Chapter 1

Fundamentals

1.1. Introduction

In this chapter we present material supplementing the book on funda-
mental topics. In Sections 1.2 and 1.3 we give detailed proofs of the Prohorov
metric properties and the Skorohod representation theorem, stated in The-
orems 3.2.1 and 3.2.2 of the book. In Section 1.4 we explain the adjective
“weak” in weak convergence from a Banach-space perspective. In Section
1.5 we provide proofs of the continuous mapping theorems, stated in Section
3.4 of the book.

1.2. The Prohorov Metric

In this section we prove Theorem 3.2.1 in the book, establishing that
the Prohorov (1956) metric is indeed a metric inducing weak convergence
P, = P.

Recall that we are considering probability measures on a separable metric
space (S,m). In that setting, P, = P if
lim [ fdP, = / fdpP (2.1)

S S

n—oo

for all functions f in C(S), the space of all continuous bounded real-valued
functions on S. Recall that the Prohorov metric 7 is defined on the space
P = P(S) of all probability measures on the separable metric space (S, m)
by

w(P, P) =inf{e > 0: Pi(4A) < Po(A°)+¢ forall AeB(S)}, (2.2)
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2 CHAPTER 1. FUNDAMENTALS

for P, P, € P(S), where A€ is the open e-neighborhood of A, i.e.,
A°={ye S:m(z,y) <e forsome ze€ A}. (2.3)
Here is the result that we wish to prove:

Theorem 1.2.1. (the Prohorov metric on P) For any separable metric
space (S,m), the function m on P(S) in (2.2) is a separable metric. There
is convergence (P, P) — 0 in P(S) if and only if P, = P, as defined in
(2.1). Moreover, in (2.2) it suffices to let the sets A be closed.

To carry out the proof, we show that weak convergence F,, = P implies
uniform convergence of integrals [ gdP, for an appropriate class of functions
g.

Consider a class G real-valued functions on S. We say that G is uniformly
bounded if

sup {lg(z)[} <oo.
g€g,zeS

We say that G is equicontinuous at z if, for all € > 0, there is a § > 0 such
that

sup [g(z) — g(y)| < € when d(z,y) <6 .

9€g

We say that G is equicontinuous if it is equicontinuous at all z € S.

Lemma 1.1. (uniform convergence for a class of integrals) Suppose that
P, = P on a separable metric space (S,m). Let G be a uniformly bounded
class of measurable real-valued functions on S that is equicontinuous at all
x € E°. If P(E) =0, then

sup| [ gdP, — /gdP| —0 as n— 0. (2.4)
9€g

Proof. If (2.4) were to fail, then there must exist ¢ > 0 and a sequence
{gn : n > 1} of functions in G for which | [ g,dP, — [ gndP| > € infinitely
often. We will show that cannot happen. Given P,, = P, we can apply the
Skorohod representation theorem to construct S-valued random elements
X, and X with probability laws P, and P such that X,, - X w.p.1. By
the almost-sure equicontinuity of G with respect to P,

sup |gn(Xn) —gn(X)| >0 w.p.l.
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By the uniform-boundedness condition and the bounded convergence theo-
rem,

sup |Egn(X,) — Egn(X)| < E [sup lgn (Xn) — gn(X)\] —0 as n— oo
n n

or, equivalently,

sup /gndPn—/gndP‘ —0 as n—o0.
n
Since that is a contradiction, (2.4) must actually hold. =
We now define a generalization of the Prohorov metric on the space P(S)
of all probability measures on (S, m). We define a family of metrics indexed

by the scalar v; the standard Prohorov metric is the special case with v = 1.
For any Py, P, € P(S) and v > 0, let

7y (P, P2) = inf{e > 0: Pi(F) < Py(F€) +ye for all closed F in S},
(2.5)
where F* is the open e-neighborhood of F, as in (2.3).
Here is our main result.

Theorem 1.1. (generalized Prohorov metric) Let (S, m) be a separable met-
ric space. For each v > 0, (P(S),ny) for my in (2.5) is a separable metric
space. The definition is unchanged if the closed sets F in (2.5) are re-
placed by general measurable sets A. There is convergence 7y (Py,P) — 0
as n — oo if and only if P, = P.

In preparation for the proof, we first establish some preliminary results.
We first show that w (P>, P,) = m,(P;,P2). For that purpose, use the
following elementary lemma. Recall that A~ is the closure of the set A.

Lemma 1.2. For any subset A of S and a > 0,
A" =85— (58— AY)*. (2.6)

Lemma 1.3. If Pi(F) < Py(F*) + S for all closed F for o, > 0, then
Py(F) < P (F®) + B for all closed F.
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Proof. Since F* is open, S — F® is closed. Under the condition,
P (S —F*) < P((S—F*)*)+8,

so that
Py(S — (S — F)®) < Py (F®) + 8 .

By Lemma 1.2, F = S — (§ — F*)“. hence
Py(F) = P(S = (5§ —F)*) < A(F*)+ (. =

We now show that closed sets and measurable sets are interchangeable
in (2.5).

Lemma 1.4. (closed sets suffice) For any constants a > 0 and 8 > 0, the
inequality Py (A) < Py(A%) + B holds for all A € S if and only if it holds for
all A =F, where F is closed.

Proof. One direction is immediate. For the non-trivial direction, given
any measurable set A, choose a sequence of closed sets {F,, : n > 1} such
that F,, C Fj,11 and F,, T A. Then F® T F*, Pi(F,) T Pi1(A) and P(F) 1
P,(A%). Hence we have Pi(A) < Py(A®) + @ when we have Pi(F,) <
Py(F¥)+pforalln. =

Proof of Theorem 1.1. Lemma 1.3 establishes the symmetry property.
if m, (P, P>) = 0, then P (F) = P»(F) for each closed subset F. Since the
closed sets form a determining class, P, = P,. To establish the triangle
inequality, suppose that 7, (P, P») < €1 < my(P1, P2) + 6 and 7, (Ps, P3) <
€2 < my(Ps, P3) 4 0 for some § > 0. Then for any closed F,

Pl(F) PQ(FCI) + Y€1
Py((F) ) + e

P3(Fr2) +y(e + €2)

INIA DA

so that
7T7(P1,P3) <eée14e < 7T7(P1,P2) + 7T7(P2,P3) +26.

Since § was arbitrary, the triangle inequality is established, completing the
proof of the metric property.

If my (P, P) — 0, then for any € > 0 there exists ng such that P,(F) <
P(F¢) + e for all closed F' and n > ny. Hence

limsup P, (F) < P(F€) + e .

n—oo



1.2. THE PROHOROV METRIC 5

However, F€ | F as €| 0, so that P(F¢) | P(F) as € ] 0. Hence,

7

limsup P, (F) < P(F

n—00

~—

which implies P, = P by Theorem 11.3.1 in the book.
Next we show that ., (P,,P) — 0 if P, = P. For each A € S, define

ga(z) =1 —e tm(z, A)]" . (2.7)

Notice that Ia(z) < ga(z) < Ixe<(z) for all z, where Ip is the indicator
function of the set B. Moreover,

lga(z) — ga(y)] < € M m(z, A) —m(y, A)| < e 'm(z,y)

for all A, so that the class of all such g4 defined in (2.7) is uniformly bounded
and equicontinuous. By Lemma 1.1,

A, = sup /gAdPn—/gAdP‘ -0 as n— .
A€eS
Then
P(A%) > / gadP > / 9AdP, — Ay > Py(4) - A,
so that
P,(A) < P(A°)+e¢
when A, < e.

Finally, we want to show that (P(S), ) is separable. For that purpose,
let Sy be a countable dense subset of (S, m), which exists because we have
assumed that (S, m) is separable. We will show that the countable family
of rational-valued probability measures with finite support in Sy are dense
in P(S).

Given any P; € P(S) and any ¢ > 0, we show how to construct P
with finite support in Sy such that P,(A4) < Py(A€) for all A € S, so that
7y (P1, P2) < e. Let the sequence {z, : n > 1} enumerate the elements of
So- We construct a partition of S containing subset of e-balls about points
in Syp. We start by letting C; = By, (z1,€). For Ci,...,C, given, let k, 1
be the index of the first point from {z, : n > 0} not contained in U}, C;.
Then let
6) - U?:l CZ .

Let k1 = 1. Now let P, attach mass P;(Cy) to point zj, (in Cy) for n >
1. To give P, finite support, stop when P;(U¥_;C;) > 1 — ve and let P,

Cnt+1 = B, (xknﬂ )
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assign the mass Py (U5, C;) to z1. Hence Po({z1}) = P1(C1) + P1(Up5, , C5).
Now consider an arbitrary measurable set A. Note that C; C A whenever
ANC; # ¢. Since {C;} is a partition of S,

[e's) k
Pi(A) =) P(ANC) <D PI(ANC)) +ve < Py(A) +7e.
i=1 =1

1.3. The Skorohod Representation Theorem

In this section we prove the Skorohod representation theorem, Theorem
3.2.2 in the book. We restate it here:

Theorem 1.3.1. (Skorohod representation theorem) If X;, = X in a sepa-
rable metric space (S,m), then there exist other random elements of (S, m),
Xn.n > 1, and X, defined on a common underlying probability space, such
that
X2 Xx,n>1, X<x
and
P(lim X, =X)=1.
n—oo

We start by giving an elementary proof for the case in which the space S
is the real line. Then we give Skorohod’s (1956) original proof for the case
in which S is a complete separable metric space. Finally, we give a proof for
general separable metric spaces due to Wichura (1970). Dudley (1968) first
showed that the completeness condition is not needed.

1.3.1. Proof for the Real Line

Suppose that § = R. Then we can characterize the probability laws of
X and X,,, n > 1, by their cumulative distribution functions (cdf’s), i.e.,

F)=P(X <t), teR. (3.1)

For any cdf F, let F' be its right-continuous inverse, defined as in Chapter
I by
F7't) =inf{s: F(s) >t}, 0<t<1. (3.2)
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The representation is achieved by letting Q@ = [0,1] with Lebesgue mea-
sure (the uniform probability distribution), X (w) = F~!(w) and X, (w) =
F;Y(w), n > 1, with an arbitary definition for w = 0 and w = 1. The proof
is based on the following four basic lemmas, the first two of which have been

discussed in Sections 1.3 and 1.4 of the book.

Lemma 1.5. If F is a cdf on R and U is a random wvariable uniformly
distributed on [0,1], then F~1(U) is a random variable with cdf F.

Lemma 1.6. (weak convergence criterion in terms of cdf’s) Let X and X,
be real-valued random variables with cdf’s F' and F,, forn > 1. Then X, =
X as n — oo if and only if F,(t) — F(t) as n — oo for all t that are
continuity points of F.

Lemma 1.7. Let F and F,,, n > 1, be cdf’s on R. Then F,(t) — F(t)
as n — oo for all t € R that are continuity points of F if and only if
FY(t) — F~L(t) for all t € (0,1) that are continuity points of F~1.

Lemma 1.8. For any cdf F on R, the set of discontinuities of F~! in (3.2)
is at most countably infinite.

1.3.2. Proof for Complete Separable Metric Sspaces

The proof of Theorem 1.3.1 will be based on constructing a special
family of subsets of (S, m) and relating these subsets to associated subinter-
vals of the interval [0, 1). The length of the subinterval in [0, 1) (probability
with respect to Lebesgue measure) will match the probability of the cor-
responding subset of S. The proof is a combination of Lemma 1.9 below,
which shows the existence of the subsets with the required properties, and
Lemma 1.10 below, which shows how to exploit such subsets to establish
the Skorohod representation. Lemma 1.9 uses the separability; Lemma 1.10
uses the completeness.

A partition of a set A is a collection of disjoint subsets of A whose union is
A. A nested family of countable partitions of a set A is a collection of subsets
A, ..., of A indexed by k-tuples of positive integers such that {4; : i > 1}
is a partition of A and {A; . i, : tk41 > 1} is a partition of A;, _;, for
all £k > 1 and (i1,...,19) € Nﬁ_. We allow A;, . ;, to be empty for some
(1,...,1k). For each z € A, there is one and only one sequence {iy : k > 1}
such that z € A4;, _;, for all k.
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Example 1.1. Suppose that S = RT. We can obtain a nested family of
countably partitions of S by letting A; be [i —1,i) and A;, . ;, be the set of
all positive numbers with decimal expansion beginning (i1 —1).(32 — 1), (i3 —
1),...,(ixg —1). Let A;, i, = ¢ ifi; > 10 forany j > 2. =

We say that the radius of a set A in S is less than r, and write rad(A) < r
if A C Bp(z,r) for some z € S, where By, (z,r) is the open ball of radius r
about z in (S, m). As before, let A be the boundary of A.

Lemma 1.9. If P is a probability measure on a separable metric space
(S,m), then there exists a nested family of countably partitions {S;, . i, }
of S such that, for all k and (i1, ...,1),

(i) rad(Si.,.:) <27F (3.3)

and
(16) P(0Si,,..i,) =0 . (3.4)

Proof. Since (S,m) is a separable metric space, there exists a countable
dense subset, which we can express as a sequence {z; : ¢ > 1}. For each k,
we can choose an 7 such that 2-¢*+1) < 7. < 27% and

P(0By(zi,r,)) =0 forall i, (3.5)

because there are at most countably many (r,%) such that P(0B,,(z;,r) >
0). Now write

Df = Bm(.’EZ‘, Tk) — U;-_:lle(.’Ej, ’I"k) (36)
and
Sil:"'aik = D;Ll m D122 m e m ka * (3'7)
Since
Si1,...,'ik c Dzkk c Bm(xik,'rk) c Bm(xik,2_k) ) (38)
(3-3) holds. Since
ODf C U;_,0Bm(xj,7%) (3.9)
and
0Siy,..i € OD} U---UDE C UL UL, 8Bp(ay,1)) (3.10)

(3.5) implies that (3.4) holds. =
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Lemma 1.10. Suppose that Py is a probability measure on a complete met-
ric space (S, m) with a nested family of countable partitions {S;, . ;. } sat-
isfying (3.3) and (3.4). If P, = Py as n — oo on (S,m), then there exist
X, n>0, defined on [0, 1] with Lebesgue measure, denoted by P, such that
PX'n_l =PF,, n>0, and

P ( lim X, = )”(0) —1. (3.11)

n—oo

Proof. We construct nested sequences of countably partitions of [0, 1) cor-
responding to the given nested sequence {S;, .. ;. } of (S,m). For n >0, we
construct subintervals Ij} ;= corresponding to X,. We make each subin-
terval closed on the left and open on the right. Let I7 = [0, P,(S1)) and

P =D PulS), > PulSy)|, i>1. (3.12)

j=1 j=1
Let {I}; ., . ‘ik+1 > 1} be a countable partition of subintervals of IT? ;.
If Iz’ri,,zk :J[ana bn)a then
ik+171 Z.k+1
Iﬁ:---;ik—{—l = an + Z Pﬂ(Silr"ﬂ’kjj)’ an + Z P’n,(S’Al,,Zk,]) : (3]‘3)
j=1 j=1

The length of each subinterval Ij; . is the probability P, (Sj,...i,). Now
from each nonempty subset S;, . ; we choose one point z;,, . ; . For each
n > 0 and k > 1, we define functions z£ : [0,1) — S by letting =¥ (w) =
Ziy,...i, fOr w € Ii} ;.- By the nested partition property and (3.3),

m(zk (), 25 (W) < 27% forall j k,n (3.14)

and w € [0,1). Since (S,m) is a complete metric space, (3.14) implies that
there is z,, € S for all n > 0 such that

m(zf(w), z,(w) =0 as k— 0. (3.15)

We let X, = z,, on [0,1) for n > 0. Since P, = Py as n — oo, P,(4) —
Py(A) as n — oo for all A for which Py(0A) = 0 by Theorem 11.3.1 of
the book. Hence, P,(S;,, i) = Po(Si,,. i) by (3.4). Consequently, the

length of the intervals I7 converge to the length of the intervals Iz-o1
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as n — oo. Since

m(Xp(w), Xo(w)) < m(ffn(w),w’ﬁ(w))f m(zy(w), 2§ (w))
+m(ag (W), Xo(w))
< 27D 4ok (W), 2 () (3.16)
for all w in the interior of Ig,...,ik’
lim m(X,(w), Xo(w)) <271 (3.17)

n—oo

Since k is arbitrary, we must have X,(w) — Xg(w) as n — oo for all but at
most countably many w € [0, 00).

It remains to show that X, has the probability law P, for n > 0. It
suffices to show that P(X, € A) = P,(A) for each A such that P,(84) =
0. Let A be such a set. Let A* be the union of the sets Si1,..ir. such

that S;; .5, € A and let A’ be the union of the sets Sir,...i,, such that
Siyin NA# ¢. Then A¥ C A C A™ and, by construction above,
P(X, € AF) = P,(4*) and P(X, € A*)=P,(4"%). (3.18)
Now let
CF ={z eS8 :m(z,04) <27F} . (3.19)

Then A’* — A% C C* | 9A as k — co. Since P,(0A) = 0 by assumption,
P,(C*) | 0 as k — co. Hence
P(X, € A) = Jim P(X, € A¥) = lim P,(A*) = P,(4). =  (3.20)
—00

k—o00

1.3.3. Proof for Separable Metric Spaces

We now do the proof of Theorem 1.3.1 without assuming completeness.
Start by letting P, be the probability distribution of X,, on S for n > 0.
Let the underlying probability space be the product space Q = S with
elements w = {sx : k > 0}. Let X, be the coordinate mapping, e.g.,
Xn({sk 1k > 0}) = sp, n > 0. To quickly get the idea, first suppose that
P,({s}) =1 for all n > 0. In this special case we can let the probability
measure P on ) be the product measure P = d5 X Js X - - -, where J, is the
Dirac measure assigning probability 1 to the point s € S. Then P assigns
probability 1 to the sequence {s, : n > 0} where s,, = s for all n. Since
P(X, =s) =1 for all n,

P(X, =X, forall n)=P (m;’fzo{)?n — s}) 1. (3.21)
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To continue to develop the idea of the approach, now suppose that each
probability measure P,, n > 0, concentrates all probability on a common
finite subset of S. Thus it suffices to assume that S is finite. For a sequence
{kn : n > 1} with k, — 00 as n — oo to be defined later, let

Uk = mn:kTLZIc{)Zrn = XO} . (3.22)

(Note that we have a strong form of convergence on Uy.) Also let {Q, : n >
1} be a sequence of probability measures on S to be defined later. Now let
P; ¢ be the product measure

o
Py =06, x [[ Pisn (3.23)

n=1

where Pj; ,, is a probability measure on S defined by

o _ ) @Qn it 0<ky<y
-P_],s,n—{ 65 if JSanOO- (324)

Then let P} be a mixture of the probabilities P;; in (3.23) with respect to
Py, in particular,

P =S R({s)P;s - (3.25)

seS

Next let {wy : kK > 1} and {gx : K > 0} be sequences of numbers with

00 k
we>0, > wpg=1, g=0 g=» wj<l, 1<k<oo. (3.26)
k=1 j=1

Then let P be a mixture of the probabilities P} in (3.25) using the weights
wj in (3.26), i.e.,

o
P=> w;P}. (3.27)
j=1

We will show that this construction does the job with an appropriate choice
of the sequences {k, : n > 1} and {Q : n > 1}. (The weights wy in (3.26)
can be arbitrary subject to the conditions in (3.26).)

Note that P;, in (3.23) attaches positive probability only to sets of se-
quences {sp : n > 0} such that s, = s for all but a finite number of n (those
n for which 0 < k,, < j). Thus even though S* is uncountably infinite, P; ,
has finite support. Since S is finite, P in (3.25) also has finite support. All



12 CHAPTER 1. FUNDAMENTALS

sequences {s, : n > 0} in S°° with positive P-measure have s, = s for all
sufficiently large n for some s.
By (3.23), P;s(Xo = s) = 1. Thus, by (3. 25) and (3.27), P(Xo = s) =
P (Xo = s) = Py({s}) for all s € S. Hence PX,* = Py or, equivalently,
X0 2 x,.
Next Pjs(X, = s) = Pjsn({s}) for n > 1. Note that P;,(Uy) = 1
for j < k, where Uy is given in (3.22), so that P/(Uy) = 1 if j < k and
P(Ui) > qi. Since gy — 1 as k — oo by (3.26), X,, — X as n — oo almost
uniformly on  with respect to P, i.e., for any € > 0, there exists a subset
Uy of S with P(Ug) > 1 — € such that X,, converges uniformly to X, as
n — oo on Ug. (In our finite-state-space setting, we actually have X, =X
on Uy, for all n such that &k, > ko by (3.22) and (3.26).) For € given, choose
k so that ¢ > 1 —e. By Egoroff’s theorem, p. 89 of Halmos (1950), that
implies that
P ( lim X, = XO) —1. (3.28)
n—oo
The difficult part is to obtain X, 4 X, for n > 1. The construction
above yields

P(Xn = ) = gk, Po({s}) + (1 — g, )Qu({s}) forall n.  (3.29)

We now choose the sequences {k, : n > 1} and {Qg : k > 1} to achieve
PX; ! = P, for all n. Note that (3.29) is equivalent to

@n({s}) = Pal{s}) + 770 —(Pal{s}) = Po({s}) (3.30)

n

provided k, < oco. If k, = oo, then g, = 1, so that we must have P, ({s}) =
Py({s}), and then any Q,({s}) will do.
Thus, let

Q(k,s,n) = Pu({s}) +

o Plish = Bo({sh) . (331)

Mgn = Irlel‘élQ(k,S,n) ’ (332)
k, = sup{j>0:m;, >0} (3.33)

and
Qn({s}) = Q(kn,s,n) for k, < oo. (3.34)

Note that mg, > 0, so that k, < oo is well defined in (3.33). Note that
Y oses @k, s,n) =1 for all k, 0 < k < oo, and Q(ky,s,n) > 0 by (3.32)

v
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and (3.33). Thus, under (3.31)—(3.34), @, is a probability measure on S
satisfying (3.29) provided that k, < oc.

Since )5, ¢ Q(k,s,n) = 1, we must have 0 < Q(k,s,n) < 1 for Q(k, s,n)
in (3.31). Since g — 1 as k — 00, ¢x/(1 — gx) — o0 as k — oo. Hence, we
must have P,({s}) = Py({s}) for all n if k, = oo, under which (3.29) has
been shown to hold for any probability measure Q.

We now show that k, — oo as n — oo. Since P,({s}) — Po({s})
as n — oo for each s, Q(k,s,n) — Py({s}) as n — oo for each s and &,
1 <k < oo. This, together with the fact that Q(k,s,n) > 0 if Py({s}) =0,
implies that Q(k,s,n) is ultimately nonnegative for all sufficiently large
n depending upon k. Thus, for each k, there is an index n; such that
Q(k,s,n) > 0, and thus my, > 0, for all n > ny. Since my, > 0 implies
kn > k, we can conclude that, for all n > ng, k, > k. Hence, k, — oo as
n — 00.

We now turn to the general case: We now assume that S is a separable
metric space. We start by constructing a finite collection of subsets ap-
propriately approximating S. This step is a minor modification of Lemma
1.9.

Lemma 1.11. If P is a probability measure on separable metric space (S, m),
then for any 6, € > 0 there exist disjoint subsets S;, ..z, of S, 1 <1i; < i;-,
1 < j <k, such that, for all k and (iy, ..., i), (3.3) holds for 27 < §, (3.4)
holds and y y

P Uy Uy S > 1€ (3.35)
Proof. We use the construction in Lemma 1.9. Choose ¢} such that P(S;U
e USp) >1— €27 1; choose i} such that

P(Siy1U---US; 4) >1—P(S;,)e27? (3.36)
for all 41, 1 <4y <1f; choose 7}, such that

P(Si,.ijp U US; >1— P(S;,,..i;)e2™ (3.37)

.y
1s--4925 ’Zj+1)

for all (i1,...,4;) < (41,...,4;). Stop at k with 2% < 4, so that (3.3) holds.
Then

i g
P (Ui1=1 T Uik.zl

Siie) > 1= @ b k27 > 1, (3.38)

so that (3.35) holds. =
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We now return to the proof of the theorem. Let {d;y : k& > 1} and
{er : k > 1} be sequences of positive numbers such that §; — 0, ¢z — 0 and
Y peq €k < 0o. For each k, let {Cy ; : 0 < j < ny} be the finite collection of
subsets S;, .. ;. in Lemma 1.11 constructed with respect to P, where J and
e for k are required to be ¢, and €. Let Cro = S — U?ile,j. By (3.35),
Py(Cryp) < ek

With X, the coordinate projections on S as before, instead of (3.22),
let

Up = ﬂn:knzk{m(XnaXO) < 5kn} (3'39)

where d,, = 0. (The separability of (S,m) is used to have {m(X,, X) <
0k, } and thus Uy be measurable.) Given that k, — oo as n — oo, X, — Xo
uniformly on Ug. To apply Egoroff’s theorem, we will need to show that
P(Ug) = 1 as k — oc.

Let II; be the collection of sets Ci;, 1 < j < ng, and let Il = S.
We now modify the finite-state-space proof above, letting Cj, ; play the role
of s. Let the weights wy and their partial sums g; be defined by (3.26).
Paralleling (3.31)—(3.34), for 0 < k < o0, let

QU,Cin) = Pa(O)+ T2 (Pa(O) = B(C)),  (3.40)
men = min{Q(kC,m)} (3.41)
kn = sup{j >0:m;, >0} (3.42)
and
@n(C) = Q(kn, C,n) . (3.43)

Since P,(C) — Py(C) as n — oo for all C € I, k, — oo as n — oo by the
same argument as before.
Paralleling (3.23), let P; s be the product measure

o0
Pis =30 x [[ Pisn (3.44)
n=1

where P;, , is a probability measure on S defined by

Pjsn=1q Pu(|C,;s) if j<ky<oo (3.45)
O if k,=o00,

where P, (:|Ck,,s) is the conditional probability measure with Cj s being
the element of II; containing s € S. Note that Pj,, in (3.45) has three
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possibilities instead of only the two in (3.24). Unlike the case of finite S,
Pj s in (3.44) does not have finite support, but if s € Cy, ;, then P;, has
support on the set of sequences {s, : n > 0} such that s, € Cy, ; for all but
finitely many n, in particular, for all n such that k, > j. On this subset of
sequences, m(X,, Xg) < Jk, for all n such that k, > j.

Paralleling (3.25), let

Pi(4) = [ Ri@Pi(4) (3.46)

The integral in (3.46) is well defined since Pjs(A) is a measurable function
on S for each A a cylinder set with finite base in the o-field on S°°; see pp.
74-76 of Neveu (1965). Note that P; has support on the set of sequences
{sn : n > 0} such that s, € C},; for all but finitely many n, for some 3.
Thus

Pj(m(Xn, Xo) < 8,) >1— P(Cr,0) >1— ¢, - (3.47)

Paralleling (3.27), let
o
P=> wP}. (3.48)
j=1

As before, the construction yields PXO_ 1 = Py. The probability distribution
of X, is
o1 _ J @k Xcen,, Pr(IC)P(C) + (1 — gk, )@n if Ky < o0
PX, = kn )
B if k,=o00.
(3.49)
For n such that &k, < oo, let

Qn = Z Q(kn,C,n)Pn(\C') : (3'50)
Celly,
Combining (3.40), (3.49) and (3.50), we see that PX,,* = P, if k, < co. On
the other hand, as before, if &k, = oo, then we are forced to have P,(C) =
Py(C) for all C € IIy, for any k > 1, but that implies that P,, = Py. (We can
apply the reasoning in the proof of Lemma 1.10 using (3.18) and (3.19).)
Finally, it remains to show that P(Uy) — 1 as k — oo for Uy in (3.39).
However,

kol

P(U) = ijP;(Uk)z' w; Pj(Uy)

Jj=1 J

M

1
=

€| —1 as k—oo, (3.51)

k
Zwk 1-—
j=1

J
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since, for j < k < ky,,

1— Pj(Ux) < Py (U2Clo) <> e, (3.52)
=k

because P;,s assigns probability 1 to product sets in which all coordinates
are in common sets Cj .

1.4. The “Weak” in Weak Convergence

This section is devoted, not to a proof of a theorem, but to an expanation
of a term — the adjective “weak” in “weak convergence.” The term “weak”
can be understood from a Banach-space perspective.

The starting point is the definition of convergence P, = P;i.e., P, = P,

lim /S fap, = /S fap (4.1)

for all functions f in C(S), the space of all continuous bounded real-valued
functions on S.

The space C(S) of continuous bounded real-valued functions h on S used
in definition (4.1) is a Banach space (a complete normed linear topological
space) with the uniform norm

if

[R]| = sup|h(s)] .
SES

The adjoint or conjugate space of C(S), the space of all continuous linear
real-valued functions L on C(S), denoted by C*(S), turns out to be the
space Z(S) of all finite signed measures p on S, defined via

E/hd,u;
S

e.g., see pp. 262, 419 of Dunford and Schwartz (1958) or Chapter 9 of
Simmons (1963).

The adjoint space B* of any Banach space B is itself a Banach space
with the norm

IL]] = sup{[IL(®)[| : b€ B, [}b] <1} .

Since B* is a Banach space, one can consider its adjoint space B**. There
is a natural embedding of B in B** so that we can regard B as a subset of
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B**. (Just let Ly(f) = f(b) for b € B and f € B*.) When B = B**, B is
said to be reflexive. However, C(S) is reflexive only when S is finite. So, in
our setting with infinite S, C(S) is a proper subset of C**(S).

Instead of the topology induced on a Banach space B by its norm, it is
sometimes of interest to consider a weaker topology on B called the weak
topology, which is the weakest topology such that all the functions in B*
remain continuous; i.e., b, — b in B with the weak topology if and only if
L(b,) — L(b) for all L in B*. Furthermore, on the adjoint space B* one can
also consider a still weaker topology called the weak™ topology, which is the
weakest topology such that all the functions in B, regarded as a subset of
B**, remain continuous. Thus the weak* topology on Z(S) = C*(S) rela-
tivized to the subset P(S) is what is characterized by (4.1). (The discussion
also implies that the weak topology on Z(S) is stronger than the weak*
topology on Z(S), so the terminology “weak convergence” is something of
a misnomer. From this Banach-space perspective, we should actually call
weak convergence P, = P weak* convergence.) =

1.5. Continuous-Mapping Theorems

In this section we supplement the discussion of the continuous-mapping
approach in Section 3.4 of the book by providing proofs for the unproved
theorems. We first prove the Lipschitz mapping theorem, which comes from
Whitt (1974).

1.5.1. Proof of the Lipschitz Mapping Theorem

We now prove the Lipschitz mapping theorem, Theorem 2.4.2 in the
book. First suppose that (S,m) is a separable metric space and B = S.
Then we can employ the Strassen representation theorem, Theorem 11.3.5 in
the book. It is elementary that the Lipschitz property is inherited by the in-
probability distance p: Given P(m(X,Y) > §) < 4, the Lipschitz property
of g implies that P(m/(g(X),g(Y)) > Ké) < 4, so that p(g(X),g(Y)) <
(K vV 1)p(X,Y). By the Strassen representation theorem, for X,Y and
positive € given, we can find X,Y on a common probability space so that
X4x, 72y and

p(X,Y) <w(X,Y) +e.

Hence,
m(g(X),g(Y)) = m(g(X),9(Y)) < p(g9(X),9(Y))
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and
p(g(X),9(¥)) < (K V1)p(X,¥) < (K V1D)(r(X,Y) +¢) .

Since € was arbitrary, we have the desired conclusion.
Now we consider the general case, for which we argue directly. Let B be
the subset for which P(Y € B) = 1. The Lipschitz property implies that

BNng Y (AP Cg ' (49 in § for §<e/K
and any A € S'. Hence,

m(9(X),9(Y))
:inf{6>0:P(g(X) A)<e+Pg(Y)e A°) forall A€ §'}

=inf{e>0: P(X € g 1(4)) < 6+P(Y€gfl(A€)) for all A € S'}
<inf{e>0:P(X €g 1 (4) <e+P(Y €BNg '(4)°) forall A€ 5'}
Sinf{e>O:P(X€g (A) < e+ P(Y € g71(A)?) fora,llAES'}

IA

inf{e>0:P(X €4)<e+P(Y €A’) forall A€ S}
1V E)r(X,Y). =

IN

Example 1.5.1. The advantage of the Prohorov metric on P(R). Even on
the real line R, the Prohorov metric is useful to establish rate of convergence
results, because the Lipschitz mapping theorem does not apply to two other
metrics commonly used. On P(R) one often uses the Lévy metric A, which
is defined just as the Prohorov metric « in (2.2) except that only sets of the
form A = (—o0, z] are used. The uniform metric for cdf’s is also sometimes
used; i.e.,

| F1 — 2| = u(Pr, P2) = sup{(|P1(4) — P»(4)| : A = (—o0,2]},

where Fj(z) = P((—o0,z]). The uniform-cdf metric p also induces weak
convergence at limiting probability measures without atoms. However, the
Lipschitz theorem is not valid for A and u. To see that, for n > 1, let

P(X,=2j)=P(Y,=2j+1)=1/n for 1<j<n,
and let g : R — R be defined by
g(t) =sin(nz/2) for tER.
Clearly, g is Lipschitz with Lipschitz constant 1, but
AMXn, Yn) < p(Xn, Ya) = 1/n,
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while
P(g(Xp) =0)=P(g(Yn) € {-1,1}) =1 forall n,

so that

w(9(Xn), 9(Yn)) > Mg(Xn),g(Yn)) =1/2 forall n .

Given a bound with the Prohorov metric 7 in P(R), we can obtain
corresponding bounds with the metrics A and p. First we use the inequality
A < 7. In many cases we can relate A and y: When a probability measure
P; on R has a Lipschitz cdf F; with Lipschitz constant c, i.e., when

|F1(t1) — Fi(te)| < clt1 —tof ,
then we have the ordering

M(PI,PQ) < (1 + C)A(Pl,PQ) forall P, € P(R) . = (51)

1.5.2. Proof of the Continuous-Mapping Theorems

We now turn to Theorem 3.4.3 of the book, following Billingsley (1968,
Section 5), which we restate here. Let Disc(g) be the set of discontinuity
points of the function g.

Theorem 1.5.1. (continuous-mapping theorem) If X,, = X in (S,m) and
g:(S,m) — (8',m') is measurable with P(X € Disc(g)) = 0, then g(X,,) =
9(X).

We first establish the measurability of Disc(g) (even if g is not measur-
able).

Lemma 1.5.1. (measurability of the set of discontinuity points) For g :
(S,m) — (S',m'), Disc(g) € S.

Proof. For any y,z € S with m/(g(y),g(z)) > € and € > 0, let
Acs(y,z) ={z € S :m(z,y) < and m(z,z) < d} .
Then the complement is

Ag,(;(y,z) ={z €S :m(z,y) > or m(z,z) >} .
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It is easy to see that A¢ s5(y, z) is closed, so that A s5(y,z) is open, as neces-

sarily is
Ae,& = U U Ae,J(ya Z) .
Yy oz

Since

DZSC(g) = U ﬂA€,(5 )
€ ¢

where ¢ and § run over the positive rationals, Disc(g) is a Gg,, implying
that Disc(g) €S. =

Proof of Theorem 1.5.1. By Theorem 11.3.4 (iii) in the book, it suffices
to show that o

lim P(g(Xn) € F) < P(g(X) € F)

n—oo

for each closed subset F' € S’. Given that X,, = X, we have
lim P(g(X,) €F) = lim P(X,€g '(F))

n—00 n—00

< lim P(X,eg '(F)7)

< P(Xeg M (F)7).

However, P(X € g7'(F)~) = P(X € g~ '(F)) because P(Disc(g)) = 0 and
g~ (F)~ C g '(F) U Disc(g). =

Finally, we treat Theorem 3.4.4 of the book, involving a sequence of
measurable mappings:

Theorem 1.5.2. (generalized continuous-mapping theorem) Let g and gy,
n > 1, be measurable functions mapping (S,m) into (S’,m'). Let the range
(S’,m') be separable. Let E be the set of z in S such that gn(zn) — g(z)
fails for some sequence {x, : n > 1} with x, — = in S. If X, = X in
(S,m) and P(X € E) =0, then g,(X,) = g(X) in (S',m').

Here we need to assume that the range is a separable metric space. Again
we follow Billingsley (1968, Section 5).

Lemma 1.5.2. (measurability of the bad set) Suppose that g,, n > 1, and g
are measurable functions from a metric space (S,m) into a separable metric
space (S',m'). Let E be the set of x in S such that g,(z,) — g(z) fails for
some sequence {zy : n > 1} with m(z,,z) — 0 as n — oco. Then E is a
measurable subset of S.
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Proof. Let B ;; be the set of z in S such that m'(g(z), gi(y)) > € for some
y with m(z,y) < 6. Note that

E = Ue N5 Nig>1 Uisk Besi (5.2)

where € and § range over the positive rationals. We would be done if we
could conclude that B s; is measurable, but we do not know that. Note
that B s, is decreasing in e. Hence (5.2) remains true if B 5, is replaced by
By /2,54~ It thus suffices to show that, for all (¢, ,4), there are sets Cc5; € S
such that

Be,d,i c Ce,5,i C Be/2,5,i - (53)

Since (S’,m’') is separable, we can find a sequence {uy : kK > 1} dense in S’
Let Acx = {z : m'(g(z),ux) < €¢/4} and note that Ay € S and S = UgA .
Then (5.3) holds if

Cesi = Un(Aer N Jesik) 5

where J, 5, is the set of = such that m'(g;(y),g(z)) > € for some pair of
points y, z in S with m(z,y) < 6, m(z,2) < § and z € A . It is not difficult
to see that Jg’d’i’k is closed, so that J.s; ) is openand Ce5; €S. =

Proof of Theorem 1.5.2. By Lemma 1.5.2, £ € §. From Theorem 11.3.4
(iv) in the book, it suffices to show that

P(g(X) € G) < lim P(gn(Xn) € G)

n—oo

for every open G in §'. If z € E° and g(z) € G, then there must exist k and
d such that g;(y) € G if i > k and m(z,y) < 4, so that & € T, the interior
of T}, where

T = Ni>kg; (G) .

Consequently,
g @) cEJunT.

Since P(X € E) =0 and Ty C Ty, |, for any given ¢ there is a k such that
P(X€gHG) < P(X e TY) < P(X €TY) +e¢
for k > ko. Since X, = X and T} C g;,}(G) for n > k,

P(Xe€T?)< lim P(X,eT?)< lim P(X,€g,(Q)).

n—oo n—oo
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Since € was arbitrary, the proof is completed by combining these two strings
of inequalities. =

The continuous-mapping approach to stochastic-process limits leads us
to focus on the underlying sample paths of the stochastic processes. Thus
the continuous-mapping approach is a sample-path method. In recent years,
probabilists have tended to favor sample-path methods over more traditional
analytic methods, because they are less removed from the phenomenon un-
der study. However, the two approaches often can be fruitfully combined.

Many traditional analytic results are based on transforms, such as the
characteristic function (version of the Fourier transform), probability gen-
erating function (or z transform) and the Laplace transform, as can be seen
from Feller (1971). Fortunately, the analytic approach has been applied with
great success over the years to yield explicit expressions for many probabil-
ity distributions of interest in the form of transforms. That is true for many
of the limit processes that we will consider. Thus we can use previous an-
alytic results to obtain explicit transforms for approximating distributions.
We then can apply numerical transform inversion to compute the probabil-
ity distribution itself; e.g., see Abate and Whitt (1992, 1995), Choudhury,
Lucantoni and Whitt (1994) and Abate, Choudhury and Whitt (1999).

For example, as shown in Section 7.5 of the book and Section 5.2 here,
the heavy-traffic limit for a queue with heavy-tailed distributions is often
a reflection of a stable Levy motion or more general Levy process with-
out negative jumps. These limit processes are somewhat complicated, but
fortunately the analytic approach has shown that the steady-state distri-
bution has a relatively simple expression via its Laplace transform, which
is known as the generalized Pollaczek-Khintchine transform. Thus we can
calculate the steady-state distribution of the limit process by applying nu-
merical transform inversion.



