers the addition function to generate a third integer with
the value 120.
This completes the evaluation of the RHS.
Third, Python creates a name “beta” and attaches it to the freshly created
integer 120.

 112

112

Changing value — 1

>>> gamma = 1

>>> gamma = 2

Now let’s look at attaching a name to a value and then changing that value.
Suppose we have these two lines of Python.
In common with most—but not all―programming languages, Python lets
you set a name for a value and then change it.

 113

113

Changing value — 2

>>> gamma = 1
int 1

RHS

The process begins exactly as it did for the alpha example above.

The right hand side of the first line sets up an integer 1 in Python memory.

 114

114

Changing value — 3

>>> gamma = 1
int 1gamma

LHS

The left hand side of the assignment operation then attaches a name to that
value, just as we saw before.

 115

115

Changing value — 4

>>> gamma = 1

>>> gamma = 2
int 1gamma

int 2

RHS

Now we move to the second line.
Again, Python processes the right hand side first. This is an integer 2 object
and Python creates that in memory, alongside the existing integer 1 object.
That completes the processing of the second line’s right hand side.

 116

116

Changing value — 5

>>> gamma = 1

>>> gamma = 2
int 1gamma

int 2

LHS

So Python then turns its attention to the second line’s left hand side. This
requires Python to attach the name gamma to the value just created. Given
that the name already exists, Python detaches it from its old value and
attaches it to the new one, leaving the old integer 1 object behind.

 117

117

Changing value — 6

>>> gamma = 1

>>> gamma = 2
int 1gamma

int 2

✘
garbage collection

Now there are no remaining references to the old integer 1. Python
automatically cleans it up, freeing the space for re-use.
This is a process called “garbage collection”. In some languages you have
to free up unused space yourself; in Python the system does it for you
automatically.

 118

118

Changing value — 7

>>> gamma = 1

>>> gamma = 2
gamma

int 2

This leaves Python in its final state.

 119

119

Changing value — a subtlety

>>> gamma = 1

>>> gamma = 2
gamma

int 2

int 1✘
Two separate
integer objects.

Python doesn’t change an integer’s value;
Python replaces the integer.

Python integers are “immutable”

There is one last observation to make about this process.
Note that when we “changed gamma’s value” what we did was to create a
whole new integer object and reset gamma to point to it. We did not reach
into the memory allocated to the integer object and change its value.
The fact that we cannot reach into Python integers and change their values
makes Python integers “immutable”.

 120

120

Names on the RHS — 1

>>> delta = alpha + 40

RHS
1.

alpha 40+

function + int 40int 100

alpha

int 140

2.

3.

Now we will consider a more significantly involved example, one with a
name on the RHS.
First, Python recognizes the three tokens on the RHS. These are the name
“alpha” the “+” and the literal integer 40.

Second, it looks up the names. The “alpha” is replaced by the integer 100
and the name “+” is replaced by the actual function that does addition. The
token 40 is replaced by the actual integer 40 in memory.
Third, it runs the function to give an integer 140 object in memory.

 121

121

Names on the RHS — 2

>>> delta = alpha + 40

LHS
4. delta int 140

Only after all that is the LHS considered, and the name “delta” is created
and attached to the newly minted integer.

 122

122

Same name on both sides — 0

delta int 140
Starting
position

>>> print(delta)

140

Now (finally!) we get to the interesting case.
We start with the name delta being attached to the value 140.

 123

123

Same name on both sides — 1

>>> delta = delta + 10
RHS

1. delta 10+

function + int 10int 140

delta

int 150

2.

3.

4.

Then we run an assignment that has the name delta on both the left and
right hand sides.
Again, first of all Python focuses exclusively on the RHS.
The expression “delta + 10” is evaluated to give rise to an integer 150 in
Python memory.

 124

124

Same name on both sides — 2

>>> delta = delta + 10

5.

6.

LHS

int 150

int 140delta

RHS

int 150

int 140delta

RHS

Only once that evaluation is complete does Python turn its attention to the
LHS.
The name delta is going to be attached to the integer 150 in Python
memory. No attention is paid to where the integer 150 came from.
The name delta is already in use and is attached to the integer 140. Its
attachment is changed to the new integer 150.

 125

125

Same name on both sides — 3

>>> delta = delta + 10

7.

8.

LHS

int 150delta

int 150

int 140delta ✗ No longer
used.

Again, the unreferenced, “left over”, object is cleaned up by Python’s
automatic garbage collection.

 126

126

“Syntactic sugar”

thing += 10 thing = thing + 10

thing -= 10 thing = thing - 10

thing *= 10 thing = thing * 10

thing /= 10 thing = thing / 10

thing **= 10 thing = thing ** 10

thing %= 10 thing = thing % 10

is equivalent to

The operation of modifying the value attached to a name is so common that
Python, and some other languages, have short-cuts in their syntax to make
the operations shorter to write. These operations are called “augmented
assignments”.
This sort of short-cut for an operation which could already be written in the
language is sometimes called “syntactic sugar”.

 127

127

Deleting a name ― 1

>>> print(thing)

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

>>> thing = 1

>>> print(thing)

1

NameError: name 'thing' is not defined
Unknown
variable

There’s one last aspect of attaching names to values hat we need to
consider. How do we delete the attachment?
First of all, let’s see what it looks like when we refer to a name that isn’t
known to the system. The error message is quite straightforward:

name 'thing' is not defined
If we then create the name and attach it to a value, the integer 1 in this
example, we can then use the name without error message.

 128

128

Deleting a name ― 2

>>> print(thing)

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>

>>> del thing

>>> print(thing)

1

NameError: name 'thing' is not defined
Unknown
variable

Known
variable

To delete the attachment we use the Python command “del”. The command

del thing
returns us to the state where the name is no longer known.
You can delete multiple names with the slightly extended syntax

del thing1, thing2, thing3
This is equivalent to

del thing1
del thing2
del thing3

but slightly shorter.

 129

129

Progress

Assignment

Strictly right to left

+= etc. “syntactic sugar”

thing = thing + 10

thing = thing + 10

2nd 1st

thing += 10

Deletion del thing

 130

130

Our first “real” program

1.414213562373095

$
Number?

python3 sqrt.py
2.0

We have to write sqrt.py

First, the maths.
Then, the Python.

We now have enough to make a start on “real programming”. We will need
some more Python elements but we can meet them as we need them rather
than up front.
We are going to write a program that prompts for a number and then
calculates and prints out its square root.
First we will review the maths of calculating square roots so that we know
what we are coding. Then we will do it in Python.

 131

131

Square root of 2.0 by “bisection”

“Interval of uncertainty”

0.0 too small for √2

2.0 too large for √2

0.0 < √2 < 2.0

The technique we are going to use is called “bisection”. If you know this
technique you can relax for the next few slides. Please don’t snore. ☺
We are going to go through it by hand for a few iterations because when we
come to implement it in Python it is important that any confusion is due to
the Python, and not the maths the Python is implementing.

The trick is to identify a range of values that must contain the actual value
of √2. That is, we identify a lower bound that is less than √2 and an upper
bound that is greater than √2.
We then have some way (which we will explain in the following slides) to
improve that estimate by reducing the length of that interval of uncertainty.
To be precise, we will cut the uncertainty in half which is why the process is
called “bisection”.
We start by taking a lower bound of x=0, which is definitely lower than x=√2
because y=02=0<2, and an upper bound of x=2, which is definitely higher
than x=√2 because y=22=4>2.

 132

132

Square root of 2.0 by bisection — 1

Mid-point: 1.0

(0.0 + 2.0) / 2.0

1.0

1.0**2

1.0

So, what's the trick for halving the interval of uncertainty?
We find the midpoint of the interval. In this case it’s obvious: the half-way
point between x=0 and x=2 is x=1.
Then we square it to find its corresponding value of y. In this case y=12=1.

 133

133

Square root of 2.0 by bisection — 2

1.0**2 < 2.0

1.0 < √2 < 2.0

so change lower bound

midpoint √2
22

<

So what?
Well, y=1 is less than y=2 so the corresponding x-value, x=1 makes an
acceptable lower bound for the interval of uncertainty. And if we change our
lower bound to this value then our interval only runs from x=1 to x=2 with
total length 1, rather than its original length 2.
We have halved our uncertainty.
If we can do this trick multiple times then we will reduce the interval of
uncertainty very quickly to a length so small as to be irrelevant.

 134

134

Square root of 2.0 by bisection — 3

Mid-point: 1.5

(1.0 + 2.0) / 2.0

1.5

1.5**2

2.25

So we do it again. The new mid-point lies at x=1.5. This has a corresponding
y-value of y=2.25.

 135

135

Square root of 2.0 by bisection — 4

1.5**2 > 2.0

so change upper bound

1.0 < √2 < 1.5

y=2.25 is greater than y=2 so we can use the corresponding x-value of
x=1.5 as our new upper bound. Now the interval of uncertainty is halved in
length again to be ½.

 136

136

Square root of 2.0 by bisection — 5

Mid-point: 1.25

(1.0 + 1.5) / 2.0

1.25

1.25**2

1.5625

We find the new mid-point again, x=1.25. Squaring this gives the
corresponding y-value y=1.5625.

 137

137

Square root of 2.0 by bisection — 6

1.25**2 < 2.0

so change lower bound

1.25 < √2 < 1.5

y=1.5625 is less than y=2 so we change the lower bound. Our interval of
uncertainty now has length ¼.

 138

138

Square root of 2.0 by bisection — 7

Mid-point: 1.375

(1.25 + 1.5) / 2.0

1.375

1.375**2

1.890625

And again…

 139

139

Square root of 2.0 by bisection — 8

1.375**2 < 2.0

so change lower bound

1.375 < √2 < 1.5

…to give an interval of length ⅛.

 140

140

Exercise 6

1.375 < √2 < 1.5

One more iteration.

Find the mid-point.
Square it.
Compare the square to 2.0.

Do you change the
lower or upper bound?

2 minutes

Please make sure that you understand the principle and do one more
iteration by hand.

 141

141

Understanding before Programming

Apologies for spending so long on the maths but this is a general situation.
You must understand the situation before you can program it.

 142

So now let's start the implementation of this process in Python.
We will do exactly the same maths, but this time with Python syntax.
First we set the end points for the interval of uncertainty and attach names
to the two x-values.
The names lower and upper are attached to the end points:

lower = 0.0
upper = 2.0

We establish the x-value of the mid-point and attach the name middle to it:
middle = (lower+upper)/2

This is exactly where we started last time, but we have attached Python
names to the values.

142

And now using Python!

lower = 0.0
upper = 2.0

middle = (lower+upper)/2

 143

143

And now using Python — 2

middle**2 < 2.0

True

lower = middle

print(lower, upper)

2.01.0

Next, we find the y‑value corresponding to the mid-point (by squaring the
x‑value 1.0) and ask if it is less than 2.0, the number whose square root we
are looking for.

middle**2 < 2.0
Recall that this will return a Python boolean value: True or False.

The squared value is 1.0 which is less than 2.0 (i.e. we get True) so we
raise the lower limit of the interval to the mid-point.

lower = middle
In this example we print the x‑value at each end of the interval to track our
progress.

 144

144

And now using Python — 3

middle = (lower+upper)/2

print(middle**2)middle,

2.251.5

So we do it again.
We re-calculate the x‑value for the mid-point. Note that because we
changed the value the name lower was attached to the Python instruction is
identical to the one we gave first time round:

middle = (lower+upper)/2
We do some additional printing to track progress.

 145

145

And now using Python — 4

middle**2 < 2.0

False

upper = middle

print(lower, upper)

1.51.0

Again, we ask if the mid-point’s y‑value (i.e. its x‑value squared) is above or
below our target of 2.0:

middle**2 < 2.0
and this time get a boolean False. Because the value is greater than 2.0
(our test evaluates to False) we change the value of the upper bound of the
interval by attaching the name upper to the x‑value of the mid-point:

upper = middle
The values being handled are exactly the same as they were when we did it
as “raw maths” but this time they have names.

 146

146

And now using Python — 5

middle = (lower+upper)/2

print(middle**2)middle,

1.56251.25

We now do a third iteration.

 147

147

And now using Python — 6

middle**2 < 2.0

True

lower = middle

print(lower, upper)

1.51.25

This time the test evaluates to True so we change lower.

 148

148

And now using Python — 7

middle = (lower+upper)/2

print(middle**2)middle,

1.8906251.375

Fourth iteration.

 149

149

And now using Python — 8

middle**2 < 2.0

True

lower = middle

print(lower, upper)

1.51.375

And another True so we change lower again.

And that's enough of stepping through it manually.

 150

150

Looking at the Python code
lower = 0.0
upper = 2.0

middle = (lower+upper)/2
print(middle, middle**2)

middle**2 < 2.0

lower = middle upper = middle
?✔ ✘

print(lower, upper)

Let’s look at the Python code we have used.
We started by initializing our interval of uncertainty:

lower = 0.0
upper = 2.0

Then we started the operations we would repeat by calculating the x‑value
of the mid-point:

middle = (lower+upper)/2
We squared this and compared the squared y‑value with 2.0, our target
value:

middle**2 < 2.0
and, based on whether this evaluated to True or False we ran either:

lower = middle
or:

upper = middle
Then we ran the iteration again.

 151

151

Looking at the Python structures
lower = 0.0
upper = 2.0

middle = (lower+upper)/2
print(middle, middle**2)

middle**2 < 2.0

lower = middle upper = middle
?✔ ✘

print(lower, upper)

Set up

Loop

Choice

Structurally, we need to be able to do two things beyond our current
knowledge of Python. We need to be able to run certain instructions time
and time again (“looping”) and we need to be able to choose one of two
different actions depending on whether a boolean value is True or False.

 152

152

Looping

Before

Loop test

Loop body

After

✘ ✔

Should the
loop run
(again)?

What is
run each
loop?

We will address looping first.
A loop has a number of components.
Strictly not part of the loop are the “before” and “after” sections but these
give context and may use values needed by the loop.
The loop itself must have some sort of test to indicate whether the loop
should run again or whether the looping can stop and control can pass to
the “after” code.
Then there must be the set of instructions that will be run each time the loop
repeats. We call this the “body” of the loop.

 153

153

Loop example: Count from 1 to 10

number = 1

number <= 10

print(number)
number += 1

print('Done!')

✘ ✔

Before

Loop test

Loop body

After

✘ ✔

Let’s consider an example that’s simpler than our square root loop: counting
from 1 to 10.
Our “before” block initializes the attachment of a name number to a value 1:

number = 1
Our test sees if number is attached to a value less than or equal to 10 (our
final value):

number <= 10
Recall that this evaluates to a boolean value.
If the test evaluates to True then we run the loop body. This has two lines,
the first to print the value of number and the second to increase it by one:

print(number)
number += 1

If the test evaluates to False then we don’t loop and exit the structure. We
have a pointless print statement as a place-holder for more substantive
code in serious scripts:

print('Done!')
This is what we want to encode in Python.

 154

154

Loop example: Count from 1 to 10

number = 1

number <= 10

print(number)
number += 1

print('Done!')

✘ ✔

number = 1

while

print(number)
number += 1

print('Done!')

:number <= 10

␣␣␣␣
␣␣␣␣

This is how we encode the structure in Python. We will examine it element
by element, but at first glance we observe a “while” keyword and a colon
on either wise of the test and the loop body being indented four spaces.

 155

155

Loop test: Count from 1 to 10

number = 1

while

print('Done!')

:number <= 10

“while” keyword

loop test

colon

print(number)
number += 1

␣␣␣␣
␣␣␣␣

We will start by looking at what we have done to the test. The test itself is
number <= 1

which is a Python expression that evaluates to a boolean, True or False.

We precede the test expression with the Python keyword “while”. This is
what tells Python that there’s a loop coming. It must be directly followed by
an expression that evaluates to a Boolean.
We follow the test expression with a colon. This is the marker that the
expression is over and must be the last element on the line.
Note that the test evaluates to True for the loop to be run and False for the
loop to quit. We are testing for “shall the loop keep going” not “shall the loop
stop”. Python tests for while, not until.

 156

156

Loop body: Count from 1 to 10

number = 1

while

print('Done!')

:number <= 10

loop body

indentation

print(number)
number += 1

␣␣␣␣
␣␣␣␣

The loop body, the code that is repeated, appears on the lines following the
“while line”. Both its lines are indented by four spaces each.

Note that the “after” section is not indented.

 157

157

number = 1

while number <= 10 :

 print(number)
 number += 1

print('Done!')

Loop example: Count from 1 to 10

while1.py

$

1
2
3
4
5
6
7
8
9
10
Done!

python3 while1.py

$

First let’s check that this really works. In the file while1.py in your home
directories you will find exactly the code shown in the slide. Run it and watch
Python count from 1 to 10.

 158

158

Python’s use of indentation

number = 1

while number <= 10 :

p

␣␣␣␣
␣␣␣␣

print(number)
number += 1

Four spaces’ indentation
indicate a “block” of code.

The block forms
the repeated lines.

The first unindented line
marks the end of the block.

rint('Done!')

The four spaces of indentation are not cosmetic. A sequence of lines that
have the same indentation form blocks in Python and can be thought of as a
single unit of code. In this case both lines get run (again) or neither of them
do.
The indented block is ended by the first line that follows it with no
indentation.

 159

159

c.f. “legalese”

1
1(a)

1(b)
1(b)(i)

1(b)(ii)

1(b)(iii)

1(c)
2

3

If this seems a little alien consider the “legalese” of complex documents.
They have paragraphs, sub-paragraphs and sub-sub-paragraphs etc., each
indented relative to the one containing them.

 160

160

Other languages

Shell

C

while ...
do
␣␣␣␣...
␣␣␣␣...
done

while ...
{
␣␣␣␣...
␣␣␣␣...
}

do ... done

{ ... }

Syntax

Syntax

␣␣␣␣...

␣␣␣␣...

Clarity

Clarity

Marking blocks of code is one of the places where computing languages
differ from one another.
Some have special words that appear at the start and end of blocks like “do”
and “done”. Others use various forms of brackets like “{” and “}”.

Interestingly, programmers in these languages typically also indent code
within the blocks for visual clarity. Python simply uses the indentation for its
core syntax rather than just for ease of reading.
Purely for interest, the Shell and C versions of while1.py are also in your
home directory as while1.sh and while1.c.

 161

161

Progress

while ... : before

while test :
␣␣␣␣action

1

␣␣␣␣action
2

␣␣␣␣action
3

afterwards

test to keep looping

code blocks

␣␣␣␣indentation

 162

162

Exercise 7

5 minutes

For each script:

Predict what it will do.

Run the script.

Were you right?

while2.py

while3.py

while4.py

while5.py␣␣␣␣

␣␣␣␣

␣␣␣␣

To kill a running script: Ctrl C+

while6.py

 163

163

1.51.375

Back to our square root example

1.0 2.0

1.0

0.0 2.0

2.0

1.0 1.5

0.5

1.25 1.5

0.25

0.125

×½

×½

×½

×½

uncertainty

1.0×10–15

tolerance

What we get

What we want

Now let’s return to our square root example. We have a loop the body of
which halves the length of the interval of uncertainty. We need to put this
into a Python loop so we need a corresponding loop test.
One typical approach is to test to see if the interval is longer than some
acceptable value. In this case we will demand that the interval have length
no longer than 10-15. (It will take 51 halvings to get from an initial length of
2.0 to something less than 10-15.)
A common name for an “acceptable uncertainty” is a “tolerance”: the amount
of uncertainty we are prepared to tolerate.

 164

164

Keep looping while … ?
tolerance>uncertainty

while uncertainty > tolerance :
␣␣␣␣
␣␣␣␣
␣␣␣␣
␣␣␣␣

Do stuff.

We need a Python test for this. Recall that Python needs a test that
evaluates to True for the loop body to run. Our test then is ”is the current
uncertainty larger than the acceptable tolerance?”
We will set a name, tolerance, to have the value 1.0e-15, calculate an
uncertainty each loop and perform the test

uncertainty > tolerance
If this is True then we need to keep going.

If it is False then we can stop.

 165

165

Square root: the loop

lower = 0.0
upper = 2.0

tolerance = 1.0e-15

uncertainty = upper - lower

while uncertainty > tolerance :

middle = (lower + upper)/2

uncertainty = upper - lower
print(lower, upper)

?

Set up

Loop

Choice

So, if we return to our basic structure we can now see how Python’s while
syntax fits in.
We establish a tolerance.
We establish an initial uncertainty.
We test for

uncertainty > tolerance
as the loop test.
We recalculate the uncertainty at the end of the loop block for use in the
next round of the test.

All we have to do now is to add in the choice block.

 166

166

Choosing

middle**2 < 2.0

lower = middle upper = middle
?✔ ✘

Choice

middle**2 < 2.0 True Falseor

True

False

lower = middle

upper = middle

Once again we have a test followed by some actions. This time, however,
the test doesn’t decide whether or not to run a block of code again, but
rather which of two blocks of code to run once.
Our test ― a Python expression that evaluates to a boolean ― is simply:

middle**2 < 2.0
and if this evaluates to True then we change the lower bound:

lower = middle
and if it evaluates to False then we change the upper bound:

upper = middle
Either way, once one or the other has run we move on and do not return to
the test.

 167

167

Simple example

text = input('Number? ')
number = int(text)

if number % 2 == 0:
 print('Even number')
else:
 print('Odd number')

print('That was fun!')

ifthenelse1.py

$

Number?
Even number
That was fun

python3 ifthenelse1.py

$

Number?
Odd number
That was fun

python3 ifthenelse1.py

8

7

Again, we will look at an example that demonstrates just the structure.
There is a script in your home directories called ifthenelse1.py which
illustrates the structure on its own.
Mathematical note:
The script tests for a number being even by using the “remainder” operator
“%” to calculate the remainder if we divide by 2 and testing for that remainder
being 0.

 168

168

if…then… else… ― 1

if

else :

␣␣␣␣print('Even number')

␣␣␣␣upper = middle

:number % 2 == 0

if keyword

Test

Colon

print('That was fun!')

The first line of the test looks very similar to the while syntax we have
already seen. In this case, however, it uses a new keyword: “if”.

The if keyword is followed by the test: a Python expression that evaluates
to a boolean.
The line ends with a colon.

 169

169

if…then… else… ― 2

if

else :

␣␣␣␣ print('Even number')

␣␣␣␣upper = middle

:number % 2 == 0

Run if test is True

Indentation

print('That was fun!')

The test line is immediately followed by the block of code that is run if the
test evaluates as True.

Because it is a block of code it is indented by four spaces to mark it as a
block. This example has a single line, but the block can be as long as you
want.
This block is sometimes called the “then-block” because “if the test is True
then run this block”.

 170

170

if…then… else… ― 3

if

else :

␣␣␣␣print('Even number')

␣␣␣␣ upper = middle

:number % 2 == 0

else: keyword

Run if test is False

Indentation
print('That was fun!')

After the then-block comes another new keyword, “else:”. This is not
indented and is level with the “if” to indicate that it is not part of the then-
block.
It is then followed by a second block of code, know as the “else-block”. This
is the code that is run if the test evaluates as False.

Again, because it is a block of code it is indented.
The else keyword and its corresponding block are optional. You can do
nothing if the test returns False. The then-block is compulsory.

 171

171

if…then… else… ― 4

if

else :

␣␣␣␣print('Even number')

␣␣␣␣ upper = middle

:number % 2 == 0

Run afterwards
regardless of test

print('That was fun!')

After the else-block the script continues. The print line is unindented so is
not part of the else-block. This line is run regardless of the result of the test.

 172

172

Our square root example

middle = (lower + upper)/2

if

else :

print(lower, upper)

␣␣␣␣lower = middle

␣␣␣␣upper = middle

Before

:middle**2 < 2.0

After

if… block

Let’s return to our square root example.
Here we have the creation of a mid-point x-value followed by an if-test on it:

middle = (lower+upper)/2
if middle**2 < 2.0:

This switches between two single-line code blocks. If the test evaluates to
True then the then-block is run:

lower = middle
and if it evaluates to False then the else-block is run:

else:
upper = middle

After one or other is run the print statement is always run:
print(lower, upper)

All we have to do now is to fit it inside our while loop.

 173

173

Progress

if ... : before

if test :
␣␣␣␣action

1

␣␣␣␣action
2

else:
␣␣␣␣action

3

afterwards

else:

choice of two
code blocks

␣␣␣␣indentation

 174

174

Exercise 8

5 minutes

For each script:

Predict what it will do.

Run the script.

Were you right?

ifthenelse2.py

ifthenelse3.py

ifthenelse4.py

␣␣␣␣

␣␣␣␣

␣␣␣␣

 175

175

Back to our example

lower = 0.0
upper = 2.0

tolerance = 1.0e-15

uncertainty = upper - lower

while uncertainty > tolerance :

middle = (lower + upper)/2

uncertainty = upper - lower
print(lower, upper)

if middle**2 < 2.0 :

else :

upper = middle

lower = middle
Doubly
indented

if starts
indented

So how do we embed an if-test with its two code blocks inside a while-loop
as the loop’s body?
The body of the while-loop is indented four spaces. So we start the if-test
indented four spaces and make its indented blocks doubly indented.

 176

176

Levels of indentation

lower = 0.0
upper = 2.0

tolerance = 1.0e-15

uncertainty = upper - lower

while uncertainty > tolerance :

middle = (lower + upper)/2

uncertainty = upper - lower
print(lower, upper)

if middle**2 < 2.0 :

else :

upper = middle

lower = middle

␣␣␣␣

␣␣␣␣

␣␣␣␣␣␣␣␣

␣␣␣␣

␣␣␣␣␣␣␣␣

␣␣␣␣
␣␣␣␣

4 spaces

8 spaces

So if our standard indentation is four spaces then the doubly indented
sections are indented eight spaces.
This is a simple example with only two levels of indentation. Python can
‘nest’ blocks much further than this.

 177

177

Trying it out

tolerance = 1.0e-15
lower = 0.0
upper = 2.0
uncertainty = upper - lower

while uncertainty > tolerance :
 middle = (lower + upper)/2

 if middle**2 < 2.0:
 lower = middle
 else:
 upper = middle

 print(lower, upper)
 uncertainty = upper - lower

sqrt1.py

$

1.0 2.0
1.0 1.5
1.25 1.5
1.375 1.5
1.375 1.4375
1.40625 1.4375
1.40625 1.421875

...

1.414213... 1.414213...

python3 sqrt1.py

☺
The file sqrt1.py in your home directories contains the code as described
in the slide. It produces a very nice approximation to the square root of 2.

 178

178

Script for the square root of 2.0

lower = 0.0
tolerance = 1.0e-15

uncertainty = upper - lower

while uncertainty > tolerance :

middle = (lower + upper)/2

uncertainty = upper - lower
print(lower, upper)

upper = 2.0

if middle**2 < 2.0 :

else :

upper = middle

lower = middle

␣␣␣␣

␣␣␣␣

␣␣␣␣␣␣␣␣

␣␣␣␣

␣␣␣␣␣␣␣␣

␣␣␣␣
␣␣␣␣

√2.0

√2.0

So now we have the script for the square root of 2. The next thing to do is to
generalize it to produce square roots of any number.

 179

179

Input target

text = input('Number? ')
number = float(text)

if middle**2 < number :

…

Obviously we have to input the number whose square root we want. We
have already seen how to do this and to convert it from a string into a
floating point number:

text = input('Number? ')
number = float(text)

Once we have the number the test
middle**2 < 2.0

is straightforwardly extended to
middle**2 < number

 180

180

Initial bounds?

x > 1.0 1.0 < √x < x

1.0 > x 1.0 > √x > x

lower = ?
upper = ?

if...then...else...

We have to set initial bounds for our interval of uncertainty.
This is where it is important that you think about the problem before coding.
If the number whose square root is sought is less than 1 then the square
root is bigger than the number and less than 1. If it is larger than 1 then its
square root is less than the number and bigger than 1.
In Python terms this means we can test for the number being less than 1
and set the bounds accordingly.

 181

181

Initial bounds

if number < 1.0 :
␣␣␣␣lower = number
␣␣␣␣upper = 1.0
else :
␣␣␣␣lower = 1.0
␣␣␣␣upper = number

It looks like this.

 182

182

Generic square root script?
text = input('Number?␣')
number = float(text)

if number < 1.0:
␣␣␣␣lower = number
␣␣␣␣upper = 1.0
else:
␣␣␣␣lower = 1.0
␣␣␣␣upper = number

tolerance = 1.0e-15
uncertainty = upper - lower

while uncertainty > tolerance:
␣␣␣␣middle = (lower+upper)/2.0
␣␣␣␣if middle**2 < number:
␣␣␣␣␣␣␣␣lower = middle
␣␣␣␣else:
␣␣␣␣␣␣␣␣upper = middle

␣␣␣␣uncertainty = upper - lower

print(lower, upper)

User input

Initialization

Processing

Output sqrt2.py

This gives us enough of a script to see the overarching structure of a script:
We start with getting the data we need from the outside world. (“input”)
Then we set up any initial state we need based on that. (“initialization”)
Then we do our processing.
Finally we reveal our results. (“output”)
Typically the processing phase takes longest to run, but note that, as here, it
is often not the majority of the lines of code.

 183

183

exit()␣␣␣␣

Negative numbers?

Need to catch negative numbers

if number < 0.0:
␣␣␣␣print('Number must be positive!')

Quit immediately

 "else" is optional

We can improve our code. A step missing from the previous script is “input
validation” where we check that the input makes sense. We ought to check
that we have not been asked to generate the square root of a negative
number.

 184

184

“Chained” tests

text = input('Number?␣')
number = float(text)

if number < 0.0:
␣␣␣␣print('Number must be positive!')
␣␣␣␣exit()

if number < 1.0:
␣␣␣␣lower = number
␣␣␣␣upper = 1.0
else:
␣␣␣␣lower = 1.0
␣␣␣␣upper = number

...

User input

Input validation

Initialization

The input validation phase comes straight after the input itself.

 185

185

elif

“Chained” tests ― syntactic sugar

text = input('Number?␣')
number = float(text)

if number < 0.0:
␣␣␣␣print('Number must be positive!')
␣␣␣␣exit()

number < 1.0:
␣␣␣␣lower = number
␣␣␣␣upper = 1.0
else:
␣␣␣␣lower = 1.0
␣␣␣␣upper = number

...

elif: “else if”

sqrt3.py

However, it can be integrated with the initialization phase, and often is. After
all, if you can’t initialize from the input then the input isn’t valid.
This leads us to a multi-stage test of the number whose square root we
want:
Is it less than 0?
If not, is it less than 1?
If not then…
Python has an extension to the simple if…else… test to allow for the “if
not then is it…” situation.
“elif” introduces a test and a corresponding block of code. The code is
called only if the previous if… test failed and its own test passes.

 186

186

Without elif…

text = input('Number?␣')
number = float(text)

if number < 0.0:
␣␣␣␣print('Number is negative.')
else:
␣␣␣␣if number < 1.0:
␣␣␣␣␣␣␣␣print('Number is between zero and one.')
␣␣␣␣else:
␣␣␣␣␣␣␣␣if number < 2.0:
␣␣␣␣␣␣␣␣␣␣␣␣print('Number is between one and two.')
␣␣␣␣␣␣␣␣else:
␣␣␣␣␣␣␣␣␣␣␣␣if number < 3.0:
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣print('Number is between two and three.')
␣␣␣␣␣␣␣␣␣␣␣␣else:
␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣␣print('Number is three or more.')

Stacked clauses get unwieldy

To take an extreme example, consider this multi-level test. The continual
nesting inside the else clauses causes the whole script to drift to the right.

 187

187

With elif…

text = input('Number?␣')
number = float(text)

if number < 0.0:
␣␣␣␣print('Number is negative.')
elif number < 1.0:
␣␣␣␣print('Number is between zero and one.')
elif number < 2.0:
␣␣␣␣print('Number is between one and two.')
elif number < 3.0:
␣␣␣␣print('Number is between two and three.')
else:
␣␣␣␣print('Number is three or more.')

Applying elif causes everything to slide back into place.

 188

188

Progress

Nested structures

if … :
 …
elif … :
 …
elif … :
 …
else:
 …

while … :
 if … :

Chained tests

Testing inputs to scripts

exit()

 189

189

Exercise 9

10 minutes

exercise9.py

1. Edit the square root script to catch negative numbers.

Only attempt each part after
you have the previous part working!

2. Edit the square root script to ask for the tolerance.

3. Edit the square root script to catch negative tolerances.

The minimum tolerance used in this example will work for target values up to
a limit. In practice the minimum possible tolerance scales with the target
square root, but this is a course on Python, not numerical analysis.

 190

190

Comments

We have written our first real Python script

What did it do?

Why did it do it?

Need to annotate the script

sqrt3.py is a real program.

Now imagine you pass it to someone else or put it away for twelve months
and come back to it forgetting how you wrote it in the first place.
Chances are that the reader of your script might like some hints as to what it
is doing and why.
“Comments” in computer programs are pieces of text that describe what ios
going on without getting in the way of the lines of code that are executed.

 191

191

Python comment character

The “hash” character

Lines starting with “#” are ignored

Partial lines starting “#” are ignored

Used for annotating scripts

#
a.k.a. “pound”, “number”, “sharp”

Python, in common with most other scripting languages, uses the hash
character to introduce comments. The hash character and everything
beyond it on the line is ignored.
(Strictly speaking the musical sharp character “ ” is not the same as “#” but ♯
people get very sloppy with similar characters these days. This isn’t at all
relevant to Python but the author is an annoying pedant on the correct use
of characters. And don’t get him started on people who use a hyphen when
they should use an en-dash or em-dash.)

 192

192

Python commenting example

Script to calculate square roots by bisection
(c) Bob Dowling 2012. Licensed under GPL v3.0
text = input('Number?␣')
number = float(text) # Need a real number

Test number for validity,
set initial bounds if OK.
if number < 0.0:
␣␣␣␣print('Number must be non-negative!')
␣␣␣␣exit()
elif number < 1.0:
␣␣␣␣lower = number
␣␣␣␣upper = 1.0
else:
␣␣␣␣lower = 1.0
␣␣␣␣upper = number

This is what a commented script looks like.

 193

193

On a real Unix system…

#!/usr/bin/python3

Script to calculate square roots by bisection
(c) Bob Dowling 2012. Licensed under GPL v3.0
text = input('Number?␣')
number = float(text) # Need a real number

Magic line for executable files

$

instead of

fubar.py

$ python3 fubar.py

You may encounter a “hash pling“ first line in many imported Python scripts.
This is part of some “Unix magic” that lets us simplify our command lines.
We can’t demonstrate it here because the MCS file server doesn’t support
Unix semantics.

 194

194

Progress

Comments #“#” character

 195

195

Exercise 10

2 minutes

Comment your square root script from exercise 9.

 196

196

Recap: Python types so far

Whole numbers

Floating point numbers

Text

Booleans

-127

3.141592653589793

'The cat sat on the mat.'

True False

Complex numbers (1.0 + 2.0j)

We are about to introduce a new Python type, so we will take a moment to
remind ourseoves of the various Python types we have met already.

 197

197

Lists

['hydrogen', 'helium', 'lithium', 'beryllium',
'boron', …, 'thorium', 'protactinium', 'uranium']

[-3.141592653589793, -1.5707963267948966,
0.0, 1.5707963267948966, 3.141592653589793]

[2, 3, 5, 7, 11, 13, 17, 19]

The new Python type we are going to meet is called a “list”.

 198

198

What is a list?

A sequence of values

Individual value identified
by position in the sequence

The names of the elements

“helium” is the name of the
second element

Values stored in order Atomic number order

hydrogen, helium, lithium, beryllium, …, protactinium, uranium

So what is a list?
A list is simply a sequence of values stored in a specific order with each
value identified by its position in that order.
So for an example consider the list of names of the elements up to uranium.

 199

199

What is a list?

A sequence of values

Individual value identified
by position in the sequence

The prime numbers
less than sixty

7 is the fourth prime

Values stored in order Numerical order

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59

Or the list of primes up to 60.
Note that a list must be finite.

 200

200

Creating a list in Python

>>> primes = [2, 3, 5, 7, 11, 13, 17, 19]

>>> primes
[2, 3, 5, 7, 11, 13, 17, 19]

>>> type(primes)
<class 'list'>

The whole list

A Python type

A literal list

So how might we do this in Python?
We will create a list in Python of the primes less than 20. We can do this in a
single line as shown.
A list in Python is a single Python object, albeit with multiple contents, and
has its own type, unsurprisingly called “list”.

 201

201

How Python presents lists

[]1917,13,11,7,5,3 ,,2

Square brackets
at the ends

Commas between items

Python presents (and accepts) lists as a series of values separated by
commas, surrounded by square brackets.

 202

202

Square brackets

primes = [2, 3, 5, 7, 11] Literal list

We are going to meet square brackets used fr a lot of things so I will build
up a summary slide of their various uses. Here is use 1.

 203

203

Python counts from zero

[]1917,13,11,7,5,3 ,,2

76543210“index”

“value”

We still need to get at individual items in the list. Each is identified by its
position in the list.
Python, in common with many programming languages (but not all) starts its
count from zero. The leading element in the list is “item number zero”. The
one that follows it is “item number one” and so on. This number, the position
in the list counting from zero, is called the “index” into the list. The plural of
“index” is “indices”.
To keep yourself sane, we strongly recommend the language “item
number 3” instead of “the fourth item”.

 204

204

Looking things up in a list

>>> primes = [2, 3, 5, 7, 11, 13, 17, 19]

[]1917,13,11,7,5,3 ,,2

76543210

>>> primes

2

>>>

17

]0[

index

primes]6[

square brackets

So, how do we get “item number 5” from a list?
We can follow the list (or, more usually, a name attached to the list) with the
index in square brackets.

 205

205

Square brackets

primes = [2, 3, 5, 7, 11] Literal list

primes[3] Index into list

And this is the second use of square brackets.

 206

206

Counting from the end

>>> primes = [2, 3, 5, 7, 11, 13, 17, 19]

[]1917,13,11,7,5,3 ,,2

76543210

>>>

19

primes]-1[

getting at the last item

-1-2-3-4-5-6-7-8

Python has a trick for getting at the last element of the list. Negative indices
are also valid and count backwards from the end of the list. Typically the
only case of this that is used in paractice is that the index -1 gets the last
element of the list.

 207

207

Inside view of a list

list

8

int 19

…

primes

int 17

int 3

int 2 primes[0]

primes[1]

primes[6]

primes[7]

We’ve seen these box diagrams for simple Python types already. The
structures for lists are a little more complicated but only a little. The list type
records how long it is and an ordered set of references to the actual objects
it contains.

 208

208

Length of a list

primes

list

8
>>> len
8

(primes)

0

7
Maximum
index is 7

len() function:
length of list

Note that the length of a list is the number of items it contains. The largest
legitimate index is one less than that because indices count from zero.

 209

209

Changing a value in a list

>>> data = ['alpha', 'beta', 'gamma']

>>> data[2]

'gamma'

>>> data[2] = 'G'

>>> data[2]

'G'

>>> data

['alpha', 'beta', 'G']

The list

Initial value

Change value

Check change

Changed list

So far we have created lists all in one go by quoting a literal list. We can use
the indexing notation (square brackets) to change items in a list too.

 210

210

Changing a value in a list ― 1

>>> data = ['alpha', 'beta', 'gamma']

list

3 str 5 a l p h a

str 4 b e t a

str 5 g a m m a

Right to left

We can track what happens in that example in some detail. We will start with
the first line, defining the initial list.
As ever, Python assignment is done right to left. The right hand side is
evaluated as a list of three items, all of themstrings.

 211

211

Changing a value in a list ― 2

>>> data = ['alpha', 'beta', 'gamma']

data

list

3 str 5 a l p h a

str 4 b e t a

str 5 g a m m a

Right to left

This then has the name “data” attached to it.

 212

212

Changing a value in a list ― 3

>>> data[2] = 'G'
Right to left

data

list

3 str 5 a l p h a

str 4 b e t a

str 5 g a m m a

str 1 G New value

Now we come to the second line which changes one of these list items.
The right hand side is evaluated as a string containing a single characters.
That object gets created.

 213

213

Changing a value in a list ― 4

>>> data[2] = 'G'
Right to left

data

list

3 str 5 a l p h a

str 4 b e t a

str 5 g a m m a

str 1 G
No longer
referenced

The assignment causes the reference within the string to be changed to
refer to the new string and to stop referring to the previous one, “gamma”.

In this case there are now no references to the “gamma” string.

 214

214

Changing a value in a list ― 5

>>> data[2] = 'G'
Right to left

data

list

3 str 5 a l p h a

str 4 b e t a

str 1 G

Python then clears out the memory used for that old string so that it can
reuse it for something else. This process is called “garbage collection” in
computing.

 215

215

Removing an entry from a list ― 1

>>> del data[1]

data

list

3 str 5 a l p h a

str 4 b e t a

str 5 g a m m a

data[0]

data[1]

data[2]

✗

We can remove entries from the list too with the “del” keyword, just as we
removed names. The del keyword removes the reference from the list.

 216

216

Removing an entry from a list ― 2

>>> del data[1]

data

list

2 str 5 a l p h a

str 4 b e t a

str 5 g a m m a

data[0]

data[1]

No longer
referenced

This leaves the string “beta” no longer referenced by anything.

 217

217

Removing an entry from a list ― 3

>>> del data[1]

data

list

2 str 5 a l p h a

str 5 g a m m a

data[0]

data[1]

And garbage collection kicks in again.

 218

218

Running off the end

list

8

int 19

…

primes

int 17

int 3

int 2

primes[8]

We have remarked on a couple of occasions that the largest valid index is a
number one less than the length of the list.
So what happens if you ask for an index greater than the largest legal
value?

 219

219

Running off the end

>>> len(primes)

8

>>> primes[7]

19

>>> primes[8]

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list index out of range

Type of error Description of error

You get an error unsurprisingly.
The type of the error is an “IndexError” ― something went wrong with an
index.
The error message specifies that the index asked for was outside the valid
range.

 220

220

Running off the end

>>> primes[8] = 23

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
IndexError: list assignment index out of range

Same type
of error

Similar description of error
but with “assignment”

Note that we can’t use indicies beyond the limit to extend a list either.

 221

221

Progress

Lists

index

Count from zero

Length

Over-running

[2, 3, 5, 7, 11, 13, 17, 19]

primes[4]

primes[0]

len(primes)

primes[8]

Deletion del primes[6]

 222

222

Exercise 11

5 minutes

Track what the value of numbers is at each stage of this
sequence of instructions.

numbers = [5, 7, 11, 13, 17, 19, 29, 31]>>>

numbers[1] = 3>>>

del numbers[3]>>>

numbers[3] = 37>>>

numbers[4] = numbers[5]>>>

1

2

3

4

5

Do this by hand. After each line, work out what you think numbers will be
and then print it to see if you were right.
To find out, launch an interactive python3 and run each line followed by the
line print(numbers).

Alternatively, the script exercise11.py does it in a script.

 223

223

How can we add to a list?

list

8

int 19

…

int 17

int 2

list

9

int 19

…

int 17

int 2

int 23

?

Same list

Extra item

New length

So, how can we extend a list?

 224

224

Appending to a list

>>> primes

[2, 3, 5, 7, 11, 13, 17, 19]

>>> primes

>>> primes

[2, 3, 5, 7, 11, 13, 17, 19,

(23)append.

The list is now updated

]23

A function built into a list

This is the Python syntax for appending an item to the end of a list. You
won’t recognise the syntax; it is something new.

 225

225

primes.append() ?

>>> primes (23)append.

The list

A connecting dot

append()

The value to append

All lists have this
function built in.

So we need to look at this new construction.
We have the list, “primes”, followed by a dot which acts as a connector.
This is followed by the name of a function, “append”. This function is not a
standard Python function like print() or len(). Instead it is a function
that is “built in” to the list itself. The list has its own function which appends
to that list.
Alternatively, think of “primes.append()” as a function that appends to
primes.

 226

226

“Methods”

(arguments)object function.

a function that has
special access to
the object’s data.

Behaves just
like a function

These built in functions are called “methods” or, more precisely, “methods of
the object” are used all over Python and are a general concept across an
entire type of programming called “object oriented programming”.

 227

227

Using the append() method

>>> print(primes)

[2, 3, 5, 7, 11, 13, 17, 19]

>>> primes (23)append.

>>> primes (29)append.

>>> primes (31)append.

>>> primes (37)append.

>>> print(primes)

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37]

The function doesn’t
return any value.

It modifies
the list itself.

We can use the append() method repeatedly to extend the list as far as we
want.

 228

228

Other methods on lists: reverse()

>>> numbers = [4, 7, 5, 1]

>>> numbers.reverse()

>>> print(numbers)

[1, 5, 7, 4]

The function doesn’t
return any value.

It modifies
the list itself.

append() is not the only method built into lists.

For example reverse() takes the list and reverses its contents.

Note that it doesn’t return a reversed list as a value; t doesn’t return
anything at all.
It silently reverses the content of the list itself.
Also note that it takes no argument; the brackets on the end of the function
are empty.

 229

229

Other methods on lists: sort()

>>> numbers = [4, 7, 5, 1]

>>> numbers.sort()

>>> print(numbers)

[1, 4, 5, 7]

Numerical order.

The function does not
return the sorted list.

It sorts the
list itself.

Similarly, the sort() method doesn’t return a sorted list but silently sorts
the list internally.

 230

230

Other methods on lists: sort()

>>> greek = ['alpha', 'beta', 'gamma', 'delta']

>>> greek.sort()

>>> print(greek)

['alpha', 'beta', 'delta', 'gamma']

Alphabetical order
of the words.

More or less any type can be sorted. Text sorting carries all the cautions
about the complexities of collation that we covered under comparisons.

 231

231

Other methods on lists: insert()

>>> greek = 'gamma',['alpha',

0 1 2

>>> greek.insert(

'delta']

Where to insert What to insert

'beta'1,)

>>> greek

['alpha', 'gamma', 'delta']'beta',

1
Displaced

0

The append() method sticks an item on the end of a list. If you want to
insert an item elsewhere in the list we have the insert() method.

The insert() method takes two arguments:

The first is the item to be inserted.
The second is in index where it should go. This does not replace the original
item but rather “shuffles up” all the items beyond it by one place to make
room.

 232

232

Other methods on lists: remove()

>>> numbers = [7, 4,

>>> numbers.remove

>>> print(numbers)

[7, 4,

7, 2, 5, 4]8,

(8)

7, 2, 5, 4]

c.f. del numbers[2]

Value to remove

Index to remove

There is a remove() method.

This is passed a value to remove from the list. It then removes that value
from the list, wherever it is in the list.
Contrast with with del where you had to know the index to remove.

 233

233

Other methods on lists: remove()

>>>

>>> numbers.remove

>>> print(numbers)

[7,

(4)

print(numbers)

[7, 7, 2, 5,4, 4]

7, 2, 5, 4]

Only the first instance is removed

There are two instances of 4.

If the value appears more than once in a list then only the first instance is
removed.
Trying to remove something that isn’t there will lead to an error.

 234

234

What methods are there?

>>> help(numbers)

Help on list object:

class list(object)
...
 | append(...)
 | L.append(object) -- append object to end
...

Pagination: ␣

B

next page

back one page

Q quit

That’s a lot of methods, and it’s only some of them. How can we know all of
them?
You can always ask for help on any Python object and you will be told all
about the methods it possesses. It is a very formal documentation but the
information is there.
Incidentally, Python uses a program to paginate its help output. press the
space bar to move on one page, “B” to move back a page and “Q” to quit.

 235

235

Help on a single method

>>> help(numbers.append)

Help on built-in function append:

append(...)
 L.append(object) -- append object to end

You can also get help on a single method which is often simpler to deal with.

 236

236

Sorting a list redux

>>> greek = ['alpha', 'beta', 'gamma', 'delta']

>>> greek.sort()

>>> print(greek)

['alpha', 'beta', 'delta', 'gamma']

Recall: greek.sort()
sorts the list “in place”.

We noted that the sort() method sorts the list itself. Experience shows that
sorting is one of those operations where people want a sorted copy of the
list quite often.

 237

237

Sorting a list redux: “sorted()”

>>> greek = ['alpha', 'beta', 'gamma', 'delta']

>>> print(sorted(greek))

>>> print(greek)

['alpha', 'beta', 'gamma', 'delta']

sorted() function
returns a sorted list…

['alpha', 'beta', 'delta', 'gamma']

…and leaves the
list alone

To assist with this, Python 3 offers a standalone function called sorted()
which makes a copy of the list and sorts that copy, leaving the original
unchanged.

 238

238

Adding to a list redux: “+”

>>> primes

[2, 3, 5, 7, 11, 13, 17, 19]

>>> primes

[2, 3, 5, 7, 11, 13, 17, 19,

[23, 29, 31]+

23, 29, 31]

Concatenation
operator

List to add

The list method we saw first appended a single item to the end of a list.
What happens if we want to add a whole list of items at the end?
In this regard, lists are like strings. The “+” operator performs concatenation
and creates a new list which is one concatenated after the other.

 239

239

Concatenation

>>> newlist

>>>

>>> primes

= primes + [23, 29, 31]

primes = primes + [23, 29, 31]

Create a new list

Update the list

[23, 29, 31]+=

Augmented assignment

We can use this to update a list in place. Note that the augmented
assignment operator “+=” also works and is more than syntactic sugar this
time. It is actually more efficient than the long hand version because it
updates the list in place rather than creating a new one.

 240

240

Creating lists from text ― 1

>>> list('Hello')

['H', 'e', 'l', 'l', 'o']

str 5 H e l l o

list

5

str 1 H

str 1 e

str 1 l

str 1 l

str 1 o

We ought to look at a couple of ways to create lists from text.
The first is to simply convert a string into a list with the list() function.

(As with all Python types, there is a function of the same name as the type
that converts into the type.)
Applying list() to a string gives a list of the characters in the string.

 241

241

Creating lists from text ― 2

>>> 'Hello, world!'

['Hello,', 'world!']

list

2

H e l l o , ␣ w o r l d !13str

str 6 H e l l o ,

str 6 w o r l d !

.split()

Built in method

Splits on spaces

The string type has methods of its own. One of these is split() which returns
a list of the components of the string as separated by white space.
The split() method can take an argument identifying other characters to
split on. If you want to get into more complex splitting of text we recommend
you investigate regular expressions or format-specific techniques (e.g. for
comma-separated values.

 242

242

Progress
“Methods”

append(item)
reverse()
sort()
insert(index,item)
remove(item)

Concatenation

+
+=

object.method(arguments)

[1,2,3] + [4,5,6]
primes += [29, 31]

Sorting list.sort()
sorted(list)

Help help(object)
help(object.method)

 243

243

Exercise 12

5 minutes

 244

244

Is an item in a list? ― 1

>>> odds = [3, 5, 7, 9] Does not include 2

>>> odds.remove(2)

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
ValueError:

Hard error

list.remove(x): x not in list

x must be in the
list before it can
be removed

Try to remove 2

✗

Recall that a list’s remove() method will give an error if the value to be
removed is not in the list to start with.
We need to be able to test for whether an item is in a list or not.

 245

245

Is an item in a list? ― 2

>>> odds = [3, 5, 7, 9]

>>> 2 in odds

False

>>> 3 in odds

True

>>> 2 not in odds

True

Python uses the keyword “in” for this purpose. It can be used on its own or
as part of “not in”. “value in list” evaluates to a boolean: True or
False.

 246

246

Precedence

x**y x*yx/yx%y x+yx-y+x-x

x==y x>yx>=yx!=y x<yx<=y

not x x or yx and y

First

Last

x not in y x in y

The list now contains
every operator we
meet in this course.

These operators fit naturally into the order of precedence. While Python
does contain other operators that belong in this list, we will not be meeting
them in this introductory course.

 247

247

Safe removal

if number in numbers :

numbers.remove(number)

while number in numbers :

numbers.remove(number)

What’s the
difference?

We now have a safe way to remove values from lists, testing before we
remove them.
Quick question: What’s the difference between the two code snippets in the
slide?

 248

248

Working through a list ― 1

e.g. Printing each element on a line

['The', 'cat', 'sat', 'on', 'the', 'mat.']

The
cat
sat
on
the
mat.

There is an obvious thing to want to do with a list, and that is to work
through each item in a list, in order, and perform some operation or set of
operations on each item.
In the most trivial case, we might want to print each item. The slide shows a
list of strings, probably from the split() of a string. How do we print each
item one after the other?

 249

249

Working through a list ― 2

e.g. Adding the elements of a list

[45, 76, -23, 90, 15]

203

What is the sum of an empty list? [] ?

Alternatively, we might want to accumulate the items in a list in some way.
For example, we might want to sum the numbers in a list. This is another
example of applying an operation to each item in a list. This time the
operation is folding the list items’ values into some final result.
In this case we would probably need an initial value of the result that it takes
before any items get folded into it. What is the sum of an empty list? Zero?
Is that an integer zero, a floating point zero, or a complex zero?

 250

250

Working through a list ― 3

e.g. Squaring every number in a list

[4, 7, -2, 9, 1]

[16, 49, 4, 81, 1]

Finally, we might want to convert one list into another where each item in the
output list is the result of some operation on the corresponding item in the
input list.

 251

251

The “for loop” ― 1

words ['The', 'cat', 'sat', 'on', 'the', 'mat.']=

for

␣␣␣␣

:wordsinword

print(word)

name of list list

A new Python
looping construct

print: What we want
to do with the list items.

Python has a construct precisely for stepping through the elements of a list.
This is the third and final construct we will meet in this course. We have
already seen if… and while… in this course. Now we meet for….

This a looping construct, but rather than repeat while a test evaluates to
True, it loops once for each item in a list. Furthermore it defines a name
which it attaches to one item after another in the list as it repeats the loop.

 252

252

The “for loop” ― 2

words ['The', 'cat', 'sat', 'on', 'the', 'mat.']=

for

␣␣␣␣

:wordsinword

print(word)

keywords

colon followed by
an indented block

We'll look at the expression one step at a time.
The expression is introduced by the “for” keyword.

This is followed by the name of a variable. We will return to this in the next
slide.
After the name comes the keyword “in”. We have met this word in the
context of lists before when we tested for an item's presence in a list. This is
a different use. We aren't asking if a specific value is in a list but rather we
are asserting that we are going to be processing those values that are in it.
After this comes the list itself, or more often the name of a list. All it has to
be is an expression that evaluates to a list.
The line ends with a colon.
The lines following the colon are indented marking the block of code that is
to be run once for each item in the list.

 253

253

word)

The “for loop” ― 3

words ['The', 'cat', 'sat', 'on', 'the', 'mat.']=

for :wordsinword

print(

Defining the loop variable

Using the loop variable

␣␣␣␣

Now let's return to the name between “for” and “in”.

This is called the “loop variable”. Each time the loop block is run this name
is attached to on item of the list. Each tim the loop is run the name is
attached to the next item in the list. The looping stops after the name has
been attached to the last item in the list.

 254

254

Running the “for loop”

list

6

str 3 T h e

str 3 c a t

str 3 s a t

str 2 o n

str 3 t h e

str 4 m a t .

words

word

for :wordsinword
word)print(␣␣␣␣

First loop

The first time the loop is run the “loop variable” name is attached to the first
element in the list.

 255

255

Running the “for loop”

list

6

str 3 T h e

str 3 c a t

str 3 s a t

str 2 o n

str 3 t h e

str 4 m a t .

words

word

for :wordsinword
word)print(␣␣␣␣

Second loop

The loop gets run again, but this time the loop variable name is attached to
the next element of the list.

 256

256

Running the “for loop”

list

6

str 3 T h e

str 3 c a t

str 3 s a t

str 2 o n

str 3 t h e

str 4 m a t .

words

word

for :wordsinword
word)print(␣␣␣␣

Third loop

And the next…

 257

257

Running the “for loop”

list

6

str 3 T h e

str 3 c a t

str 3 s a t

str 2 o n

str 3 t h e

str 4 m a t .

words

word

for :wordsinword
word)print(␣␣␣␣

Fourth loop

…and the next…

 258

258

Running the “for loop”

list

6

str 3 T h e

str 3 c a t

str 3 s a t

str 2 o n

str 3 t h e

str 4 m a t .

words

word

for :wordsinword
word)print(␣␣␣␣

Fifth loop

…and the next…

 259

259

Running the “for loop”

list

6

str 3 T h e

str 3 c a t

str 3 s a t

str 2 o n

str 3 t h e

str 4 m a t .

words

word

for :wordsinword
word)print(␣␣␣␣

Final loop

…until finally it is linked to the final element of the list.
The loop is not run again.

 260

260

The “for loop” for printing

word)

words ['The', 'cat', 'sat', 'on', 'the', 'mat.']=

for :wordsinword

print(␣␣␣␣

for1.py

There is a simple example of this in the file for1.py in your home
directories.

$ python3 for1.py
The
cat
sat
on
the
mat.
$

 261

261

The “for loop” for adding

numbers = [45, 76, -23, 90, 15]

for :in

total +=

total = 0

number numbers

print(total)

number

Set up before the loop

Processing in the loop

Results after the loop

␣␣␣␣

for2.py

Our second case was an “accumulator” adding the elements in a list.
Here we establish an initial start value for our total of 0 and give it the name
“sum”.

Then we loop through the elements in the list, adding their values to the
running total as we move through them.
The unindented line after the loop block marks the end of the loop block and
is only run after all the looping is completed. This prints out the value of the
total now that all the numbers in the list have been added into it.

$ python3 for2.py
203
$

 262

262

The “for loop” for creating a new list

numbers = [4, 7, -2, 9, 1]

for :in

squares.append(

squares = []

number numbers

print(squares)

Set up before the loop

Processing in the loop

Results after the loop

number**2)␣␣␣␣

for3.py

Our third example made a new list from the elements of an old list. For
example, we might want to take a list of numbers and produce the list of
their squares.
In this case the usual process is that rather than have an accumulator with
an initial value we start with an empty list and, as we loop through the input
values, we append() the corresponding output values.

$ python3 for3.py
[16, 49, 4, 81, 1]
$

 263

263

The loop variable persists!

numbers = [4, 7, -2, 9, 1]

for :in

squares.append(

squares = []

number numbers

print(

number**2)␣␣␣␣

)number

Loop variable only
meant for use in loop!

But it persists!

There is one nicety we should observe.
The loop variable was created for the purpose of running through the
elements in the list. But it is just a Python name, no different from the ones
we establish by direct assignment. While the for… loop creates the name it
does not clean it up afterwards.

 264

264

“for loop hygeine”

numbers = [4, 7, -2, 9, 1]

for :in

squares.append(

squares = []

number numbers

del

number**2)␣␣␣␣

number Delete it after use

It is good practice to delete the name after we have finished using it. So we
will follow our for… loops with a del statement.

This is not required by the Python language but we recommend it as good
practice.

 265

265

Progress

Testing items in lists

for loops

3 in [1,2,3,4]

total = 0
for number in [1,2,3,4]:
 total += number
del number

True

loop variables for number in [1,2,3,4]:
 total += number
del number

 266

266

Exercise 13

5 minutes

What does this print?

numbers = [0, 1, 2, 3, 4, 5]

total = 0
total_so_far = []

for number in numbers:
 total += number
 total_so_far.append(total)

print(total_so_far)

 267

267

“Sort-of-lists”

Python “magic”:

Treat it like a list and it will
behave like a useful list

What can “it” be?

We have seen already that every Python type comes with a function that
attempts to convert other Python objects into that type. So the list type
has a list() function.

However, with lists Python goes further and puts a lot of work into making
this transparent and convenient. In very many cases in Python you can drop
an object into a list construct and it will act as if it was a list, and a
convenient list at that.

 268

268

Strings as lists

Recall:

list('Hello') ['H', 'e', 'l', 'l', 'o']

for letter in H
e
l
l
o

 print(letter)
:'Hello'

Gets turned
into a list. for4.py

For example, we know that if we apply the list() function to a string we
get the list of characters. But the Python “treat it like a list” magic means that
if we simply drop a string into the list slot in a for… loop then it is treated as
exactly that list of characters automatically.

$ python for4.py
H
e
l
l
o
$

 269

269

Creating lists of numbers

Built in to Python:

range(start,limit)

for number in
 print(number)

:range(3,8) 3
4
5
6
7
 8 not included

There are other Python objects which, while not lists exactly, can be treated
like lists in a for… loop. A very important case is a “range” object.

Note that the range defined by 3 and 8 starts at 3 but ends one short. This is
part of the whole “count from zero” business.

 270

270

ranges of numbers

Not actually lists: >>>

range(0,5)

range(0,5)

But close enough: >>>

[0, 1, 2, 3, 4]

list(range(0,5))

Treat it like a list and
it will behave like a list

Strictly speaking a range is not a list. But it is close enough to a list that
when you drop it into a for… loop, which is its most common use by far,
then it behaves like the list of numbers.

 271

271

Why not just a list?

Most common use: for number in
 …

range(0, 10000):

Inefficient to make a
huge list just for this

“iterator” : anything that can be treated like a list

list(iterator) Explicit list

So why does the range() function not just produce a list?

Well, its most common use is in a for… loop. Only one value is required at a
time. If the list was explicitly created t would waste computer memory for all
the items not in use at the time and computer time for creating them all at
once.
(Truth be told, for the purposes of this course you wouldn’t notice.)

 272

272

Ranges of numbers again

range(10) [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

range(3, 10) [3, 4, 5, 6, 7, 8, 9]

range(3, 10, 2) [3, 5, 7, 9]

via list()

Start at 0

Every nth number

range(10, 3, -2) [10, 8, 6, 4] Negative steps

The range() function can be used with different numbers of arguments.

A single argument gives a list running from zero to the number.
Two arguments gives the lists we have already seen.
A third argument acts as a “stride” and can be negative.

 273

273

Indices of lists
>>> primes = [2, 3, 5, 7, 11, 13, 17, 19]

[]1917,13,11,7,5,3 ,,2

76543210

>>> len(primes)

>>> list(range(

8

[0, 1, 2, 3, 4, 5, 6, 7]

8))

valid indices

Now that we have the range object we can move on to one of the most
important uses of it.
So far we have used a for… loop to step through the values in a list. From
time to time it is important to be able to step through the valid indices of the
list.
Observe that if we apply the range() function to a single number which is
the length of a list then we get a list of the valid indices for that list.

 274

274

Direct value or via the index?

primes = [2, 3, 5, 7, 11, 13, 17, 19]

for prime in primes:
 print(prime)

for index in range(len(primes)):
 print(primes[index])

Equivalent

Simpler

What good is a list of valid indices?
There are two ways to step through the values in a list. One is directly; this
is the method we have met already. The second is to step through the
indices and to look up the corresponding value in the list.
These are equivalent and the first method we have already seen is shorter
to write. So why bother with the second?

 275

275

Working with two lists: “dot product”

list1 = [0.4]0.0,0.3,

list2 = [0.6]0.5,0.2,

×××

0.240.00.06 + + 0.3

∙

Consider operations on two lists.
A concrete example might be the “dot product” of two lists. This is the sum
of the products of matching elements.
So

[0.3, 0.0, 0.4] · [0.2, 0.5, 0.6]
= 0.3×0.2 + 0.0×0.5 + 0.4×0.6
= 0.06 + 0.0 + 0.24
= 0.6
How might we implement this in Python?

 276

276

Working with two lists: indices

list1 = [0.3, 0.0, 0.4]
list2 = [0.2, 0.5, 0.6]

for index in

sum = 0.0

print(sum)

0 1 2

indices

:range(len(list1))

sum += list1[index]*list2[index]

Dealing with
values from
both lists at
the same time.

We can approach this problem by running through the valid indices and
looking up the corresponding values from each list in the body of the for…
loop.

 277

277

iter

4

2

A little more about iterators ― 1

str 5 a l p h a

str 4 b e t a

str 5 g a m m a

str 5 d e l t a

>>> greek = ['alpha', 'beta', 'gamma', 'delta']

>>> greek_i = iter(greek)

>>> next(greek_i)

'alpha'

>>> next(greek_i)

'beta'

Offset

We will look a little more closely at iterators so that we can recognise them
when we meet them later.
If we start with a list then we can turn it into an iterator with the iter()
function.
An iterator created from a list is essentially the same as the list with a note
of how far through the list we have read. This reference starts at zero,
obviously.
Python provides a next() function which can act on any iterator which
returns the next value (or the first if we’ve not started) and increments this
internal counter.

 278

278

iter

4

✗

A little more about iterators ― 2

str 5 a l p h a

str 4 b e t a

str 5 g a m m a

str 5 d e l t a

>>> next(greek_i)

'gamma'

>>> next(greek_i)

'delta'

>>> next(greek_i)

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>✗StopIteration

Note that next() complains vigorously if we try to run off the end. For this
course, where these errors are all fatal it means that we can’t use next()
directly. we don’t need to; we have the for… loop which handles the error
for us.

 279

279

Progress
Non-lists as lists

“Iterators”

range()

Indices of lists

Parallel lists

range(limit)
range(start,limit)
range(start,limit,step)

range(3,7) [3,4,5,6]

for letter in 'Hello':
 ...

for index in range(len(things)):

greek_i = iter(greek)
next(greek_i)

 280

280

Exercise 14

5 minutes

list1 = [0.4]0.0,0.3,

list2 = [0.6]0.5,0.2,

-0.2-0.50.1

Complete exercise14.py

0.040.250.01 0.3++

Difference

Square

Add

This exercise develops the Python to calculate the square of the distance
between two 3D points. We could use our square root Python from earlier to
calculate the distance itself but we will meet the “real” square root function
later in this course so we’ll hold back from that for now.

 281

281

List “slices”

primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]>>>

primes>>>

[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]

primes[3]>>>

7

primes[3:9]>>>

[7, 11, 13, 17, 19, 23]

The list

An item

Part of the list

There is one last piece of list Pythonry we need to see.
Python has a syntax for making copies of parts of lists, which it calls “slices”.
If, instead of a simple index we put two indices separated by a colon then
we get the sub-list running from the first index up to but excluding the
second index.

 282

282

Slices ― 1

primes = [2, 3, 5, 7, 11, 13, 17, 19, 29, 31]

3 9

[7,primes[3:9]

Item 9 not
included

23,

11, 13, 17, 19, 23]

primes[]9:3

to

from
Up to but not
including…

The last index is omitted as part of the “count from zero” thing.

 283

283

Slices ― 2
primes 7, 11, 13, 17, 19, 29, 31]23,

primes[]9:3 [7, 11, 13, 17, 19, 23]

[2, 3, 5,

primes[]9: [2, 3, 5, 7, 11, 13, 17, 19, 23]

primes[]:3 [7, 11, 13, 17, 19, 23, 29, 31]

primes[]: [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31]

We can omit either or both of the numbers. Missing the first number means
“from the start” and missing the second means “right up to the end”.

 284

284

Slices ― 3
primes 7, 11, 13, 17, 19, 29, 31]23,

primes[]9:3 [7, 11, 13, 17, 19, 23]

[2, 3, 5,

primes[:9:3 [7, 13, 19]]2

primes[:9:3]3 [7, 17]

We can also add a second colon which is followed by a stride, just as with
range().

 285

285

list

3

alphabet

letters

Copies and slices ― 1

letters = ['a','b','c']>>>

str 1 a

str 1 b

str 1 c

alphabet = letters>>>

Slices allow us to make copies of entire lists.
If we use simple name attachment then we just get two names for the same
list.

 286

286

list

3

alphabet

letters

Copies and slices ― 2

letters[0] = 'A'>>>

str 1 A

str 1 b

str 1 c

print(alphabet)>>>

['A', 'b', 'c']

Changing an item in the list via one name shows up via the other name.

 287

287

letters alphabet

list

3

Copies and slices ― 3

letters = ['a','b','c']>>>

str 1 a

str 1 b

str 1 c

alphabet = letters[:]>>>

list

3

Slices are
copies.

Slices are copies, though, so if we attach a name to a slice from a list —
even if that slice is the entire list ― then we have two separate lists each
with their own name attached.

 288

288

Copies and slices ― 4

letters[0] = 'A'>>>

print(alphabet)>>>

Slices are
copies.

['a', 'b', 'c']

letters

alphabet

list

3
str 1 a

str 1 b

str 1 c

list

3
str 1 A

So changes in one don’t show in the other because they are not the same
list.

 289

289

Progress

Slices

items[from:to]

items[:to]

items[from:]

items[:]

items[from:to:stride]

items[:to:stride]

items[from::stride]

items[::stride]

End-limit excluded

Slices are copies

 290

290

Exercise 15

3 minutes

Predict what this Python will do.
Then run it.
Were you right?

exercise15.py

foo = [4, 6, 2, 7, 3, 1, 9, 4, 2, 7, 4, 6, 0, 2]

bar = foo[3:12:3]

bar[2] += foo[4]

foo[0] = bar[1]

print(bar)

 291

291

list

5

Diversion: Lists and strings

Text: “a string of characters”

list()

str 1 H

str 1 e

str 1 l

str 1 l

str 1 o

str 5 H e l l o

Recall that text is called a “string” object because it is a “string of
characters”. We have already seen that there is a straightforward way, using
the list() function, to turn a string into the literal list of characters.

 292

292

Indexing into strings

'Hello, world!'[0]>>>

'H'

'Hello, world!'[:4]>>>

'Hell'

Simple indexing

Slicing

We can go further. It is actually possible to refer to single characters out of
strings by giving the position of that character as an index.
We can create substrings of the text by using slicing. Note that this gives a
second string, not a list.

 293

293

Strings are immutable

'Hello, world!'[0] = 'C'>>>

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support

item assignment

However, we cannot use the index notation on the left hand side of an
assignment.
We cannot use this to change the contents of a string. String objects in
Python are immutable, just like integers. If you want a different string you
have to create it from scratch.

 294

294

Files

.txt

.dat

.csv

Reading Writing

Input Output

Now we will look at something completely different that will turn out to be
just like a list: Files.
We want our Python scripts to be able to read in and write out files of text or
data.
We will consider reading files first and writing them second.

 295

295

Reading a text file

File name

File object

File contents

'treasure.txt'

book

'TREASURE ISLAND'

string

file

string

“opening” the file

reading from the file

Finished with the file

“closing” the file

Reading from a file involves four operations bracketing three phases.
We start with a file name. This is a string of characters.
I want to be pedantic about something in this course: a file name is not a
file. A file is a lump of data in the computer’s long-term store. A file name is a
short piece of text.
We link a file name to a file by a process called “opening the file”. This takes
the file name and creates a Python file object which will act as our conduit to
the file proper.
We will use this file object to read data from the file into the Python script.
When we are done reading data out of the file (via the file object) we will
signal to both python and the operating system that we are done with it by
“closing” it. This disconnects us from the file and we would have to re-open it
if we wanted more data.

 296

296

Opening a text file

>>> book)'r','treasure.txt'(open=

Read-only [text]

File name

Python function

Python file object

“mode”

book) 'treasure.txt'(open=

Read-only is
the default

We will start with opening a file.
We start with just the file name. This is passed into the open() function with
a second argument, 'r', indicating that we only want to read the file.

The function hooks into the operating system, which looks up the file by
name, checks that we have permission to read it, records the fact that we
are reading it, and hands us back a handle — the file object ― by which we
can access its contents.

 297

297

Reading from a file object

>>> line1 book=

File object

First line of file

>>> line1

' \n'TREASURE ISLAND

Includes the
“end of line”

next()

“next line, please”

Now that we have this hook into the file itself, how do we read the data from
it?
File objects are iterators, so we can apply the next() function to them to get
the next line, starting with the first.

 298

298

File object are iterable

>>> line2 next(book)=

Second line of file

>>> line2

'\n'

>>> line3 next(book)=

>>> line3

'PART ONE\n'

A blank line

Third line of file

Note that a “blank” line actually contains the end of line character. It has
length 1, and is not an empty string, length 0.

 299

299

Closing the file

>>> .close()book

Method built in to file object

Frees the file for other
programs to write to it.

When we are done reading the data we need to signal that we are done with
it. Python file objects have a close() method built into them which does
precisely this.

 300

300

The file object ― 1

>>> book

<_io.TextIOWrapper

 encoding='UTF-8'>
 name='treasure.txt'

Text Input/Output

File name

Character encoding:
how to represent
letters as numbers.

UTF-8 means “UCS Transformation Format ― 8-bit”.
UCS means “”Universal Character Set. This is defined by International
Standard ISO/IEC 10646, Information technology — Universal multiple-octet
coded character set (UCS). For more information than you could possibly
want on this topic visit the Unicode web pages: www.unicode.org.

 301

301

The file object ― 2

file 29 treasure.txt UTF-8

TREASURE ISLAND↵
↵
PART ONE↵
↵
The Old Buccaneer↵
↵

☞
Pointer to the file
on the file system

“offset”: how far into
the file we have read

File name

Text encoding

The Python file object contains a lot of different bits of information. There are
also lots of different sorts of file object, but we are glossing over that in this
introductory course.
What they share is a reference into the operating system’s file system that
identifies the specific file and acts as the declaration to the operating system
that the Python process is using the file.
They also share an “offset”. This is a number that identifies how far into the
file the program has read so far. The next() function reads from the offset
to the next new line and increases the offset to be the distance into the file
of the new line character.
The file object also records the name it was opened from and the text
encoding it is using to convert bytes in the file to characters in the program.

 302

302

Reading through a file

Treat it like a list and
it will behave like a list

list(file_object) List of lines in the file

>>> book = open('treasure.txt', 'r')

>>> lines = list(book)

>>> print(lines)

Given that a file is an iterator, we can simply convert it into a list and we get
the list of lines.

 303

303

Reading a file moves the offset
!

>>> book = open('treasure.txt', 'r')

>>> lines_a = list(book)

>>> print(lines_a)

>>> lines_b = list(book)

>>> print(lines_b)

[] Empty list

Huge output…

Note, however, that the act of reading the file to get the lines reads through
the file, so doing it twice gives an empty result second time round.

 304

304

Reading a file moves the offset

>>> book

>>> lines_a =

>>> print(lines_a)

>>>

>>> print(lines_b)

[]

…

File object starts with offset at start.

= open('treasure.txt', 'r')

Operation reads entire file from offset.

list(book)

lines_b = list(book)

Offset changed to end of file.

Operation reads entire file from offset.

So there's nothing left to read.

recall that the reading starts at the offset and reads forwards — to the end of
the file in this example. It also moves the offset to what was last read. So
the offset is changed to refer to the end of the file.

 305

305

Resetting the offset

>>> book

>>> lines_a =

>>> print(lines_a)

>>>

>>>

…

= open('treasure.txt', 'r')

list(book)

lines_b = list(book)

>>> print(lines_b)

book.seek(0) Set the offset explicitly

We can deliberately change the offset. For text files with lines of different
lengths this can be more complex that you would imagine. The only safe
value to change the offset to is zero which takes us back to the start of the
file.

 306

306

Typical way to process a file

book = open('treasure.txt', 'r')

for line in book :

…

Treat it like a list…

Being able to read a single line of a file is all very well. Converting an entire
book into a list of its lines might prove to be unwieldy.
What is the typical way to do it?
Given that files can be treated like lists the easiest way to process each line
of a file is with a for… loop.

 307

307

Example: lines in a file

book = open('treasure.txt', 'r')

n_lines = 0

for line in book :

n_lines += 1

print(n_lines)

Line count

Read each line of the file

Increment the count

Print out the count

book.close()

For example, we could just increment a counter for each line to count the
number of lines.

 308

308

Example: characters in a file

book = open('treasure.txt', 'r')

n_chars = 0

for line in book :

n_chars

print(n_chars)

len(line)

Number of characters on the line

Increase the count by that many

+=

book.close()

We could measure the length of the line and increment the counter by the
number of characters in the line to count the total number of characters in
the file.

 309

309

Progress

Opening file to read

Reading file

Closing file

File offset

book = open(filename, 'r')

book.close()

book.seek(0)

for line in book:
 ...

 310

310

Exercise 16

5 minutes

Complete a script to count
lines, words and characters
of a file.

exercise16.py

Hint: recall the split() method that strings have:
>>> 'Hello, world!'.split()
['Hello,', 'world!']

Once this script is complete you will have written an equivalent of the
standard (albeit simple) Unix command line tool “wc”:
$ python3 exercise16.py
File name? treasure.txt
treasure.txt 8734 67945 364589

$ wc treasure.txt
 8734 67945 364589 treasure.txt

 311

311

Writing files

File name

Data to write

File object

'treasure.txt'

book

'TREASURE ISLAND'

string

file

string

“opening” the file

writing to the file

Finished with the file

“closing” the file

Enough of reading files Robert Louis Stephenson has prepared for us. Let’s
write our own.
This is again a three phase process. We will open a file for writing, write to it
and then close it.

 312

312

Opening a text file for writing

>>> output)'w','output.txt'(open=

Open for
writing [text]

!
This will truncate
an existing file

Opening a file for writing is the same as opening it for reading except that
the mode is 'w' for writing.

If the file already exists then this overwrites it. The file gets truncated to zero
bytes long because you haven’t written to it yet.

 313

313

Opening a text file for appending

>>> output)'a','output.txt'(open=

Open for
appending [text]

If you do not want to overwrite the content of the file, you can also open a
file for appending with mode 'a'.

In all other regards appending will be the same as writing.

 314

314

Writing to a file object ― 1

>>> .writeoutput

Method built in
to file object

File object

(line1)

Data being written6

Number of
characters
actually written

>>> len(line1)

6

A writeable file object has a method write() which takes a text string
(typically but not necessarily a line) and writes it to the file.
This has a return value, which is the number of characters it managed to
write. Note that if there are “issues” (running out of space, malfunctions,
network interruptions) the system may not be able to write all the characters.
Typically it does, though, and the return code should match the length of the
line.

 315

315

Writing to a file object ― 2

>>> .writeoutput ('alpha Typical use: whole line.

Includes “end of line”

\n')

>>> .writeoutput ('be')

>>> .writeoutput ('ta\n')

Doesn’t have
to be whole lines

>>> .writeoutput ('gamma\ndelta\n')

Can be multiple lines

6

2

3

12

How the data is chopped up between writes is up to you.

 316

316

Closing the file object

>>> .close()output Vital for written files

It also has a close() method.

 317

317

Importance of closing
Data “flushed” to disc on closure.

Python script File object File system

write “flush”

!

Closing files is even more important for written files that read ones.
It is only when a file is closed that the data you have written to the Python
file object is definitely sent to the operating system’s file. This is a process
called “flushing the file to disc”.
Writing to disc is slow by computing standards so, for efficiency reasons,
systems like Python tend to wait until they have at least a certain amount of
data for a file before they flush it to disc. If your program exists before
flushing then the data may be lost. Closing a file signals that there will be no
more data coming for it so Python flushes whatever it has in hand to the disc
as part of the closure process.

 318

318

Importance of closing promptly !
Files locked for other access

open ['w'] open ['r']✗

(More a problem for Windows than Unix)

There’s more to it than just flushing, though. Holding a file open signals to
the underlying computer operating system that you have an interest in the
file. How the operating system reacts to this varies from system to system,
but Microsoft Windows™ will lock a file so that if you have it open for writing
nobody else can open it for reading, even if you don’t plan to write any more
to it than you have already.

 319

319

Writing non-text values

>>> output.write('Boo!\n') Writing text (str)

5

>>> output.write(42) Writing non-text (int)

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
TypeError: must be str, not int

write() only accepts text

✗

There is one last issue to address with writing data to files.
IUnlike the print() function, the write() function can only handle text
arguments. The print() function automatically converts non-text values;
write() does not. Therefore, we must do the conversion ourselves.

 320

320

Writing non-text values

>>> output.write(Convert to text: str()

2

>>> output.write('\n') Explicit end-of-line

1

str(42))

Text formatting (later in the course)
provides a more elegant solution.

We do this simply by calling the str() function which converts (almost)
anything directly into text.
We also need to explicitly add on the new line character to indicate the end
of the line with the data on it.

Later in this course we will see a system Python has for generating
formatted text. This will provide a more elegant solution but, until then, we
will make do with str() and \n.

 321

321

Progress

Opening files for writing

Explicit ends of lines

book = open(filename, 'w')

book.write('\n')

Writing data book.write(str(data))

Writing text book.write(text)

Closing the file is important book.close()

 322

322

Exercise 17

5 minutes

The script exercise17.py prints
a series of numbers ending in 1.

Change the script to write to a file called
output.txt instead of printing to the console.

 323

323

Functions

y = f(x)

 324

324

Functions we have met

print(line)

open(filename, mode)

range(from, to, stride)

float(thing)

int(thing)

iter(list)

str(thing)

len(thing)

type(thing)

input(prompt)

Not that many! “The Python Way”:
If it is appropriate to an object,
make it a method of that object.

bool(thing)

ord(char)

chr(number)

list(thing)

This is the complete set of Python functions that we have met to date.
Actually it’s surprising how few there are, not how many. Python’s
philosophy leads to functions that only make sense for a particular sort of
object being methods of that object, not free-standing functions.
We are now going to write our own functions.

 325

325

Why write our own functions?

… read

… test

… fix

… improve

… add to

… write

Easier to …

“Structured
 programming”

… develop

Why?
Moving our scripts’ functionality into functions and then calling those
functions is going to make everything better. This is the first step towards
“structured programming” which is where programming goes when your
scripts get too long to write in one go without really thinking about it.

 326

326

Defining a function

(y
1
, y

2
, y

3
) (x

1
, x

2
, x

3
, x

4
, x

5
)= f

Identify the inputs

Identify the processing

Identify the outputs

So what do we need to do?
Well any functions starts by defining what inputs it needs, what it does with
those inputs to generate the results and exactly what results/outputs it
generates.

 327

327

A function to define: total()

Sum a list

[1, 2, 3]

[7, -4, 1, 6, 0]

[]

 6

 10

 0 “Edge case”

To give ourselves a simple but concrete example to keep in mind we will set
ourselves the challenge of writing a function that sums the elements of a list.
This may sound trivial but immediately raises some interesting cases that
need to be considered.
What is the sum of an empty list? Zero? Is that an integer zero or a floating
point zero? (Or a complex zero?)
We will say it should sum to an integer zero.

 328

328

Defining a Python function ― 1

def :(…)total colon

inputs

name of function

define a function called …

We will plunge straight into the Python.
The Python keyword to define a function is “def”.

This is followed by the name of the function, “total” in this case.

This is followed by a pair of round brackets which will contain all the input
values for the function.
Finally there is a colon to mark the end of the line and the beginning of the
body of the function.

 329

329

Defining a Python function ― 2

def total():numbers

name for the input

This name is
internal to
the function.

Our function takes a single input: the list of numbers to be summed.
What goes inside the brackets on the def line is the name that this list will
have inside the function’s definition. This is the “x” in maths. This internal
names is typically unrelated to the name the list has in the main body of the
script.
It is always a good idea to name your inputs (and other variables)
meaningfully. Please try to avoid calling them “x”, “y”, or “z”.
We will call ours “numbers”.

 330

330

Defining a Python function ― 3

def total(numbers): Colon followed by indentation

⇨

As ever with Python a colon at the end of a line is followed by an indented
block of code. This will be the body of the function where we write the
Python that defines what the function actually does with the input(s) it is
given.

 331

331

Defining a Python function ― 4

def total(numbers):

sum_so_far = 0

for number in numbers:
 sum_so_far += number “Body” of function

For our function this is particularly simple.

 332

332

Defining a Python function ― 4

def total():numbers

sum_so_far

for
sum_so_far += number

= 0

in numbers:number

These variables exist only
within the function’s body.

The numbers name we specified on the def line is visible to Python only
within the function definition. Similarly any names that get created within the
function body exist only within that function body and will not be visible
outside. Nor will they clash with any other uses of those names outside the
function body.
In our example code the name “numbers” is defined in the def line, the
“sum_so_far” name is defined explicitly in the function body and the
“number” name is defined by the for… loop as its loop variable.

None of these interact with the Python outside the function definition.

 333

333

Defining a Python function ― 5

def total(numbers):

 sum_so_far = 0

 for number in numbers:
 sum_so_far += number

return sum_so_far This value
is returned

return this value

Finally we need to specify exactly what value the function is going to return.
We do this with another Python keyword, “return”. The value that follows
the return keyword is the value returned by the function.

When Python reaches the return statement in a function definition it hands
back the value and ends the execution of the function body itself.

 334

334

Defining a Python function ― 6

def total(numbers):

 sum_so_far = 0

 for number in numbers:
 sum_so_far += number

 return sum_so_far

And that’s it!

Unindented
after this

And that’s all that is involved in the creation of a Python function.

 335

335

Defining a Python function ― 7

And that’s it!

All internal names cleaned up No need for del

All internal names internal No need to avoid reusing names

Note that because of this isolation of names we don’t have to worry about
not using names that are used elsewhere in the script.
Also, as part of this isolation all these function-internal names are
automatically cleared when the function finishes. We do not need to worry
about deleting them.

 336

336

Using a Python function ― 1
def total(numbers):

 sum_so_far = 0

 for number in numbers:
 sum_so_far += number

 return sum_so_far

print(total([1, 2, 3]))

The list we
want to add up

We use this function we have defined in exactly the same way as we would
use a function provided by Python.

 337

337

Using a Python function ― 2
def total(numbers):

 sum_so_far = 0

 for number in numbers:
 sum_so_far += number

 return sum_so_far

print(total([1, 2, 3]))

The function we
have just written

 338

338

Using a Python function ― 3
def total(numbers):

 sum_so_far = 0

 for number in numbers:
 sum_so_far += number

 return sum_so_far

print(total([1, 2, 3]))

Printing out
the answer

 339

339

Using a Python function ― 4
def total(numbers):

 sum_so_far = 0

 for number in numbers:
 sum_so_far += number

 return sum_so_far

print(total([1, 2, 3]))

total1.py

$ python3 total1.py

6

nb: Unix prompt

The file total1.py in your home directories contains exactly the code you see
here.

 340

340

Using a Python function ― 5
def total(numbers):

 sum_so_far = 0

 for number in numbers:
 sum_so_far += number

 return sum_so_far

print(total([1, 2, 3]))
print(total([7,-4,1,6,0]))
print(total([]))

total2.py

$ python3 total2.py

6
10
0

Use the function
multiple times

 341

341

Functions’ private names ― 1
def total(numbers):

 sum_so_far = 0

 for number in numbers:
 sum_so_far += number

 return sum_so_far

data = [1, 2, 3]
data_sum = total(data)
print(data_sum)

Function definition

Main script

We will revisit the idea of names being private to functions and illustrate it
with a simple example.
Suppose we had a script that defined the total() function and had three
lines of the main program as shown.

 342

342

Functions’ private names ― 2

def total(numbers):
 ...

total

main script function

“namespace”

As Python interprets the function it starts by adding a name total to the
set of names the script knows about and attaches that name to wherever
the script’s definition is in memory. The name for this collection of names is
the script’s “namespace”.

 343

343

Functions’ private names ― 3

data = [1, 2, 3]

list 3

int 1

int 2

int 3

total

data

main script function

Then Python interprets the first of the following three lines. This establishes
a list of three integers and attaches a name to it in the script’s namespace.

 344

344

Functions’ private names ― 4

... = total(data)

total

data

main script

list 3

int 1

int 2

int 3

def total(numbers):

total

numbers

function

The next line calls the function. As ever with assignment lines we start with
the right hand side. The RHS calls the function total with argument data.

When we call the function a separate namespace is created for it. Within the
definition of the function the name “numbers” is used for the list. As a result,
the name “numbers” is established in the function’s namespace. This name
is attached to the same Python object as the name “data” in the script’s
namespace.

 345

345

Functions’ private names ― 5

... = total(data)

total

function

data

main script

list 3

int 1

int 2

int 3

sum_so_far = 0

total

numbers

sum_so_far int 0

Next, Python starts to execute the function’s body.
The first line in the body defines a name sum_so_far and attaches it to a
value 0 (integer). Because this name appears in the function body it is
established in the function’s namespace.

 346

346

Functions’ private names ― 6

... = total(data)

total

function

data

main script

list 3

int 1

int 2

int 3

return sum_so_far

total

numbers

sum_so_far int 6

By the end of the script’s execution the name sum_so_far in the script’s
namespace is attached to the value 6 (integer).

It is this value that is returned.

 347

347

Functions’ private names ― 7

data_sum = total(data)

total

function

data

main script

list 3

int 1

int 2

int 3

return sum_so_far

total

numbers

sum_so_far int 6

data_sum

We now turn to the left hand side of the line in the main script.
This establishes a name data_sum to attach to the value returned from the
function call. The name is defined in the main body fo the script and so is
created in the script’s namespace.
The name is attached to the value 6 (integer) that was created by the
function.

 348

348

Functions’ private names ― 8

data_sum = total(data)

total

function

data

main script

list 3

int 1

int 2

int 3

int 6

data_sum

Now that Python is done with the function garbage collection moves in and
erases all trace of it. Its namespace is deleted, leaving only the names
defined in the main script’s namespace.

 349

349

Progress

Functions

“Structured programming”

Defining a function

Returning a value

def function(input):
 ...

return output

Private name spaces

 350

350

Exercise 18

5 minutes

Edit the script exercise18.py.

It currently defines and uses a function total() which adds
the elements of a list.
Change it to create a function product() which multiplies them.

Three examples are included in the script.
Running it should produce the following output:

$ python3 exercise18.py
6
0
1

 351

351

Reminder about indices

def total(numbers):
 sum_so_far = 0
 for number in numbers:
 sum_so_far += number
 return sum_so_far

def total(numbers):
 sum_so_far = 0
 for index in range(len(numbers)):
 sum_so_far += numbers[index]
 return sum_so_far

Equivalent

total3.py

total2.py

Let’s quickly remind ourselves about how we can uses indices for lists rather
than values from lists directly.
We found this particularly useful when we were traversing more than one list
at once.

 352

352

Want a function to add two lists of the same length term-by-term:

Example of multiple inputs

[1, 2, 3] [5, 7, 4] [6, 9, 7]&

[10, -5] [15, 14] [25, 9]&

[11, 11, -2, 2, 7][3, 7, 4, 1, 7] [8, 4, -6, 1, 0]&

Two inputs

So how do we build functions that take in more than one input at once?

 353

353

Functions with multiple inputs

def add_lists(

sum_list = []

for

sum

sum_list.append(sum)

return sum_list

):b_list,a_list

:range(len(a_list))inindex

b_list[index]+a_list[index]=

Multiple inputs are
separated by commas

The Python syntax for multiple inputs is much the same as it is for a
mathemtical function: we separate the inputs by commas.

 354

354

Functions with multiple inputs

def add_lists(

sum_list = []

for

sum

sum_list.append(sum)

return sum_list

):b_list,a_list

:range(len(a_list))inindex

b_list[index]+a_list[index]=

We have
two lists…

…so we have
to use indexing

Note that functions that take in more than one list typically need to use
indices.

 355

355

Multiple outputs

Write a function to find minimum and maximum value in a list

[1, 2, 3]

[10, -5]

[3, 7, 4, 1, 7]

Two outputs

 1 &

 -5 &

 1 &

3

10

7

But what if we want to return multiple values?
We can write a function that determines the minimum value in a list, and we
can write a function that returns the maximum. What do we do if we want to
find both?

 356

356

Finding just the minimum

def min_list(a_list):

min_so_far = a_list[0]

for

if a < min_so_far:

return

:a_listina

min_so_far = a

min_so_far Returning a single value

List cannot be empty!

minlist.py

So here’s the function that determines the minimum value in a list…

 357

357

Finding just the maximum

def max_list(a_list):

max_so_far = a_list[0]

for

if a > max_so_far:

return

:a_listina

max_so_far = a

max_so_far Returning a single value

Only real change

maxlist.py

…and just the maximum.

 358

358

Finding both

def minmax_list(a_list):

max_so_far = a_list[0]

for

if a > max_so_far:

return what?

:a_listina

max_so_far = a

min_so_far = a_list[0]

if a < min_so_far:
min_so_far = a

This is the real question

Combining the bodies of these two functions is quite straightforward.
But what do we return?

 359

359

Returning both

def minmax_list(a_list):

max_so_far = a_list[0]

for

if a > max_so_far:

return

:a_listina

max_so_far = a

min_so_far = a_list[0]

if a < min_so_far:
min_so_far = a

min_so_far, max_so_far A pair of values

minmaxlist.py

Two return two values we simply put them both after the return statement
separated by a comma, just as we would have done with the inputs.

 360

360

“Tuples”

e.g. min_value max_value,

min_value avg_value, max_value,

Pair

Triple

Often written with parentheses:

min_value max_value,

min_value avg_value, max_value,

(

()

)

Commas

These sets of values separated by commas (but not in square brackets to
make a list) are called “tuples” in Python. Sometimes they are written with
round brackets around them to make it clearer that they come together. But
it’s the comma that is the active ingredient making them a tuple, not the
brackets.

 361

361

Using tuples to return values

min_value max_value,return

minimum

In the function definitiondef …

Using the function

= minmax_list(values)maximum,

If we return a pair of values in a tuple, we can also attach a pair of names to
them as a tuple too.

 362

362

Using tuples to attach names

alpha =beta, 56,12
alpha =

beta 56

12

=
() ()

We can do this outside the context of functions returning values, of course.
We can do it anywhere.

 363

363

Swapping values

>>> alpha = 12

>>> beta = 56

>>> (alpha, beta) = (beta, alpha)

>>> print(alpha)

56

>>> print(beta)

12

Swapping values

Because the entire right hand side is evaluated before the left hand side is
considered this lets us use tuples for some particularly useful tricks. perhaps
the most useful is swapping two values.

 364

364

Assignment works right to left

alpha = 12

beta = 56

(alpha, beta) = (beta, alpha)

Stage 1: (beta, alpha) (56, 12)

Stage 2: (alpha, 12)(56,=beta)

The values associated with the names are evaluated first. Then the names
get reattached to those values, regardless of what names they might have
had before.

 365

365

Progress

Multiple inputs

Multiple outputs

“Tuples”

Simultaneous assignment

def thing(in
1
, in

2
, in

3
):

return (out
1
, out

2
, out

3
)

(a, b, c)

(a, b) = (a+b, a-b)

 366

366

Exercise 19

10 minutes

The script exercise19.py is an answer to exercise 16.
Edit it to:

1. define a function file_stats() that takes a file
name and returns a triple (n_lines, n_words, n_chars)

2. use input() to read in a file name

3. use file_stats() with that file name

4. end with print(filename, file_stats(filename))

 367

367

Tuples and lists: similarities

>>> >>>x = ['alpha','beta'] y = ('alpha','beta')

>>> >>>x[1] y[1]
'beta'

'beta'

>>> >>>len(x) len(y)
2

2

>>> (a, b) = (1, 2)
>>> a
1

>>> [c, d] = [1, 2]
>>> c
1

Indexing

Length

Simultaneous
asignment

Now that we have seen how tuples work we should take a moment to
observe that they are very much like lists. So why don’t we just use lists?
There are very many properties that lists and tuples share.

 368

368

Tuples and lists: differences

>>> >>>x = ['alpha','beta'] y = ('alpha','beta')

>>> >>>x[1] = 'B' y[1] = 'B'

>>> x

['alpha','B']

TypeError:
'tuple' object does not
support item assignment

Lists are
mutable

Tuples are
immutable

But there is one critical difference. Like strings, tuples are immutable.

 369

369

Tuples and lists: philosophy

Sequential:
Concept of “next item”

Lists Tuples

Simultaneous:
All items “at once”

Best with all items
of the same type

Safe to have
multiple types

[2, 3, 5, 7, 11, 13,
 17, 19, 23, 29, 31]

('Dowling', 'Bob',
 50, 105.0, 'rjd4')

Sequence of prime numbers Surname, forename,
age, weight, user id

Serial Parallel

Philosophically, it is appropriate to use lists where there is a sequence of
items or where you need mutability. Tuples are more appropriate for
circumstances where you think about all the items at once.
Because of this, tuples are appropriate where you want to join together a
collection of parameters of different types into a single object.

 370

370

Functions we have written so far

total(list)

add_lists(list
1
,list

2
)

minmax_list(list)

To date we have written a small number of functions ourselves.
Once we become serious Python programmers using the computer for our
day job then we would expect to write many more.

 371

371

Reusing functions within a script

def square(limit):
 ...

...

squares_a = square(34)

...

five_squares = squares(5)

...

squares_b = squares(56)

...

One definition

Multiple uses in
the same file

Easy!

Within a script reusing a function is easy. We simply call the function
whenever we want it.

 372

372

...
squares_a = squares(34)
...

...

five_squares = squares(5)

...

Reusing functions between scripts?

def squares(limit):
 ... One definition

How?

...
squares_b = squares(56)
...

Multiple uses in
multiple files

But what happens if we want to use a function in more than one script?

 373

373

“Modules”

def
...
square(limit)

five = squares(5)

: ...

...

Definition Use

Module: a container of functions

def
...
cubes(limit):

Python has a mechanism to assist with this called “modules”. A module is a
collection of functions (and other material) which can then be imported into a
script and used within that script. If we can write our own module with our
own functions then we can import them into our own scripts.

 374

374

def squares(limit):
 answer = []
 for n in range(0,limit):
 answer.append(n**2)
 return answer

def total(numbers):
 sum_so_far = 0
 for number in numbers:
 sum_so_far += number
 return sum_so_far

text = input('Number? ')
number = int(text)
squares_n = squares(number)
total_n = total(squares_n)
print(total_n)

Modules: a worked example ― 1a

sum_squares.py

Starts empty

utils.py

We will start with a file called sum_squares.py which uses two functions to
add up the squares of numbers from zero to some limit. We want to transfer
those function definitions into a different file which we will call utils.py
(which starts empty) but still be able to use them in our original file.

 375

375

Modules: a worked example ― 1b

$ python3 sum_squares.py

Number? 5

30

$ python3 sum_squares.py

Number? 7

91

= 0 + 1 + 4 + 9 + 16

= 0 + 1 + 4 + 9 + 16 + 25 + 36

Just to prove I’m not fibbing, here it is working before we move anything
about.

 376

376

text = input('Number? ')
number = int(text)
squares_n = squares(number)
total_n = total(squares_n)
print(total_n)

Modules: a worked example ― 2a

def squares(limit):
 answer = []
 for n in range(0,limit):
 answer.append(n**2)
 return answer

def total(numbers):
 sum_so_far = 0
 for number in numbers:
 sum_so_far += number
 return sum_so_far

utils.py

sum_squares.py

Move the definitions
into the other file.

Using the text editor we move the definitions from sum_squares.py to
utils.py.

 377

377

Modules: a worked example ― 2b

$ python3 sum_squares.py

Number? 5

Traceback (most recent call last):
 File "sum_squares.py", line 4, in <module>
 squares_n = squares(number)
NameError: name 'squares' is not defined

Because we have (re)moved its definition.

Unsurprisingly, this breaks sum_squares.py.

 378

378

Modules: a worked example ― 3a

import utils

text = input('Number? ')
number = int(text)
squares_n = squares(number)
total_n = total(squares_n)
print(total_n)

def squares(limit):
 answer = []
 for n in range(0,limit):
 answer.append(n**2)
 return answer

def total(numbers):
 sum_so_far = 0
 for number in numbers:
 sum_so_far += number
 return sum_so_far

utils.py

sum_squares.py

import: Make
a reference to
the other file.

import utils
and not
import utils.py

We need to import the functioned defined in utils.py into
sum_squares.py.

First, we add the instruction “import utils” to the top of the
stm_squares.py file.

Note that we import “utils”, not “utils.py”.

 379

379

Modules: a worked example ― 3b

$ python3 sum_squares.py

Number? 5

Traceback (most recent call last):
 File "sum_squares.py", line 4, in <module>
 squares_n = squares(number)
NameError: name 'squares' is not defined

Still can’t find the function(s).

On its own this is not sufficient.

 380

380

Modules: a worked example ― 4a

import utils

text = input('Number? ')
number = int(text)
squares_n = utils.squares(number)
total_n = utils.total(squares_n)
print(total_n)

sum_squares.py

utils.…: Identify
the functions
as coming from
the module.

squares()

utils.squares()

total()

utils.total()

We have to indicate to Python that these functions it is looking for in
sum_squares.py come from the utils module. To do this we include
“utils.” at the start of their names.

 381

381

Modules: a worked example ― 4b

$ python3 sum_squares.py

Number? 5

30

$ python3 sum_squares.py

Number? 7

91
Working again! ☺

And now it works.

 382

382

Progress

Sharing functions between scripts

“Modules”

Importing modules

Using functions from modules

import module

module.function()

 383

383

Exercise 20

5 minutes

The script exercise20.py is an answer to exercise19.

Move the function file_stats() from exercise19.py
into utils.py and edit exercise19.py so that it still works.

 384

384

The Python philosophy

math

sys

string

A small core
language …

… plus lots
of modules

“Batteries
included”

We have met the majority of the Python language already! But obviously
Python has facilities to do much more than we have seen so far. The trick is
that Python comes with a large number of modules of its own which have
functions for performing no end of useful things.
This philosophy is called “batteries included”. You probably already have the
module you need to do your specialist application.

 385

385

Example: the “math” module

>>> import

>>> math.

1.4142135623730951

math Load in the “math” module.

Run the sqrt() function…

… from the math module.

2.0)sqrt(

Let’s see an example of an “included battery”. At the very start of this course
we write ourselves a square root program. Now let’s see what Python offers
as an alternative.
We import the “math” module. (No trailing “s”; this is the American spelling.)

In the math module is a sqrt() function. We can access this as
math.sqrt().

Most of the fundamental mathematical operations can be found in the math
moWe will see how to find out exactly what is in a module in a few slides’
time.

 386

386

import module as alias

>>> import math

>>> math.

1.4142135623730951

>>> import math as

>>> m

1.4142135623730951

sqrt(2.0)

Too long to keep typing?

m

.sqrt(2.0)

“Alias”

There are those who object to typing. If “math” is too long then we can use
an aliasing trick to give the module a shorter name.
(The problem is rarely with math. There is a built-in module called
“multiprocessing” though which might get tiresome.)

 387

387

Don’t do these

>>> from math import sqrt

>>> sqrt(2.0)

1.4142135623730951

>>> from math import *

>>> sqrt(2.0)

1.4142135623730951

!

!!

Much better
to track the
module.

python does permit you to do slightly more than that. You can suppress the
name of the module altogether.
You are beginners so please take it from an old hand on trust that this turns
out to be a very bad idea. You want to keep track of where your functions
came from!

 388

388

What system modules are there?

sys

os

string

re

csvargparse

webbrowser

math

cmath

colorsys

pickle

datetime

email

getpass

glob

html

http

io

json

logging

random

signal

sqlite3

subprocess

tempfile

unicodedata

unittest xml

Python 3.2.3 comes with over 250 modules.

There are many modules that come with Python.

 389

389

“Batteries included”

>>> help('modules')

Please wait a moment while I gather a list
of all available modules...

CDROM binascii inspect shlex

bdb importlib shelve

Enter any module name to get more help. Or,
type "modules spam" to search for modules whose
descriptions contain the word "spam".

263 modules

Not quite this simple

To find out exactly what modules come with your version of Python ask the
help system.
A word of warning, though. The text at the bottom “Enter any module
name…” is not quite right.
If you give the help() command with no argument then you are dropped
into an interactive help system. There you can type the name of a module or
type “modules spam”, etc.

>>> help()

Welcome to Python 3.1! This is the online help utility.
…
help> modules subprocess

Here is a list of matching modules. Enter any module
name to get more help.

subprocess - subprocess - Subprocesses with accessible
I/O streams

help> quit

>>>

 390

390

Additional downloadable modules

numpy

scipy psycopg2

MySQLdb

cx_oracle

ibm_db

pyodbc

Numerical

PostgreSQL

MySQL

Oracle

DB2

Databases

pymssql SQL Servermatplotlib

Graphics

But, of course, there’s never the particular module you want. There are
modules provided by people who want Python to interoperate with whatever
it is they are offering.
There are three sets of additional modules that you may end up needing to
know about.
The numerical and scientific world has a collection of modules called
Numerical Python (“numpy”) and “scientific python” (”scipy”) which contain
enormous amounts of useful functions and types for numerical processing.
Every database under the sun offers a module to let Python access it.
Finally there is a module to offer very powerful 2D graphics for data
visualisation and presentation.

 391

391

An example system module: sys

import sys

print(sys.argv)

argv.py

$ python3 argv.py one two three

['argv.py',

$ python3 argv.py 1 2 3

['argv.py', '3']'2','1',

Always strings

'three']'two','one',

0 1 2 3index

We will take a brief look at another commonly used module to illustrate
some of the things Python has hidden away in its standard set.
The “sys” module contains many systems-y things. For example, it contains
a list called sys.argv which contains the argument values passed on the
command line when the script was launched.
Note two things:
1. that item zero in this list is always the name of the script itself,
2. the items are always strings

 392

392

sys.exit()

exit() What we have been using

sys.exit What we should use(rc)

“Return Code”: an integer

0: Everything was OK

≠0:Something went wrong

Also tucked away in the sys module is the sys.exit() function.

Up to this point we have been using the exit() function to quit our scripts
early. However this function is something of a filthy hack and sys.exit()
provides superior quitting and an extra facility we will be able to make use
of.
The sys.exit() function takes an integer argument. This is the program’s
“return code” which is a very short message back to the operating system to
indicate whether the program completed successfully or not. A return code
of 0 means “success”. A non-zero return code means failure. Some
programs use different non-zero codes for different failures but many
(most?) simply use a value of 1 to mean “something went wrong”.
If your script simply stops because it reached the end then Python does an
automatic sys.exit(0).

 393

393

An example system module: sys
But also…

sys.path

sys.version

sys.modules

sys.stdin

sys.stdout

sys.stderr

Directories Python searches for modules

Version of Python

All modules currently imported

Where input inputs from

Where print prints to

Where errors print to

…and there’s more!

sys.float_info All the floating point limits

And there’s plenty more…

 394

394

Modules in Python

“How do I do
X in Python?”

“What’s the Python
module to do X?”

“Where do I find
Python modules?”

So the Python philosophy places a lot of functionality into its modules.
This means that we have to be able to find modules and know what they can
do.

 395

395

Finding modules

Python:

PyPI:

Built-in modules

Python Package Index

SciPy: Scientific Python modules

Search: “Python3 module for X”

Some useful URLs:

http://docs.python.org/py3k/py-modindex.html
This contains the list of all the “batteries included” modules that come with
Python. For each module it links through to their documentation.

http://www.scipy.org/Topical_Software
http://numpy.scipy.org/
Scientific Python contains very many subject-specific modules for Python.
Most depend on the Numerical Python module numpy.

http://pypi.python.org/pypi (do check for Python3 packages)

This is the semi-official dumping ground for everything else.

http://www.google.co.uk/
And for everything else there’s Google (who are big Python users, by the
way).

 396

396

Help with modules

>>> import math

>>> help(math)

NAME
 math

DESCRIPTION
 This module is always available. It provides
 access to the mathematical functions defined
 by the C standard.

…

I promised information on how to find out what is in a module. Here it is.
Once a module has been imported you can ask it for help.

 397

397

Help with module functions

…

FUNCTIONS

 acos(x)
 Return the arc cosine (measured in
 radians) of x.

…

>>> math.acos(1.0)

0.0

The help will always include information on every function in the module…

 398

398

Help with module constants

DATA
 e = 2.718281828459045
 pi = 3.141592653589793

…

…

>>> math.pi

3.141592653589793

…and every data item.

 399

399

Help for our own modules?

def squares(limit):
 answer = []
 for n in range(0,limit):
 answer.append(n**2)
 return answer

def total(numbers):
 sum_so_far = 0
 for number in numbers:
 sum_so_far += number
 return sum_so_far

utils.py

>>> import utils

>>> help(utils)

NAME
 utils

FUNCTIONS
 squares(limit)

 total(numbers)

FILE
 /home/y550/utils.py

Basic help already
provided by Python

What help can we get from our own module?
By now you should have a utils.py file with some functions of your own in
it. The help simply lists the functions the module contains and the file it is
defined in.

 400

400

Adding extra help text

def squares(limit):
 answer = []
 for n in range(0,limit):
 answer.append(n**2)
 return answer

def total(numbers):
 sum_so_far = 0
 for number in numbers:
 sum_so_far += number
 return sum_so_far

utils.py

>>> help(utils)

NAME
 utils

>>> import utils Fresh start"""Some utility functions
from the Python for
Absolute Beginners course
"""

FUNCTIONS
 squares(limit)

 total(numbers)

DESCRIPTION
 Some utility functions
 from the Python for
 Absolute Beginners course

But we can do better than that.
If we simply put a Python string (typically in long text triple quotes) at the top
of the file before any used Python (but after comments is fine) then this
becomes the description text in the help.
Note: You need to restart Python and re-import the module to see changes.

 401

401

Adding extra help text to functions

"""Some utility functions
from the Python for
Absolute Beginners course
"""

def squares(limit):

 answer = []
 for n in range(0,limit):
 answer.append(n**2)
 return answer

utils.py

 """Returns a list of
 squares from zero to
 limit**2.
 """

>>> help(utils)

NAME
 utils

DESCRIPTION
 ...

>>> import utils Fresh start

FUNCTIONS
 squares(limit)

Returns a list of
squares from zero to
limit**2.

If we put text immediately after a def line and before the body of the
function it becomes the help text for that function, both in the module-as-a-
whole help text…

 402

402

Adding extra help text to functions

"""Some utility functions
from the Python for
Absolute Beginners course
"""

def squares(limit):

 answer = []
 for n in range(0,limit):
 answer.append(n**2)
 return answer

utils.py

 """Returns a list of
 squares from zero to
 limit**2.
 """

>>> help(utils.squares)

>>> import utils Fresh start

squares(limit)
 Returns a list of
 squares from zero to
 limit**2.

…and in the function-specific help text.

 403

403

Progress

Python a small language…

…with many, many modules

System modules

Modules provide help

Foreign modules

Doc strings

Functionality Module

help(module)

help(module.function)

 404

404

Exercise 21

5 minutes

Add help text to your utils.py file.

 405

405

Recap: Lists & Indices

list

3

Position 2

Position 1

Position 0

greek = ['alpha', 'beta', 'gamma']

str 5 a l p h a

str 4 b e t a

str 5 g a m m a

greek[0]

greek[1]

greek[2]

We have one last Python type to learn about. To give it some context, we will
recap the list type that we have spent so much time using.
A list is basically an ordered sequence of values. The position in that
sequence is known as the index.

 406

406

“Index in ― Value out”

listindex value

1 greek 'beta'[1]

Must be
a number

start at 0

no gaps in
sequence

If we now forget about the internals of a list, though, we can think of it as
“some sort of Python object” that takes in a number (the index) and spits out
a value.

 407

407

Other “indices”: Strings?

dictionaryEnglish Spanish

'cat'

'dog'

'mouse'

'gato'

'perro'

'ratón'

dictionary

Can we generalise on this idea by moving away from the input (the index)
needing to be a number?
Can we model a dictionary where we take in a string (a word in English, say)
and give out a different string (the corresponding word in Spanish, say).
(Note: the author is fully aware that translation is not as simple as this. This
is just a toy example.)

 408

408

Other “indices”: Tuples?

dictionary(x, y) Objects

(2,5)

(4,5)

'Treasure'

'Fortress'

dictionary

Or, perhaps, pairs of numbers (x,y) in and items on a map out?

 409

409

Python “dictionaries”

>>> en_to_es = { 'cat':'gato' , 'dog':'perro' }

>>> en_to_es['cat']

'gato'

Python does have exactly such a general purpose mapper which it calls a
“dict”, short for “dictionary”.

Here is the Python for establishing a (very small) English to Spanish
dictionary that knows about two words.
We also see the Python for looking up a word in the dictionary.
We will review this syntax in some detail…

 410

410

Creating a dictionary — 1

'dog':'perro'{ },'cat':'gato'

Curly brackets

Comma

'cat' → 'gato' 'dog' → 'perro'

First we will look at creating a dictionary. In the same way that we can create
a list with square brackets, we can create a dictionary with curly ones.
Each item in a dictionary is a pair of values separated by a colo
They are separated by commas.n.

 411

411

Creating a dictionary — 2

'dog'{ },'cat' 'gato': 'perro':

'cat' 'gato'

“key” “value”

:

:

The pairs of items separated by colons are known as the “key” and “value”.
The key is what you put in (the English word in this example) that you look
up in the dictionary and the value is what you get out (the translation into
Spanish in this example).

 412

412

Using a dictionary — 1

>>> en_to_es = { 'cat':'gato' , 'dog':'perro' }

>>> en_to_es['cat']

'gato'

Creating the dictionary

Using the dictionary

Now we have seen how to create a (small) dictionary we should look at how
to use it.

 413

413

Using a dictionary — 2

en_to_es]'cat'['gato'

dictionary key value

Square brackets

To look something up in a dictionary we pass it to the dictionary in exactly
the same way as we passed the index to a list: in square brackets. Curly
brackets are just for creating a dictionary; after that it’ square brackets
again.

 414

414

Missing keys

>>> en_to_es = { 'cat':'gato' , 'dog':'perro' }

>>> en_to_es['dog']

'perro'

>>> en_to_es['mouse']

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'mouse' Error message

✓

✗

The equivalent to shooting off the end of a list is asking for a key that’s not in
a dictionary.

 415

415

Dictionaries are one-way
!

>>> en_to_es =

>>> en_to_es['dog']

'perro'

>>> en_to_es['perro']

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError:

✓

✗
'perro'

Looking for a key

{ }'dog':,'cat': 'perro''gato'

Also note that dictionaries are one-way.

 416

416

Adding to a dictionary

>>> en_to_es

>>> en_to_es['mouse'] = 'ratón'

>>> en_to_es['mouse']

'ratón'

= { 'cat':'gato' , 'dog':'perro' }

Initial dictionary has no 'mouse'

Adding 'mouse' to the dictionary

Adding key-value pairs to a dictionary is a lot easier than it is with lists. With
lists we needed to append on the end of a list. With dictionaries, because
there is no inherent order, we can simply define them with a simple
expression on the left hand side.

 417

417

Removing from a dictionary

>>> print(en_to_es)

{'mouse': 'ratón',

>>> del en_to_es[

>>> print(en_to_es)

{'mouse': 'ratón', 'cat': 'gato'}

'cat': 'gato'}'dog': 'perro',

]'dog'

We can use del to remove from a dictionary just as we did with lists.

 418

418

Progress

Dictionaries Key Value

{ key
1
:value

1
 , key

2
:value

2
, key

3
:value

3
 }

dictionary[key] valueLooking up values

dictionary[key] = valueSetting values

del dictionary[key]Removing keys

 419

419

Exercise 22

5 minutes

Complete exercise22.py to create
an English to French dictionary.

cat chat

dog chien

mouse souris

snake serpent

 420

420

What’s in a dictionary? ― 1

>>> en_to_es

{'mouse': 'ratón', 'dog': 'perro', 'cat': 'gato'}

>>> en_to_es.keys()

dict_keys

>>> en_to_es.values()

dict_values

Just treat them like lists

Orders
match

(['mouse', 'dog', 'cat'])

(['ratón', 'perro', 'gato'])

(or convert them to lists)

To date we have created our own dictionaries. If we are handed one how do
we find out what keys and values are in it?
Dictionaries support two methods which return the sort-of-lists of the keys
and values. We mention them here only for completeness.
Don’t forget that you can always convert a sort-of-list into a list with the
list() function.

 421

421

What’s in a dictionary? ― 2

>>> en_to_es

dict_items([('mouse', 'ratón'), ('dog', 'perro'),
('cat', 'gato')])

>>> for (english, spanish) in en_to_es.items():

... print(spanish, english)

...

ratón mouse

perro dog

gato cat

Most useful method.items()

(Key,Value) pairs/tuples

By far the best way to get at the contents of a dictionary is to use the
items() method which generates a sort-of-list of the key-value pairs as
tuples. Running a for… loop over this list is the easiest way to process the
contents of a directory.

 422

422

What’s in a dictionary? ― 3

>>> list

[('mouse','ratón'), ('dog','perro'),('cat','gato')]

Common simplification

(en_to_es.items())

Don’t be afraid to convert it explicitly into a list. Unless you dictionary is huge
you won’t see any problem with this.

 423

423

Getting the list of keys

dictionary list of
keys

list()

{'the': 2, 'cat': 1, 'sat': 1, 'on': 1, 'mat': 1}

['on', 'the', 'sat', 'mat', 'cat']

Unfortunately when you convert a dictionary directly into a list you get the list
of keys not the list of)(key,value) pairs. This is a shame but is a compromise
for back compatibility with previous versions.

 424

424

Is a key in a dictionary?

>>> en_to_es['snake']

Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
KeyError: 'snake' Want to avoid this

>>> 'snake' in en_to_es

False We can test for it

Because of this conversion to the list of keys we can ask if a key is in a
dictionary using the in keyword without having to know its corresponding
value.

 425

425

Example: Counting words ― 1

words = ['the','cat','sat','on','the','mat']

counts = {'the':2,'cat':1,'sat':1,'on':1,'mat':1}

Let’s have a serious worked example.
We might be given a list of words and want to count the words by how many
times they appear in the list.

 426

426

Example: Counting words ― 2

words = ['the','cat','sat','on','the','mat']

counts = {}

for word in words:

Do something

Start with an empty dictionary

Work through all the words

We start by creating an empty dictionary. It’s empty because we haven’t
read any words yet.
Then we loop through the list of words using a standard for… loop.

For each word we have to do something to increment the count in the
dictionary.

 427

427

Example: Counting words ― 3

words = ['the','cat','sat','on','the','mat']

counts = {}

for word in words:

counts[word] += 1✗ This will not work

counter1.py

Unfortunately a simply increment of the value in the dictionary isn’t enough.

 428

428

Why doesn’t it work?

counts = {'the':1, 'cat':1}

counts['the'] += 1

counts['sat'] += 1✗

✓
counts['the'] = + 1counts['the']

The key must already
be in the dictionary.

counts['sat'] = + 1counts['sat']

Key is not in
the dictionary!

We cannot increment a value that isn’t there. Until the program meets a
word for the first time it has no entry in the dictionary, and certainly not an
entry with numerical value 0.

 429

429

Example: Counting words ― 4

words = ['the','cat','sat','on','the','mat']

counts = {}

for word in words:

if word in counts:

counts[word] += 1

else:

Do something Need to add the key

So we have to test to see if the word is already in the dictionary to increment
it if it is there and to do something else if it is not. Note how we use the “if
key in dictionary” test.

 430

430

Example: Counting words ― 5

words = ['the','cat','sat','on','the','mat']

counts = {}

for word in words:

if word in counts:

counts[word] += 1

else:

counts[word] = 1 counter2.py

print(counts)

That something else is to create it with its initial value of 1 (because we have
met the word once now).

 431

431

Example: Counting words ― 6

$ python3 counter2.py

{'on': 1, 'the': 2, 'sat': 1, 'mat': 1, 'cat': 1}

You cannot predict the order of the
keys when a dictionary prints out.!

Dictionaries are unordered entities. You cannot predict the order that the
keys will appear when you print a dictionary or step through its keys.

 432

432

Example: Counting words ― 7

print(counts)

items = list(dictionary.items())

items.sort()

for (key, value) in items:

print(key, value)

✗ Too ugly

Better

counter3.py

Simply printing a dictionary gives ugly output.
We can pull out the (key,value) pairs and print them individually if we want.
Notice the use of pulling out the items, converting them into a list and then
sorting them.

 433

433

Example: Counting words ― 8

$ python3 counter3.py

cat 1
mat 1
on 1
sat 1
the 2

 434

434

Progress

Testing keys in dictionaries

Creating a list of keys

if key in dictionary:
 ...

keys = list(dictionary)

Inspection methods dictionary.keys()
dictionary.values()
dictionary.items()

 435

435

Exercise 23

5 minutes

Complete exercise23.py to write
a script that reverses a dictionary.

{

{

'perro'}'dog':'gato','cat':'ratón','mouse':

:'dog'}'perro''cat','gato':'mouse','ratón':

 436

436

Formatted output

$ python3 counter3.py

cat 1
mat 1

sat 1
the 2

on 1 Ugly!

cat
mat
on
sat
the

1
1
1
1
2

We want data
nicely aligned

We have one last topic to cover. The output from our word counter is not as
pretty as it might be. The last topic we will cover is Python text formatting.
Full details of the formatting system can be found online at
docs.python.org/py3k/library/string.html#formatspec

 437

437

The format() method

>>>

'xxxAyyy100zzz'

'xxx{}yyy{}zzz'.format('A', 100)

'

'

zzz{}yyy{}xxx '

'zzz100yyyAxxx

In Python 3 the string type has a method called format() which takes
arguments and returns another string which is the original with the method’s
arguments inserted into it in certain places. Those places are marked with
curly brackets in the string.
Curly brackets are otherwise quite normal characters. It’s only the
format() method that cares about them.

In its simplest form, the format() method replaces each pair of curly
brackets with the corresponding argument.

 438

438

String formatting ― 1

>>>

'xxxA␣␣␣␣yyy'

'xxx{:5s}yyy'.format('A')

'

'

yyy{:5s}xxx '

'yyyA␣␣␣␣xxx

{:5s}

s ― substitute a string

5 ― pad to 5 spaces
(left aligns by default)

The real fun starts when we put something inside those curly brackets.
These are the formatting instructions.
The simplest examples start with a colon followed by some layout
instructions. (We will see what comes in front of the colon in a few slides
time.) The number indicates how many spaces to allocate for the insertion
and the letter that follows tells it what type ob object to expect. “s” stands for
string.

 439

439

String formatting ― 2

>>>

'xxxA␣␣␣␣yyy'

'xxx{:<5s}yyy'.format('A')

'

'

yyy{:<5s}xxx '

'yyyA␣␣␣␣xxx

{:<5s}

< ― align to the left (←)

By default strings align to the left of their space. We can be explicit about
this by inserting a left angle bracket, which you can think of as an arrow
head pointing the direction of the alignment.

 440

440

String formatting ― 3

>>>

'xxx␣␣␣␣Ayyy'

'xxx{:>5s}yyy'.format('A')

'

'

yyy{:>5s}xxx '

'yyy␣␣␣␣Axxx

{:>5s}

> ― align to the right (→)

If we want right aligned strings then we have to use the alignment marker.

 441

441

Integer formatting ― 1

>>>

'xxx␣␣123yyy'

'xxx{:5d}yyy'.format(123)

'

'

yyy{:5d}xxx '

'yyy␣␣123xxx

{:5d}

d ― substitute an integer

5 ― pad to 5 spaces
(right aligns by default)

(digits)

If we change the letter to a “d” we are telling the format() method to insert
an integer (“digits”). These align to the right by default.

 442

442

Integer formatting ― 2

>>>

'xxx␣␣123yyy'

'xxx{:>5d}yyy'.format(123)

'

'

yyy{:>5d}xxx '

'yyy␣␣123xxx

{:>5d}

> ― align to the right (→)

We can be explicit about this if we want.

 443

443

Integer formatting ― 3

>>>

'xxx␣␣123yyy'

'xxx{:>5d}yyy'.format(123)

'

'

yyy{:<5d}xxx '

'yyy123␣␣xxx

{:<5d}

< ― align to the left (←)

And we have to be explicit to override the default.

 444

444

Integer formatting ― 4

>>>

'xxx00123yyy'

'xxx{:05d}yyy'.format(123)

'

'

yyy{:05d}xxx '

'yyy00123xxx

{:05d}

0 ― pad with zeroes

If we precede the width number with a zero then the number is padded with
zeroes rather than spaces and alignment is automatic.

 445

445

Integer formatting ― 5

>>>

'xxx␣+123yyy'

'xxx{:+5d}yyy'.format(123)

'

'

yyy{:+5d}xxx '

'yyy␣+123xxx

{:05d}

+ ― always show sign

If we put a plus sign in front of the number then its sign is always shown,
even if it is positive.

 446

446

Integer formatting ― 6

>>>

'xxx␣+0123yyy'

'xxx{:+05d}yyy'.format(123)

'

'

yyy{:+05d}xxx '

'yyy+0123xxx

{:05d}

+ ― always show sign

0 ― pad with zeroes

And we can combine these.

 447

447

Integer formatting ― 7

>>>

'xxx1,234yyy'

'xxx{:5,d}yyy'.format(1234)

'

'

yyy{:5,d}xxx '

'yyy1,234xxx

{:5,d}

, ― 1,000s

Adding a comma between the width and the “d” adds comma breaks to
large numbers.

 448

448

Floating point formatting ― 1

>>>

'xxx 1.20yyy'

'xxx{:5.2f}yyy'.format(1.2)

'

'

yyy{:5.2f}xxx '

'yyy␣1.20xxx

{:5.2f}

f ― substitute a float

5 ― 5 places in total

.2 ― 2 places after the point

Floating point numbers are slightly more complicated. The width parameter
has two parts, separated by a decimal point. The first number is the width of
the entire number (just as it is for strings and integers). The number after the
decimal point is the number of decimal points of precision that should be
included in the formatted output.

 449

449

Floating point formatting ― 2

>>>

'xxx1.200000yyy'

'xxx{:f}yyy'.format(1.2)

'

'

yyy{:f}xxx '

'yyy1.200000xxx

{:f}

{:.6f}

The default is to have six decimal points of precision and to make the field
as wide as it needs to be.

 450

450

Ordering and repeats ― 1

>>>

'X

'X)1.23123,'abc',X'.format({:f}X{:d}X{:s}

X'1.230000X123Xabc

0 1 2

0 1 2

0 1 2

>>> 'X)1.23123,'abc',X'.format({2:f}X{1:d}X{0:s}

'X X'1.230000X123Xabc

0 1 2

0 1 2

Equivalent

What comes before the colon?
This is a selection parameter detailing what argument to insert.
The arguments to format() are given numbers starting at zero. We can
put these numbers in front of the colon.

 451

451

Ordering and repeats ― 2

>>> 'X)1.23123,'abc',X'.format({2:f}X{1:d}X{0:s}

'X X1.230000 X123Xabc

0 12

0 1 2
'

>>> 'X)1.23123,'abc',X'.format(X{1:d}X{0:s}

'X X123Xabc

0 1

0 1 2
X'

{1:d}

123

1

We can also use them to change the order that items appear in or to have
them appear more than once (or not at all).

 452

452

Formatting in practice

$ python3 counter4.py

cat
mat
on
sat
the

1
1
1
1
2

...
formatting = '{:3} {:1}'

for (word, number) in items:
 print(formatting.format(word,number))

$

The script counter4.py is the same as counter3.py but with the new
formatting for its output.

 453

453

Progress

string.format(args)Formatting

Numbered parameters

Substitutions

{0} {1} {2}

{:>6s}

{:+06d}

{:+012.7f}

 454

454

Exercise 24

5 minutes

Complete exercise24.py
to format the output as shown:

Joe 9
Samantha 45
Methuselah 969

[(Joe,9), (Samantha,45), (Methuselah,969)]

 455

455

And that's it! (And “it” is a lot!)

Text

Prompting

Numbers

Arithmetic

Comparisons

Booleans

Variables

Deleting names

“while” loop

“if” test

Indented blocks

Lists

Indices

Object methods

Built-in help

“for” loops

“Treat it like a list…”

Values direct/via index

Reading files

Writing files

Functions

“Structured programming”

Tuples

“for” loops

Modules

Dictionaries

Formatting

And congratulations!
You have completed an introductory course on Python. Well done.
It is only an introductory course and there is more. But do not let that
dishearten you; just take a look at what you have accomplished. You now
have a firm grounding to go further with Python or to start learning other
programming languages. (But the author would like you to stick with
Python.)

 456

456

But wait! There’s more…

Advanced topics: Self-paced introductions to modules

Object-oriented programming in Python

If you do want more Python the UCS offers a selection of self-paced courses
on some additional language features and on various Python modules to let
you learn how to use Python for a specific purpose. We also offer a taught
course introducing you to the world of object-oriented programming where
you get to write your own methods and types.

 457

457

Text

Prompting

Numbers

Arithmetic

Comparisons

Booleans

Variables

Deleting names

“while” loop

“if” test

Indented blocks

Lists

Indices

Object methods

Built-in help

“for” loops

“Treat it like a list…”

Values direct/via index

Reading files

Writing files

Functions

“Structured programming”

Tuples

“for” loops

Modules

Dictionaries

Formatting

Congratulations!

Please don’t forget the feedback.

So thank you and congratulations again.

