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ABSTRACT. In this paper we show the consistency of the essential part of
Sergeyev’s numerical methodology ([1], [2]) by constructing a model of it within
the framework of an ultrapower of the ordinary real number system.

1. SERGEYEV’S NUMERICAL SYSTEM

In [1] and [2], Ya. D. Sergeyev extends the ordinary positive integers by adjoining
a new symbol ® that he calls grossone.! Three axioms and three methodological
postulates govern the role of grossone in this number system. For example, the
number §) is regarded to be infinitely large in the sense that it satisfies the following
axiom.

e Infinity. For all the ordinary positive integers n, we have n < (9.
The symbol N is defined to be the set

(1.0.1) N={1,2,3, ... ®-2,0- 1,0},
and the symbol N is defined to be the set
(1.0.2) N={1,2,3, ... ®-2,0-1,0,0+1,0+2,...}.

Based on (1.0.1), the number ® is regarded as the cardinality of N with § serving
as its largest element. There is a second axiom that is called identity and lists the
following relations.

o Identity. 0-®=0=0-0; ®-©=0 2=1,0"=1; 19=1; 09=0.

Finally, there is a divisibility axiom that requires that the number (§) be divisible
by all the ordinary positive integers. This axiom is stated as follows.

o Divisibility. For each ordinary positive integers n and each positive integer
k with 1 < k < n, the sets Ny, being the nth parts of the set N have the
same number of elements indicated by the numeral %, where

Ngw = {k,k+n,k+2n,k+3n,...} and N= UN,M.
k=1

Date: October 2011.
1Sergeyev’s grossone is in fact a circled 1 rather than a circled S. But that does not matter. I
would have used his symbol if I knew how to produce it in LaTex.
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2. ULTRAPOWERS

In this section, we recall the notion of an ultrapower of an infinite set in general
and the real number system in particular.

2.1. Definition (Ultrafilters). A family U of subsets of Z7* is called a free
ultrafilter on Z™ if it satisfies the following conditions:

(1) 0 ¢U.

(2) If A,BelU, then ANBecU.

(3) f AcU and B is asubset of ZT that contains A, then B €U.

(4) f SCZ", then SeUd or S'={xecZ":2¢S}e U.

(5) No finite subset of Z' belongs to U.

Now let X be any infinite set, and let XZ " be the set of all the sequences (ay,)

in X. We define an equivalence relation = on X?# " by writing (a,) = (b,) if and
only if {n € Z" : a, = b,} € U. Tt is easy to see that = is indeed an equivalence

relation. For example, to prove reflexivity (i.e., (a,) = (ay) for all (a,) € XZ+),
we must show that {n € Z* : a, = a,} € U. This is an immediate consequence of
conditions (1) and (4) of Definition (2.1) since the set {n € Z" : a,, = a,,} is none
other than the entire Z*.

2.2. Definition. The set X of all the equivalence classes of X Z" that are induced
by = is called an ultrapower of X. For each =z € X the equivalence class
[(z,z,x, )] of the constant sequence (z,z,x,--) is denoted by *z. An element
x € X is called standard if there is an = € X such that = *z. The rest of the
elements of X are called nonstandard. The collection of all the standard elements
of X is denoted by ?X. The next theorem gives the condition that guarantees the
existence of nonstandard elements in X.

2.3. Remark. The symbol *X is an alternative notation for X. We shall use
this symbol particularly to denote an ultrapower *R of the set of the ordinary
real numbers R.

2.4. Theorem. Let X be an ultrapower of the set X. If X 1is infinite, then X has
nonstandard elements.

Proof. Since X is infinite, there is a sequence (a,,) in it whose terms are distinct.
Let @ = [(an)]. We claim that o ¢ “X. That is, (a,) does not belong to the
equivalence class of any constant sequence (z,x,x,---). To see this, fix x € X.
Since the set S = {n € Z* : 2 = a,,} has at most one element, by condition (5) of
Definition (2.1), we have S ¢ U. This means that (a,as,as,---) and (z,x,z, )
are not related by the relation =. Hence a # *wx. d

Now fix a free ultrafilter & on Z7, and let *R denote the ultrapower of R
that is obtained by means of U. For convenience, for each sequence (a,) in R,
let its equivalence class [(a,)] be denoted by the bold symbol a.

2.5. Definition. Given a,b,c € *R, we write

a=b if and only if (an) = (by).
a+b=c if and only if (an + bn) = (cp).
a-b=c if and only if (an - bn) = (cp).

a<b if and only if  {n€ Z" :a, <b,} € U.
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2.6. Hyperreal Number System. The system (*R, +, -, <) that we just defined
is referred to as a hyperreal number system. It is not difficult to prove (see [3],
page 5) that the system ( *R,4,:, <) is a linearly ordered field, and contains
an isomorphic copy of the system (R, +, -, <). This isomorphism assigns to each
a € R the equivalence class a = [(a,a,a,---)]. The set *R has unlimited
elements (or elements with infinitely large magnitudes). These are elements whose
absolute values are greater than every positive element of ?[ *R]. For example, if
w=1[(1,2,3,---)], then we have w > a forall a € ?[*R] since

{neZ":n>a}leU  foreach a€ R.

The reciprocals of unlimited numbers are the infinitesimals. Thus for example,

e

is an infinitesimal — it is smaller than every standard positive number in *R.
Two numbers a,b in R are infinitely close, written a ~ b, if |a — b| is an
infinitesimal.

The real number system (*R,+, -, <) can be visualized as in Figure (1).
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FIGURE 1. Infinitesimals viewed through a microscope

3. INTERPRETATION OF GROSSONE IN ( *R, +, -, <)

Let ( *R,+,-, <) be the hyperreal number system discussed in the previous
section. Recall that the internal properties of the system ( *R, +, -, <) are formally
identical with the properties of the ordinary real number system. This means, in
particular, that * R has subsystems such as ( *Z, 4+, -, <) and ( *Q, +, -, <) whose
internal properties are formally identical with the properties of the ordinary system
(Z,4+,+, <) of integers and the ordinary system (Q, 4+, -, <) of rational numbers.
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In other words, the system ( *Z,+, -, <) is a linearly ordered ring and the system
(*Q,4+,+, <) is a linearly ordered field.

Now if we define the symbol ) by the equation @ = [(n!)], we see that ® is a
nonstandard element of *Z* that satisfies the infinity axiom of Sergeyev’s grossone.
This follows from the fact that

(neZ":n!'>a}eUd foreachac R.
Now define the symbols N and N as follows:
N={me *Z":m<@®} and N=*ZT

Then N is an internal (nonstandard) finite set whose internal cardinality is ). The
field properties of the system ( *R, 4, -, <) guarantee that the number ) satisfies
all of the statements listed in Sergeyev’s identity axiom.

It remains to prove Sergeyev’s divisibility axiom for grossone, which follows eas-
ily from the next theorem. In this theorem we use the conventional notation for
divisibility of integers. That is, we write p|q to indicate that ¢ is divisible by p.

3.1. Theorem. For each p € °[*Z7], we have p|®.

Proof. Fix p € °[*Z*]. Then we have p = *p for some p € Z*. The conclusion
of the theorem is an obvious consequence of the fact that

{neZ pnlyelu for each p € R.
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