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Generalizing a result of Hochbaum and Shmoys, a polynomial algorithm with a worst-case 
error ratio of 2 is described for the p-center problem in connected graphs with edge lengths and 
vertex weights. A slight modification of this algorithm provides ratio 2 also for the absolute p- 
center problem. Both these heuristics are best possible in the sense that any smaller ratio would 
imply that P = NP. 

1. Introduction 

Given a connected graph G, the vertex and edge sets and their cardinalities are 
denoted by V(G), E(G), n and m, respectively. It is assumed that every vertex o is 
assigned a non-negative real number w(o), called the weight of  o, and every edge 
uv is assigned a positive real number a(uo), the length of  uo. The lengths determine 
the distance d(u, o) between any two vertices u and o as the minimal sum of  the edge 
lengths of  a u -  o path. The distance between a vertex o e V(G) and a set X C  V(G) 
is d(o, X) := min{d(o, x ) [ x e X } .  A p-set is a set of  cardinality p.  Given G and p,  
the p-center problem is to find a p-set X C  V(G) such that the objective function, 
weighted eccentricity, 

r / (X):= max {w(o)d(o,S)} 
v~ V(G) 

is minimized. The optimal value of r/(X) is often called the p-radius of  G. A p-center 
is any optimal p-set X. I f  also any point of  a network (either on an edge or at a 
vertex) is allowed to be an element of  X, the corresponding problem is referred to 
as the absolute p-center problem. (Distances are defined as expected.) Clearly, any 

edge uo with d(u, o) < a(uo) can be deleted without affecting the optimal eccentricity. 
Therefore we will assume that d(u, o) = a(uo) for every edge uo. Note that we do not 
assume any other relations between edge lengths. However,  some authors define the 
p-center problem only for complete graphs. In this case they can put d(u, o) := a(uo) 
whenever the triangle inequality for the lengths is assumed. Both definitions are 
clearly equivalent as to the p-center problem but not for the absolute p-center one. 
Therefore we prefer incomplete graphs. Moreover,  sometimes a special structure of  
G can be exploited (see e.g. [17] for trees). 
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These problems were first formulated by Hakimi [5,6] in 1964. They are 
motivated by real problems of  locating p emergency facilities (e.g. hospitals or 
fireman stations) of  the same kind along a road network (either at a city or on a 
road); the importance (e.g. the population) of  a city is expressed by the correspond- 
ing vertex weight. 

The literature on these problems is now very vast. For surveys and further 
variants see e.g. [1,2, 11, 14, 16, 17, 18]. Both the problems are NP-hard even in very 
special cases [4, 9, 11, 12, 13, 15]. Recently Hochbaum and Shmoys [7] considered the 
special case of  the p-center problem where all the vertex weights are equal to 1 (the 
unweighted problem). They have described an O(n 2 log n) heuristic which has the 
worst-case error ratio not exceeding 2, i.e., the heuristic provides a p-set X with 
r / (X)/r /*<2,  where r/*:=r/(S) for any p-center S. Then in [8], they have given 
polynomial approximation algorithms for a wide variety of  NP-hard bottleneck pro- 
blems in routing, location and network design. A bound of  value 2 is, in a sense, 
a best possible, because the problem to find a p-set X with rl(X)/rl * <_ ~9 where ~o < 2, 
is an NP-hard problem, as proved in [9] and independently in [15]. More recently, 
Dyer and Frieze [3] have described a simple O(np) heuristic for the p-center problem 
with ratio min{3,1 + a } ,  where a is the maximum ratio between the weights of  
vertices. 

The aim of  this paper is to give a polynomial heuristic which ensures ratio 2 also 
for the p-center problem in general. Moreover, our approach is very simple and 
natural. As a consequence, it gives ratio 4 for the absolute p-center problem. 
However, a slight modification of our heuristic provides ratio 2 also in this case. 
And again, because of  NP-hardness results, there does not exist any polynomial 
algorithm that has a better performance guarantee (unless P = NP). 

1. The p-center problem 

Let n___2 and l < p < n .  We assume that the distance matrix (which gives the 
distance d(u, o) between every pair of  vertices u and o) is available. Note that it takes 
O(n 3) operations to compute the distance matrix in a general graph, but for sparse 
graphs there are more efficient (at least theoretically) algorithms [10]. Our heuristic 
is based on the following result. 

Theorem 1. For any real number r > O, i f  there exists ap-set X C  V(G) with ~I(X) <_ r, 
then the following procedure f inds a set S C V(G) with I S I <- p and r/(S) <_ 2r. 

Procedure RANGE 
Step O. At first all vertices of  G are unlabelled; S : = ft. 
Step 1. If all vertices are labelled, then go to Step 2. Else choose an unlabelled 

vertex u of  the maximum weight and put S := SO {u}; label the vertex u and 
every unlabelled vertex o such that w(o)d(u, o)<2r; go to Step 1. 
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Step 2. Output S. 

Proof .  Let X consist of  vertices o I . . . . .  Up and let the 'regions' corresponding to 
these vertices be S1,. . . ,  Sp, respectively (i.e., S1U. . .USp= V(G) and for every 
i= 1 . . . . .  p, w(o)d(oi, o)<-r whenever o~Si). By the algorithm, we have 
w(o)d(S, o) <_ 2r for any o e V(G) and hence t/(S) _< 2r. To prove that ]S] _< p we will 
show that at most one vertex of each Si belongs to S. Consider an iteration of  Step 
1. Let u be the chosen vertex and let S i be the set containing u. Then for every 
other unlabelled vertex o of  Si we have w(v)<_ w(u) and by the triangle inequality 
we get 

w(v) d(u, o) <_ w(o)[d(u, 03 + d(oi, o)] 

<-- W(U) d(o i, u) + w(o) d(oi, o) <_ 2r. 

Therefore one must label all the unlabelled vertices of S i, i.e., no further vertex of  
Si will be added to S. [] 

One can see that our procedure RANGE is a dual approximation algorithm in the 
sense of  Hochbaum and Shmoys [7,8] and hence all their results apply. In fact, the 
following heuristic for the p-center problem goes in line with [7]. It is based on the 
simple observation that the optimal weighted eccentricity (p-radius) is one of  the 
weighted distances. 

Heuristic CENTER 
Step 1. Arrange the n(n-1)-mul t ise t  of weighted distances d(u,w)w(o) with 

u, o ~ V(G) into a non-decreasing sequence and deleting duplicates reduce it 
to an increasing sequence 

f l  < f 2 <  "'" <fq.  (1) 

Step 2. Find r*, the least value of r e  { f l , f2  . . . . .  fq} for which RANGE yields an 
output S with IS [ <p .  

Step 3. Augment S arbitrarily to a set S' of  p vertices. Output S' and stop. 

Step 1 can be performed by a sorting procedure in time O(n 2lOg n). Using a 
binary search running on indices 1, 2 . . . . .  q (see [7]), it is sufficient to apply RANGE 
only O(log n) times to find r*. It is convenient to arrange the n vertices according 
to their weights (in time O(n log n)). Then each iteration of  Step 1 in RANGE can 
be done in time O(n) and thus the total complexity of  RANGE is O(n2). Therefore 
the complexity of Step 2 in CENTER is O(n 2 log n). As Step 3 is trivial, the com- 
plexity of  CENTER is O(n 2 log n). 

Since r/(S')_< t / (S)_ 2r*, we see (by Theorem 1) that CENTER is a 2-approxima- 
tion algorithm. As the weighted problem includes the unweighted one, the NP- 
hardness result from [9,15], mentioned in Introduction, works here too. Conse- 
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quently, CENTER is a best possible polynomial heuristic as to the worst-case ratio. 
Note that the p-radius is bounded from below by r* (and also by certain in- 

termediate results from binary search), which can be used in a branch-and-bound 
heuristic, as observed in [7]. 

The following example shows that in CENTER ratio 2 can be attained. Let 
V(G) := {1,2,3}, E(G) := { 12,23}, p := 1 and all lengths and weights be equal to 1. 
Then r/*= 1 but CENTER can give S '=  {1} with r/(S') =2. 

2. Absolute p-centers 

In this section we deal with finding approximate solutions of  the absolute p-center 
problem (in this problem the points-facilities can be located also on edges which are 
considered as curves of  the corresponding lengths). We will present a slight 
modification of  CENTER. 

It is well known (see e.g. [11]) that without loss of  generality we can restrict the 
points of  an absolute p-center to be chosen out of  a set of  no more than O(m n 2) 
points. Hence, there are at most O(m n 2) possible values r for the weighted eccen- 
tricity of  an absolute p-center. 

We will use the following assertion which has essentially the same proof  as 
Theorem 1 (now o~ . . . . .  ol, are not necessarily vertices but generally points). 

Theorem 2. For any real number r > O, i f  there exists a p-set X o f  points o f  G with 
~l(X) < r, then the procedure RANGE f inds a set S C V(G) with IS [ <<_p and 
rl(S ) < 2r. 

Our heuristic for the absolute p-center problem is called ABCENTER and pro- 
ceeds as follows. ABCENTER first finds all possible values r in time O(m n 2) see 
[11] for such an algorithm). Then it arranges these values into an increasing se- 
quence (1) which takes O(m n 2log n) operations. This is Step 1 and the rest of  
ABCENTER consists of  Steps 2 and 3 which are the same as in CENTER. Thus the 
overall complexity of  ABCENTER is O(m n 2 log n). 

By Theorem 2, ABCENTER is a 2-approximation algorithm. Since the p-approxi- 
mation absolute p-center problem is NP-hard whenever p < 2 [15], ABCENTER is 
a best possible polynomial heuristic as to the worst-case ratio (unless P = NP). 

As a corollary of Theorem 2, we have the following result which can be of  interest 
in its own right. However, the result can be proved also directly. Moreover, one of  
the referees believes that people in the field know it. 

Theorem 3. For any absolute p-center A and any p-center C o f  G, 

,1(.4) < ~(c)_< 2~(A). 

Moreover, multiplier 2 is the least possible. 
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Proof .  The left inequal i ty  is trivial.  To  prove the right inequal i ty  apply Theorem 2 

with r :=  r/(A), X : = A  and  observe that  r/(C)_< ~/(S). To show that  mult ipl ier  2 can- 

no t  be decreased, consider  a graph G consist ing of  a single edge of  length 2 with 

un i t  vertex weights. T h e n  for p = 1 we have r/(A) -- 1 and  r/(C) = 2. [] 

Note that  by this result C E N T E R  is a 4 -approximat ion  0(//2 log//)  a lgori thm for 

the absolute  p-center  problem.  

Lastly, we raise the following quest ion:  Is there a po lynomia l  p -approx imat ion  

a lgor i thm for the unweighted absolute  p-center  p roblem for some Q < 2? Note that  

the p -approx ima t ion  absolute  unweighted p-center  problem is know n  to be NP-ha rd  

only  for 6 < 3 / 2  [9,15]. 
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